1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/genetlink.h> 63 #include <linux/net_namespace.h> 64 #include <linux/nospec.h> 65 #include <linux/btf_ids.h> 66 67 #include <net/net_namespace.h> 68 #include <net/netns/generic.h> 69 #include <net/sock.h> 70 #include <net/scm.h> 71 #include <net/netlink.h> 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/netlink.h> 74 75 #include "af_netlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 if (group > 32) 163 return 0; 164 return group ? 1 << (group - 1) : 0; 165 } 166 167 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 168 gfp_t gfp_mask) 169 { 170 unsigned int len = skb_end_offset(skb); 171 struct sk_buff *new; 172 173 new = alloc_skb(len, gfp_mask); 174 if (new == NULL) 175 return NULL; 176 177 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 178 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 179 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 180 181 skb_put_data(new, skb->data, len); 182 return new; 183 } 184 185 static unsigned int netlink_tap_net_id; 186 187 struct netlink_tap_net { 188 struct list_head netlink_tap_all; 189 struct mutex netlink_tap_lock; 190 }; 191 192 int netlink_add_tap(struct netlink_tap *nt) 193 { 194 struct net *net = dev_net(nt->dev); 195 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 196 197 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 198 return -EINVAL; 199 200 mutex_lock(&nn->netlink_tap_lock); 201 list_add_rcu(&nt->list, &nn->netlink_tap_all); 202 mutex_unlock(&nn->netlink_tap_lock); 203 204 __module_get(nt->module); 205 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(netlink_add_tap); 209 210 static int __netlink_remove_tap(struct netlink_tap *nt) 211 { 212 struct net *net = dev_net(nt->dev); 213 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 214 bool found = false; 215 struct netlink_tap *tmp; 216 217 mutex_lock(&nn->netlink_tap_lock); 218 219 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 220 if (nt == tmp) { 221 list_del_rcu(&nt->list); 222 found = true; 223 goto out; 224 } 225 } 226 227 pr_warn("__netlink_remove_tap: %p not found\n", nt); 228 out: 229 mutex_unlock(&nn->netlink_tap_lock); 230 231 if (found) 232 module_put(nt->module); 233 234 return found ? 0 : -ENODEV; 235 } 236 237 int netlink_remove_tap(struct netlink_tap *nt) 238 { 239 int ret; 240 241 ret = __netlink_remove_tap(nt); 242 synchronize_net(); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(netlink_remove_tap); 247 248 static __net_init int netlink_tap_init_net(struct net *net) 249 { 250 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 251 252 INIT_LIST_HEAD(&nn->netlink_tap_all); 253 mutex_init(&nn->netlink_tap_lock); 254 return 0; 255 } 256 257 static struct pernet_operations netlink_tap_net_ops = { 258 .init = netlink_tap_init_net, 259 .id = &netlink_tap_net_id, 260 .size = sizeof(struct netlink_tap_net), 261 }; 262 263 static bool netlink_filter_tap(const struct sk_buff *skb) 264 { 265 struct sock *sk = skb->sk; 266 267 /* We take the more conservative approach and 268 * whitelist socket protocols that may pass. 269 */ 270 switch (sk->sk_protocol) { 271 case NETLINK_ROUTE: 272 case NETLINK_USERSOCK: 273 case NETLINK_SOCK_DIAG: 274 case NETLINK_NFLOG: 275 case NETLINK_XFRM: 276 case NETLINK_FIB_LOOKUP: 277 case NETLINK_NETFILTER: 278 case NETLINK_GENERIC: 279 return true; 280 } 281 282 return false; 283 } 284 285 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 286 struct net_device *dev) 287 { 288 struct sk_buff *nskb; 289 struct sock *sk = skb->sk; 290 int ret = -ENOMEM; 291 292 if (!net_eq(dev_net(dev), sock_net(sk))) 293 return 0; 294 295 dev_hold(dev); 296 297 if (is_vmalloc_addr(skb->head)) 298 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 299 else 300 nskb = skb_clone(skb, GFP_ATOMIC); 301 if (nskb) { 302 nskb->dev = dev; 303 nskb->protocol = htons((u16) sk->sk_protocol); 304 nskb->pkt_type = netlink_is_kernel(sk) ? 305 PACKET_KERNEL : PACKET_USER; 306 skb_reset_network_header(nskb); 307 ret = dev_queue_xmit(nskb); 308 if (unlikely(ret > 0)) 309 ret = net_xmit_errno(ret); 310 } 311 312 dev_put(dev); 313 return ret; 314 } 315 316 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 317 { 318 int ret; 319 struct netlink_tap *tmp; 320 321 if (!netlink_filter_tap(skb)) 322 return; 323 324 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 325 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 326 if (unlikely(ret)) 327 break; 328 } 329 } 330 331 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 332 { 333 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 334 335 rcu_read_lock(); 336 337 if (unlikely(!list_empty(&nn->netlink_tap_all))) 338 __netlink_deliver_tap(skb, nn); 339 340 rcu_read_unlock(); 341 } 342 343 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 344 struct sk_buff *skb) 345 { 346 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 347 netlink_deliver_tap(sock_net(dst), skb); 348 } 349 350 static void netlink_overrun(struct sock *sk) 351 { 352 struct netlink_sock *nlk = nlk_sk(sk); 353 354 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 355 if (!test_and_set_bit(NETLINK_S_CONGESTED, 356 &nlk_sk(sk)->state)) { 357 sk->sk_err = ENOBUFS; 358 sk_error_report(sk); 359 } 360 } 361 atomic_inc(&sk->sk_drops); 362 } 363 364 static void netlink_rcv_wake(struct sock *sk) 365 { 366 struct netlink_sock *nlk = nlk_sk(sk); 367 368 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 369 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 370 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 371 wake_up_interruptible(&nlk->wait); 372 } 373 374 static void netlink_skb_destructor(struct sk_buff *skb) 375 { 376 if (is_vmalloc_addr(skb->head)) { 377 if (!skb->cloned || 378 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 379 vfree(skb->head); 380 381 skb->head = NULL; 382 } 383 if (skb->sk != NULL) 384 sock_rfree(skb); 385 } 386 387 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 388 { 389 WARN_ON(skb->sk != NULL); 390 skb->sk = sk; 391 skb->destructor = netlink_skb_destructor; 392 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 393 sk_mem_charge(sk, skb->truesize); 394 } 395 396 static void netlink_sock_destruct(struct sock *sk) 397 { 398 struct netlink_sock *nlk = nlk_sk(sk); 399 400 if (nlk->cb_running) { 401 if (nlk->cb.done) 402 nlk->cb.done(&nlk->cb); 403 module_put(nlk->cb.module); 404 kfree_skb(nlk->cb.skb); 405 } 406 407 skb_queue_purge(&sk->sk_receive_queue); 408 409 if (!sock_flag(sk, SOCK_DEAD)) { 410 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 411 return; 412 } 413 414 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 415 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 416 WARN_ON(nlk_sk(sk)->groups); 417 } 418 419 static void netlink_sock_destruct_work(struct work_struct *work) 420 { 421 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 422 work); 423 424 sk_free(&nlk->sk); 425 } 426 427 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 428 * SMP. Look, when several writers sleep and reader wakes them up, all but one 429 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 430 * this, _but_ remember, it adds useless work on UP machines. 431 */ 432 433 void netlink_table_grab(void) 434 __acquires(nl_table_lock) 435 { 436 might_sleep(); 437 438 write_lock_irq(&nl_table_lock); 439 440 if (atomic_read(&nl_table_users)) { 441 DECLARE_WAITQUEUE(wait, current); 442 443 add_wait_queue_exclusive(&nl_table_wait, &wait); 444 for (;;) { 445 set_current_state(TASK_UNINTERRUPTIBLE); 446 if (atomic_read(&nl_table_users) == 0) 447 break; 448 write_unlock_irq(&nl_table_lock); 449 schedule(); 450 write_lock_irq(&nl_table_lock); 451 } 452 453 __set_current_state(TASK_RUNNING); 454 remove_wait_queue(&nl_table_wait, &wait); 455 } 456 } 457 458 void netlink_table_ungrab(void) 459 __releases(nl_table_lock) 460 { 461 write_unlock_irq(&nl_table_lock); 462 wake_up(&nl_table_wait); 463 } 464 465 static inline void 466 netlink_lock_table(void) 467 { 468 unsigned long flags; 469 470 /* read_lock() synchronizes us to netlink_table_grab */ 471 472 read_lock_irqsave(&nl_table_lock, flags); 473 atomic_inc(&nl_table_users); 474 read_unlock_irqrestore(&nl_table_lock, flags); 475 } 476 477 static inline void 478 netlink_unlock_table(void) 479 { 480 if (atomic_dec_and_test(&nl_table_users)) 481 wake_up(&nl_table_wait); 482 } 483 484 struct netlink_compare_arg 485 { 486 possible_net_t pnet; 487 u32 portid; 488 }; 489 490 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 491 #define netlink_compare_arg_len \ 492 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 493 494 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 495 const void *ptr) 496 { 497 const struct netlink_compare_arg *x = arg->key; 498 const struct netlink_sock *nlk = ptr; 499 500 return nlk->portid != x->portid || 501 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 502 } 503 504 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 505 struct net *net, u32 portid) 506 { 507 memset(arg, 0, sizeof(*arg)); 508 write_pnet(&arg->pnet, net); 509 arg->portid = portid; 510 } 511 512 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 513 struct net *net) 514 { 515 struct netlink_compare_arg arg; 516 517 netlink_compare_arg_init(&arg, net, portid); 518 return rhashtable_lookup_fast(&table->hash, &arg, 519 netlink_rhashtable_params); 520 } 521 522 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 523 { 524 struct netlink_compare_arg arg; 525 526 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 527 return rhashtable_lookup_insert_key(&table->hash, &arg, 528 &nlk_sk(sk)->node, 529 netlink_rhashtable_params); 530 } 531 532 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 533 { 534 struct netlink_table *table = &nl_table[protocol]; 535 struct sock *sk; 536 537 rcu_read_lock(); 538 sk = __netlink_lookup(table, portid, net); 539 if (sk) 540 sock_hold(sk); 541 rcu_read_unlock(); 542 543 return sk; 544 } 545 546 static const struct proto_ops netlink_ops; 547 548 static void 549 netlink_update_listeners(struct sock *sk) 550 { 551 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 552 unsigned long mask; 553 unsigned int i; 554 struct listeners *listeners; 555 556 listeners = nl_deref_protected(tbl->listeners); 557 if (!listeners) 558 return; 559 560 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 561 mask = 0; 562 sk_for_each_bound(sk, &tbl->mc_list) { 563 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 564 mask |= nlk_sk(sk)->groups[i]; 565 } 566 listeners->masks[i] = mask; 567 } 568 /* this function is only called with the netlink table "grabbed", which 569 * makes sure updates are visible before bind or setsockopt return. */ 570 } 571 572 static int netlink_insert(struct sock *sk, u32 portid) 573 { 574 struct netlink_table *table = &nl_table[sk->sk_protocol]; 575 int err; 576 577 lock_sock(sk); 578 579 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 580 if (nlk_sk(sk)->bound) 581 goto err; 582 583 nlk_sk(sk)->portid = portid; 584 sock_hold(sk); 585 586 err = __netlink_insert(table, sk); 587 if (err) { 588 /* In case the hashtable backend returns with -EBUSY 589 * from here, it must not escape to the caller. 590 */ 591 if (unlikely(err == -EBUSY)) 592 err = -EOVERFLOW; 593 if (err == -EEXIST) 594 err = -EADDRINUSE; 595 sock_put(sk); 596 goto err; 597 } 598 599 /* We need to ensure that the socket is hashed and visible. */ 600 smp_wmb(); 601 /* Paired with lockless reads from netlink_bind(), 602 * netlink_connect() and netlink_sendmsg(). 603 */ 604 WRITE_ONCE(nlk_sk(sk)->bound, portid); 605 606 err: 607 release_sock(sk); 608 return err; 609 } 610 611 static void netlink_remove(struct sock *sk) 612 { 613 struct netlink_table *table; 614 615 table = &nl_table[sk->sk_protocol]; 616 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 617 netlink_rhashtable_params)) { 618 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 619 __sock_put(sk); 620 } 621 622 netlink_table_grab(); 623 if (nlk_sk(sk)->subscriptions) { 624 __sk_del_bind_node(sk); 625 netlink_update_listeners(sk); 626 } 627 if (sk->sk_protocol == NETLINK_GENERIC) 628 atomic_inc(&genl_sk_destructing_cnt); 629 netlink_table_ungrab(); 630 } 631 632 static struct proto netlink_proto = { 633 .name = "NETLINK", 634 .owner = THIS_MODULE, 635 .obj_size = sizeof(struct netlink_sock), 636 }; 637 638 static int __netlink_create(struct net *net, struct socket *sock, 639 struct mutex *cb_mutex, int protocol, 640 int kern) 641 { 642 struct sock *sk; 643 struct netlink_sock *nlk; 644 645 sock->ops = &netlink_ops; 646 647 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 648 if (!sk) 649 return -ENOMEM; 650 651 sock_init_data(sock, sk); 652 653 nlk = nlk_sk(sk); 654 if (cb_mutex) { 655 nlk->cb_mutex = cb_mutex; 656 } else { 657 nlk->cb_mutex = &nlk->cb_def_mutex; 658 mutex_init(nlk->cb_mutex); 659 lockdep_set_class_and_name(nlk->cb_mutex, 660 nlk_cb_mutex_keys + protocol, 661 nlk_cb_mutex_key_strings[protocol]); 662 } 663 init_waitqueue_head(&nlk->wait); 664 665 sk->sk_destruct = netlink_sock_destruct; 666 sk->sk_protocol = protocol; 667 return 0; 668 } 669 670 static int netlink_create(struct net *net, struct socket *sock, int protocol, 671 int kern) 672 { 673 struct module *module = NULL; 674 struct mutex *cb_mutex; 675 struct netlink_sock *nlk; 676 int (*bind)(struct net *net, int group); 677 void (*unbind)(struct net *net, int group); 678 int err = 0; 679 680 sock->state = SS_UNCONNECTED; 681 682 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 683 return -ESOCKTNOSUPPORT; 684 685 if (protocol < 0 || protocol >= MAX_LINKS) 686 return -EPROTONOSUPPORT; 687 protocol = array_index_nospec(protocol, MAX_LINKS); 688 689 netlink_lock_table(); 690 #ifdef CONFIG_MODULES 691 if (!nl_table[protocol].registered) { 692 netlink_unlock_table(); 693 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 694 netlink_lock_table(); 695 } 696 #endif 697 if (nl_table[protocol].registered && 698 try_module_get(nl_table[protocol].module)) 699 module = nl_table[protocol].module; 700 else 701 err = -EPROTONOSUPPORT; 702 cb_mutex = nl_table[protocol].cb_mutex; 703 bind = nl_table[protocol].bind; 704 unbind = nl_table[protocol].unbind; 705 netlink_unlock_table(); 706 707 if (err < 0) 708 goto out; 709 710 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 711 if (err < 0) 712 goto out_module; 713 714 sock_prot_inuse_add(net, &netlink_proto, 1); 715 716 nlk = nlk_sk(sock->sk); 717 nlk->module = module; 718 nlk->netlink_bind = bind; 719 nlk->netlink_unbind = unbind; 720 out: 721 return err; 722 723 out_module: 724 module_put(module); 725 goto out; 726 } 727 728 static void deferred_put_nlk_sk(struct rcu_head *head) 729 { 730 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 731 struct sock *sk = &nlk->sk; 732 733 kfree(nlk->groups); 734 nlk->groups = NULL; 735 736 if (!refcount_dec_and_test(&sk->sk_refcnt)) 737 return; 738 739 if (nlk->cb_running && nlk->cb.done) { 740 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 741 schedule_work(&nlk->work); 742 return; 743 } 744 745 sk_free(sk); 746 } 747 748 static int netlink_release(struct socket *sock) 749 { 750 struct sock *sk = sock->sk; 751 struct netlink_sock *nlk; 752 753 if (!sk) 754 return 0; 755 756 netlink_remove(sk); 757 sock_orphan(sk); 758 nlk = nlk_sk(sk); 759 760 /* 761 * OK. Socket is unlinked, any packets that arrive now 762 * will be purged. 763 */ 764 765 /* must not acquire netlink_table_lock in any way again before unbind 766 * and notifying genetlink is done as otherwise it might deadlock 767 */ 768 if (nlk->netlink_unbind) { 769 int i; 770 771 for (i = 0; i < nlk->ngroups; i++) 772 if (test_bit(i, nlk->groups)) 773 nlk->netlink_unbind(sock_net(sk), i + 1); 774 } 775 if (sk->sk_protocol == NETLINK_GENERIC && 776 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 777 wake_up(&genl_sk_destructing_waitq); 778 779 sock->sk = NULL; 780 wake_up_interruptible_all(&nlk->wait); 781 782 skb_queue_purge(&sk->sk_write_queue); 783 784 if (nlk->portid && nlk->bound) { 785 struct netlink_notify n = { 786 .net = sock_net(sk), 787 .protocol = sk->sk_protocol, 788 .portid = nlk->portid, 789 }; 790 blocking_notifier_call_chain(&netlink_chain, 791 NETLINK_URELEASE, &n); 792 } 793 794 module_put(nlk->module); 795 796 if (netlink_is_kernel(sk)) { 797 netlink_table_grab(); 798 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 799 if (--nl_table[sk->sk_protocol].registered == 0) { 800 struct listeners *old; 801 802 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 803 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 804 kfree_rcu(old, rcu); 805 nl_table[sk->sk_protocol].module = NULL; 806 nl_table[sk->sk_protocol].bind = NULL; 807 nl_table[sk->sk_protocol].unbind = NULL; 808 nl_table[sk->sk_protocol].flags = 0; 809 nl_table[sk->sk_protocol].registered = 0; 810 } 811 netlink_table_ungrab(); 812 } 813 814 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 815 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 816 return 0; 817 } 818 819 static int netlink_autobind(struct socket *sock) 820 { 821 struct sock *sk = sock->sk; 822 struct net *net = sock_net(sk); 823 struct netlink_table *table = &nl_table[sk->sk_protocol]; 824 s32 portid = task_tgid_vnr(current); 825 int err; 826 s32 rover = -4096; 827 bool ok; 828 829 retry: 830 cond_resched(); 831 rcu_read_lock(); 832 ok = !__netlink_lookup(table, portid, net); 833 rcu_read_unlock(); 834 if (!ok) { 835 /* Bind collision, search negative portid values. */ 836 if (rover == -4096) 837 /* rover will be in range [S32_MIN, -4097] */ 838 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 839 else if (rover >= -4096) 840 rover = -4097; 841 portid = rover--; 842 goto retry; 843 } 844 845 err = netlink_insert(sk, portid); 846 if (err == -EADDRINUSE) 847 goto retry; 848 849 /* If 2 threads race to autobind, that is fine. */ 850 if (err == -EBUSY) 851 err = 0; 852 853 return err; 854 } 855 856 /** 857 * __netlink_ns_capable - General netlink message capability test 858 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 859 * @user_ns: The user namespace of the capability to use 860 * @cap: The capability to use 861 * 862 * Test to see if the opener of the socket we received the message 863 * from had when the netlink socket was created and the sender of the 864 * message has the capability @cap in the user namespace @user_ns. 865 */ 866 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 867 struct user_namespace *user_ns, int cap) 868 { 869 return ((nsp->flags & NETLINK_SKB_DST) || 870 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 871 ns_capable(user_ns, cap); 872 } 873 EXPORT_SYMBOL(__netlink_ns_capable); 874 875 /** 876 * netlink_ns_capable - General netlink message capability test 877 * @skb: socket buffer holding a netlink command from userspace 878 * @user_ns: The user namespace of the capability to use 879 * @cap: The capability to use 880 * 881 * Test to see if the opener of the socket we received the message 882 * from had when the netlink socket was created and the sender of the 883 * message has the capability @cap in the user namespace @user_ns. 884 */ 885 bool netlink_ns_capable(const struct sk_buff *skb, 886 struct user_namespace *user_ns, int cap) 887 { 888 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 889 } 890 EXPORT_SYMBOL(netlink_ns_capable); 891 892 /** 893 * netlink_capable - Netlink global message capability test 894 * @skb: socket buffer holding a netlink command from userspace 895 * @cap: The capability to use 896 * 897 * Test to see if the opener of the socket we received the message 898 * from had when the netlink socket was created and the sender of the 899 * message has the capability @cap in all user namespaces. 900 */ 901 bool netlink_capable(const struct sk_buff *skb, int cap) 902 { 903 return netlink_ns_capable(skb, &init_user_ns, cap); 904 } 905 EXPORT_SYMBOL(netlink_capable); 906 907 /** 908 * netlink_net_capable - Netlink network namespace message capability test 909 * @skb: socket buffer holding a netlink command from userspace 910 * @cap: The capability to use 911 * 912 * Test to see if the opener of the socket we received the message 913 * from had when the netlink socket was created and the sender of the 914 * message has the capability @cap over the network namespace of 915 * the socket we received the message from. 916 */ 917 bool netlink_net_capable(const struct sk_buff *skb, int cap) 918 { 919 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 920 } 921 EXPORT_SYMBOL(netlink_net_capable); 922 923 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 924 { 925 return (nl_table[sock->sk->sk_protocol].flags & flag) || 926 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 927 } 928 929 static void 930 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 931 { 932 struct netlink_sock *nlk = nlk_sk(sk); 933 934 if (nlk->subscriptions && !subscriptions) 935 __sk_del_bind_node(sk); 936 else if (!nlk->subscriptions && subscriptions) 937 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 938 nlk->subscriptions = subscriptions; 939 } 940 941 static int netlink_realloc_groups(struct sock *sk) 942 { 943 struct netlink_sock *nlk = nlk_sk(sk); 944 unsigned int groups; 945 unsigned long *new_groups; 946 int err = 0; 947 948 netlink_table_grab(); 949 950 groups = nl_table[sk->sk_protocol].groups; 951 if (!nl_table[sk->sk_protocol].registered) { 952 err = -ENOENT; 953 goto out_unlock; 954 } 955 956 if (nlk->ngroups >= groups) 957 goto out_unlock; 958 959 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 960 if (new_groups == NULL) { 961 err = -ENOMEM; 962 goto out_unlock; 963 } 964 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 965 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 966 967 nlk->groups = new_groups; 968 nlk->ngroups = groups; 969 out_unlock: 970 netlink_table_ungrab(); 971 return err; 972 } 973 974 static void netlink_undo_bind(int group, long unsigned int groups, 975 struct sock *sk) 976 { 977 struct netlink_sock *nlk = nlk_sk(sk); 978 int undo; 979 980 if (!nlk->netlink_unbind) 981 return; 982 983 for (undo = 0; undo < group; undo++) 984 if (test_bit(undo, &groups)) 985 nlk->netlink_unbind(sock_net(sk), undo + 1); 986 } 987 988 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 989 int addr_len) 990 { 991 struct sock *sk = sock->sk; 992 struct net *net = sock_net(sk); 993 struct netlink_sock *nlk = nlk_sk(sk); 994 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 995 int err = 0; 996 unsigned long groups; 997 bool bound; 998 999 if (addr_len < sizeof(struct sockaddr_nl)) 1000 return -EINVAL; 1001 1002 if (nladdr->nl_family != AF_NETLINK) 1003 return -EINVAL; 1004 groups = nladdr->nl_groups; 1005 1006 /* Only superuser is allowed to listen multicasts */ 1007 if (groups) { 1008 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1009 return -EPERM; 1010 err = netlink_realloc_groups(sk); 1011 if (err) 1012 return err; 1013 } 1014 1015 if (nlk->ngroups < BITS_PER_LONG) 1016 groups &= (1UL << nlk->ngroups) - 1; 1017 1018 /* Paired with WRITE_ONCE() in netlink_insert() */ 1019 bound = READ_ONCE(nlk->bound); 1020 if (bound) { 1021 /* Ensure nlk->portid is up-to-date. */ 1022 smp_rmb(); 1023 1024 if (nladdr->nl_pid != nlk->portid) 1025 return -EINVAL; 1026 } 1027 1028 if (nlk->netlink_bind && groups) { 1029 int group; 1030 1031 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1032 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1033 if (!test_bit(group, &groups)) 1034 continue; 1035 err = nlk->netlink_bind(net, group + 1); 1036 if (!err) 1037 continue; 1038 netlink_undo_bind(group, groups, sk); 1039 return err; 1040 } 1041 } 1042 1043 /* No need for barriers here as we return to user-space without 1044 * using any of the bound attributes. 1045 */ 1046 netlink_lock_table(); 1047 if (!bound) { 1048 err = nladdr->nl_pid ? 1049 netlink_insert(sk, nladdr->nl_pid) : 1050 netlink_autobind(sock); 1051 if (err) { 1052 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1053 goto unlock; 1054 } 1055 } 1056 1057 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1058 goto unlock; 1059 netlink_unlock_table(); 1060 1061 netlink_table_grab(); 1062 netlink_update_subscriptions(sk, nlk->subscriptions + 1063 hweight32(groups) - 1064 hweight32(nlk->groups[0])); 1065 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1066 netlink_update_listeners(sk); 1067 netlink_table_ungrab(); 1068 1069 return 0; 1070 1071 unlock: 1072 netlink_unlock_table(); 1073 return err; 1074 } 1075 1076 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1077 int alen, int flags) 1078 { 1079 int err = 0; 1080 struct sock *sk = sock->sk; 1081 struct netlink_sock *nlk = nlk_sk(sk); 1082 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1083 1084 if (alen < sizeof(addr->sa_family)) 1085 return -EINVAL; 1086 1087 if (addr->sa_family == AF_UNSPEC) { 1088 sk->sk_state = NETLINK_UNCONNECTED; 1089 nlk->dst_portid = 0; 1090 nlk->dst_group = 0; 1091 return 0; 1092 } 1093 if (addr->sa_family != AF_NETLINK) 1094 return -EINVAL; 1095 1096 if (alen < sizeof(struct sockaddr_nl)) 1097 return -EINVAL; 1098 1099 if ((nladdr->nl_groups || nladdr->nl_pid) && 1100 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1101 return -EPERM; 1102 1103 /* No need for barriers here as we return to user-space without 1104 * using any of the bound attributes. 1105 * Paired with WRITE_ONCE() in netlink_insert(). 1106 */ 1107 if (!READ_ONCE(nlk->bound)) 1108 err = netlink_autobind(sock); 1109 1110 if (err == 0) { 1111 sk->sk_state = NETLINK_CONNECTED; 1112 nlk->dst_portid = nladdr->nl_pid; 1113 nlk->dst_group = ffs(nladdr->nl_groups); 1114 } 1115 1116 return err; 1117 } 1118 1119 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1120 int peer) 1121 { 1122 struct sock *sk = sock->sk; 1123 struct netlink_sock *nlk = nlk_sk(sk); 1124 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1125 1126 nladdr->nl_family = AF_NETLINK; 1127 nladdr->nl_pad = 0; 1128 1129 if (peer) { 1130 nladdr->nl_pid = nlk->dst_portid; 1131 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1132 } else { 1133 nladdr->nl_pid = nlk->portid; 1134 netlink_lock_table(); 1135 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1136 netlink_unlock_table(); 1137 } 1138 return sizeof(*nladdr); 1139 } 1140 1141 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1142 unsigned long arg) 1143 { 1144 /* try to hand this ioctl down to the NIC drivers. 1145 */ 1146 return -ENOIOCTLCMD; 1147 } 1148 1149 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1150 { 1151 struct sock *sock; 1152 struct netlink_sock *nlk; 1153 1154 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1155 if (!sock) 1156 return ERR_PTR(-ECONNREFUSED); 1157 1158 /* Don't bother queuing skb if kernel socket has no input function */ 1159 nlk = nlk_sk(sock); 1160 if (sock->sk_state == NETLINK_CONNECTED && 1161 nlk->dst_portid != nlk_sk(ssk)->portid) { 1162 sock_put(sock); 1163 return ERR_PTR(-ECONNREFUSED); 1164 } 1165 return sock; 1166 } 1167 1168 struct sock *netlink_getsockbyfilp(struct file *filp) 1169 { 1170 struct inode *inode = file_inode(filp); 1171 struct sock *sock; 1172 1173 if (!S_ISSOCK(inode->i_mode)) 1174 return ERR_PTR(-ENOTSOCK); 1175 1176 sock = SOCKET_I(inode)->sk; 1177 if (sock->sk_family != AF_NETLINK) 1178 return ERR_PTR(-EINVAL); 1179 1180 sock_hold(sock); 1181 return sock; 1182 } 1183 1184 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1185 int broadcast) 1186 { 1187 struct sk_buff *skb; 1188 void *data; 1189 1190 if (size <= NLMSG_GOODSIZE || broadcast) 1191 return alloc_skb(size, GFP_KERNEL); 1192 1193 size = SKB_DATA_ALIGN(size) + 1194 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1195 1196 data = vmalloc(size); 1197 if (data == NULL) 1198 return NULL; 1199 1200 skb = __build_skb(data, size); 1201 if (skb == NULL) 1202 vfree(data); 1203 else 1204 skb->destructor = netlink_skb_destructor; 1205 1206 return skb; 1207 } 1208 1209 /* 1210 * Attach a skb to a netlink socket. 1211 * The caller must hold a reference to the destination socket. On error, the 1212 * reference is dropped. The skb is not send to the destination, just all 1213 * all error checks are performed and memory in the queue is reserved. 1214 * Return values: 1215 * < 0: error. skb freed, reference to sock dropped. 1216 * 0: continue 1217 * 1: repeat lookup - reference dropped while waiting for socket memory. 1218 */ 1219 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1220 long *timeo, struct sock *ssk) 1221 { 1222 struct netlink_sock *nlk; 1223 1224 nlk = nlk_sk(sk); 1225 1226 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1227 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1228 DECLARE_WAITQUEUE(wait, current); 1229 if (!*timeo) { 1230 if (!ssk || netlink_is_kernel(ssk)) 1231 netlink_overrun(sk); 1232 sock_put(sk); 1233 kfree_skb(skb); 1234 return -EAGAIN; 1235 } 1236 1237 __set_current_state(TASK_INTERRUPTIBLE); 1238 add_wait_queue(&nlk->wait, &wait); 1239 1240 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1241 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1242 !sock_flag(sk, SOCK_DEAD)) 1243 *timeo = schedule_timeout(*timeo); 1244 1245 __set_current_state(TASK_RUNNING); 1246 remove_wait_queue(&nlk->wait, &wait); 1247 sock_put(sk); 1248 1249 if (signal_pending(current)) { 1250 kfree_skb(skb); 1251 return sock_intr_errno(*timeo); 1252 } 1253 return 1; 1254 } 1255 netlink_skb_set_owner_r(skb, sk); 1256 return 0; 1257 } 1258 1259 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1260 { 1261 int len = skb->len; 1262 1263 netlink_deliver_tap(sock_net(sk), skb); 1264 1265 skb_queue_tail(&sk->sk_receive_queue, skb); 1266 sk->sk_data_ready(sk); 1267 return len; 1268 } 1269 1270 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1271 { 1272 int len = __netlink_sendskb(sk, skb); 1273 1274 sock_put(sk); 1275 return len; 1276 } 1277 1278 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1279 { 1280 kfree_skb(skb); 1281 sock_put(sk); 1282 } 1283 1284 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1285 { 1286 int delta; 1287 1288 WARN_ON(skb->sk != NULL); 1289 delta = skb->end - skb->tail; 1290 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1291 return skb; 1292 1293 if (skb_shared(skb)) { 1294 struct sk_buff *nskb = skb_clone(skb, allocation); 1295 if (!nskb) 1296 return skb; 1297 consume_skb(skb); 1298 skb = nskb; 1299 } 1300 1301 pskb_expand_head(skb, 0, -delta, 1302 (allocation & ~__GFP_DIRECT_RECLAIM) | 1303 __GFP_NOWARN | __GFP_NORETRY); 1304 return skb; 1305 } 1306 1307 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1308 struct sock *ssk) 1309 { 1310 int ret; 1311 struct netlink_sock *nlk = nlk_sk(sk); 1312 1313 ret = -ECONNREFUSED; 1314 if (nlk->netlink_rcv != NULL) { 1315 ret = skb->len; 1316 netlink_skb_set_owner_r(skb, sk); 1317 NETLINK_CB(skb).sk = ssk; 1318 netlink_deliver_tap_kernel(sk, ssk, skb); 1319 nlk->netlink_rcv(skb); 1320 consume_skb(skb); 1321 } else { 1322 kfree_skb(skb); 1323 } 1324 sock_put(sk); 1325 return ret; 1326 } 1327 1328 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1329 u32 portid, int nonblock) 1330 { 1331 struct sock *sk; 1332 int err; 1333 long timeo; 1334 1335 skb = netlink_trim(skb, gfp_any()); 1336 1337 timeo = sock_sndtimeo(ssk, nonblock); 1338 retry: 1339 sk = netlink_getsockbyportid(ssk, portid); 1340 if (IS_ERR(sk)) { 1341 kfree_skb(skb); 1342 return PTR_ERR(sk); 1343 } 1344 if (netlink_is_kernel(sk)) 1345 return netlink_unicast_kernel(sk, skb, ssk); 1346 1347 if (sk_filter(sk, skb)) { 1348 err = skb->len; 1349 kfree_skb(skb); 1350 sock_put(sk); 1351 return err; 1352 } 1353 1354 err = netlink_attachskb(sk, skb, &timeo, ssk); 1355 if (err == 1) 1356 goto retry; 1357 if (err) 1358 return err; 1359 1360 return netlink_sendskb(sk, skb); 1361 } 1362 EXPORT_SYMBOL(netlink_unicast); 1363 1364 int netlink_has_listeners(struct sock *sk, unsigned int group) 1365 { 1366 int res = 0; 1367 struct listeners *listeners; 1368 1369 BUG_ON(!netlink_is_kernel(sk)); 1370 1371 rcu_read_lock(); 1372 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1373 1374 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1375 res = test_bit(group - 1, listeners->masks); 1376 1377 rcu_read_unlock(); 1378 1379 return res; 1380 } 1381 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1382 1383 bool netlink_strict_get_check(struct sk_buff *skb) 1384 { 1385 const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk); 1386 1387 return nlk->flags & NETLINK_F_STRICT_CHK; 1388 } 1389 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1390 1391 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1392 { 1393 struct netlink_sock *nlk = nlk_sk(sk); 1394 1395 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1396 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1397 netlink_skb_set_owner_r(skb, sk); 1398 __netlink_sendskb(sk, skb); 1399 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1400 } 1401 return -1; 1402 } 1403 1404 struct netlink_broadcast_data { 1405 struct sock *exclude_sk; 1406 struct net *net; 1407 u32 portid; 1408 u32 group; 1409 int failure; 1410 int delivery_failure; 1411 int congested; 1412 int delivered; 1413 gfp_t allocation; 1414 struct sk_buff *skb, *skb2; 1415 }; 1416 1417 static void do_one_broadcast(struct sock *sk, 1418 struct netlink_broadcast_data *p) 1419 { 1420 struct netlink_sock *nlk = nlk_sk(sk); 1421 int val; 1422 1423 if (p->exclude_sk == sk) 1424 return; 1425 1426 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1427 !test_bit(p->group - 1, nlk->groups)) 1428 return; 1429 1430 if (!net_eq(sock_net(sk), p->net)) { 1431 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1432 return; 1433 1434 if (!peernet_has_id(sock_net(sk), p->net)) 1435 return; 1436 1437 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1438 CAP_NET_BROADCAST)) 1439 return; 1440 } 1441 1442 if (p->failure) { 1443 netlink_overrun(sk); 1444 return; 1445 } 1446 1447 sock_hold(sk); 1448 if (p->skb2 == NULL) { 1449 if (skb_shared(p->skb)) { 1450 p->skb2 = skb_clone(p->skb, p->allocation); 1451 } else { 1452 p->skb2 = skb_get(p->skb); 1453 /* 1454 * skb ownership may have been set when 1455 * delivered to a previous socket. 1456 */ 1457 skb_orphan(p->skb2); 1458 } 1459 } 1460 if (p->skb2 == NULL) { 1461 netlink_overrun(sk); 1462 /* Clone failed. Notify ALL listeners. */ 1463 p->failure = 1; 1464 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1465 p->delivery_failure = 1; 1466 goto out; 1467 } 1468 if (sk_filter(sk, p->skb2)) { 1469 kfree_skb(p->skb2); 1470 p->skb2 = NULL; 1471 goto out; 1472 } 1473 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1474 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1475 NETLINK_CB(p->skb2).nsid_is_set = true; 1476 val = netlink_broadcast_deliver(sk, p->skb2); 1477 if (val < 0) { 1478 netlink_overrun(sk); 1479 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1480 p->delivery_failure = 1; 1481 } else { 1482 p->congested |= val; 1483 p->delivered = 1; 1484 p->skb2 = NULL; 1485 } 1486 out: 1487 sock_put(sk); 1488 } 1489 1490 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1491 u32 group, gfp_t allocation) 1492 { 1493 struct net *net = sock_net(ssk); 1494 struct netlink_broadcast_data info; 1495 struct sock *sk; 1496 1497 skb = netlink_trim(skb, allocation); 1498 1499 info.exclude_sk = ssk; 1500 info.net = net; 1501 info.portid = portid; 1502 info.group = group; 1503 info.failure = 0; 1504 info.delivery_failure = 0; 1505 info.congested = 0; 1506 info.delivered = 0; 1507 info.allocation = allocation; 1508 info.skb = skb; 1509 info.skb2 = NULL; 1510 1511 /* While we sleep in clone, do not allow to change socket list */ 1512 1513 netlink_lock_table(); 1514 1515 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1516 do_one_broadcast(sk, &info); 1517 1518 consume_skb(skb); 1519 1520 netlink_unlock_table(); 1521 1522 if (info.delivery_failure) { 1523 kfree_skb(info.skb2); 1524 return -ENOBUFS; 1525 } 1526 consume_skb(info.skb2); 1527 1528 if (info.delivered) { 1529 if (info.congested && gfpflags_allow_blocking(allocation)) 1530 yield(); 1531 return 0; 1532 } 1533 return -ESRCH; 1534 } 1535 EXPORT_SYMBOL(netlink_broadcast); 1536 1537 struct netlink_set_err_data { 1538 struct sock *exclude_sk; 1539 u32 portid; 1540 u32 group; 1541 int code; 1542 }; 1543 1544 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1545 { 1546 struct netlink_sock *nlk = nlk_sk(sk); 1547 int ret = 0; 1548 1549 if (sk == p->exclude_sk) 1550 goto out; 1551 1552 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1553 goto out; 1554 1555 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1556 !test_bit(p->group - 1, nlk->groups)) 1557 goto out; 1558 1559 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 1560 ret = 1; 1561 goto out; 1562 } 1563 1564 sk->sk_err = p->code; 1565 sk_error_report(sk); 1566 out: 1567 return ret; 1568 } 1569 1570 /** 1571 * netlink_set_err - report error to broadcast listeners 1572 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1573 * @portid: the PORTID of a process that we want to skip (if any) 1574 * @group: the broadcast group that will notice the error 1575 * @code: error code, must be negative (as usual in kernelspace) 1576 * 1577 * This function returns the number of broadcast listeners that have set the 1578 * NETLINK_NO_ENOBUFS socket option. 1579 */ 1580 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1581 { 1582 struct netlink_set_err_data info; 1583 struct sock *sk; 1584 int ret = 0; 1585 1586 info.exclude_sk = ssk; 1587 info.portid = portid; 1588 info.group = group; 1589 /* sk->sk_err wants a positive error value */ 1590 info.code = -code; 1591 1592 read_lock(&nl_table_lock); 1593 1594 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1595 ret += do_one_set_err(sk, &info); 1596 1597 read_unlock(&nl_table_lock); 1598 return ret; 1599 } 1600 EXPORT_SYMBOL(netlink_set_err); 1601 1602 /* must be called with netlink table grabbed */ 1603 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1604 unsigned int group, 1605 int is_new) 1606 { 1607 int old, new = !!is_new, subscriptions; 1608 1609 old = test_bit(group - 1, nlk->groups); 1610 subscriptions = nlk->subscriptions - old + new; 1611 if (new) 1612 __set_bit(group - 1, nlk->groups); 1613 else 1614 __clear_bit(group - 1, nlk->groups); 1615 netlink_update_subscriptions(&nlk->sk, subscriptions); 1616 netlink_update_listeners(&nlk->sk); 1617 } 1618 1619 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1620 sockptr_t optval, unsigned int optlen) 1621 { 1622 struct sock *sk = sock->sk; 1623 struct netlink_sock *nlk = nlk_sk(sk); 1624 unsigned int val = 0; 1625 int err; 1626 1627 if (level != SOL_NETLINK) 1628 return -ENOPROTOOPT; 1629 1630 if (optlen >= sizeof(int) && 1631 copy_from_sockptr(&val, optval, sizeof(val))) 1632 return -EFAULT; 1633 1634 switch (optname) { 1635 case NETLINK_PKTINFO: 1636 if (val) 1637 nlk->flags |= NETLINK_F_RECV_PKTINFO; 1638 else 1639 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 1640 err = 0; 1641 break; 1642 case NETLINK_ADD_MEMBERSHIP: 1643 case NETLINK_DROP_MEMBERSHIP: { 1644 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1645 return -EPERM; 1646 err = netlink_realloc_groups(sk); 1647 if (err) 1648 return err; 1649 if (!val || val - 1 >= nlk->ngroups) 1650 return -EINVAL; 1651 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1652 err = nlk->netlink_bind(sock_net(sk), val); 1653 if (err) 1654 return err; 1655 } 1656 netlink_table_grab(); 1657 netlink_update_socket_mc(nlk, val, 1658 optname == NETLINK_ADD_MEMBERSHIP); 1659 netlink_table_ungrab(); 1660 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1661 nlk->netlink_unbind(sock_net(sk), val); 1662 1663 err = 0; 1664 break; 1665 } 1666 case NETLINK_BROADCAST_ERROR: 1667 if (val) 1668 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 1669 else 1670 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 1671 err = 0; 1672 break; 1673 case NETLINK_NO_ENOBUFS: 1674 if (val) { 1675 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 1676 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1677 wake_up_interruptible(&nlk->wait); 1678 } else { 1679 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 1680 } 1681 err = 0; 1682 break; 1683 case NETLINK_LISTEN_ALL_NSID: 1684 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1685 return -EPERM; 1686 1687 if (val) 1688 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 1689 else 1690 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 1691 err = 0; 1692 break; 1693 case NETLINK_CAP_ACK: 1694 if (val) 1695 nlk->flags |= NETLINK_F_CAP_ACK; 1696 else 1697 nlk->flags &= ~NETLINK_F_CAP_ACK; 1698 err = 0; 1699 break; 1700 case NETLINK_EXT_ACK: 1701 if (val) 1702 nlk->flags |= NETLINK_F_EXT_ACK; 1703 else 1704 nlk->flags &= ~NETLINK_F_EXT_ACK; 1705 err = 0; 1706 break; 1707 case NETLINK_GET_STRICT_CHK: 1708 if (val) 1709 nlk->flags |= NETLINK_F_STRICT_CHK; 1710 else 1711 nlk->flags &= ~NETLINK_F_STRICT_CHK; 1712 err = 0; 1713 break; 1714 default: 1715 err = -ENOPROTOOPT; 1716 } 1717 return err; 1718 } 1719 1720 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1721 char __user *optval, int __user *optlen) 1722 { 1723 struct sock *sk = sock->sk; 1724 struct netlink_sock *nlk = nlk_sk(sk); 1725 int len, val, err; 1726 1727 if (level != SOL_NETLINK) 1728 return -ENOPROTOOPT; 1729 1730 if (get_user(len, optlen)) 1731 return -EFAULT; 1732 if (len < 0) 1733 return -EINVAL; 1734 1735 switch (optname) { 1736 case NETLINK_PKTINFO: 1737 if (len < sizeof(int)) 1738 return -EINVAL; 1739 len = sizeof(int); 1740 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 1741 if (put_user(len, optlen) || 1742 put_user(val, optval)) 1743 return -EFAULT; 1744 err = 0; 1745 break; 1746 case NETLINK_BROADCAST_ERROR: 1747 if (len < sizeof(int)) 1748 return -EINVAL; 1749 len = sizeof(int); 1750 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 1751 if (put_user(len, optlen) || 1752 put_user(val, optval)) 1753 return -EFAULT; 1754 err = 0; 1755 break; 1756 case NETLINK_NO_ENOBUFS: 1757 if (len < sizeof(int)) 1758 return -EINVAL; 1759 len = sizeof(int); 1760 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 1761 if (put_user(len, optlen) || 1762 put_user(val, optval)) 1763 return -EFAULT; 1764 err = 0; 1765 break; 1766 case NETLINK_LIST_MEMBERSHIPS: { 1767 int pos, idx, shift; 1768 1769 err = 0; 1770 netlink_lock_table(); 1771 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1772 if (len - pos < sizeof(u32)) 1773 break; 1774 1775 idx = pos / sizeof(unsigned long); 1776 shift = (pos % sizeof(unsigned long)) * 8; 1777 if (put_user((u32)(nlk->groups[idx] >> shift), 1778 (u32 __user *)(optval + pos))) { 1779 err = -EFAULT; 1780 break; 1781 } 1782 } 1783 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 1784 err = -EFAULT; 1785 netlink_unlock_table(); 1786 break; 1787 } 1788 case NETLINK_CAP_ACK: 1789 if (len < sizeof(int)) 1790 return -EINVAL; 1791 len = sizeof(int); 1792 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 1793 if (put_user(len, optlen) || 1794 put_user(val, optval)) 1795 return -EFAULT; 1796 err = 0; 1797 break; 1798 case NETLINK_EXT_ACK: 1799 if (len < sizeof(int)) 1800 return -EINVAL; 1801 len = sizeof(int); 1802 val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0; 1803 if (put_user(len, optlen) || put_user(val, optval)) 1804 return -EFAULT; 1805 err = 0; 1806 break; 1807 case NETLINK_GET_STRICT_CHK: 1808 if (len < sizeof(int)) 1809 return -EINVAL; 1810 len = sizeof(int); 1811 val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0; 1812 if (put_user(len, optlen) || put_user(val, optval)) 1813 return -EFAULT; 1814 err = 0; 1815 break; 1816 default: 1817 err = -ENOPROTOOPT; 1818 } 1819 return err; 1820 } 1821 1822 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1823 { 1824 struct nl_pktinfo info; 1825 1826 info.group = NETLINK_CB(skb).dst_group; 1827 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1828 } 1829 1830 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1831 struct sk_buff *skb) 1832 { 1833 if (!NETLINK_CB(skb).nsid_is_set) 1834 return; 1835 1836 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1837 &NETLINK_CB(skb).nsid); 1838 } 1839 1840 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1841 { 1842 struct sock *sk = sock->sk; 1843 struct netlink_sock *nlk = nlk_sk(sk); 1844 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1845 u32 dst_portid; 1846 u32 dst_group; 1847 struct sk_buff *skb; 1848 int err; 1849 struct scm_cookie scm; 1850 u32 netlink_skb_flags = 0; 1851 1852 if (msg->msg_flags & MSG_OOB) 1853 return -EOPNOTSUPP; 1854 1855 if (len == 0) { 1856 pr_warn_once("Zero length message leads to an empty skb\n"); 1857 return -ENODATA; 1858 } 1859 1860 err = scm_send(sock, msg, &scm, true); 1861 if (err < 0) 1862 return err; 1863 1864 if (msg->msg_namelen) { 1865 err = -EINVAL; 1866 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1867 goto out; 1868 if (addr->nl_family != AF_NETLINK) 1869 goto out; 1870 dst_portid = addr->nl_pid; 1871 dst_group = ffs(addr->nl_groups); 1872 err = -EPERM; 1873 if ((dst_group || dst_portid) && 1874 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1875 goto out; 1876 netlink_skb_flags |= NETLINK_SKB_DST; 1877 } else { 1878 dst_portid = nlk->dst_portid; 1879 dst_group = nlk->dst_group; 1880 } 1881 1882 /* Paired with WRITE_ONCE() in netlink_insert() */ 1883 if (!READ_ONCE(nlk->bound)) { 1884 err = netlink_autobind(sock); 1885 if (err) 1886 goto out; 1887 } else { 1888 /* Ensure nlk is hashed and visible. */ 1889 smp_rmb(); 1890 } 1891 1892 err = -EMSGSIZE; 1893 if (len > sk->sk_sndbuf - 32) 1894 goto out; 1895 err = -ENOBUFS; 1896 skb = netlink_alloc_large_skb(len, dst_group); 1897 if (skb == NULL) 1898 goto out; 1899 1900 NETLINK_CB(skb).portid = nlk->portid; 1901 NETLINK_CB(skb).dst_group = dst_group; 1902 NETLINK_CB(skb).creds = scm.creds; 1903 NETLINK_CB(skb).flags = netlink_skb_flags; 1904 1905 err = -EFAULT; 1906 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1907 kfree_skb(skb); 1908 goto out; 1909 } 1910 1911 err = security_netlink_send(sk, skb); 1912 if (err) { 1913 kfree_skb(skb); 1914 goto out; 1915 } 1916 1917 if (dst_group) { 1918 refcount_inc(&skb->users); 1919 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1920 } 1921 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1922 1923 out: 1924 scm_destroy(&scm); 1925 return err; 1926 } 1927 1928 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1929 int flags) 1930 { 1931 struct scm_cookie scm; 1932 struct sock *sk = sock->sk; 1933 struct netlink_sock *nlk = nlk_sk(sk); 1934 int noblock = flags & MSG_DONTWAIT; 1935 size_t copied; 1936 struct sk_buff *skb, *data_skb; 1937 int err, ret; 1938 1939 if (flags & MSG_OOB) 1940 return -EOPNOTSUPP; 1941 1942 copied = 0; 1943 1944 skb = skb_recv_datagram(sk, flags, noblock, &err); 1945 if (skb == NULL) 1946 goto out; 1947 1948 data_skb = skb; 1949 1950 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1951 if (unlikely(skb_shinfo(skb)->frag_list)) { 1952 /* 1953 * If this skb has a frag_list, then here that means that we 1954 * will have to use the frag_list skb's data for compat tasks 1955 * and the regular skb's data for normal (non-compat) tasks. 1956 * 1957 * If we need to send the compat skb, assign it to the 1958 * 'data_skb' variable so that it will be used below for data 1959 * copying. We keep 'skb' for everything else, including 1960 * freeing both later. 1961 */ 1962 if (flags & MSG_CMSG_COMPAT) 1963 data_skb = skb_shinfo(skb)->frag_list; 1964 } 1965 #endif 1966 1967 /* Record the max length of recvmsg() calls for future allocations */ 1968 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 1969 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 1970 SKB_WITH_OVERHEAD(32768)); 1971 1972 copied = data_skb->len; 1973 if (len < copied) { 1974 msg->msg_flags |= MSG_TRUNC; 1975 copied = len; 1976 } 1977 1978 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1979 1980 if (msg->msg_name) { 1981 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1982 addr->nl_family = AF_NETLINK; 1983 addr->nl_pad = 0; 1984 addr->nl_pid = NETLINK_CB(skb).portid; 1985 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1986 msg->msg_namelen = sizeof(*addr); 1987 } 1988 1989 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 1990 netlink_cmsg_recv_pktinfo(msg, skb); 1991 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 1992 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1993 1994 memset(&scm, 0, sizeof(scm)); 1995 scm.creds = *NETLINK_CREDS(skb); 1996 if (flags & MSG_TRUNC) 1997 copied = data_skb->len; 1998 1999 skb_free_datagram(sk, skb); 2000 2001 if (nlk->cb_running && 2002 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2003 ret = netlink_dump(sk); 2004 if (ret) { 2005 sk->sk_err = -ret; 2006 sk_error_report(sk); 2007 } 2008 } 2009 2010 scm_recv(sock, msg, &scm, flags); 2011 out: 2012 netlink_rcv_wake(sk); 2013 return err ? : copied; 2014 } 2015 2016 static void netlink_data_ready(struct sock *sk) 2017 { 2018 BUG(); 2019 } 2020 2021 /* 2022 * We export these functions to other modules. They provide a 2023 * complete set of kernel non-blocking support for message 2024 * queueing. 2025 */ 2026 2027 struct sock * 2028 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2029 struct netlink_kernel_cfg *cfg) 2030 { 2031 struct socket *sock; 2032 struct sock *sk; 2033 struct netlink_sock *nlk; 2034 struct listeners *listeners = NULL; 2035 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2036 unsigned int groups; 2037 2038 BUG_ON(!nl_table); 2039 2040 if (unit < 0 || unit >= MAX_LINKS) 2041 return NULL; 2042 2043 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2044 return NULL; 2045 2046 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2047 goto out_sock_release_nosk; 2048 2049 sk = sock->sk; 2050 2051 if (!cfg || cfg->groups < 32) 2052 groups = 32; 2053 else 2054 groups = cfg->groups; 2055 2056 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2057 if (!listeners) 2058 goto out_sock_release; 2059 2060 sk->sk_data_ready = netlink_data_ready; 2061 if (cfg && cfg->input) 2062 nlk_sk(sk)->netlink_rcv = cfg->input; 2063 2064 if (netlink_insert(sk, 0)) 2065 goto out_sock_release; 2066 2067 nlk = nlk_sk(sk); 2068 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2069 2070 netlink_table_grab(); 2071 if (!nl_table[unit].registered) { 2072 nl_table[unit].groups = groups; 2073 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2074 nl_table[unit].cb_mutex = cb_mutex; 2075 nl_table[unit].module = module; 2076 if (cfg) { 2077 nl_table[unit].bind = cfg->bind; 2078 nl_table[unit].unbind = cfg->unbind; 2079 nl_table[unit].flags = cfg->flags; 2080 if (cfg->compare) 2081 nl_table[unit].compare = cfg->compare; 2082 } 2083 nl_table[unit].registered = 1; 2084 } else { 2085 kfree(listeners); 2086 nl_table[unit].registered++; 2087 } 2088 netlink_table_ungrab(); 2089 return sk; 2090 2091 out_sock_release: 2092 kfree(listeners); 2093 netlink_kernel_release(sk); 2094 return NULL; 2095 2096 out_sock_release_nosk: 2097 sock_release(sock); 2098 return NULL; 2099 } 2100 EXPORT_SYMBOL(__netlink_kernel_create); 2101 2102 void 2103 netlink_kernel_release(struct sock *sk) 2104 { 2105 if (sk == NULL || sk->sk_socket == NULL) 2106 return; 2107 2108 sock_release(sk->sk_socket); 2109 } 2110 EXPORT_SYMBOL(netlink_kernel_release); 2111 2112 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2113 { 2114 struct listeners *new, *old; 2115 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2116 2117 if (groups < 32) 2118 groups = 32; 2119 2120 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2121 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2122 if (!new) 2123 return -ENOMEM; 2124 old = nl_deref_protected(tbl->listeners); 2125 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2126 rcu_assign_pointer(tbl->listeners, new); 2127 2128 kfree_rcu(old, rcu); 2129 } 2130 tbl->groups = groups; 2131 2132 return 0; 2133 } 2134 2135 /** 2136 * netlink_change_ngroups - change number of multicast groups 2137 * 2138 * This changes the number of multicast groups that are available 2139 * on a certain netlink family. Note that it is not possible to 2140 * change the number of groups to below 32. Also note that it does 2141 * not implicitly call netlink_clear_multicast_users() when the 2142 * number of groups is reduced. 2143 * 2144 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2145 * @groups: The new number of groups. 2146 */ 2147 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2148 { 2149 int err; 2150 2151 netlink_table_grab(); 2152 err = __netlink_change_ngroups(sk, groups); 2153 netlink_table_ungrab(); 2154 2155 return err; 2156 } 2157 2158 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2159 { 2160 struct sock *sk; 2161 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2162 2163 sk_for_each_bound(sk, &tbl->mc_list) 2164 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2165 } 2166 2167 struct nlmsghdr * 2168 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2169 { 2170 struct nlmsghdr *nlh; 2171 int size = nlmsg_msg_size(len); 2172 2173 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2174 nlh->nlmsg_type = type; 2175 nlh->nlmsg_len = size; 2176 nlh->nlmsg_flags = flags; 2177 nlh->nlmsg_pid = portid; 2178 nlh->nlmsg_seq = seq; 2179 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2180 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2181 return nlh; 2182 } 2183 EXPORT_SYMBOL(__nlmsg_put); 2184 2185 /* 2186 * It looks a bit ugly. 2187 * It would be better to create kernel thread. 2188 */ 2189 2190 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2191 struct netlink_callback *cb, 2192 struct netlink_ext_ack *extack) 2193 { 2194 struct nlmsghdr *nlh; 2195 2196 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2197 NLM_F_MULTI | cb->answer_flags); 2198 if (WARN_ON(!nlh)) 2199 return -ENOBUFS; 2200 2201 nl_dump_check_consistent(cb, nlh); 2202 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2203 2204 if (extack->_msg && nlk->flags & NETLINK_F_EXT_ACK) { 2205 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2206 if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)) 2207 nlmsg_end(skb, nlh); 2208 } 2209 2210 return 0; 2211 } 2212 2213 static int netlink_dump(struct sock *sk) 2214 { 2215 struct netlink_sock *nlk = nlk_sk(sk); 2216 struct netlink_ext_ack extack = {}; 2217 struct netlink_callback *cb; 2218 struct sk_buff *skb = NULL; 2219 struct module *module; 2220 int err = -ENOBUFS; 2221 int alloc_min_size; 2222 int alloc_size; 2223 2224 mutex_lock(nlk->cb_mutex); 2225 if (!nlk->cb_running) { 2226 err = -EINVAL; 2227 goto errout_skb; 2228 } 2229 2230 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2231 goto errout_skb; 2232 2233 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2234 * required, but it makes sense to _attempt_ a 16K bytes allocation 2235 * to reduce number of system calls on dump operations, if user 2236 * ever provided a big enough buffer. 2237 */ 2238 cb = &nlk->cb; 2239 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2240 2241 if (alloc_min_size < nlk->max_recvmsg_len) { 2242 alloc_size = nlk->max_recvmsg_len; 2243 skb = alloc_skb(alloc_size, 2244 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2245 __GFP_NOWARN | __GFP_NORETRY); 2246 } 2247 if (!skb) { 2248 alloc_size = alloc_min_size; 2249 skb = alloc_skb(alloc_size, GFP_KERNEL); 2250 } 2251 if (!skb) 2252 goto errout_skb; 2253 2254 /* Trim skb to allocated size. User is expected to provide buffer as 2255 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2256 * netlink_recvmsg())). dump will pack as many smaller messages as 2257 * could fit within the allocated skb. skb is typically allocated 2258 * with larger space than required (could be as much as near 2x the 2259 * requested size with align to next power of 2 approach). Allowing 2260 * dump to use the excess space makes it difficult for a user to have a 2261 * reasonable static buffer based on the expected largest dump of a 2262 * single netdev. The outcome is MSG_TRUNC error. 2263 */ 2264 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2265 2266 /* Make sure malicious BPF programs can not read unitialized memory 2267 * from skb->head -> skb->data 2268 */ 2269 skb_reset_network_header(skb); 2270 skb_reset_mac_header(skb); 2271 2272 netlink_skb_set_owner_r(skb, sk); 2273 2274 if (nlk->dump_done_errno > 0) { 2275 cb->extack = &extack; 2276 nlk->dump_done_errno = cb->dump(skb, cb); 2277 cb->extack = NULL; 2278 } 2279 2280 if (nlk->dump_done_errno > 0 || 2281 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2282 mutex_unlock(nlk->cb_mutex); 2283 2284 if (sk_filter(sk, skb)) 2285 kfree_skb(skb); 2286 else 2287 __netlink_sendskb(sk, skb); 2288 return 0; 2289 } 2290 2291 if (netlink_dump_done(nlk, skb, cb, &extack)) 2292 goto errout_skb; 2293 2294 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2295 /* frag_list skb's data is used for compat tasks 2296 * and the regular skb's data for normal (non-compat) tasks. 2297 * See netlink_recvmsg(). 2298 */ 2299 if (unlikely(skb_shinfo(skb)->frag_list)) { 2300 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2301 goto errout_skb; 2302 } 2303 #endif 2304 2305 if (sk_filter(sk, skb)) 2306 kfree_skb(skb); 2307 else 2308 __netlink_sendskb(sk, skb); 2309 2310 if (cb->done) 2311 cb->done(cb); 2312 2313 nlk->cb_running = false; 2314 module = cb->module; 2315 skb = cb->skb; 2316 mutex_unlock(nlk->cb_mutex); 2317 module_put(module); 2318 consume_skb(skb); 2319 return 0; 2320 2321 errout_skb: 2322 mutex_unlock(nlk->cb_mutex); 2323 kfree_skb(skb); 2324 return err; 2325 } 2326 2327 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2328 const struct nlmsghdr *nlh, 2329 struct netlink_dump_control *control) 2330 { 2331 struct netlink_sock *nlk, *nlk2; 2332 struct netlink_callback *cb; 2333 struct sock *sk; 2334 int ret; 2335 2336 refcount_inc(&skb->users); 2337 2338 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2339 if (sk == NULL) { 2340 ret = -ECONNREFUSED; 2341 goto error_free; 2342 } 2343 2344 nlk = nlk_sk(sk); 2345 mutex_lock(nlk->cb_mutex); 2346 /* A dump is in progress... */ 2347 if (nlk->cb_running) { 2348 ret = -EBUSY; 2349 goto error_unlock; 2350 } 2351 /* add reference of module which cb->dump belongs to */ 2352 if (!try_module_get(control->module)) { 2353 ret = -EPROTONOSUPPORT; 2354 goto error_unlock; 2355 } 2356 2357 cb = &nlk->cb; 2358 memset(cb, 0, sizeof(*cb)); 2359 cb->dump = control->dump; 2360 cb->done = control->done; 2361 cb->nlh = nlh; 2362 cb->data = control->data; 2363 cb->module = control->module; 2364 cb->min_dump_alloc = control->min_dump_alloc; 2365 cb->skb = skb; 2366 2367 nlk2 = nlk_sk(NETLINK_CB(skb).sk); 2368 cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK); 2369 2370 if (control->start) { 2371 ret = control->start(cb); 2372 if (ret) 2373 goto error_put; 2374 } 2375 2376 nlk->cb_running = true; 2377 nlk->dump_done_errno = INT_MAX; 2378 2379 mutex_unlock(nlk->cb_mutex); 2380 2381 ret = netlink_dump(sk); 2382 2383 sock_put(sk); 2384 2385 if (ret) 2386 return ret; 2387 2388 /* We successfully started a dump, by returning -EINTR we 2389 * signal not to send ACK even if it was requested. 2390 */ 2391 return -EINTR; 2392 2393 error_put: 2394 module_put(control->module); 2395 error_unlock: 2396 sock_put(sk); 2397 mutex_unlock(nlk->cb_mutex); 2398 error_free: 2399 kfree_skb(skb); 2400 return ret; 2401 } 2402 EXPORT_SYMBOL(__netlink_dump_start); 2403 2404 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2405 const struct netlink_ext_ack *extack) 2406 { 2407 struct sk_buff *skb; 2408 struct nlmsghdr *rep; 2409 struct nlmsgerr *errmsg; 2410 size_t payload = sizeof(*errmsg); 2411 size_t tlvlen = 0; 2412 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2413 unsigned int flags = 0; 2414 bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK; 2415 2416 /* Error messages get the original request appened, unless the user 2417 * requests to cap the error message, and get extra error data if 2418 * requested. 2419 */ 2420 if (nlk_has_extack && extack && extack->_msg) 2421 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2422 2423 if (err && !(nlk->flags & NETLINK_F_CAP_ACK)) 2424 payload += nlmsg_len(nlh); 2425 else 2426 flags |= NLM_F_CAPPED; 2427 if (err && nlk_has_extack && extack && extack->bad_attr) 2428 tlvlen += nla_total_size(sizeof(u32)); 2429 if (nlk_has_extack && extack && extack->cookie_len) 2430 tlvlen += nla_total_size(extack->cookie_len); 2431 if (err && nlk_has_extack && extack && extack->policy) 2432 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2433 2434 if (tlvlen) 2435 flags |= NLM_F_ACK_TLVS; 2436 2437 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2438 if (!skb) { 2439 NETLINK_CB(in_skb).sk->sk_err = ENOBUFS; 2440 sk_error_report(NETLINK_CB(in_skb).sk); 2441 return; 2442 } 2443 2444 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2445 NLMSG_ERROR, payload, flags); 2446 errmsg = nlmsg_data(rep); 2447 errmsg->error = err; 2448 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2449 2450 if (nlk_has_extack && extack) { 2451 if (extack->_msg) { 2452 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, 2453 extack->_msg)); 2454 } 2455 if (err && extack->bad_attr && 2456 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2457 (u8 *)extack->bad_attr >= in_skb->data + 2458 in_skb->len)) 2459 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2460 (u8 *)extack->bad_attr - 2461 (u8 *)nlh)); 2462 if (extack->cookie_len) 2463 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2464 extack->cookie_len, extack->cookie)); 2465 if (extack->policy) 2466 netlink_policy_dump_write_attr(skb, extack->policy, 2467 NLMSGERR_ATTR_POLICY); 2468 } 2469 2470 nlmsg_end(skb, rep); 2471 2472 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2473 } 2474 EXPORT_SYMBOL(netlink_ack); 2475 2476 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2477 struct nlmsghdr *, 2478 struct netlink_ext_ack *)) 2479 { 2480 struct netlink_ext_ack extack; 2481 struct nlmsghdr *nlh; 2482 int err; 2483 2484 while (skb->len >= nlmsg_total_size(0)) { 2485 int msglen; 2486 2487 memset(&extack, 0, sizeof(extack)); 2488 nlh = nlmsg_hdr(skb); 2489 err = 0; 2490 2491 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2492 return 0; 2493 2494 /* Only requests are handled by the kernel */ 2495 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2496 goto ack; 2497 2498 /* Skip control messages */ 2499 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2500 goto ack; 2501 2502 err = cb(skb, nlh, &extack); 2503 if (err == -EINTR) 2504 goto skip; 2505 2506 ack: 2507 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2508 netlink_ack(skb, nlh, err, &extack); 2509 2510 skip: 2511 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2512 if (msglen > skb->len) 2513 msglen = skb->len; 2514 skb_pull(skb, msglen); 2515 } 2516 2517 return 0; 2518 } 2519 EXPORT_SYMBOL(netlink_rcv_skb); 2520 2521 /** 2522 * nlmsg_notify - send a notification netlink message 2523 * @sk: netlink socket to use 2524 * @skb: notification message 2525 * @portid: destination netlink portid for reports or 0 2526 * @group: destination multicast group or 0 2527 * @report: 1 to report back, 0 to disable 2528 * @flags: allocation flags 2529 */ 2530 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2531 unsigned int group, int report, gfp_t flags) 2532 { 2533 int err = 0; 2534 2535 if (group) { 2536 int exclude_portid = 0; 2537 2538 if (report) { 2539 refcount_inc(&skb->users); 2540 exclude_portid = portid; 2541 } 2542 2543 /* errors reported via destination sk->sk_err, but propagate 2544 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2545 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2546 if (err == -ESRCH) 2547 err = 0; 2548 } 2549 2550 if (report) { 2551 int err2; 2552 2553 err2 = nlmsg_unicast(sk, skb, portid); 2554 if (!err) 2555 err = err2; 2556 } 2557 2558 return err; 2559 } 2560 EXPORT_SYMBOL(nlmsg_notify); 2561 2562 #ifdef CONFIG_PROC_FS 2563 struct nl_seq_iter { 2564 struct seq_net_private p; 2565 struct rhashtable_iter hti; 2566 int link; 2567 }; 2568 2569 static void netlink_walk_start(struct nl_seq_iter *iter) 2570 { 2571 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2572 rhashtable_walk_start(&iter->hti); 2573 } 2574 2575 static void netlink_walk_stop(struct nl_seq_iter *iter) 2576 { 2577 rhashtable_walk_stop(&iter->hti); 2578 rhashtable_walk_exit(&iter->hti); 2579 } 2580 2581 static void *__netlink_seq_next(struct seq_file *seq) 2582 { 2583 struct nl_seq_iter *iter = seq->private; 2584 struct netlink_sock *nlk; 2585 2586 do { 2587 for (;;) { 2588 nlk = rhashtable_walk_next(&iter->hti); 2589 2590 if (IS_ERR(nlk)) { 2591 if (PTR_ERR(nlk) == -EAGAIN) 2592 continue; 2593 2594 return nlk; 2595 } 2596 2597 if (nlk) 2598 break; 2599 2600 netlink_walk_stop(iter); 2601 if (++iter->link >= MAX_LINKS) 2602 return NULL; 2603 2604 netlink_walk_start(iter); 2605 } 2606 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2607 2608 return nlk; 2609 } 2610 2611 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2612 __acquires(RCU) 2613 { 2614 struct nl_seq_iter *iter = seq->private; 2615 void *obj = SEQ_START_TOKEN; 2616 loff_t pos; 2617 2618 iter->link = 0; 2619 2620 netlink_walk_start(iter); 2621 2622 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2623 obj = __netlink_seq_next(seq); 2624 2625 return obj; 2626 } 2627 2628 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2629 { 2630 ++*pos; 2631 return __netlink_seq_next(seq); 2632 } 2633 2634 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2635 { 2636 struct nl_seq_iter *iter = seq->private; 2637 2638 if (iter->link >= MAX_LINKS) 2639 return; 2640 2641 netlink_walk_stop(iter); 2642 } 2643 2644 2645 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2646 { 2647 if (v == SEQ_START_TOKEN) { 2648 seq_puts(seq, 2649 "sk Eth Pid Groups " 2650 "Rmem Wmem Dump Locks Drops Inode\n"); 2651 } else { 2652 struct sock *s = v; 2653 struct netlink_sock *nlk = nlk_sk(s); 2654 2655 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2656 s, 2657 s->sk_protocol, 2658 nlk->portid, 2659 nlk->groups ? (u32)nlk->groups[0] : 0, 2660 sk_rmem_alloc_get(s), 2661 sk_wmem_alloc_get(s), 2662 nlk->cb_running, 2663 refcount_read(&s->sk_refcnt), 2664 atomic_read(&s->sk_drops), 2665 sock_i_ino(s) 2666 ); 2667 2668 } 2669 return 0; 2670 } 2671 2672 #ifdef CONFIG_BPF_SYSCALL 2673 struct bpf_iter__netlink { 2674 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2675 __bpf_md_ptr(struct netlink_sock *, sk); 2676 }; 2677 2678 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2679 2680 static int netlink_prog_seq_show(struct bpf_prog *prog, 2681 struct bpf_iter_meta *meta, 2682 void *v) 2683 { 2684 struct bpf_iter__netlink ctx; 2685 2686 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2687 ctx.meta = meta; 2688 ctx.sk = nlk_sk((struct sock *)v); 2689 return bpf_iter_run_prog(prog, &ctx); 2690 } 2691 2692 static int netlink_seq_show(struct seq_file *seq, void *v) 2693 { 2694 struct bpf_iter_meta meta; 2695 struct bpf_prog *prog; 2696 2697 meta.seq = seq; 2698 prog = bpf_iter_get_info(&meta, false); 2699 if (!prog) 2700 return netlink_native_seq_show(seq, v); 2701 2702 if (v != SEQ_START_TOKEN) 2703 return netlink_prog_seq_show(prog, &meta, v); 2704 2705 return 0; 2706 } 2707 2708 static void netlink_seq_stop(struct seq_file *seq, void *v) 2709 { 2710 struct bpf_iter_meta meta; 2711 struct bpf_prog *prog; 2712 2713 if (!v) { 2714 meta.seq = seq; 2715 prog = bpf_iter_get_info(&meta, true); 2716 if (prog) 2717 (void)netlink_prog_seq_show(prog, &meta, v); 2718 } 2719 2720 netlink_native_seq_stop(seq, v); 2721 } 2722 #else 2723 static int netlink_seq_show(struct seq_file *seq, void *v) 2724 { 2725 return netlink_native_seq_show(seq, v); 2726 } 2727 2728 static void netlink_seq_stop(struct seq_file *seq, void *v) 2729 { 2730 netlink_native_seq_stop(seq, v); 2731 } 2732 #endif 2733 2734 static const struct seq_operations netlink_seq_ops = { 2735 .start = netlink_seq_start, 2736 .next = netlink_seq_next, 2737 .stop = netlink_seq_stop, 2738 .show = netlink_seq_show, 2739 }; 2740 #endif 2741 2742 int netlink_register_notifier(struct notifier_block *nb) 2743 { 2744 return blocking_notifier_chain_register(&netlink_chain, nb); 2745 } 2746 EXPORT_SYMBOL(netlink_register_notifier); 2747 2748 int netlink_unregister_notifier(struct notifier_block *nb) 2749 { 2750 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2751 } 2752 EXPORT_SYMBOL(netlink_unregister_notifier); 2753 2754 static const struct proto_ops netlink_ops = { 2755 .family = PF_NETLINK, 2756 .owner = THIS_MODULE, 2757 .release = netlink_release, 2758 .bind = netlink_bind, 2759 .connect = netlink_connect, 2760 .socketpair = sock_no_socketpair, 2761 .accept = sock_no_accept, 2762 .getname = netlink_getname, 2763 .poll = datagram_poll, 2764 .ioctl = netlink_ioctl, 2765 .listen = sock_no_listen, 2766 .shutdown = sock_no_shutdown, 2767 .setsockopt = netlink_setsockopt, 2768 .getsockopt = netlink_getsockopt, 2769 .sendmsg = netlink_sendmsg, 2770 .recvmsg = netlink_recvmsg, 2771 .mmap = sock_no_mmap, 2772 .sendpage = sock_no_sendpage, 2773 }; 2774 2775 static const struct net_proto_family netlink_family_ops = { 2776 .family = PF_NETLINK, 2777 .create = netlink_create, 2778 .owner = THIS_MODULE, /* for consistency 8) */ 2779 }; 2780 2781 static int __net_init netlink_net_init(struct net *net) 2782 { 2783 #ifdef CONFIG_PROC_FS 2784 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2785 sizeof(struct nl_seq_iter))) 2786 return -ENOMEM; 2787 #endif 2788 return 0; 2789 } 2790 2791 static void __net_exit netlink_net_exit(struct net *net) 2792 { 2793 #ifdef CONFIG_PROC_FS 2794 remove_proc_entry("netlink", net->proc_net); 2795 #endif 2796 } 2797 2798 static void __init netlink_add_usersock_entry(void) 2799 { 2800 struct listeners *listeners; 2801 int groups = 32; 2802 2803 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2804 if (!listeners) 2805 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2806 2807 netlink_table_grab(); 2808 2809 nl_table[NETLINK_USERSOCK].groups = groups; 2810 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2811 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2812 nl_table[NETLINK_USERSOCK].registered = 1; 2813 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2814 2815 netlink_table_ungrab(); 2816 } 2817 2818 static struct pernet_operations __net_initdata netlink_net_ops = { 2819 .init = netlink_net_init, 2820 .exit = netlink_net_exit, 2821 }; 2822 2823 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2824 { 2825 const struct netlink_sock *nlk = data; 2826 struct netlink_compare_arg arg; 2827 2828 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2829 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2830 } 2831 2832 static const struct rhashtable_params netlink_rhashtable_params = { 2833 .head_offset = offsetof(struct netlink_sock, node), 2834 .key_len = netlink_compare_arg_len, 2835 .obj_hashfn = netlink_hash, 2836 .obj_cmpfn = netlink_compare, 2837 .automatic_shrinking = true, 2838 }; 2839 2840 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2841 BTF_ID_LIST(btf_netlink_sock_id) 2842 BTF_ID(struct, netlink_sock) 2843 2844 static const struct bpf_iter_seq_info netlink_seq_info = { 2845 .seq_ops = &netlink_seq_ops, 2846 .init_seq_private = bpf_iter_init_seq_net, 2847 .fini_seq_private = bpf_iter_fini_seq_net, 2848 .seq_priv_size = sizeof(struct nl_seq_iter), 2849 }; 2850 2851 static struct bpf_iter_reg netlink_reg_info = { 2852 .target = "netlink", 2853 .ctx_arg_info_size = 1, 2854 .ctx_arg_info = { 2855 { offsetof(struct bpf_iter__netlink, sk), 2856 PTR_TO_BTF_ID_OR_NULL }, 2857 }, 2858 .seq_info = &netlink_seq_info, 2859 }; 2860 2861 static int __init bpf_iter_register(void) 2862 { 2863 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2864 return bpf_iter_reg_target(&netlink_reg_info); 2865 } 2866 #endif 2867 2868 static int __init netlink_proto_init(void) 2869 { 2870 int i; 2871 int err = proto_register(&netlink_proto, 0); 2872 2873 if (err != 0) 2874 goto out; 2875 2876 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2877 err = bpf_iter_register(); 2878 if (err) 2879 goto out; 2880 #endif 2881 2882 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2883 2884 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2885 if (!nl_table) 2886 goto panic; 2887 2888 for (i = 0; i < MAX_LINKS; i++) { 2889 if (rhashtable_init(&nl_table[i].hash, 2890 &netlink_rhashtable_params) < 0) { 2891 while (--i > 0) 2892 rhashtable_destroy(&nl_table[i].hash); 2893 kfree(nl_table); 2894 goto panic; 2895 } 2896 } 2897 2898 netlink_add_usersock_entry(); 2899 2900 sock_register(&netlink_family_ops); 2901 register_pernet_subsys(&netlink_net_ops); 2902 register_pernet_subsys(&netlink_tap_net_ops); 2903 /* The netlink device handler may be needed early. */ 2904 rtnetlink_init(); 2905 out: 2906 return err; 2907 panic: 2908 panic("netlink_init: Cannot allocate nl_table\n"); 2909 } 2910 2911 core_initcall(netlink_proto_init); 2912