1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/genetlink.h> 63 #include <linux/net_namespace.h> 64 #include <linux/nospec.h> 65 #include <linux/btf_ids.h> 66 67 #include <net/net_namespace.h> 68 #include <net/netns/generic.h> 69 #include <net/sock.h> 70 #include <net/scm.h> 71 #include <net/netlink.h> 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/netlink.h> 74 75 #include "af_netlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 return group ? 1 << (group - 1) : 0; 163 } 164 165 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 166 gfp_t gfp_mask) 167 { 168 unsigned int len = skb_end_offset(skb); 169 struct sk_buff *new; 170 171 new = alloc_skb(len, gfp_mask); 172 if (new == NULL) 173 return NULL; 174 175 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 176 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 177 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 178 179 skb_put_data(new, skb->data, len); 180 return new; 181 } 182 183 static unsigned int netlink_tap_net_id; 184 185 struct netlink_tap_net { 186 struct list_head netlink_tap_all; 187 struct mutex netlink_tap_lock; 188 }; 189 190 int netlink_add_tap(struct netlink_tap *nt) 191 { 192 struct net *net = dev_net(nt->dev); 193 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 194 195 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 196 return -EINVAL; 197 198 mutex_lock(&nn->netlink_tap_lock); 199 list_add_rcu(&nt->list, &nn->netlink_tap_all); 200 mutex_unlock(&nn->netlink_tap_lock); 201 202 __module_get(nt->module); 203 204 return 0; 205 } 206 EXPORT_SYMBOL_GPL(netlink_add_tap); 207 208 static int __netlink_remove_tap(struct netlink_tap *nt) 209 { 210 struct net *net = dev_net(nt->dev); 211 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 212 bool found = false; 213 struct netlink_tap *tmp; 214 215 mutex_lock(&nn->netlink_tap_lock); 216 217 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 218 if (nt == tmp) { 219 list_del_rcu(&nt->list); 220 found = true; 221 goto out; 222 } 223 } 224 225 pr_warn("__netlink_remove_tap: %p not found\n", nt); 226 out: 227 mutex_unlock(&nn->netlink_tap_lock); 228 229 if (found) 230 module_put(nt->module); 231 232 return found ? 0 : -ENODEV; 233 } 234 235 int netlink_remove_tap(struct netlink_tap *nt) 236 { 237 int ret; 238 239 ret = __netlink_remove_tap(nt); 240 synchronize_net(); 241 242 return ret; 243 } 244 EXPORT_SYMBOL_GPL(netlink_remove_tap); 245 246 static __net_init int netlink_tap_init_net(struct net *net) 247 { 248 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 249 250 INIT_LIST_HEAD(&nn->netlink_tap_all); 251 mutex_init(&nn->netlink_tap_lock); 252 return 0; 253 } 254 255 static struct pernet_operations netlink_tap_net_ops = { 256 .init = netlink_tap_init_net, 257 .id = &netlink_tap_net_id, 258 .size = sizeof(struct netlink_tap_net), 259 }; 260 261 static bool netlink_filter_tap(const struct sk_buff *skb) 262 { 263 struct sock *sk = skb->sk; 264 265 /* We take the more conservative approach and 266 * whitelist socket protocols that may pass. 267 */ 268 switch (sk->sk_protocol) { 269 case NETLINK_ROUTE: 270 case NETLINK_USERSOCK: 271 case NETLINK_SOCK_DIAG: 272 case NETLINK_NFLOG: 273 case NETLINK_XFRM: 274 case NETLINK_FIB_LOOKUP: 275 case NETLINK_NETFILTER: 276 case NETLINK_GENERIC: 277 return true; 278 } 279 280 return false; 281 } 282 283 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 284 struct net_device *dev) 285 { 286 struct sk_buff *nskb; 287 struct sock *sk = skb->sk; 288 int ret = -ENOMEM; 289 290 if (!net_eq(dev_net(dev), sock_net(sk))) 291 return 0; 292 293 dev_hold(dev); 294 295 if (is_vmalloc_addr(skb->head)) 296 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 297 else 298 nskb = skb_clone(skb, GFP_ATOMIC); 299 if (nskb) { 300 nskb->dev = dev; 301 nskb->protocol = htons((u16) sk->sk_protocol); 302 nskb->pkt_type = netlink_is_kernel(sk) ? 303 PACKET_KERNEL : PACKET_USER; 304 skb_reset_network_header(nskb); 305 ret = dev_queue_xmit(nskb); 306 if (unlikely(ret > 0)) 307 ret = net_xmit_errno(ret); 308 } 309 310 dev_put(dev); 311 return ret; 312 } 313 314 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 315 { 316 int ret; 317 struct netlink_tap *tmp; 318 319 if (!netlink_filter_tap(skb)) 320 return; 321 322 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 323 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 324 if (unlikely(ret)) 325 break; 326 } 327 } 328 329 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 330 { 331 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 332 333 rcu_read_lock(); 334 335 if (unlikely(!list_empty(&nn->netlink_tap_all))) 336 __netlink_deliver_tap(skb, nn); 337 338 rcu_read_unlock(); 339 } 340 341 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 342 struct sk_buff *skb) 343 { 344 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 345 netlink_deliver_tap(sock_net(dst), skb); 346 } 347 348 static void netlink_overrun(struct sock *sk) 349 { 350 struct netlink_sock *nlk = nlk_sk(sk); 351 352 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 353 if (!test_and_set_bit(NETLINK_S_CONGESTED, 354 &nlk_sk(sk)->state)) { 355 sk->sk_err = ENOBUFS; 356 sk_error_report(sk); 357 } 358 } 359 atomic_inc(&sk->sk_drops); 360 } 361 362 static void netlink_rcv_wake(struct sock *sk) 363 { 364 struct netlink_sock *nlk = nlk_sk(sk); 365 366 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 367 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 368 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 369 wake_up_interruptible(&nlk->wait); 370 } 371 372 static void netlink_skb_destructor(struct sk_buff *skb) 373 { 374 if (is_vmalloc_addr(skb->head)) { 375 if (!skb->cloned || 376 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 377 vfree(skb->head); 378 379 skb->head = NULL; 380 } 381 if (skb->sk != NULL) 382 sock_rfree(skb); 383 } 384 385 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 386 { 387 WARN_ON(skb->sk != NULL); 388 skb->sk = sk; 389 skb->destructor = netlink_skb_destructor; 390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 391 sk_mem_charge(sk, skb->truesize); 392 } 393 394 static void netlink_sock_destruct(struct sock *sk) 395 { 396 struct netlink_sock *nlk = nlk_sk(sk); 397 398 if (nlk->cb_running) { 399 if (nlk->cb.done) 400 nlk->cb.done(&nlk->cb); 401 module_put(nlk->cb.module); 402 kfree_skb(nlk->cb.skb); 403 } 404 405 skb_queue_purge(&sk->sk_receive_queue); 406 407 if (!sock_flag(sk, SOCK_DEAD)) { 408 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 409 return; 410 } 411 412 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 413 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 414 WARN_ON(nlk_sk(sk)->groups); 415 } 416 417 static void netlink_sock_destruct_work(struct work_struct *work) 418 { 419 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 420 work); 421 422 sk_free(&nlk->sk); 423 } 424 425 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 426 * SMP. Look, when several writers sleep and reader wakes them up, all but one 427 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 428 * this, _but_ remember, it adds useless work on UP machines. 429 */ 430 431 void netlink_table_grab(void) 432 __acquires(nl_table_lock) 433 { 434 might_sleep(); 435 436 write_lock_irq(&nl_table_lock); 437 438 if (atomic_read(&nl_table_users)) { 439 DECLARE_WAITQUEUE(wait, current); 440 441 add_wait_queue_exclusive(&nl_table_wait, &wait); 442 for (;;) { 443 set_current_state(TASK_UNINTERRUPTIBLE); 444 if (atomic_read(&nl_table_users) == 0) 445 break; 446 write_unlock_irq(&nl_table_lock); 447 schedule(); 448 write_lock_irq(&nl_table_lock); 449 } 450 451 __set_current_state(TASK_RUNNING); 452 remove_wait_queue(&nl_table_wait, &wait); 453 } 454 } 455 456 void netlink_table_ungrab(void) 457 __releases(nl_table_lock) 458 { 459 write_unlock_irq(&nl_table_lock); 460 wake_up(&nl_table_wait); 461 } 462 463 static inline void 464 netlink_lock_table(void) 465 { 466 unsigned long flags; 467 468 /* read_lock() synchronizes us to netlink_table_grab */ 469 470 read_lock_irqsave(&nl_table_lock, flags); 471 atomic_inc(&nl_table_users); 472 read_unlock_irqrestore(&nl_table_lock, flags); 473 } 474 475 static inline void 476 netlink_unlock_table(void) 477 { 478 if (atomic_dec_and_test(&nl_table_users)) 479 wake_up(&nl_table_wait); 480 } 481 482 struct netlink_compare_arg 483 { 484 possible_net_t pnet; 485 u32 portid; 486 }; 487 488 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 489 #define netlink_compare_arg_len \ 490 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 491 492 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 493 const void *ptr) 494 { 495 const struct netlink_compare_arg *x = arg->key; 496 const struct netlink_sock *nlk = ptr; 497 498 return nlk->portid != x->portid || 499 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 500 } 501 502 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 503 struct net *net, u32 portid) 504 { 505 memset(arg, 0, sizeof(*arg)); 506 write_pnet(&arg->pnet, net); 507 arg->portid = portid; 508 } 509 510 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 511 struct net *net) 512 { 513 struct netlink_compare_arg arg; 514 515 netlink_compare_arg_init(&arg, net, portid); 516 return rhashtable_lookup_fast(&table->hash, &arg, 517 netlink_rhashtable_params); 518 } 519 520 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 521 { 522 struct netlink_compare_arg arg; 523 524 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 525 return rhashtable_lookup_insert_key(&table->hash, &arg, 526 &nlk_sk(sk)->node, 527 netlink_rhashtable_params); 528 } 529 530 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 531 { 532 struct netlink_table *table = &nl_table[protocol]; 533 struct sock *sk; 534 535 rcu_read_lock(); 536 sk = __netlink_lookup(table, portid, net); 537 if (sk) 538 sock_hold(sk); 539 rcu_read_unlock(); 540 541 return sk; 542 } 543 544 static const struct proto_ops netlink_ops; 545 546 static void 547 netlink_update_listeners(struct sock *sk) 548 { 549 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 550 unsigned long mask; 551 unsigned int i; 552 struct listeners *listeners; 553 554 listeners = nl_deref_protected(tbl->listeners); 555 if (!listeners) 556 return; 557 558 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 559 mask = 0; 560 sk_for_each_bound(sk, &tbl->mc_list) { 561 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 562 mask |= nlk_sk(sk)->groups[i]; 563 } 564 listeners->masks[i] = mask; 565 } 566 /* this function is only called with the netlink table "grabbed", which 567 * makes sure updates are visible before bind or setsockopt return. */ 568 } 569 570 static int netlink_insert(struct sock *sk, u32 portid) 571 { 572 struct netlink_table *table = &nl_table[sk->sk_protocol]; 573 int err; 574 575 lock_sock(sk); 576 577 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 578 if (nlk_sk(sk)->bound) 579 goto err; 580 581 nlk_sk(sk)->portid = portid; 582 sock_hold(sk); 583 584 err = __netlink_insert(table, sk); 585 if (err) { 586 /* In case the hashtable backend returns with -EBUSY 587 * from here, it must not escape to the caller. 588 */ 589 if (unlikely(err == -EBUSY)) 590 err = -EOVERFLOW; 591 if (err == -EEXIST) 592 err = -EADDRINUSE; 593 sock_put(sk); 594 goto err; 595 } 596 597 /* We need to ensure that the socket is hashed and visible. */ 598 smp_wmb(); 599 /* Paired with lockless reads from netlink_bind(), 600 * netlink_connect() and netlink_sendmsg(). 601 */ 602 WRITE_ONCE(nlk_sk(sk)->bound, portid); 603 604 err: 605 release_sock(sk); 606 return err; 607 } 608 609 static void netlink_remove(struct sock *sk) 610 { 611 struct netlink_table *table; 612 613 table = &nl_table[sk->sk_protocol]; 614 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 615 netlink_rhashtable_params)) { 616 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 617 __sock_put(sk); 618 } 619 620 netlink_table_grab(); 621 if (nlk_sk(sk)->subscriptions) { 622 __sk_del_bind_node(sk); 623 netlink_update_listeners(sk); 624 } 625 if (sk->sk_protocol == NETLINK_GENERIC) 626 atomic_inc(&genl_sk_destructing_cnt); 627 netlink_table_ungrab(); 628 } 629 630 static struct proto netlink_proto = { 631 .name = "NETLINK", 632 .owner = THIS_MODULE, 633 .obj_size = sizeof(struct netlink_sock), 634 }; 635 636 static int __netlink_create(struct net *net, struct socket *sock, 637 struct mutex *cb_mutex, int protocol, 638 int kern) 639 { 640 struct sock *sk; 641 struct netlink_sock *nlk; 642 643 sock->ops = &netlink_ops; 644 645 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 646 if (!sk) 647 return -ENOMEM; 648 649 sock_init_data(sock, sk); 650 651 nlk = nlk_sk(sk); 652 if (cb_mutex) { 653 nlk->cb_mutex = cb_mutex; 654 } else { 655 nlk->cb_mutex = &nlk->cb_def_mutex; 656 mutex_init(nlk->cb_mutex); 657 lockdep_set_class_and_name(nlk->cb_mutex, 658 nlk_cb_mutex_keys + protocol, 659 nlk_cb_mutex_key_strings[protocol]); 660 } 661 init_waitqueue_head(&nlk->wait); 662 663 sk->sk_destruct = netlink_sock_destruct; 664 sk->sk_protocol = protocol; 665 return 0; 666 } 667 668 static int netlink_create(struct net *net, struct socket *sock, int protocol, 669 int kern) 670 { 671 struct module *module = NULL; 672 struct mutex *cb_mutex; 673 struct netlink_sock *nlk; 674 int (*bind)(struct net *net, int group); 675 void (*unbind)(struct net *net, int group); 676 int err = 0; 677 678 sock->state = SS_UNCONNECTED; 679 680 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 681 return -ESOCKTNOSUPPORT; 682 683 if (protocol < 0 || protocol >= MAX_LINKS) 684 return -EPROTONOSUPPORT; 685 protocol = array_index_nospec(protocol, MAX_LINKS); 686 687 netlink_lock_table(); 688 #ifdef CONFIG_MODULES 689 if (!nl_table[protocol].registered) { 690 netlink_unlock_table(); 691 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 692 netlink_lock_table(); 693 } 694 #endif 695 if (nl_table[protocol].registered && 696 try_module_get(nl_table[protocol].module)) 697 module = nl_table[protocol].module; 698 else 699 err = -EPROTONOSUPPORT; 700 cb_mutex = nl_table[protocol].cb_mutex; 701 bind = nl_table[protocol].bind; 702 unbind = nl_table[protocol].unbind; 703 netlink_unlock_table(); 704 705 if (err < 0) 706 goto out; 707 708 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 709 if (err < 0) 710 goto out_module; 711 712 sock_prot_inuse_add(net, &netlink_proto, 1); 713 714 nlk = nlk_sk(sock->sk); 715 nlk->module = module; 716 nlk->netlink_bind = bind; 717 nlk->netlink_unbind = unbind; 718 out: 719 return err; 720 721 out_module: 722 module_put(module); 723 goto out; 724 } 725 726 static void deferred_put_nlk_sk(struct rcu_head *head) 727 { 728 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 729 struct sock *sk = &nlk->sk; 730 731 kfree(nlk->groups); 732 nlk->groups = NULL; 733 734 if (!refcount_dec_and_test(&sk->sk_refcnt)) 735 return; 736 737 if (nlk->cb_running && nlk->cb.done) { 738 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 739 schedule_work(&nlk->work); 740 return; 741 } 742 743 sk_free(sk); 744 } 745 746 static int netlink_release(struct socket *sock) 747 { 748 struct sock *sk = sock->sk; 749 struct netlink_sock *nlk; 750 751 if (!sk) 752 return 0; 753 754 netlink_remove(sk); 755 sock_orphan(sk); 756 nlk = nlk_sk(sk); 757 758 /* 759 * OK. Socket is unlinked, any packets that arrive now 760 * will be purged. 761 */ 762 763 /* must not acquire netlink_table_lock in any way again before unbind 764 * and notifying genetlink is done as otherwise it might deadlock 765 */ 766 if (nlk->netlink_unbind) { 767 int i; 768 769 for (i = 0; i < nlk->ngroups; i++) 770 if (test_bit(i, nlk->groups)) 771 nlk->netlink_unbind(sock_net(sk), i + 1); 772 } 773 if (sk->sk_protocol == NETLINK_GENERIC && 774 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 775 wake_up(&genl_sk_destructing_waitq); 776 777 sock->sk = NULL; 778 wake_up_interruptible_all(&nlk->wait); 779 780 skb_queue_purge(&sk->sk_write_queue); 781 782 if (nlk->portid && nlk->bound) { 783 struct netlink_notify n = { 784 .net = sock_net(sk), 785 .protocol = sk->sk_protocol, 786 .portid = nlk->portid, 787 }; 788 blocking_notifier_call_chain(&netlink_chain, 789 NETLINK_URELEASE, &n); 790 } 791 792 module_put(nlk->module); 793 794 if (netlink_is_kernel(sk)) { 795 netlink_table_grab(); 796 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 797 if (--nl_table[sk->sk_protocol].registered == 0) { 798 struct listeners *old; 799 800 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 801 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 802 kfree_rcu(old, rcu); 803 nl_table[sk->sk_protocol].module = NULL; 804 nl_table[sk->sk_protocol].bind = NULL; 805 nl_table[sk->sk_protocol].unbind = NULL; 806 nl_table[sk->sk_protocol].flags = 0; 807 nl_table[sk->sk_protocol].registered = 0; 808 } 809 netlink_table_ungrab(); 810 } 811 812 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 813 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 814 return 0; 815 } 816 817 static int netlink_autobind(struct socket *sock) 818 { 819 struct sock *sk = sock->sk; 820 struct net *net = sock_net(sk); 821 struct netlink_table *table = &nl_table[sk->sk_protocol]; 822 s32 portid = task_tgid_vnr(current); 823 int err; 824 s32 rover = -4096; 825 bool ok; 826 827 retry: 828 cond_resched(); 829 rcu_read_lock(); 830 ok = !__netlink_lookup(table, portid, net); 831 rcu_read_unlock(); 832 if (!ok) { 833 /* Bind collision, search negative portid values. */ 834 if (rover == -4096) 835 /* rover will be in range [S32_MIN, -4097] */ 836 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 837 else if (rover >= -4096) 838 rover = -4097; 839 portid = rover--; 840 goto retry; 841 } 842 843 err = netlink_insert(sk, portid); 844 if (err == -EADDRINUSE) 845 goto retry; 846 847 /* If 2 threads race to autobind, that is fine. */ 848 if (err == -EBUSY) 849 err = 0; 850 851 return err; 852 } 853 854 /** 855 * __netlink_ns_capable - General netlink message capability test 856 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 857 * @user_ns: The user namespace of the capability to use 858 * @cap: The capability to use 859 * 860 * Test to see if the opener of the socket we received the message 861 * from had when the netlink socket was created and the sender of the 862 * message has the capability @cap in the user namespace @user_ns. 863 */ 864 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 865 struct user_namespace *user_ns, int cap) 866 { 867 return ((nsp->flags & NETLINK_SKB_DST) || 868 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 869 ns_capable(user_ns, cap); 870 } 871 EXPORT_SYMBOL(__netlink_ns_capable); 872 873 /** 874 * netlink_ns_capable - General netlink message capability test 875 * @skb: socket buffer holding a netlink command from userspace 876 * @user_ns: The user namespace of the capability to use 877 * @cap: The capability to use 878 * 879 * Test to see if the opener of the socket we received the message 880 * from had when the netlink socket was created and the sender of the 881 * message has the capability @cap in the user namespace @user_ns. 882 */ 883 bool netlink_ns_capable(const struct sk_buff *skb, 884 struct user_namespace *user_ns, int cap) 885 { 886 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 887 } 888 EXPORT_SYMBOL(netlink_ns_capable); 889 890 /** 891 * netlink_capable - Netlink global message capability test 892 * @skb: socket buffer holding a netlink command from userspace 893 * @cap: The capability to use 894 * 895 * Test to see if the opener of the socket we received the message 896 * from had when the netlink socket was created and the sender of the 897 * message has the capability @cap in all user namespaces. 898 */ 899 bool netlink_capable(const struct sk_buff *skb, int cap) 900 { 901 return netlink_ns_capable(skb, &init_user_ns, cap); 902 } 903 EXPORT_SYMBOL(netlink_capable); 904 905 /** 906 * netlink_net_capable - Netlink network namespace message capability test 907 * @skb: socket buffer holding a netlink command from userspace 908 * @cap: The capability to use 909 * 910 * Test to see if the opener of the socket we received the message 911 * from had when the netlink socket was created and the sender of the 912 * message has the capability @cap over the network namespace of 913 * the socket we received the message from. 914 */ 915 bool netlink_net_capable(const struct sk_buff *skb, int cap) 916 { 917 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 918 } 919 EXPORT_SYMBOL(netlink_net_capable); 920 921 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 922 { 923 return (nl_table[sock->sk->sk_protocol].flags & flag) || 924 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 925 } 926 927 static void 928 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 929 { 930 struct netlink_sock *nlk = nlk_sk(sk); 931 932 if (nlk->subscriptions && !subscriptions) 933 __sk_del_bind_node(sk); 934 else if (!nlk->subscriptions && subscriptions) 935 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 936 nlk->subscriptions = subscriptions; 937 } 938 939 static int netlink_realloc_groups(struct sock *sk) 940 { 941 struct netlink_sock *nlk = nlk_sk(sk); 942 unsigned int groups; 943 unsigned long *new_groups; 944 int err = 0; 945 946 netlink_table_grab(); 947 948 groups = nl_table[sk->sk_protocol].groups; 949 if (!nl_table[sk->sk_protocol].registered) { 950 err = -ENOENT; 951 goto out_unlock; 952 } 953 954 if (nlk->ngroups >= groups) 955 goto out_unlock; 956 957 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 958 if (new_groups == NULL) { 959 err = -ENOMEM; 960 goto out_unlock; 961 } 962 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 963 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 964 965 nlk->groups = new_groups; 966 nlk->ngroups = groups; 967 out_unlock: 968 netlink_table_ungrab(); 969 return err; 970 } 971 972 static void netlink_undo_bind(int group, long unsigned int groups, 973 struct sock *sk) 974 { 975 struct netlink_sock *nlk = nlk_sk(sk); 976 int undo; 977 978 if (!nlk->netlink_unbind) 979 return; 980 981 for (undo = 0; undo < group; undo++) 982 if (test_bit(undo, &groups)) 983 nlk->netlink_unbind(sock_net(sk), undo + 1); 984 } 985 986 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 987 int addr_len) 988 { 989 struct sock *sk = sock->sk; 990 struct net *net = sock_net(sk); 991 struct netlink_sock *nlk = nlk_sk(sk); 992 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 993 int err = 0; 994 unsigned long groups; 995 bool bound; 996 997 if (addr_len < sizeof(struct sockaddr_nl)) 998 return -EINVAL; 999 1000 if (nladdr->nl_family != AF_NETLINK) 1001 return -EINVAL; 1002 groups = nladdr->nl_groups; 1003 1004 /* Only superuser is allowed to listen multicasts */ 1005 if (groups) { 1006 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1007 return -EPERM; 1008 err = netlink_realloc_groups(sk); 1009 if (err) 1010 return err; 1011 } 1012 1013 if (nlk->ngroups < BITS_PER_LONG) 1014 groups &= (1UL << nlk->ngroups) - 1; 1015 1016 /* Paired with WRITE_ONCE() in netlink_insert() */ 1017 bound = READ_ONCE(nlk->bound); 1018 if (bound) { 1019 /* Ensure nlk->portid is up-to-date. */ 1020 smp_rmb(); 1021 1022 if (nladdr->nl_pid != nlk->portid) 1023 return -EINVAL; 1024 } 1025 1026 if (nlk->netlink_bind && groups) { 1027 int group; 1028 1029 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1030 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1031 if (!test_bit(group, &groups)) 1032 continue; 1033 err = nlk->netlink_bind(net, group + 1); 1034 if (!err) 1035 continue; 1036 netlink_undo_bind(group, groups, sk); 1037 return err; 1038 } 1039 } 1040 1041 /* No need for barriers here as we return to user-space without 1042 * using any of the bound attributes. 1043 */ 1044 netlink_lock_table(); 1045 if (!bound) { 1046 err = nladdr->nl_pid ? 1047 netlink_insert(sk, nladdr->nl_pid) : 1048 netlink_autobind(sock); 1049 if (err) { 1050 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1051 goto unlock; 1052 } 1053 } 1054 1055 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1056 goto unlock; 1057 netlink_unlock_table(); 1058 1059 netlink_table_grab(); 1060 netlink_update_subscriptions(sk, nlk->subscriptions + 1061 hweight32(groups) - 1062 hweight32(nlk->groups[0])); 1063 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1064 netlink_update_listeners(sk); 1065 netlink_table_ungrab(); 1066 1067 return 0; 1068 1069 unlock: 1070 netlink_unlock_table(); 1071 return err; 1072 } 1073 1074 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1075 int alen, int flags) 1076 { 1077 int err = 0; 1078 struct sock *sk = sock->sk; 1079 struct netlink_sock *nlk = nlk_sk(sk); 1080 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1081 1082 if (alen < sizeof(addr->sa_family)) 1083 return -EINVAL; 1084 1085 if (addr->sa_family == AF_UNSPEC) { 1086 sk->sk_state = NETLINK_UNCONNECTED; 1087 nlk->dst_portid = 0; 1088 nlk->dst_group = 0; 1089 return 0; 1090 } 1091 if (addr->sa_family != AF_NETLINK) 1092 return -EINVAL; 1093 1094 if (alen < sizeof(struct sockaddr_nl)) 1095 return -EINVAL; 1096 1097 if ((nladdr->nl_groups || nladdr->nl_pid) && 1098 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1099 return -EPERM; 1100 1101 /* No need for barriers here as we return to user-space without 1102 * using any of the bound attributes. 1103 * Paired with WRITE_ONCE() in netlink_insert(). 1104 */ 1105 if (!READ_ONCE(nlk->bound)) 1106 err = netlink_autobind(sock); 1107 1108 if (err == 0) { 1109 sk->sk_state = NETLINK_CONNECTED; 1110 nlk->dst_portid = nladdr->nl_pid; 1111 nlk->dst_group = ffs(nladdr->nl_groups); 1112 } 1113 1114 return err; 1115 } 1116 1117 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1118 int peer) 1119 { 1120 struct sock *sk = sock->sk; 1121 struct netlink_sock *nlk = nlk_sk(sk); 1122 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1123 1124 nladdr->nl_family = AF_NETLINK; 1125 nladdr->nl_pad = 0; 1126 1127 if (peer) { 1128 nladdr->nl_pid = nlk->dst_portid; 1129 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1130 } else { 1131 nladdr->nl_pid = nlk->portid; 1132 netlink_lock_table(); 1133 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1134 netlink_unlock_table(); 1135 } 1136 return sizeof(*nladdr); 1137 } 1138 1139 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1140 unsigned long arg) 1141 { 1142 /* try to hand this ioctl down to the NIC drivers. 1143 */ 1144 return -ENOIOCTLCMD; 1145 } 1146 1147 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1148 { 1149 struct sock *sock; 1150 struct netlink_sock *nlk; 1151 1152 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1153 if (!sock) 1154 return ERR_PTR(-ECONNREFUSED); 1155 1156 /* Don't bother queuing skb if kernel socket has no input function */ 1157 nlk = nlk_sk(sock); 1158 if (sock->sk_state == NETLINK_CONNECTED && 1159 nlk->dst_portid != nlk_sk(ssk)->portid) { 1160 sock_put(sock); 1161 return ERR_PTR(-ECONNREFUSED); 1162 } 1163 return sock; 1164 } 1165 1166 struct sock *netlink_getsockbyfilp(struct file *filp) 1167 { 1168 struct inode *inode = file_inode(filp); 1169 struct sock *sock; 1170 1171 if (!S_ISSOCK(inode->i_mode)) 1172 return ERR_PTR(-ENOTSOCK); 1173 1174 sock = SOCKET_I(inode)->sk; 1175 if (sock->sk_family != AF_NETLINK) 1176 return ERR_PTR(-EINVAL); 1177 1178 sock_hold(sock); 1179 return sock; 1180 } 1181 1182 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1183 int broadcast) 1184 { 1185 struct sk_buff *skb; 1186 void *data; 1187 1188 if (size <= NLMSG_GOODSIZE || broadcast) 1189 return alloc_skb(size, GFP_KERNEL); 1190 1191 size = SKB_DATA_ALIGN(size) + 1192 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1193 1194 data = vmalloc(size); 1195 if (data == NULL) 1196 return NULL; 1197 1198 skb = __build_skb(data, size); 1199 if (skb == NULL) 1200 vfree(data); 1201 else 1202 skb->destructor = netlink_skb_destructor; 1203 1204 return skb; 1205 } 1206 1207 /* 1208 * Attach a skb to a netlink socket. 1209 * The caller must hold a reference to the destination socket. On error, the 1210 * reference is dropped. The skb is not send to the destination, just all 1211 * all error checks are performed and memory in the queue is reserved. 1212 * Return values: 1213 * < 0: error. skb freed, reference to sock dropped. 1214 * 0: continue 1215 * 1: repeat lookup - reference dropped while waiting for socket memory. 1216 */ 1217 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1218 long *timeo, struct sock *ssk) 1219 { 1220 struct netlink_sock *nlk; 1221 1222 nlk = nlk_sk(sk); 1223 1224 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1225 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1226 DECLARE_WAITQUEUE(wait, current); 1227 if (!*timeo) { 1228 if (!ssk || netlink_is_kernel(ssk)) 1229 netlink_overrun(sk); 1230 sock_put(sk); 1231 kfree_skb(skb); 1232 return -EAGAIN; 1233 } 1234 1235 __set_current_state(TASK_INTERRUPTIBLE); 1236 add_wait_queue(&nlk->wait, &wait); 1237 1238 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1239 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1240 !sock_flag(sk, SOCK_DEAD)) 1241 *timeo = schedule_timeout(*timeo); 1242 1243 __set_current_state(TASK_RUNNING); 1244 remove_wait_queue(&nlk->wait, &wait); 1245 sock_put(sk); 1246 1247 if (signal_pending(current)) { 1248 kfree_skb(skb); 1249 return sock_intr_errno(*timeo); 1250 } 1251 return 1; 1252 } 1253 netlink_skb_set_owner_r(skb, sk); 1254 return 0; 1255 } 1256 1257 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1258 { 1259 int len = skb->len; 1260 1261 netlink_deliver_tap(sock_net(sk), skb); 1262 1263 skb_queue_tail(&sk->sk_receive_queue, skb); 1264 sk->sk_data_ready(sk); 1265 return len; 1266 } 1267 1268 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1269 { 1270 int len = __netlink_sendskb(sk, skb); 1271 1272 sock_put(sk); 1273 return len; 1274 } 1275 1276 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1277 { 1278 kfree_skb(skb); 1279 sock_put(sk); 1280 } 1281 1282 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1283 { 1284 int delta; 1285 1286 WARN_ON(skb->sk != NULL); 1287 delta = skb->end - skb->tail; 1288 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1289 return skb; 1290 1291 if (skb_shared(skb)) { 1292 struct sk_buff *nskb = skb_clone(skb, allocation); 1293 if (!nskb) 1294 return skb; 1295 consume_skb(skb); 1296 skb = nskb; 1297 } 1298 1299 pskb_expand_head(skb, 0, -delta, 1300 (allocation & ~__GFP_DIRECT_RECLAIM) | 1301 __GFP_NOWARN | __GFP_NORETRY); 1302 return skb; 1303 } 1304 1305 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1306 struct sock *ssk) 1307 { 1308 int ret; 1309 struct netlink_sock *nlk = nlk_sk(sk); 1310 1311 ret = -ECONNREFUSED; 1312 if (nlk->netlink_rcv != NULL) { 1313 ret = skb->len; 1314 netlink_skb_set_owner_r(skb, sk); 1315 NETLINK_CB(skb).sk = ssk; 1316 netlink_deliver_tap_kernel(sk, ssk, skb); 1317 nlk->netlink_rcv(skb); 1318 consume_skb(skb); 1319 } else { 1320 kfree_skb(skb); 1321 } 1322 sock_put(sk); 1323 return ret; 1324 } 1325 1326 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1327 u32 portid, int nonblock) 1328 { 1329 struct sock *sk; 1330 int err; 1331 long timeo; 1332 1333 skb = netlink_trim(skb, gfp_any()); 1334 1335 timeo = sock_sndtimeo(ssk, nonblock); 1336 retry: 1337 sk = netlink_getsockbyportid(ssk, portid); 1338 if (IS_ERR(sk)) { 1339 kfree_skb(skb); 1340 return PTR_ERR(sk); 1341 } 1342 if (netlink_is_kernel(sk)) 1343 return netlink_unicast_kernel(sk, skb, ssk); 1344 1345 if (sk_filter(sk, skb)) { 1346 err = skb->len; 1347 kfree_skb(skb); 1348 sock_put(sk); 1349 return err; 1350 } 1351 1352 err = netlink_attachskb(sk, skb, &timeo, ssk); 1353 if (err == 1) 1354 goto retry; 1355 if (err) 1356 return err; 1357 1358 return netlink_sendskb(sk, skb); 1359 } 1360 EXPORT_SYMBOL(netlink_unicast); 1361 1362 int netlink_has_listeners(struct sock *sk, unsigned int group) 1363 { 1364 int res = 0; 1365 struct listeners *listeners; 1366 1367 BUG_ON(!netlink_is_kernel(sk)); 1368 1369 rcu_read_lock(); 1370 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1371 1372 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1373 res = test_bit(group - 1, listeners->masks); 1374 1375 rcu_read_unlock(); 1376 1377 return res; 1378 } 1379 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1380 1381 bool netlink_strict_get_check(struct sk_buff *skb) 1382 { 1383 const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk); 1384 1385 return nlk->flags & NETLINK_F_STRICT_CHK; 1386 } 1387 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1388 1389 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1390 { 1391 struct netlink_sock *nlk = nlk_sk(sk); 1392 1393 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1394 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1395 netlink_skb_set_owner_r(skb, sk); 1396 __netlink_sendskb(sk, skb); 1397 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1398 } 1399 return -1; 1400 } 1401 1402 struct netlink_broadcast_data { 1403 struct sock *exclude_sk; 1404 struct net *net; 1405 u32 portid; 1406 u32 group; 1407 int failure; 1408 int delivery_failure; 1409 int congested; 1410 int delivered; 1411 gfp_t allocation; 1412 struct sk_buff *skb, *skb2; 1413 }; 1414 1415 static void do_one_broadcast(struct sock *sk, 1416 struct netlink_broadcast_data *p) 1417 { 1418 struct netlink_sock *nlk = nlk_sk(sk); 1419 int val; 1420 1421 if (p->exclude_sk == sk) 1422 return; 1423 1424 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1425 !test_bit(p->group - 1, nlk->groups)) 1426 return; 1427 1428 if (!net_eq(sock_net(sk), p->net)) { 1429 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1430 return; 1431 1432 if (!peernet_has_id(sock_net(sk), p->net)) 1433 return; 1434 1435 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1436 CAP_NET_BROADCAST)) 1437 return; 1438 } 1439 1440 if (p->failure) { 1441 netlink_overrun(sk); 1442 return; 1443 } 1444 1445 sock_hold(sk); 1446 if (p->skb2 == NULL) { 1447 if (skb_shared(p->skb)) { 1448 p->skb2 = skb_clone(p->skb, p->allocation); 1449 } else { 1450 p->skb2 = skb_get(p->skb); 1451 /* 1452 * skb ownership may have been set when 1453 * delivered to a previous socket. 1454 */ 1455 skb_orphan(p->skb2); 1456 } 1457 } 1458 if (p->skb2 == NULL) { 1459 netlink_overrun(sk); 1460 /* Clone failed. Notify ALL listeners. */ 1461 p->failure = 1; 1462 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1463 p->delivery_failure = 1; 1464 goto out; 1465 } 1466 if (sk_filter(sk, p->skb2)) { 1467 kfree_skb(p->skb2); 1468 p->skb2 = NULL; 1469 goto out; 1470 } 1471 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1472 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1473 NETLINK_CB(p->skb2).nsid_is_set = true; 1474 val = netlink_broadcast_deliver(sk, p->skb2); 1475 if (val < 0) { 1476 netlink_overrun(sk); 1477 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1478 p->delivery_failure = 1; 1479 } else { 1480 p->congested |= val; 1481 p->delivered = 1; 1482 p->skb2 = NULL; 1483 } 1484 out: 1485 sock_put(sk); 1486 } 1487 1488 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1489 u32 group, gfp_t allocation) 1490 { 1491 struct net *net = sock_net(ssk); 1492 struct netlink_broadcast_data info; 1493 struct sock *sk; 1494 1495 skb = netlink_trim(skb, allocation); 1496 1497 info.exclude_sk = ssk; 1498 info.net = net; 1499 info.portid = portid; 1500 info.group = group; 1501 info.failure = 0; 1502 info.delivery_failure = 0; 1503 info.congested = 0; 1504 info.delivered = 0; 1505 info.allocation = allocation; 1506 info.skb = skb; 1507 info.skb2 = NULL; 1508 1509 /* While we sleep in clone, do not allow to change socket list */ 1510 1511 netlink_lock_table(); 1512 1513 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1514 do_one_broadcast(sk, &info); 1515 1516 consume_skb(skb); 1517 1518 netlink_unlock_table(); 1519 1520 if (info.delivery_failure) { 1521 kfree_skb(info.skb2); 1522 return -ENOBUFS; 1523 } 1524 consume_skb(info.skb2); 1525 1526 if (info.delivered) { 1527 if (info.congested && gfpflags_allow_blocking(allocation)) 1528 yield(); 1529 return 0; 1530 } 1531 return -ESRCH; 1532 } 1533 EXPORT_SYMBOL(netlink_broadcast); 1534 1535 struct netlink_set_err_data { 1536 struct sock *exclude_sk; 1537 u32 portid; 1538 u32 group; 1539 int code; 1540 }; 1541 1542 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1543 { 1544 struct netlink_sock *nlk = nlk_sk(sk); 1545 int ret = 0; 1546 1547 if (sk == p->exclude_sk) 1548 goto out; 1549 1550 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1551 goto out; 1552 1553 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1554 !test_bit(p->group - 1, nlk->groups)) 1555 goto out; 1556 1557 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 1558 ret = 1; 1559 goto out; 1560 } 1561 1562 sk->sk_err = p->code; 1563 sk_error_report(sk); 1564 out: 1565 return ret; 1566 } 1567 1568 /** 1569 * netlink_set_err - report error to broadcast listeners 1570 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1571 * @portid: the PORTID of a process that we want to skip (if any) 1572 * @group: the broadcast group that will notice the error 1573 * @code: error code, must be negative (as usual in kernelspace) 1574 * 1575 * This function returns the number of broadcast listeners that have set the 1576 * NETLINK_NO_ENOBUFS socket option. 1577 */ 1578 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1579 { 1580 struct netlink_set_err_data info; 1581 struct sock *sk; 1582 int ret = 0; 1583 1584 info.exclude_sk = ssk; 1585 info.portid = portid; 1586 info.group = group; 1587 /* sk->sk_err wants a positive error value */ 1588 info.code = -code; 1589 1590 read_lock(&nl_table_lock); 1591 1592 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1593 ret += do_one_set_err(sk, &info); 1594 1595 read_unlock(&nl_table_lock); 1596 return ret; 1597 } 1598 EXPORT_SYMBOL(netlink_set_err); 1599 1600 /* must be called with netlink table grabbed */ 1601 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1602 unsigned int group, 1603 int is_new) 1604 { 1605 int old, new = !!is_new, subscriptions; 1606 1607 old = test_bit(group - 1, nlk->groups); 1608 subscriptions = nlk->subscriptions - old + new; 1609 if (new) 1610 __set_bit(group - 1, nlk->groups); 1611 else 1612 __clear_bit(group - 1, nlk->groups); 1613 netlink_update_subscriptions(&nlk->sk, subscriptions); 1614 netlink_update_listeners(&nlk->sk); 1615 } 1616 1617 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1618 sockptr_t optval, unsigned int optlen) 1619 { 1620 struct sock *sk = sock->sk; 1621 struct netlink_sock *nlk = nlk_sk(sk); 1622 unsigned int val = 0; 1623 int err; 1624 1625 if (level != SOL_NETLINK) 1626 return -ENOPROTOOPT; 1627 1628 if (optlen >= sizeof(int) && 1629 copy_from_sockptr(&val, optval, sizeof(val))) 1630 return -EFAULT; 1631 1632 switch (optname) { 1633 case NETLINK_PKTINFO: 1634 if (val) 1635 nlk->flags |= NETLINK_F_RECV_PKTINFO; 1636 else 1637 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 1638 err = 0; 1639 break; 1640 case NETLINK_ADD_MEMBERSHIP: 1641 case NETLINK_DROP_MEMBERSHIP: { 1642 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1643 return -EPERM; 1644 err = netlink_realloc_groups(sk); 1645 if (err) 1646 return err; 1647 if (!val || val - 1 >= nlk->ngroups) 1648 return -EINVAL; 1649 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1650 err = nlk->netlink_bind(sock_net(sk), val); 1651 if (err) 1652 return err; 1653 } 1654 netlink_table_grab(); 1655 netlink_update_socket_mc(nlk, val, 1656 optname == NETLINK_ADD_MEMBERSHIP); 1657 netlink_table_ungrab(); 1658 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1659 nlk->netlink_unbind(sock_net(sk), val); 1660 1661 err = 0; 1662 break; 1663 } 1664 case NETLINK_BROADCAST_ERROR: 1665 if (val) 1666 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 1667 else 1668 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 1669 err = 0; 1670 break; 1671 case NETLINK_NO_ENOBUFS: 1672 if (val) { 1673 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 1674 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1675 wake_up_interruptible(&nlk->wait); 1676 } else { 1677 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 1678 } 1679 err = 0; 1680 break; 1681 case NETLINK_LISTEN_ALL_NSID: 1682 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1683 return -EPERM; 1684 1685 if (val) 1686 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 1687 else 1688 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 1689 err = 0; 1690 break; 1691 case NETLINK_CAP_ACK: 1692 if (val) 1693 nlk->flags |= NETLINK_F_CAP_ACK; 1694 else 1695 nlk->flags &= ~NETLINK_F_CAP_ACK; 1696 err = 0; 1697 break; 1698 case NETLINK_EXT_ACK: 1699 if (val) 1700 nlk->flags |= NETLINK_F_EXT_ACK; 1701 else 1702 nlk->flags &= ~NETLINK_F_EXT_ACK; 1703 err = 0; 1704 break; 1705 case NETLINK_GET_STRICT_CHK: 1706 if (val) 1707 nlk->flags |= NETLINK_F_STRICT_CHK; 1708 else 1709 nlk->flags &= ~NETLINK_F_STRICT_CHK; 1710 err = 0; 1711 break; 1712 default: 1713 err = -ENOPROTOOPT; 1714 } 1715 return err; 1716 } 1717 1718 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1719 char __user *optval, int __user *optlen) 1720 { 1721 struct sock *sk = sock->sk; 1722 struct netlink_sock *nlk = nlk_sk(sk); 1723 int len, val, err; 1724 1725 if (level != SOL_NETLINK) 1726 return -ENOPROTOOPT; 1727 1728 if (get_user(len, optlen)) 1729 return -EFAULT; 1730 if (len < 0) 1731 return -EINVAL; 1732 1733 switch (optname) { 1734 case NETLINK_PKTINFO: 1735 if (len < sizeof(int)) 1736 return -EINVAL; 1737 len = sizeof(int); 1738 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 1739 if (put_user(len, optlen) || 1740 put_user(val, optval)) 1741 return -EFAULT; 1742 err = 0; 1743 break; 1744 case NETLINK_BROADCAST_ERROR: 1745 if (len < sizeof(int)) 1746 return -EINVAL; 1747 len = sizeof(int); 1748 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 1749 if (put_user(len, optlen) || 1750 put_user(val, optval)) 1751 return -EFAULT; 1752 err = 0; 1753 break; 1754 case NETLINK_NO_ENOBUFS: 1755 if (len < sizeof(int)) 1756 return -EINVAL; 1757 len = sizeof(int); 1758 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 1759 if (put_user(len, optlen) || 1760 put_user(val, optval)) 1761 return -EFAULT; 1762 err = 0; 1763 break; 1764 case NETLINK_LIST_MEMBERSHIPS: { 1765 int pos, idx, shift; 1766 1767 err = 0; 1768 netlink_lock_table(); 1769 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1770 if (len - pos < sizeof(u32)) 1771 break; 1772 1773 idx = pos / sizeof(unsigned long); 1774 shift = (pos % sizeof(unsigned long)) * 8; 1775 if (put_user((u32)(nlk->groups[idx] >> shift), 1776 (u32 __user *)(optval + pos))) { 1777 err = -EFAULT; 1778 break; 1779 } 1780 } 1781 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 1782 err = -EFAULT; 1783 netlink_unlock_table(); 1784 break; 1785 } 1786 case NETLINK_CAP_ACK: 1787 if (len < sizeof(int)) 1788 return -EINVAL; 1789 len = sizeof(int); 1790 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 1791 if (put_user(len, optlen) || 1792 put_user(val, optval)) 1793 return -EFAULT; 1794 err = 0; 1795 break; 1796 case NETLINK_EXT_ACK: 1797 if (len < sizeof(int)) 1798 return -EINVAL; 1799 len = sizeof(int); 1800 val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0; 1801 if (put_user(len, optlen) || put_user(val, optval)) 1802 return -EFAULT; 1803 err = 0; 1804 break; 1805 case NETLINK_GET_STRICT_CHK: 1806 if (len < sizeof(int)) 1807 return -EINVAL; 1808 len = sizeof(int); 1809 val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0; 1810 if (put_user(len, optlen) || put_user(val, optval)) 1811 return -EFAULT; 1812 err = 0; 1813 break; 1814 default: 1815 err = -ENOPROTOOPT; 1816 } 1817 return err; 1818 } 1819 1820 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1821 { 1822 struct nl_pktinfo info; 1823 1824 info.group = NETLINK_CB(skb).dst_group; 1825 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1826 } 1827 1828 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1829 struct sk_buff *skb) 1830 { 1831 if (!NETLINK_CB(skb).nsid_is_set) 1832 return; 1833 1834 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1835 &NETLINK_CB(skb).nsid); 1836 } 1837 1838 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1839 { 1840 struct sock *sk = sock->sk; 1841 struct netlink_sock *nlk = nlk_sk(sk); 1842 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1843 u32 dst_portid; 1844 u32 dst_group; 1845 struct sk_buff *skb; 1846 int err; 1847 struct scm_cookie scm; 1848 u32 netlink_skb_flags = 0; 1849 1850 if (msg->msg_flags & MSG_OOB) 1851 return -EOPNOTSUPP; 1852 1853 if (len == 0) { 1854 pr_warn_once("Zero length message leads to an empty skb\n"); 1855 return -ENODATA; 1856 } 1857 1858 err = scm_send(sock, msg, &scm, true); 1859 if (err < 0) 1860 return err; 1861 1862 if (msg->msg_namelen) { 1863 err = -EINVAL; 1864 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1865 goto out; 1866 if (addr->nl_family != AF_NETLINK) 1867 goto out; 1868 dst_portid = addr->nl_pid; 1869 dst_group = ffs(addr->nl_groups); 1870 err = -EPERM; 1871 if ((dst_group || dst_portid) && 1872 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1873 goto out; 1874 netlink_skb_flags |= NETLINK_SKB_DST; 1875 } else { 1876 dst_portid = nlk->dst_portid; 1877 dst_group = nlk->dst_group; 1878 } 1879 1880 /* Paired with WRITE_ONCE() in netlink_insert() */ 1881 if (!READ_ONCE(nlk->bound)) { 1882 err = netlink_autobind(sock); 1883 if (err) 1884 goto out; 1885 } else { 1886 /* Ensure nlk is hashed and visible. */ 1887 smp_rmb(); 1888 } 1889 1890 err = -EMSGSIZE; 1891 if (len > sk->sk_sndbuf - 32) 1892 goto out; 1893 err = -ENOBUFS; 1894 skb = netlink_alloc_large_skb(len, dst_group); 1895 if (skb == NULL) 1896 goto out; 1897 1898 NETLINK_CB(skb).portid = nlk->portid; 1899 NETLINK_CB(skb).dst_group = dst_group; 1900 NETLINK_CB(skb).creds = scm.creds; 1901 NETLINK_CB(skb).flags = netlink_skb_flags; 1902 1903 err = -EFAULT; 1904 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1905 kfree_skb(skb); 1906 goto out; 1907 } 1908 1909 err = security_netlink_send(sk, skb); 1910 if (err) { 1911 kfree_skb(skb); 1912 goto out; 1913 } 1914 1915 if (dst_group) { 1916 refcount_inc(&skb->users); 1917 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1918 } 1919 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1920 1921 out: 1922 scm_destroy(&scm); 1923 return err; 1924 } 1925 1926 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1927 int flags) 1928 { 1929 struct scm_cookie scm; 1930 struct sock *sk = sock->sk; 1931 struct netlink_sock *nlk = nlk_sk(sk); 1932 int noblock = flags & MSG_DONTWAIT; 1933 size_t copied; 1934 struct sk_buff *skb, *data_skb; 1935 int err, ret; 1936 1937 if (flags & MSG_OOB) 1938 return -EOPNOTSUPP; 1939 1940 copied = 0; 1941 1942 skb = skb_recv_datagram(sk, flags, noblock, &err); 1943 if (skb == NULL) 1944 goto out; 1945 1946 data_skb = skb; 1947 1948 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1949 if (unlikely(skb_shinfo(skb)->frag_list)) { 1950 /* 1951 * If this skb has a frag_list, then here that means that we 1952 * will have to use the frag_list skb's data for compat tasks 1953 * and the regular skb's data for normal (non-compat) tasks. 1954 * 1955 * If we need to send the compat skb, assign it to the 1956 * 'data_skb' variable so that it will be used below for data 1957 * copying. We keep 'skb' for everything else, including 1958 * freeing both later. 1959 */ 1960 if (flags & MSG_CMSG_COMPAT) 1961 data_skb = skb_shinfo(skb)->frag_list; 1962 } 1963 #endif 1964 1965 /* Record the max length of recvmsg() calls for future allocations */ 1966 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 1967 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 1968 SKB_WITH_OVERHEAD(32768)); 1969 1970 copied = data_skb->len; 1971 if (len < copied) { 1972 msg->msg_flags |= MSG_TRUNC; 1973 copied = len; 1974 } 1975 1976 skb_reset_transport_header(data_skb); 1977 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1978 1979 if (msg->msg_name) { 1980 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1981 addr->nl_family = AF_NETLINK; 1982 addr->nl_pad = 0; 1983 addr->nl_pid = NETLINK_CB(skb).portid; 1984 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1985 msg->msg_namelen = sizeof(*addr); 1986 } 1987 1988 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 1989 netlink_cmsg_recv_pktinfo(msg, skb); 1990 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 1991 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1992 1993 memset(&scm, 0, sizeof(scm)); 1994 scm.creds = *NETLINK_CREDS(skb); 1995 if (flags & MSG_TRUNC) 1996 copied = data_skb->len; 1997 1998 skb_free_datagram(sk, skb); 1999 2000 if (nlk->cb_running && 2001 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2002 ret = netlink_dump(sk); 2003 if (ret) { 2004 sk->sk_err = -ret; 2005 sk_error_report(sk); 2006 } 2007 } 2008 2009 scm_recv(sock, msg, &scm, flags); 2010 out: 2011 netlink_rcv_wake(sk); 2012 return err ? : copied; 2013 } 2014 2015 static void netlink_data_ready(struct sock *sk) 2016 { 2017 BUG(); 2018 } 2019 2020 /* 2021 * We export these functions to other modules. They provide a 2022 * complete set of kernel non-blocking support for message 2023 * queueing. 2024 */ 2025 2026 struct sock * 2027 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2028 struct netlink_kernel_cfg *cfg) 2029 { 2030 struct socket *sock; 2031 struct sock *sk; 2032 struct netlink_sock *nlk; 2033 struct listeners *listeners = NULL; 2034 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2035 unsigned int groups; 2036 2037 BUG_ON(!nl_table); 2038 2039 if (unit < 0 || unit >= MAX_LINKS) 2040 return NULL; 2041 2042 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2043 return NULL; 2044 2045 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2046 goto out_sock_release_nosk; 2047 2048 sk = sock->sk; 2049 2050 if (!cfg || cfg->groups < 32) 2051 groups = 32; 2052 else 2053 groups = cfg->groups; 2054 2055 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2056 if (!listeners) 2057 goto out_sock_release; 2058 2059 sk->sk_data_ready = netlink_data_ready; 2060 if (cfg && cfg->input) 2061 nlk_sk(sk)->netlink_rcv = cfg->input; 2062 2063 if (netlink_insert(sk, 0)) 2064 goto out_sock_release; 2065 2066 nlk = nlk_sk(sk); 2067 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2068 2069 netlink_table_grab(); 2070 if (!nl_table[unit].registered) { 2071 nl_table[unit].groups = groups; 2072 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2073 nl_table[unit].cb_mutex = cb_mutex; 2074 nl_table[unit].module = module; 2075 if (cfg) { 2076 nl_table[unit].bind = cfg->bind; 2077 nl_table[unit].unbind = cfg->unbind; 2078 nl_table[unit].flags = cfg->flags; 2079 if (cfg->compare) 2080 nl_table[unit].compare = cfg->compare; 2081 } 2082 nl_table[unit].registered = 1; 2083 } else { 2084 kfree(listeners); 2085 nl_table[unit].registered++; 2086 } 2087 netlink_table_ungrab(); 2088 return sk; 2089 2090 out_sock_release: 2091 kfree(listeners); 2092 netlink_kernel_release(sk); 2093 return NULL; 2094 2095 out_sock_release_nosk: 2096 sock_release(sock); 2097 return NULL; 2098 } 2099 EXPORT_SYMBOL(__netlink_kernel_create); 2100 2101 void 2102 netlink_kernel_release(struct sock *sk) 2103 { 2104 if (sk == NULL || sk->sk_socket == NULL) 2105 return; 2106 2107 sock_release(sk->sk_socket); 2108 } 2109 EXPORT_SYMBOL(netlink_kernel_release); 2110 2111 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2112 { 2113 struct listeners *new, *old; 2114 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2115 2116 if (groups < 32) 2117 groups = 32; 2118 2119 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2120 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2121 if (!new) 2122 return -ENOMEM; 2123 old = nl_deref_protected(tbl->listeners); 2124 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2125 rcu_assign_pointer(tbl->listeners, new); 2126 2127 kfree_rcu(old, rcu); 2128 } 2129 tbl->groups = groups; 2130 2131 return 0; 2132 } 2133 2134 /** 2135 * netlink_change_ngroups - change number of multicast groups 2136 * 2137 * This changes the number of multicast groups that are available 2138 * on a certain netlink family. Note that it is not possible to 2139 * change the number of groups to below 32. Also note that it does 2140 * not implicitly call netlink_clear_multicast_users() when the 2141 * number of groups is reduced. 2142 * 2143 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2144 * @groups: The new number of groups. 2145 */ 2146 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2147 { 2148 int err; 2149 2150 netlink_table_grab(); 2151 err = __netlink_change_ngroups(sk, groups); 2152 netlink_table_ungrab(); 2153 2154 return err; 2155 } 2156 2157 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2158 { 2159 struct sock *sk; 2160 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2161 2162 sk_for_each_bound(sk, &tbl->mc_list) 2163 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2164 } 2165 2166 struct nlmsghdr * 2167 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2168 { 2169 struct nlmsghdr *nlh; 2170 int size = nlmsg_msg_size(len); 2171 2172 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2173 nlh->nlmsg_type = type; 2174 nlh->nlmsg_len = size; 2175 nlh->nlmsg_flags = flags; 2176 nlh->nlmsg_pid = portid; 2177 nlh->nlmsg_seq = seq; 2178 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2179 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2180 return nlh; 2181 } 2182 EXPORT_SYMBOL(__nlmsg_put); 2183 2184 /* 2185 * It looks a bit ugly. 2186 * It would be better to create kernel thread. 2187 */ 2188 2189 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2190 struct netlink_callback *cb, 2191 struct netlink_ext_ack *extack) 2192 { 2193 struct nlmsghdr *nlh; 2194 2195 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2196 NLM_F_MULTI | cb->answer_flags); 2197 if (WARN_ON(!nlh)) 2198 return -ENOBUFS; 2199 2200 nl_dump_check_consistent(cb, nlh); 2201 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2202 2203 if (extack->_msg && nlk->flags & NETLINK_F_EXT_ACK) { 2204 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2205 if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)) 2206 nlmsg_end(skb, nlh); 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int netlink_dump(struct sock *sk) 2213 { 2214 struct netlink_sock *nlk = nlk_sk(sk); 2215 struct netlink_ext_ack extack = {}; 2216 struct netlink_callback *cb; 2217 struct sk_buff *skb = NULL; 2218 struct module *module; 2219 int err = -ENOBUFS; 2220 int alloc_min_size; 2221 int alloc_size; 2222 2223 mutex_lock(nlk->cb_mutex); 2224 if (!nlk->cb_running) { 2225 err = -EINVAL; 2226 goto errout_skb; 2227 } 2228 2229 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2230 goto errout_skb; 2231 2232 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2233 * required, but it makes sense to _attempt_ a 16K bytes allocation 2234 * to reduce number of system calls on dump operations, if user 2235 * ever provided a big enough buffer. 2236 */ 2237 cb = &nlk->cb; 2238 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2239 2240 if (alloc_min_size < nlk->max_recvmsg_len) { 2241 alloc_size = nlk->max_recvmsg_len; 2242 skb = alloc_skb(alloc_size, 2243 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2244 __GFP_NOWARN | __GFP_NORETRY); 2245 } 2246 if (!skb) { 2247 alloc_size = alloc_min_size; 2248 skb = alloc_skb(alloc_size, GFP_KERNEL); 2249 } 2250 if (!skb) 2251 goto errout_skb; 2252 2253 /* Trim skb to allocated size. User is expected to provide buffer as 2254 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2255 * netlink_recvmsg())). dump will pack as many smaller messages as 2256 * could fit within the allocated skb. skb is typically allocated 2257 * with larger space than required (could be as much as near 2x the 2258 * requested size with align to next power of 2 approach). Allowing 2259 * dump to use the excess space makes it difficult for a user to have a 2260 * reasonable static buffer based on the expected largest dump of a 2261 * single netdev. The outcome is MSG_TRUNC error. 2262 */ 2263 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2264 netlink_skb_set_owner_r(skb, sk); 2265 2266 if (nlk->dump_done_errno > 0) { 2267 cb->extack = &extack; 2268 nlk->dump_done_errno = cb->dump(skb, cb); 2269 cb->extack = NULL; 2270 } 2271 2272 if (nlk->dump_done_errno > 0 || 2273 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2274 mutex_unlock(nlk->cb_mutex); 2275 2276 if (sk_filter(sk, skb)) 2277 kfree_skb(skb); 2278 else 2279 __netlink_sendskb(sk, skb); 2280 return 0; 2281 } 2282 2283 if (netlink_dump_done(nlk, skb, cb, &extack)) 2284 goto errout_skb; 2285 2286 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2287 /* frag_list skb's data is used for compat tasks 2288 * and the regular skb's data for normal (non-compat) tasks. 2289 * See netlink_recvmsg(). 2290 */ 2291 if (unlikely(skb_shinfo(skb)->frag_list)) { 2292 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2293 goto errout_skb; 2294 } 2295 #endif 2296 2297 if (sk_filter(sk, skb)) 2298 kfree_skb(skb); 2299 else 2300 __netlink_sendskb(sk, skb); 2301 2302 if (cb->done) 2303 cb->done(cb); 2304 2305 nlk->cb_running = false; 2306 module = cb->module; 2307 skb = cb->skb; 2308 mutex_unlock(nlk->cb_mutex); 2309 module_put(module); 2310 consume_skb(skb); 2311 return 0; 2312 2313 errout_skb: 2314 mutex_unlock(nlk->cb_mutex); 2315 kfree_skb(skb); 2316 return err; 2317 } 2318 2319 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2320 const struct nlmsghdr *nlh, 2321 struct netlink_dump_control *control) 2322 { 2323 struct netlink_sock *nlk, *nlk2; 2324 struct netlink_callback *cb; 2325 struct sock *sk; 2326 int ret; 2327 2328 refcount_inc(&skb->users); 2329 2330 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2331 if (sk == NULL) { 2332 ret = -ECONNREFUSED; 2333 goto error_free; 2334 } 2335 2336 nlk = nlk_sk(sk); 2337 mutex_lock(nlk->cb_mutex); 2338 /* A dump is in progress... */ 2339 if (nlk->cb_running) { 2340 ret = -EBUSY; 2341 goto error_unlock; 2342 } 2343 /* add reference of module which cb->dump belongs to */ 2344 if (!try_module_get(control->module)) { 2345 ret = -EPROTONOSUPPORT; 2346 goto error_unlock; 2347 } 2348 2349 cb = &nlk->cb; 2350 memset(cb, 0, sizeof(*cb)); 2351 cb->dump = control->dump; 2352 cb->done = control->done; 2353 cb->nlh = nlh; 2354 cb->data = control->data; 2355 cb->module = control->module; 2356 cb->min_dump_alloc = control->min_dump_alloc; 2357 cb->skb = skb; 2358 2359 nlk2 = nlk_sk(NETLINK_CB(skb).sk); 2360 cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK); 2361 2362 if (control->start) { 2363 ret = control->start(cb); 2364 if (ret) 2365 goto error_put; 2366 } 2367 2368 nlk->cb_running = true; 2369 nlk->dump_done_errno = INT_MAX; 2370 2371 mutex_unlock(nlk->cb_mutex); 2372 2373 ret = netlink_dump(sk); 2374 2375 sock_put(sk); 2376 2377 if (ret) 2378 return ret; 2379 2380 /* We successfully started a dump, by returning -EINTR we 2381 * signal not to send ACK even if it was requested. 2382 */ 2383 return -EINTR; 2384 2385 error_put: 2386 module_put(control->module); 2387 error_unlock: 2388 sock_put(sk); 2389 mutex_unlock(nlk->cb_mutex); 2390 error_free: 2391 kfree_skb(skb); 2392 return ret; 2393 } 2394 EXPORT_SYMBOL(__netlink_dump_start); 2395 2396 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2397 const struct netlink_ext_ack *extack) 2398 { 2399 struct sk_buff *skb; 2400 struct nlmsghdr *rep; 2401 struct nlmsgerr *errmsg; 2402 size_t payload = sizeof(*errmsg); 2403 size_t tlvlen = 0; 2404 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2405 unsigned int flags = 0; 2406 bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK; 2407 2408 /* Error messages get the original request appened, unless the user 2409 * requests to cap the error message, and get extra error data if 2410 * requested. 2411 */ 2412 if (nlk_has_extack && extack && extack->_msg) 2413 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2414 2415 if (err && !(nlk->flags & NETLINK_F_CAP_ACK)) 2416 payload += nlmsg_len(nlh); 2417 else 2418 flags |= NLM_F_CAPPED; 2419 if (err && nlk_has_extack && extack && extack->bad_attr) 2420 tlvlen += nla_total_size(sizeof(u32)); 2421 if (nlk_has_extack && extack && extack->cookie_len) 2422 tlvlen += nla_total_size(extack->cookie_len); 2423 if (err && nlk_has_extack && extack && extack->policy) 2424 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2425 2426 if (tlvlen) 2427 flags |= NLM_F_ACK_TLVS; 2428 2429 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2430 if (!skb) { 2431 NETLINK_CB(in_skb).sk->sk_err = ENOBUFS; 2432 sk_error_report(NETLINK_CB(in_skb).sk); 2433 return; 2434 } 2435 2436 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2437 NLMSG_ERROR, payload, flags); 2438 errmsg = nlmsg_data(rep); 2439 errmsg->error = err; 2440 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2441 2442 if (nlk_has_extack && extack) { 2443 if (extack->_msg) { 2444 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, 2445 extack->_msg)); 2446 } 2447 if (err && extack->bad_attr && 2448 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2449 (u8 *)extack->bad_attr >= in_skb->data + 2450 in_skb->len)) 2451 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2452 (u8 *)extack->bad_attr - 2453 (u8 *)nlh)); 2454 if (extack->cookie_len) 2455 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2456 extack->cookie_len, extack->cookie)); 2457 if (extack->policy) 2458 netlink_policy_dump_write_attr(skb, extack->policy, 2459 NLMSGERR_ATTR_POLICY); 2460 } 2461 2462 nlmsg_end(skb, rep); 2463 2464 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2465 } 2466 EXPORT_SYMBOL(netlink_ack); 2467 2468 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2469 struct nlmsghdr *, 2470 struct netlink_ext_ack *)) 2471 { 2472 struct netlink_ext_ack extack; 2473 struct nlmsghdr *nlh; 2474 int err; 2475 2476 while (skb->len >= nlmsg_total_size(0)) { 2477 int msglen; 2478 2479 memset(&extack, 0, sizeof(extack)); 2480 nlh = nlmsg_hdr(skb); 2481 err = 0; 2482 2483 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2484 return 0; 2485 2486 /* Only requests are handled by the kernel */ 2487 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2488 goto ack; 2489 2490 /* Skip control messages */ 2491 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2492 goto ack; 2493 2494 err = cb(skb, nlh, &extack); 2495 if (err == -EINTR) 2496 goto skip; 2497 2498 ack: 2499 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2500 netlink_ack(skb, nlh, err, &extack); 2501 2502 skip: 2503 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2504 if (msglen > skb->len) 2505 msglen = skb->len; 2506 skb_pull(skb, msglen); 2507 } 2508 2509 return 0; 2510 } 2511 EXPORT_SYMBOL(netlink_rcv_skb); 2512 2513 /** 2514 * nlmsg_notify - send a notification netlink message 2515 * @sk: netlink socket to use 2516 * @skb: notification message 2517 * @portid: destination netlink portid for reports or 0 2518 * @group: destination multicast group or 0 2519 * @report: 1 to report back, 0 to disable 2520 * @flags: allocation flags 2521 */ 2522 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2523 unsigned int group, int report, gfp_t flags) 2524 { 2525 int err = 0; 2526 2527 if (group) { 2528 int exclude_portid = 0; 2529 2530 if (report) { 2531 refcount_inc(&skb->users); 2532 exclude_portid = portid; 2533 } 2534 2535 /* errors reported via destination sk->sk_err, but propagate 2536 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2537 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2538 if (err == -ESRCH) 2539 err = 0; 2540 } 2541 2542 if (report) { 2543 int err2; 2544 2545 err2 = nlmsg_unicast(sk, skb, portid); 2546 if (!err) 2547 err = err2; 2548 } 2549 2550 return err; 2551 } 2552 EXPORT_SYMBOL(nlmsg_notify); 2553 2554 #ifdef CONFIG_PROC_FS 2555 struct nl_seq_iter { 2556 struct seq_net_private p; 2557 struct rhashtable_iter hti; 2558 int link; 2559 }; 2560 2561 static void netlink_walk_start(struct nl_seq_iter *iter) 2562 { 2563 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2564 rhashtable_walk_start(&iter->hti); 2565 } 2566 2567 static void netlink_walk_stop(struct nl_seq_iter *iter) 2568 { 2569 rhashtable_walk_stop(&iter->hti); 2570 rhashtable_walk_exit(&iter->hti); 2571 } 2572 2573 static void *__netlink_seq_next(struct seq_file *seq) 2574 { 2575 struct nl_seq_iter *iter = seq->private; 2576 struct netlink_sock *nlk; 2577 2578 do { 2579 for (;;) { 2580 nlk = rhashtable_walk_next(&iter->hti); 2581 2582 if (IS_ERR(nlk)) { 2583 if (PTR_ERR(nlk) == -EAGAIN) 2584 continue; 2585 2586 return nlk; 2587 } 2588 2589 if (nlk) 2590 break; 2591 2592 netlink_walk_stop(iter); 2593 if (++iter->link >= MAX_LINKS) 2594 return NULL; 2595 2596 netlink_walk_start(iter); 2597 } 2598 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2599 2600 return nlk; 2601 } 2602 2603 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2604 __acquires(RCU) 2605 { 2606 struct nl_seq_iter *iter = seq->private; 2607 void *obj = SEQ_START_TOKEN; 2608 loff_t pos; 2609 2610 iter->link = 0; 2611 2612 netlink_walk_start(iter); 2613 2614 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2615 obj = __netlink_seq_next(seq); 2616 2617 return obj; 2618 } 2619 2620 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2621 { 2622 ++*pos; 2623 return __netlink_seq_next(seq); 2624 } 2625 2626 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2627 { 2628 struct nl_seq_iter *iter = seq->private; 2629 2630 if (iter->link >= MAX_LINKS) 2631 return; 2632 2633 netlink_walk_stop(iter); 2634 } 2635 2636 2637 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2638 { 2639 if (v == SEQ_START_TOKEN) { 2640 seq_puts(seq, 2641 "sk Eth Pid Groups " 2642 "Rmem Wmem Dump Locks Drops Inode\n"); 2643 } else { 2644 struct sock *s = v; 2645 struct netlink_sock *nlk = nlk_sk(s); 2646 2647 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2648 s, 2649 s->sk_protocol, 2650 nlk->portid, 2651 nlk->groups ? (u32)nlk->groups[0] : 0, 2652 sk_rmem_alloc_get(s), 2653 sk_wmem_alloc_get(s), 2654 nlk->cb_running, 2655 refcount_read(&s->sk_refcnt), 2656 atomic_read(&s->sk_drops), 2657 sock_i_ino(s) 2658 ); 2659 2660 } 2661 return 0; 2662 } 2663 2664 #ifdef CONFIG_BPF_SYSCALL 2665 struct bpf_iter__netlink { 2666 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2667 __bpf_md_ptr(struct netlink_sock *, sk); 2668 }; 2669 2670 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2671 2672 static int netlink_prog_seq_show(struct bpf_prog *prog, 2673 struct bpf_iter_meta *meta, 2674 void *v) 2675 { 2676 struct bpf_iter__netlink ctx; 2677 2678 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2679 ctx.meta = meta; 2680 ctx.sk = nlk_sk((struct sock *)v); 2681 return bpf_iter_run_prog(prog, &ctx); 2682 } 2683 2684 static int netlink_seq_show(struct seq_file *seq, void *v) 2685 { 2686 struct bpf_iter_meta meta; 2687 struct bpf_prog *prog; 2688 2689 meta.seq = seq; 2690 prog = bpf_iter_get_info(&meta, false); 2691 if (!prog) 2692 return netlink_native_seq_show(seq, v); 2693 2694 if (v != SEQ_START_TOKEN) 2695 return netlink_prog_seq_show(prog, &meta, v); 2696 2697 return 0; 2698 } 2699 2700 static void netlink_seq_stop(struct seq_file *seq, void *v) 2701 { 2702 struct bpf_iter_meta meta; 2703 struct bpf_prog *prog; 2704 2705 if (!v) { 2706 meta.seq = seq; 2707 prog = bpf_iter_get_info(&meta, true); 2708 if (prog) 2709 (void)netlink_prog_seq_show(prog, &meta, v); 2710 } 2711 2712 netlink_native_seq_stop(seq, v); 2713 } 2714 #else 2715 static int netlink_seq_show(struct seq_file *seq, void *v) 2716 { 2717 return netlink_native_seq_show(seq, v); 2718 } 2719 2720 static void netlink_seq_stop(struct seq_file *seq, void *v) 2721 { 2722 netlink_native_seq_stop(seq, v); 2723 } 2724 #endif 2725 2726 static const struct seq_operations netlink_seq_ops = { 2727 .start = netlink_seq_start, 2728 .next = netlink_seq_next, 2729 .stop = netlink_seq_stop, 2730 .show = netlink_seq_show, 2731 }; 2732 #endif 2733 2734 int netlink_register_notifier(struct notifier_block *nb) 2735 { 2736 return blocking_notifier_chain_register(&netlink_chain, nb); 2737 } 2738 EXPORT_SYMBOL(netlink_register_notifier); 2739 2740 int netlink_unregister_notifier(struct notifier_block *nb) 2741 { 2742 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2743 } 2744 EXPORT_SYMBOL(netlink_unregister_notifier); 2745 2746 static const struct proto_ops netlink_ops = { 2747 .family = PF_NETLINK, 2748 .owner = THIS_MODULE, 2749 .release = netlink_release, 2750 .bind = netlink_bind, 2751 .connect = netlink_connect, 2752 .socketpair = sock_no_socketpair, 2753 .accept = sock_no_accept, 2754 .getname = netlink_getname, 2755 .poll = datagram_poll, 2756 .ioctl = netlink_ioctl, 2757 .listen = sock_no_listen, 2758 .shutdown = sock_no_shutdown, 2759 .setsockopt = netlink_setsockopt, 2760 .getsockopt = netlink_getsockopt, 2761 .sendmsg = netlink_sendmsg, 2762 .recvmsg = netlink_recvmsg, 2763 .mmap = sock_no_mmap, 2764 .sendpage = sock_no_sendpage, 2765 }; 2766 2767 static const struct net_proto_family netlink_family_ops = { 2768 .family = PF_NETLINK, 2769 .create = netlink_create, 2770 .owner = THIS_MODULE, /* for consistency 8) */ 2771 }; 2772 2773 static int __net_init netlink_net_init(struct net *net) 2774 { 2775 #ifdef CONFIG_PROC_FS 2776 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2777 sizeof(struct nl_seq_iter))) 2778 return -ENOMEM; 2779 #endif 2780 return 0; 2781 } 2782 2783 static void __net_exit netlink_net_exit(struct net *net) 2784 { 2785 #ifdef CONFIG_PROC_FS 2786 remove_proc_entry("netlink", net->proc_net); 2787 #endif 2788 } 2789 2790 static void __init netlink_add_usersock_entry(void) 2791 { 2792 struct listeners *listeners; 2793 int groups = 32; 2794 2795 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2796 if (!listeners) 2797 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2798 2799 netlink_table_grab(); 2800 2801 nl_table[NETLINK_USERSOCK].groups = groups; 2802 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2803 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2804 nl_table[NETLINK_USERSOCK].registered = 1; 2805 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2806 2807 netlink_table_ungrab(); 2808 } 2809 2810 static struct pernet_operations __net_initdata netlink_net_ops = { 2811 .init = netlink_net_init, 2812 .exit = netlink_net_exit, 2813 }; 2814 2815 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2816 { 2817 const struct netlink_sock *nlk = data; 2818 struct netlink_compare_arg arg; 2819 2820 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2821 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2822 } 2823 2824 static const struct rhashtable_params netlink_rhashtable_params = { 2825 .head_offset = offsetof(struct netlink_sock, node), 2826 .key_len = netlink_compare_arg_len, 2827 .obj_hashfn = netlink_hash, 2828 .obj_cmpfn = netlink_compare, 2829 .automatic_shrinking = true, 2830 }; 2831 2832 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2833 BTF_ID_LIST(btf_netlink_sock_id) 2834 BTF_ID(struct, netlink_sock) 2835 2836 static const struct bpf_iter_seq_info netlink_seq_info = { 2837 .seq_ops = &netlink_seq_ops, 2838 .init_seq_private = bpf_iter_init_seq_net, 2839 .fini_seq_private = bpf_iter_fini_seq_net, 2840 .seq_priv_size = sizeof(struct nl_seq_iter), 2841 }; 2842 2843 static struct bpf_iter_reg netlink_reg_info = { 2844 .target = "netlink", 2845 .ctx_arg_info_size = 1, 2846 .ctx_arg_info = { 2847 { offsetof(struct bpf_iter__netlink, sk), 2848 PTR_TO_BTF_ID_OR_NULL }, 2849 }, 2850 .seq_info = &netlink_seq_info, 2851 }; 2852 2853 static int __init bpf_iter_register(void) 2854 { 2855 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2856 return bpf_iter_reg_target(&netlink_reg_info); 2857 } 2858 #endif 2859 2860 static int __init netlink_proto_init(void) 2861 { 2862 int i; 2863 int err = proto_register(&netlink_proto, 0); 2864 2865 if (err != 0) 2866 goto out; 2867 2868 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2869 err = bpf_iter_register(); 2870 if (err) 2871 goto out; 2872 #endif 2873 2874 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2875 2876 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2877 if (!nl_table) 2878 goto panic; 2879 2880 for (i = 0; i < MAX_LINKS; i++) { 2881 if (rhashtable_init(&nl_table[i].hash, 2882 &netlink_rhashtable_params) < 0) { 2883 while (--i > 0) 2884 rhashtable_destroy(&nl_table[i].hash); 2885 kfree(nl_table); 2886 goto panic; 2887 } 2888 } 2889 2890 netlink_add_usersock_entry(); 2891 2892 sock_register(&netlink_family_ops); 2893 register_pernet_subsys(&netlink_net_ops); 2894 register_pernet_subsys(&netlink_tap_net_ops); 2895 /* The netlink device handler may be needed early. */ 2896 rtnetlink_init(); 2897 out: 2898 return err; 2899 panic: 2900 panic("netlink_init: Cannot allocate nl_table\n"); 2901 } 2902 2903 core_initcall(netlink_proto_init); 2904