1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_KERNEL_SOCKET 0x1 83 #define NETLINK_RECV_PKTINFO 0x2 84 #define NETLINK_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_RECV_NO_ENOBUFS 0x8 86 87 static inline int netlink_is_kernel(struct sock *sk) 88 { 89 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 90 } 91 92 struct netlink_table *nl_table; 93 EXPORT_SYMBOL_GPL(nl_table); 94 95 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 96 97 static int netlink_dump(struct sock *sk); 98 static void netlink_skb_destructor(struct sk_buff *skb); 99 100 /* nl_table locking explained: 101 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock 102 * combined with an RCU read-side lock. Insertion and removal are protected 103 * with nl_sk_hash_lock while using RCU list modification primitives and may 104 * run in parallel to nl_table_lock protected lookups. Destruction of the 105 * Netlink socket may only occur *after* nl_table_lock has been acquired 106 * either during or after the socket has been removed from the list. 107 */ 108 DEFINE_RWLOCK(nl_table_lock); 109 EXPORT_SYMBOL_GPL(nl_table_lock); 110 static atomic_t nl_table_users = ATOMIC_INIT(0); 111 112 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 113 114 /* Protects netlink socket hash table mutations */ 115 DEFINE_MUTEX(nl_sk_hash_lock); 116 EXPORT_SYMBOL_GPL(nl_sk_hash_lock); 117 118 #ifdef CONFIG_PROVE_LOCKING 119 static int lockdep_nl_sk_hash_is_held(void *parent) 120 { 121 if (debug_locks) 122 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock); 123 return 1; 124 } 125 #endif 126 127 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 128 129 static DEFINE_SPINLOCK(netlink_tap_lock); 130 static struct list_head netlink_tap_all __read_mostly; 131 132 static inline u32 netlink_group_mask(u32 group) 133 { 134 return group ? 1 << (group - 1) : 0; 135 } 136 137 int netlink_add_tap(struct netlink_tap *nt) 138 { 139 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 140 return -EINVAL; 141 142 spin_lock(&netlink_tap_lock); 143 list_add_rcu(&nt->list, &netlink_tap_all); 144 spin_unlock(&netlink_tap_lock); 145 146 __module_get(nt->module); 147 148 return 0; 149 } 150 EXPORT_SYMBOL_GPL(netlink_add_tap); 151 152 static int __netlink_remove_tap(struct netlink_tap *nt) 153 { 154 bool found = false; 155 struct netlink_tap *tmp; 156 157 spin_lock(&netlink_tap_lock); 158 159 list_for_each_entry(tmp, &netlink_tap_all, list) { 160 if (nt == tmp) { 161 list_del_rcu(&nt->list); 162 found = true; 163 goto out; 164 } 165 } 166 167 pr_warn("__netlink_remove_tap: %p not found\n", nt); 168 out: 169 spin_unlock(&netlink_tap_lock); 170 171 if (found && nt->module) 172 module_put(nt->module); 173 174 return found ? 0 : -ENODEV; 175 } 176 177 int netlink_remove_tap(struct netlink_tap *nt) 178 { 179 int ret; 180 181 ret = __netlink_remove_tap(nt); 182 synchronize_net(); 183 184 return ret; 185 } 186 EXPORT_SYMBOL_GPL(netlink_remove_tap); 187 188 static bool netlink_filter_tap(const struct sk_buff *skb) 189 { 190 struct sock *sk = skb->sk; 191 192 /* We take the more conservative approach and 193 * whitelist socket protocols that may pass. 194 */ 195 switch (sk->sk_protocol) { 196 case NETLINK_ROUTE: 197 case NETLINK_USERSOCK: 198 case NETLINK_SOCK_DIAG: 199 case NETLINK_NFLOG: 200 case NETLINK_XFRM: 201 case NETLINK_FIB_LOOKUP: 202 case NETLINK_NETFILTER: 203 case NETLINK_GENERIC: 204 return true; 205 } 206 207 return false; 208 } 209 210 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 211 struct net_device *dev) 212 { 213 struct sk_buff *nskb; 214 struct sock *sk = skb->sk; 215 int ret = -ENOMEM; 216 217 dev_hold(dev); 218 nskb = skb_clone(skb, GFP_ATOMIC); 219 if (nskb) { 220 nskb->dev = dev; 221 nskb->protocol = htons((u16) sk->sk_protocol); 222 nskb->pkt_type = netlink_is_kernel(sk) ? 223 PACKET_KERNEL : PACKET_USER; 224 skb_reset_network_header(nskb); 225 ret = dev_queue_xmit(nskb); 226 if (unlikely(ret > 0)) 227 ret = net_xmit_errno(ret); 228 } 229 230 dev_put(dev); 231 return ret; 232 } 233 234 static void __netlink_deliver_tap(struct sk_buff *skb) 235 { 236 int ret; 237 struct netlink_tap *tmp; 238 239 if (!netlink_filter_tap(skb)) 240 return; 241 242 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 243 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 244 if (unlikely(ret)) 245 break; 246 } 247 } 248 249 static void netlink_deliver_tap(struct sk_buff *skb) 250 { 251 rcu_read_lock(); 252 253 if (unlikely(!list_empty(&netlink_tap_all))) 254 __netlink_deliver_tap(skb); 255 256 rcu_read_unlock(); 257 } 258 259 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 260 struct sk_buff *skb) 261 { 262 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 263 netlink_deliver_tap(skb); 264 } 265 266 static void netlink_overrun(struct sock *sk) 267 { 268 struct netlink_sock *nlk = nlk_sk(sk); 269 270 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 271 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 272 sk->sk_err = ENOBUFS; 273 sk->sk_error_report(sk); 274 } 275 } 276 atomic_inc(&sk->sk_drops); 277 } 278 279 static void netlink_rcv_wake(struct sock *sk) 280 { 281 struct netlink_sock *nlk = nlk_sk(sk); 282 283 if (skb_queue_empty(&sk->sk_receive_queue)) 284 clear_bit(NETLINK_CONGESTED, &nlk->state); 285 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 286 wake_up_interruptible(&nlk->wait); 287 } 288 289 #ifdef CONFIG_NETLINK_MMAP 290 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 291 { 292 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 293 } 294 295 static bool netlink_rx_is_mmaped(struct sock *sk) 296 { 297 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 298 } 299 300 static bool netlink_tx_is_mmaped(struct sock *sk) 301 { 302 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 303 } 304 305 static __pure struct page *pgvec_to_page(const void *addr) 306 { 307 if (is_vmalloc_addr(addr)) 308 return vmalloc_to_page(addr); 309 else 310 return virt_to_page(addr); 311 } 312 313 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 314 { 315 unsigned int i; 316 317 for (i = 0; i < len; i++) { 318 if (pg_vec[i] != NULL) { 319 if (is_vmalloc_addr(pg_vec[i])) 320 vfree(pg_vec[i]); 321 else 322 free_pages((unsigned long)pg_vec[i], order); 323 } 324 } 325 kfree(pg_vec); 326 } 327 328 static void *alloc_one_pg_vec_page(unsigned long order) 329 { 330 void *buffer; 331 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 332 __GFP_NOWARN | __GFP_NORETRY; 333 334 buffer = (void *)__get_free_pages(gfp_flags, order); 335 if (buffer != NULL) 336 return buffer; 337 338 buffer = vzalloc((1 << order) * PAGE_SIZE); 339 if (buffer != NULL) 340 return buffer; 341 342 gfp_flags &= ~__GFP_NORETRY; 343 return (void *)__get_free_pages(gfp_flags, order); 344 } 345 346 static void **alloc_pg_vec(struct netlink_sock *nlk, 347 struct nl_mmap_req *req, unsigned int order) 348 { 349 unsigned int block_nr = req->nm_block_nr; 350 unsigned int i; 351 void **pg_vec; 352 353 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 354 if (pg_vec == NULL) 355 return NULL; 356 357 for (i = 0; i < block_nr; i++) { 358 pg_vec[i] = alloc_one_pg_vec_page(order); 359 if (pg_vec[i] == NULL) 360 goto err1; 361 } 362 363 return pg_vec; 364 err1: 365 free_pg_vec(pg_vec, order, block_nr); 366 return NULL; 367 } 368 369 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 370 bool closing, bool tx_ring) 371 { 372 struct netlink_sock *nlk = nlk_sk(sk); 373 struct netlink_ring *ring; 374 struct sk_buff_head *queue; 375 void **pg_vec = NULL; 376 unsigned int order = 0; 377 int err; 378 379 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 380 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 381 382 if (!closing) { 383 if (atomic_read(&nlk->mapped)) 384 return -EBUSY; 385 if (atomic_read(&ring->pending)) 386 return -EBUSY; 387 } 388 389 if (req->nm_block_nr) { 390 if (ring->pg_vec != NULL) 391 return -EBUSY; 392 393 if ((int)req->nm_block_size <= 0) 394 return -EINVAL; 395 if (!PAGE_ALIGNED(req->nm_block_size)) 396 return -EINVAL; 397 if (req->nm_frame_size < NL_MMAP_HDRLEN) 398 return -EINVAL; 399 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 400 return -EINVAL; 401 402 ring->frames_per_block = req->nm_block_size / 403 req->nm_frame_size; 404 if (ring->frames_per_block == 0) 405 return -EINVAL; 406 if (ring->frames_per_block * req->nm_block_nr != 407 req->nm_frame_nr) 408 return -EINVAL; 409 410 order = get_order(req->nm_block_size); 411 pg_vec = alloc_pg_vec(nlk, req, order); 412 if (pg_vec == NULL) 413 return -ENOMEM; 414 } else { 415 if (req->nm_frame_nr) 416 return -EINVAL; 417 } 418 419 err = -EBUSY; 420 mutex_lock(&nlk->pg_vec_lock); 421 if (closing || atomic_read(&nlk->mapped) == 0) { 422 err = 0; 423 spin_lock_bh(&queue->lock); 424 425 ring->frame_max = req->nm_frame_nr - 1; 426 ring->head = 0; 427 ring->frame_size = req->nm_frame_size; 428 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 429 430 swap(ring->pg_vec_len, req->nm_block_nr); 431 swap(ring->pg_vec_order, order); 432 swap(ring->pg_vec, pg_vec); 433 434 __skb_queue_purge(queue); 435 spin_unlock_bh(&queue->lock); 436 437 WARN_ON(atomic_read(&nlk->mapped)); 438 } 439 mutex_unlock(&nlk->pg_vec_lock); 440 441 if (pg_vec) 442 free_pg_vec(pg_vec, order, req->nm_block_nr); 443 return err; 444 } 445 446 static void netlink_mm_open(struct vm_area_struct *vma) 447 { 448 struct file *file = vma->vm_file; 449 struct socket *sock = file->private_data; 450 struct sock *sk = sock->sk; 451 452 if (sk) 453 atomic_inc(&nlk_sk(sk)->mapped); 454 } 455 456 static void netlink_mm_close(struct vm_area_struct *vma) 457 { 458 struct file *file = vma->vm_file; 459 struct socket *sock = file->private_data; 460 struct sock *sk = sock->sk; 461 462 if (sk) 463 atomic_dec(&nlk_sk(sk)->mapped); 464 } 465 466 static const struct vm_operations_struct netlink_mmap_ops = { 467 .open = netlink_mm_open, 468 .close = netlink_mm_close, 469 }; 470 471 static int netlink_mmap(struct file *file, struct socket *sock, 472 struct vm_area_struct *vma) 473 { 474 struct sock *sk = sock->sk; 475 struct netlink_sock *nlk = nlk_sk(sk); 476 struct netlink_ring *ring; 477 unsigned long start, size, expected; 478 unsigned int i; 479 int err = -EINVAL; 480 481 if (vma->vm_pgoff) 482 return -EINVAL; 483 484 mutex_lock(&nlk->pg_vec_lock); 485 486 expected = 0; 487 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 488 if (ring->pg_vec == NULL) 489 continue; 490 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 491 } 492 493 if (expected == 0) 494 goto out; 495 496 size = vma->vm_end - vma->vm_start; 497 if (size != expected) 498 goto out; 499 500 start = vma->vm_start; 501 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 502 if (ring->pg_vec == NULL) 503 continue; 504 505 for (i = 0; i < ring->pg_vec_len; i++) { 506 struct page *page; 507 void *kaddr = ring->pg_vec[i]; 508 unsigned int pg_num; 509 510 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 511 page = pgvec_to_page(kaddr); 512 err = vm_insert_page(vma, start, page); 513 if (err < 0) 514 goto out; 515 start += PAGE_SIZE; 516 kaddr += PAGE_SIZE; 517 } 518 } 519 } 520 521 atomic_inc(&nlk->mapped); 522 vma->vm_ops = &netlink_mmap_ops; 523 err = 0; 524 out: 525 mutex_unlock(&nlk->pg_vec_lock); 526 return err; 527 } 528 529 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 530 { 531 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 532 struct page *p_start, *p_end; 533 534 /* First page is flushed through netlink_{get,set}_status */ 535 p_start = pgvec_to_page(hdr + PAGE_SIZE); 536 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 537 while (p_start <= p_end) { 538 flush_dcache_page(p_start); 539 p_start++; 540 } 541 #endif 542 } 543 544 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 545 { 546 smp_rmb(); 547 flush_dcache_page(pgvec_to_page(hdr)); 548 return hdr->nm_status; 549 } 550 551 static void netlink_set_status(struct nl_mmap_hdr *hdr, 552 enum nl_mmap_status status) 553 { 554 smp_mb(); 555 hdr->nm_status = status; 556 flush_dcache_page(pgvec_to_page(hdr)); 557 } 558 559 static struct nl_mmap_hdr * 560 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 561 { 562 unsigned int pg_vec_pos, frame_off; 563 564 pg_vec_pos = pos / ring->frames_per_block; 565 frame_off = pos % ring->frames_per_block; 566 567 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 568 } 569 570 static struct nl_mmap_hdr * 571 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 572 enum nl_mmap_status status) 573 { 574 struct nl_mmap_hdr *hdr; 575 576 hdr = __netlink_lookup_frame(ring, pos); 577 if (netlink_get_status(hdr) != status) 578 return NULL; 579 580 return hdr; 581 } 582 583 static struct nl_mmap_hdr * 584 netlink_current_frame(const struct netlink_ring *ring, 585 enum nl_mmap_status status) 586 { 587 return netlink_lookup_frame(ring, ring->head, status); 588 } 589 590 static struct nl_mmap_hdr * 591 netlink_previous_frame(const struct netlink_ring *ring, 592 enum nl_mmap_status status) 593 { 594 unsigned int prev; 595 596 prev = ring->head ? ring->head - 1 : ring->frame_max; 597 return netlink_lookup_frame(ring, prev, status); 598 } 599 600 static void netlink_increment_head(struct netlink_ring *ring) 601 { 602 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 603 } 604 605 static void netlink_forward_ring(struct netlink_ring *ring) 606 { 607 unsigned int head = ring->head, pos = head; 608 const struct nl_mmap_hdr *hdr; 609 610 do { 611 hdr = __netlink_lookup_frame(ring, pos); 612 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 613 break; 614 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 615 break; 616 netlink_increment_head(ring); 617 } while (ring->head != head); 618 } 619 620 static bool netlink_dump_space(struct netlink_sock *nlk) 621 { 622 struct netlink_ring *ring = &nlk->rx_ring; 623 struct nl_mmap_hdr *hdr; 624 unsigned int n; 625 626 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 627 if (hdr == NULL) 628 return false; 629 630 n = ring->head + ring->frame_max / 2; 631 if (n > ring->frame_max) 632 n -= ring->frame_max; 633 634 hdr = __netlink_lookup_frame(ring, n); 635 636 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 637 } 638 639 static unsigned int netlink_poll(struct file *file, struct socket *sock, 640 poll_table *wait) 641 { 642 struct sock *sk = sock->sk; 643 struct netlink_sock *nlk = nlk_sk(sk); 644 unsigned int mask; 645 int err; 646 647 if (nlk->rx_ring.pg_vec != NULL) { 648 /* Memory mapped sockets don't call recvmsg(), so flow control 649 * for dumps is performed here. A dump is allowed to continue 650 * if at least half the ring is unused. 651 */ 652 while (nlk->cb_running && netlink_dump_space(nlk)) { 653 err = netlink_dump(sk); 654 if (err < 0) { 655 sk->sk_err = -err; 656 sk->sk_error_report(sk); 657 break; 658 } 659 } 660 netlink_rcv_wake(sk); 661 } 662 663 mask = datagram_poll(file, sock, wait); 664 665 spin_lock_bh(&sk->sk_receive_queue.lock); 666 if (nlk->rx_ring.pg_vec) { 667 netlink_forward_ring(&nlk->rx_ring); 668 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 669 mask |= POLLIN | POLLRDNORM; 670 } 671 spin_unlock_bh(&sk->sk_receive_queue.lock); 672 673 spin_lock_bh(&sk->sk_write_queue.lock); 674 if (nlk->tx_ring.pg_vec) { 675 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 676 mask |= POLLOUT | POLLWRNORM; 677 } 678 spin_unlock_bh(&sk->sk_write_queue.lock); 679 680 return mask; 681 } 682 683 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 684 { 685 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 686 } 687 688 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 689 struct netlink_ring *ring, 690 struct nl_mmap_hdr *hdr) 691 { 692 unsigned int size; 693 void *data; 694 695 size = ring->frame_size - NL_MMAP_HDRLEN; 696 data = (void *)hdr + NL_MMAP_HDRLEN; 697 698 skb->head = data; 699 skb->data = data; 700 skb_reset_tail_pointer(skb); 701 skb->end = skb->tail + size; 702 skb->len = 0; 703 704 skb->destructor = netlink_skb_destructor; 705 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 706 NETLINK_CB(skb).sk = sk; 707 } 708 709 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 710 u32 dst_portid, u32 dst_group, 711 struct sock_iocb *siocb) 712 { 713 struct netlink_sock *nlk = nlk_sk(sk); 714 struct netlink_ring *ring; 715 struct nl_mmap_hdr *hdr; 716 struct sk_buff *skb; 717 unsigned int maxlen; 718 int err = 0, len = 0; 719 720 mutex_lock(&nlk->pg_vec_lock); 721 722 ring = &nlk->tx_ring; 723 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 724 725 do { 726 unsigned int nm_len; 727 728 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 729 if (hdr == NULL) { 730 if (!(msg->msg_flags & MSG_DONTWAIT) && 731 atomic_read(&nlk->tx_ring.pending)) 732 schedule(); 733 continue; 734 } 735 736 nm_len = ACCESS_ONCE(hdr->nm_len); 737 if (nm_len > maxlen) { 738 err = -EINVAL; 739 goto out; 740 } 741 742 netlink_frame_flush_dcache(hdr, nm_len); 743 744 skb = alloc_skb(nm_len, GFP_KERNEL); 745 if (skb == NULL) { 746 err = -ENOBUFS; 747 goto out; 748 } 749 __skb_put(skb, nm_len); 750 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 751 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 752 753 netlink_increment_head(ring); 754 755 NETLINK_CB(skb).portid = nlk->portid; 756 NETLINK_CB(skb).dst_group = dst_group; 757 NETLINK_CB(skb).creds = siocb->scm->creds; 758 759 err = security_netlink_send(sk, skb); 760 if (err) { 761 kfree_skb(skb); 762 goto out; 763 } 764 765 if (unlikely(dst_group)) { 766 atomic_inc(&skb->users); 767 netlink_broadcast(sk, skb, dst_portid, dst_group, 768 GFP_KERNEL); 769 } 770 err = netlink_unicast(sk, skb, dst_portid, 771 msg->msg_flags & MSG_DONTWAIT); 772 if (err < 0) 773 goto out; 774 len += err; 775 776 } while (hdr != NULL || 777 (!(msg->msg_flags & MSG_DONTWAIT) && 778 atomic_read(&nlk->tx_ring.pending))); 779 780 if (len > 0) 781 err = len; 782 out: 783 mutex_unlock(&nlk->pg_vec_lock); 784 return err; 785 } 786 787 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 788 { 789 struct nl_mmap_hdr *hdr; 790 791 hdr = netlink_mmap_hdr(skb); 792 hdr->nm_len = skb->len; 793 hdr->nm_group = NETLINK_CB(skb).dst_group; 794 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 795 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 796 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 797 netlink_frame_flush_dcache(hdr, hdr->nm_len); 798 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 799 800 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 801 kfree_skb(skb); 802 } 803 804 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 805 { 806 struct netlink_sock *nlk = nlk_sk(sk); 807 struct netlink_ring *ring = &nlk->rx_ring; 808 struct nl_mmap_hdr *hdr; 809 810 spin_lock_bh(&sk->sk_receive_queue.lock); 811 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 812 if (hdr == NULL) { 813 spin_unlock_bh(&sk->sk_receive_queue.lock); 814 kfree_skb(skb); 815 netlink_overrun(sk); 816 return; 817 } 818 netlink_increment_head(ring); 819 __skb_queue_tail(&sk->sk_receive_queue, skb); 820 spin_unlock_bh(&sk->sk_receive_queue.lock); 821 822 hdr->nm_len = skb->len; 823 hdr->nm_group = NETLINK_CB(skb).dst_group; 824 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 825 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 826 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 827 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 828 } 829 830 #else /* CONFIG_NETLINK_MMAP */ 831 #define netlink_skb_is_mmaped(skb) false 832 #define netlink_rx_is_mmaped(sk) false 833 #define netlink_tx_is_mmaped(sk) false 834 #define netlink_mmap sock_no_mmap 835 #define netlink_poll datagram_poll 836 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 837 #endif /* CONFIG_NETLINK_MMAP */ 838 839 static void netlink_skb_destructor(struct sk_buff *skb) 840 { 841 #ifdef CONFIG_NETLINK_MMAP 842 struct nl_mmap_hdr *hdr; 843 struct netlink_ring *ring; 844 struct sock *sk; 845 846 /* If a packet from the kernel to userspace was freed because of an 847 * error without being delivered to userspace, the kernel must reset 848 * the status. In the direction userspace to kernel, the status is 849 * always reset here after the packet was processed and freed. 850 */ 851 if (netlink_skb_is_mmaped(skb)) { 852 hdr = netlink_mmap_hdr(skb); 853 sk = NETLINK_CB(skb).sk; 854 855 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 856 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 857 ring = &nlk_sk(sk)->tx_ring; 858 } else { 859 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 860 hdr->nm_len = 0; 861 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 862 } 863 ring = &nlk_sk(sk)->rx_ring; 864 } 865 866 WARN_ON(atomic_read(&ring->pending) == 0); 867 atomic_dec(&ring->pending); 868 sock_put(sk); 869 870 skb->head = NULL; 871 } 872 #endif 873 if (is_vmalloc_addr(skb->head)) { 874 if (!skb->cloned || 875 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 876 vfree(skb->head); 877 878 skb->head = NULL; 879 } 880 if (skb->sk != NULL) 881 sock_rfree(skb); 882 } 883 884 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 885 { 886 WARN_ON(skb->sk != NULL); 887 skb->sk = sk; 888 skb->destructor = netlink_skb_destructor; 889 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 890 sk_mem_charge(sk, skb->truesize); 891 } 892 893 static void netlink_sock_destruct(struct sock *sk) 894 { 895 struct netlink_sock *nlk = nlk_sk(sk); 896 897 if (nlk->cb_running) { 898 if (nlk->cb.done) 899 nlk->cb.done(&nlk->cb); 900 901 module_put(nlk->cb.module); 902 kfree_skb(nlk->cb.skb); 903 } 904 905 skb_queue_purge(&sk->sk_receive_queue); 906 #ifdef CONFIG_NETLINK_MMAP 907 if (1) { 908 struct nl_mmap_req req; 909 910 memset(&req, 0, sizeof(req)); 911 if (nlk->rx_ring.pg_vec) 912 netlink_set_ring(sk, &req, true, false); 913 memset(&req, 0, sizeof(req)); 914 if (nlk->tx_ring.pg_vec) 915 netlink_set_ring(sk, &req, true, true); 916 } 917 #endif /* CONFIG_NETLINK_MMAP */ 918 919 if (!sock_flag(sk, SOCK_DEAD)) { 920 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 921 return; 922 } 923 924 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 925 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 926 WARN_ON(nlk_sk(sk)->groups); 927 } 928 929 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 930 * SMP. Look, when several writers sleep and reader wakes them up, all but one 931 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 932 * this, _but_ remember, it adds useless work on UP machines. 933 */ 934 935 void netlink_table_grab(void) 936 __acquires(nl_table_lock) 937 { 938 might_sleep(); 939 940 write_lock_irq(&nl_table_lock); 941 942 if (atomic_read(&nl_table_users)) { 943 DECLARE_WAITQUEUE(wait, current); 944 945 add_wait_queue_exclusive(&nl_table_wait, &wait); 946 for (;;) { 947 set_current_state(TASK_UNINTERRUPTIBLE); 948 if (atomic_read(&nl_table_users) == 0) 949 break; 950 write_unlock_irq(&nl_table_lock); 951 schedule(); 952 write_lock_irq(&nl_table_lock); 953 } 954 955 __set_current_state(TASK_RUNNING); 956 remove_wait_queue(&nl_table_wait, &wait); 957 } 958 } 959 960 void netlink_table_ungrab(void) 961 __releases(nl_table_lock) 962 { 963 write_unlock_irq(&nl_table_lock); 964 wake_up(&nl_table_wait); 965 } 966 967 static inline void 968 netlink_lock_table(void) 969 { 970 /* read_lock() synchronizes us to netlink_table_grab */ 971 972 read_lock(&nl_table_lock); 973 atomic_inc(&nl_table_users); 974 read_unlock(&nl_table_lock); 975 } 976 977 static inline void 978 netlink_unlock_table(void) 979 { 980 if (atomic_dec_and_test(&nl_table_users)) 981 wake_up(&nl_table_wait); 982 } 983 984 struct netlink_compare_arg 985 { 986 struct net *net; 987 u32 portid; 988 }; 989 990 static bool netlink_compare(void *ptr, void *arg) 991 { 992 struct netlink_compare_arg *x = arg; 993 struct sock *sk = ptr; 994 995 return nlk_sk(sk)->portid == x->portid && 996 net_eq(sock_net(sk), x->net); 997 } 998 999 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1000 struct net *net) 1001 { 1002 struct netlink_compare_arg arg = { 1003 .net = net, 1004 .portid = portid, 1005 }; 1006 u32 hash; 1007 1008 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid)); 1009 1010 return rhashtable_lookup_compare(&table->hash, hash, 1011 &netlink_compare, &arg); 1012 } 1013 1014 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1015 { 1016 struct netlink_table *table = &nl_table[protocol]; 1017 struct sock *sk; 1018 1019 read_lock(&nl_table_lock); 1020 rcu_read_lock(); 1021 sk = __netlink_lookup(table, portid, net); 1022 if (sk) 1023 sock_hold(sk); 1024 rcu_read_unlock(); 1025 read_unlock(&nl_table_lock); 1026 1027 return sk; 1028 } 1029 1030 static const struct proto_ops netlink_ops; 1031 1032 static void 1033 netlink_update_listeners(struct sock *sk) 1034 { 1035 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1036 unsigned long mask; 1037 unsigned int i; 1038 struct listeners *listeners; 1039 1040 listeners = nl_deref_protected(tbl->listeners); 1041 if (!listeners) 1042 return; 1043 1044 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1045 mask = 0; 1046 sk_for_each_bound(sk, &tbl->mc_list) { 1047 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1048 mask |= nlk_sk(sk)->groups[i]; 1049 } 1050 listeners->masks[i] = mask; 1051 } 1052 /* this function is only called with the netlink table "grabbed", which 1053 * makes sure updates are visible before bind or setsockopt return. */ 1054 } 1055 1056 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1057 { 1058 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1059 int err = -EADDRINUSE; 1060 1061 mutex_lock(&nl_sk_hash_lock); 1062 if (__netlink_lookup(table, portid, net)) 1063 goto err; 1064 1065 err = -EBUSY; 1066 if (nlk_sk(sk)->portid) 1067 goto err; 1068 1069 err = -ENOMEM; 1070 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX)) 1071 goto err; 1072 1073 nlk_sk(sk)->portid = portid; 1074 sock_hold(sk); 1075 rhashtable_insert(&table->hash, &nlk_sk(sk)->node); 1076 err = 0; 1077 err: 1078 mutex_unlock(&nl_sk_hash_lock); 1079 return err; 1080 } 1081 1082 static void netlink_remove(struct sock *sk) 1083 { 1084 struct netlink_table *table; 1085 1086 mutex_lock(&nl_sk_hash_lock); 1087 table = &nl_table[sk->sk_protocol]; 1088 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) { 1089 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1090 __sock_put(sk); 1091 } 1092 mutex_unlock(&nl_sk_hash_lock); 1093 1094 netlink_table_grab(); 1095 if (nlk_sk(sk)->subscriptions) { 1096 __sk_del_bind_node(sk); 1097 netlink_update_listeners(sk); 1098 } 1099 if (sk->sk_protocol == NETLINK_GENERIC) 1100 atomic_inc(&genl_sk_destructing_cnt); 1101 netlink_table_ungrab(); 1102 } 1103 1104 static struct proto netlink_proto = { 1105 .name = "NETLINK", 1106 .owner = THIS_MODULE, 1107 .obj_size = sizeof(struct netlink_sock), 1108 }; 1109 1110 static int __netlink_create(struct net *net, struct socket *sock, 1111 struct mutex *cb_mutex, int protocol) 1112 { 1113 struct sock *sk; 1114 struct netlink_sock *nlk; 1115 1116 sock->ops = &netlink_ops; 1117 1118 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1119 if (!sk) 1120 return -ENOMEM; 1121 1122 sock_init_data(sock, sk); 1123 1124 nlk = nlk_sk(sk); 1125 if (cb_mutex) { 1126 nlk->cb_mutex = cb_mutex; 1127 } else { 1128 nlk->cb_mutex = &nlk->cb_def_mutex; 1129 mutex_init(nlk->cb_mutex); 1130 } 1131 init_waitqueue_head(&nlk->wait); 1132 #ifdef CONFIG_NETLINK_MMAP 1133 mutex_init(&nlk->pg_vec_lock); 1134 #endif 1135 1136 sk->sk_destruct = netlink_sock_destruct; 1137 sk->sk_protocol = protocol; 1138 return 0; 1139 } 1140 1141 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1142 int kern) 1143 { 1144 struct module *module = NULL; 1145 struct mutex *cb_mutex; 1146 struct netlink_sock *nlk; 1147 int (*bind)(struct net *net, int group); 1148 void (*unbind)(struct net *net, int group); 1149 int err = 0; 1150 1151 sock->state = SS_UNCONNECTED; 1152 1153 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1154 return -ESOCKTNOSUPPORT; 1155 1156 if (protocol < 0 || protocol >= MAX_LINKS) 1157 return -EPROTONOSUPPORT; 1158 1159 netlink_lock_table(); 1160 #ifdef CONFIG_MODULES 1161 if (!nl_table[protocol].registered) { 1162 netlink_unlock_table(); 1163 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1164 netlink_lock_table(); 1165 } 1166 #endif 1167 if (nl_table[protocol].registered && 1168 try_module_get(nl_table[protocol].module)) 1169 module = nl_table[protocol].module; 1170 else 1171 err = -EPROTONOSUPPORT; 1172 cb_mutex = nl_table[protocol].cb_mutex; 1173 bind = nl_table[protocol].bind; 1174 unbind = nl_table[protocol].unbind; 1175 netlink_unlock_table(); 1176 1177 if (err < 0) 1178 goto out; 1179 1180 err = __netlink_create(net, sock, cb_mutex, protocol); 1181 if (err < 0) 1182 goto out_module; 1183 1184 local_bh_disable(); 1185 sock_prot_inuse_add(net, &netlink_proto, 1); 1186 local_bh_enable(); 1187 1188 nlk = nlk_sk(sock->sk); 1189 nlk->module = module; 1190 nlk->netlink_bind = bind; 1191 nlk->netlink_unbind = unbind; 1192 out: 1193 return err; 1194 1195 out_module: 1196 module_put(module); 1197 goto out; 1198 } 1199 1200 static int netlink_release(struct socket *sock) 1201 { 1202 struct sock *sk = sock->sk; 1203 struct netlink_sock *nlk; 1204 1205 if (!sk) 1206 return 0; 1207 1208 netlink_remove(sk); 1209 sock_orphan(sk); 1210 nlk = nlk_sk(sk); 1211 1212 /* 1213 * OK. Socket is unlinked, any packets that arrive now 1214 * will be purged. 1215 */ 1216 1217 /* must not acquire netlink_table_lock in any way again before unbind 1218 * and notifying genetlink is done as otherwise it might deadlock 1219 */ 1220 if (nlk->netlink_unbind) { 1221 int i; 1222 1223 for (i = 0; i < nlk->ngroups; i++) 1224 if (test_bit(i, nlk->groups)) 1225 nlk->netlink_unbind(sock_net(sk), i + 1); 1226 } 1227 if (sk->sk_protocol == NETLINK_GENERIC && 1228 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1229 wake_up(&genl_sk_destructing_waitq); 1230 1231 sock->sk = NULL; 1232 wake_up_interruptible_all(&nlk->wait); 1233 1234 skb_queue_purge(&sk->sk_write_queue); 1235 1236 if (nlk->portid) { 1237 struct netlink_notify n = { 1238 .net = sock_net(sk), 1239 .protocol = sk->sk_protocol, 1240 .portid = nlk->portid, 1241 }; 1242 atomic_notifier_call_chain(&netlink_chain, 1243 NETLINK_URELEASE, &n); 1244 } 1245 1246 module_put(nlk->module); 1247 1248 if (netlink_is_kernel(sk)) { 1249 netlink_table_grab(); 1250 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1251 if (--nl_table[sk->sk_protocol].registered == 0) { 1252 struct listeners *old; 1253 1254 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1255 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1256 kfree_rcu(old, rcu); 1257 nl_table[sk->sk_protocol].module = NULL; 1258 nl_table[sk->sk_protocol].bind = NULL; 1259 nl_table[sk->sk_protocol].unbind = NULL; 1260 nl_table[sk->sk_protocol].flags = 0; 1261 nl_table[sk->sk_protocol].registered = 0; 1262 } 1263 netlink_table_ungrab(); 1264 } 1265 1266 kfree(nlk->groups); 1267 nlk->groups = NULL; 1268 1269 local_bh_disable(); 1270 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1271 local_bh_enable(); 1272 sock_put(sk); 1273 return 0; 1274 } 1275 1276 static int netlink_autobind(struct socket *sock) 1277 { 1278 struct sock *sk = sock->sk; 1279 struct net *net = sock_net(sk); 1280 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1281 s32 portid = task_tgid_vnr(current); 1282 int err; 1283 static s32 rover = -4097; 1284 1285 retry: 1286 cond_resched(); 1287 netlink_table_grab(); 1288 rcu_read_lock(); 1289 if (__netlink_lookup(table, portid, net)) { 1290 /* Bind collision, search negative portid values. */ 1291 portid = rover--; 1292 if (rover > -4097) 1293 rover = -4097; 1294 rcu_read_unlock(); 1295 netlink_table_ungrab(); 1296 goto retry; 1297 } 1298 rcu_read_unlock(); 1299 netlink_table_ungrab(); 1300 1301 err = netlink_insert(sk, net, portid); 1302 if (err == -EADDRINUSE) 1303 goto retry; 1304 1305 /* If 2 threads race to autobind, that is fine. */ 1306 if (err == -EBUSY) 1307 err = 0; 1308 1309 return err; 1310 } 1311 1312 /** 1313 * __netlink_ns_capable - General netlink message capability test 1314 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1315 * @user_ns: The user namespace of the capability to use 1316 * @cap: The capability to use 1317 * 1318 * Test to see if the opener of the socket we received the message 1319 * from had when the netlink socket was created and the sender of the 1320 * message has has the capability @cap in the user namespace @user_ns. 1321 */ 1322 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1323 struct user_namespace *user_ns, int cap) 1324 { 1325 return ((nsp->flags & NETLINK_SKB_DST) || 1326 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1327 ns_capable(user_ns, cap); 1328 } 1329 EXPORT_SYMBOL(__netlink_ns_capable); 1330 1331 /** 1332 * netlink_ns_capable - General netlink message capability test 1333 * @skb: socket buffer holding a netlink command from userspace 1334 * @user_ns: The user namespace of the capability to use 1335 * @cap: The capability to use 1336 * 1337 * Test to see if the opener of the socket we received the message 1338 * from had when the netlink socket was created and the sender of the 1339 * message has has the capability @cap in the user namespace @user_ns. 1340 */ 1341 bool netlink_ns_capable(const struct sk_buff *skb, 1342 struct user_namespace *user_ns, int cap) 1343 { 1344 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1345 } 1346 EXPORT_SYMBOL(netlink_ns_capable); 1347 1348 /** 1349 * netlink_capable - Netlink global message capability test 1350 * @skb: socket buffer holding a netlink command from userspace 1351 * @cap: The capability to use 1352 * 1353 * Test to see if the opener of the socket we received the message 1354 * from had when the netlink socket was created and the sender of the 1355 * message has has the capability @cap in all user namespaces. 1356 */ 1357 bool netlink_capable(const struct sk_buff *skb, int cap) 1358 { 1359 return netlink_ns_capable(skb, &init_user_ns, cap); 1360 } 1361 EXPORT_SYMBOL(netlink_capable); 1362 1363 /** 1364 * netlink_net_capable - Netlink network namespace message capability test 1365 * @skb: socket buffer holding a netlink command from userspace 1366 * @cap: The capability to use 1367 * 1368 * Test to see if the opener of the socket we received the message 1369 * from had when the netlink socket was created and the sender of the 1370 * message has has the capability @cap over the network namespace of 1371 * the socket we received the message from. 1372 */ 1373 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1374 { 1375 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1376 } 1377 EXPORT_SYMBOL(netlink_net_capable); 1378 1379 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1380 { 1381 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1382 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1383 } 1384 1385 static void 1386 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1387 { 1388 struct netlink_sock *nlk = nlk_sk(sk); 1389 1390 if (nlk->subscriptions && !subscriptions) 1391 __sk_del_bind_node(sk); 1392 else if (!nlk->subscriptions && subscriptions) 1393 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1394 nlk->subscriptions = subscriptions; 1395 } 1396 1397 static int netlink_realloc_groups(struct sock *sk) 1398 { 1399 struct netlink_sock *nlk = nlk_sk(sk); 1400 unsigned int groups; 1401 unsigned long *new_groups; 1402 int err = 0; 1403 1404 netlink_table_grab(); 1405 1406 groups = nl_table[sk->sk_protocol].groups; 1407 if (!nl_table[sk->sk_protocol].registered) { 1408 err = -ENOENT; 1409 goto out_unlock; 1410 } 1411 1412 if (nlk->ngroups >= groups) 1413 goto out_unlock; 1414 1415 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1416 if (new_groups == NULL) { 1417 err = -ENOMEM; 1418 goto out_unlock; 1419 } 1420 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1421 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1422 1423 nlk->groups = new_groups; 1424 nlk->ngroups = groups; 1425 out_unlock: 1426 netlink_table_ungrab(); 1427 return err; 1428 } 1429 1430 static void netlink_undo_bind(int group, long unsigned int groups, 1431 struct sock *sk) 1432 { 1433 struct netlink_sock *nlk = nlk_sk(sk); 1434 int undo; 1435 1436 if (!nlk->netlink_unbind) 1437 return; 1438 1439 for (undo = 0; undo < group; undo++) 1440 if (test_bit(undo, &groups)) 1441 nlk->netlink_unbind(sock_net(sk), undo); 1442 } 1443 1444 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1445 int addr_len) 1446 { 1447 struct sock *sk = sock->sk; 1448 struct net *net = sock_net(sk); 1449 struct netlink_sock *nlk = nlk_sk(sk); 1450 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1451 int err; 1452 long unsigned int groups = nladdr->nl_groups; 1453 1454 if (addr_len < sizeof(struct sockaddr_nl)) 1455 return -EINVAL; 1456 1457 if (nladdr->nl_family != AF_NETLINK) 1458 return -EINVAL; 1459 1460 /* Only superuser is allowed to listen multicasts */ 1461 if (groups) { 1462 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1463 return -EPERM; 1464 err = netlink_realloc_groups(sk); 1465 if (err) 1466 return err; 1467 } 1468 1469 if (nlk->portid) 1470 if (nladdr->nl_pid != nlk->portid) 1471 return -EINVAL; 1472 1473 if (nlk->netlink_bind && groups) { 1474 int group; 1475 1476 for (group = 0; group < nlk->ngroups; group++) { 1477 if (!test_bit(group, &groups)) 1478 continue; 1479 err = nlk->netlink_bind(net, group); 1480 if (!err) 1481 continue; 1482 netlink_undo_bind(group, groups, sk); 1483 return err; 1484 } 1485 } 1486 1487 if (!nlk->portid) { 1488 err = nladdr->nl_pid ? 1489 netlink_insert(sk, net, nladdr->nl_pid) : 1490 netlink_autobind(sock); 1491 if (err) { 1492 netlink_undo_bind(nlk->ngroups, groups, sk); 1493 return err; 1494 } 1495 } 1496 1497 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1498 return 0; 1499 1500 netlink_table_grab(); 1501 netlink_update_subscriptions(sk, nlk->subscriptions + 1502 hweight32(groups) - 1503 hweight32(nlk->groups[0])); 1504 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1505 netlink_update_listeners(sk); 1506 netlink_table_ungrab(); 1507 1508 return 0; 1509 } 1510 1511 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1512 int alen, int flags) 1513 { 1514 int err = 0; 1515 struct sock *sk = sock->sk; 1516 struct netlink_sock *nlk = nlk_sk(sk); 1517 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1518 1519 if (alen < sizeof(addr->sa_family)) 1520 return -EINVAL; 1521 1522 if (addr->sa_family == AF_UNSPEC) { 1523 sk->sk_state = NETLINK_UNCONNECTED; 1524 nlk->dst_portid = 0; 1525 nlk->dst_group = 0; 1526 return 0; 1527 } 1528 if (addr->sa_family != AF_NETLINK) 1529 return -EINVAL; 1530 1531 if ((nladdr->nl_groups || nladdr->nl_pid) && 1532 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1533 return -EPERM; 1534 1535 if (!nlk->portid) 1536 err = netlink_autobind(sock); 1537 1538 if (err == 0) { 1539 sk->sk_state = NETLINK_CONNECTED; 1540 nlk->dst_portid = nladdr->nl_pid; 1541 nlk->dst_group = ffs(nladdr->nl_groups); 1542 } 1543 1544 return err; 1545 } 1546 1547 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1548 int *addr_len, int peer) 1549 { 1550 struct sock *sk = sock->sk; 1551 struct netlink_sock *nlk = nlk_sk(sk); 1552 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1553 1554 nladdr->nl_family = AF_NETLINK; 1555 nladdr->nl_pad = 0; 1556 *addr_len = sizeof(*nladdr); 1557 1558 if (peer) { 1559 nladdr->nl_pid = nlk->dst_portid; 1560 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1561 } else { 1562 nladdr->nl_pid = nlk->portid; 1563 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1564 } 1565 return 0; 1566 } 1567 1568 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1569 { 1570 struct sock *sock; 1571 struct netlink_sock *nlk; 1572 1573 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1574 if (!sock) 1575 return ERR_PTR(-ECONNREFUSED); 1576 1577 /* Don't bother queuing skb if kernel socket has no input function */ 1578 nlk = nlk_sk(sock); 1579 if (sock->sk_state == NETLINK_CONNECTED && 1580 nlk->dst_portid != nlk_sk(ssk)->portid) { 1581 sock_put(sock); 1582 return ERR_PTR(-ECONNREFUSED); 1583 } 1584 return sock; 1585 } 1586 1587 struct sock *netlink_getsockbyfilp(struct file *filp) 1588 { 1589 struct inode *inode = file_inode(filp); 1590 struct sock *sock; 1591 1592 if (!S_ISSOCK(inode->i_mode)) 1593 return ERR_PTR(-ENOTSOCK); 1594 1595 sock = SOCKET_I(inode)->sk; 1596 if (sock->sk_family != AF_NETLINK) 1597 return ERR_PTR(-EINVAL); 1598 1599 sock_hold(sock); 1600 return sock; 1601 } 1602 1603 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1604 int broadcast) 1605 { 1606 struct sk_buff *skb; 1607 void *data; 1608 1609 if (size <= NLMSG_GOODSIZE || broadcast) 1610 return alloc_skb(size, GFP_KERNEL); 1611 1612 size = SKB_DATA_ALIGN(size) + 1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1614 1615 data = vmalloc(size); 1616 if (data == NULL) 1617 return NULL; 1618 1619 skb = build_skb(data, size); 1620 if (skb == NULL) 1621 vfree(data); 1622 else { 1623 skb->head_frag = 0; 1624 skb->destructor = netlink_skb_destructor; 1625 } 1626 1627 return skb; 1628 } 1629 1630 /* 1631 * Attach a skb to a netlink socket. 1632 * The caller must hold a reference to the destination socket. On error, the 1633 * reference is dropped. The skb is not send to the destination, just all 1634 * all error checks are performed and memory in the queue is reserved. 1635 * Return values: 1636 * < 0: error. skb freed, reference to sock dropped. 1637 * 0: continue 1638 * 1: repeat lookup - reference dropped while waiting for socket memory. 1639 */ 1640 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1641 long *timeo, struct sock *ssk) 1642 { 1643 struct netlink_sock *nlk; 1644 1645 nlk = nlk_sk(sk); 1646 1647 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1648 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1649 !netlink_skb_is_mmaped(skb)) { 1650 DECLARE_WAITQUEUE(wait, current); 1651 if (!*timeo) { 1652 if (!ssk || netlink_is_kernel(ssk)) 1653 netlink_overrun(sk); 1654 sock_put(sk); 1655 kfree_skb(skb); 1656 return -EAGAIN; 1657 } 1658 1659 __set_current_state(TASK_INTERRUPTIBLE); 1660 add_wait_queue(&nlk->wait, &wait); 1661 1662 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1663 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1664 !sock_flag(sk, SOCK_DEAD)) 1665 *timeo = schedule_timeout(*timeo); 1666 1667 __set_current_state(TASK_RUNNING); 1668 remove_wait_queue(&nlk->wait, &wait); 1669 sock_put(sk); 1670 1671 if (signal_pending(current)) { 1672 kfree_skb(skb); 1673 return sock_intr_errno(*timeo); 1674 } 1675 return 1; 1676 } 1677 netlink_skb_set_owner_r(skb, sk); 1678 return 0; 1679 } 1680 1681 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1682 { 1683 int len = skb->len; 1684 1685 netlink_deliver_tap(skb); 1686 1687 #ifdef CONFIG_NETLINK_MMAP 1688 if (netlink_skb_is_mmaped(skb)) 1689 netlink_queue_mmaped_skb(sk, skb); 1690 else if (netlink_rx_is_mmaped(sk)) 1691 netlink_ring_set_copied(sk, skb); 1692 else 1693 #endif /* CONFIG_NETLINK_MMAP */ 1694 skb_queue_tail(&sk->sk_receive_queue, skb); 1695 sk->sk_data_ready(sk); 1696 return len; 1697 } 1698 1699 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1700 { 1701 int len = __netlink_sendskb(sk, skb); 1702 1703 sock_put(sk); 1704 return len; 1705 } 1706 1707 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1708 { 1709 kfree_skb(skb); 1710 sock_put(sk); 1711 } 1712 1713 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1714 { 1715 int delta; 1716 1717 WARN_ON(skb->sk != NULL); 1718 if (netlink_skb_is_mmaped(skb)) 1719 return skb; 1720 1721 delta = skb->end - skb->tail; 1722 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1723 return skb; 1724 1725 if (skb_shared(skb)) { 1726 struct sk_buff *nskb = skb_clone(skb, allocation); 1727 if (!nskb) 1728 return skb; 1729 consume_skb(skb); 1730 skb = nskb; 1731 } 1732 1733 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1734 skb->truesize -= delta; 1735 1736 return skb; 1737 } 1738 1739 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1740 struct sock *ssk) 1741 { 1742 int ret; 1743 struct netlink_sock *nlk = nlk_sk(sk); 1744 1745 ret = -ECONNREFUSED; 1746 if (nlk->netlink_rcv != NULL) { 1747 ret = skb->len; 1748 netlink_skb_set_owner_r(skb, sk); 1749 NETLINK_CB(skb).sk = ssk; 1750 netlink_deliver_tap_kernel(sk, ssk, skb); 1751 nlk->netlink_rcv(skb); 1752 consume_skb(skb); 1753 } else { 1754 kfree_skb(skb); 1755 } 1756 sock_put(sk); 1757 return ret; 1758 } 1759 1760 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1761 u32 portid, int nonblock) 1762 { 1763 struct sock *sk; 1764 int err; 1765 long timeo; 1766 1767 skb = netlink_trim(skb, gfp_any()); 1768 1769 timeo = sock_sndtimeo(ssk, nonblock); 1770 retry: 1771 sk = netlink_getsockbyportid(ssk, portid); 1772 if (IS_ERR(sk)) { 1773 kfree_skb(skb); 1774 return PTR_ERR(sk); 1775 } 1776 if (netlink_is_kernel(sk)) 1777 return netlink_unicast_kernel(sk, skb, ssk); 1778 1779 if (sk_filter(sk, skb)) { 1780 err = skb->len; 1781 kfree_skb(skb); 1782 sock_put(sk); 1783 return err; 1784 } 1785 1786 err = netlink_attachskb(sk, skb, &timeo, ssk); 1787 if (err == 1) 1788 goto retry; 1789 if (err) 1790 return err; 1791 1792 return netlink_sendskb(sk, skb); 1793 } 1794 EXPORT_SYMBOL(netlink_unicast); 1795 1796 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1797 u32 dst_portid, gfp_t gfp_mask) 1798 { 1799 #ifdef CONFIG_NETLINK_MMAP 1800 struct sock *sk = NULL; 1801 struct sk_buff *skb; 1802 struct netlink_ring *ring; 1803 struct nl_mmap_hdr *hdr; 1804 unsigned int maxlen; 1805 1806 sk = netlink_getsockbyportid(ssk, dst_portid); 1807 if (IS_ERR(sk)) 1808 goto out; 1809 1810 ring = &nlk_sk(sk)->rx_ring; 1811 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1812 if (ring->pg_vec == NULL) 1813 goto out_put; 1814 1815 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1816 goto out_put; 1817 1818 skb = alloc_skb_head(gfp_mask); 1819 if (skb == NULL) 1820 goto err1; 1821 1822 spin_lock_bh(&sk->sk_receive_queue.lock); 1823 /* check again under lock */ 1824 if (ring->pg_vec == NULL) 1825 goto out_free; 1826 1827 /* check again under lock */ 1828 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1829 if (maxlen < size) 1830 goto out_free; 1831 1832 netlink_forward_ring(ring); 1833 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1834 if (hdr == NULL) 1835 goto err2; 1836 netlink_ring_setup_skb(skb, sk, ring, hdr); 1837 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1838 atomic_inc(&ring->pending); 1839 netlink_increment_head(ring); 1840 1841 spin_unlock_bh(&sk->sk_receive_queue.lock); 1842 return skb; 1843 1844 err2: 1845 kfree_skb(skb); 1846 spin_unlock_bh(&sk->sk_receive_queue.lock); 1847 netlink_overrun(sk); 1848 err1: 1849 sock_put(sk); 1850 return NULL; 1851 1852 out_free: 1853 kfree_skb(skb); 1854 spin_unlock_bh(&sk->sk_receive_queue.lock); 1855 out_put: 1856 sock_put(sk); 1857 out: 1858 #endif 1859 return alloc_skb(size, gfp_mask); 1860 } 1861 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1862 1863 int netlink_has_listeners(struct sock *sk, unsigned int group) 1864 { 1865 int res = 0; 1866 struct listeners *listeners; 1867 1868 BUG_ON(!netlink_is_kernel(sk)); 1869 1870 rcu_read_lock(); 1871 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1872 1873 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1874 res = test_bit(group - 1, listeners->masks); 1875 1876 rcu_read_unlock(); 1877 1878 return res; 1879 } 1880 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1881 1882 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1883 { 1884 struct netlink_sock *nlk = nlk_sk(sk); 1885 1886 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1887 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1888 netlink_skb_set_owner_r(skb, sk); 1889 __netlink_sendskb(sk, skb); 1890 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1891 } 1892 return -1; 1893 } 1894 1895 struct netlink_broadcast_data { 1896 struct sock *exclude_sk; 1897 struct net *net; 1898 u32 portid; 1899 u32 group; 1900 int failure; 1901 int delivery_failure; 1902 int congested; 1903 int delivered; 1904 gfp_t allocation; 1905 struct sk_buff *skb, *skb2; 1906 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1907 void *tx_data; 1908 }; 1909 1910 static void do_one_broadcast(struct sock *sk, 1911 struct netlink_broadcast_data *p) 1912 { 1913 struct netlink_sock *nlk = nlk_sk(sk); 1914 int val; 1915 1916 if (p->exclude_sk == sk) 1917 return; 1918 1919 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1920 !test_bit(p->group - 1, nlk->groups)) 1921 return; 1922 1923 if (!net_eq(sock_net(sk), p->net)) 1924 return; 1925 1926 if (p->failure) { 1927 netlink_overrun(sk); 1928 return; 1929 } 1930 1931 sock_hold(sk); 1932 if (p->skb2 == NULL) { 1933 if (skb_shared(p->skb)) { 1934 p->skb2 = skb_clone(p->skb, p->allocation); 1935 } else { 1936 p->skb2 = skb_get(p->skb); 1937 /* 1938 * skb ownership may have been set when 1939 * delivered to a previous socket. 1940 */ 1941 skb_orphan(p->skb2); 1942 } 1943 } 1944 if (p->skb2 == NULL) { 1945 netlink_overrun(sk); 1946 /* Clone failed. Notify ALL listeners. */ 1947 p->failure = 1; 1948 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1949 p->delivery_failure = 1; 1950 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1951 kfree_skb(p->skb2); 1952 p->skb2 = NULL; 1953 } else if (sk_filter(sk, p->skb2)) { 1954 kfree_skb(p->skb2); 1955 p->skb2 = NULL; 1956 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1957 netlink_overrun(sk); 1958 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1959 p->delivery_failure = 1; 1960 } else { 1961 p->congested |= val; 1962 p->delivered = 1; 1963 p->skb2 = NULL; 1964 } 1965 sock_put(sk); 1966 } 1967 1968 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1969 u32 group, gfp_t allocation, 1970 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1971 void *filter_data) 1972 { 1973 struct net *net = sock_net(ssk); 1974 struct netlink_broadcast_data info; 1975 struct sock *sk; 1976 1977 skb = netlink_trim(skb, allocation); 1978 1979 info.exclude_sk = ssk; 1980 info.net = net; 1981 info.portid = portid; 1982 info.group = group; 1983 info.failure = 0; 1984 info.delivery_failure = 0; 1985 info.congested = 0; 1986 info.delivered = 0; 1987 info.allocation = allocation; 1988 info.skb = skb; 1989 info.skb2 = NULL; 1990 info.tx_filter = filter; 1991 info.tx_data = filter_data; 1992 1993 /* While we sleep in clone, do not allow to change socket list */ 1994 1995 netlink_lock_table(); 1996 1997 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1998 do_one_broadcast(sk, &info); 1999 2000 consume_skb(skb); 2001 2002 netlink_unlock_table(); 2003 2004 if (info.delivery_failure) { 2005 kfree_skb(info.skb2); 2006 return -ENOBUFS; 2007 } 2008 consume_skb(info.skb2); 2009 2010 if (info.delivered) { 2011 if (info.congested && (allocation & __GFP_WAIT)) 2012 yield(); 2013 return 0; 2014 } 2015 return -ESRCH; 2016 } 2017 EXPORT_SYMBOL(netlink_broadcast_filtered); 2018 2019 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2020 u32 group, gfp_t allocation) 2021 { 2022 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2023 NULL, NULL); 2024 } 2025 EXPORT_SYMBOL(netlink_broadcast); 2026 2027 struct netlink_set_err_data { 2028 struct sock *exclude_sk; 2029 u32 portid; 2030 u32 group; 2031 int code; 2032 }; 2033 2034 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2035 { 2036 struct netlink_sock *nlk = nlk_sk(sk); 2037 int ret = 0; 2038 2039 if (sk == p->exclude_sk) 2040 goto out; 2041 2042 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2043 goto out; 2044 2045 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2046 !test_bit(p->group - 1, nlk->groups)) 2047 goto out; 2048 2049 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2050 ret = 1; 2051 goto out; 2052 } 2053 2054 sk->sk_err = p->code; 2055 sk->sk_error_report(sk); 2056 out: 2057 return ret; 2058 } 2059 2060 /** 2061 * netlink_set_err - report error to broadcast listeners 2062 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2063 * @portid: the PORTID of a process that we want to skip (if any) 2064 * @group: the broadcast group that will notice the error 2065 * @code: error code, must be negative (as usual in kernelspace) 2066 * 2067 * This function returns the number of broadcast listeners that have set the 2068 * NETLINK_RECV_NO_ENOBUFS socket option. 2069 */ 2070 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2071 { 2072 struct netlink_set_err_data info; 2073 struct sock *sk; 2074 int ret = 0; 2075 2076 info.exclude_sk = ssk; 2077 info.portid = portid; 2078 info.group = group; 2079 /* sk->sk_err wants a positive error value */ 2080 info.code = -code; 2081 2082 read_lock(&nl_table_lock); 2083 2084 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2085 ret += do_one_set_err(sk, &info); 2086 2087 read_unlock(&nl_table_lock); 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(netlink_set_err); 2091 2092 /* must be called with netlink table grabbed */ 2093 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2094 unsigned int group, 2095 int is_new) 2096 { 2097 int old, new = !!is_new, subscriptions; 2098 2099 old = test_bit(group - 1, nlk->groups); 2100 subscriptions = nlk->subscriptions - old + new; 2101 if (new) 2102 __set_bit(group - 1, nlk->groups); 2103 else 2104 __clear_bit(group - 1, nlk->groups); 2105 netlink_update_subscriptions(&nlk->sk, subscriptions); 2106 netlink_update_listeners(&nlk->sk); 2107 } 2108 2109 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2110 char __user *optval, unsigned int optlen) 2111 { 2112 struct sock *sk = sock->sk; 2113 struct netlink_sock *nlk = nlk_sk(sk); 2114 unsigned int val = 0; 2115 int err; 2116 2117 if (level != SOL_NETLINK) 2118 return -ENOPROTOOPT; 2119 2120 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2121 optlen >= sizeof(int) && 2122 get_user(val, (unsigned int __user *)optval)) 2123 return -EFAULT; 2124 2125 switch (optname) { 2126 case NETLINK_PKTINFO: 2127 if (val) 2128 nlk->flags |= NETLINK_RECV_PKTINFO; 2129 else 2130 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2131 err = 0; 2132 break; 2133 case NETLINK_ADD_MEMBERSHIP: 2134 case NETLINK_DROP_MEMBERSHIP: { 2135 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2136 return -EPERM; 2137 err = netlink_realloc_groups(sk); 2138 if (err) 2139 return err; 2140 if (!val || val - 1 >= nlk->ngroups) 2141 return -EINVAL; 2142 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2143 err = nlk->netlink_bind(sock_net(sk), val); 2144 if (err) 2145 return err; 2146 } 2147 netlink_table_grab(); 2148 netlink_update_socket_mc(nlk, val, 2149 optname == NETLINK_ADD_MEMBERSHIP); 2150 netlink_table_ungrab(); 2151 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2152 nlk->netlink_unbind(sock_net(sk), val); 2153 2154 err = 0; 2155 break; 2156 } 2157 case NETLINK_BROADCAST_ERROR: 2158 if (val) 2159 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2160 else 2161 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2162 err = 0; 2163 break; 2164 case NETLINK_NO_ENOBUFS: 2165 if (val) { 2166 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2167 clear_bit(NETLINK_CONGESTED, &nlk->state); 2168 wake_up_interruptible(&nlk->wait); 2169 } else { 2170 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2171 } 2172 err = 0; 2173 break; 2174 #ifdef CONFIG_NETLINK_MMAP 2175 case NETLINK_RX_RING: 2176 case NETLINK_TX_RING: { 2177 struct nl_mmap_req req; 2178 2179 /* Rings might consume more memory than queue limits, require 2180 * CAP_NET_ADMIN. 2181 */ 2182 if (!capable(CAP_NET_ADMIN)) 2183 return -EPERM; 2184 if (optlen < sizeof(req)) 2185 return -EINVAL; 2186 if (copy_from_user(&req, optval, sizeof(req))) 2187 return -EFAULT; 2188 err = netlink_set_ring(sk, &req, false, 2189 optname == NETLINK_TX_RING); 2190 break; 2191 } 2192 #endif /* CONFIG_NETLINK_MMAP */ 2193 default: 2194 err = -ENOPROTOOPT; 2195 } 2196 return err; 2197 } 2198 2199 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2200 char __user *optval, int __user *optlen) 2201 { 2202 struct sock *sk = sock->sk; 2203 struct netlink_sock *nlk = nlk_sk(sk); 2204 int len, val, err; 2205 2206 if (level != SOL_NETLINK) 2207 return -ENOPROTOOPT; 2208 2209 if (get_user(len, optlen)) 2210 return -EFAULT; 2211 if (len < 0) 2212 return -EINVAL; 2213 2214 switch (optname) { 2215 case NETLINK_PKTINFO: 2216 if (len < sizeof(int)) 2217 return -EINVAL; 2218 len = sizeof(int); 2219 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2220 if (put_user(len, optlen) || 2221 put_user(val, optval)) 2222 return -EFAULT; 2223 err = 0; 2224 break; 2225 case NETLINK_BROADCAST_ERROR: 2226 if (len < sizeof(int)) 2227 return -EINVAL; 2228 len = sizeof(int); 2229 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2230 if (put_user(len, optlen) || 2231 put_user(val, optval)) 2232 return -EFAULT; 2233 err = 0; 2234 break; 2235 case NETLINK_NO_ENOBUFS: 2236 if (len < sizeof(int)) 2237 return -EINVAL; 2238 len = sizeof(int); 2239 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2240 if (put_user(len, optlen) || 2241 put_user(val, optval)) 2242 return -EFAULT; 2243 err = 0; 2244 break; 2245 default: 2246 err = -ENOPROTOOPT; 2247 } 2248 return err; 2249 } 2250 2251 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2252 { 2253 struct nl_pktinfo info; 2254 2255 info.group = NETLINK_CB(skb).dst_group; 2256 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2257 } 2258 2259 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2260 struct msghdr *msg, size_t len) 2261 { 2262 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2263 struct sock *sk = sock->sk; 2264 struct netlink_sock *nlk = nlk_sk(sk); 2265 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2266 u32 dst_portid; 2267 u32 dst_group; 2268 struct sk_buff *skb; 2269 int err; 2270 struct scm_cookie scm; 2271 u32 netlink_skb_flags = 0; 2272 2273 if (msg->msg_flags&MSG_OOB) 2274 return -EOPNOTSUPP; 2275 2276 if (NULL == siocb->scm) 2277 siocb->scm = &scm; 2278 2279 err = scm_send(sock, msg, siocb->scm, true); 2280 if (err < 0) 2281 return err; 2282 2283 if (msg->msg_namelen) { 2284 err = -EINVAL; 2285 if (addr->nl_family != AF_NETLINK) 2286 goto out; 2287 dst_portid = addr->nl_pid; 2288 dst_group = ffs(addr->nl_groups); 2289 err = -EPERM; 2290 if ((dst_group || dst_portid) && 2291 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2292 goto out; 2293 netlink_skb_flags |= NETLINK_SKB_DST; 2294 } else { 2295 dst_portid = nlk->dst_portid; 2296 dst_group = nlk->dst_group; 2297 } 2298 2299 if (!nlk->portid) { 2300 err = netlink_autobind(sock); 2301 if (err) 2302 goto out; 2303 } 2304 2305 if (netlink_tx_is_mmaped(sk) && 2306 msg->msg_iter.iov->iov_base == NULL) { 2307 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2308 siocb); 2309 goto out; 2310 } 2311 2312 err = -EMSGSIZE; 2313 if (len > sk->sk_sndbuf - 32) 2314 goto out; 2315 err = -ENOBUFS; 2316 skb = netlink_alloc_large_skb(len, dst_group); 2317 if (skb == NULL) 2318 goto out; 2319 2320 NETLINK_CB(skb).portid = nlk->portid; 2321 NETLINK_CB(skb).dst_group = dst_group; 2322 NETLINK_CB(skb).creds = siocb->scm->creds; 2323 NETLINK_CB(skb).flags = netlink_skb_flags; 2324 2325 err = -EFAULT; 2326 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2327 kfree_skb(skb); 2328 goto out; 2329 } 2330 2331 err = security_netlink_send(sk, skb); 2332 if (err) { 2333 kfree_skb(skb); 2334 goto out; 2335 } 2336 2337 if (dst_group) { 2338 atomic_inc(&skb->users); 2339 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2340 } 2341 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2342 2343 out: 2344 scm_destroy(siocb->scm); 2345 return err; 2346 } 2347 2348 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2349 struct msghdr *msg, size_t len, 2350 int flags) 2351 { 2352 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2353 struct scm_cookie scm; 2354 struct sock *sk = sock->sk; 2355 struct netlink_sock *nlk = nlk_sk(sk); 2356 int noblock = flags&MSG_DONTWAIT; 2357 size_t copied; 2358 struct sk_buff *skb, *data_skb; 2359 int err, ret; 2360 2361 if (flags&MSG_OOB) 2362 return -EOPNOTSUPP; 2363 2364 copied = 0; 2365 2366 skb = skb_recv_datagram(sk, flags, noblock, &err); 2367 if (skb == NULL) 2368 goto out; 2369 2370 data_skb = skb; 2371 2372 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2373 if (unlikely(skb_shinfo(skb)->frag_list)) { 2374 /* 2375 * If this skb has a frag_list, then here that means that we 2376 * will have to use the frag_list skb's data for compat tasks 2377 * and the regular skb's data for normal (non-compat) tasks. 2378 * 2379 * If we need to send the compat skb, assign it to the 2380 * 'data_skb' variable so that it will be used below for data 2381 * copying. We keep 'skb' for everything else, including 2382 * freeing both later. 2383 */ 2384 if (flags & MSG_CMSG_COMPAT) 2385 data_skb = skb_shinfo(skb)->frag_list; 2386 } 2387 #endif 2388 2389 /* Record the max length of recvmsg() calls for future allocations */ 2390 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2391 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2392 16384); 2393 2394 copied = data_skb->len; 2395 if (len < copied) { 2396 msg->msg_flags |= MSG_TRUNC; 2397 copied = len; 2398 } 2399 2400 skb_reset_transport_header(data_skb); 2401 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2402 2403 if (msg->msg_name) { 2404 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2405 addr->nl_family = AF_NETLINK; 2406 addr->nl_pad = 0; 2407 addr->nl_pid = NETLINK_CB(skb).portid; 2408 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2409 msg->msg_namelen = sizeof(*addr); 2410 } 2411 2412 if (nlk->flags & NETLINK_RECV_PKTINFO) 2413 netlink_cmsg_recv_pktinfo(msg, skb); 2414 2415 if (NULL == siocb->scm) { 2416 memset(&scm, 0, sizeof(scm)); 2417 siocb->scm = &scm; 2418 } 2419 siocb->scm->creds = *NETLINK_CREDS(skb); 2420 if (flags & MSG_TRUNC) 2421 copied = data_skb->len; 2422 2423 skb_free_datagram(sk, skb); 2424 2425 if (nlk->cb_running && 2426 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2427 ret = netlink_dump(sk); 2428 if (ret) { 2429 sk->sk_err = -ret; 2430 sk->sk_error_report(sk); 2431 } 2432 } 2433 2434 scm_recv(sock, msg, siocb->scm, flags); 2435 out: 2436 netlink_rcv_wake(sk); 2437 return err ? : copied; 2438 } 2439 2440 static void netlink_data_ready(struct sock *sk) 2441 { 2442 BUG(); 2443 } 2444 2445 /* 2446 * We export these functions to other modules. They provide a 2447 * complete set of kernel non-blocking support for message 2448 * queueing. 2449 */ 2450 2451 struct sock * 2452 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2453 struct netlink_kernel_cfg *cfg) 2454 { 2455 struct socket *sock; 2456 struct sock *sk; 2457 struct netlink_sock *nlk; 2458 struct listeners *listeners = NULL; 2459 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2460 unsigned int groups; 2461 2462 BUG_ON(!nl_table); 2463 2464 if (unit < 0 || unit >= MAX_LINKS) 2465 return NULL; 2466 2467 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2468 return NULL; 2469 2470 /* 2471 * We have to just have a reference on the net from sk, but don't 2472 * get_net it. Besides, we cannot get and then put the net here. 2473 * So we create one inside init_net and the move it to net. 2474 */ 2475 2476 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2477 goto out_sock_release_nosk; 2478 2479 sk = sock->sk; 2480 sk_change_net(sk, net); 2481 2482 if (!cfg || cfg->groups < 32) 2483 groups = 32; 2484 else 2485 groups = cfg->groups; 2486 2487 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2488 if (!listeners) 2489 goto out_sock_release; 2490 2491 sk->sk_data_ready = netlink_data_ready; 2492 if (cfg && cfg->input) 2493 nlk_sk(sk)->netlink_rcv = cfg->input; 2494 2495 if (netlink_insert(sk, net, 0)) 2496 goto out_sock_release; 2497 2498 nlk = nlk_sk(sk); 2499 nlk->flags |= NETLINK_KERNEL_SOCKET; 2500 2501 netlink_table_grab(); 2502 if (!nl_table[unit].registered) { 2503 nl_table[unit].groups = groups; 2504 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2505 nl_table[unit].cb_mutex = cb_mutex; 2506 nl_table[unit].module = module; 2507 if (cfg) { 2508 nl_table[unit].bind = cfg->bind; 2509 nl_table[unit].unbind = cfg->unbind; 2510 nl_table[unit].flags = cfg->flags; 2511 if (cfg->compare) 2512 nl_table[unit].compare = cfg->compare; 2513 } 2514 nl_table[unit].registered = 1; 2515 } else { 2516 kfree(listeners); 2517 nl_table[unit].registered++; 2518 } 2519 netlink_table_ungrab(); 2520 return sk; 2521 2522 out_sock_release: 2523 kfree(listeners); 2524 netlink_kernel_release(sk); 2525 return NULL; 2526 2527 out_sock_release_nosk: 2528 sock_release(sock); 2529 return NULL; 2530 } 2531 EXPORT_SYMBOL(__netlink_kernel_create); 2532 2533 void 2534 netlink_kernel_release(struct sock *sk) 2535 { 2536 sk_release_kernel(sk); 2537 } 2538 EXPORT_SYMBOL(netlink_kernel_release); 2539 2540 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2541 { 2542 struct listeners *new, *old; 2543 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2544 2545 if (groups < 32) 2546 groups = 32; 2547 2548 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2549 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2550 if (!new) 2551 return -ENOMEM; 2552 old = nl_deref_protected(tbl->listeners); 2553 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2554 rcu_assign_pointer(tbl->listeners, new); 2555 2556 kfree_rcu(old, rcu); 2557 } 2558 tbl->groups = groups; 2559 2560 return 0; 2561 } 2562 2563 /** 2564 * netlink_change_ngroups - change number of multicast groups 2565 * 2566 * This changes the number of multicast groups that are available 2567 * on a certain netlink family. Note that it is not possible to 2568 * change the number of groups to below 32. Also note that it does 2569 * not implicitly call netlink_clear_multicast_users() when the 2570 * number of groups is reduced. 2571 * 2572 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2573 * @groups: The new number of groups. 2574 */ 2575 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2576 { 2577 int err; 2578 2579 netlink_table_grab(); 2580 err = __netlink_change_ngroups(sk, groups); 2581 netlink_table_ungrab(); 2582 2583 return err; 2584 } 2585 2586 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2587 { 2588 struct sock *sk; 2589 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2590 2591 sk_for_each_bound(sk, &tbl->mc_list) 2592 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2593 } 2594 2595 struct nlmsghdr * 2596 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2597 { 2598 struct nlmsghdr *nlh; 2599 int size = nlmsg_msg_size(len); 2600 2601 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2602 nlh->nlmsg_type = type; 2603 nlh->nlmsg_len = size; 2604 nlh->nlmsg_flags = flags; 2605 nlh->nlmsg_pid = portid; 2606 nlh->nlmsg_seq = seq; 2607 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2608 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2609 return nlh; 2610 } 2611 EXPORT_SYMBOL(__nlmsg_put); 2612 2613 /* 2614 * It looks a bit ugly. 2615 * It would be better to create kernel thread. 2616 */ 2617 2618 static int netlink_dump(struct sock *sk) 2619 { 2620 struct netlink_sock *nlk = nlk_sk(sk); 2621 struct netlink_callback *cb; 2622 struct sk_buff *skb = NULL; 2623 struct nlmsghdr *nlh; 2624 int len, err = -ENOBUFS; 2625 int alloc_size; 2626 2627 mutex_lock(nlk->cb_mutex); 2628 if (!nlk->cb_running) { 2629 err = -EINVAL; 2630 goto errout_skb; 2631 } 2632 2633 cb = &nlk->cb; 2634 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2635 2636 if (!netlink_rx_is_mmaped(sk) && 2637 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2638 goto errout_skb; 2639 2640 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2641 * required, but it makes sense to _attempt_ a 16K bytes allocation 2642 * to reduce number of system calls on dump operations, if user 2643 * ever provided a big enough buffer. 2644 */ 2645 if (alloc_size < nlk->max_recvmsg_len) { 2646 skb = netlink_alloc_skb(sk, 2647 nlk->max_recvmsg_len, 2648 nlk->portid, 2649 GFP_KERNEL | 2650 __GFP_NOWARN | 2651 __GFP_NORETRY); 2652 /* available room should be exact amount to avoid MSG_TRUNC */ 2653 if (skb) 2654 skb_reserve(skb, skb_tailroom(skb) - 2655 nlk->max_recvmsg_len); 2656 } 2657 if (!skb) 2658 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2659 GFP_KERNEL); 2660 if (!skb) 2661 goto errout_skb; 2662 netlink_skb_set_owner_r(skb, sk); 2663 2664 len = cb->dump(skb, cb); 2665 2666 if (len > 0) { 2667 mutex_unlock(nlk->cb_mutex); 2668 2669 if (sk_filter(sk, skb)) 2670 kfree_skb(skb); 2671 else 2672 __netlink_sendskb(sk, skb); 2673 return 0; 2674 } 2675 2676 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2677 if (!nlh) 2678 goto errout_skb; 2679 2680 nl_dump_check_consistent(cb, nlh); 2681 2682 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2683 2684 if (sk_filter(sk, skb)) 2685 kfree_skb(skb); 2686 else 2687 __netlink_sendskb(sk, skb); 2688 2689 if (cb->done) 2690 cb->done(cb); 2691 2692 nlk->cb_running = false; 2693 mutex_unlock(nlk->cb_mutex); 2694 module_put(cb->module); 2695 consume_skb(cb->skb); 2696 return 0; 2697 2698 errout_skb: 2699 mutex_unlock(nlk->cb_mutex); 2700 kfree_skb(skb); 2701 return err; 2702 } 2703 2704 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2705 const struct nlmsghdr *nlh, 2706 struct netlink_dump_control *control) 2707 { 2708 struct netlink_callback *cb; 2709 struct sock *sk; 2710 struct netlink_sock *nlk; 2711 int ret; 2712 2713 /* Memory mapped dump requests need to be copied to avoid looping 2714 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2715 * a reference to the skb. 2716 */ 2717 if (netlink_skb_is_mmaped(skb)) { 2718 skb = skb_copy(skb, GFP_KERNEL); 2719 if (skb == NULL) 2720 return -ENOBUFS; 2721 } else 2722 atomic_inc(&skb->users); 2723 2724 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2725 if (sk == NULL) { 2726 ret = -ECONNREFUSED; 2727 goto error_free; 2728 } 2729 2730 nlk = nlk_sk(sk); 2731 mutex_lock(nlk->cb_mutex); 2732 /* A dump is in progress... */ 2733 if (nlk->cb_running) { 2734 ret = -EBUSY; 2735 goto error_unlock; 2736 } 2737 /* add reference of module which cb->dump belongs to */ 2738 if (!try_module_get(control->module)) { 2739 ret = -EPROTONOSUPPORT; 2740 goto error_unlock; 2741 } 2742 2743 cb = &nlk->cb; 2744 memset(cb, 0, sizeof(*cb)); 2745 cb->dump = control->dump; 2746 cb->done = control->done; 2747 cb->nlh = nlh; 2748 cb->data = control->data; 2749 cb->module = control->module; 2750 cb->min_dump_alloc = control->min_dump_alloc; 2751 cb->skb = skb; 2752 2753 nlk->cb_running = true; 2754 2755 mutex_unlock(nlk->cb_mutex); 2756 2757 ret = netlink_dump(sk); 2758 sock_put(sk); 2759 2760 if (ret) 2761 return ret; 2762 2763 /* We successfully started a dump, by returning -EINTR we 2764 * signal not to send ACK even if it was requested. 2765 */ 2766 return -EINTR; 2767 2768 error_unlock: 2769 sock_put(sk); 2770 mutex_unlock(nlk->cb_mutex); 2771 error_free: 2772 kfree_skb(skb); 2773 return ret; 2774 } 2775 EXPORT_SYMBOL(__netlink_dump_start); 2776 2777 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2778 { 2779 struct sk_buff *skb; 2780 struct nlmsghdr *rep; 2781 struct nlmsgerr *errmsg; 2782 size_t payload = sizeof(*errmsg); 2783 2784 /* error messages get the original request appened */ 2785 if (err) 2786 payload += nlmsg_len(nlh); 2787 2788 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2789 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2790 if (!skb) { 2791 struct sock *sk; 2792 2793 sk = netlink_lookup(sock_net(in_skb->sk), 2794 in_skb->sk->sk_protocol, 2795 NETLINK_CB(in_skb).portid); 2796 if (sk) { 2797 sk->sk_err = ENOBUFS; 2798 sk->sk_error_report(sk); 2799 sock_put(sk); 2800 } 2801 return; 2802 } 2803 2804 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2805 NLMSG_ERROR, payload, 0); 2806 errmsg = nlmsg_data(rep); 2807 errmsg->error = err; 2808 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2809 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2810 } 2811 EXPORT_SYMBOL(netlink_ack); 2812 2813 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2814 struct nlmsghdr *)) 2815 { 2816 struct nlmsghdr *nlh; 2817 int err; 2818 2819 while (skb->len >= nlmsg_total_size(0)) { 2820 int msglen; 2821 2822 nlh = nlmsg_hdr(skb); 2823 err = 0; 2824 2825 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2826 return 0; 2827 2828 /* Only requests are handled by the kernel */ 2829 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2830 goto ack; 2831 2832 /* Skip control messages */ 2833 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2834 goto ack; 2835 2836 err = cb(skb, nlh); 2837 if (err == -EINTR) 2838 goto skip; 2839 2840 ack: 2841 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2842 netlink_ack(skb, nlh, err); 2843 2844 skip: 2845 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2846 if (msglen > skb->len) 2847 msglen = skb->len; 2848 skb_pull(skb, msglen); 2849 } 2850 2851 return 0; 2852 } 2853 EXPORT_SYMBOL(netlink_rcv_skb); 2854 2855 /** 2856 * nlmsg_notify - send a notification netlink message 2857 * @sk: netlink socket to use 2858 * @skb: notification message 2859 * @portid: destination netlink portid for reports or 0 2860 * @group: destination multicast group or 0 2861 * @report: 1 to report back, 0 to disable 2862 * @flags: allocation flags 2863 */ 2864 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2865 unsigned int group, int report, gfp_t flags) 2866 { 2867 int err = 0; 2868 2869 if (group) { 2870 int exclude_portid = 0; 2871 2872 if (report) { 2873 atomic_inc(&skb->users); 2874 exclude_portid = portid; 2875 } 2876 2877 /* errors reported via destination sk->sk_err, but propagate 2878 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2879 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2880 } 2881 2882 if (report) { 2883 int err2; 2884 2885 err2 = nlmsg_unicast(sk, skb, portid); 2886 if (!err || err == -ESRCH) 2887 err = err2; 2888 } 2889 2890 return err; 2891 } 2892 EXPORT_SYMBOL(nlmsg_notify); 2893 2894 #ifdef CONFIG_PROC_FS 2895 struct nl_seq_iter { 2896 struct seq_net_private p; 2897 int link; 2898 int hash_idx; 2899 }; 2900 2901 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2902 { 2903 struct nl_seq_iter *iter = seq->private; 2904 int i, j; 2905 struct netlink_sock *nlk; 2906 struct sock *s; 2907 loff_t off = 0; 2908 2909 for (i = 0; i < MAX_LINKS; i++) { 2910 struct rhashtable *ht = &nl_table[i].hash; 2911 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2912 2913 for (j = 0; j < tbl->size; j++) { 2914 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) { 2915 s = (struct sock *)nlk; 2916 2917 if (sock_net(s) != seq_file_net(seq)) 2918 continue; 2919 if (off == pos) { 2920 iter->link = i; 2921 iter->hash_idx = j; 2922 return s; 2923 } 2924 ++off; 2925 } 2926 } 2927 } 2928 return NULL; 2929 } 2930 2931 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2932 __acquires(nl_table_lock) __acquires(RCU) 2933 { 2934 read_lock(&nl_table_lock); 2935 rcu_read_lock(); 2936 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2937 } 2938 2939 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2940 { 2941 struct rhashtable *ht; 2942 struct netlink_sock *nlk; 2943 struct nl_seq_iter *iter; 2944 struct net *net; 2945 int i, j; 2946 2947 ++*pos; 2948 2949 if (v == SEQ_START_TOKEN) 2950 return netlink_seq_socket_idx(seq, 0); 2951 2952 net = seq_file_net(seq); 2953 iter = seq->private; 2954 nlk = v; 2955 2956 i = iter->link; 2957 ht = &nl_table[i].hash; 2958 rht_for_each_entry(nlk, nlk->node.next, ht, node) 2959 if (net_eq(sock_net((struct sock *)nlk), net)) 2960 return nlk; 2961 2962 j = iter->hash_idx + 1; 2963 2964 do { 2965 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2966 2967 for (; j < tbl->size; j++) { 2968 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) { 2969 if (net_eq(sock_net((struct sock *)nlk), net)) { 2970 iter->link = i; 2971 iter->hash_idx = j; 2972 return nlk; 2973 } 2974 } 2975 } 2976 2977 j = 0; 2978 } while (++i < MAX_LINKS); 2979 2980 return NULL; 2981 } 2982 2983 static void netlink_seq_stop(struct seq_file *seq, void *v) 2984 __releases(RCU) __releases(nl_table_lock) 2985 { 2986 rcu_read_unlock(); 2987 read_unlock(&nl_table_lock); 2988 } 2989 2990 2991 static int netlink_seq_show(struct seq_file *seq, void *v) 2992 { 2993 if (v == SEQ_START_TOKEN) { 2994 seq_puts(seq, 2995 "sk Eth Pid Groups " 2996 "Rmem Wmem Dump Locks Drops Inode\n"); 2997 } else { 2998 struct sock *s = v; 2999 struct netlink_sock *nlk = nlk_sk(s); 3000 3001 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3002 s, 3003 s->sk_protocol, 3004 nlk->portid, 3005 nlk->groups ? (u32)nlk->groups[0] : 0, 3006 sk_rmem_alloc_get(s), 3007 sk_wmem_alloc_get(s), 3008 nlk->cb_running, 3009 atomic_read(&s->sk_refcnt), 3010 atomic_read(&s->sk_drops), 3011 sock_i_ino(s) 3012 ); 3013 3014 } 3015 return 0; 3016 } 3017 3018 static const struct seq_operations netlink_seq_ops = { 3019 .start = netlink_seq_start, 3020 .next = netlink_seq_next, 3021 .stop = netlink_seq_stop, 3022 .show = netlink_seq_show, 3023 }; 3024 3025 3026 static int netlink_seq_open(struct inode *inode, struct file *file) 3027 { 3028 return seq_open_net(inode, file, &netlink_seq_ops, 3029 sizeof(struct nl_seq_iter)); 3030 } 3031 3032 static const struct file_operations netlink_seq_fops = { 3033 .owner = THIS_MODULE, 3034 .open = netlink_seq_open, 3035 .read = seq_read, 3036 .llseek = seq_lseek, 3037 .release = seq_release_net, 3038 }; 3039 3040 #endif 3041 3042 int netlink_register_notifier(struct notifier_block *nb) 3043 { 3044 return atomic_notifier_chain_register(&netlink_chain, nb); 3045 } 3046 EXPORT_SYMBOL(netlink_register_notifier); 3047 3048 int netlink_unregister_notifier(struct notifier_block *nb) 3049 { 3050 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3051 } 3052 EXPORT_SYMBOL(netlink_unregister_notifier); 3053 3054 static const struct proto_ops netlink_ops = { 3055 .family = PF_NETLINK, 3056 .owner = THIS_MODULE, 3057 .release = netlink_release, 3058 .bind = netlink_bind, 3059 .connect = netlink_connect, 3060 .socketpair = sock_no_socketpair, 3061 .accept = sock_no_accept, 3062 .getname = netlink_getname, 3063 .poll = netlink_poll, 3064 .ioctl = sock_no_ioctl, 3065 .listen = sock_no_listen, 3066 .shutdown = sock_no_shutdown, 3067 .setsockopt = netlink_setsockopt, 3068 .getsockopt = netlink_getsockopt, 3069 .sendmsg = netlink_sendmsg, 3070 .recvmsg = netlink_recvmsg, 3071 .mmap = netlink_mmap, 3072 .sendpage = sock_no_sendpage, 3073 }; 3074 3075 static const struct net_proto_family netlink_family_ops = { 3076 .family = PF_NETLINK, 3077 .create = netlink_create, 3078 .owner = THIS_MODULE, /* for consistency 8) */ 3079 }; 3080 3081 static int __net_init netlink_net_init(struct net *net) 3082 { 3083 #ifdef CONFIG_PROC_FS 3084 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3085 return -ENOMEM; 3086 #endif 3087 return 0; 3088 } 3089 3090 static void __net_exit netlink_net_exit(struct net *net) 3091 { 3092 #ifdef CONFIG_PROC_FS 3093 remove_proc_entry("netlink", net->proc_net); 3094 #endif 3095 } 3096 3097 static void __init netlink_add_usersock_entry(void) 3098 { 3099 struct listeners *listeners; 3100 int groups = 32; 3101 3102 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3103 if (!listeners) 3104 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3105 3106 netlink_table_grab(); 3107 3108 nl_table[NETLINK_USERSOCK].groups = groups; 3109 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3110 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3111 nl_table[NETLINK_USERSOCK].registered = 1; 3112 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3113 3114 netlink_table_ungrab(); 3115 } 3116 3117 static struct pernet_operations __net_initdata netlink_net_ops = { 3118 .init = netlink_net_init, 3119 .exit = netlink_net_exit, 3120 }; 3121 3122 static int __init netlink_proto_init(void) 3123 { 3124 int i; 3125 int err = proto_register(&netlink_proto, 0); 3126 struct rhashtable_params ht_params = { 3127 .head_offset = offsetof(struct netlink_sock, node), 3128 .key_offset = offsetof(struct netlink_sock, portid), 3129 .key_len = sizeof(u32), /* portid */ 3130 .hashfn = jhash, 3131 .max_shift = 16, /* 64K */ 3132 .grow_decision = rht_grow_above_75, 3133 .shrink_decision = rht_shrink_below_30, 3134 #ifdef CONFIG_PROVE_LOCKING 3135 .mutex_is_held = lockdep_nl_sk_hash_is_held, 3136 #endif 3137 }; 3138 3139 if (err != 0) 3140 goto out; 3141 3142 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3143 3144 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3145 if (!nl_table) 3146 goto panic; 3147 3148 for (i = 0; i < MAX_LINKS; i++) { 3149 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) { 3150 while (--i > 0) 3151 rhashtable_destroy(&nl_table[i].hash); 3152 kfree(nl_table); 3153 goto panic; 3154 } 3155 } 3156 3157 INIT_LIST_HEAD(&netlink_tap_all); 3158 3159 netlink_add_usersock_entry(); 3160 3161 sock_register(&netlink_family_ops); 3162 register_pernet_subsys(&netlink_net_ops); 3163 /* The netlink device handler may be needed early. */ 3164 rtnetlink_init(); 3165 out: 3166 return err; 3167 panic: 3168 panic("netlink_init: Cannot allocate nl_table\n"); 3169 } 3170 3171 core_initcall(netlink_proto_init); 3172