1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/capability.h> 24 #include <linux/kernel.h> 25 #include <linux/init.h> 26 #include <linux/signal.h> 27 #include <linux/sched.h> 28 #include <linux/errno.h> 29 #include <linux/string.h> 30 #include <linux/stat.h> 31 #include <linux/socket.h> 32 #include <linux/un.h> 33 #include <linux/fcntl.h> 34 #include <linux/termios.h> 35 #include <linux/sockios.h> 36 #include <linux/net.h> 37 #include <linux/fs.h> 38 #include <linux/slab.h> 39 #include <linux/uaccess.h> 40 #include <linux/skbuff.h> 41 #include <linux/netdevice.h> 42 #include <linux/rtnetlink.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/notifier.h> 46 #include <linux/security.h> 47 #include <linux/jhash.h> 48 #include <linux/jiffies.h> 49 #include <linux/random.h> 50 #include <linux/bitops.h> 51 #include <linux/mm.h> 52 #include <linux/types.h> 53 #include <linux/audit.h> 54 #include <linux/mutex.h> 55 #include <linux/vmalloc.h> 56 #include <linux/if_arp.h> 57 #include <linux/rhashtable.h> 58 #include <asm/cacheflush.h> 59 #include <linux/hash.h> 60 #include <linux/genetlink.h> 61 #include <linux/net_namespace.h> 62 #include <linux/nospec.h> 63 #include <linux/btf_ids.h> 64 65 #include <net/net_namespace.h> 66 #include <net/netns/generic.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/netlink.h> 72 73 #include "af_netlink.h" 74 75 struct listeners { 76 struct rcu_head rcu; 77 unsigned long masks[]; 78 }; 79 80 /* state bits */ 81 #define NETLINK_S_CONGESTED 0x0 82 83 static inline int netlink_is_kernel(struct sock *sk) 84 { 85 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 86 } 87 88 struct netlink_table *nl_table __read_mostly; 89 EXPORT_SYMBOL_GPL(nl_table); 90 91 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 92 93 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 94 95 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 96 "nlk_cb_mutex-ROUTE", 97 "nlk_cb_mutex-1", 98 "nlk_cb_mutex-USERSOCK", 99 "nlk_cb_mutex-FIREWALL", 100 "nlk_cb_mutex-SOCK_DIAG", 101 "nlk_cb_mutex-NFLOG", 102 "nlk_cb_mutex-XFRM", 103 "nlk_cb_mutex-SELINUX", 104 "nlk_cb_mutex-ISCSI", 105 "nlk_cb_mutex-AUDIT", 106 "nlk_cb_mutex-FIB_LOOKUP", 107 "nlk_cb_mutex-CONNECTOR", 108 "nlk_cb_mutex-NETFILTER", 109 "nlk_cb_mutex-IP6_FW", 110 "nlk_cb_mutex-DNRTMSG", 111 "nlk_cb_mutex-KOBJECT_UEVENT", 112 "nlk_cb_mutex-GENERIC", 113 "nlk_cb_mutex-17", 114 "nlk_cb_mutex-SCSITRANSPORT", 115 "nlk_cb_mutex-ECRYPTFS", 116 "nlk_cb_mutex-RDMA", 117 "nlk_cb_mutex-CRYPTO", 118 "nlk_cb_mutex-SMC", 119 "nlk_cb_mutex-23", 120 "nlk_cb_mutex-24", 121 "nlk_cb_mutex-25", 122 "nlk_cb_mutex-26", 123 "nlk_cb_mutex-27", 124 "nlk_cb_mutex-28", 125 "nlk_cb_mutex-29", 126 "nlk_cb_mutex-30", 127 "nlk_cb_mutex-31", 128 "nlk_cb_mutex-MAX_LINKS" 129 }; 130 131 static int netlink_dump(struct sock *sk); 132 133 /* nl_table locking explained: 134 * Lookup and traversal are protected with an RCU read-side lock. Insertion 135 * and removal are protected with per bucket lock while using RCU list 136 * modification primitives and may run in parallel to RCU protected lookups. 137 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 138 * been acquired * either during or after the socket has been removed from 139 * the list and after an RCU grace period. 140 */ 141 DEFINE_RWLOCK(nl_table_lock); 142 EXPORT_SYMBOL_GPL(nl_table_lock); 143 static atomic_t nl_table_users = ATOMIC_INIT(0); 144 145 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 146 147 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 148 149 150 static const struct rhashtable_params netlink_rhashtable_params; 151 152 void do_trace_netlink_extack(const char *msg) 153 { 154 trace_netlink_extack(msg); 155 } 156 EXPORT_SYMBOL(do_trace_netlink_extack); 157 158 static inline u32 netlink_group_mask(u32 group) 159 { 160 return group ? 1 << (group - 1) : 0; 161 } 162 163 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 164 gfp_t gfp_mask) 165 { 166 unsigned int len = skb_end_offset(skb); 167 struct sk_buff *new; 168 169 new = alloc_skb(len, gfp_mask); 170 if (new == NULL) 171 return NULL; 172 173 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 174 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 175 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 176 177 skb_put_data(new, skb->data, len); 178 return new; 179 } 180 181 static unsigned int netlink_tap_net_id; 182 183 struct netlink_tap_net { 184 struct list_head netlink_tap_all; 185 struct mutex netlink_tap_lock; 186 }; 187 188 int netlink_add_tap(struct netlink_tap *nt) 189 { 190 struct net *net = dev_net(nt->dev); 191 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 192 193 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 194 return -EINVAL; 195 196 mutex_lock(&nn->netlink_tap_lock); 197 list_add_rcu(&nt->list, &nn->netlink_tap_all); 198 mutex_unlock(&nn->netlink_tap_lock); 199 200 __module_get(nt->module); 201 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(netlink_add_tap); 205 206 static int __netlink_remove_tap(struct netlink_tap *nt) 207 { 208 struct net *net = dev_net(nt->dev); 209 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 210 bool found = false; 211 struct netlink_tap *tmp; 212 213 mutex_lock(&nn->netlink_tap_lock); 214 215 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 216 if (nt == tmp) { 217 list_del_rcu(&nt->list); 218 found = true; 219 goto out; 220 } 221 } 222 223 pr_warn("__netlink_remove_tap: %p not found\n", nt); 224 out: 225 mutex_unlock(&nn->netlink_tap_lock); 226 227 if (found) 228 module_put(nt->module); 229 230 return found ? 0 : -ENODEV; 231 } 232 233 int netlink_remove_tap(struct netlink_tap *nt) 234 { 235 int ret; 236 237 ret = __netlink_remove_tap(nt); 238 synchronize_net(); 239 240 return ret; 241 } 242 EXPORT_SYMBOL_GPL(netlink_remove_tap); 243 244 static __net_init int netlink_tap_init_net(struct net *net) 245 { 246 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 247 248 INIT_LIST_HEAD(&nn->netlink_tap_all); 249 mutex_init(&nn->netlink_tap_lock); 250 return 0; 251 } 252 253 static struct pernet_operations netlink_tap_net_ops = { 254 .init = netlink_tap_init_net, 255 .id = &netlink_tap_net_id, 256 .size = sizeof(struct netlink_tap_net), 257 }; 258 259 static bool netlink_filter_tap(const struct sk_buff *skb) 260 { 261 struct sock *sk = skb->sk; 262 263 /* We take the more conservative approach and 264 * whitelist socket protocols that may pass. 265 */ 266 switch (sk->sk_protocol) { 267 case NETLINK_ROUTE: 268 case NETLINK_USERSOCK: 269 case NETLINK_SOCK_DIAG: 270 case NETLINK_NFLOG: 271 case NETLINK_XFRM: 272 case NETLINK_FIB_LOOKUP: 273 case NETLINK_NETFILTER: 274 case NETLINK_GENERIC: 275 return true; 276 } 277 278 return false; 279 } 280 281 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 282 struct net_device *dev) 283 { 284 struct sk_buff *nskb; 285 struct sock *sk = skb->sk; 286 int ret = -ENOMEM; 287 288 if (!net_eq(dev_net(dev), sock_net(sk))) 289 return 0; 290 291 dev_hold(dev); 292 293 if (is_vmalloc_addr(skb->head)) 294 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 295 else 296 nskb = skb_clone(skb, GFP_ATOMIC); 297 if (nskb) { 298 nskb->dev = dev; 299 nskb->protocol = htons((u16) sk->sk_protocol); 300 nskb->pkt_type = netlink_is_kernel(sk) ? 301 PACKET_KERNEL : PACKET_USER; 302 skb_reset_network_header(nskb); 303 ret = dev_queue_xmit(nskb); 304 if (unlikely(ret > 0)) 305 ret = net_xmit_errno(ret); 306 } 307 308 dev_put(dev); 309 return ret; 310 } 311 312 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 313 { 314 int ret; 315 struct netlink_tap *tmp; 316 317 if (!netlink_filter_tap(skb)) 318 return; 319 320 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 321 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 322 if (unlikely(ret)) 323 break; 324 } 325 } 326 327 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 328 { 329 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 330 331 rcu_read_lock(); 332 333 if (unlikely(!list_empty(&nn->netlink_tap_all))) 334 __netlink_deliver_tap(skb, nn); 335 336 rcu_read_unlock(); 337 } 338 339 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 340 struct sk_buff *skb) 341 { 342 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 343 netlink_deliver_tap(sock_net(dst), skb); 344 } 345 346 static void netlink_overrun(struct sock *sk) 347 { 348 struct netlink_sock *nlk = nlk_sk(sk); 349 350 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 351 if (!test_and_set_bit(NETLINK_S_CONGESTED, 352 &nlk_sk(sk)->state)) { 353 sk->sk_err = ENOBUFS; 354 sk_error_report(sk); 355 } 356 } 357 atomic_inc(&sk->sk_drops); 358 } 359 360 static void netlink_rcv_wake(struct sock *sk) 361 { 362 struct netlink_sock *nlk = nlk_sk(sk); 363 364 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 365 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 366 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 367 wake_up_interruptible(&nlk->wait); 368 } 369 370 static void netlink_skb_destructor(struct sk_buff *skb) 371 { 372 if (is_vmalloc_addr(skb->head)) { 373 if (!skb->cloned || 374 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 375 vfree(skb->head); 376 377 skb->head = NULL; 378 } 379 if (skb->sk != NULL) 380 sock_rfree(skb); 381 } 382 383 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 384 { 385 WARN_ON(skb->sk != NULL); 386 skb->sk = sk; 387 skb->destructor = netlink_skb_destructor; 388 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 389 sk_mem_charge(sk, skb->truesize); 390 } 391 392 static void netlink_sock_destruct(struct sock *sk) 393 { 394 struct netlink_sock *nlk = nlk_sk(sk); 395 396 if (nlk->cb_running) { 397 if (nlk->cb.done) 398 nlk->cb.done(&nlk->cb); 399 module_put(nlk->cb.module); 400 kfree_skb(nlk->cb.skb); 401 } 402 403 skb_queue_purge(&sk->sk_receive_queue); 404 405 if (!sock_flag(sk, SOCK_DEAD)) { 406 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 407 return; 408 } 409 410 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 411 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 412 WARN_ON(nlk_sk(sk)->groups); 413 } 414 415 static void netlink_sock_destruct_work(struct work_struct *work) 416 { 417 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 418 work); 419 420 sk_free(&nlk->sk); 421 } 422 423 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 424 * SMP. Look, when several writers sleep and reader wakes them up, all but one 425 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 426 * this, _but_ remember, it adds useless work on UP machines. 427 */ 428 429 void netlink_table_grab(void) 430 __acquires(nl_table_lock) 431 { 432 might_sleep(); 433 434 write_lock_irq(&nl_table_lock); 435 436 if (atomic_read(&nl_table_users)) { 437 DECLARE_WAITQUEUE(wait, current); 438 439 add_wait_queue_exclusive(&nl_table_wait, &wait); 440 for (;;) { 441 set_current_state(TASK_UNINTERRUPTIBLE); 442 if (atomic_read(&nl_table_users) == 0) 443 break; 444 write_unlock_irq(&nl_table_lock); 445 schedule(); 446 write_lock_irq(&nl_table_lock); 447 } 448 449 __set_current_state(TASK_RUNNING); 450 remove_wait_queue(&nl_table_wait, &wait); 451 } 452 } 453 454 void netlink_table_ungrab(void) 455 __releases(nl_table_lock) 456 { 457 write_unlock_irq(&nl_table_lock); 458 wake_up(&nl_table_wait); 459 } 460 461 static inline void 462 netlink_lock_table(void) 463 { 464 unsigned long flags; 465 466 /* read_lock() synchronizes us to netlink_table_grab */ 467 468 read_lock_irqsave(&nl_table_lock, flags); 469 atomic_inc(&nl_table_users); 470 read_unlock_irqrestore(&nl_table_lock, flags); 471 } 472 473 static inline void 474 netlink_unlock_table(void) 475 { 476 if (atomic_dec_and_test(&nl_table_users)) 477 wake_up(&nl_table_wait); 478 } 479 480 struct netlink_compare_arg 481 { 482 possible_net_t pnet; 483 u32 portid; 484 }; 485 486 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 487 #define netlink_compare_arg_len \ 488 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 489 490 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 491 const void *ptr) 492 { 493 const struct netlink_compare_arg *x = arg->key; 494 const struct netlink_sock *nlk = ptr; 495 496 return nlk->portid != x->portid || 497 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 498 } 499 500 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 501 struct net *net, u32 portid) 502 { 503 memset(arg, 0, sizeof(*arg)); 504 write_pnet(&arg->pnet, net); 505 arg->portid = portid; 506 } 507 508 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 509 struct net *net) 510 { 511 struct netlink_compare_arg arg; 512 513 netlink_compare_arg_init(&arg, net, portid); 514 return rhashtable_lookup_fast(&table->hash, &arg, 515 netlink_rhashtable_params); 516 } 517 518 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 519 { 520 struct netlink_compare_arg arg; 521 522 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 523 return rhashtable_lookup_insert_key(&table->hash, &arg, 524 &nlk_sk(sk)->node, 525 netlink_rhashtable_params); 526 } 527 528 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 529 { 530 struct netlink_table *table = &nl_table[protocol]; 531 struct sock *sk; 532 533 rcu_read_lock(); 534 sk = __netlink_lookup(table, portid, net); 535 if (sk) 536 sock_hold(sk); 537 rcu_read_unlock(); 538 539 return sk; 540 } 541 542 static const struct proto_ops netlink_ops; 543 544 static void 545 netlink_update_listeners(struct sock *sk) 546 { 547 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 548 unsigned long mask; 549 unsigned int i; 550 struct listeners *listeners; 551 552 listeners = nl_deref_protected(tbl->listeners); 553 if (!listeners) 554 return; 555 556 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 557 mask = 0; 558 sk_for_each_bound(sk, &tbl->mc_list) { 559 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 560 mask |= nlk_sk(sk)->groups[i]; 561 } 562 listeners->masks[i] = mask; 563 } 564 /* this function is only called with the netlink table "grabbed", which 565 * makes sure updates are visible before bind or setsockopt return. */ 566 } 567 568 static int netlink_insert(struct sock *sk, u32 portid) 569 { 570 struct netlink_table *table = &nl_table[sk->sk_protocol]; 571 int err; 572 573 lock_sock(sk); 574 575 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 576 if (nlk_sk(sk)->bound) 577 goto err; 578 579 nlk_sk(sk)->portid = portid; 580 sock_hold(sk); 581 582 err = __netlink_insert(table, sk); 583 if (err) { 584 /* In case the hashtable backend returns with -EBUSY 585 * from here, it must not escape to the caller. 586 */ 587 if (unlikely(err == -EBUSY)) 588 err = -EOVERFLOW; 589 if (err == -EEXIST) 590 err = -EADDRINUSE; 591 sock_put(sk); 592 goto err; 593 } 594 595 /* We need to ensure that the socket is hashed and visible. */ 596 smp_wmb(); 597 /* Paired with lockless reads from netlink_bind(), 598 * netlink_connect() and netlink_sendmsg(). 599 */ 600 WRITE_ONCE(nlk_sk(sk)->bound, portid); 601 602 err: 603 release_sock(sk); 604 return err; 605 } 606 607 static void netlink_remove(struct sock *sk) 608 { 609 struct netlink_table *table; 610 611 table = &nl_table[sk->sk_protocol]; 612 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 613 netlink_rhashtable_params)) { 614 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 615 __sock_put(sk); 616 } 617 618 netlink_table_grab(); 619 if (nlk_sk(sk)->subscriptions) { 620 __sk_del_bind_node(sk); 621 netlink_update_listeners(sk); 622 } 623 if (sk->sk_protocol == NETLINK_GENERIC) 624 atomic_inc(&genl_sk_destructing_cnt); 625 netlink_table_ungrab(); 626 } 627 628 static struct proto netlink_proto = { 629 .name = "NETLINK", 630 .owner = THIS_MODULE, 631 .obj_size = sizeof(struct netlink_sock), 632 }; 633 634 static int __netlink_create(struct net *net, struct socket *sock, 635 struct mutex *cb_mutex, int protocol, 636 int kern) 637 { 638 struct sock *sk; 639 struct netlink_sock *nlk; 640 641 sock->ops = &netlink_ops; 642 643 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 644 if (!sk) 645 return -ENOMEM; 646 647 sock_init_data(sock, sk); 648 649 nlk = nlk_sk(sk); 650 if (cb_mutex) { 651 nlk->cb_mutex = cb_mutex; 652 } else { 653 nlk->cb_mutex = &nlk->cb_def_mutex; 654 mutex_init(nlk->cb_mutex); 655 lockdep_set_class_and_name(nlk->cb_mutex, 656 nlk_cb_mutex_keys + protocol, 657 nlk_cb_mutex_key_strings[protocol]); 658 } 659 init_waitqueue_head(&nlk->wait); 660 661 sk->sk_destruct = netlink_sock_destruct; 662 sk->sk_protocol = protocol; 663 return 0; 664 } 665 666 static int netlink_create(struct net *net, struct socket *sock, int protocol, 667 int kern) 668 { 669 struct module *module = NULL; 670 struct mutex *cb_mutex; 671 struct netlink_sock *nlk; 672 int (*bind)(struct net *net, int group); 673 void (*unbind)(struct net *net, int group); 674 int err = 0; 675 676 sock->state = SS_UNCONNECTED; 677 678 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 679 return -ESOCKTNOSUPPORT; 680 681 if (protocol < 0 || protocol >= MAX_LINKS) 682 return -EPROTONOSUPPORT; 683 protocol = array_index_nospec(protocol, MAX_LINKS); 684 685 netlink_lock_table(); 686 #ifdef CONFIG_MODULES 687 if (!nl_table[protocol].registered) { 688 netlink_unlock_table(); 689 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 690 netlink_lock_table(); 691 } 692 #endif 693 if (nl_table[protocol].registered && 694 try_module_get(nl_table[protocol].module)) 695 module = nl_table[protocol].module; 696 else 697 err = -EPROTONOSUPPORT; 698 cb_mutex = nl_table[protocol].cb_mutex; 699 bind = nl_table[protocol].bind; 700 unbind = nl_table[protocol].unbind; 701 netlink_unlock_table(); 702 703 if (err < 0) 704 goto out; 705 706 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 707 if (err < 0) 708 goto out_module; 709 710 sock_prot_inuse_add(net, &netlink_proto, 1); 711 712 nlk = nlk_sk(sock->sk); 713 nlk->module = module; 714 nlk->netlink_bind = bind; 715 nlk->netlink_unbind = unbind; 716 out: 717 return err; 718 719 out_module: 720 module_put(module); 721 goto out; 722 } 723 724 static void deferred_put_nlk_sk(struct rcu_head *head) 725 { 726 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 727 struct sock *sk = &nlk->sk; 728 729 kfree(nlk->groups); 730 nlk->groups = NULL; 731 732 if (!refcount_dec_and_test(&sk->sk_refcnt)) 733 return; 734 735 if (nlk->cb_running && nlk->cb.done) { 736 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 737 schedule_work(&nlk->work); 738 return; 739 } 740 741 sk_free(sk); 742 } 743 744 static int netlink_release(struct socket *sock) 745 { 746 struct sock *sk = sock->sk; 747 struct netlink_sock *nlk; 748 749 if (!sk) 750 return 0; 751 752 netlink_remove(sk); 753 sock_orphan(sk); 754 nlk = nlk_sk(sk); 755 756 /* 757 * OK. Socket is unlinked, any packets that arrive now 758 * will be purged. 759 */ 760 761 /* must not acquire netlink_table_lock in any way again before unbind 762 * and notifying genetlink is done as otherwise it might deadlock 763 */ 764 if (nlk->netlink_unbind) { 765 int i; 766 767 for (i = 0; i < nlk->ngroups; i++) 768 if (test_bit(i, nlk->groups)) 769 nlk->netlink_unbind(sock_net(sk), i + 1); 770 } 771 if (sk->sk_protocol == NETLINK_GENERIC && 772 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 773 wake_up(&genl_sk_destructing_waitq); 774 775 sock->sk = NULL; 776 wake_up_interruptible_all(&nlk->wait); 777 778 skb_queue_purge(&sk->sk_write_queue); 779 780 if (nlk->portid && nlk->bound) { 781 struct netlink_notify n = { 782 .net = sock_net(sk), 783 .protocol = sk->sk_protocol, 784 .portid = nlk->portid, 785 }; 786 blocking_notifier_call_chain(&netlink_chain, 787 NETLINK_URELEASE, &n); 788 } 789 790 module_put(nlk->module); 791 792 if (netlink_is_kernel(sk)) { 793 netlink_table_grab(); 794 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 795 if (--nl_table[sk->sk_protocol].registered == 0) { 796 struct listeners *old; 797 798 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 799 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 800 kfree_rcu(old, rcu); 801 nl_table[sk->sk_protocol].module = NULL; 802 nl_table[sk->sk_protocol].bind = NULL; 803 nl_table[sk->sk_protocol].unbind = NULL; 804 nl_table[sk->sk_protocol].flags = 0; 805 nl_table[sk->sk_protocol].registered = 0; 806 } 807 netlink_table_ungrab(); 808 } 809 810 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 811 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 812 return 0; 813 } 814 815 static int netlink_autobind(struct socket *sock) 816 { 817 struct sock *sk = sock->sk; 818 struct net *net = sock_net(sk); 819 struct netlink_table *table = &nl_table[sk->sk_protocol]; 820 s32 portid = task_tgid_vnr(current); 821 int err; 822 s32 rover = -4096; 823 bool ok; 824 825 retry: 826 cond_resched(); 827 rcu_read_lock(); 828 ok = !__netlink_lookup(table, portid, net); 829 rcu_read_unlock(); 830 if (!ok) { 831 /* Bind collision, search negative portid values. */ 832 if (rover == -4096) 833 /* rover will be in range [S32_MIN, -4097] */ 834 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 835 else if (rover >= -4096) 836 rover = -4097; 837 portid = rover--; 838 goto retry; 839 } 840 841 err = netlink_insert(sk, portid); 842 if (err == -EADDRINUSE) 843 goto retry; 844 845 /* If 2 threads race to autobind, that is fine. */ 846 if (err == -EBUSY) 847 err = 0; 848 849 return err; 850 } 851 852 /** 853 * __netlink_ns_capable - General netlink message capability test 854 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 855 * @user_ns: The user namespace of the capability to use 856 * @cap: The capability to use 857 * 858 * Test to see if the opener of the socket we received the message 859 * from had when the netlink socket was created and the sender of the 860 * message has the capability @cap in the user namespace @user_ns. 861 */ 862 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 863 struct user_namespace *user_ns, int cap) 864 { 865 return ((nsp->flags & NETLINK_SKB_DST) || 866 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 867 ns_capable(user_ns, cap); 868 } 869 EXPORT_SYMBOL(__netlink_ns_capable); 870 871 /** 872 * netlink_ns_capable - General netlink message capability test 873 * @skb: socket buffer holding a netlink command from userspace 874 * @user_ns: The user namespace of the capability to use 875 * @cap: The capability to use 876 * 877 * Test to see if the opener of the socket we received the message 878 * from had when the netlink socket was created and the sender of the 879 * message has the capability @cap in the user namespace @user_ns. 880 */ 881 bool netlink_ns_capable(const struct sk_buff *skb, 882 struct user_namespace *user_ns, int cap) 883 { 884 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 885 } 886 EXPORT_SYMBOL(netlink_ns_capable); 887 888 /** 889 * netlink_capable - Netlink global message capability test 890 * @skb: socket buffer holding a netlink command from userspace 891 * @cap: The capability to use 892 * 893 * Test to see if the opener of the socket we received the message 894 * from had when the netlink socket was created and the sender of the 895 * message has the capability @cap in all user namespaces. 896 */ 897 bool netlink_capable(const struct sk_buff *skb, int cap) 898 { 899 return netlink_ns_capable(skb, &init_user_ns, cap); 900 } 901 EXPORT_SYMBOL(netlink_capable); 902 903 /** 904 * netlink_net_capable - Netlink network namespace message capability test 905 * @skb: socket buffer holding a netlink command from userspace 906 * @cap: The capability to use 907 * 908 * Test to see if the opener of the socket we received the message 909 * from had when the netlink socket was created and the sender of the 910 * message has the capability @cap over the network namespace of 911 * the socket we received the message from. 912 */ 913 bool netlink_net_capable(const struct sk_buff *skb, int cap) 914 { 915 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 916 } 917 EXPORT_SYMBOL(netlink_net_capable); 918 919 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 920 { 921 return (nl_table[sock->sk->sk_protocol].flags & flag) || 922 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 923 } 924 925 static void 926 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 927 { 928 struct netlink_sock *nlk = nlk_sk(sk); 929 930 if (nlk->subscriptions && !subscriptions) 931 __sk_del_bind_node(sk); 932 else if (!nlk->subscriptions && subscriptions) 933 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 934 nlk->subscriptions = subscriptions; 935 } 936 937 static int netlink_realloc_groups(struct sock *sk) 938 { 939 struct netlink_sock *nlk = nlk_sk(sk); 940 unsigned int groups; 941 unsigned long *new_groups; 942 int err = 0; 943 944 netlink_table_grab(); 945 946 groups = nl_table[sk->sk_protocol].groups; 947 if (!nl_table[sk->sk_protocol].registered) { 948 err = -ENOENT; 949 goto out_unlock; 950 } 951 952 if (nlk->ngroups >= groups) 953 goto out_unlock; 954 955 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 956 if (new_groups == NULL) { 957 err = -ENOMEM; 958 goto out_unlock; 959 } 960 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 961 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 962 963 nlk->groups = new_groups; 964 nlk->ngroups = groups; 965 out_unlock: 966 netlink_table_ungrab(); 967 return err; 968 } 969 970 static void netlink_undo_bind(int group, long unsigned int groups, 971 struct sock *sk) 972 { 973 struct netlink_sock *nlk = nlk_sk(sk); 974 int undo; 975 976 if (!nlk->netlink_unbind) 977 return; 978 979 for (undo = 0; undo < group; undo++) 980 if (test_bit(undo, &groups)) 981 nlk->netlink_unbind(sock_net(sk), undo + 1); 982 } 983 984 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 985 int addr_len) 986 { 987 struct sock *sk = sock->sk; 988 struct net *net = sock_net(sk); 989 struct netlink_sock *nlk = nlk_sk(sk); 990 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 991 int err = 0; 992 unsigned long groups; 993 bool bound; 994 995 if (addr_len < sizeof(struct sockaddr_nl)) 996 return -EINVAL; 997 998 if (nladdr->nl_family != AF_NETLINK) 999 return -EINVAL; 1000 groups = nladdr->nl_groups; 1001 1002 /* Only superuser is allowed to listen multicasts */ 1003 if (groups) { 1004 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1005 return -EPERM; 1006 err = netlink_realloc_groups(sk); 1007 if (err) 1008 return err; 1009 } 1010 1011 if (nlk->ngroups < BITS_PER_LONG) 1012 groups &= (1UL << nlk->ngroups) - 1; 1013 1014 /* Paired with WRITE_ONCE() in netlink_insert() */ 1015 bound = READ_ONCE(nlk->bound); 1016 if (bound) { 1017 /* Ensure nlk->portid is up-to-date. */ 1018 smp_rmb(); 1019 1020 if (nladdr->nl_pid != nlk->portid) 1021 return -EINVAL; 1022 } 1023 1024 if (nlk->netlink_bind && groups) { 1025 int group; 1026 1027 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1028 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1029 if (!test_bit(group, &groups)) 1030 continue; 1031 err = nlk->netlink_bind(net, group + 1); 1032 if (!err) 1033 continue; 1034 netlink_undo_bind(group, groups, sk); 1035 return err; 1036 } 1037 } 1038 1039 /* No need for barriers here as we return to user-space without 1040 * using any of the bound attributes. 1041 */ 1042 netlink_lock_table(); 1043 if (!bound) { 1044 err = nladdr->nl_pid ? 1045 netlink_insert(sk, nladdr->nl_pid) : 1046 netlink_autobind(sock); 1047 if (err) { 1048 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1049 goto unlock; 1050 } 1051 } 1052 1053 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1054 goto unlock; 1055 netlink_unlock_table(); 1056 1057 netlink_table_grab(); 1058 netlink_update_subscriptions(sk, nlk->subscriptions + 1059 hweight32(groups) - 1060 hweight32(nlk->groups[0])); 1061 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1062 netlink_update_listeners(sk); 1063 netlink_table_ungrab(); 1064 1065 return 0; 1066 1067 unlock: 1068 netlink_unlock_table(); 1069 return err; 1070 } 1071 1072 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1073 int alen, int flags) 1074 { 1075 int err = 0; 1076 struct sock *sk = sock->sk; 1077 struct netlink_sock *nlk = nlk_sk(sk); 1078 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1079 1080 if (alen < sizeof(addr->sa_family)) 1081 return -EINVAL; 1082 1083 if (addr->sa_family == AF_UNSPEC) { 1084 sk->sk_state = NETLINK_UNCONNECTED; 1085 nlk->dst_portid = 0; 1086 nlk->dst_group = 0; 1087 return 0; 1088 } 1089 if (addr->sa_family != AF_NETLINK) 1090 return -EINVAL; 1091 1092 if (alen < sizeof(struct sockaddr_nl)) 1093 return -EINVAL; 1094 1095 if ((nladdr->nl_groups || nladdr->nl_pid) && 1096 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1097 return -EPERM; 1098 1099 /* No need for barriers here as we return to user-space without 1100 * using any of the bound attributes. 1101 * Paired with WRITE_ONCE() in netlink_insert(). 1102 */ 1103 if (!READ_ONCE(nlk->bound)) 1104 err = netlink_autobind(sock); 1105 1106 if (err == 0) { 1107 sk->sk_state = NETLINK_CONNECTED; 1108 nlk->dst_portid = nladdr->nl_pid; 1109 nlk->dst_group = ffs(nladdr->nl_groups); 1110 } 1111 1112 return err; 1113 } 1114 1115 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1116 int peer) 1117 { 1118 struct sock *sk = sock->sk; 1119 struct netlink_sock *nlk = nlk_sk(sk); 1120 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1121 1122 nladdr->nl_family = AF_NETLINK; 1123 nladdr->nl_pad = 0; 1124 1125 if (peer) { 1126 nladdr->nl_pid = nlk->dst_portid; 1127 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1128 } else { 1129 nladdr->nl_pid = nlk->portid; 1130 netlink_lock_table(); 1131 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1132 netlink_unlock_table(); 1133 } 1134 return sizeof(*nladdr); 1135 } 1136 1137 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1138 unsigned long arg) 1139 { 1140 /* try to hand this ioctl down to the NIC drivers. 1141 */ 1142 return -ENOIOCTLCMD; 1143 } 1144 1145 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1146 { 1147 struct sock *sock; 1148 struct netlink_sock *nlk; 1149 1150 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1151 if (!sock) 1152 return ERR_PTR(-ECONNREFUSED); 1153 1154 /* Don't bother queuing skb if kernel socket has no input function */ 1155 nlk = nlk_sk(sock); 1156 if (sock->sk_state == NETLINK_CONNECTED && 1157 nlk->dst_portid != nlk_sk(ssk)->portid) { 1158 sock_put(sock); 1159 return ERR_PTR(-ECONNREFUSED); 1160 } 1161 return sock; 1162 } 1163 1164 struct sock *netlink_getsockbyfilp(struct file *filp) 1165 { 1166 struct inode *inode = file_inode(filp); 1167 struct sock *sock; 1168 1169 if (!S_ISSOCK(inode->i_mode)) 1170 return ERR_PTR(-ENOTSOCK); 1171 1172 sock = SOCKET_I(inode)->sk; 1173 if (sock->sk_family != AF_NETLINK) 1174 return ERR_PTR(-EINVAL); 1175 1176 sock_hold(sock); 1177 return sock; 1178 } 1179 1180 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1181 int broadcast) 1182 { 1183 struct sk_buff *skb; 1184 void *data; 1185 1186 if (size <= NLMSG_GOODSIZE || broadcast) 1187 return alloc_skb(size, GFP_KERNEL); 1188 1189 size = SKB_DATA_ALIGN(size) + 1190 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1191 1192 data = vmalloc(size); 1193 if (data == NULL) 1194 return NULL; 1195 1196 skb = __build_skb(data, size); 1197 if (skb == NULL) 1198 vfree(data); 1199 else 1200 skb->destructor = netlink_skb_destructor; 1201 1202 return skb; 1203 } 1204 1205 /* 1206 * Attach a skb to a netlink socket. 1207 * The caller must hold a reference to the destination socket. On error, the 1208 * reference is dropped. The skb is not send to the destination, just all 1209 * all error checks are performed and memory in the queue is reserved. 1210 * Return values: 1211 * < 0: error. skb freed, reference to sock dropped. 1212 * 0: continue 1213 * 1: repeat lookup - reference dropped while waiting for socket memory. 1214 */ 1215 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1216 long *timeo, struct sock *ssk) 1217 { 1218 struct netlink_sock *nlk; 1219 1220 nlk = nlk_sk(sk); 1221 1222 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1223 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1224 DECLARE_WAITQUEUE(wait, current); 1225 if (!*timeo) { 1226 if (!ssk || netlink_is_kernel(ssk)) 1227 netlink_overrun(sk); 1228 sock_put(sk); 1229 kfree_skb(skb); 1230 return -EAGAIN; 1231 } 1232 1233 __set_current_state(TASK_INTERRUPTIBLE); 1234 add_wait_queue(&nlk->wait, &wait); 1235 1236 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1237 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1238 !sock_flag(sk, SOCK_DEAD)) 1239 *timeo = schedule_timeout(*timeo); 1240 1241 __set_current_state(TASK_RUNNING); 1242 remove_wait_queue(&nlk->wait, &wait); 1243 sock_put(sk); 1244 1245 if (signal_pending(current)) { 1246 kfree_skb(skb); 1247 return sock_intr_errno(*timeo); 1248 } 1249 return 1; 1250 } 1251 netlink_skb_set_owner_r(skb, sk); 1252 return 0; 1253 } 1254 1255 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1256 { 1257 int len = skb->len; 1258 1259 netlink_deliver_tap(sock_net(sk), skb); 1260 1261 skb_queue_tail(&sk->sk_receive_queue, skb); 1262 sk->sk_data_ready(sk); 1263 return len; 1264 } 1265 1266 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1267 { 1268 int len = __netlink_sendskb(sk, skb); 1269 1270 sock_put(sk); 1271 return len; 1272 } 1273 1274 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1275 { 1276 kfree_skb(skb); 1277 sock_put(sk); 1278 } 1279 1280 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1281 { 1282 int delta; 1283 1284 WARN_ON(skb->sk != NULL); 1285 delta = skb->end - skb->tail; 1286 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1287 return skb; 1288 1289 if (skb_shared(skb)) { 1290 struct sk_buff *nskb = skb_clone(skb, allocation); 1291 if (!nskb) 1292 return skb; 1293 consume_skb(skb); 1294 skb = nskb; 1295 } 1296 1297 pskb_expand_head(skb, 0, -delta, 1298 (allocation & ~__GFP_DIRECT_RECLAIM) | 1299 __GFP_NOWARN | __GFP_NORETRY); 1300 return skb; 1301 } 1302 1303 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1304 struct sock *ssk) 1305 { 1306 int ret; 1307 struct netlink_sock *nlk = nlk_sk(sk); 1308 1309 ret = -ECONNREFUSED; 1310 if (nlk->netlink_rcv != NULL) { 1311 ret = skb->len; 1312 netlink_skb_set_owner_r(skb, sk); 1313 NETLINK_CB(skb).sk = ssk; 1314 netlink_deliver_tap_kernel(sk, ssk, skb); 1315 nlk->netlink_rcv(skb); 1316 consume_skb(skb); 1317 } else { 1318 kfree_skb(skb); 1319 } 1320 sock_put(sk); 1321 return ret; 1322 } 1323 1324 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1325 u32 portid, int nonblock) 1326 { 1327 struct sock *sk; 1328 int err; 1329 long timeo; 1330 1331 skb = netlink_trim(skb, gfp_any()); 1332 1333 timeo = sock_sndtimeo(ssk, nonblock); 1334 retry: 1335 sk = netlink_getsockbyportid(ssk, portid); 1336 if (IS_ERR(sk)) { 1337 kfree_skb(skb); 1338 return PTR_ERR(sk); 1339 } 1340 if (netlink_is_kernel(sk)) 1341 return netlink_unicast_kernel(sk, skb, ssk); 1342 1343 if (sk_filter(sk, skb)) { 1344 err = skb->len; 1345 kfree_skb(skb); 1346 sock_put(sk); 1347 return err; 1348 } 1349 1350 err = netlink_attachskb(sk, skb, &timeo, ssk); 1351 if (err == 1) 1352 goto retry; 1353 if (err) 1354 return err; 1355 1356 return netlink_sendskb(sk, skb); 1357 } 1358 EXPORT_SYMBOL(netlink_unicast); 1359 1360 int netlink_has_listeners(struct sock *sk, unsigned int group) 1361 { 1362 int res = 0; 1363 struct listeners *listeners; 1364 1365 BUG_ON(!netlink_is_kernel(sk)); 1366 1367 rcu_read_lock(); 1368 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1369 1370 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1371 res = test_bit(group - 1, listeners->masks); 1372 1373 rcu_read_unlock(); 1374 1375 return res; 1376 } 1377 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1378 1379 bool netlink_strict_get_check(struct sk_buff *skb) 1380 { 1381 const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk); 1382 1383 return nlk->flags & NETLINK_F_STRICT_CHK; 1384 } 1385 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1386 1387 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1388 { 1389 struct netlink_sock *nlk = nlk_sk(sk); 1390 1391 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1392 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1393 netlink_skb_set_owner_r(skb, sk); 1394 __netlink_sendskb(sk, skb); 1395 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1396 } 1397 return -1; 1398 } 1399 1400 struct netlink_broadcast_data { 1401 struct sock *exclude_sk; 1402 struct net *net; 1403 u32 portid; 1404 u32 group; 1405 int failure; 1406 int delivery_failure; 1407 int congested; 1408 int delivered; 1409 gfp_t allocation; 1410 struct sk_buff *skb, *skb2; 1411 }; 1412 1413 static void do_one_broadcast(struct sock *sk, 1414 struct netlink_broadcast_data *p) 1415 { 1416 struct netlink_sock *nlk = nlk_sk(sk); 1417 int val; 1418 1419 if (p->exclude_sk == sk) 1420 return; 1421 1422 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1423 !test_bit(p->group - 1, nlk->groups)) 1424 return; 1425 1426 if (!net_eq(sock_net(sk), p->net)) { 1427 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1428 return; 1429 1430 if (!peernet_has_id(sock_net(sk), p->net)) 1431 return; 1432 1433 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1434 CAP_NET_BROADCAST)) 1435 return; 1436 } 1437 1438 if (p->failure) { 1439 netlink_overrun(sk); 1440 return; 1441 } 1442 1443 sock_hold(sk); 1444 if (p->skb2 == NULL) { 1445 if (skb_shared(p->skb)) { 1446 p->skb2 = skb_clone(p->skb, p->allocation); 1447 } else { 1448 p->skb2 = skb_get(p->skb); 1449 /* 1450 * skb ownership may have been set when 1451 * delivered to a previous socket. 1452 */ 1453 skb_orphan(p->skb2); 1454 } 1455 } 1456 if (p->skb2 == NULL) { 1457 netlink_overrun(sk); 1458 /* Clone failed. Notify ALL listeners. */ 1459 p->failure = 1; 1460 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1461 p->delivery_failure = 1; 1462 goto out; 1463 } 1464 if (sk_filter(sk, p->skb2)) { 1465 kfree_skb(p->skb2); 1466 p->skb2 = NULL; 1467 goto out; 1468 } 1469 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1470 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1471 NETLINK_CB(p->skb2).nsid_is_set = true; 1472 val = netlink_broadcast_deliver(sk, p->skb2); 1473 if (val < 0) { 1474 netlink_overrun(sk); 1475 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1476 p->delivery_failure = 1; 1477 } else { 1478 p->congested |= val; 1479 p->delivered = 1; 1480 p->skb2 = NULL; 1481 } 1482 out: 1483 sock_put(sk); 1484 } 1485 1486 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1487 u32 group, gfp_t allocation) 1488 { 1489 struct net *net = sock_net(ssk); 1490 struct netlink_broadcast_data info; 1491 struct sock *sk; 1492 1493 skb = netlink_trim(skb, allocation); 1494 1495 info.exclude_sk = ssk; 1496 info.net = net; 1497 info.portid = portid; 1498 info.group = group; 1499 info.failure = 0; 1500 info.delivery_failure = 0; 1501 info.congested = 0; 1502 info.delivered = 0; 1503 info.allocation = allocation; 1504 info.skb = skb; 1505 info.skb2 = NULL; 1506 1507 /* While we sleep in clone, do not allow to change socket list */ 1508 1509 netlink_lock_table(); 1510 1511 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1512 do_one_broadcast(sk, &info); 1513 1514 consume_skb(skb); 1515 1516 netlink_unlock_table(); 1517 1518 if (info.delivery_failure) { 1519 kfree_skb(info.skb2); 1520 return -ENOBUFS; 1521 } 1522 consume_skb(info.skb2); 1523 1524 if (info.delivered) { 1525 if (info.congested && gfpflags_allow_blocking(allocation)) 1526 yield(); 1527 return 0; 1528 } 1529 return -ESRCH; 1530 } 1531 EXPORT_SYMBOL(netlink_broadcast); 1532 1533 struct netlink_set_err_data { 1534 struct sock *exclude_sk; 1535 u32 portid; 1536 u32 group; 1537 int code; 1538 }; 1539 1540 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1541 { 1542 struct netlink_sock *nlk = nlk_sk(sk); 1543 int ret = 0; 1544 1545 if (sk == p->exclude_sk) 1546 goto out; 1547 1548 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1549 goto out; 1550 1551 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1552 !test_bit(p->group - 1, nlk->groups)) 1553 goto out; 1554 1555 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 1556 ret = 1; 1557 goto out; 1558 } 1559 1560 sk->sk_err = p->code; 1561 sk_error_report(sk); 1562 out: 1563 return ret; 1564 } 1565 1566 /** 1567 * netlink_set_err - report error to broadcast listeners 1568 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1569 * @portid: the PORTID of a process that we want to skip (if any) 1570 * @group: the broadcast group that will notice the error 1571 * @code: error code, must be negative (as usual in kernelspace) 1572 * 1573 * This function returns the number of broadcast listeners that have set the 1574 * NETLINK_NO_ENOBUFS socket option. 1575 */ 1576 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1577 { 1578 struct netlink_set_err_data info; 1579 struct sock *sk; 1580 int ret = 0; 1581 1582 info.exclude_sk = ssk; 1583 info.portid = portid; 1584 info.group = group; 1585 /* sk->sk_err wants a positive error value */ 1586 info.code = -code; 1587 1588 read_lock(&nl_table_lock); 1589 1590 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1591 ret += do_one_set_err(sk, &info); 1592 1593 read_unlock(&nl_table_lock); 1594 return ret; 1595 } 1596 EXPORT_SYMBOL(netlink_set_err); 1597 1598 /* must be called with netlink table grabbed */ 1599 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1600 unsigned int group, 1601 int is_new) 1602 { 1603 int old, new = !!is_new, subscriptions; 1604 1605 old = test_bit(group - 1, nlk->groups); 1606 subscriptions = nlk->subscriptions - old + new; 1607 if (new) 1608 __set_bit(group - 1, nlk->groups); 1609 else 1610 __clear_bit(group - 1, nlk->groups); 1611 netlink_update_subscriptions(&nlk->sk, subscriptions); 1612 netlink_update_listeners(&nlk->sk); 1613 } 1614 1615 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1616 sockptr_t optval, unsigned int optlen) 1617 { 1618 struct sock *sk = sock->sk; 1619 struct netlink_sock *nlk = nlk_sk(sk); 1620 unsigned int val = 0; 1621 int err; 1622 1623 if (level != SOL_NETLINK) 1624 return -ENOPROTOOPT; 1625 1626 if (optlen >= sizeof(int) && 1627 copy_from_sockptr(&val, optval, sizeof(val))) 1628 return -EFAULT; 1629 1630 switch (optname) { 1631 case NETLINK_PKTINFO: 1632 if (val) 1633 nlk->flags |= NETLINK_F_RECV_PKTINFO; 1634 else 1635 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 1636 err = 0; 1637 break; 1638 case NETLINK_ADD_MEMBERSHIP: 1639 case NETLINK_DROP_MEMBERSHIP: { 1640 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1641 return -EPERM; 1642 err = netlink_realloc_groups(sk); 1643 if (err) 1644 return err; 1645 if (!val || val - 1 >= nlk->ngroups) 1646 return -EINVAL; 1647 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1648 err = nlk->netlink_bind(sock_net(sk), val); 1649 if (err) 1650 return err; 1651 } 1652 netlink_table_grab(); 1653 netlink_update_socket_mc(nlk, val, 1654 optname == NETLINK_ADD_MEMBERSHIP); 1655 netlink_table_ungrab(); 1656 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1657 nlk->netlink_unbind(sock_net(sk), val); 1658 1659 err = 0; 1660 break; 1661 } 1662 case NETLINK_BROADCAST_ERROR: 1663 if (val) 1664 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 1665 else 1666 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 1667 err = 0; 1668 break; 1669 case NETLINK_NO_ENOBUFS: 1670 if (val) { 1671 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 1672 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1673 wake_up_interruptible(&nlk->wait); 1674 } else { 1675 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 1676 } 1677 err = 0; 1678 break; 1679 case NETLINK_LISTEN_ALL_NSID: 1680 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1681 return -EPERM; 1682 1683 if (val) 1684 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 1685 else 1686 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 1687 err = 0; 1688 break; 1689 case NETLINK_CAP_ACK: 1690 if (val) 1691 nlk->flags |= NETLINK_F_CAP_ACK; 1692 else 1693 nlk->flags &= ~NETLINK_F_CAP_ACK; 1694 err = 0; 1695 break; 1696 case NETLINK_EXT_ACK: 1697 if (val) 1698 nlk->flags |= NETLINK_F_EXT_ACK; 1699 else 1700 nlk->flags &= ~NETLINK_F_EXT_ACK; 1701 err = 0; 1702 break; 1703 case NETLINK_GET_STRICT_CHK: 1704 if (val) 1705 nlk->flags |= NETLINK_F_STRICT_CHK; 1706 else 1707 nlk->flags &= ~NETLINK_F_STRICT_CHK; 1708 err = 0; 1709 break; 1710 default: 1711 err = -ENOPROTOOPT; 1712 } 1713 return err; 1714 } 1715 1716 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1717 char __user *optval, int __user *optlen) 1718 { 1719 struct sock *sk = sock->sk; 1720 struct netlink_sock *nlk = nlk_sk(sk); 1721 int len, val, err; 1722 1723 if (level != SOL_NETLINK) 1724 return -ENOPROTOOPT; 1725 1726 if (get_user(len, optlen)) 1727 return -EFAULT; 1728 if (len < 0) 1729 return -EINVAL; 1730 1731 switch (optname) { 1732 case NETLINK_PKTINFO: 1733 if (len < sizeof(int)) 1734 return -EINVAL; 1735 len = sizeof(int); 1736 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 1737 if (put_user(len, optlen) || 1738 put_user(val, optval)) 1739 return -EFAULT; 1740 err = 0; 1741 break; 1742 case NETLINK_BROADCAST_ERROR: 1743 if (len < sizeof(int)) 1744 return -EINVAL; 1745 len = sizeof(int); 1746 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 1747 if (put_user(len, optlen) || 1748 put_user(val, optval)) 1749 return -EFAULT; 1750 err = 0; 1751 break; 1752 case NETLINK_NO_ENOBUFS: 1753 if (len < sizeof(int)) 1754 return -EINVAL; 1755 len = sizeof(int); 1756 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 1757 if (put_user(len, optlen) || 1758 put_user(val, optval)) 1759 return -EFAULT; 1760 err = 0; 1761 break; 1762 case NETLINK_LIST_MEMBERSHIPS: { 1763 int pos, idx, shift; 1764 1765 err = 0; 1766 netlink_lock_table(); 1767 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1768 if (len - pos < sizeof(u32)) 1769 break; 1770 1771 idx = pos / sizeof(unsigned long); 1772 shift = (pos % sizeof(unsigned long)) * 8; 1773 if (put_user((u32)(nlk->groups[idx] >> shift), 1774 (u32 __user *)(optval + pos))) { 1775 err = -EFAULT; 1776 break; 1777 } 1778 } 1779 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 1780 err = -EFAULT; 1781 netlink_unlock_table(); 1782 break; 1783 } 1784 case NETLINK_CAP_ACK: 1785 if (len < sizeof(int)) 1786 return -EINVAL; 1787 len = sizeof(int); 1788 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 1789 if (put_user(len, optlen) || 1790 put_user(val, optval)) 1791 return -EFAULT; 1792 err = 0; 1793 break; 1794 case NETLINK_EXT_ACK: 1795 if (len < sizeof(int)) 1796 return -EINVAL; 1797 len = sizeof(int); 1798 val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0; 1799 if (put_user(len, optlen) || put_user(val, optval)) 1800 return -EFAULT; 1801 err = 0; 1802 break; 1803 case NETLINK_GET_STRICT_CHK: 1804 if (len < sizeof(int)) 1805 return -EINVAL; 1806 len = sizeof(int); 1807 val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0; 1808 if (put_user(len, optlen) || put_user(val, optval)) 1809 return -EFAULT; 1810 err = 0; 1811 break; 1812 default: 1813 err = -ENOPROTOOPT; 1814 } 1815 return err; 1816 } 1817 1818 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1819 { 1820 struct nl_pktinfo info; 1821 1822 info.group = NETLINK_CB(skb).dst_group; 1823 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1824 } 1825 1826 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1827 struct sk_buff *skb) 1828 { 1829 if (!NETLINK_CB(skb).nsid_is_set) 1830 return; 1831 1832 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1833 &NETLINK_CB(skb).nsid); 1834 } 1835 1836 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1837 { 1838 struct sock *sk = sock->sk; 1839 struct netlink_sock *nlk = nlk_sk(sk); 1840 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1841 u32 dst_portid; 1842 u32 dst_group; 1843 struct sk_buff *skb; 1844 int err; 1845 struct scm_cookie scm; 1846 u32 netlink_skb_flags = 0; 1847 1848 if (msg->msg_flags & MSG_OOB) 1849 return -EOPNOTSUPP; 1850 1851 if (len == 0) { 1852 pr_warn_once("Zero length message leads to an empty skb\n"); 1853 return -ENODATA; 1854 } 1855 1856 err = scm_send(sock, msg, &scm, true); 1857 if (err < 0) 1858 return err; 1859 1860 if (msg->msg_namelen) { 1861 err = -EINVAL; 1862 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1863 goto out; 1864 if (addr->nl_family != AF_NETLINK) 1865 goto out; 1866 dst_portid = addr->nl_pid; 1867 dst_group = ffs(addr->nl_groups); 1868 err = -EPERM; 1869 if ((dst_group || dst_portid) && 1870 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1871 goto out; 1872 netlink_skb_flags |= NETLINK_SKB_DST; 1873 } else { 1874 dst_portid = nlk->dst_portid; 1875 dst_group = nlk->dst_group; 1876 } 1877 1878 /* Paired with WRITE_ONCE() in netlink_insert() */ 1879 if (!READ_ONCE(nlk->bound)) { 1880 err = netlink_autobind(sock); 1881 if (err) 1882 goto out; 1883 } else { 1884 /* Ensure nlk is hashed and visible. */ 1885 smp_rmb(); 1886 } 1887 1888 err = -EMSGSIZE; 1889 if (len > sk->sk_sndbuf - 32) 1890 goto out; 1891 err = -ENOBUFS; 1892 skb = netlink_alloc_large_skb(len, dst_group); 1893 if (skb == NULL) 1894 goto out; 1895 1896 NETLINK_CB(skb).portid = nlk->portid; 1897 NETLINK_CB(skb).dst_group = dst_group; 1898 NETLINK_CB(skb).creds = scm.creds; 1899 NETLINK_CB(skb).flags = netlink_skb_flags; 1900 1901 err = -EFAULT; 1902 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1903 kfree_skb(skb); 1904 goto out; 1905 } 1906 1907 err = security_netlink_send(sk, skb); 1908 if (err) { 1909 kfree_skb(skb); 1910 goto out; 1911 } 1912 1913 if (dst_group) { 1914 refcount_inc(&skb->users); 1915 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1916 } 1917 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1918 1919 out: 1920 scm_destroy(&scm); 1921 return err; 1922 } 1923 1924 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1925 int flags) 1926 { 1927 struct scm_cookie scm; 1928 struct sock *sk = sock->sk; 1929 struct netlink_sock *nlk = nlk_sk(sk); 1930 int noblock = flags & MSG_DONTWAIT; 1931 size_t copied; 1932 struct sk_buff *skb, *data_skb; 1933 int err, ret; 1934 1935 if (flags & MSG_OOB) 1936 return -EOPNOTSUPP; 1937 1938 copied = 0; 1939 1940 skb = skb_recv_datagram(sk, flags, noblock, &err); 1941 if (skb == NULL) 1942 goto out; 1943 1944 data_skb = skb; 1945 1946 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1947 if (unlikely(skb_shinfo(skb)->frag_list)) { 1948 /* 1949 * If this skb has a frag_list, then here that means that we 1950 * will have to use the frag_list skb's data for compat tasks 1951 * and the regular skb's data for normal (non-compat) tasks. 1952 * 1953 * If we need to send the compat skb, assign it to the 1954 * 'data_skb' variable so that it will be used below for data 1955 * copying. We keep 'skb' for everything else, including 1956 * freeing both later. 1957 */ 1958 if (flags & MSG_CMSG_COMPAT) 1959 data_skb = skb_shinfo(skb)->frag_list; 1960 } 1961 #endif 1962 1963 /* Record the max length of recvmsg() calls for future allocations */ 1964 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 1965 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 1966 SKB_WITH_OVERHEAD(32768)); 1967 1968 copied = data_skb->len; 1969 if (len < copied) { 1970 msg->msg_flags |= MSG_TRUNC; 1971 copied = len; 1972 } 1973 1974 skb_reset_transport_header(data_skb); 1975 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1976 1977 if (msg->msg_name) { 1978 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1979 addr->nl_family = AF_NETLINK; 1980 addr->nl_pad = 0; 1981 addr->nl_pid = NETLINK_CB(skb).portid; 1982 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1983 msg->msg_namelen = sizeof(*addr); 1984 } 1985 1986 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 1987 netlink_cmsg_recv_pktinfo(msg, skb); 1988 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 1989 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1990 1991 memset(&scm, 0, sizeof(scm)); 1992 scm.creds = *NETLINK_CREDS(skb); 1993 if (flags & MSG_TRUNC) 1994 copied = data_skb->len; 1995 1996 skb_free_datagram(sk, skb); 1997 1998 if (nlk->cb_running && 1999 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2000 ret = netlink_dump(sk); 2001 if (ret) { 2002 sk->sk_err = -ret; 2003 sk_error_report(sk); 2004 } 2005 } 2006 2007 scm_recv(sock, msg, &scm, flags); 2008 out: 2009 netlink_rcv_wake(sk); 2010 return err ? : copied; 2011 } 2012 2013 static void netlink_data_ready(struct sock *sk) 2014 { 2015 BUG(); 2016 } 2017 2018 /* 2019 * We export these functions to other modules. They provide a 2020 * complete set of kernel non-blocking support for message 2021 * queueing. 2022 */ 2023 2024 struct sock * 2025 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2026 struct netlink_kernel_cfg *cfg) 2027 { 2028 struct socket *sock; 2029 struct sock *sk; 2030 struct netlink_sock *nlk; 2031 struct listeners *listeners = NULL; 2032 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2033 unsigned int groups; 2034 2035 BUG_ON(!nl_table); 2036 2037 if (unit < 0 || unit >= MAX_LINKS) 2038 return NULL; 2039 2040 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2041 return NULL; 2042 2043 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2044 goto out_sock_release_nosk; 2045 2046 sk = sock->sk; 2047 2048 if (!cfg || cfg->groups < 32) 2049 groups = 32; 2050 else 2051 groups = cfg->groups; 2052 2053 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2054 if (!listeners) 2055 goto out_sock_release; 2056 2057 sk->sk_data_ready = netlink_data_ready; 2058 if (cfg && cfg->input) 2059 nlk_sk(sk)->netlink_rcv = cfg->input; 2060 2061 if (netlink_insert(sk, 0)) 2062 goto out_sock_release; 2063 2064 nlk = nlk_sk(sk); 2065 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2066 2067 netlink_table_grab(); 2068 if (!nl_table[unit].registered) { 2069 nl_table[unit].groups = groups; 2070 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2071 nl_table[unit].cb_mutex = cb_mutex; 2072 nl_table[unit].module = module; 2073 if (cfg) { 2074 nl_table[unit].bind = cfg->bind; 2075 nl_table[unit].unbind = cfg->unbind; 2076 nl_table[unit].flags = cfg->flags; 2077 if (cfg->compare) 2078 nl_table[unit].compare = cfg->compare; 2079 } 2080 nl_table[unit].registered = 1; 2081 } else { 2082 kfree(listeners); 2083 nl_table[unit].registered++; 2084 } 2085 netlink_table_ungrab(); 2086 return sk; 2087 2088 out_sock_release: 2089 kfree(listeners); 2090 netlink_kernel_release(sk); 2091 return NULL; 2092 2093 out_sock_release_nosk: 2094 sock_release(sock); 2095 return NULL; 2096 } 2097 EXPORT_SYMBOL(__netlink_kernel_create); 2098 2099 void 2100 netlink_kernel_release(struct sock *sk) 2101 { 2102 if (sk == NULL || sk->sk_socket == NULL) 2103 return; 2104 2105 sock_release(sk->sk_socket); 2106 } 2107 EXPORT_SYMBOL(netlink_kernel_release); 2108 2109 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2110 { 2111 struct listeners *new, *old; 2112 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2113 2114 if (groups < 32) 2115 groups = 32; 2116 2117 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2118 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2119 if (!new) 2120 return -ENOMEM; 2121 old = nl_deref_protected(tbl->listeners); 2122 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2123 rcu_assign_pointer(tbl->listeners, new); 2124 2125 kfree_rcu(old, rcu); 2126 } 2127 tbl->groups = groups; 2128 2129 return 0; 2130 } 2131 2132 /** 2133 * netlink_change_ngroups - change number of multicast groups 2134 * 2135 * This changes the number of multicast groups that are available 2136 * on a certain netlink family. Note that it is not possible to 2137 * change the number of groups to below 32. Also note that it does 2138 * not implicitly call netlink_clear_multicast_users() when the 2139 * number of groups is reduced. 2140 * 2141 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2142 * @groups: The new number of groups. 2143 */ 2144 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2145 { 2146 int err; 2147 2148 netlink_table_grab(); 2149 err = __netlink_change_ngroups(sk, groups); 2150 netlink_table_ungrab(); 2151 2152 return err; 2153 } 2154 2155 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2156 { 2157 struct sock *sk; 2158 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2159 2160 sk_for_each_bound(sk, &tbl->mc_list) 2161 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2162 } 2163 2164 struct nlmsghdr * 2165 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2166 { 2167 struct nlmsghdr *nlh; 2168 int size = nlmsg_msg_size(len); 2169 2170 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2171 nlh->nlmsg_type = type; 2172 nlh->nlmsg_len = size; 2173 nlh->nlmsg_flags = flags; 2174 nlh->nlmsg_pid = portid; 2175 nlh->nlmsg_seq = seq; 2176 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2177 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2178 return nlh; 2179 } 2180 EXPORT_SYMBOL(__nlmsg_put); 2181 2182 /* 2183 * It looks a bit ugly. 2184 * It would be better to create kernel thread. 2185 */ 2186 2187 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2188 struct netlink_callback *cb, 2189 struct netlink_ext_ack *extack) 2190 { 2191 struct nlmsghdr *nlh; 2192 2193 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2194 NLM_F_MULTI | cb->answer_flags); 2195 if (WARN_ON(!nlh)) 2196 return -ENOBUFS; 2197 2198 nl_dump_check_consistent(cb, nlh); 2199 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2200 2201 if (extack->_msg && nlk->flags & NETLINK_F_EXT_ACK) { 2202 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2203 if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)) 2204 nlmsg_end(skb, nlh); 2205 } 2206 2207 return 0; 2208 } 2209 2210 static int netlink_dump(struct sock *sk) 2211 { 2212 struct netlink_sock *nlk = nlk_sk(sk); 2213 struct netlink_ext_ack extack = {}; 2214 struct netlink_callback *cb; 2215 struct sk_buff *skb = NULL; 2216 struct module *module; 2217 int err = -ENOBUFS; 2218 int alloc_min_size; 2219 int alloc_size; 2220 2221 mutex_lock(nlk->cb_mutex); 2222 if (!nlk->cb_running) { 2223 err = -EINVAL; 2224 goto errout_skb; 2225 } 2226 2227 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2228 goto errout_skb; 2229 2230 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2231 * required, but it makes sense to _attempt_ a 16K bytes allocation 2232 * to reduce number of system calls on dump operations, if user 2233 * ever provided a big enough buffer. 2234 */ 2235 cb = &nlk->cb; 2236 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2237 2238 if (alloc_min_size < nlk->max_recvmsg_len) { 2239 alloc_size = nlk->max_recvmsg_len; 2240 skb = alloc_skb(alloc_size, 2241 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2242 __GFP_NOWARN | __GFP_NORETRY); 2243 } 2244 if (!skb) { 2245 alloc_size = alloc_min_size; 2246 skb = alloc_skb(alloc_size, GFP_KERNEL); 2247 } 2248 if (!skb) 2249 goto errout_skb; 2250 2251 /* Trim skb to allocated size. User is expected to provide buffer as 2252 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2253 * netlink_recvmsg())). dump will pack as many smaller messages as 2254 * could fit within the allocated skb. skb is typically allocated 2255 * with larger space than required (could be as much as near 2x the 2256 * requested size with align to next power of 2 approach). Allowing 2257 * dump to use the excess space makes it difficult for a user to have a 2258 * reasonable static buffer based on the expected largest dump of a 2259 * single netdev. The outcome is MSG_TRUNC error. 2260 */ 2261 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2262 netlink_skb_set_owner_r(skb, sk); 2263 2264 if (nlk->dump_done_errno > 0) { 2265 cb->extack = &extack; 2266 nlk->dump_done_errno = cb->dump(skb, cb); 2267 cb->extack = NULL; 2268 } 2269 2270 if (nlk->dump_done_errno > 0 || 2271 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2272 mutex_unlock(nlk->cb_mutex); 2273 2274 if (sk_filter(sk, skb)) 2275 kfree_skb(skb); 2276 else 2277 __netlink_sendskb(sk, skb); 2278 return 0; 2279 } 2280 2281 if (netlink_dump_done(nlk, skb, cb, &extack)) 2282 goto errout_skb; 2283 2284 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2285 /* frag_list skb's data is used for compat tasks 2286 * and the regular skb's data for normal (non-compat) tasks. 2287 * See netlink_recvmsg(). 2288 */ 2289 if (unlikely(skb_shinfo(skb)->frag_list)) { 2290 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2291 goto errout_skb; 2292 } 2293 #endif 2294 2295 if (sk_filter(sk, skb)) 2296 kfree_skb(skb); 2297 else 2298 __netlink_sendskb(sk, skb); 2299 2300 if (cb->done) 2301 cb->done(cb); 2302 2303 nlk->cb_running = false; 2304 module = cb->module; 2305 skb = cb->skb; 2306 mutex_unlock(nlk->cb_mutex); 2307 module_put(module); 2308 consume_skb(skb); 2309 return 0; 2310 2311 errout_skb: 2312 mutex_unlock(nlk->cb_mutex); 2313 kfree_skb(skb); 2314 return err; 2315 } 2316 2317 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2318 const struct nlmsghdr *nlh, 2319 struct netlink_dump_control *control) 2320 { 2321 struct netlink_sock *nlk, *nlk2; 2322 struct netlink_callback *cb; 2323 struct sock *sk; 2324 int ret; 2325 2326 refcount_inc(&skb->users); 2327 2328 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2329 if (sk == NULL) { 2330 ret = -ECONNREFUSED; 2331 goto error_free; 2332 } 2333 2334 nlk = nlk_sk(sk); 2335 mutex_lock(nlk->cb_mutex); 2336 /* A dump is in progress... */ 2337 if (nlk->cb_running) { 2338 ret = -EBUSY; 2339 goto error_unlock; 2340 } 2341 /* add reference of module which cb->dump belongs to */ 2342 if (!try_module_get(control->module)) { 2343 ret = -EPROTONOSUPPORT; 2344 goto error_unlock; 2345 } 2346 2347 cb = &nlk->cb; 2348 memset(cb, 0, sizeof(*cb)); 2349 cb->dump = control->dump; 2350 cb->done = control->done; 2351 cb->nlh = nlh; 2352 cb->data = control->data; 2353 cb->module = control->module; 2354 cb->min_dump_alloc = control->min_dump_alloc; 2355 cb->skb = skb; 2356 2357 nlk2 = nlk_sk(NETLINK_CB(skb).sk); 2358 cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK); 2359 2360 if (control->start) { 2361 ret = control->start(cb); 2362 if (ret) 2363 goto error_put; 2364 } 2365 2366 nlk->cb_running = true; 2367 nlk->dump_done_errno = INT_MAX; 2368 2369 mutex_unlock(nlk->cb_mutex); 2370 2371 ret = netlink_dump(sk); 2372 2373 sock_put(sk); 2374 2375 if (ret) 2376 return ret; 2377 2378 /* We successfully started a dump, by returning -EINTR we 2379 * signal not to send ACK even if it was requested. 2380 */ 2381 return -EINTR; 2382 2383 error_put: 2384 module_put(control->module); 2385 error_unlock: 2386 sock_put(sk); 2387 mutex_unlock(nlk->cb_mutex); 2388 error_free: 2389 kfree_skb(skb); 2390 return ret; 2391 } 2392 EXPORT_SYMBOL(__netlink_dump_start); 2393 2394 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2395 const struct netlink_ext_ack *extack) 2396 { 2397 struct sk_buff *skb; 2398 struct nlmsghdr *rep; 2399 struct nlmsgerr *errmsg; 2400 size_t payload = sizeof(*errmsg); 2401 size_t tlvlen = 0; 2402 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2403 unsigned int flags = 0; 2404 bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK; 2405 2406 /* Error messages get the original request appened, unless the user 2407 * requests to cap the error message, and get extra error data if 2408 * requested. 2409 */ 2410 if (nlk_has_extack && extack && extack->_msg) 2411 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2412 2413 if (err && !(nlk->flags & NETLINK_F_CAP_ACK)) 2414 payload += nlmsg_len(nlh); 2415 else 2416 flags |= NLM_F_CAPPED; 2417 if (err && nlk_has_extack && extack && extack->bad_attr) 2418 tlvlen += nla_total_size(sizeof(u32)); 2419 if (nlk_has_extack && extack && extack->cookie_len) 2420 tlvlen += nla_total_size(extack->cookie_len); 2421 if (err && nlk_has_extack && extack && extack->policy) 2422 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2423 2424 if (tlvlen) 2425 flags |= NLM_F_ACK_TLVS; 2426 2427 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2428 if (!skb) { 2429 NETLINK_CB(in_skb).sk->sk_err = ENOBUFS; 2430 sk_error_report(NETLINK_CB(in_skb).sk); 2431 return; 2432 } 2433 2434 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2435 NLMSG_ERROR, payload, flags); 2436 errmsg = nlmsg_data(rep); 2437 errmsg->error = err; 2438 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2439 2440 if (nlk_has_extack && extack) { 2441 if (extack->_msg) { 2442 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, 2443 extack->_msg)); 2444 } 2445 if (err && extack->bad_attr && 2446 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2447 (u8 *)extack->bad_attr >= in_skb->data + 2448 in_skb->len)) 2449 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2450 (u8 *)extack->bad_attr - 2451 (u8 *)nlh)); 2452 if (extack->cookie_len) 2453 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2454 extack->cookie_len, extack->cookie)); 2455 if (extack->policy) 2456 netlink_policy_dump_write_attr(skb, extack->policy, 2457 NLMSGERR_ATTR_POLICY); 2458 } 2459 2460 nlmsg_end(skb, rep); 2461 2462 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2463 } 2464 EXPORT_SYMBOL(netlink_ack); 2465 2466 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2467 struct nlmsghdr *, 2468 struct netlink_ext_ack *)) 2469 { 2470 struct netlink_ext_ack extack; 2471 struct nlmsghdr *nlh; 2472 int err; 2473 2474 while (skb->len >= nlmsg_total_size(0)) { 2475 int msglen; 2476 2477 memset(&extack, 0, sizeof(extack)); 2478 nlh = nlmsg_hdr(skb); 2479 err = 0; 2480 2481 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2482 return 0; 2483 2484 /* Only requests are handled by the kernel */ 2485 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2486 goto ack; 2487 2488 /* Skip control messages */ 2489 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2490 goto ack; 2491 2492 err = cb(skb, nlh, &extack); 2493 if (err == -EINTR) 2494 goto skip; 2495 2496 ack: 2497 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2498 netlink_ack(skb, nlh, err, &extack); 2499 2500 skip: 2501 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2502 if (msglen > skb->len) 2503 msglen = skb->len; 2504 skb_pull(skb, msglen); 2505 } 2506 2507 return 0; 2508 } 2509 EXPORT_SYMBOL(netlink_rcv_skb); 2510 2511 /** 2512 * nlmsg_notify - send a notification netlink message 2513 * @sk: netlink socket to use 2514 * @skb: notification message 2515 * @portid: destination netlink portid for reports or 0 2516 * @group: destination multicast group or 0 2517 * @report: 1 to report back, 0 to disable 2518 * @flags: allocation flags 2519 */ 2520 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2521 unsigned int group, int report, gfp_t flags) 2522 { 2523 int err = 0; 2524 2525 if (group) { 2526 int exclude_portid = 0; 2527 2528 if (report) { 2529 refcount_inc(&skb->users); 2530 exclude_portid = portid; 2531 } 2532 2533 /* errors reported via destination sk->sk_err, but propagate 2534 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2535 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2536 if (err == -ESRCH) 2537 err = 0; 2538 } 2539 2540 if (report) { 2541 int err2; 2542 2543 err2 = nlmsg_unicast(sk, skb, portid); 2544 if (!err) 2545 err = err2; 2546 } 2547 2548 return err; 2549 } 2550 EXPORT_SYMBOL(nlmsg_notify); 2551 2552 #ifdef CONFIG_PROC_FS 2553 struct nl_seq_iter { 2554 struct seq_net_private p; 2555 struct rhashtable_iter hti; 2556 int link; 2557 }; 2558 2559 static void netlink_walk_start(struct nl_seq_iter *iter) 2560 { 2561 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2562 rhashtable_walk_start(&iter->hti); 2563 } 2564 2565 static void netlink_walk_stop(struct nl_seq_iter *iter) 2566 { 2567 rhashtable_walk_stop(&iter->hti); 2568 rhashtable_walk_exit(&iter->hti); 2569 } 2570 2571 static void *__netlink_seq_next(struct seq_file *seq) 2572 { 2573 struct nl_seq_iter *iter = seq->private; 2574 struct netlink_sock *nlk; 2575 2576 do { 2577 for (;;) { 2578 nlk = rhashtable_walk_next(&iter->hti); 2579 2580 if (IS_ERR(nlk)) { 2581 if (PTR_ERR(nlk) == -EAGAIN) 2582 continue; 2583 2584 return nlk; 2585 } 2586 2587 if (nlk) 2588 break; 2589 2590 netlink_walk_stop(iter); 2591 if (++iter->link >= MAX_LINKS) 2592 return NULL; 2593 2594 netlink_walk_start(iter); 2595 } 2596 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2597 2598 return nlk; 2599 } 2600 2601 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2602 __acquires(RCU) 2603 { 2604 struct nl_seq_iter *iter = seq->private; 2605 void *obj = SEQ_START_TOKEN; 2606 loff_t pos; 2607 2608 iter->link = 0; 2609 2610 netlink_walk_start(iter); 2611 2612 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2613 obj = __netlink_seq_next(seq); 2614 2615 return obj; 2616 } 2617 2618 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2619 { 2620 ++*pos; 2621 return __netlink_seq_next(seq); 2622 } 2623 2624 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2625 { 2626 struct nl_seq_iter *iter = seq->private; 2627 2628 if (iter->link >= MAX_LINKS) 2629 return; 2630 2631 netlink_walk_stop(iter); 2632 } 2633 2634 2635 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2636 { 2637 if (v == SEQ_START_TOKEN) { 2638 seq_puts(seq, 2639 "sk Eth Pid Groups " 2640 "Rmem Wmem Dump Locks Drops Inode\n"); 2641 } else { 2642 struct sock *s = v; 2643 struct netlink_sock *nlk = nlk_sk(s); 2644 2645 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2646 s, 2647 s->sk_protocol, 2648 nlk->portid, 2649 nlk->groups ? (u32)nlk->groups[0] : 0, 2650 sk_rmem_alloc_get(s), 2651 sk_wmem_alloc_get(s), 2652 nlk->cb_running, 2653 refcount_read(&s->sk_refcnt), 2654 atomic_read(&s->sk_drops), 2655 sock_i_ino(s) 2656 ); 2657 2658 } 2659 return 0; 2660 } 2661 2662 #ifdef CONFIG_BPF_SYSCALL 2663 struct bpf_iter__netlink { 2664 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2665 __bpf_md_ptr(struct netlink_sock *, sk); 2666 }; 2667 2668 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2669 2670 static int netlink_prog_seq_show(struct bpf_prog *prog, 2671 struct bpf_iter_meta *meta, 2672 void *v) 2673 { 2674 struct bpf_iter__netlink ctx; 2675 2676 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2677 ctx.meta = meta; 2678 ctx.sk = nlk_sk((struct sock *)v); 2679 return bpf_iter_run_prog(prog, &ctx); 2680 } 2681 2682 static int netlink_seq_show(struct seq_file *seq, void *v) 2683 { 2684 struct bpf_iter_meta meta; 2685 struct bpf_prog *prog; 2686 2687 meta.seq = seq; 2688 prog = bpf_iter_get_info(&meta, false); 2689 if (!prog) 2690 return netlink_native_seq_show(seq, v); 2691 2692 if (v != SEQ_START_TOKEN) 2693 return netlink_prog_seq_show(prog, &meta, v); 2694 2695 return 0; 2696 } 2697 2698 static void netlink_seq_stop(struct seq_file *seq, void *v) 2699 { 2700 struct bpf_iter_meta meta; 2701 struct bpf_prog *prog; 2702 2703 if (!v) { 2704 meta.seq = seq; 2705 prog = bpf_iter_get_info(&meta, true); 2706 if (prog) 2707 (void)netlink_prog_seq_show(prog, &meta, v); 2708 } 2709 2710 netlink_native_seq_stop(seq, v); 2711 } 2712 #else 2713 static int netlink_seq_show(struct seq_file *seq, void *v) 2714 { 2715 return netlink_native_seq_show(seq, v); 2716 } 2717 2718 static void netlink_seq_stop(struct seq_file *seq, void *v) 2719 { 2720 netlink_native_seq_stop(seq, v); 2721 } 2722 #endif 2723 2724 static const struct seq_operations netlink_seq_ops = { 2725 .start = netlink_seq_start, 2726 .next = netlink_seq_next, 2727 .stop = netlink_seq_stop, 2728 .show = netlink_seq_show, 2729 }; 2730 #endif 2731 2732 int netlink_register_notifier(struct notifier_block *nb) 2733 { 2734 return blocking_notifier_chain_register(&netlink_chain, nb); 2735 } 2736 EXPORT_SYMBOL(netlink_register_notifier); 2737 2738 int netlink_unregister_notifier(struct notifier_block *nb) 2739 { 2740 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2741 } 2742 EXPORT_SYMBOL(netlink_unregister_notifier); 2743 2744 static const struct proto_ops netlink_ops = { 2745 .family = PF_NETLINK, 2746 .owner = THIS_MODULE, 2747 .release = netlink_release, 2748 .bind = netlink_bind, 2749 .connect = netlink_connect, 2750 .socketpair = sock_no_socketpair, 2751 .accept = sock_no_accept, 2752 .getname = netlink_getname, 2753 .poll = datagram_poll, 2754 .ioctl = netlink_ioctl, 2755 .listen = sock_no_listen, 2756 .shutdown = sock_no_shutdown, 2757 .setsockopt = netlink_setsockopt, 2758 .getsockopt = netlink_getsockopt, 2759 .sendmsg = netlink_sendmsg, 2760 .recvmsg = netlink_recvmsg, 2761 .mmap = sock_no_mmap, 2762 .sendpage = sock_no_sendpage, 2763 }; 2764 2765 static const struct net_proto_family netlink_family_ops = { 2766 .family = PF_NETLINK, 2767 .create = netlink_create, 2768 .owner = THIS_MODULE, /* for consistency 8) */ 2769 }; 2770 2771 static int __net_init netlink_net_init(struct net *net) 2772 { 2773 #ifdef CONFIG_PROC_FS 2774 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2775 sizeof(struct nl_seq_iter))) 2776 return -ENOMEM; 2777 #endif 2778 return 0; 2779 } 2780 2781 static void __net_exit netlink_net_exit(struct net *net) 2782 { 2783 #ifdef CONFIG_PROC_FS 2784 remove_proc_entry("netlink", net->proc_net); 2785 #endif 2786 } 2787 2788 static void __init netlink_add_usersock_entry(void) 2789 { 2790 struct listeners *listeners; 2791 int groups = 32; 2792 2793 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2794 if (!listeners) 2795 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2796 2797 netlink_table_grab(); 2798 2799 nl_table[NETLINK_USERSOCK].groups = groups; 2800 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2801 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2802 nl_table[NETLINK_USERSOCK].registered = 1; 2803 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2804 2805 netlink_table_ungrab(); 2806 } 2807 2808 static struct pernet_operations __net_initdata netlink_net_ops = { 2809 .init = netlink_net_init, 2810 .exit = netlink_net_exit, 2811 }; 2812 2813 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2814 { 2815 const struct netlink_sock *nlk = data; 2816 struct netlink_compare_arg arg; 2817 2818 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2819 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2820 } 2821 2822 static const struct rhashtable_params netlink_rhashtable_params = { 2823 .head_offset = offsetof(struct netlink_sock, node), 2824 .key_len = netlink_compare_arg_len, 2825 .obj_hashfn = netlink_hash, 2826 .obj_cmpfn = netlink_compare, 2827 .automatic_shrinking = true, 2828 }; 2829 2830 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2831 BTF_ID_LIST(btf_netlink_sock_id) 2832 BTF_ID(struct, netlink_sock) 2833 2834 static const struct bpf_iter_seq_info netlink_seq_info = { 2835 .seq_ops = &netlink_seq_ops, 2836 .init_seq_private = bpf_iter_init_seq_net, 2837 .fini_seq_private = bpf_iter_fini_seq_net, 2838 .seq_priv_size = sizeof(struct nl_seq_iter), 2839 }; 2840 2841 static struct bpf_iter_reg netlink_reg_info = { 2842 .target = "netlink", 2843 .ctx_arg_info_size = 1, 2844 .ctx_arg_info = { 2845 { offsetof(struct bpf_iter__netlink, sk), 2846 PTR_TO_BTF_ID_OR_NULL }, 2847 }, 2848 .seq_info = &netlink_seq_info, 2849 }; 2850 2851 static int __init bpf_iter_register(void) 2852 { 2853 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2854 return bpf_iter_reg_target(&netlink_reg_info); 2855 } 2856 #endif 2857 2858 static int __init netlink_proto_init(void) 2859 { 2860 int i; 2861 int err = proto_register(&netlink_proto, 0); 2862 2863 if (err != 0) 2864 goto out; 2865 2866 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2867 err = bpf_iter_register(); 2868 if (err) 2869 goto out; 2870 #endif 2871 2872 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2873 2874 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2875 if (!nl_table) 2876 goto panic; 2877 2878 for (i = 0; i < MAX_LINKS; i++) { 2879 if (rhashtable_init(&nl_table[i].hash, 2880 &netlink_rhashtable_params) < 0) { 2881 while (--i > 0) 2882 rhashtable_destroy(&nl_table[i].hash); 2883 kfree(nl_table); 2884 goto panic; 2885 } 2886 } 2887 2888 netlink_add_usersock_entry(); 2889 2890 sock_register(&netlink_family_ops); 2891 register_pernet_subsys(&netlink_net_ops); 2892 register_pernet_subsys(&netlink_tap_net_ops); 2893 /* The netlink device handler may be needed early. */ 2894 rtnetlink_init(); 2895 out: 2896 return err; 2897 panic: 2898 panic("netlink_init: Cannot allocate nl_table\n"); 2899 } 2900 2901 core_initcall(netlink_proto_init); 2902