xref: /openbmc/linux/net/netlink/af_netlink.c (revision b8b350af)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NETLINK      Kernel-user communication protocol.
4  *
5  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7  * 				Patrick McHardy <kaber@trash.net>
8  *
9  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
10  *                               added netlink_proto_exit
11  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
12  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
13  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
14  * 				 - inc module use count of module that owns
15  * 				   the kernel socket in case userspace opens
16  * 				   socket of same protocol
17  * 				 - remove all module support, since netlink is
18  * 				   mandatory if CONFIG_NET=y these days
19  */
20 
21 #include <linux/module.h>
22 
23 #include <linux/capability.h>
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/signal.h>
27 #include <linux/sched.h>
28 #include <linux/errno.h>
29 #include <linux/string.h>
30 #include <linux/stat.h>
31 #include <linux/socket.h>
32 #include <linux/un.h>
33 #include <linux/fcntl.h>
34 #include <linux/termios.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/fs.h>
38 #include <linux/slab.h>
39 #include <linux/uaccess.h>
40 #include <linux/skbuff.h>
41 #include <linux/netdevice.h>
42 #include <linux/rtnetlink.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/notifier.h>
46 #include <linux/security.h>
47 #include <linux/jhash.h>
48 #include <linux/jiffies.h>
49 #include <linux/random.h>
50 #include <linux/bitops.h>
51 #include <linux/mm.h>
52 #include <linux/types.h>
53 #include <linux/audit.h>
54 #include <linux/mutex.h>
55 #include <linux/vmalloc.h>
56 #include <linux/if_arp.h>
57 #include <linux/rhashtable.h>
58 #include <asm/cacheflush.h>
59 #include <linux/hash.h>
60 #include <linux/genetlink.h>
61 #include <linux/net_namespace.h>
62 #include <linux/nospec.h>
63 #include <linux/btf_ids.h>
64 
65 #include <net/net_namespace.h>
66 #include <net/netns/generic.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/netlink.h>
72 
73 #include "af_netlink.h"
74 
75 struct listeners {
76 	struct rcu_head		rcu;
77 	unsigned long		masks[];
78 };
79 
80 /* state bits */
81 #define NETLINK_S_CONGESTED		0x0
82 
83 static inline int netlink_is_kernel(struct sock *sk)
84 {
85 	return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
86 }
87 
88 struct netlink_table *nl_table __read_mostly;
89 EXPORT_SYMBOL_GPL(nl_table);
90 
91 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
92 
93 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS];
94 
95 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = {
96 	"nlk_cb_mutex-ROUTE",
97 	"nlk_cb_mutex-1",
98 	"nlk_cb_mutex-USERSOCK",
99 	"nlk_cb_mutex-FIREWALL",
100 	"nlk_cb_mutex-SOCK_DIAG",
101 	"nlk_cb_mutex-NFLOG",
102 	"nlk_cb_mutex-XFRM",
103 	"nlk_cb_mutex-SELINUX",
104 	"nlk_cb_mutex-ISCSI",
105 	"nlk_cb_mutex-AUDIT",
106 	"nlk_cb_mutex-FIB_LOOKUP",
107 	"nlk_cb_mutex-CONNECTOR",
108 	"nlk_cb_mutex-NETFILTER",
109 	"nlk_cb_mutex-IP6_FW",
110 	"nlk_cb_mutex-DNRTMSG",
111 	"nlk_cb_mutex-KOBJECT_UEVENT",
112 	"nlk_cb_mutex-GENERIC",
113 	"nlk_cb_mutex-17",
114 	"nlk_cb_mutex-SCSITRANSPORT",
115 	"nlk_cb_mutex-ECRYPTFS",
116 	"nlk_cb_mutex-RDMA",
117 	"nlk_cb_mutex-CRYPTO",
118 	"nlk_cb_mutex-SMC",
119 	"nlk_cb_mutex-23",
120 	"nlk_cb_mutex-24",
121 	"nlk_cb_mutex-25",
122 	"nlk_cb_mutex-26",
123 	"nlk_cb_mutex-27",
124 	"nlk_cb_mutex-28",
125 	"nlk_cb_mutex-29",
126 	"nlk_cb_mutex-30",
127 	"nlk_cb_mutex-31",
128 	"nlk_cb_mutex-MAX_LINKS"
129 };
130 
131 static int netlink_dump(struct sock *sk);
132 
133 /* nl_table locking explained:
134  * Lookup and traversal are protected with an RCU read-side lock. Insertion
135  * and removal are protected with per bucket lock while using RCU list
136  * modification primitives and may run in parallel to RCU protected lookups.
137  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
138  * been acquired * either during or after the socket has been removed from
139  * the list and after an RCU grace period.
140  */
141 DEFINE_RWLOCK(nl_table_lock);
142 EXPORT_SYMBOL_GPL(nl_table_lock);
143 static atomic_t nl_table_users = ATOMIC_INIT(0);
144 
145 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
146 
147 static BLOCKING_NOTIFIER_HEAD(netlink_chain);
148 
149 
150 static const struct rhashtable_params netlink_rhashtable_params;
151 
152 void do_trace_netlink_extack(const char *msg)
153 {
154 	trace_netlink_extack(msg);
155 }
156 EXPORT_SYMBOL(do_trace_netlink_extack);
157 
158 static inline u32 netlink_group_mask(u32 group)
159 {
160 	return group ? 1 << (group - 1) : 0;
161 }
162 
163 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
164 					   gfp_t gfp_mask)
165 {
166 	unsigned int len = skb_end_offset(skb);
167 	struct sk_buff *new;
168 
169 	new = alloc_skb(len, gfp_mask);
170 	if (new == NULL)
171 		return NULL;
172 
173 	NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
174 	NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
175 	NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
176 
177 	skb_put_data(new, skb->data, len);
178 	return new;
179 }
180 
181 static unsigned int netlink_tap_net_id;
182 
183 struct netlink_tap_net {
184 	struct list_head netlink_tap_all;
185 	struct mutex netlink_tap_lock;
186 };
187 
188 int netlink_add_tap(struct netlink_tap *nt)
189 {
190 	struct net *net = dev_net(nt->dev);
191 	struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
192 
193 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
194 		return -EINVAL;
195 
196 	mutex_lock(&nn->netlink_tap_lock);
197 	list_add_rcu(&nt->list, &nn->netlink_tap_all);
198 	mutex_unlock(&nn->netlink_tap_lock);
199 
200 	__module_get(nt->module);
201 
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(netlink_add_tap);
205 
206 static int __netlink_remove_tap(struct netlink_tap *nt)
207 {
208 	struct net *net = dev_net(nt->dev);
209 	struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
210 	bool found = false;
211 	struct netlink_tap *tmp;
212 
213 	mutex_lock(&nn->netlink_tap_lock);
214 
215 	list_for_each_entry(tmp, &nn->netlink_tap_all, list) {
216 		if (nt == tmp) {
217 			list_del_rcu(&nt->list);
218 			found = true;
219 			goto out;
220 		}
221 	}
222 
223 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
224 out:
225 	mutex_unlock(&nn->netlink_tap_lock);
226 
227 	if (found)
228 		module_put(nt->module);
229 
230 	return found ? 0 : -ENODEV;
231 }
232 
233 int netlink_remove_tap(struct netlink_tap *nt)
234 {
235 	int ret;
236 
237 	ret = __netlink_remove_tap(nt);
238 	synchronize_net();
239 
240 	return ret;
241 }
242 EXPORT_SYMBOL_GPL(netlink_remove_tap);
243 
244 static __net_init int netlink_tap_init_net(struct net *net)
245 {
246 	struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
247 
248 	INIT_LIST_HEAD(&nn->netlink_tap_all);
249 	mutex_init(&nn->netlink_tap_lock);
250 	return 0;
251 }
252 
253 static struct pernet_operations netlink_tap_net_ops = {
254 	.init = netlink_tap_init_net,
255 	.id   = &netlink_tap_net_id,
256 	.size = sizeof(struct netlink_tap_net),
257 };
258 
259 static bool netlink_filter_tap(const struct sk_buff *skb)
260 {
261 	struct sock *sk = skb->sk;
262 
263 	/* We take the more conservative approach and
264 	 * whitelist socket protocols that may pass.
265 	 */
266 	switch (sk->sk_protocol) {
267 	case NETLINK_ROUTE:
268 	case NETLINK_USERSOCK:
269 	case NETLINK_SOCK_DIAG:
270 	case NETLINK_NFLOG:
271 	case NETLINK_XFRM:
272 	case NETLINK_FIB_LOOKUP:
273 	case NETLINK_NETFILTER:
274 	case NETLINK_GENERIC:
275 		return true;
276 	}
277 
278 	return false;
279 }
280 
281 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
282 				     struct net_device *dev)
283 {
284 	struct sk_buff *nskb;
285 	struct sock *sk = skb->sk;
286 	int ret = -ENOMEM;
287 
288 	if (!net_eq(dev_net(dev), sock_net(sk)))
289 		return 0;
290 
291 	dev_hold(dev);
292 
293 	if (is_vmalloc_addr(skb->head))
294 		nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
295 	else
296 		nskb = skb_clone(skb, GFP_ATOMIC);
297 	if (nskb) {
298 		nskb->dev = dev;
299 		nskb->protocol = htons((u16) sk->sk_protocol);
300 		nskb->pkt_type = netlink_is_kernel(sk) ?
301 				 PACKET_KERNEL : PACKET_USER;
302 		skb_reset_network_header(nskb);
303 		ret = dev_queue_xmit(nskb);
304 		if (unlikely(ret > 0))
305 			ret = net_xmit_errno(ret);
306 	}
307 
308 	dev_put(dev);
309 	return ret;
310 }
311 
312 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn)
313 {
314 	int ret;
315 	struct netlink_tap *tmp;
316 
317 	if (!netlink_filter_tap(skb))
318 		return;
319 
320 	list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) {
321 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
322 		if (unlikely(ret))
323 			break;
324 	}
325 }
326 
327 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb)
328 {
329 	struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
330 
331 	rcu_read_lock();
332 
333 	if (unlikely(!list_empty(&nn->netlink_tap_all)))
334 		__netlink_deliver_tap(skb, nn);
335 
336 	rcu_read_unlock();
337 }
338 
339 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
340 				       struct sk_buff *skb)
341 {
342 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
343 		netlink_deliver_tap(sock_net(dst), skb);
344 }
345 
346 static void netlink_overrun(struct sock *sk)
347 {
348 	struct netlink_sock *nlk = nlk_sk(sk);
349 
350 	if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
351 		if (!test_and_set_bit(NETLINK_S_CONGESTED,
352 				      &nlk_sk(sk)->state)) {
353 			sk->sk_err = ENOBUFS;
354 			sk_error_report(sk);
355 		}
356 	}
357 	atomic_inc(&sk->sk_drops);
358 }
359 
360 static void netlink_rcv_wake(struct sock *sk)
361 {
362 	struct netlink_sock *nlk = nlk_sk(sk);
363 
364 	if (skb_queue_empty_lockless(&sk->sk_receive_queue))
365 		clear_bit(NETLINK_S_CONGESTED, &nlk->state);
366 	if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
367 		wake_up_interruptible(&nlk->wait);
368 }
369 
370 static void netlink_skb_destructor(struct sk_buff *skb)
371 {
372 	if (is_vmalloc_addr(skb->head)) {
373 		if (!skb->cloned ||
374 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
375 			vfree(skb->head);
376 
377 		skb->head = NULL;
378 	}
379 	if (skb->sk != NULL)
380 		sock_rfree(skb);
381 }
382 
383 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
384 {
385 	WARN_ON(skb->sk != NULL);
386 	skb->sk = sk;
387 	skb->destructor = netlink_skb_destructor;
388 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
389 	sk_mem_charge(sk, skb->truesize);
390 }
391 
392 static void netlink_sock_destruct(struct sock *sk)
393 {
394 	struct netlink_sock *nlk = nlk_sk(sk);
395 
396 	if (nlk->cb_running) {
397 		if (nlk->cb.done)
398 			nlk->cb.done(&nlk->cb);
399 		module_put(nlk->cb.module);
400 		kfree_skb(nlk->cb.skb);
401 	}
402 
403 	skb_queue_purge(&sk->sk_receive_queue);
404 
405 	if (!sock_flag(sk, SOCK_DEAD)) {
406 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
407 		return;
408 	}
409 
410 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
411 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
412 	WARN_ON(nlk_sk(sk)->groups);
413 }
414 
415 static void netlink_sock_destruct_work(struct work_struct *work)
416 {
417 	struct netlink_sock *nlk = container_of(work, struct netlink_sock,
418 						work);
419 
420 	sk_free(&nlk->sk);
421 }
422 
423 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
424  * SMP. Look, when several writers sleep and reader wakes them up, all but one
425  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
426  * this, _but_ remember, it adds useless work on UP machines.
427  */
428 
429 void netlink_table_grab(void)
430 	__acquires(nl_table_lock)
431 {
432 	might_sleep();
433 
434 	write_lock_irq(&nl_table_lock);
435 
436 	if (atomic_read(&nl_table_users)) {
437 		DECLARE_WAITQUEUE(wait, current);
438 
439 		add_wait_queue_exclusive(&nl_table_wait, &wait);
440 		for (;;) {
441 			set_current_state(TASK_UNINTERRUPTIBLE);
442 			if (atomic_read(&nl_table_users) == 0)
443 				break;
444 			write_unlock_irq(&nl_table_lock);
445 			schedule();
446 			write_lock_irq(&nl_table_lock);
447 		}
448 
449 		__set_current_state(TASK_RUNNING);
450 		remove_wait_queue(&nl_table_wait, &wait);
451 	}
452 }
453 
454 void netlink_table_ungrab(void)
455 	__releases(nl_table_lock)
456 {
457 	write_unlock_irq(&nl_table_lock);
458 	wake_up(&nl_table_wait);
459 }
460 
461 static inline void
462 netlink_lock_table(void)
463 {
464 	unsigned long flags;
465 
466 	/* read_lock() synchronizes us to netlink_table_grab */
467 
468 	read_lock_irqsave(&nl_table_lock, flags);
469 	atomic_inc(&nl_table_users);
470 	read_unlock_irqrestore(&nl_table_lock, flags);
471 }
472 
473 static inline void
474 netlink_unlock_table(void)
475 {
476 	if (atomic_dec_and_test(&nl_table_users))
477 		wake_up(&nl_table_wait);
478 }
479 
480 struct netlink_compare_arg
481 {
482 	possible_net_t pnet;
483 	u32 portid;
484 };
485 
486 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
487 #define netlink_compare_arg_len \
488 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
489 
490 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
491 				  const void *ptr)
492 {
493 	const struct netlink_compare_arg *x = arg->key;
494 	const struct netlink_sock *nlk = ptr;
495 
496 	return nlk->portid != x->portid ||
497 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
498 }
499 
500 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
501 				     struct net *net, u32 portid)
502 {
503 	memset(arg, 0, sizeof(*arg));
504 	write_pnet(&arg->pnet, net);
505 	arg->portid = portid;
506 }
507 
508 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
509 				     struct net *net)
510 {
511 	struct netlink_compare_arg arg;
512 
513 	netlink_compare_arg_init(&arg, net, portid);
514 	return rhashtable_lookup_fast(&table->hash, &arg,
515 				      netlink_rhashtable_params);
516 }
517 
518 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
519 {
520 	struct netlink_compare_arg arg;
521 
522 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
523 	return rhashtable_lookup_insert_key(&table->hash, &arg,
524 					    &nlk_sk(sk)->node,
525 					    netlink_rhashtable_params);
526 }
527 
528 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
529 {
530 	struct netlink_table *table = &nl_table[protocol];
531 	struct sock *sk;
532 
533 	rcu_read_lock();
534 	sk = __netlink_lookup(table, portid, net);
535 	if (sk)
536 		sock_hold(sk);
537 	rcu_read_unlock();
538 
539 	return sk;
540 }
541 
542 static const struct proto_ops netlink_ops;
543 
544 static void
545 netlink_update_listeners(struct sock *sk)
546 {
547 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
548 	unsigned long mask;
549 	unsigned int i;
550 	struct listeners *listeners;
551 
552 	listeners = nl_deref_protected(tbl->listeners);
553 	if (!listeners)
554 		return;
555 
556 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
557 		mask = 0;
558 		sk_for_each_bound(sk, &tbl->mc_list) {
559 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
560 				mask |= nlk_sk(sk)->groups[i];
561 		}
562 		listeners->masks[i] = mask;
563 	}
564 	/* this function is only called with the netlink table "grabbed", which
565 	 * makes sure updates are visible before bind or setsockopt return. */
566 }
567 
568 static int netlink_insert(struct sock *sk, u32 portid)
569 {
570 	struct netlink_table *table = &nl_table[sk->sk_protocol];
571 	int err;
572 
573 	lock_sock(sk);
574 
575 	err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
576 	if (nlk_sk(sk)->bound)
577 		goto err;
578 
579 	nlk_sk(sk)->portid = portid;
580 	sock_hold(sk);
581 
582 	err = __netlink_insert(table, sk);
583 	if (err) {
584 		/* In case the hashtable backend returns with -EBUSY
585 		 * from here, it must not escape to the caller.
586 		 */
587 		if (unlikely(err == -EBUSY))
588 			err = -EOVERFLOW;
589 		if (err == -EEXIST)
590 			err = -EADDRINUSE;
591 		sock_put(sk);
592 		goto err;
593 	}
594 
595 	/* We need to ensure that the socket is hashed and visible. */
596 	smp_wmb();
597 	nlk_sk(sk)->bound = portid;
598 
599 err:
600 	release_sock(sk);
601 	return err;
602 }
603 
604 static void netlink_remove(struct sock *sk)
605 {
606 	struct netlink_table *table;
607 
608 	table = &nl_table[sk->sk_protocol];
609 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
610 				    netlink_rhashtable_params)) {
611 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
612 		__sock_put(sk);
613 	}
614 
615 	netlink_table_grab();
616 	if (nlk_sk(sk)->subscriptions) {
617 		__sk_del_bind_node(sk);
618 		netlink_update_listeners(sk);
619 	}
620 	if (sk->sk_protocol == NETLINK_GENERIC)
621 		atomic_inc(&genl_sk_destructing_cnt);
622 	netlink_table_ungrab();
623 }
624 
625 static struct proto netlink_proto = {
626 	.name	  = "NETLINK",
627 	.owner	  = THIS_MODULE,
628 	.obj_size = sizeof(struct netlink_sock),
629 };
630 
631 static int __netlink_create(struct net *net, struct socket *sock,
632 			    struct mutex *cb_mutex, int protocol,
633 			    int kern)
634 {
635 	struct sock *sk;
636 	struct netlink_sock *nlk;
637 
638 	sock->ops = &netlink_ops;
639 
640 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
641 	if (!sk)
642 		return -ENOMEM;
643 
644 	sock_init_data(sock, sk);
645 
646 	nlk = nlk_sk(sk);
647 	if (cb_mutex) {
648 		nlk->cb_mutex = cb_mutex;
649 	} else {
650 		nlk->cb_mutex = &nlk->cb_def_mutex;
651 		mutex_init(nlk->cb_mutex);
652 		lockdep_set_class_and_name(nlk->cb_mutex,
653 					   nlk_cb_mutex_keys + protocol,
654 					   nlk_cb_mutex_key_strings[protocol]);
655 	}
656 	init_waitqueue_head(&nlk->wait);
657 
658 	sk->sk_destruct = netlink_sock_destruct;
659 	sk->sk_protocol = protocol;
660 	return 0;
661 }
662 
663 static int netlink_create(struct net *net, struct socket *sock, int protocol,
664 			  int kern)
665 {
666 	struct module *module = NULL;
667 	struct mutex *cb_mutex;
668 	struct netlink_sock *nlk;
669 	int (*bind)(struct net *net, int group);
670 	void (*unbind)(struct net *net, int group);
671 	int err = 0;
672 
673 	sock->state = SS_UNCONNECTED;
674 
675 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
676 		return -ESOCKTNOSUPPORT;
677 
678 	if (protocol < 0 || protocol >= MAX_LINKS)
679 		return -EPROTONOSUPPORT;
680 	protocol = array_index_nospec(protocol, MAX_LINKS);
681 
682 	netlink_lock_table();
683 #ifdef CONFIG_MODULES
684 	if (!nl_table[protocol].registered) {
685 		netlink_unlock_table();
686 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
687 		netlink_lock_table();
688 	}
689 #endif
690 	if (nl_table[protocol].registered &&
691 	    try_module_get(nl_table[protocol].module))
692 		module = nl_table[protocol].module;
693 	else
694 		err = -EPROTONOSUPPORT;
695 	cb_mutex = nl_table[protocol].cb_mutex;
696 	bind = nl_table[protocol].bind;
697 	unbind = nl_table[protocol].unbind;
698 	netlink_unlock_table();
699 
700 	if (err < 0)
701 		goto out;
702 
703 	err = __netlink_create(net, sock, cb_mutex, protocol, kern);
704 	if (err < 0)
705 		goto out_module;
706 
707 	local_bh_disable();
708 	sock_prot_inuse_add(net, &netlink_proto, 1);
709 	local_bh_enable();
710 
711 	nlk = nlk_sk(sock->sk);
712 	nlk->module = module;
713 	nlk->netlink_bind = bind;
714 	nlk->netlink_unbind = unbind;
715 out:
716 	return err;
717 
718 out_module:
719 	module_put(module);
720 	goto out;
721 }
722 
723 static void deferred_put_nlk_sk(struct rcu_head *head)
724 {
725 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
726 	struct sock *sk = &nlk->sk;
727 
728 	kfree(nlk->groups);
729 	nlk->groups = NULL;
730 
731 	if (!refcount_dec_and_test(&sk->sk_refcnt))
732 		return;
733 
734 	if (nlk->cb_running && nlk->cb.done) {
735 		INIT_WORK(&nlk->work, netlink_sock_destruct_work);
736 		schedule_work(&nlk->work);
737 		return;
738 	}
739 
740 	sk_free(sk);
741 }
742 
743 static int netlink_release(struct socket *sock)
744 {
745 	struct sock *sk = sock->sk;
746 	struct netlink_sock *nlk;
747 
748 	if (!sk)
749 		return 0;
750 
751 	netlink_remove(sk);
752 	sock_orphan(sk);
753 	nlk = nlk_sk(sk);
754 
755 	/*
756 	 * OK. Socket is unlinked, any packets that arrive now
757 	 * will be purged.
758 	 */
759 
760 	/* must not acquire netlink_table_lock in any way again before unbind
761 	 * and notifying genetlink is done as otherwise it might deadlock
762 	 */
763 	if (nlk->netlink_unbind) {
764 		int i;
765 
766 		for (i = 0; i < nlk->ngroups; i++)
767 			if (test_bit(i, nlk->groups))
768 				nlk->netlink_unbind(sock_net(sk), i + 1);
769 	}
770 	if (sk->sk_protocol == NETLINK_GENERIC &&
771 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
772 		wake_up(&genl_sk_destructing_waitq);
773 
774 	sock->sk = NULL;
775 	wake_up_interruptible_all(&nlk->wait);
776 
777 	skb_queue_purge(&sk->sk_write_queue);
778 
779 	if (nlk->portid && nlk->bound) {
780 		struct netlink_notify n = {
781 						.net = sock_net(sk),
782 						.protocol = sk->sk_protocol,
783 						.portid = nlk->portid,
784 					  };
785 		blocking_notifier_call_chain(&netlink_chain,
786 				NETLINK_URELEASE, &n);
787 	}
788 
789 	module_put(nlk->module);
790 
791 	if (netlink_is_kernel(sk)) {
792 		netlink_table_grab();
793 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
794 		if (--nl_table[sk->sk_protocol].registered == 0) {
795 			struct listeners *old;
796 
797 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
798 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
799 			kfree_rcu(old, rcu);
800 			nl_table[sk->sk_protocol].module = NULL;
801 			nl_table[sk->sk_protocol].bind = NULL;
802 			nl_table[sk->sk_protocol].unbind = NULL;
803 			nl_table[sk->sk_protocol].flags = 0;
804 			nl_table[sk->sk_protocol].registered = 0;
805 		}
806 		netlink_table_ungrab();
807 	}
808 
809 	local_bh_disable();
810 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
811 	local_bh_enable();
812 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
813 	return 0;
814 }
815 
816 static int netlink_autobind(struct socket *sock)
817 {
818 	struct sock *sk = sock->sk;
819 	struct net *net = sock_net(sk);
820 	struct netlink_table *table = &nl_table[sk->sk_protocol];
821 	s32 portid = task_tgid_vnr(current);
822 	int err;
823 	s32 rover = -4096;
824 	bool ok;
825 
826 retry:
827 	cond_resched();
828 	rcu_read_lock();
829 	ok = !__netlink_lookup(table, portid, net);
830 	rcu_read_unlock();
831 	if (!ok) {
832 		/* Bind collision, search negative portid values. */
833 		if (rover == -4096)
834 			/* rover will be in range [S32_MIN, -4097] */
835 			rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
836 		else if (rover >= -4096)
837 			rover = -4097;
838 		portid = rover--;
839 		goto retry;
840 	}
841 
842 	err = netlink_insert(sk, portid);
843 	if (err == -EADDRINUSE)
844 		goto retry;
845 
846 	/* If 2 threads race to autobind, that is fine.  */
847 	if (err == -EBUSY)
848 		err = 0;
849 
850 	return err;
851 }
852 
853 /**
854  * __netlink_ns_capable - General netlink message capability test
855  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
856  * @user_ns: The user namespace of the capability to use
857  * @cap: The capability to use
858  *
859  * Test to see if the opener of the socket we received the message
860  * from had when the netlink socket was created and the sender of the
861  * message has the capability @cap in the user namespace @user_ns.
862  */
863 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
864 			struct user_namespace *user_ns, int cap)
865 {
866 	return ((nsp->flags & NETLINK_SKB_DST) ||
867 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
868 		ns_capable(user_ns, cap);
869 }
870 EXPORT_SYMBOL(__netlink_ns_capable);
871 
872 /**
873  * netlink_ns_capable - General netlink message capability test
874  * @skb: socket buffer holding a netlink command from userspace
875  * @user_ns: The user namespace of the capability to use
876  * @cap: The capability to use
877  *
878  * Test to see if the opener of the socket we received the message
879  * from had when the netlink socket was created and the sender of the
880  * message has the capability @cap in the user namespace @user_ns.
881  */
882 bool netlink_ns_capable(const struct sk_buff *skb,
883 			struct user_namespace *user_ns, int cap)
884 {
885 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
886 }
887 EXPORT_SYMBOL(netlink_ns_capable);
888 
889 /**
890  * netlink_capable - Netlink global message capability test
891  * @skb: socket buffer holding a netlink command from userspace
892  * @cap: The capability to use
893  *
894  * Test to see if the opener of the socket we received the message
895  * from had when the netlink socket was created and the sender of the
896  * message has the capability @cap in all user namespaces.
897  */
898 bool netlink_capable(const struct sk_buff *skb, int cap)
899 {
900 	return netlink_ns_capable(skb, &init_user_ns, cap);
901 }
902 EXPORT_SYMBOL(netlink_capable);
903 
904 /**
905  * netlink_net_capable - Netlink network namespace message capability test
906  * @skb: socket buffer holding a netlink command from userspace
907  * @cap: The capability to use
908  *
909  * Test to see if the opener of the socket we received the message
910  * from had when the netlink socket was created and the sender of the
911  * message has the capability @cap over the network namespace of
912  * the socket we received the message from.
913  */
914 bool netlink_net_capable(const struct sk_buff *skb, int cap)
915 {
916 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
917 }
918 EXPORT_SYMBOL(netlink_net_capable);
919 
920 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
921 {
922 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
923 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
924 }
925 
926 static void
927 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
928 {
929 	struct netlink_sock *nlk = nlk_sk(sk);
930 
931 	if (nlk->subscriptions && !subscriptions)
932 		__sk_del_bind_node(sk);
933 	else if (!nlk->subscriptions && subscriptions)
934 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
935 	nlk->subscriptions = subscriptions;
936 }
937 
938 static int netlink_realloc_groups(struct sock *sk)
939 {
940 	struct netlink_sock *nlk = nlk_sk(sk);
941 	unsigned int groups;
942 	unsigned long *new_groups;
943 	int err = 0;
944 
945 	netlink_table_grab();
946 
947 	groups = nl_table[sk->sk_protocol].groups;
948 	if (!nl_table[sk->sk_protocol].registered) {
949 		err = -ENOENT;
950 		goto out_unlock;
951 	}
952 
953 	if (nlk->ngroups >= groups)
954 		goto out_unlock;
955 
956 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
957 	if (new_groups == NULL) {
958 		err = -ENOMEM;
959 		goto out_unlock;
960 	}
961 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
962 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
963 
964 	nlk->groups = new_groups;
965 	nlk->ngroups = groups;
966  out_unlock:
967 	netlink_table_ungrab();
968 	return err;
969 }
970 
971 static void netlink_undo_bind(int group, long unsigned int groups,
972 			      struct sock *sk)
973 {
974 	struct netlink_sock *nlk = nlk_sk(sk);
975 	int undo;
976 
977 	if (!nlk->netlink_unbind)
978 		return;
979 
980 	for (undo = 0; undo < group; undo++)
981 		if (test_bit(undo, &groups))
982 			nlk->netlink_unbind(sock_net(sk), undo + 1);
983 }
984 
985 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
986 			int addr_len)
987 {
988 	struct sock *sk = sock->sk;
989 	struct net *net = sock_net(sk);
990 	struct netlink_sock *nlk = nlk_sk(sk);
991 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
992 	int err = 0;
993 	unsigned long groups;
994 	bool bound;
995 
996 	if (addr_len < sizeof(struct sockaddr_nl))
997 		return -EINVAL;
998 
999 	if (nladdr->nl_family != AF_NETLINK)
1000 		return -EINVAL;
1001 	groups = nladdr->nl_groups;
1002 
1003 	/* Only superuser is allowed to listen multicasts */
1004 	if (groups) {
1005 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1006 			return -EPERM;
1007 		err = netlink_realloc_groups(sk);
1008 		if (err)
1009 			return err;
1010 	}
1011 
1012 	if (nlk->ngroups < BITS_PER_LONG)
1013 		groups &= (1UL << nlk->ngroups) - 1;
1014 
1015 	bound = nlk->bound;
1016 	if (bound) {
1017 		/* Ensure nlk->portid is up-to-date. */
1018 		smp_rmb();
1019 
1020 		if (nladdr->nl_pid != nlk->portid)
1021 			return -EINVAL;
1022 	}
1023 
1024 	if (nlk->netlink_bind && groups) {
1025 		int group;
1026 
1027 		/* nl_groups is a u32, so cap the maximum groups we can bind */
1028 		for (group = 0; group < BITS_PER_TYPE(u32); group++) {
1029 			if (!test_bit(group, &groups))
1030 				continue;
1031 			err = nlk->netlink_bind(net, group + 1);
1032 			if (!err)
1033 				continue;
1034 			netlink_undo_bind(group, groups, sk);
1035 			return err;
1036 		}
1037 	}
1038 
1039 	/* No need for barriers here as we return to user-space without
1040 	 * using any of the bound attributes.
1041 	 */
1042 	netlink_lock_table();
1043 	if (!bound) {
1044 		err = nladdr->nl_pid ?
1045 			netlink_insert(sk, nladdr->nl_pid) :
1046 			netlink_autobind(sock);
1047 		if (err) {
1048 			netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk);
1049 			goto unlock;
1050 		}
1051 	}
1052 
1053 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1054 		goto unlock;
1055 	netlink_unlock_table();
1056 
1057 	netlink_table_grab();
1058 	netlink_update_subscriptions(sk, nlk->subscriptions +
1059 					 hweight32(groups) -
1060 					 hweight32(nlk->groups[0]));
1061 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1062 	netlink_update_listeners(sk);
1063 	netlink_table_ungrab();
1064 
1065 	return 0;
1066 
1067 unlock:
1068 	netlink_unlock_table();
1069 	return err;
1070 }
1071 
1072 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1073 			   int alen, int flags)
1074 {
1075 	int err = 0;
1076 	struct sock *sk = sock->sk;
1077 	struct netlink_sock *nlk = nlk_sk(sk);
1078 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1079 
1080 	if (alen < sizeof(addr->sa_family))
1081 		return -EINVAL;
1082 
1083 	if (addr->sa_family == AF_UNSPEC) {
1084 		sk->sk_state	= NETLINK_UNCONNECTED;
1085 		nlk->dst_portid	= 0;
1086 		nlk->dst_group  = 0;
1087 		return 0;
1088 	}
1089 	if (addr->sa_family != AF_NETLINK)
1090 		return -EINVAL;
1091 
1092 	if (alen < sizeof(struct sockaddr_nl))
1093 		return -EINVAL;
1094 
1095 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1096 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1097 		return -EPERM;
1098 
1099 	/* No need for barriers here as we return to user-space without
1100 	 * using any of the bound attributes.
1101 	 */
1102 	if (!nlk->bound)
1103 		err = netlink_autobind(sock);
1104 
1105 	if (err == 0) {
1106 		sk->sk_state	= NETLINK_CONNECTED;
1107 		nlk->dst_portid = nladdr->nl_pid;
1108 		nlk->dst_group  = ffs(nladdr->nl_groups);
1109 	}
1110 
1111 	return err;
1112 }
1113 
1114 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1115 			   int peer)
1116 {
1117 	struct sock *sk = sock->sk;
1118 	struct netlink_sock *nlk = nlk_sk(sk);
1119 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1120 
1121 	nladdr->nl_family = AF_NETLINK;
1122 	nladdr->nl_pad = 0;
1123 
1124 	if (peer) {
1125 		nladdr->nl_pid = nlk->dst_portid;
1126 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1127 	} else {
1128 		nladdr->nl_pid = nlk->portid;
1129 		netlink_lock_table();
1130 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1131 		netlink_unlock_table();
1132 	}
1133 	return sizeof(*nladdr);
1134 }
1135 
1136 static int netlink_ioctl(struct socket *sock, unsigned int cmd,
1137 			 unsigned long arg)
1138 {
1139 	/* try to hand this ioctl down to the NIC drivers.
1140 	 */
1141 	return -ENOIOCTLCMD;
1142 }
1143 
1144 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1145 {
1146 	struct sock *sock;
1147 	struct netlink_sock *nlk;
1148 
1149 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1150 	if (!sock)
1151 		return ERR_PTR(-ECONNREFUSED);
1152 
1153 	/* Don't bother queuing skb if kernel socket has no input function */
1154 	nlk = nlk_sk(sock);
1155 	if (sock->sk_state == NETLINK_CONNECTED &&
1156 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1157 		sock_put(sock);
1158 		return ERR_PTR(-ECONNREFUSED);
1159 	}
1160 	return sock;
1161 }
1162 
1163 struct sock *netlink_getsockbyfilp(struct file *filp)
1164 {
1165 	struct inode *inode = file_inode(filp);
1166 	struct sock *sock;
1167 
1168 	if (!S_ISSOCK(inode->i_mode))
1169 		return ERR_PTR(-ENOTSOCK);
1170 
1171 	sock = SOCKET_I(inode)->sk;
1172 	if (sock->sk_family != AF_NETLINK)
1173 		return ERR_PTR(-EINVAL);
1174 
1175 	sock_hold(sock);
1176 	return sock;
1177 }
1178 
1179 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1180 					       int broadcast)
1181 {
1182 	struct sk_buff *skb;
1183 	void *data;
1184 
1185 	if (size <= NLMSG_GOODSIZE || broadcast)
1186 		return alloc_skb(size, GFP_KERNEL);
1187 
1188 	size = SKB_DATA_ALIGN(size) +
1189 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1190 
1191 	data = vmalloc(size);
1192 	if (data == NULL)
1193 		return NULL;
1194 
1195 	skb = __build_skb(data, size);
1196 	if (skb == NULL)
1197 		vfree(data);
1198 	else
1199 		skb->destructor = netlink_skb_destructor;
1200 
1201 	return skb;
1202 }
1203 
1204 /*
1205  * Attach a skb to a netlink socket.
1206  * The caller must hold a reference to the destination socket. On error, the
1207  * reference is dropped. The skb is not send to the destination, just all
1208  * all error checks are performed and memory in the queue is reserved.
1209  * Return values:
1210  * < 0: error. skb freed, reference to sock dropped.
1211  * 0: continue
1212  * 1: repeat lookup - reference dropped while waiting for socket memory.
1213  */
1214 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1215 		      long *timeo, struct sock *ssk)
1216 {
1217 	struct netlink_sock *nlk;
1218 
1219 	nlk = nlk_sk(sk);
1220 
1221 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1222 	     test_bit(NETLINK_S_CONGESTED, &nlk->state))) {
1223 		DECLARE_WAITQUEUE(wait, current);
1224 		if (!*timeo) {
1225 			if (!ssk || netlink_is_kernel(ssk))
1226 				netlink_overrun(sk);
1227 			sock_put(sk);
1228 			kfree_skb(skb);
1229 			return -EAGAIN;
1230 		}
1231 
1232 		__set_current_state(TASK_INTERRUPTIBLE);
1233 		add_wait_queue(&nlk->wait, &wait);
1234 
1235 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1236 		     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1237 		    !sock_flag(sk, SOCK_DEAD))
1238 			*timeo = schedule_timeout(*timeo);
1239 
1240 		__set_current_state(TASK_RUNNING);
1241 		remove_wait_queue(&nlk->wait, &wait);
1242 		sock_put(sk);
1243 
1244 		if (signal_pending(current)) {
1245 			kfree_skb(skb);
1246 			return sock_intr_errno(*timeo);
1247 		}
1248 		return 1;
1249 	}
1250 	netlink_skb_set_owner_r(skb, sk);
1251 	return 0;
1252 }
1253 
1254 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1255 {
1256 	int len = skb->len;
1257 
1258 	netlink_deliver_tap(sock_net(sk), skb);
1259 
1260 	skb_queue_tail(&sk->sk_receive_queue, skb);
1261 	sk->sk_data_ready(sk);
1262 	return len;
1263 }
1264 
1265 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1266 {
1267 	int len = __netlink_sendskb(sk, skb);
1268 
1269 	sock_put(sk);
1270 	return len;
1271 }
1272 
1273 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1274 {
1275 	kfree_skb(skb);
1276 	sock_put(sk);
1277 }
1278 
1279 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1280 {
1281 	int delta;
1282 
1283 	WARN_ON(skb->sk != NULL);
1284 	delta = skb->end - skb->tail;
1285 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1286 		return skb;
1287 
1288 	if (skb_shared(skb)) {
1289 		struct sk_buff *nskb = skb_clone(skb, allocation);
1290 		if (!nskb)
1291 			return skb;
1292 		consume_skb(skb);
1293 		skb = nskb;
1294 	}
1295 
1296 	pskb_expand_head(skb, 0, -delta,
1297 			 (allocation & ~__GFP_DIRECT_RECLAIM) |
1298 			 __GFP_NOWARN | __GFP_NORETRY);
1299 	return skb;
1300 }
1301 
1302 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1303 				  struct sock *ssk)
1304 {
1305 	int ret;
1306 	struct netlink_sock *nlk = nlk_sk(sk);
1307 
1308 	ret = -ECONNREFUSED;
1309 	if (nlk->netlink_rcv != NULL) {
1310 		ret = skb->len;
1311 		netlink_skb_set_owner_r(skb, sk);
1312 		NETLINK_CB(skb).sk = ssk;
1313 		netlink_deliver_tap_kernel(sk, ssk, skb);
1314 		nlk->netlink_rcv(skb);
1315 		consume_skb(skb);
1316 	} else {
1317 		kfree_skb(skb);
1318 	}
1319 	sock_put(sk);
1320 	return ret;
1321 }
1322 
1323 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1324 		    u32 portid, int nonblock)
1325 {
1326 	struct sock *sk;
1327 	int err;
1328 	long timeo;
1329 
1330 	skb = netlink_trim(skb, gfp_any());
1331 
1332 	timeo = sock_sndtimeo(ssk, nonblock);
1333 retry:
1334 	sk = netlink_getsockbyportid(ssk, portid);
1335 	if (IS_ERR(sk)) {
1336 		kfree_skb(skb);
1337 		return PTR_ERR(sk);
1338 	}
1339 	if (netlink_is_kernel(sk))
1340 		return netlink_unicast_kernel(sk, skb, ssk);
1341 
1342 	if (sk_filter(sk, skb)) {
1343 		err = skb->len;
1344 		kfree_skb(skb);
1345 		sock_put(sk);
1346 		return err;
1347 	}
1348 
1349 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1350 	if (err == 1)
1351 		goto retry;
1352 	if (err)
1353 		return err;
1354 
1355 	return netlink_sendskb(sk, skb);
1356 }
1357 EXPORT_SYMBOL(netlink_unicast);
1358 
1359 int netlink_has_listeners(struct sock *sk, unsigned int group)
1360 {
1361 	int res = 0;
1362 	struct listeners *listeners;
1363 
1364 	BUG_ON(!netlink_is_kernel(sk));
1365 
1366 	rcu_read_lock();
1367 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1368 
1369 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1370 		res = test_bit(group - 1, listeners->masks);
1371 
1372 	rcu_read_unlock();
1373 
1374 	return res;
1375 }
1376 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1377 
1378 bool netlink_strict_get_check(struct sk_buff *skb)
1379 {
1380 	const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk);
1381 
1382 	return nlk->flags & NETLINK_F_STRICT_CHK;
1383 }
1384 EXPORT_SYMBOL_GPL(netlink_strict_get_check);
1385 
1386 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1387 {
1388 	struct netlink_sock *nlk = nlk_sk(sk);
1389 
1390 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1391 	    !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1392 		netlink_skb_set_owner_r(skb, sk);
1393 		__netlink_sendskb(sk, skb);
1394 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1395 	}
1396 	return -1;
1397 }
1398 
1399 struct netlink_broadcast_data {
1400 	struct sock *exclude_sk;
1401 	struct net *net;
1402 	u32 portid;
1403 	u32 group;
1404 	int failure;
1405 	int delivery_failure;
1406 	int congested;
1407 	int delivered;
1408 	gfp_t allocation;
1409 	struct sk_buff *skb, *skb2;
1410 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1411 	void *tx_data;
1412 };
1413 
1414 static void do_one_broadcast(struct sock *sk,
1415 				    struct netlink_broadcast_data *p)
1416 {
1417 	struct netlink_sock *nlk = nlk_sk(sk);
1418 	int val;
1419 
1420 	if (p->exclude_sk == sk)
1421 		return;
1422 
1423 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1424 	    !test_bit(p->group - 1, nlk->groups))
1425 		return;
1426 
1427 	if (!net_eq(sock_net(sk), p->net)) {
1428 		if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1429 			return;
1430 
1431 		if (!peernet_has_id(sock_net(sk), p->net))
1432 			return;
1433 
1434 		if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1435 				     CAP_NET_BROADCAST))
1436 			return;
1437 	}
1438 
1439 	if (p->failure) {
1440 		netlink_overrun(sk);
1441 		return;
1442 	}
1443 
1444 	sock_hold(sk);
1445 	if (p->skb2 == NULL) {
1446 		if (skb_shared(p->skb)) {
1447 			p->skb2 = skb_clone(p->skb, p->allocation);
1448 		} else {
1449 			p->skb2 = skb_get(p->skb);
1450 			/*
1451 			 * skb ownership may have been set when
1452 			 * delivered to a previous socket.
1453 			 */
1454 			skb_orphan(p->skb2);
1455 		}
1456 	}
1457 	if (p->skb2 == NULL) {
1458 		netlink_overrun(sk);
1459 		/* Clone failed. Notify ALL listeners. */
1460 		p->failure = 1;
1461 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1462 			p->delivery_failure = 1;
1463 		goto out;
1464 	}
1465 	if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1466 		kfree_skb(p->skb2);
1467 		p->skb2 = NULL;
1468 		goto out;
1469 	}
1470 	if (sk_filter(sk, p->skb2)) {
1471 		kfree_skb(p->skb2);
1472 		p->skb2 = NULL;
1473 		goto out;
1474 	}
1475 	NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
1476 	if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED)
1477 		NETLINK_CB(p->skb2).nsid_is_set = true;
1478 	val = netlink_broadcast_deliver(sk, p->skb2);
1479 	if (val < 0) {
1480 		netlink_overrun(sk);
1481 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1482 			p->delivery_failure = 1;
1483 	} else {
1484 		p->congested |= val;
1485 		p->delivered = 1;
1486 		p->skb2 = NULL;
1487 	}
1488 out:
1489 	sock_put(sk);
1490 }
1491 
1492 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1493 	u32 group, gfp_t allocation,
1494 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1495 	void *filter_data)
1496 {
1497 	struct net *net = sock_net(ssk);
1498 	struct netlink_broadcast_data info;
1499 	struct sock *sk;
1500 
1501 	skb = netlink_trim(skb, allocation);
1502 
1503 	info.exclude_sk = ssk;
1504 	info.net = net;
1505 	info.portid = portid;
1506 	info.group = group;
1507 	info.failure = 0;
1508 	info.delivery_failure = 0;
1509 	info.congested = 0;
1510 	info.delivered = 0;
1511 	info.allocation = allocation;
1512 	info.skb = skb;
1513 	info.skb2 = NULL;
1514 	info.tx_filter = filter;
1515 	info.tx_data = filter_data;
1516 
1517 	/* While we sleep in clone, do not allow to change socket list */
1518 
1519 	netlink_lock_table();
1520 
1521 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1522 		do_one_broadcast(sk, &info);
1523 
1524 	consume_skb(skb);
1525 
1526 	netlink_unlock_table();
1527 
1528 	if (info.delivery_failure) {
1529 		kfree_skb(info.skb2);
1530 		return -ENOBUFS;
1531 	}
1532 	consume_skb(info.skb2);
1533 
1534 	if (info.delivered) {
1535 		if (info.congested && gfpflags_allow_blocking(allocation))
1536 			yield();
1537 		return 0;
1538 	}
1539 	return -ESRCH;
1540 }
1541 EXPORT_SYMBOL(netlink_broadcast_filtered);
1542 
1543 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
1544 		      u32 group, gfp_t allocation)
1545 {
1546 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
1547 		NULL, NULL);
1548 }
1549 EXPORT_SYMBOL(netlink_broadcast);
1550 
1551 struct netlink_set_err_data {
1552 	struct sock *exclude_sk;
1553 	u32 portid;
1554 	u32 group;
1555 	int code;
1556 };
1557 
1558 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
1559 {
1560 	struct netlink_sock *nlk = nlk_sk(sk);
1561 	int ret = 0;
1562 
1563 	if (sk == p->exclude_sk)
1564 		goto out;
1565 
1566 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
1567 		goto out;
1568 
1569 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1570 	    !test_bit(p->group - 1, nlk->groups))
1571 		goto out;
1572 
1573 	if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
1574 		ret = 1;
1575 		goto out;
1576 	}
1577 
1578 	sk->sk_err = p->code;
1579 	sk_error_report(sk);
1580 out:
1581 	return ret;
1582 }
1583 
1584 /**
1585  * netlink_set_err - report error to broadcast listeners
1586  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
1587  * @portid: the PORTID of a process that we want to skip (if any)
1588  * @group: the broadcast group that will notice the error
1589  * @code: error code, must be negative (as usual in kernelspace)
1590  *
1591  * This function returns the number of broadcast listeners that have set the
1592  * NETLINK_NO_ENOBUFS socket option.
1593  */
1594 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
1595 {
1596 	struct netlink_set_err_data info;
1597 	struct sock *sk;
1598 	int ret = 0;
1599 
1600 	info.exclude_sk = ssk;
1601 	info.portid = portid;
1602 	info.group = group;
1603 	/* sk->sk_err wants a positive error value */
1604 	info.code = -code;
1605 
1606 	read_lock(&nl_table_lock);
1607 
1608 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1609 		ret += do_one_set_err(sk, &info);
1610 
1611 	read_unlock(&nl_table_lock);
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL(netlink_set_err);
1615 
1616 /* must be called with netlink table grabbed */
1617 static void netlink_update_socket_mc(struct netlink_sock *nlk,
1618 				     unsigned int group,
1619 				     int is_new)
1620 {
1621 	int old, new = !!is_new, subscriptions;
1622 
1623 	old = test_bit(group - 1, nlk->groups);
1624 	subscriptions = nlk->subscriptions - old + new;
1625 	if (new)
1626 		__set_bit(group - 1, nlk->groups);
1627 	else
1628 		__clear_bit(group - 1, nlk->groups);
1629 	netlink_update_subscriptions(&nlk->sk, subscriptions);
1630 	netlink_update_listeners(&nlk->sk);
1631 }
1632 
1633 static int netlink_setsockopt(struct socket *sock, int level, int optname,
1634 			      sockptr_t optval, unsigned int optlen)
1635 {
1636 	struct sock *sk = sock->sk;
1637 	struct netlink_sock *nlk = nlk_sk(sk);
1638 	unsigned int val = 0;
1639 	int err;
1640 
1641 	if (level != SOL_NETLINK)
1642 		return -ENOPROTOOPT;
1643 
1644 	if (optlen >= sizeof(int) &&
1645 	    copy_from_sockptr(&val, optval, sizeof(val)))
1646 		return -EFAULT;
1647 
1648 	switch (optname) {
1649 	case NETLINK_PKTINFO:
1650 		if (val)
1651 			nlk->flags |= NETLINK_F_RECV_PKTINFO;
1652 		else
1653 			nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
1654 		err = 0;
1655 		break;
1656 	case NETLINK_ADD_MEMBERSHIP:
1657 	case NETLINK_DROP_MEMBERSHIP: {
1658 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1659 			return -EPERM;
1660 		err = netlink_realloc_groups(sk);
1661 		if (err)
1662 			return err;
1663 		if (!val || val - 1 >= nlk->ngroups)
1664 			return -EINVAL;
1665 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
1666 			err = nlk->netlink_bind(sock_net(sk), val);
1667 			if (err)
1668 				return err;
1669 		}
1670 		netlink_table_grab();
1671 		netlink_update_socket_mc(nlk, val,
1672 					 optname == NETLINK_ADD_MEMBERSHIP);
1673 		netlink_table_ungrab();
1674 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
1675 			nlk->netlink_unbind(sock_net(sk), val);
1676 
1677 		err = 0;
1678 		break;
1679 	}
1680 	case NETLINK_BROADCAST_ERROR:
1681 		if (val)
1682 			nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
1683 		else
1684 			nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
1685 		err = 0;
1686 		break;
1687 	case NETLINK_NO_ENOBUFS:
1688 		if (val) {
1689 			nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
1690 			clear_bit(NETLINK_S_CONGESTED, &nlk->state);
1691 			wake_up_interruptible(&nlk->wait);
1692 		} else {
1693 			nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
1694 		}
1695 		err = 0;
1696 		break;
1697 	case NETLINK_LISTEN_ALL_NSID:
1698 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
1699 			return -EPERM;
1700 
1701 		if (val)
1702 			nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
1703 		else
1704 			nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
1705 		err = 0;
1706 		break;
1707 	case NETLINK_CAP_ACK:
1708 		if (val)
1709 			nlk->flags |= NETLINK_F_CAP_ACK;
1710 		else
1711 			nlk->flags &= ~NETLINK_F_CAP_ACK;
1712 		err = 0;
1713 		break;
1714 	case NETLINK_EXT_ACK:
1715 		if (val)
1716 			nlk->flags |= NETLINK_F_EXT_ACK;
1717 		else
1718 			nlk->flags &= ~NETLINK_F_EXT_ACK;
1719 		err = 0;
1720 		break;
1721 	case NETLINK_GET_STRICT_CHK:
1722 		if (val)
1723 			nlk->flags |= NETLINK_F_STRICT_CHK;
1724 		else
1725 			nlk->flags &= ~NETLINK_F_STRICT_CHK;
1726 		err = 0;
1727 		break;
1728 	default:
1729 		err = -ENOPROTOOPT;
1730 	}
1731 	return err;
1732 }
1733 
1734 static int netlink_getsockopt(struct socket *sock, int level, int optname,
1735 			      char __user *optval, int __user *optlen)
1736 {
1737 	struct sock *sk = sock->sk;
1738 	struct netlink_sock *nlk = nlk_sk(sk);
1739 	int len, val, err;
1740 
1741 	if (level != SOL_NETLINK)
1742 		return -ENOPROTOOPT;
1743 
1744 	if (get_user(len, optlen))
1745 		return -EFAULT;
1746 	if (len < 0)
1747 		return -EINVAL;
1748 
1749 	switch (optname) {
1750 	case NETLINK_PKTINFO:
1751 		if (len < sizeof(int))
1752 			return -EINVAL;
1753 		len = sizeof(int);
1754 		val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
1755 		if (put_user(len, optlen) ||
1756 		    put_user(val, optval))
1757 			return -EFAULT;
1758 		err = 0;
1759 		break;
1760 	case NETLINK_BROADCAST_ERROR:
1761 		if (len < sizeof(int))
1762 			return -EINVAL;
1763 		len = sizeof(int);
1764 		val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
1765 		if (put_user(len, optlen) ||
1766 		    put_user(val, optval))
1767 			return -EFAULT;
1768 		err = 0;
1769 		break;
1770 	case NETLINK_NO_ENOBUFS:
1771 		if (len < sizeof(int))
1772 			return -EINVAL;
1773 		len = sizeof(int);
1774 		val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
1775 		if (put_user(len, optlen) ||
1776 		    put_user(val, optval))
1777 			return -EFAULT;
1778 		err = 0;
1779 		break;
1780 	case NETLINK_LIST_MEMBERSHIPS: {
1781 		int pos, idx, shift;
1782 
1783 		err = 0;
1784 		netlink_lock_table();
1785 		for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
1786 			if (len - pos < sizeof(u32))
1787 				break;
1788 
1789 			idx = pos / sizeof(unsigned long);
1790 			shift = (pos % sizeof(unsigned long)) * 8;
1791 			if (put_user((u32)(nlk->groups[idx] >> shift),
1792 				     (u32 __user *)(optval + pos))) {
1793 				err = -EFAULT;
1794 				break;
1795 			}
1796 		}
1797 		if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
1798 			err = -EFAULT;
1799 		netlink_unlock_table();
1800 		break;
1801 	}
1802 	case NETLINK_CAP_ACK:
1803 		if (len < sizeof(int))
1804 			return -EINVAL;
1805 		len = sizeof(int);
1806 		val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
1807 		if (put_user(len, optlen) ||
1808 		    put_user(val, optval))
1809 			return -EFAULT;
1810 		err = 0;
1811 		break;
1812 	case NETLINK_EXT_ACK:
1813 		if (len < sizeof(int))
1814 			return -EINVAL;
1815 		len = sizeof(int);
1816 		val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0;
1817 		if (put_user(len, optlen) || put_user(val, optval))
1818 			return -EFAULT;
1819 		err = 0;
1820 		break;
1821 	case NETLINK_GET_STRICT_CHK:
1822 		if (len < sizeof(int))
1823 			return -EINVAL;
1824 		len = sizeof(int);
1825 		val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0;
1826 		if (put_user(len, optlen) || put_user(val, optval))
1827 			return -EFAULT;
1828 		err = 0;
1829 		break;
1830 	default:
1831 		err = -ENOPROTOOPT;
1832 	}
1833 	return err;
1834 }
1835 
1836 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
1837 {
1838 	struct nl_pktinfo info;
1839 
1840 	info.group = NETLINK_CB(skb).dst_group;
1841 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
1842 }
1843 
1844 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
1845 					 struct sk_buff *skb)
1846 {
1847 	if (!NETLINK_CB(skb).nsid_is_set)
1848 		return;
1849 
1850 	put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
1851 		 &NETLINK_CB(skb).nsid);
1852 }
1853 
1854 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1855 {
1856 	struct sock *sk = sock->sk;
1857 	struct netlink_sock *nlk = nlk_sk(sk);
1858 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
1859 	u32 dst_portid;
1860 	u32 dst_group;
1861 	struct sk_buff *skb;
1862 	int err;
1863 	struct scm_cookie scm;
1864 	u32 netlink_skb_flags = 0;
1865 
1866 	if (msg->msg_flags & MSG_OOB)
1867 		return -EOPNOTSUPP;
1868 
1869 	err = scm_send(sock, msg, &scm, true);
1870 	if (err < 0)
1871 		return err;
1872 
1873 	if (msg->msg_namelen) {
1874 		err = -EINVAL;
1875 		if (msg->msg_namelen < sizeof(struct sockaddr_nl))
1876 			goto out;
1877 		if (addr->nl_family != AF_NETLINK)
1878 			goto out;
1879 		dst_portid = addr->nl_pid;
1880 		dst_group = ffs(addr->nl_groups);
1881 		err =  -EPERM;
1882 		if ((dst_group || dst_portid) &&
1883 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1884 			goto out;
1885 		netlink_skb_flags |= NETLINK_SKB_DST;
1886 	} else {
1887 		dst_portid = nlk->dst_portid;
1888 		dst_group = nlk->dst_group;
1889 	}
1890 
1891 	if (!nlk->bound) {
1892 		err = netlink_autobind(sock);
1893 		if (err)
1894 			goto out;
1895 	} else {
1896 		/* Ensure nlk is hashed and visible. */
1897 		smp_rmb();
1898 	}
1899 
1900 	err = -EMSGSIZE;
1901 	if (len > sk->sk_sndbuf - 32)
1902 		goto out;
1903 	err = -ENOBUFS;
1904 	skb = netlink_alloc_large_skb(len, dst_group);
1905 	if (skb == NULL)
1906 		goto out;
1907 
1908 	NETLINK_CB(skb).portid	= nlk->portid;
1909 	NETLINK_CB(skb).dst_group = dst_group;
1910 	NETLINK_CB(skb).creds	= scm.creds;
1911 	NETLINK_CB(skb).flags	= netlink_skb_flags;
1912 
1913 	err = -EFAULT;
1914 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1915 		kfree_skb(skb);
1916 		goto out;
1917 	}
1918 
1919 	err = security_netlink_send(sk, skb);
1920 	if (err) {
1921 		kfree_skb(skb);
1922 		goto out;
1923 	}
1924 
1925 	if (dst_group) {
1926 		refcount_inc(&skb->users);
1927 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
1928 	}
1929 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT);
1930 
1931 out:
1932 	scm_destroy(&scm);
1933 	return err;
1934 }
1935 
1936 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1937 			   int flags)
1938 {
1939 	struct scm_cookie scm;
1940 	struct sock *sk = sock->sk;
1941 	struct netlink_sock *nlk = nlk_sk(sk);
1942 	int noblock = flags & MSG_DONTWAIT;
1943 	size_t copied;
1944 	struct sk_buff *skb, *data_skb;
1945 	int err, ret;
1946 
1947 	if (flags & MSG_OOB)
1948 		return -EOPNOTSUPP;
1949 
1950 	copied = 0;
1951 
1952 	skb = skb_recv_datagram(sk, flags, noblock, &err);
1953 	if (skb == NULL)
1954 		goto out;
1955 
1956 	data_skb = skb;
1957 
1958 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
1959 	if (unlikely(skb_shinfo(skb)->frag_list)) {
1960 		/*
1961 		 * If this skb has a frag_list, then here that means that we
1962 		 * will have to use the frag_list skb's data for compat tasks
1963 		 * and the regular skb's data for normal (non-compat) tasks.
1964 		 *
1965 		 * If we need to send the compat skb, assign it to the
1966 		 * 'data_skb' variable so that it will be used below for data
1967 		 * copying. We keep 'skb' for everything else, including
1968 		 * freeing both later.
1969 		 */
1970 		if (flags & MSG_CMSG_COMPAT)
1971 			data_skb = skb_shinfo(skb)->frag_list;
1972 	}
1973 #endif
1974 
1975 	/* Record the max length of recvmsg() calls for future allocations */
1976 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
1977 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
1978 				     SKB_WITH_OVERHEAD(32768));
1979 
1980 	copied = data_skb->len;
1981 	if (len < copied) {
1982 		msg->msg_flags |= MSG_TRUNC;
1983 		copied = len;
1984 	}
1985 
1986 	skb_reset_transport_header(data_skb);
1987 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
1988 
1989 	if (msg->msg_name) {
1990 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
1991 		addr->nl_family = AF_NETLINK;
1992 		addr->nl_pad    = 0;
1993 		addr->nl_pid	= NETLINK_CB(skb).portid;
1994 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
1995 		msg->msg_namelen = sizeof(*addr);
1996 	}
1997 
1998 	if (nlk->flags & NETLINK_F_RECV_PKTINFO)
1999 		netlink_cmsg_recv_pktinfo(msg, skb);
2000 	if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2001 		netlink_cmsg_listen_all_nsid(sk, msg, skb);
2002 
2003 	memset(&scm, 0, sizeof(scm));
2004 	scm.creds = *NETLINK_CREDS(skb);
2005 	if (flags & MSG_TRUNC)
2006 		copied = data_skb->len;
2007 
2008 	skb_free_datagram(sk, skb);
2009 
2010 	if (nlk->cb_running &&
2011 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2012 		ret = netlink_dump(sk);
2013 		if (ret) {
2014 			sk->sk_err = -ret;
2015 			sk_error_report(sk);
2016 		}
2017 	}
2018 
2019 	scm_recv(sock, msg, &scm, flags);
2020 out:
2021 	netlink_rcv_wake(sk);
2022 	return err ? : copied;
2023 }
2024 
2025 static void netlink_data_ready(struct sock *sk)
2026 {
2027 	BUG();
2028 }
2029 
2030 /*
2031  *	We export these functions to other modules. They provide a
2032  *	complete set of kernel non-blocking support for message
2033  *	queueing.
2034  */
2035 
2036 struct sock *
2037 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2038 			struct netlink_kernel_cfg *cfg)
2039 {
2040 	struct socket *sock;
2041 	struct sock *sk;
2042 	struct netlink_sock *nlk;
2043 	struct listeners *listeners = NULL;
2044 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2045 	unsigned int groups;
2046 
2047 	BUG_ON(!nl_table);
2048 
2049 	if (unit < 0 || unit >= MAX_LINKS)
2050 		return NULL;
2051 
2052 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2053 		return NULL;
2054 
2055 	if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2056 		goto out_sock_release_nosk;
2057 
2058 	sk = sock->sk;
2059 
2060 	if (!cfg || cfg->groups < 32)
2061 		groups = 32;
2062 	else
2063 		groups = cfg->groups;
2064 
2065 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2066 	if (!listeners)
2067 		goto out_sock_release;
2068 
2069 	sk->sk_data_ready = netlink_data_ready;
2070 	if (cfg && cfg->input)
2071 		nlk_sk(sk)->netlink_rcv = cfg->input;
2072 
2073 	if (netlink_insert(sk, 0))
2074 		goto out_sock_release;
2075 
2076 	nlk = nlk_sk(sk);
2077 	nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2078 
2079 	netlink_table_grab();
2080 	if (!nl_table[unit].registered) {
2081 		nl_table[unit].groups = groups;
2082 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2083 		nl_table[unit].cb_mutex = cb_mutex;
2084 		nl_table[unit].module = module;
2085 		if (cfg) {
2086 			nl_table[unit].bind = cfg->bind;
2087 			nl_table[unit].unbind = cfg->unbind;
2088 			nl_table[unit].flags = cfg->flags;
2089 			if (cfg->compare)
2090 				nl_table[unit].compare = cfg->compare;
2091 		}
2092 		nl_table[unit].registered = 1;
2093 	} else {
2094 		kfree(listeners);
2095 		nl_table[unit].registered++;
2096 	}
2097 	netlink_table_ungrab();
2098 	return sk;
2099 
2100 out_sock_release:
2101 	kfree(listeners);
2102 	netlink_kernel_release(sk);
2103 	return NULL;
2104 
2105 out_sock_release_nosk:
2106 	sock_release(sock);
2107 	return NULL;
2108 }
2109 EXPORT_SYMBOL(__netlink_kernel_create);
2110 
2111 void
2112 netlink_kernel_release(struct sock *sk)
2113 {
2114 	if (sk == NULL || sk->sk_socket == NULL)
2115 		return;
2116 
2117 	sock_release(sk->sk_socket);
2118 }
2119 EXPORT_SYMBOL(netlink_kernel_release);
2120 
2121 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2122 {
2123 	struct listeners *new, *old;
2124 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2125 
2126 	if (groups < 32)
2127 		groups = 32;
2128 
2129 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2130 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2131 		if (!new)
2132 			return -ENOMEM;
2133 		old = nl_deref_protected(tbl->listeners);
2134 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2135 		rcu_assign_pointer(tbl->listeners, new);
2136 
2137 		kfree_rcu(old, rcu);
2138 	}
2139 	tbl->groups = groups;
2140 
2141 	return 0;
2142 }
2143 
2144 /**
2145  * netlink_change_ngroups - change number of multicast groups
2146  *
2147  * This changes the number of multicast groups that are available
2148  * on a certain netlink family. Note that it is not possible to
2149  * change the number of groups to below 32. Also note that it does
2150  * not implicitly call netlink_clear_multicast_users() when the
2151  * number of groups is reduced.
2152  *
2153  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2154  * @groups: The new number of groups.
2155  */
2156 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2157 {
2158 	int err;
2159 
2160 	netlink_table_grab();
2161 	err = __netlink_change_ngroups(sk, groups);
2162 	netlink_table_ungrab();
2163 
2164 	return err;
2165 }
2166 
2167 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2168 {
2169 	struct sock *sk;
2170 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2171 
2172 	sk_for_each_bound(sk, &tbl->mc_list)
2173 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2174 }
2175 
2176 struct nlmsghdr *
2177 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2178 {
2179 	struct nlmsghdr *nlh;
2180 	int size = nlmsg_msg_size(len);
2181 
2182 	nlh = skb_put(skb, NLMSG_ALIGN(size));
2183 	nlh->nlmsg_type = type;
2184 	nlh->nlmsg_len = size;
2185 	nlh->nlmsg_flags = flags;
2186 	nlh->nlmsg_pid = portid;
2187 	nlh->nlmsg_seq = seq;
2188 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2189 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2190 	return nlh;
2191 }
2192 EXPORT_SYMBOL(__nlmsg_put);
2193 
2194 /*
2195  * It looks a bit ugly.
2196  * It would be better to create kernel thread.
2197  */
2198 
2199 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb,
2200 			     struct netlink_callback *cb,
2201 			     struct netlink_ext_ack *extack)
2202 {
2203 	struct nlmsghdr *nlh;
2204 
2205 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno),
2206 			       NLM_F_MULTI | cb->answer_flags);
2207 	if (WARN_ON(!nlh))
2208 		return -ENOBUFS;
2209 
2210 	nl_dump_check_consistent(cb, nlh);
2211 	memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno));
2212 
2213 	if (extack->_msg && nlk->flags & NETLINK_F_EXT_ACK) {
2214 		nlh->nlmsg_flags |= NLM_F_ACK_TLVS;
2215 		if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg))
2216 			nlmsg_end(skb, nlh);
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 static int netlink_dump(struct sock *sk)
2223 {
2224 	struct netlink_sock *nlk = nlk_sk(sk);
2225 	struct netlink_ext_ack extack = {};
2226 	struct netlink_callback *cb;
2227 	struct sk_buff *skb = NULL;
2228 	struct module *module;
2229 	int err = -ENOBUFS;
2230 	int alloc_min_size;
2231 	int alloc_size;
2232 
2233 	mutex_lock(nlk->cb_mutex);
2234 	if (!nlk->cb_running) {
2235 		err = -EINVAL;
2236 		goto errout_skb;
2237 	}
2238 
2239 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2240 		goto errout_skb;
2241 
2242 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2243 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2244 	 * to reduce number of system calls on dump operations, if user
2245 	 * ever provided a big enough buffer.
2246 	 */
2247 	cb = &nlk->cb;
2248 	alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2249 
2250 	if (alloc_min_size < nlk->max_recvmsg_len) {
2251 		alloc_size = nlk->max_recvmsg_len;
2252 		skb = alloc_skb(alloc_size,
2253 				(GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) |
2254 				__GFP_NOWARN | __GFP_NORETRY);
2255 	}
2256 	if (!skb) {
2257 		alloc_size = alloc_min_size;
2258 		skb = alloc_skb(alloc_size, GFP_KERNEL);
2259 	}
2260 	if (!skb)
2261 		goto errout_skb;
2262 
2263 	/* Trim skb to allocated size. User is expected to provide buffer as
2264 	 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
2265 	 * netlink_recvmsg())). dump will pack as many smaller messages as
2266 	 * could fit within the allocated skb. skb is typically allocated
2267 	 * with larger space than required (could be as much as near 2x the
2268 	 * requested size with align to next power of 2 approach). Allowing
2269 	 * dump to use the excess space makes it difficult for a user to have a
2270 	 * reasonable static buffer based on the expected largest dump of a
2271 	 * single netdev. The outcome is MSG_TRUNC error.
2272 	 */
2273 	skb_reserve(skb, skb_tailroom(skb) - alloc_size);
2274 	netlink_skb_set_owner_r(skb, sk);
2275 
2276 	if (nlk->dump_done_errno > 0) {
2277 		cb->extack = &extack;
2278 		nlk->dump_done_errno = cb->dump(skb, cb);
2279 		cb->extack = NULL;
2280 	}
2281 
2282 	if (nlk->dump_done_errno > 0 ||
2283 	    skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) {
2284 		mutex_unlock(nlk->cb_mutex);
2285 
2286 		if (sk_filter(sk, skb))
2287 			kfree_skb(skb);
2288 		else
2289 			__netlink_sendskb(sk, skb);
2290 		return 0;
2291 	}
2292 
2293 	if (netlink_dump_done(nlk, skb, cb, &extack))
2294 		goto errout_skb;
2295 
2296 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2297 	/* frag_list skb's data is used for compat tasks
2298 	 * and the regular skb's data for normal (non-compat) tasks.
2299 	 * See netlink_recvmsg().
2300 	 */
2301 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2302 		if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack))
2303 			goto errout_skb;
2304 	}
2305 #endif
2306 
2307 	if (sk_filter(sk, skb))
2308 		kfree_skb(skb);
2309 	else
2310 		__netlink_sendskb(sk, skb);
2311 
2312 	if (cb->done)
2313 		cb->done(cb);
2314 
2315 	nlk->cb_running = false;
2316 	module = cb->module;
2317 	skb = cb->skb;
2318 	mutex_unlock(nlk->cb_mutex);
2319 	module_put(module);
2320 	consume_skb(skb);
2321 	return 0;
2322 
2323 errout_skb:
2324 	mutex_unlock(nlk->cb_mutex);
2325 	kfree_skb(skb);
2326 	return err;
2327 }
2328 
2329 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2330 			 const struct nlmsghdr *nlh,
2331 			 struct netlink_dump_control *control)
2332 {
2333 	struct netlink_sock *nlk, *nlk2;
2334 	struct netlink_callback *cb;
2335 	struct sock *sk;
2336 	int ret;
2337 
2338 	refcount_inc(&skb->users);
2339 
2340 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2341 	if (sk == NULL) {
2342 		ret = -ECONNREFUSED;
2343 		goto error_free;
2344 	}
2345 
2346 	nlk = nlk_sk(sk);
2347 	mutex_lock(nlk->cb_mutex);
2348 	/* A dump is in progress... */
2349 	if (nlk->cb_running) {
2350 		ret = -EBUSY;
2351 		goto error_unlock;
2352 	}
2353 	/* add reference of module which cb->dump belongs to */
2354 	if (!try_module_get(control->module)) {
2355 		ret = -EPROTONOSUPPORT;
2356 		goto error_unlock;
2357 	}
2358 
2359 	cb = &nlk->cb;
2360 	memset(cb, 0, sizeof(*cb));
2361 	cb->dump = control->dump;
2362 	cb->done = control->done;
2363 	cb->nlh = nlh;
2364 	cb->data = control->data;
2365 	cb->module = control->module;
2366 	cb->min_dump_alloc = control->min_dump_alloc;
2367 	cb->skb = skb;
2368 
2369 	nlk2 = nlk_sk(NETLINK_CB(skb).sk);
2370 	cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK);
2371 
2372 	if (control->start) {
2373 		ret = control->start(cb);
2374 		if (ret)
2375 			goto error_put;
2376 	}
2377 
2378 	nlk->cb_running = true;
2379 	nlk->dump_done_errno = INT_MAX;
2380 
2381 	mutex_unlock(nlk->cb_mutex);
2382 
2383 	ret = netlink_dump(sk);
2384 
2385 	sock_put(sk);
2386 
2387 	if (ret)
2388 		return ret;
2389 
2390 	/* We successfully started a dump, by returning -EINTR we
2391 	 * signal not to send ACK even if it was requested.
2392 	 */
2393 	return -EINTR;
2394 
2395 error_put:
2396 	module_put(control->module);
2397 error_unlock:
2398 	sock_put(sk);
2399 	mutex_unlock(nlk->cb_mutex);
2400 error_free:
2401 	kfree_skb(skb);
2402 	return ret;
2403 }
2404 EXPORT_SYMBOL(__netlink_dump_start);
2405 
2406 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err,
2407 		 const struct netlink_ext_ack *extack)
2408 {
2409 	struct sk_buff *skb;
2410 	struct nlmsghdr *rep;
2411 	struct nlmsgerr *errmsg;
2412 	size_t payload = sizeof(*errmsg);
2413 	size_t tlvlen = 0;
2414 	struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
2415 	unsigned int flags = 0;
2416 	bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK;
2417 
2418 	/* Error messages get the original request appened, unless the user
2419 	 * requests to cap the error message, and get extra error data if
2420 	 * requested.
2421 	 */
2422 	if (nlk_has_extack && extack && extack->_msg)
2423 		tlvlen += nla_total_size(strlen(extack->_msg) + 1);
2424 
2425 	if (err && !(nlk->flags & NETLINK_F_CAP_ACK))
2426 		payload += nlmsg_len(nlh);
2427 	else
2428 		flags |= NLM_F_CAPPED;
2429 	if (err && nlk_has_extack && extack && extack->bad_attr)
2430 		tlvlen += nla_total_size(sizeof(u32));
2431 	if (nlk_has_extack && extack && extack->cookie_len)
2432 		tlvlen += nla_total_size(extack->cookie_len);
2433 	if (err && nlk_has_extack && extack && extack->policy)
2434 		tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy);
2435 
2436 	if (tlvlen)
2437 		flags |= NLM_F_ACK_TLVS;
2438 
2439 	skb = nlmsg_new(payload + tlvlen, GFP_KERNEL);
2440 	if (!skb) {
2441 		NETLINK_CB(in_skb).sk->sk_err = ENOBUFS;
2442 		sk_error_report(NETLINK_CB(in_skb).sk);
2443 		return;
2444 	}
2445 
2446 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2447 			  NLMSG_ERROR, payload, flags);
2448 	errmsg = nlmsg_data(rep);
2449 	errmsg->error = err;
2450 	memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
2451 
2452 	if (nlk_has_extack && extack) {
2453 		if (extack->_msg) {
2454 			WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG,
2455 					       extack->_msg));
2456 		}
2457 		if (err && extack->bad_attr &&
2458 		    !WARN_ON((u8 *)extack->bad_attr < in_skb->data ||
2459 			     (u8 *)extack->bad_attr >= in_skb->data +
2460 						       in_skb->len))
2461 			WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS,
2462 					    (u8 *)extack->bad_attr -
2463 					    (u8 *)nlh));
2464 		if (extack->cookie_len)
2465 			WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE,
2466 					extack->cookie_len, extack->cookie));
2467 		if (extack->policy)
2468 			netlink_policy_dump_write_attr(skb, extack->policy,
2469 						       NLMSGERR_ATTR_POLICY);
2470 	}
2471 
2472 	nlmsg_end(skb, rep);
2473 
2474 	nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid);
2475 }
2476 EXPORT_SYMBOL(netlink_ack);
2477 
2478 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2479 						   struct nlmsghdr *,
2480 						   struct netlink_ext_ack *))
2481 {
2482 	struct netlink_ext_ack extack;
2483 	struct nlmsghdr *nlh;
2484 	int err;
2485 
2486 	while (skb->len >= nlmsg_total_size(0)) {
2487 		int msglen;
2488 
2489 		memset(&extack, 0, sizeof(extack));
2490 		nlh = nlmsg_hdr(skb);
2491 		err = 0;
2492 
2493 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2494 			return 0;
2495 
2496 		/* Only requests are handled by the kernel */
2497 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2498 			goto ack;
2499 
2500 		/* Skip control messages */
2501 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2502 			goto ack;
2503 
2504 		err = cb(skb, nlh, &extack);
2505 		if (err == -EINTR)
2506 			goto skip;
2507 
2508 ack:
2509 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2510 			netlink_ack(skb, nlh, err, &extack);
2511 
2512 skip:
2513 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2514 		if (msglen > skb->len)
2515 			msglen = skb->len;
2516 		skb_pull(skb, msglen);
2517 	}
2518 
2519 	return 0;
2520 }
2521 EXPORT_SYMBOL(netlink_rcv_skb);
2522 
2523 /**
2524  * nlmsg_notify - send a notification netlink message
2525  * @sk: netlink socket to use
2526  * @skb: notification message
2527  * @portid: destination netlink portid for reports or 0
2528  * @group: destination multicast group or 0
2529  * @report: 1 to report back, 0 to disable
2530  * @flags: allocation flags
2531  */
2532 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2533 		 unsigned int group, int report, gfp_t flags)
2534 {
2535 	int err = 0;
2536 
2537 	if (group) {
2538 		int exclude_portid = 0;
2539 
2540 		if (report) {
2541 			refcount_inc(&skb->users);
2542 			exclude_portid = portid;
2543 		}
2544 
2545 		/* errors reported via destination sk->sk_err, but propagate
2546 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2547 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2548 		if (err == -ESRCH)
2549 			err = 0;
2550 	}
2551 
2552 	if (report) {
2553 		int err2;
2554 
2555 		err2 = nlmsg_unicast(sk, skb, portid);
2556 		if (!err)
2557 			err = err2;
2558 	}
2559 
2560 	return err;
2561 }
2562 EXPORT_SYMBOL(nlmsg_notify);
2563 
2564 #ifdef CONFIG_PROC_FS
2565 struct nl_seq_iter {
2566 	struct seq_net_private p;
2567 	struct rhashtable_iter hti;
2568 	int link;
2569 };
2570 
2571 static void netlink_walk_start(struct nl_seq_iter *iter)
2572 {
2573 	rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti);
2574 	rhashtable_walk_start(&iter->hti);
2575 }
2576 
2577 static void netlink_walk_stop(struct nl_seq_iter *iter)
2578 {
2579 	rhashtable_walk_stop(&iter->hti);
2580 	rhashtable_walk_exit(&iter->hti);
2581 }
2582 
2583 static void *__netlink_seq_next(struct seq_file *seq)
2584 {
2585 	struct nl_seq_iter *iter = seq->private;
2586 	struct netlink_sock *nlk;
2587 
2588 	do {
2589 		for (;;) {
2590 			nlk = rhashtable_walk_next(&iter->hti);
2591 
2592 			if (IS_ERR(nlk)) {
2593 				if (PTR_ERR(nlk) == -EAGAIN)
2594 					continue;
2595 
2596 				return nlk;
2597 			}
2598 
2599 			if (nlk)
2600 				break;
2601 
2602 			netlink_walk_stop(iter);
2603 			if (++iter->link >= MAX_LINKS)
2604 				return NULL;
2605 
2606 			netlink_walk_start(iter);
2607 		}
2608 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
2609 
2610 	return nlk;
2611 }
2612 
2613 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
2614 	__acquires(RCU)
2615 {
2616 	struct nl_seq_iter *iter = seq->private;
2617 	void *obj = SEQ_START_TOKEN;
2618 	loff_t pos;
2619 
2620 	iter->link = 0;
2621 
2622 	netlink_walk_start(iter);
2623 
2624 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
2625 		obj = __netlink_seq_next(seq);
2626 
2627 	return obj;
2628 }
2629 
2630 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2631 {
2632 	++*pos;
2633 	return __netlink_seq_next(seq);
2634 }
2635 
2636 static void netlink_native_seq_stop(struct seq_file *seq, void *v)
2637 {
2638 	struct nl_seq_iter *iter = seq->private;
2639 
2640 	if (iter->link >= MAX_LINKS)
2641 		return;
2642 
2643 	netlink_walk_stop(iter);
2644 }
2645 
2646 
2647 static int netlink_native_seq_show(struct seq_file *seq, void *v)
2648 {
2649 	if (v == SEQ_START_TOKEN) {
2650 		seq_puts(seq,
2651 			 "sk               Eth Pid        Groups   "
2652 			 "Rmem     Wmem     Dump  Locks    Drops    Inode\n");
2653 	} else {
2654 		struct sock *s = v;
2655 		struct netlink_sock *nlk = nlk_sk(s);
2656 
2657 		seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n",
2658 			   s,
2659 			   s->sk_protocol,
2660 			   nlk->portid,
2661 			   nlk->groups ? (u32)nlk->groups[0] : 0,
2662 			   sk_rmem_alloc_get(s),
2663 			   sk_wmem_alloc_get(s),
2664 			   nlk->cb_running,
2665 			   refcount_read(&s->sk_refcnt),
2666 			   atomic_read(&s->sk_drops),
2667 			   sock_i_ino(s)
2668 			);
2669 
2670 	}
2671 	return 0;
2672 }
2673 
2674 #ifdef CONFIG_BPF_SYSCALL
2675 struct bpf_iter__netlink {
2676 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2677 	__bpf_md_ptr(struct netlink_sock *, sk);
2678 };
2679 
2680 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk)
2681 
2682 static int netlink_prog_seq_show(struct bpf_prog *prog,
2683 				  struct bpf_iter_meta *meta,
2684 				  void *v)
2685 {
2686 	struct bpf_iter__netlink ctx;
2687 
2688 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2689 	ctx.meta = meta;
2690 	ctx.sk = nlk_sk((struct sock *)v);
2691 	return bpf_iter_run_prog(prog, &ctx);
2692 }
2693 
2694 static int netlink_seq_show(struct seq_file *seq, void *v)
2695 {
2696 	struct bpf_iter_meta meta;
2697 	struct bpf_prog *prog;
2698 
2699 	meta.seq = seq;
2700 	prog = bpf_iter_get_info(&meta, false);
2701 	if (!prog)
2702 		return netlink_native_seq_show(seq, v);
2703 
2704 	if (v != SEQ_START_TOKEN)
2705 		return netlink_prog_seq_show(prog, &meta, v);
2706 
2707 	return 0;
2708 }
2709 
2710 static void netlink_seq_stop(struct seq_file *seq, void *v)
2711 {
2712 	struct bpf_iter_meta meta;
2713 	struct bpf_prog *prog;
2714 
2715 	if (!v) {
2716 		meta.seq = seq;
2717 		prog = bpf_iter_get_info(&meta, true);
2718 		if (prog)
2719 			(void)netlink_prog_seq_show(prog, &meta, v);
2720 	}
2721 
2722 	netlink_native_seq_stop(seq, v);
2723 }
2724 #else
2725 static int netlink_seq_show(struct seq_file *seq, void *v)
2726 {
2727 	return netlink_native_seq_show(seq, v);
2728 }
2729 
2730 static void netlink_seq_stop(struct seq_file *seq, void *v)
2731 {
2732 	netlink_native_seq_stop(seq, v);
2733 }
2734 #endif
2735 
2736 static const struct seq_operations netlink_seq_ops = {
2737 	.start  = netlink_seq_start,
2738 	.next   = netlink_seq_next,
2739 	.stop   = netlink_seq_stop,
2740 	.show   = netlink_seq_show,
2741 };
2742 #endif
2743 
2744 int netlink_register_notifier(struct notifier_block *nb)
2745 {
2746 	return blocking_notifier_chain_register(&netlink_chain, nb);
2747 }
2748 EXPORT_SYMBOL(netlink_register_notifier);
2749 
2750 int netlink_unregister_notifier(struct notifier_block *nb)
2751 {
2752 	return blocking_notifier_chain_unregister(&netlink_chain, nb);
2753 }
2754 EXPORT_SYMBOL(netlink_unregister_notifier);
2755 
2756 static const struct proto_ops netlink_ops = {
2757 	.family =	PF_NETLINK,
2758 	.owner =	THIS_MODULE,
2759 	.release =	netlink_release,
2760 	.bind =		netlink_bind,
2761 	.connect =	netlink_connect,
2762 	.socketpair =	sock_no_socketpair,
2763 	.accept =	sock_no_accept,
2764 	.getname =	netlink_getname,
2765 	.poll =		datagram_poll,
2766 	.ioctl =	netlink_ioctl,
2767 	.listen =	sock_no_listen,
2768 	.shutdown =	sock_no_shutdown,
2769 	.setsockopt =	netlink_setsockopt,
2770 	.getsockopt =	netlink_getsockopt,
2771 	.sendmsg =	netlink_sendmsg,
2772 	.recvmsg =	netlink_recvmsg,
2773 	.mmap =		sock_no_mmap,
2774 	.sendpage =	sock_no_sendpage,
2775 };
2776 
2777 static const struct net_proto_family netlink_family_ops = {
2778 	.family = PF_NETLINK,
2779 	.create = netlink_create,
2780 	.owner	= THIS_MODULE,	/* for consistency 8) */
2781 };
2782 
2783 static int __net_init netlink_net_init(struct net *net)
2784 {
2785 #ifdef CONFIG_PROC_FS
2786 	if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops,
2787 			sizeof(struct nl_seq_iter)))
2788 		return -ENOMEM;
2789 #endif
2790 	return 0;
2791 }
2792 
2793 static void __net_exit netlink_net_exit(struct net *net)
2794 {
2795 #ifdef CONFIG_PROC_FS
2796 	remove_proc_entry("netlink", net->proc_net);
2797 #endif
2798 }
2799 
2800 static void __init netlink_add_usersock_entry(void)
2801 {
2802 	struct listeners *listeners;
2803 	int groups = 32;
2804 
2805 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2806 	if (!listeners)
2807 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
2808 
2809 	netlink_table_grab();
2810 
2811 	nl_table[NETLINK_USERSOCK].groups = groups;
2812 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
2813 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
2814 	nl_table[NETLINK_USERSOCK].registered = 1;
2815 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
2816 
2817 	netlink_table_ungrab();
2818 }
2819 
2820 static struct pernet_operations __net_initdata netlink_net_ops = {
2821 	.init = netlink_net_init,
2822 	.exit = netlink_net_exit,
2823 };
2824 
2825 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
2826 {
2827 	const struct netlink_sock *nlk = data;
2828 	struct netlink_compare_arg arg;
2829 
2830 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
2831 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
2832 }
2833 
2834 static const struct rhashtable_params netlink_rhashtable_params = {
2835 	.head_offset = offsetof(struct netlink_sock, node),
2836 	.key_len = netlink_compare_arg_len,
2837 	.obj_hashfn = netlink_hash,
2838 	.obj_cmpfn = netlink_compare,
2839 	.automatic_shrinking = true,
2840 };
2841 
2842 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2843 BTF_ID_LIST(btf_netlink_sock_id)
2844 BTF_ID(struct, netlink_sock)
2845 
2846 static const struct bpf_iter_seq_info netlink_seq_info = {
2847 	.seq_ops		= &netlink_seq_ops,
2848 	.init_seq_private	= bpf_iter_init_seq_net,
2849 	.fini_seq_private	= bpf_iter_fini_seq_net,
2850 	.seq_priv_size		= sizeof(struct nl_seq_iter),
2851 };
2852 
2853 static struct bpf_iter_reg netlink_reg_info = {
2854 	.target			= "netlink",
2855 	.ctx_arg_info_size	= 1,
2856 	.ctx_arg_info		= {
2857 		{ offsetof(struct bpf_iter__netlink, sk),
2858 		  PTR_TO_BTF_ID_OR_NULL },
2859 	},
2860 	.seq_info		= &netlink_seq_info,
2861 };
2862 
2863 static int __init bpf_iter_register(void)
2864 {
2865 	netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id;
2866 	return bpf_iter_reg_target(&netlink_reg_info);
2867 }
2868 #endif
2869 
2870 static int __init netlink_proto_init(void)
2871 {
2872 	int i;
2873 	int err = proto_register(&netlink_proto, 0);
2874 
2875 	if (err != 0)
2876 		goto out;
2877 
2878 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
2879 	err = bpf_iter_register();
2880 	if (err)
2881 		goto out;
2882 #endif
2883 
2884 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb));
2885 
2886 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
2887 	if (!nl_table)
2888 		goto panic;
2889 
2890 	for (i = 0; i < MAX_LINKS; i++) {
2891 		if (rhashtable_init(&nl_table[i].hash,
2892 				    &netlink_rhashtable_params) < 0) {
2893 			while (--i > 0)
2894 				rhashtable_destroy(&nl_table[i].hash);
2895 			kfree(nl_table);
2896 			goto panic;
2897 		}
2898 	}
2899 
2900 	netlink_add_usersock_entry();
2901 
2902 	sock_register(&netlink_family_ops);
2903 	register_pernet_subsys(&netlink_net_ops);
2904 	register_pernet_subsys(&netlink_tap_net_ops);
2905 	/* The netlink device handler may be needed early. */
2906 	rtnetlink_init();
2907 out:
2908 	return err;
2909 panic:
2910 	panic("netlink_init: Cannot allocate nl_table\n");
2911 }
2912 
2913 core_initcall(netlink_proto_init);
2914