xref: /openbmc/linux/net/netlink/af_netlink.c (revision af958a38)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 
65 #include <net/net_namespace.h>
66 #include <net/sock.h>
67 #include <net/scm.h>
68 #include <net/netlink.h>
69 
70 #include "af_netlink.h"
71 
72 struct listeners {
73 	struct rcu_head		rcu;
74 	unsigned long		masks[0];
75 };
76 
77 /* state bits */
78 #define NETLINK_CONGESTED	0x0
79 
80 /* flags */
81 #define NETLINK_KERNEL_SOCKET	0x1
82 #define NETLINK_RECV_PKTINFO	0x2
83 #define NETLINK_BROADCAST_SEND_ERROR	0x4
84 #define NETLINK_RECV_NO_ENOBUFS	0x8
85 
86 static inline int netlink_is_kernel(struct sock *sk)
87 {
88 	return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
89 }
90 
91 struct netlink_table *nl_table;
92 EXPORT_SYMBOL_GPL(nl_table);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
95 
96 static int netlink_dump(struct sock *sk);
97 static void netlink_skb_destructor(struct sk_buff *skb);
98 
99 DEFINE_RWLOCK(nl_table_lock);
100 EXPORT_SYMBOL_GPL(nl_table_lock);
101 static atomic_t nl_table_users = ATOMIC_INIT(0);
102 
103 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
104 
105 /* Protects netlink socket hash table mutations */
106 DEFINE_MUTEX(nl_sk_hash_lock);
107 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
108 
109 static int lockdep_nl_sk_hash_is_held(void)
110 {
111 #ifdef CONFIG_LOCKDEP
112 	return (debug_locks) ? lockdep_is_held(&nl_sk_hash_lock) : 1;
113 #else
114 	return 1;
115 #endif
116 }
117 
118 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
119 
120 static DEFINE_SPINLOCK(netlink_tap_lock);
121 static struct list_head netlink_tap_all __read_mostly;
122 
123 static inline u32 netlink_group_mask(u32 group)
124 {
125 	return group ? 1 << (group - 1) : 0;
126 }
127 
128 int netlink_add_tap(struct netlink_tap *nt)
129 {
130 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
131 		return -EINVAL;
132 
133 	spin_lock(&netlink_tap_lock);
134 	list_add_rcu(&nt->list, &netlink_tap_all);
135 	spin_unlock(&netlink_tap_lock);
136 
137 	if (nt->module)
138 		__module_get(nt->module);
139 
140 	return 0;
141 }
142 EXPORT_SYMBOL_GPL(netlink_add_tap);
143 
144 static int __netlink_remove_tap(struct netlink_tap *nt)
145 {
146 	bool found = false;
147 	struct netlink_tap *tmp;
148 
149 	spin_lock(&netlink_tap_lock);
150 
151 	list_for_each_entry(tmp, &netlink_tap_all, list) {
152 		if (nt == tmp) {
153 			list_del_rcu(&nt->list);
154 			found = true;
155 			goto out;
156 		}
157 	}
158 
159 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
160 out:
161 	spin_unlock(&netlink_tap_lock);
162 
163 	if (found && nt->module)
164 		module_put(nt->module);
165 
166 	return found ? 0 : -ENODEV;
167 }
168 
169 int netlink_remove_tap(struct netlink_tap *nt)
170 {
171 	int ret;
172 
173 	ret = __netlink_remove_tap(nt);
174 	synchronize_net();
175 
176 	return ret;
177 }
178 EXPORT_SYMBOL_GPL(netlink_remove_tap);
179 
180 static bool netlink_filter_tap(const struct sk_buff *skb)
181 {
182 	struct sock *sk = skb->sk;
183 
184 	/* We take the more conservative approach and
185 	 * whitelist socket protocols that may pass.
186 	 */
187 	switch (sk->sk_protocol) {
188 	case NETLINK_ROUTE:
189 	case NETLINK_USERSOCK:
190 	case NETLINK_SOCK_DIAG:
191 	case NETLINK_NFLOG:
192 	case NETLINK_XFRM:
193 	case NETLINK_FIB_LOOKUP:
194 	case NETLINK_NETFILTER:
195 	case NETLINK_GENERIC:
196 		return true;
197 	}
198 
199 	return false;
200 }
201 
202 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
203 				     struct net_device *dev)
204 {
205 	struct sk_buff *nskb;
206 	struct sock *sk = skb->sk;
207 	int ret = -ENOMEM;
208 
209 	dev_hold(dev);
210 	nskb = skb_clone(skb, GFP_ATOMIC);
211 	if (nskb) {
212 		nskb->dev = dev;
213 		nskb->protocol = htons((u16) sk->sk_protocol);
214 		nskb->pkt_type = netlink_is_kernel(sk) ?
215 				 PACKET_KERNEL : PACKET_USER;
216 		skb_reset_network_header(nskb);
217 		ret = dev_queue_xmit(nskb);
218 		if (unlikely(ret > 0))
219 			ret = net_xmit_errno(ret);
220 	}
221 
222 	dev_put(dev);
223 	return ret;
224 }
225 
226 static void __netlink_deliver_tap(struct sk_buff *skb)
227 {
228 	int ret;
229 	struct netlink_tap *tmp;
230 
231 	if (!netlink_filter_tap(skb))
232 		return;
233 
234 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
235 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
236 		if (unlikely(ret))
237 			break;
238 	}
239 }
240 
241 static void netlink_deliver_tap(struct sk_buff *skb)
242 {
243 	rcu_read_lock();
244 
245 	if (unlikely(!list_empty(&netlink_tap_all)))
246 		__netlink_deliver_tap(skb);
247 
248 	rcu_read_unlock();
249 }
250 
251 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
252 				       struct sk_buff *skb)
253 {
254 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
255 		netlink_deliver_tap(skb);
256 }
257 
258 static void netlink_overrun(struct sock *sk)
259 {
260 	struct netlink_sock *nlk = nlk_sk(sk);
261 
262 	if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
263 		if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
264 			sk->sk_err = ENOBUFS;
265 			sk->sk_error_report(sk);
266 		}
267 	}
268 	atomic_inc(&sk->sk_drops);
269 }
270 
271 static void netlink_rcv_wake(struct sock *sk)
272 {
273 	struct netlink_sock *nlk = nlk_sk(sk);
274 
275 	if (skb_queue_empty(&sk->sk_receive_queue))
276 		clear_bit(NETLINK_CONGESTED, &nlk->state);
277 	if (!test_bit(NETLINK_CONGESTED, &nlk->state))
278 		wake_up_interruptible(&nlk->wait);
279 }
280 
281 #ifdef CONFIG_NETLINK_MMAP
282 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
283 {
284 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
285 }
286 
287 static bool netlink_rx_is_mmaped(struct sock *sk)
288 {
289 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
290 }
291 
292 static bool netlink_tx_is_mmaped(struct sock *sk)
293 {
294 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
295 }
296 
297 static __pure struct page *pgvec_to_page(const void *addr)
298 {
299 	if (is_vmalloc_addr(addr))
300 		return vmalloc_to_page(addr);
301 	else
302 		return virt_to_page(addr);
303 }
304 
305 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
306 {
307 	unsigned int i;
308 
309 	for (i = 0; i < len; i++) {
310 		if (pg_vec[i] != NULL) {
311 			if (is_vmalloc_addr(pg_vec[i]))
312 				vfree(pg_vec[i]);
313 			else
314 				free_pages((unsigned long)pg_vec[i], order);
315 		}
316 	}
317 	kfree(pg_vec);
318 }
319 
320 static void *alloc_one_pg_vec_page(unsigned long order)
321 {
322 	void *buffer;
323 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
324 			  __GFP_NOWARN | __GFP_NORETRY;
325 
326 	buffer = (void *)__get_free_pages(gfp_flags, order);
327 	if (buffer != NULL)
328 		return buffer;
329 
330 	buffer = vzalloc((1 << order) * PAGE_SIZE);
331 	if (buffer != NULL)
332 		return buffer;
333 
334 	gfp_flags &= ~__GFP_NORETRY;
335 	return (void *)__get_free_pages(gfp_flags, order);
336 }
337 
338 static void **alloc_pg_vec(struct netlink_sock *nlk,
339 			   struct nl_mmap_req *req, unsigned int order)
340 {
341 	unsigned int block_nr = req->nm_block_nr;
342 	unsigned int i;
343 	void **pg_vec;
344 
345 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
346 	if (pg_vec == NULL)
347 		return NULL;
348 
349 	for (i = 0; i < block_nr; i++) {
350 		pg_vec[i] = alloc_one_pg_vec_page(order);
351 		if (pg_vec[i] == NULL)
352 			goto err1;
353 	}
354 
355 	return pg_vec;
356 err1:
357 	free_pg_vec(pg_vec, order, block_nr);
358 	return NULL;
359 }
360 
361 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
362 			    bool closing, bool tx_ring)
363 {
364 	struct netlink_sock *nlk = nlk_sk(sk);
365 	struct netlink_ring *ring;
366 	struct sk_buff_head *queue;
367 	void **pg_vec = NULL;
368 	unsigned int order = 0;
369 	int err;
370 
371 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
372 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
373 
374 	if (!closing) {
375 		if (atomic_read(&nlk->mapped))
376 			return -EBUSY;
377 		if (atomic_read(&ring->pending))
378 			return -EBUSY;
379 	}
380 
381 	if (req->nm_block_nr) {
382 		if (ring->pg_vec != NULL)
383 			return -EBUSY;
384 
385 		if ((int)req->nm_block_size <= 0)
386 			return -EINVAL;
387 		if (!PAGE_ALIGNED(req->nm_block_size))
388 			return -EINVAL;
389 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
390 			return -EINVAL;
391 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
392 			return -EINVAL;
393 
394 		ring->frames_per_block = req->nm_block_size /
395 					 req->nm_frame_size;
396 		if (ring->frames_per_block == 0)
397 			return -EINVAL;
398 		if (ring->frames_per_block * req->nm_block_nr !=
399 		    req->nm_frame_nr)
400 			return -EINVAL;
401 
402 		order = get_order(req->nm_block_size);
403 		pg_vec = alloc_pg_vec(nlk, req, order);
404 		if (pg_vec == NULL)
405 			return -ENOMEM;
406 	} else {
407 		if (req->nm_frame_nr)
408 			return -EINVAL;
409 	}
410 
411 	err = -EBUSY;
412 	mutex_lock(&nlk->pg_vec_lock);
413 	if (closing || atomic_read(&nlk->mapped) == 0) {
414 		err = 0;
415 		spin_lock_bh(&queue->lock);
416 
417 		ring->frame_max		= req->nm_frame_nr - 1;
418 		ring->head		= 0;
419 		ring->frame_size	= req->nm_frame_size;
420 		ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
421 
422 		swap(ring->pg_vec_len, req->nm_block_nr);
423 		swap(ring->pg_vec_order, order);
424 		swap(ring->pg_vec, pg_vec);
425 
426 		__skb_queue_purge(queue);
427 		spin_unlock_bh(&queue->lock);
428 
429 		WARN_ON(atomic_read(&nlk->mapped));
430 	}
431 	mutex_unlock(&nlk->pg_vec_lock);
432 
433 	if (pg_vec)
434 		free_pg_vec(pg_vec, order, req->nm_block_nr);
435 	return err;
436 }
437 
438 static void netlink_mm_open(struct vm_area_struct *vma)
439 {
440 	struct file *file = vma->vm_file;
441 	struct socket *sock = file->private_data;
442 	struct sock *sk = sock->sk;
443 
444 	if (sk)
445 		atomic_inc(&nlk_sk(sk)->mapped);
446 }
447 
448 static void netlink_mm_close(struct vm_area_struct *vma)
449 {
450 	struct file *file = vma->vm_file;
451 	struct socket *sock = file->private_data;
452 	struct sock *sk = sock->sk;
453 
454 	if (sk)
455 		atomic_dec(&nlk_sk(sk)->mapped);
456 }
457 
458 static const struct vm_operations_struct netlink_mmap_ops = {
459 	.open	= netlink_mm_open,
460 	.close	= netlink_mm_close,
461 };
462 
463 static int netlink_mmap(struct file *file, struct socket *sock,
464 			struct vm_area_struct *vma)
465 {
466 	struct sock *sk = sock->sk;
467 	struct netlink_sock *nlk = nlk_sk(sk);
468 	struct netlink_ring *ring;
469 	unsigned long start, size, expected;
470 	unsigned int i;
471 	int err = -EINVAL;
472 
473 	if (vma->vm_pgoff)
474 		return -EINVAL;
475 
476 	mutex_lock(&nlk->pg_vec_lock);
477 
478 	expected = 0;
479 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
480 		if (ring->pg_vec == NULL)
481 			continue;
482 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
483 	}
484 
485 	if (expected == 0)
486 		goto out;
487 
488 	size = vma->vm_end - vma->vm_start;
489 	if (size != expected)
490 		goto out;
491 
492 	start = vma->vm_start;
493 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
494 		if (ring->pg_vec == NULL)
495 			continue;
496 
497 		for (i = 0; i < ring->pg_vec_len; i++) {
498 			struct page *page;
499 			void *kaddr = ring->pg_vec[i];
500 			unsigned int pg_num;
501 
502 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
503 				page = pgvec_to_page(kaddr);
504 				err = vm_insert_page(vma, start, page);
505 				if (err < 0)
506 					goto out;
507 				start += PAGE_SIZE;
508 				kaddr += PAGE_SIZE;
509 			}
510 		}
511 	}
512 
513 	atomic_inc(&nlk->mapped);
514 	vma->vm_ops = &netlink_mmap_ops;
515 	err = 0;
516 out:
517 	mutex_unlock(&nlk->pg_vec_lock);
518 	return err;
519 }
520 
521 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
522 {
523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
524 	struct page *p_start, *p_end;
525 
526 	/* First page is flushed through netlink_{get,set}_status */
527 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
528 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
529 	while (p_start <= p_end) {
530 		flush_dcache_page(p_start);
531 		p_start++;
532 	}
533 #endif
534 }
535 
536 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
537 {
538 	smp_rmb();
539 	flush_dcache_page(pgvec_to_page(hdr));
540 	return hdr->nm_status;
541 }
542 
543 static void netlink_set_status(struct nl_mmap_hdr *hdr,
544 			       enum nl_mmap_status status)
545 {
546 	hdr->nm_status = status;
547 	flush_dcache_page(pgvec_to_page(hdr));
548 	smp_wmb();
549 }
550 
551 static struct nl_mmap_hdr *
552 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
553 {
554 	unsigned int pg_vec_pos, frame_off;
555 
556 	pg_vec_pos = pos / ring->frames_per_block;
557 	frame_off  = pos % ring->frames_per_block;
558 
559 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
560 }
561 
562 static struct nl_mmap_hdr *
563 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
564 		     enum nl_mmap_status status)
565 {
566 	struct nl_mmap_hdr *hdr;
567 
568 	hdr = __netlink_lookup_frame(ring, pos);
569 	if (netlink_get_status(hdr) != status)
570 		return NULL;
571 
572 	return hdr;
573 }
574 
575 static struct nl_mmap_hdr *
576 netlink_current_frame(const struct netlink_ring *ring,
577 		      enum nl_mmap_status status)
578 {
579 	return netlink_lookup_frame(ring, ring->head, status);
580 }
581 
582 static struct nl_mmap_hdr *
583 netlink_previous_frame(const struct netlink_ring *ring,
584 		       enum nl_mmap_status status)
585 {
586 	unsigned int prev;
587 
588 	prev = ring->head ? ring->head - 1 : ring->frame_max;
589 	return netlink_lookup_frame(ring, prev, status);
590 }
591 
592 static void netlink_increment_head(struct netlink_ring *ring)
593 {
594 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
595 }
596 
597 static void netlink_forward_ring(struct netlink_ring *ring)
598 {
599 	unsigned int head = ring->head, pos = head;
600 	const struct nl_mmap_hdr *hdr;
601 
602 	do {
603 		hdr = __netlink_lookup_frame(ring, pos);
604 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
605 			break;
606 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
607 			break;
608 		netlink_increment_head(ring);
609 	} while (ring->head != head);
610 }
611 
612 static bool netlink_dump_space(struct netlink_sock *nlk)
613 {
614 	struct netlink_ring *ring = &nlk->rx_ring;
615 	struct nl_mmap_hdr *hdr;
616 	unsigned int n;
617 
618 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
619 	if (hdr == NULL)
620 		return false;
621 
622 	n = ring->head + ring->frame_max / 2;
623 	if (n > ring->frame_max)
624 		n -= ring->frame_max;
625 
626 	hdr = __netlink_lookup_frame(ring, n);
627 
628 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
629 }
630 
631 static unsigned int netlink_poll(struct file *file, struct socket *sock,
632 				 poll_table *wait)
633 {
634 	struct sock *sk = sock->sk;
635 	struct netlink_sock *nlk = nlk_sk(sk);
636 	unsigned int mask;
637 	int err;
638 
639 	if (nlk->rx_ring.pg_vec != NULL) {
640 		/* Memory mapped sockets don't call recvmsg(), so flow control
641 		 * for dumps is performed here. A dump is allowed to continue
642 		 * if at least half the ring is unused.
643 		 */
644 		while (nlk->cb_running && netlink_dump_space(nlk)) {
645 			err = netlink_dump(sk);
646 			if (err < 0) {
647 				sk->sk_err = -err;
648 				sk->sk_error_report(sk);
649 				break;
650 			}
651 		}
652 		netlink_rcv_wake(sk);
653 	}
654 
655 	mask = datagram_poll(file, sock, wait);
656 
657 	spin_lock_bh(&sk->sk_receive_queue.lock);
658 	if (nlk->rx_ring.pg_vec) {
659 		netlink_forward_ring(&nlk->rx_ring);
660 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
661 			mask |= POLLIN | POLLRDNORM;
662 	}
663 	spin_unlock_bh(&sk->sk_receive_queue.lock);
664 
665 	spin_lock_bh(&sk->sk_write_queue.lock);
666 	if (nlk->tx_ring.pg_vec) {
667 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
668 			mask |= POLLOUT | POLLWRNORM;
669 	}
670 	spin_unlock_bh(&sk->sk_write_queue.lock);
671 
672 	return mask;
673 }
674 
675 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
676 {
677 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
678 }
679 
680 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
681 				   struct netlink_ring *ring,
682 				   struct nl_mmap_hdr *hdr)
683 {
684 	unsigned int size;
685 	void *data;
686 
687 	size = ring->frame_size - NL_MMAP_HDRLEN;
688 	data = (void *)hdr + NL_MMAP_HDRLEN;
689 
690 	skb->head	= data;
691 	skb->data	= data;
692 	skb_reset_tail_pointer(skb);
693 	skb->end	= skb->tail + size;
694 	skb->len	= 0;
695 
696 	skb->destructor	= netlink_skb_destructor;
697 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
698 	NETLINK_CB(skb).sk = sk;
699 }
700 
701 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
702 				u32 dst_portid, u32 dst_group,
703 				struct sock_iocb *siocb)
704 {
705 	struct netlink_sock *nlk = nlk_sk(sk);
706 	struct netlink_ring *ring;
707 	struct nl_mmap_hdr *hdr;
708 	struct sk_buff *skb;
709 	unsigned int maxlen;
710 	bool excl = true;
711 	int err = 0, len = 0;
712 
713 	/* Netlink messages are validated by the receiver before processing.
714 	 * In order to avoid userspace changing the contents of the message
715 	 * after validation, the socket and the ring may only be used by a
716 	 * single process, otherwise we fall back to copying.
717 	 */
718 	if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 ||
719 	    atomic_read(&nlk->mapped) > 1)
720 		excl = false;
721 
722 	mutex_lock(&nlk->pg_vec_lock);
723 
724 	ring   = &nlk->tx_ring;
725 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
726 
727 	do {
728 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
729 		if (hdr == NULL) {
730 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
731 			    atomic_read(&nlk->tx_ring.pending))
732 				schedule();
733 			continue;
734 		}
735 		if (hdr->nm_len > maxlen) {
736 			err = -EINVAL;
737 			goto out;
738 		}
739 
740 		netlink_frame_flush_dcache(hdr);
741 
742 		if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
743 			skb = alloc_skb_head(GFP_KERNEL);
744 			if (skb == NULL) {
745 				err = -ENOBUFS;
746 				goto out;
747 			}
748 			sock_hold(sk);
749 			netlink_ring_setup_skb(skb, sk, ring, hdr);
750 			NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
751 			__skb_put(skb, hdr->nm_len);
752 			netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
753 			atomic_inc(&ring->pending);
754 		} else {
755 			skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
756 			if (skb == NULL) {
757 				err = -ENOBUFS;
758 				goto out;
759 			}
760 			__skb_put(skb, hdr->nm_len);
761 			memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
762 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
763 		}
764 
765 		netlink_increment_head(ring);
766 
767 		NETLINK_CB(skb).portid	  = nlk->portid;
768 		NETLINK_CB(skb).dst_group = dst_group;
769 		NETLINK_CB(skb).creds	  = siocb->scm->creds;
770 
771 		err = security_netlink_send(sk, skb);
772 		if (err) {
773 			kfree_skb(skb);
774 			goto out;
775 		}
776 
777 		if (unlikely(dst_group)) {
778 			atomic_inc(&skb->users);
779 			netlink_broadcast(sk, skb, dst_portid, dst_group,
780 					  GFP_KERNEL);
781 		}
782 		err = netlink_unicast(sk, skb, dst_portid,
783 				      msg->msg_flags & MSG_DONTWAIT);
784 		if (err < 0)
785 			goto out;
786 		len += err;
787 
788 	} while (hdr != NULL ||
789 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
790 		  atomic_read(&nlk->tx_ring.pending)));
791 
792 	if (len > 0)
793 		err = len;
794 out:
795 	mutex_unlock(&nlk->pg_vec_lock);
796 	return err;
797 }
798 
799 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
800 {
801 	struct nl_mmap_hdr *hdr;
802 
803 	hdr = netlink_mmap_hdr(skb);
804 	hdr->nm_len	= skb->len;
805 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
806 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
807 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
808 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
809 	netlink_frame_flush_dcache(hdr);
810 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
811 
812 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
813 	kfree_skb(skb);
814 }
815 
816 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
817 {
818 	struct netlink_sock *nlk = nlk_sk(sk);
819 	struct netlink_ring *ring = &nlk->rx_ring;
820 	struct nl_mmap_hdr *hdr;
821 
822 	spin_lock_bh(&sk->sk_receive_queue.lock);
823 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
824 	if (hdr == NULL) {
825 		spin_unlock_bh(&sk->sk_receive_queue.lock);
826 		kfree_skb(skb);
827 		netlink_overrun(sk);
828 		return;
829 	}
830 	netlink_increment_head(ring);
831 	__skb_queue_tail(&sk->sk_receive_queue, skb);
832 	spin_unlock_bh(&sk->sk_receive_queue.lock);
833 
834 	hdr->nm_len	= skb->len;
835 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
836 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
837 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
838 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
839 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
840 }
841 
842 #else /* CONFIG_NETLINK_MMAP */
843 #define netlink_skb_is_mmaped(skb)	false
844 #define netlink_rx_is_mmaped(sk)	false
845 #define netlink_tx_is_mmaped(sk)	false
846 #define netlink_mmap			sock_no_mmap
847 #define netlink_poll			datagram_poll
848 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb)	0
849 #endif /* CONFIG_NETLINK_MMAP */
850 
851 static void netlink_skb_destructor(struct sk_buff *skb)
852 {
853 #ifdef CONFIG_NETLINK_MMAP
854 	struct nl_mmap_hdr *hdr;
855 	struct netlink_ring *ring;
856 	struct sock *sk;
857 
858 	/* If a packet from the kernel to userspace was freed because of an
859 	 * error without being delivered to userspace, the kernel must reset
860 	 * the status. In the direction userspace to kernel, the status is
861 	 * always reset here after the packet was processed and freed.
862 	 */
863 	if (netlink_skb_is_mmaped(skb)) {
864 		hdr = netlink_mmap_hdr(skb);
865 		sk = NETLINK_CB(skb).sk;
866 
867 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
868 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
869 			ring = &nlk_sk(sk)->tx_ring;
870 		} else {
871 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
872 				hdr->nm_len = 0;
873 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
874 			}
875 			ring = &nlk_sk(sk)->rx_ring;
876 		}
877 
878 		WARN_ON(atomic_read(&ring->pending) == 0);
879 		atomic_dec(&ring->pending);
880 		sock_put(sk);
881 
882 		skb->head = NULL;
883 	}
884 #endif
885 	if (is_vmalloc_addr(skb->head)) {
886 		if (!skb->cloned ||
887 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
888 			vfree(skb->head);
889 
890 		skb->head = NULL;
891 	}
892 	if (skb->sk != NULL)
893 		sock_rfree(skb);
894 }
895 
896 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
897 {
898 	WARN_ON(skb->sk != NULL);
899 	skb->sk = sk;
900 	skb->destructor = netlink_skb_destructor;
901 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
902 	sk_mem_charge(sk, skb->truesize);
903 }
904 
905 static void netlink_sock_destruct(struct sock *sk)
906 {
907 	struct netlink_sock *nlk = nlk_sk(sk);
908 
909 	if (nlk->cb_running) {
910 		if (nlk->cb.done)
911 			nlk->cb.done(&nlk->cb);
912 
913 		module_put(nlk->cb.module);
914 		kfree_skb(nlk->cb.skb);
915 	}
916 
917 	skb_queue_purge(&sk->sk_receive_queue);
918 #ifdef CONFIG_NETLINK_MMAP
919 	if (1) {
920 		struct nl_mmap_req req;
921 
922 		memset(&req, 0, sizeof(req));
923 		if (nlk->rx_ring.pg_vec)
924 			netlink_set_ring(sk, &req, true, false);
925 		memset(&req, 0, sizeof(req));
926 		if (nlk->tx_ring.pg_vec)
927 			netlink_set_ring(sk, &req, true, true);
928 	}
929 #endif /* CONFIG_NETLINK_MMAP */
930 
931 	if (!sock_flag(sk, SOCK_DEAD)) {
932 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
933 		return;
934 	}
935 
936 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
937 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
938 	WARN_ON(nlk_sk(sk)->groups);
939 }
940 
941 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
942  * SMP. Look, when several writers sleep and reader wakes them up, all but one
943  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
944  * this, _but_ remember, it adds useless work on UP machines.
945  */
946 
947 void netlink_table_grab(void)
948 	__acquires(nl_table_lock)
949 {
950 	might_sleep();
951 
952 	write_lock_irq(&nl_table_lock);
953 
954 	if (atomic_read(&nl_table_users)) {
955 		DECLARE_WAITQUEUE(wait, current);
956 
957 		add_wait_queue_exclusive(&nl_table_wait, &wait);
958 		for (;;) {
959 			set_current_state(TASK_UNINTERRUPTIBLE);
960 			if (atomic_read(&nl_table_users) == 0)
961 				break;
962 			write_unlock_irq(&nl_table_lock);
963 			schedule();
964 			write_lock_irq(&nl_table_lock);
965 		}
966 
967 		__set_current_state(TASK_RUNNING);
968 		remove_wait_queue(&nl_table_wait, &wait);
969 	}
970 }
971 
972 void netlink_table_ungrab(void)
973 	__releases(nl_table_lock)
974 {
975 	write_unlock_irq(&nl_table_lock);
976 	wake_up(&nl_table_wait);
977 }
978 
979 static inline void
980 netlink_lock_table(void)
981 {
982 	/* read_lock() synchronizes us to netlink_table_grab */
983 
984 	read_lock(&nl_table_lock);
985 	atomic_inc(&nl_table_users);
986 	read_unlock(&nl_table_lock);
987 }
988 
989 static inline void
990 netlink_unlock_table(void)
991 {
992 	if (atomic_dec_and_test(&nl_table_users))
993 		wake_up(&nl_table_wait);
994 }
995 
996 struct netlink_compare_arg
997 {
998 	struct net *net;
999 	u32 portid;
1000 };
1001 
1002 static bool netlink_compare(void *ptr, void *arg)
1003 {
1004 	struct netlink_compare_arg *x = arg;
1005 	struct sock *sk = ptr;
1006 
1007 	return nlk_sk(sk)->portid == x->portid &&
1008 	       net_eq(sock_net(sk), x->net);
1009 }
1010 
1011 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1012 				     struct net *net)
1013 {
1014 	struct netlink_compare_arg arg = {
1015 		.net = net,
1016 		.portid = portid,
1017 	};
1018 	u32 hash;
1019 
1020 	hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid));
1021 
1022 	return rhashtable_lookup_compare(&table->hash, hash,
1023 					 &netlink_compare, &arg);
1024 }
1025 
1026 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1027 {
1028 	struct netlink_table *table = &nl_table[protocol];
1029 	struct sock *sk;
1030 
1031 	rcu_read_lock();
1032 	sk = __netlink_lookup(table, portid, net);
1033 	if (sk)
1034 		sock_hold(sk);
1035 	rcu_read_unlock();
1036 
1037 	return sk;
1038 }
1039 
1040 static const struct proto_ops netlink_ops;
1041 
1042 static void
1043 netlink_update_listeners(struct sock *sk)
1044 {
1045 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1046 	unsigned long mask;
1047 	unsigned int i;
1048 	struct listeners *listeners;
1049 
1050 	listeners = nl_deref_protected(tbl->listeners);
1051 	if (!listeners)
1052 		return;
1053 
1054 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1055 		mask = 0;
1056 		sk_for_each_bound(sk, &tbl->mc_list) {
1057 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1058 				mask |= nlk_sk(sk)->groups[i];
1059 		}
1060 		listeners->masks[i] = mask;
1061 	}
1062 	/* this function is only called with the netlink table "grabbed", which
1063 	 * makes sure updates are visible before bind or setsockopt return. */
1064 }
1065 
1066 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1067 {
1068 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1069 	int err = -EADDRINUSE;
1070 
1071 	mutex_lock(&nl_sk_hash_lock);
1072 	if (__netlink_lookup(table, portid, net))
1073 		goto err;
1074 
1075 	err = -EBUSY;
1076 	if (nlk_sk(sk)->portid)
1077 		goto err;
1078 
1079 	err = -ENOMEM;
1080 	if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1081 		goto err;
1082 
1083 	nlk_sk(sk)->portid = portid;
1084 	sock_hold(sk);
1085 	rhashtable_insert(&table->hash, &nlk_sk(sk)->node, GFP_KERNEL);
1086 	err = 0;
1087 err:
1088 	mutex_unlock(&nl_sk_hash_lock);
1089 	return err;
1090 }
1091 
1092 static void netlink_remove(struct sock *sk)
1093 {
1094 	struct netlink_table *table;
1095 
1096 	mutex_lock(&nl_sk_hash_lock);
1097 	table = &nl_table[sk->sk_protocol];
1098 	if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node, GFP_KERNEL)) {
1099 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1100 		__sock_put(sk);
1101 	}
1102 	mutex_unlock(&nl_sk_hash_lock);
1103 
1104 	netlink_table_grab();
1105 	if (nlk_sk(sk)->subscriptions)
1106 		__sk_del_bind_node(sk);
1107 	netlink_table_ungrab();
1108 }
1109 
1110 static struct proto netlink_proto = {
1111 	.name	  = "NETLINK",
1112 	.owner	  = THIS_MODULE,
1113 	.obj_size = sizeof(struct netlink_sock),
1114 };
1115 
1116 static int __netlink_create(struct net *net, struct socket *sock,
1117 			    struct mutex *cb_mutex, int protocol)
1118 {
1119 	struct sock *sk;
1120 	struct netlink_sock *nlk;
1121 
1122 	sock->ops = &netlink_ops;
1123 
1124 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1125 	if (!sk)
1126 		return -ENOMEM;
1127 
1128 	sock_init_data(sock, sk);
1129 
1130 	nlk = nlk_sk(sk);
1131 	if (cb_mutex) {
1132 		nlk->cb_mutex = cb_mutex;
1133 	} else {
1134 		nlk->cb_mutex = &nlk->cb_def_mutex;
1135 		mutex_init(nlk->cb_mutex);
1136 	}
1137 	init_waitqueue_head(&nlk->wait);
1138 #ifdef CONFIG_NETLINK_MMAP
1139 	mutex_init(&nlk->pg_vec_lock);
1140 #endif
1141 
1142 	sk->sk_destruct = netlink_sock_destruct;
1143 	sk->sk_protocol = protocol;
1144 	return 0;
1145 }
1146 
1147 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1148 			  int kern)
1149 {
1150 	struct module *module = NULL;
1151 	struct mutex *cb_mutex;
1152 	struct netlink_sock *nlk;
1153 	int (*bind)(int group);
1154 	void (*unbind)(int group);
1155 	int err = 0;
1156 
1157 	sock->state = SS_UNCONNECTED;
1158 
1159 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1160 		return -ESOCKTNOSUPPORT;
1161 
1162 	if (protocol < 0 || protocol >= MAX_LINKS)
1163 		return -EPROTONOSUPPORT;
1164 
1165 	netlink_lock_table();
1166 #ifdef CONFIG_MODULES
1167 	if (!nl_table[protocol].registered) {
1168 		netlink_unlock_table();
1169 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1170 		netlink_lock_table();
1171 	}
1172 #endif
1173 	if (nl_table[protocol].registered &&
1174 	    try_module_get(nl_table[protocol].module))
1175 		module = nl_table[protocol].module;
1176 	else
1177 		err = -EPROTONOSUPPORT;
1178 	cb_mutex = nl_table[protocol].cb_mutex;
1179 	bind = nl_table[protocol].bind;
1180 	unbind = nl_table[protocol].unbind;
1181 	netlink_unlock_table();
1182 
1183 	if (err < 0)
1184 		goto out;
1185 
1186 	err = __netlink_create(net, sock, cb_mutex, protocol);
1187 	if (err < 0)
1188 		goto out_module;
1189 
1190 	local_bh_disable();
1191 	sock_prot_inuse_add(net, &netlink_proto, 1);
1192 	local_bh_enable();
1193 
1194 	nlk = nlk_sk(sock->sk);
1195 	nlk->module = module;
1196 	nlk->netlink_bind = bind;
1197 	nlk->netlink_unbind = unbind;
1198 out:
1199 	return err;
1200 
1201 out_module:
1202 	module_put(module);
1203 	goto out;
1204 }
1205 
1206 static int netlink_release(struct socket *sock)
1207 {
1208 	struct sock *sk = sock->sk;
1209 	struct netlink_sock *nlk;
1210 
1211 	if (!sk)
1212 		return 0;
1213 
1214 	netlink_remove(sk);
1215 	sock_orphan(sk);
1216 	nlk = nlk_sk(sk);
1217 
1218 	/*
1219 	 * OK. Socket is unlinked, any packets that arrive now
1220 	 * will be purged.
1221 	 */
1222 
1223 	sock->sk = NULL;
1224 	wake_up_interruptible_all(&nlk->wait);
1225 
1226 	skb_queue_purge(&sk->sk_write_queue);
1227 
1228 	if (nlk->portid) {
1229 		struct netlink_notify n = {
1230 						.net = sock_net(sk),
1231 						.protocol = sk->sk_protocol,
1232 						.portid = nlk->portid,
1233 					  };
1234 		atomic_notifier_call_chain(&netlink_chain,
1235 				NETLINK_URELEASE, &n);
1236 	}
1237 
1238 	module_put(nlk->module);
1239 
1240 	netlink_table_grab();
1241 	if (netlink_is_kernel(sk)) {
1242 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1243 		if (--nl_table[sk->sk_protocol].registered == 0) {
1244 			struct listeners *old;
1245 
1246 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1247 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1248 			kfree_rcu(old, rcu);
1249 			nl_table[sk->sk_protocol].module = NULL;
1250 			nl_table[sk->sk_protocol].bind = NULL;
1251 			nl_table[sk->sk_protocol].unbind = NULL;
1252 			nl_table[sk->sk_protocol].flags = 0;
1253 			nl_table[sk->sk_protocol].registered = 0;
1254 		}
1255 	} else if (nlk->subscriptions) {
1256 		netlink_update_listeners(sk);
1257 	}
1258 	netlink_table_ungrab();
1259 
1260 	/* Wait for readers to complete */
1261 	synchronize_net();
1262 
1263 	kfree(nlk->groups);
1264 	nlk->groups = NULL;
1265 
1266 	local_bh_disable();
1267 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1268 	local_bh_enable();
1269 	sock_put(sk);
1270 	return 0;
1271 }
1272 
1273 static int netlink_autobind(struct socket *sock)
1274 {
1275 	struct sock *sk = sock->sk;
1276 	struct net *net = sock_net(sk);
1277 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1278 	s32 portid = task_tgid_vnr(current);
1279 	int err;
1280 	static s32 rover = -4097;
1281 
1282 retry:
1283 	cond_resched();
1284 	rcu_read_lock();
1285 	if (__netlink_lookup(table, portid, net)) {
1286 		/* Bind collision, search negative portid values. */
1287 		portid = rover--;
1288 		if (rover > -4097)
1289 			rover = -4097;
1290 		rcu_read_unlock();
1291 		goto retry;
1292 	}
1293 	rcu_read_unlock();
1294 
1295 	err = netlink_insert(sk, net, portid);
1296 	if (err == -EADDRINUSE)
1297 		goto retry;
1298 
1299 	/* If 2 threads race to autobind, that is fine.  */
1300 	if (err == -EBUSY)
1301 		err = 0;
1302 
1303 	return err;
1304 }
1305 
1306 /**
1307  * __netlink_ns_capable - General netlink message capability test
1308  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1309  * @user_ns: The user namespace of the capability to use
1310  * @cap: The capability to use
1311  *
1312  * Test to see if the opener of the socket we received the message
1313  * from had when the netlink socket was created and the sender of the
1314  * message has has the capability @cap in the user namespace @user_ns.
1315  */
1316 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1317 			struct user_namespace *user_ns, int cap)
1318 {
1319 	return ((nsp->flags & NETLINK_SKB_DST) ||
1320 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1321 		ns_capable(user_ns, cap);
1322 }
1323 EXPORT_SYMBOL(__netlink_ns_capable);
1324 
1325 /**
1326  * netlink_ns_capable - General netlink message capability test
1327  * @skb: socket buffer holding a netlink command from userspace
1328  * @user_ns: The user namespace of the capability to use
1329  * @cap: The capability to use
1330  *
1331  * Test to see if the opener of the socket we received the message
1332  * from had when the netlink socket was created and the sender of the
1333  * message has has the capability @cap in the user namespace @user_ns.
1334  */
1335 bool netlink_ns_capable(const struct sk_buff *skb,
1336 			struct user_namespace *user_ns, int cap)
1337 {
1338 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1339 }
1340 EXPORT_SYMBOL(netlink_ns_capable);
1341 
1342 /**
1343  * netlink_capable - Netlink global message capability test
1344  * @skb: socket buffer holding a netlink command from userspace
1345  * @cap: The capability to use
1346  *
1347  * Test to see if the opener of the socket we received the message
1348  * from had when the netlink socket was created and the sender of the
1349  * message has has the capability @cap in all user namespaces.
1350  */
1351 bool netlink_capable(const struct sk_buff *skb, int cap)
1352 {
1353 	return netlink_ns_capable(skb, &init_user_ns, cap);
1354 }
1355 EXPORT_SYMBOL(netlink_capable);
1356 
1357 /**
1358  * netlink_net_capable - Netlink network namespace message capability test
1359  * @skb: socket buffer holding a netlink command from userspace
1360  * @cap: The capability to use
1361  *
1362  * Test to see if the opener of the socket we received the message
1363  * from had when the netlink socket was created and the sender of the
1364  * message has has the capability @cap over the network namespace of
1365  * the socket we received the message from.
1366  */
1367 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1368 {
1369 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1370 }
1371 EXPORT_SYMBOL(netlink_net_capable);
1372 
1373 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1374 {
1375 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1376 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1377 }
1378 
1379 static void
1380 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1381 {
1382 	struct netlink_sock *nlk = nlk_sk(sk);
1383 
1384 	if (nlk->subscriptions && !subscriptions)
1385 		__sk_del_bind_node(sk);
1386 	else if (!nlk->subscriptions && subscriptions)
1387 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1388 	nlk->subscriptions = subscriptions;
1389 }
1390 
1391 static int netlink_realloc_groups(struct sock *sk)
1392 {
1393 	struct netlink_sock *nlk = nlk_sk(sk);
1394 	unsigned int groups;
1395 	unsigned long *new_groups;
1396 	int err = 0;
1397 
1398 	netlink_table_grab();
1399 
1400 	groups = nl_table[sk->sk_protocol].groups;
1401 	if (!nl_table[sk->sk_protocol].registered) {
1402 		err = -ENOENT;
1403 		goto out_unlock;
1404 	}
1405 
1406 	if (nlk->ngroups >= groups)
1407 		goto out_unlock;
1408 
1409 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1410 	if (new_groups == NULL) {
1411 		err = -ENOMEM;
1412 		goto out_unlock;
1413 	}
1414 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1415 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1416 
1417 	nlk->groups = new_groups;
1418 	nlk->ngroups = groups;
1419  out_unlock:
1420 	netlink_table_ungrab();
1421 	return err;
1422 }
1423 
1424 static void netlink_unbind(int group, long unsigned int groups,
1425 			   struct netlink_sock *nlk)
1426 {
1427 	int undo;
1428 
1429 	if (!nlk->netlink_unbind)
1430 		return;
1431 
1432 	for (undo = 0; undo < group; undo++)
1433 		if (test_bit(group, &groups))
1434 			nlk->netlink_unbind(undo);
1435 }
1436 
1437 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1438 			int addr_len)
1439 {
1440 	struct sock *sk = sock->sk;
1441 	struct net *net = sock_net(sk);
1442 	struct netlink_sock *nlk = nlk_sk(sk);
1443 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1444 	int err;
1445 	long unsigned int groups = nladdr->nl_groups;
1446 
1447 	if (addr_len < sizeof(struct sockaddr_nl))
1448 		return -EINVAL;
1449 
1450 	if (nladdr->nl_family != AF_NETLINK)
1451 		return -EINVAL;
1452 
1453 	/* Only superuser is allowed to listen multicasts */
1454 	if (groups) {
1455 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1456 			return -EPERM;
1457 		err = netlink_realloc_groups(sk);
1458 		if (err)
1459 			return err;
1460 	}
1461 
1462 	if (nlk->portid)
1463 		if (nladdr->nl_pid != nlk->portid)
1464 			return -EINVAL;
1465 
1466 	if (nlk->netlink_bind && groups) {
1467 		int group;
1468 
1469 		for (group = 0; group < nlk->ngroups; group++) {
1470 			if (!test_bit(group, &groups))
1471 				continue;
1472 			err = nlk->netlink_bind(group);
1473 			if (!err)
1474 				continue;
1475 			netlink_unbind(group, groups, nlk);
1476 			return err;
1477 		}
1478 	}
1479 
1480 	if (!nlk->portid) {
1481 		err = nladdr->nl_pid ?
1482 			netlink_insert(sk, net, nladdr->nl_pid) :
1483 			netlink_autobind(sock);
1484 		if (err) {
1485 			netlink_unbind(nlk->ngroups - 1, groups, nlk);
1486 			return err;
1487 		}
1488 	}
1489 
1490 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1491 		return 0;
1492 
1493 	netlink_table_grab();
1494 	netlink_update_subscriptions(sk, nlk->subscriptions +
1495 					 hweight32(groups) -
1496 					 hweight32(nlk->groups[0]));
1497 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1498 	netlink_update_listeners(sk);
1499 	netlink_table_ungrab();
1500 
1501 	return 0;
1502 }
1503 
1504 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1505 			   int alen, int flags)
1506 {
1507 	int err = 0;
1508 	struct sock *sk = sock->sk;
1509 	struct netlink_sock *nlk = nlk_sk(sk);
1510 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1511 
1512 	if (alen < sizeof(addr->sa_family))
1513 		return -EINVAL;
1514 
1515 	if (addr->sa_family == AF_UNSPEC) {
1516 		sk->sk_state	= NETLINK_UNCONNECTED;
1517 		nlk->dst_portid	= 0;
1518 		nlk->dst_group  = 0;
1519 		return 0;
1520 	}
1521 	if (addr->sa_family != AF_NETLINK)
1522 		return -EINVAL;
1523 
1524 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1525 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1526 		return -EPERM;
1527 
1528 	if (!nlk->portid)
1529 		err = netlink_autobind(sock);
1530 
1531 	if (err == 0) {
1532 		sk->sk_state	= NETLINK_CONNECTED;
1533 		nlk->dst_portid = nladdr->nl_pid;
1534 		nlk->dst_group  = ffs(nladdr->nl_groups);
1535 	}
1536 
1537 	return err;
1538 }
1539 
1540 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1541 			   int *addr_len, int peer)
1542 {
1543 	struct sock *sk = sock->sk;
1544 	struct netlink_sock *nlk = nlk_sk(sk);
1545 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1546 
1547 	nladdr->nl_family = AF_NETLINK;
1548 	nladdr->nl_pad = 0;
1549 	*addr_len = sizeof(*nladdr);
1550 
1551 	if (peer) {
1552 		nladdr->nl_pid = nlk->dst_portid;
1553 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1554 	} else {
1555 		nladdr->nl_pid = nlk->portid;
1556 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1557 	}
1558 	return 0;
1559 }
1560 
1561 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1562 {
1563 	struct sock *sock;
1564 	struct netlink_sock *nlk;
1565 
1566 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1567 	if (!sock)
1568 		return ERR_PTR(-ECONNREFUSED);
1569 
1570 	/* Don't bother queuing skb if kernel socket has no input function */
1571 	nlk = nlk_sk(sock);
1572 	if (sock->sk_state == NETLINK_CONNECTED &&
1573 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1574 		sock_put(sock);
1575 		return ERR_PTR(-ECONNREFUSED);
1576 	}
1577 	return sock;
1578 }
1579 
1580 struct sock *netlink_getsockbyfilp(struct file *filp)
1581 {
1582 	struct inode *inode = file_inode(filp);
1583 	struct sock *sock;
1584 
1585 	if (!S_ISSOCK(inode->i_mode))
1586 		return ERR_PTR(-ENOTSOCK);
1587 
1588 	sock = SOCKET_I(inode)->sk;
1589 	if (sock->sk_family != AF_NETLINK)
1590 		return ERR_PTR(-EINVAL);
1591 
1592 	sock_hold(sock);
1593 	return sock;
1594 }
1595 
1596 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1597 					       int broadcast)
1598 {
1599 	struct sk_buff *skb;
1600 	void *data;
1601 
1602 	if (size <= NLMSG_GOODSIZE || broadcast)
1603 		return alloc_skb(size, GFP_KERNEL);
1604 
1605 	size = SKB_DATA_ALIGN(size) +
1606 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1607 
1608 	data = vmalloc(size);
1609 	if (data == NULL)
1610 		return NULL;
1611 
1612 	skb = build_skb(data, size);
1613 	if (skb == NULL)
1614 		vfree(data);
1615 	else {
1616 		skb->head_frag = 0;
1617 		skb->destructor = netlink_skb_destructor;
1618 	}
1619 
1620 	return skb;
1621 }
1622 
1623 /*
1624  * Attach a skb to a netlink socket.
1625  * The caller must hold a reference to the destination socket. On error, the
1626  * reference is dropped. The skb is not send to the destination, just all
1627  * all error checks are performed and memory in the queue is reserved.
1628  * Return values:
1629  * < 0: error. skb freed, reference to sock dropped.
1630  * 0: continue
1631  * 1: repeat lookup - reference dropped while waiting for socket memory.
1632  */
1633 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1634 		      long *timeo, struct sock *ssk)
1635 {
1636 	struct netlink_sock *nlk;
1637 
1638 	nlk = nlk_sk(sk);
1639 
1640 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1641 	     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1642 	    !netlink_skb_is_mmaped(skb)) {
1643 		DECLARE_WAITQUEUE(wait, current);
1644 		if (!*timeo) {
1645 			if (!ssk || netlink_is_kernel(ssk))
1646 				netlink_overrun(sk);
1647 			sock_put(sk);
1648 			kfree_skb(skb);
1649 			return -EAGAIN;
1650 		}
1651 
1652 		__set_current_state(TASK_INTERRUPTIBLE);
1653 		add_wait_queue(&nlk->wait, &wait);
1654 
1655 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1656 		     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1657 		    !sock_flag(sk, SOCK_DEAD))
1658 			*timeo = schedule_timeout(*timeo);
1659 
1660 		__set_current_state(TASK_RUNNING);
1661 		remove_wait_queue(&nlk->wait, &wait);
1662 		sock_put(sk);
1663 
1664 		if (signal_pending(current)) {
1665 			kfree_skb(skb);
1666 			return sock_intr_errno(*timeo);
1667 		}
1668 		return 1;
1669 	}
1670 	netlink_skb_set_owner_r(skb, sk);
1671 	return 0;
1672 }
1673 
1674 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1675 {
1676 	int len = skb->len;
1677 
1678 	netlink_deliver_tap(skb);
1679 
1680 #ifdef CONFIG_NETLINK_MMAP
1681 	if (netlink_skb_is_mmaped(skb))
1682 		netlink_queue_mmaped_skb(sk, skb);
1683 	else if (netlink_rx_is_mmaped(sk))
1684 		netlink_ring_set_copied(sk, skb);
1685 	else
1686 #endif /* CONFIG_NETLINK_MMAP */
1687 		skb_queue_tail(&sk->sk_receive_queue, skb);
1688 	sk->sk_data_ready(sk);
1689 	return len;
1690 }
1691 
1692 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1693 {
1694 	int len = __netlink_sendskb(sk, skb);
1695 
1696 	sock_put(sk);
1697 	return len;
1698 }
1699 
1700 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1701 {
1702 	kfree_skb(skb);
1703 	sock_put(sk);
1704 }
1705 
1706 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1707 {
1708 	int delta;
1709 
1710 	WARN_ON(skb->sk != NULL);
1711 	if (netlink_skb_is_mmaped(skb))
1712 		return skb;
1713 
1714 	delta = skb->end - skb->tail;
1715 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1716 		return skb;
1717 
1718 	if (skb_shared(skb)) {
1719 		struct sk_buff *nskb = skb_clone(skb, allocation);
1720 		if (!nskb)
1721 			return skb;
1722 		consume_skb(skb);
1723 		skb = nskb;
1724 	}
1725 
1726 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1727 		skb->truesize -= delta;
1728 
1729 	return skb;
1730 }
1731 
1732 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1733 				  struct sock *ssk)
1734 {
1735 	int ret;
1736 	struct netlink_sock *nlk = nlk_sk(sk);
1737 
1738 	ret = -ECONNREFUSED;
1739 	if (nlk->netlink_rcv != NULL) {
1740 		ret = skb->len;
1741 		netlink_skb_set_owner_r(skb, sk);
1742 		NETLINK_CB(skb).sk = ssk;
1743 		netlink_deliver_tap_kernel(sk, ssk, skb);
1744 		nlk->netlink_rcv(skb);
1745 		consume_skb(skb);
1746 	} else {
1747 		kfree_skb(skb);
1748 	}
1749 	sock_put(sk);
1750 	return ret;
1751 }
1752 
1753 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1754 		    u32 portid, int nonblock)
1755 {
1756 	struct sock *sk;
1757 	int err;
1758 	long timeo;
1759 
1760 	skb = netlink_trim(skb, gfp_any());
1761 
1762 	timeo = sock_sndtimeo(ssk, nonblock);
1763 retry:
1764 	sk = netlink_getsockbyportid(ssk, portid);
1765 	if (IS_ERR(sk)) {
1766 		kfree_skb(skb);
1767 		return PTR_ERR(sk);
1768 	}
1769 	if (netlink_is_kernel(sk))
1770 		return netlink_unicast_kernel(sk, skb, ssk);
1771 
1772 	if (sk_filter(sk, skb)) {
1773 		err = skb->len;
1774 		kfree_skb(skb);
1775 		sock_put(sk);
1776 		return err;
1777 	}
1778 
1779 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1780 	if (err == 1)
1781 		goto retry;
1782 	if (err)
1783 		return err;
1784 
1785 	return netlink_sendskb(sk, skb);
1786 }
1787 EXPORT_SYMBOL(netlink_unicast);
1788 
1789 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1790 				  u32 dst_portid, gfp_t gfp_mask)
1791 {
1792 #ifdef CONFIG_NETLINK_MMAP
1793 	struct sock *sk = NULL;
1794 	struct sk_buff *skb;
1795 	struct netlink_ring *ring;
1796 	struct nl_mmap_hdr *hdr;
1797 	unsigned int maxlen;
1798 
1799 	sk = netlink_getsockbyportid(ssk, dst_portid);
1800 	if (IS_ERR(sk))
1801 		goto out;
1802 
1803 	ring = &nlk_sk(sk)->rx_ring;
1804 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1805 	if (ring->pg_vec == NULL)
1806 		goto out_put;
1807 
1808 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1809 		goto out_put;
1810 
1811 	skb = alloc_skb_head(gfp_mask);
1812 	if (skb == NULL)
1813 		goto err1;
1814 
1815 	spin_lock_bh(&sk->sk_receive_queue.lock);
1816 	/* check again under lock */
1817 	if (ring->pg_vec == NULL)
1818 		goto out_free;
1819 
1820 	/* check again under lock */
1821 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1822 	if (maxlen < size)
1823 		goto out_free;
1824 
1825 	netlink_forward_ring(ring);
1826 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1827 	if (hdr == NULL)
1828 		goto err2;
1829 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1830 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1831 	atomic_inc(&ring->pending);
1832 	netlink_increment_head(ring);
1833 
1834 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1835 	return skb;
1836 
1837 err2:
1838 	kfree_skb(skb);
1839 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1840 	netlink_overrun(sk);
1841 err1:
1842 	sock_put(sk);
1843 	return NULL;
1844 
1845 out_free:
1846 	kfree_skb(skb);
1847 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1848 out_put:
1849 	sock_put(sk);
1850 out:
1851 #endif
1852 	return alloc_skb(size, gfp_mask);
1853 }
1854 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1855 
1856 int netlink_has_listeners(struct sock *sk, unsigned int group)
1857 {
1858 	int res = 0;
1859 	struct listeners *listeners;
1860 
1861 	BUG_ON(!netlink_is_kernel(sk));
1862 
1863 	rcu_read_lock();
1864 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1865 
1866 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1867 		res = test_bit(group - 1, listeners->masks);
1868 
1869 	rcu_read_unlock();
1870 
1871 	return res;
1872 }
1873 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1874 
1875 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1876 {
1877 	struct netlink_sock *nlk = nlk_sk(sk);
1878 
1879 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1880 	    !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1881 		netlink_skb_set_owner_r(skb, sk);
1882 		__netlink_sendskb(sk, skb);
1883 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1884 	}
1885 	return -1;
1886 }
1887 
1888 struct netlink_broadcast_data {
1889 	struct sock *exclude_sk;
1890 	struct net *net;
1891 	u32 portid;
1892 	u32 group;
1893 	int failure;
1894 	int delivery_failure;
1895 	int congested;
1896 	int delivered;
1897 	gfp_t allocation;
1898 	struct sk_buff *skb, *skb2;
1899 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1900 	void *tx_data;
1901 };
1902 
1903 static void do_one_broadcast(struct sock *sk,
1904 				    struct netlink_broadcast_data *p)
1905 {
1906 	struct netlink_sock *nlk = nlk_sk(sk);
1907 	int val;
1908 
1909 	if (p->exclude_sk == sk)
1910 		return;
1911 
1912 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1913 	    !test_bit(p->group - 1, nlk->groups))
1914 		return;
1915 
1916 	if (!net_eq(sock_net(sk), p->net))
1917 		return;
1918 
1919 	if (p->failure) {
1920 		netlink_overrun(sk);
1921 		return;
1922 	}
1923 
1924 	sock_hold(sk);
1925 	if (p->skb2 == NULL) {
1926 		if (skb_shared(p->skb)) {
1927 			p->skb2 = skb_clone(p->skb, p->allocation);
1928 		} else {
1929 			p->skb2 = skb_get(p->skb);
1930 			/*
1931 			 * skb ownership may have been set when
1932 			 * delivered to a previous socket.
1933 			 */
1934 			skb_orphan(p->skb2);
1935 		}
1936 	}
1937 	if (p->skb2 == NULL) {
1938 		netlink_overrun(sk);
1939 		/* Clone failed. Notify ALL listeners. */
1940 		p->failure = 1;
1941 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1942 			p->delivery_failure = 1;
1943 	} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1944 		kfree_skb(p->skb2);
1945 		p->skb2 = NULL;
1946 	} else if (sk_filter(sk, p->skb2)) {
1947 		kfree_skb(p->skb2);
1948 		p->skb2 = NULL;
1949 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1950 		netlink_overrun(sk);
1951 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1952 			p->delivery_failure = 1;
1953 	} else {
1954 		p->congested |= val;
1955 		p->delivered = 1;
1956 		p->skb2 = NULL;
1957 	}
1958 	sock_put(sk);
1959 }
1960 
1961 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1962 	u32 group, gfp_t allocation,
1963 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1964 	void *filter_data)
1965 {
1966 	struct net *net = sock_net(ssk);
1967 	struct netlink_broadcast_data info;
1968 	struct sock *sk;
1969 
1970 	skb = netlink_trim(skb, allocation);
1971 
1972 	info.exclude_sk = ssk;
1973 	info.net = net;
1974 	info.portid = portid;
1975 	info.group = group;
1976 	info.failure = 0;
1977 	info.delivery_failure = 0;
1978 	info.congested = 0;
1979 	info.delivered = 0;
1980 	info.allocation = allocation;
1981 	info.skb = skb;
1982 	info.skb2 = NULL;
1983 	info.tx_filter = filter;
1984 	info.tx_data = filter_data;
1985 
1986 	/* While we sleep in clone, do not allow to change socket list */
1987 
1988 	netlink_lock_table();
1989 
1990 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1991 		do_one_broadcast(sk, &info);
1992 
1993 	consume_skb(skb);
1994 
1995 	netlink_unlock_table();
1996 
1997 	if (info.delivery_failure) {
1998 		kfree_skb(info.skb2);
1999 		return -ENOBUFS;
2000 	}
2001 	consume_skb(info.skb2);
2002 
2003 	if (info.delivered) {
2004 		if (info.congested && (allocation & __GFP_WAIT))
2005 			yield();
2006 		return 0;
2007 	}
2008 	return -ESRCH;
2009 }
2010 EXPORT_SYMBOL(netlink_broadcast_filtered);
2011 
2012 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2013 		      u32 group, gfp_t allocation)
2014 {
2015 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2016 		NULL, NULL);
2017 }
2018 EXPORT_SYMBOL(netlink_broadcast);
2019 
2020 struct netlink_set_err_data {
2021 	struct sock *exclude_sk;
2022 	u32 portid;
2023 	u32 group;
2024 	int code;
2025 };
2026 
2027 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2028 {
2029 	struct netlink_sock *nlk = nlk_sk(sk);
2030 	int ret = 0;
2031 
2032 	if (sk == p->exclude_sk)
2033 		goto out;
2034 
2035 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2036 		goto out;
2037 
2038 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2039 	    !test_bit(p->group - 1, nlk->groups))
2040 		goto out;
2041 
2042 	if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2043 		ret = 1;
2044 		goto out;
2045 	}
2046 
2047 	sk->sk_err = p->code;
2048 	sk->sk_error_report(sk);
2049 out:
2050 	return ret;
2051 }
2052 
2053 /**
2054  * netlink_set_err - report error to broadcast listeners
2055  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2056  * @portid: the PORTID of a process that we want to skip (if any)
2057  * @group: the broadcast group that will notice the error
2058  * @code: error code, must be negative (as usual in kernelspace)
2059  *
2060  * This function returns the number of broadcast listeners that have set the
2061  * NETLINK_RECV_NO_ENOBUFS socket option.
2062  */
2063 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2064 {
2065 	struct netlink_set_err_data info;
2066 	struct sock *sk;
2067 	int ret = 0;
2068 
2069 	info.exclude_sk = ssk;
2070 	info.portid = portid;
2071 	info.group = group;
2072 	/* sk->sk_err wants a positive error value */
2073 	info.code = -code;
2074 
2075 	read_lock(&nl_table_lock);
2076 
2077 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2078 		ret += do_one_set_err(sk, &info);
2079 
2080 	read_unlock(&nl_table_lock);
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL(netlink_set_err);
2084 
2085 /* must be called with netlink table grabbed */
2086 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2087 				     unsigned int group,
2088 				     int is_new)
2089 {
2090 	int old, new = !!is_new, subscriptions;
2091 
2092 	old = test_bit(group - 1, nlk->groups);
2093 	subscriptions = nlk->subscriptions - old + new;
2094 	if (new)
2095 		__set_bit(group - 1, nlk->groups);
2096 	else
2097 		__clear_bit(group - 1, nlk->groups);
2098 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2099 	netlink_update_listeners(&nlk->sk);
2100 }
2101 
2102 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2103 			      char __user *optval, unsigned int optlen)
2104 {
2105 	struct sock *sk = sock->sk;
2106 	struct netlink_sock *nlk = nlk_sk(sk);
2107 	unsigned int val = 0;
2108 	int err;
2109 
2110 	if (level != SOL_NETLINK)
2111 		return -ENOPROTOOPT;
2112 
2113 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2114 	    optlen >= sizeof(int) &&
2115 	    get_user(val, (unsigned int __user *)optval))
2116 		return -EFAULT;
2117 
2118 	switch (optname) {
2119 	case NETLINK_PKTINFO:
2120 		if (val)
2121 			nlk->flags |= NETLINK_RECV_PKTINFO;
2122 		else
2123 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
2124 		err = 0;
2125 		break;
2126 	case NETLINK_ADD_MEMBERSHIP:
2127 	case NETLINK_DROP_MEMBERSHIP: {
2128 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2129 			return -EPERM;
2130 		err = netlink_realloc_groups(sk);
2131 		if (err)
2132 			return err;
2133 		if (!val || val - 1 >= nlk->ngroups)
2134 			return -EINVAL;
2135 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2136 			err = nlk->netlink_bind(val);
2137 			if (err)
2138 				return err;
2139 		}
2140 		netlink_table_grab();
2141 		netlink_update_socket_mc(nlk, val,
2142 					 optname == NETLINK_ADD_MEMBERSHIP);
2143 		netlink_table_ungrab();
2144 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2145 			nlk->netlink_unbind(val);
2146 
2147 		err = 0;
2148 		break;
2149 	}
2150 	case NETLINK_BROADCAST_ERROR:
2151 		if (val)
2152 			nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2153 		else
2154 			nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2155 		err = 0;
2156 		break;
2157 	case NETLINK_NO_ENOBUFS:
2158 		if (val) {
2159 			nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2160 			clear_bit(NETLINK_CONGESTED, &nlk->state);
2161 			wake_up_interruptible(&nlk->wait);
2162 		} else {
2163 			nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2164 		}
2165 		err = 0;
2166 		break;
2167 #ifdef CONFIG_NETLINK_MMAP
2168 	case NETLINK_RX_RING:
2169 	case NETLINK_TX_RING: {
2170 		struct nl_mmap_req req;
2171 
2172 		/* Rings might consume more memory than queue limits, require
2173 		 * CAP_NET_ADMIN.
2174 		 */
2175 		if (!capable(CAP_NET_ADMIN))
2176 			return -EPERM;
2177 		if (optlen < sizeof(req))
2178 			return -EINVAL;
2179 		if (copy_from_user(&req, optval, sizeof(req)))
2180 			return -EFAULT;
2181 		err = netlink_set_ring(sk, &req, false,
2182 				       optname == NETLINK_TX_RING);
2183 		break;
2184 	}
2185 #endif /* CONFIG_NETLINK_MMAP */
2186 	default:
2187 		err = -ENOPROTOOPT;
2188 	}
2189 	return err;
2190 }
2191 
2192 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2193 			      char __user *optval, int __user *optlen)
2194 {
2195 	struct sock *sk = sock->sk;
2196 	struct netlink_sock *nlk = nlk_sk(sk);
2197 	int len, val, err;
2198 
2199 	if (level != SOL_NETLINK)
2200 		return -ENOPROTOOPT;
2201 
2202 	if (get_user(len, optlen))
2203 		return -EFAULT;
2204 	if (len < 0)
2205 		return -EINVAL;
2206 
2207 	switch (optname) {
2208 	case NETLINK_PKTINFO:
2209 		if (len < sizeof(int))
2210 			return -EINVAL;
2211 		len = sizeof(int);
2212 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2213 		if (put_user(len, optlen) ||
2214 		    put_user(val, optval))
2215 			return -EFAULT;
2216 		err = 0;
2217 		break;
2218 	case NETLINK_BROADCAST_ERROR:
2219 		if (len < sizeof(int))
2220 			return -EINVAL;
2221 		len = sizeof(int);
2222 		val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2223 		if (put_user(len, optlen) ||
2224 		    put_user(val, optval))
2225 			return -EFAULT;
2226 		err = 0;
2227 		break;
2228 	case NETLINK_NO_ENOBUFS:
2229 		if (len < sizeof(int))
2230 			return -EINVAL;
2231 		len = sizeof(int);
2232 		val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2233 		if (put_user(len, optlen) ||
2234 		    put_user(val, optval))
2235 			return -EFAULT;
2236 		err = 0;
2237 		break;
2238 	default:
2239 		err = -ENOPROTOOPT;
2240 	}
2241 	return err;
2242 }
2243 
2244 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2245 {
2246 	struct nl_pktinfo info;
2247 
2248 	info.group = NETLINK_CB(skb).dst_group;
2249 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2250 }
2251 
2252 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2253 			   struct msghdr *msg, size_t len)
2254 {
2255 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2256 	struct sock *sk = sock->sk;
2257 	struct netlink_sock *nlk = nlk_sk(sk);
2258 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2259 	u32 dst_portid;
2260 	u32 dst_group;
2261 	struct sk_buff *skb;
2262 	int err;
2263 	struct scm_cookie scm;
2264 	u32 netlink_skb_flags = 0;
2265 
2266 	if (msg->msg_flags&MSG_OOB)
2267 		return -EOPNOTSUPP;
2268 
2269 	if (NULL == siocb->scm)
2270 		siocb->scm = &scm;
2271 
2272 	err = scm_send(sock, msg, siocb->scm, true);
2273 	if (err < 0)
2274 		return err;
2275 
2276 	if (msg->msg_namelen) {
2277 		err = -EINVAL;
2278 		if (addr->nl_family != AF_NETLINK)
2279 			goto out;
2280 		dst_portid = addr->nl_pid;
2281 		dst_group = ffs(addr->nl_groups);
2282 		err =  -EPERM;
2283 		if ((dst_group || dst_portid) &&
2284 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2285 			goto out;
2286 		netlink_skb_flags |= NETLINK_SKB_DST;
2287 	} else {
2288 		dst_portid = nlk->dst_portid;
2289 		dst_group = nlk->dst_group;
2290 	}
2291 
2292 	if (!nlk->portid) {
2293 		err = netlink_autobind(sock);
2294 		if (err)
2295 			goto out;
2296 	}
2297 
2298 	if (netlink_tx_is_mmaped(sk) &&
2299 	    msg->msg_iov->iov_base == NULL) {
2300 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2301 					   siocb);
2302 		goto out;
2303 	}
2304 
2305 	err = -EMSGSIZE;
2306 	if (len > sk->sk_sndbuf - 32)
2307 		goto out;
2308 	err = -ENOBUFS;
2309 	skb = netlink_alloc_large_skb(len, dst_group);
2310 	if (skb == NULL)
2311 		goto out;
2312 
2313 	NETLINK_CB(skb).portid	= nlk->portid;
2314 	NETLINK_CB(skb).dst_group = dst_group;
2315 	NETLINK_CB(skb).creds	= siocb->scm->creds;
2316 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2317 
2318 	err = -EFAULT;
2319 	if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
2320 		kfree_skb(skb);
2321 		goto out;
2322 	}
2323 
2324 	err = security_netlink_send(sk, skb);
2325 	if (err) {
2326 		kfree_skb(skb);
2327 		goto out;
2328 	}
2329 
2330 	if (dst_group) {
2331 		atomic_inc(&skb->users);
2332 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2333 	}
2334 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2335 
2336 out:
2337 	scm_destroy(siocb->scm);
2338 	return err;
2339 }
2340 
2341 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2342 			   struct msghdr *msg, size_t len,
2343 			   int flags)
2344 {
2345 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2346 	struct scm_cookie scm;
2347 	struct sock *sk = sock->sk;
2348 	struct netlink_sock *nlk = nlk_sk(sk);
2349 	int noblock = flags&MSG_DONTWAIT;
2350 	size_t copied;
2351 	struct sk_buff *skb, *data_skb;
2352 	int err, ret;
2353 
2354 	if (flags&MSG_OOB)
2355 		return -EOPNOTSUPP;
2356 
2357 	copied = 0;
2358 
2359 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2360 	if (skb == NULL)
2361 		goto out;
2362 
2363 	data_skb = skb;
2364 
2365 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2366 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2367 		/*
2368 		 * If this skb has a frag_list, then here that means that we
2369 		 * will have to use the frag_list skb's data for compat tasks
2370 		 * and the regular skb's data for normal (non-compat) tasks.
2371 		 *
2372 		 * If we need to send the compat skb, assign it to the
2373 		 * 'data_skb' variable so that it will be used below for data
2374 		 * copying. We keep 'skb' for everything else, including
2375 		 * freeing both later.
2376 		 */
2377 		if (flags & MSG_CMSG_COMPAT)
2378 			data_skb = skb_shinfo(skb)->frag_list;
2379 	}
2380 #endif
2381 
2382 	/* Record the max length of recvmsg() calls for future allocations */
2383 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2384 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2385 				     16384);
2386 
2387 	copied = data_skb->len;
2388 	if (len < copied) {
2389 		msg->msg_flags |= MSG_TRUNC;
2390 		copied = len;
2391 	}
2392 
2393 	skb_reset_transport_header(data_skb);
2394 	err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
2395 
2396 	if (msg->msg_name) {
2397 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2398 		addr->nl_family = AF_NETLINK;
2399 		addr->nl_pad    = 0;
2400 		addr->nl_pid	= NETLINK_CB(skb).portid;
2401 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2402 		msg->msg_namelen = sizeof(*addr);
2403 	}
2404 
2405 	if (nlk->flags & NETLINK_RECV_PKTINFO)
2406 		netlink_cmsg_recv_pktinfo(msg, skb);
2407 
2408 	if (NULL == siocb->scm) {
2409 		memset(&scm, 0, sizeof(scm));
2410 		siocb->scm = &scm;
2411 	}
2412 	siocb->scm->creds = *NETLINK_CREDS(skb);
2413 	if (flags & MSG_TRUNC)
2414 		copied = data_skb->len;
2415 
2416 	skb_free_datagram(sk, skb);
2417 
2418 	if (nlk->cb_running &&
2419 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2420 		ret = netlink_dump(sk);
2421 		if (ret) {
2422 			sk->sk_err = -ret;
2423 			sk->sk_error_report(sk);
2424 		}
2425 	}
2426 
2427 	scm_recv(sock, msg, siocb->scm, flags);
2428 out:
2429 	netlink_rcv_wake(sk);
2430 	return err ? : copied;
2431 }
2432 
2433 static void netlink_data_ready(struct sock *sk)
2434 {
2435 	BUG();
2436 }
2437 
2438 /*
2439  *	We export these functions to other modules. They provide a
2440  *	complete set of kernel non-blocking support for message
2441  *	queueing.
2442  */
2443 
2444 struct sock *
2445 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2446 			struct netlink_kernel_cfg *cfg)
2447 {
2448 	struct socket *sock;
2449 	struct sock *sk;
2450 	struct netlink_sock *nlk;
2451 	struct listeners *listeners = NULL;
2452 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2453 	unsigned int groups;
2454 
2455 	BUG_ON(!nl_table);
2456 
2457 	if (unit < 0 || unit >= MAX_LINKS)
2458 		return NULL;
2459 
2460 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2461 		return NULL;
2462 
2463 	/*
2464 	 * We have to just have a reference on the net from sk, but don't
2465 	 * get_net it. Besides, we cannot get and then put the net here.
2466 	 * So we create one inside init_net and the move it to net.
2467 	 */
2468 
2469 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2470 		goto out_sock_release_nosk;
2471 
2472 	sk = sock->sk;
2473 	sk_change_net(sk, net);
2474 
2475 	if (!cfg || cfg->groups < 32)
2476 		groups = 32;
2477 	else
2478 		groups = cfg->groups;
2479 
2480 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2481 	if (!listeners)
2482 		goto out_sock_release;
2483 
2484 	sk->sk_data_ready = netlink_data_ready;
2485 	if (cfg && cfg->input)
2486 		nlk_sk(sk)->netlink_rcv = cfg->input;
2487 
2488 	if (netlink_insert(sk, net, 0))
2489 		goto out_sock_release;
2490 
2491 	nlk = nlk_sk(sk);
2492 	nlk->flags |= NETLINK_KERNEL_SOCKET;
2493 
2494 	netlink_table_grab();
2495 	if (!nl_table[unit].registered) {
2496 		nl_table[unit].groups = groups;
2497 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2498 		nl_table[unit].cb_mutex = cb_mutex;
2499 		nl_table[unit].module = module;
2500 		if (cfg) {
2501 			nl_table[unit].bind = cfg->bind;
2502 			nl_table[unit].flags = cfg->flags;
2503 			if (cfg->compare)
2504 				nl_table[unit].compare = cfg->compare;
2505 		}
2506 		nl_table[unit].registered = 1;
2507 	} else {
2508 		kfree(listeners);
2509 		nl_table[unit].registered++;
2510 	}
2511 	netlink_table_ungrab();
2512 	return sk;
2513 
2514 out_sock_release:
2515 	kfree(listeners);
2516 	netlink_kernel_release(sk);
2517 	return NULL;
2518 
2519 out_sock_release_nosk:
2520 	sock_release(sock);
2521 	return NULL;
2522 }
2523 EXPORT_SYMBOL(__netlink_kernel_create);
2524 
2525 void
2526 netlink_kernel_release(struct sock *sk)
2527 {
2528 	sk_release_kernel(sk);
2529 }
2530 EXPORT_SYMBOL(netlink_kernel_release);
2531 
2532 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2533 {
2534 	struct listeners *new, *old;
2535 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2536 
2537 	if (groups < 32)
2538 		groups = 32;
2539 
2540 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2541 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2542 		if (!new)
2543 			return -ENOMEM;
2544 		old = nl_deref_protected(tbl->listeners);
2545 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2546 		rcu_assign_pointer(tbl->listeners, new);
2547 
2548 		kfree_rcu(old, rcu);
2549 	}
2550 	tbl->groups = groups;
2551 
2552 	return 0;
2553 }
2554 
2555 /**
2556  * netlink_change_ngroups - change number of multicast groups
2557  *
2558  * This changes the number of multicast groups that are available
2559  * on a certain netlink family. Note that it is not possible to
2560  * change the number of groups to below 32. Also note that it does
2561  * not implicitly call netlink_clear_multicast_users() when the
2562  * number of groups is reduced.
2563  *
2564  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2565  * @groups: The new number of groups.
2566  */
2567 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2568 {
2569 	int err;
2570 
2571 	netlink_table_grab();
2572 	err = __netlink_change_ngroups(sk, groups);
2573 	netlink_table_ungrab();
2574 
2575 	return err;
2576 }
2577 
2578 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2579 {
2580 	struct sock *sk;
2581 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2582 
2583 	sk_for_each_bound(sk, &tbl->mc_list)
2584 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2585 }
2586 
2587 struct nlmsghdr *
2588 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2589 {
2590 	struct nlmsghdr *nlh;
2591 	int size = nlmsg_msg_size(len);
2592 
2593 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2594 	nlh->nlmsg_type = type;
2595 	nlh->nlmsg_len = size;
2596 	nlh->nlmsg_flags = flags;
2597 	nlh->nlmsg_pid = portid;
2598 	nlh->nlmsg_seq = seq;
2599 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2600 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2601 	return nlh;
2602 }
2603 EXPORT_SYMBOL(__nlmsg_put);
2604 
2605 /*
2606  * It looks a bit ugly.
2607  * It would be better to create kernel thread.
2608  */
2609 
2610 static int netlink_dump(struct sock *sk)
2611 {
2612 	struct netlink_sock *nlk = nlk_sk(sk);
2613 	struct netlink_callback *cb;
2614 	struct sk_buff *skb = NULL;
2615 	struct nlmsghdr *nlh;
2616 	int len, err = -ENOBUFS;
2617 	int alloc_size;
2618 
2619 	mutex_lock(nlk->cb_mutex);
2620 	if (!nlk->cb_running) {
2621 		err = -EINVAL;
2622 		goto errout_skb;
2623 	}
2624 
2625 	cb = &nlk->cb;
2626 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2627 
2628 	if (!netlink_rx_is_mmaped(sk) &&
2629 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2630 		goto errout_skb;
2631 
2632 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2633 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2634 	 * to reduce number of system calls on dump operations, if user
2635 	 * ever provided a big enough buffer.
2636 	 */
2637 	if (alloc_size < nlk->max_recvmsg_len) {
2638 		skb = netlink_alloc_skb(sk,
2639 					nlk->max_recvmsg_len,
2640 					nlk->portid,
2641 					GFP_KERNEL |
2642 					__GFP_NOWARN |
2643 					__GFP_NORETRY);
2644 		/* available room should be exact amount to avoid MSG_TRUNC */
2645 		if (skb)
2646 			skb_reserve(skb, skb_tailroom(skb) -
2647 					 nlk->max_recvmsg_len);
2648 	}
2649 	if (!skb)
2650 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2651 					GFP_KERNEL);
2652 	if (!skb)
2653 		goto errout_skb;
2654 	netlink_skb_set_owner_r(skb, sk);
2655 
2656 	len = cb->dump(skb, cb);
2657 
2658 	if (len > 0) {
2659 		mutex_unlock(nlk->cb_mutex);
2660 
2661 		if (sk_filter(sk, skb))
2662 			kfree_skb(skb);
2663 		else
2664 			__netlink_sendskb(sk, skb);
2665 		return 0;
2666 	}
2667 
2668 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2669 	if (!nlh)
2670 		goto errout_skb;
2671 
2672 	nl_dump_check_consistent(cb, nlh);
2673 
2674 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2675 
2676 	if (sk_filter(sk, skb))
2677 		kfree_skb(skb);
2678 	else
2679 		__netlink_sendskb(sk, skb);
2680 
2681 	if (cb->done)
2682 		cb->done(cb);
2683 
2684 	nlk->cb_running = false;
2685 	mutex_unlock(nlk->cb_mutex);
2686 	module_put(cb->module);
2687 	consume_skb(cb->skb);
2688 	return 0;
2689 
2690 errout_skb:
2691 	mutex_unlock(nlk->cb_mutex);
2692 	kfree_skb(skb);
2693 	return err;
2694 }
2695 
2696 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2697 			 const struct nlmsghdr *nlh,
2698 			 struct netlink_dump_control *control)
2699 {
2700 	struct netlink_callback *cb;
2701 	struct sock *sk;
2702 	struct netlink_sock *nlk;
2703 	int ret;
2704 
2705 	/* Memory mapped dump requests need to be copied to avoid looping
2706 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2707 	 * a reference to the skb.
2708 	 */
2709 	if (netlink_skb_is_mmaped(skb)) {
2710 		skb = skb_copy(skb, GFP_KERNEL);
2711 		if (skb == NULL)
2712 			return -ENOBUFS;
2713 	} else
2714 		atomic_inc(&skb->users);
2715 
2716 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2717 	if (sk == NULL) {
2718 		ret = -ECONNREFUSED;
2719 		goto error_free;
2720 	}
2721 
2722 	nlk = nlk_sk(sk);
2723 	mutex_lock(nlk->cb_mutex);
2724 	/* A dump is in progress... */
2725 	if (nlk->cb_running) {
2726 		ret = -EBUSY;
2727 		goto error_unlock;
2728 	}
2729 	/* add reference of module which cb->dump belongs to */
2730 	if (!try_module_get(control->module)) {
2731 		ret = -EPROTONOSUPPORT;
2732 		goto error_unlock;
2733 	}
2734 
2735 	cb = &nlk->cb;
2736 	memset(cb, 0, sizeof(*cb));
2737 	cb->dump = control->dump;
2738 	cb->done = control->done;
2739 	cb->nlh = nlh;
2740 	cb->data = control->data;
2741 	cb->module = control->module;
2742 	cb->min_dump_alloc = control->min_dump_alloc;
2743 	cb->skb = skb;
2744 
2745 	nlk->cb_running = true;
2746 
2747 	mutex_unlock(nlk->cb_mutex);
2748 
2749 	ret = netlink_dump(sk);
2750 	sock_put(sk);
2751 
2752 	if (ret)
2753 		return ret;
2754 
2755 	/* We successfully started a dump, by returning -EINTR we
2756 	 * signal not to send ACK even if it was requested.
2757 	 */
2758 	return -EINTR;
2759 
2760 error_unlock:
2761 	sock_put(sk);
2762 	mutex_unlock(nlk->cb_mutex);
2763 error_free:
2764 	kfree_skb(skb);
2765 	return ret;
2766 }
2767 EXPORT_SYMBOL(__netlink_dump_start);
2768 
2769 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2770 {
2771 	struct sk_buff *skb;
2772 	struct nlmsghdr *rep;
2773 	struct nlmsgerr *errmsg;
2774 	size_t payload = sizeof(*errmsg);
2775 
2776 	/* error messages get the original request appened */
2777 	if (err)
2778 		payload += nlmsg_len(nlh);
2779 
2780 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2781 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2782 	if (!skb) {
2783 		struct sock *sk;
2784 
2785 		sk = netlink_lookup(sock_net(in_skb->sk),
2786 				    in_skb->sk->sk_protocol,
2787 				    NETLINK_CB(in_skb).portid);
2788 		if (sk) {
2789 			sk->sk_err = ENOBUFS;
2790 			sk->sk_error_report(sk);
2791 			sock_put(sk);
2792 		}
2793 		return;
2794 	}
2795 
2796 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2797 			  NLMSG_ERROR, payload, 0);
2798 	errmsg = nlmsg_data(rep);
2799 	errmsg->error = err;
2800 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2801 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2802 }
2803 EXPORT_SYMBOL(netlink_ack);
2804 
2805 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2806 						     struct nlmsghdr *))
2807 {
2808 	struct nlmsghdr *nlh;
2809 	int err;
2810 
2811 	while (skb->len >= nlmsg_total_size(0)) {
2812 		int msglen;
2813 
2814 		nlh = nlmsg_hdr(skb);
2815 		err = 0;
2816 
2817 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2818 			return 0;
2819 
2820 		/* Only requests are handled by the kernel */
2821 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2822 			goto ack;
2823 
2824 		/* Skip control messages */
2825 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2826 			goto ack;
2827 
2828 		err = cb(skb, nlh);
2829 		if (err == -EINTR)
2830 			goto skip;
2831 
2832 ack:
2833 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2834 			netlink_ack(skb, nlh, err);
2835 
2836 skip:
2837 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2838 		if (msglen > skb->len)
2839 			msglen = skb->len;
2840 		skb_pull(skb, msglen);
2841 	}
2842 
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netlink_rcv_skb);
2846 
2847 /**
2848  * nlmsg_notify - send a notification netlink message
2849  * @sk: netlink socket to use
2850  * @skb: notification message
2851  * @portid: destination netlink portid for reports or 0
2852  * @group: destination multicast group or 0
2853  * @report: 1 to report back, 0 to disable
2854  * @flags: allocation flags
2855  */
2856 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2857 		 unsigned int group, int report, gfp_t flags)
2858 {
2859 	int err = 0;
2860 
2861 	if (group) {
2862 		int exclude_portid = 0;
2863 
2864 		if (report) {
2865 			atomic_inc(&skb->users);
2866 			exclude_portid = portid;
2867 		}
2868 
2869 		/* errors reported via destination sk->sk_err, but propagate
2870 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2871 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2872 	}
2873 
2874 	if (report) {
2875 		int err2;
2876 
2877 		err2 = nlmsg_unicast(sk, skb, portid);
2878 		if (!err || err == -ESRCH)
2879 			err = err2;
2880 	}
2881 
2882 	return err;
2883 }
2884 EXPORT_SYMBOL(nlmsg_notify);
2885 
2886 #ifdef CONFIG_PROC_FS
2887 struct nl_seq_iter {
2888 	struct seq_net_private p;
2889 	int link;
2890 	int hash_idx;
2891 };
2892 
2893 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2894 {
2895 	struct nl_seq_iter *iter = seq->private;
2896 	int i, j;
2897 	struct netlink_sock *nlk;
2898 	struct sock *s;
2899 	loff_t off = 0;
2900 
2901 	for (i = 0; i < MAX_LINKS; i++) {
2902 		struct rhashtable *ht = &nl_table[i].hash;
2903 		const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2904 
2905 		for (j = 0; j < tbl->size; j++) {
2906 			rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2907 				s = (struct sock *)nlk;
2908 
2909 				if (sock_net(s) != seq_file_net(seq))
2910 					continue;
2911 				if (off == pos) {
2912 					iter->link = i;
2913 					iter->hash_idx = j;
2914 					return s;
2915 				}
2916 				++off;
2917 			}
2918 		}
2919 	}
2920 	return NULL;
2921 }
2922 
2923 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2924 	__acquires(RCU)
2925 {
2926 	rcu_read_lock();
2927 	return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2928 }
2929 
2930 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2931 {
2932 	struct netlink_sock *nlk;
2933 	struct nl_seq_iter *iter;
2934 	struct net *net;
2935 	int i, j;
2936 
2937 	++*pos;
2938 
2939 	if (v == SEQ_START_TOKEN)
2940 		return netlink_seq_socket_idx(seq, 0);
2941 
2942 	net = seq_file_net(seq);
2943 	iter = seq->private;
2944 	nlk = v;
2945 
2946 	rht_for_each_entry_rcu(nlk, nlk->node.next, node)
2947 		if (net_eq(sock_net((struct sock *)nlk), net))
2948 			return nlk;
2949 
2950 	i = iter->link;
2951 	j = iter->hash_idx + 1;
2952 
2953 	do {
2954 		struct rhashtable *ht = &nl_table[i].hash;
2955 		const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2956 
2957 		for (; j < tbl->size; j++) {
2958 			rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2959 				if (net_eq(sock_net((struct sock *)nlk), net)) {
2960 					iter->link = i;
2961 					iter->hash_idx = j;
2962 					return nlk;
2963 				}
2964 			}
2965 		}
2966 
2967 		j = 0;
2968 	} while (++i < MAX_LINKS);
2969 
2970 	return NULL;
2971 }
2972 
2973 static void netlink_seq_stop(struct seq_file *seq, void *v)
2974 	__releases(RCU)
2975 {
2976 	rcu_read_unlock();
2977 }
2978 
2979 
2980 static int netlink_seq_show(struct seq_file *seq, void *v)
2981 {
2982 	if (v == SEQ_START_TOKEN) {
2983 		seq_puts(seq,
2984 			 "sk       Eth Pid    Groups   "
2985 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
2986 	} else {
2987 		struct sock *s = v;
2988 		struct netlink_sock *nlk = nlk_sk(s);
2989 
2990 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
2991 			   s,
2992 			   s->sk_protocol,
2993 			   nlk->portid,
2994 			   nlk->groups ? (u32)nlk->groups[0] : 0,
2995 			   sk_rmem_alloc_get(s),
2996 			   sk_wmem_alloc_get(s),
2997 			   nlk->cb_running,
2998 			   atomic_read(&s->sk_refcnt),
2999 			   atomic_read(&s->sk_drops),
3000 			   sock_i_ino(s)
3001 			);
3002 
3003 	}
3004 	return 0;
3005 }
3006 
3007 static const struct seq_operations netlink_seq_ops = {
3008 	.start  = netlink_seq_start,
3009 	.next   = netlink_seq_next,
3010 	.stop   = netlink_seq_stop,
3011 	.show   = netlink_seq_show,
3012 };
3013 
3014 
3015 static int netlink_seq_open(struct inode *inode, struct file *file)
3016 {
3017 	return seq_open_net(inode, file, &netlink_seq_ops,
3018 				sizeof(struct nl_seq_iter));
3019 }
3020 
3021 static const struct file_operations netlink_seq_fops = {
3022 	.owner		= THIS_MODULE,
3023 	.open		= netlink_seq_open,
3024 	.read		= seq_read,
3025 	.llseek		= seq_lseek,
3026 	.release	= seq_release_net,
3027 };
3028 
3029 #endif
3030 
3031 int netlink_register_notifier(struct notifier_block *nb)
3032 {
3033 	return atomic_notifier_chain_register(&netlink_chain, nb);
3034 }
3035 EXPORT_SYMBOL(netlink_register_notifier);
3036 
3037 int netlink_unregister_notifier(struct notifier_block *nb)
3038 {
3039 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3040 }
3041 EXPORT_SYMBOL(netlink_unregister_notifier);
3042 
3043 static const struct proto_ops netlink_ops = {
3044 	.family =	PF_NETLINK,
3045 	.owner =	THIS_MODULE,
3046 	.release =	netlink_release,
3047 	.bind =		netlink_bind,
3048 	.connect =	netlink_connect,
3049 	.socketpair =	sock_no_socketpair,
3050 	.accept =	sock_no_accept,
3051 	.getname =	netlink_getname,
3052 	.poll =		netlink_poll,
3053 	.ioctl =	sock_no_ioctl,
3054 	.listen =	sock_no_listen,
3055 	.shutdown =	sock_no_shutdown,
3056 	.setsockopt =	netlink_setsockopt,
3057 	.getsockopt =	netlink_getsockopt,
3058 	.sendmsg =	netlink_sendmsg,
3059 	.recvmsg =	netlink_recvmsg,
3060 	.mmap =		netlink_mmap,
3061 	.sendpage =	sock_no_sendpage,
3062 };
3063 
3064 static const struct net_proto_family netlink_family_ops = {
3065 	.family = PF_NETLINK,
3066 	.create = netlink_create,
3067 	.owner	= THIS_MODULE,	/* for consistency 8) */
3068 };
3069 
3070 static int __net_init netlink_net_init(struct net *net)
3071 {
3072 #ifdef CONFIG_PROC_FS
3073 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3074 		return -ENOMEM;
3075 #endif
3076 	return 0;
3077 }
3078 
3079 static void __net_exit netlink_net_exit(struct net *net)
3080 {
3081 #ifdef CONFIG_PROC_FS
3082 	remove_proc_entry("netlink", net->proc_net);
3083 #endif
3084 }
3085 
3086 static void __init netlink_add_usersock_entry(void)
3087 {
3088 	struct listeners *listeners;
3089 	int groups = 32;
3090 
3091 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3092 	if (!listeners)
3093 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3094 
3095 	netlink_table_grab();
3096 
3097 	nl_table[NETLINK_USERSOCK].groups = groups;
3098 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3099 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3100 	nl_table[NETLINK_USERSOCK].registered = 1;
3101 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3102 
3103 	netlink_table_ungrab();
3104 }
3105 
3106 static struct pernet_operations __net_initdata netlink_net_ops = {
3107 	.init = netlink_net_init,
3108 	.exit = netlink_net_exit,
3109 };
3110 
3111 static int __init netlink_proto_init(void)
3112 {
3113 	int i;
3114 	int err = proto_register(&netlink_proto, 0);
3115 	struct rhashtable_params ht_params = {
3116 		.head_offset = offsetof(struct netlink_sock, node),
3117 		.key_offset = offsetof(struct netlink_sock, portid),
3118 		.key_len = sizeof(u32), /* portid */
3119 		.hashfn = arch_fast_hash,
3120 		.max_shift = 16, /* 64K */
3121 		.grow_decision = rht_grow_above_75,
3122 		.shrink_decision = rht_shrink_below_30,
3123 		.mutex_is_held = lockdep_nl_sk_hash_is_held,
3124 	};
3125 
3126 	if (err != 0)
3127 		goto out;
3128 
3129 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3130 
3131 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3132 	if (!nl_table)
3133 		goto panic;
3134 
3135 	for (i = 0; i < MAX_LINKS; i++) {
3136 		if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3137 			while (--i > 0)
3138 				rhashtable_destroy(&nl_table[i].hash);
3139 			kfree(nl_table);
3140 			goto panic;
3141 		}
3142 	}
3143 
3144 	INIT_LIST_HEAD(&netlink_tap_all);
3145 
3146 	netlink_add_usersock_entry();
3147 
3148 	sock_register(&netlink_family_ops);
3149 	register_pernet_subsys(&netlink_net_ops);
3150 	/* The netlink device handler may be needed early. */
3151 	rtnetlink_init();
3152 out:
3153 	return err;
3154 panic:
3155 	panic("netlink_init: Cannot allocate nl_table\n");
3156 }
3157 
3158 core_initcall(netlink_proto_init);
3159