1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <linux/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 #define NETLINK_F_CAP_ACK 0x20 88 89 static inline int netlink_is_kernel(struct sock *sk) 90 { 91 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 92 } 93 94 struct netlink_table *nl_table __read_mostly; 95 EXPORT_SYMBOL_GPL(nl_table); 96 97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 98 99 static int netlink_dump(struct sock *sk); 100 static void netlink_skb_destructor(struct sk_buff *skb); 101 102 /* nl_table locking explained: 103 * Lookup and traversal are protected with an RCU read-side lock. Insertion 104 * and removal are protected with per bucket lock while using RCU list 105 * modification primitives and may run in parallel to RCU protected lookups. 106 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 107 * been acquired * either during or after the socket has been removed from 108 * the list and after an RCU grace period. 109 */ 110 DEFINE_RWLOCK(nl_table_lock); 111 EXPORT_SYMBOL_GPL(nl_table_lock); 112 static atomic_t nl_table_users = ATOMIC_INIT(0); 113 114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 115 116 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 117 118 static DEFINE_SPINLOCK(netlink_tap_lock); 119 static struct list_head netlink_tap_all __read_mostly; 120 121 static const struct rhashtable_params netlink_rhashtable_params; 122 123 static inline u32 netlink_group_mask(u32 group) 124 { 125 return group ? 1 << (group - 1) : 0; 126 } 127 128 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 129 gfp_t gfp_mask) 130 { 131 unsigned int len = skb_end_offset(skb); 132 struct sk_buff *new; 133 134 new = alloc_skb(len, gfp_mask); 135 if (new == NULL) 136 return NULL; 137 138 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 139 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 140 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 141 142 memcpy(skb_put(new, len), skb->data, len); 143 return new; 144 } 145 146 int netlink_add_tap(struct netlink_tap *nt) 147 { 148 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 149 return -EINVAL; 150 151 spin_lock(&netlink_tap_lock); 152 list_add_rcu(&nt->list, &netlink_tap_all); 153 spin_unlock(&netlink_tap_lock); 154 155 __module_get(nt->module); 156 157 return 0; 158 } 159 EXPORT_SYMBOL_GPL(netlink_add_tap); 160 161 static int __netlink_remove_tap(struct netlink_tap *nt) 162 { 163 bool found = false; 164 struct netlink_tap *tmp; 165 166 spin_lock(&netlink_tap_lock); 167 168 list_for_each_entry(tmp, &netlink_tap_all, list) { 169 if (nt == tmp) { 170 list_del_rcu(&nt->list); 171 found = true; 172 goto out; 173 } 174 } 175 176 pr_warn("__netlink_remove_tap: %p not found\n", nt); 177 out: 178 spin_unlock(&netlink_tap_lock); 179 180 if (found) 181 module_put(nt->module); 182 183 return found ? 0 : -ENODEV; 184 } 185 186 int netlink_remove_tap(struct netlink_tap *nt) 187 { 188 int ret; 189 190 ret = __netlink_remove_tap(nt); 191 synchronize_net(); 192 193 return ret; 194 } 195 EXPORT_SYMBOL_GPL(netlink_remove_tap); 196 197 static bool netlink_filter_tap(const struct sk_buff *skb) 198 { 199 struct sock *sk = skb->sk; 200 201 /* We take the more conservative approach and 202 * whitelist socket protocols that may pass. 203 */ 204 switch (sk->sk_protocol) { 205 case NETLINK_ROUTE: 206 case NETLINK_USERSOCK: 207 case NETLINK_SOCK_DIAG: 208 case NETLINK_NFLOG: 209 case NETLINK_XFRM: 210 case NETLINK_FIB_LOOKUP: 211 case NETLINK_NETFILTER: 212 case NETLINK_GENERIC: 213 return true; 214 } 215 216 return false; 217 } 218 219 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 220 struct net_device *dev) 221 { 222 struct sk_buff *nskb; 223 struct sock *sk = skb->sk; 224 int ret = -ENOMEM; 225 226 dev_hold(dev); 227 228 if (is_vmalloc_addr(skb->head)) 229 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 230 else 231 nskb = skb_clone(skb, GFP_ATOMIC); 232 if (nskb) { 233 nskb->dev = dev; 234 nskb->protocol = htons((u16) sk->sk_protocol); 235 nskb->pkt_type = netlink_is_kernel(sk) ? 236 PACKET_KERNEL : PACKET_USER; 237 skb_reset_network_header(nskb); 238 ret = dev_queue_xmit(nskb); 239 if (unlikely(ret > 0)) 240 ret = net_xmit_errno(ret); 241 } 242 243 dev_put(dev); 244 return ret; 245 } 246 247 static void __netlink_deliver_tap(struct sk_buff *skb) 248 { 249 int ret; 250 struct netlink_tap *tmp; 251 252 if (!netlink_filter_tap(skb)) 253 return; 254 255 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 256 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 257 if (unlikely(ret)) 258 break; 259 } 260 } 261 262 static void netlink_deliver_tap(struct sk_buff *skb) 263 { 264 rcu_read_lock(); 265 266 if (unlikely(!list_empty(&netlink_tap_all))) 267 __netlink_deliver_tap(skb); 268 269 rcu_read_unlock(); 270 } 271 272 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 273 struct sk_buff *skb) 274 { 275 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 276 netlink_deliver_tap(skb); 277 } 278 279 static void netlink_overrun(struct sock *sk) 280 { 281 struct netlink_sock *nlk = nlk_sk(sk); 282 283 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 284 if (!test_and_set_bit(NETLINK_S_CONGESTED, 285 &nlk_sk(sk)->state)) { 286 sk->sk_err = ENOBUFS; 287 sk->sk_error_report(sk); 288 } 289 } 290 atomic_inc(&sk->sk_drops); 291 } 292 293 static void netlink_rcv_wake(struct sock *sk) 294 { 295 struct netlink_sock *nlk = nlk_sk(sk); 296 297 if (skb_queue_empty(&sk->sk_receive_queue)) 298 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 299 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 300 wake_up_interruptible(&nlk->wait); 301 } 302 303 static void netlink_skb_destructor(struct sk_buff *skb) 304 { 305 if (is_vmalloc_addr(skb->head)) { 306 if (!skb->cloned || 307 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 308 vfree(skb->head); 309 310 skb->head = NULL; 311 } 312 if (skb->sk != NULL) 313 sock_rfree(skb); 314 } 315 316 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 317 { 318 WARN_ON(skb->sk != NULL); 319 skb->sk = sk; 320 skb->destructor = netlink_skb_destructor; 321 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 322 sk_mem_charge(sk, skb->truesize); 323 } 324 325 static void netlink_sock_destruct(struct sock *sk) 326 { 327 struct netlink_sock *nlk = nlk_sk(sk); 328 329 if (nlk->cb_running) { 330 if (nlk->cb.done) 331 nlk->cb.done(&nlk->cb); 332 module_put(nlk->cb.module); 333 kfree_skb(nlk->cb.skb); 334 } 335 336 skb_queue_purge(&sk->sk_receive_queue); 337 338 if (!sock_flag(sk, SOCK_DEAD)) { 339 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 340 return; 341 } 342 343 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 344 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 345 WARN_ON(nlk_sk(sk)->groups); 346 } 347 348 static void netlink_sock_destruct_work(struct work_struct *work) 349 { 350 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 351 work); 352 353 sk_free(&nlk->sk); 354 } 355 356 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 357 * SMP. Look, when several writers sleep and reader wakes them up, all but one 358 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 359 * this, _but_ remember, it adds useless work on UP machines. 360 */ 361 362 void netlink_table_grab(void) 363 __acquires(nl_table_lock) 364 { 365 might_sleep(); 366 367 write_lock_irq(&nl_table_lock); 368 369 if (atomic_read(&nl_table_users)) { 370 DECLARE_WAITQUEUE(wait, current); 371 372 add_wait_queue_exclusive(&nl_table_wait, &wait); 373 for (;;) { 374 set_current_state(TASK_UNINTERRUPTIBLE); 375 if (atomic_read(&nl_table_users) == 0) 376 break; 377 write_unlock_irq(&nl_table_lock); 378 schedule(); 379 write_lock_irq(&nl_table_lock); 380 } 381 382 __set_current_state(TASK_RUNNING); 383 remove_wait_queue(&nl_table_wait, &wait); 384 } 385 } 386 387 void netlink_table_ungrab(void) 388 __releases(nl_table_lock) 389 { 390 write_unlock_irq(&nl_table_lock); 391 wake_up(&nl_table_wait); 392 } 393 394 static inline void 395 netlink_lock_table(void) 396 { 397 /* read_lock() synchronizes us to netlink_table_grab */ 398 399 read_lock(&nl_table_lock); 400 atomic_inc(&nl_table_users); 401 read_unlock(&nl_table_lock); 402 } 403 404 static inline void 405 netlink_unlock_table(void) 406 { 407 if (atomic_dec_and_test(&nl_table_users)) 408 wake_up(&nl_table_wait); 409 } 410 411 struct netlink_compare_arg 412 { 413 possible_net_t pnet; 414 u32 portid; 415 }; 416 417 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 418 #define netlink_compare_arg_len \ 419 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 420 421 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 422 const void *ptr) 423 { 424 const struct netlink_compare_arg *x = arg->key; 425 const struct netlink_sock *nlk = ptr; 426 427 return nlk->portid != x->portid || 428 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 429 } 430 431 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 432 struct net *net, u32 portid) 433 { 434 memset(arg, 0, sizeof(*arg)); 435 write_pnet(&arg->pnet, net); 436 arg->portid = portid; 437 } 438 439 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 440 struct net *net) 441 { 442 struct netlink_compare_arg arg; 443 444 netlink_compare_arg_init(&arg, net, portid); 445 return rhashtable_lookup_fast(&table->hash, &arg, 446 netlink_rhashtable_params); 447 } 448 449 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 450 { 451 struct netlink_compare_arg arg; 452 453 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 454 return rhashtable_lookup_insert_key(&table->hash, &arg, 455 &nlk_sk(sk)->node, 456 netlink_rhashtable_params); 457 } 458 459 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 460 { 461 struct netlink_table *table = &nl_table[protocol]; 462 struct sock *sk; 463 464 rcu_read_lock(); 465 sk = __netlink_lookup(table, portid, net); 466 if (sk) 467 sock_hold(sk); 468 rcu_read_unlock(); 469 470 return sk; 471 } 472 473 static const struct proto_ops netlink_ops; 474 475 static void 476 netlink_update_listeners(struct sock *sk) 477 { 478 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 479 unsigned long mask; 480 unsigned int i; 481 struct listeners *listeners; 482 483 listeners = nl_deref_protected(tbl->listeners); 484 if (!listeners) 485 return; 486 487 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 488 mask = 0; 489 sk_for_each_bound(sk, &tbl->mc_list) { 490 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 491 mask |= nlk_sk(sk)->groups[i]; 492 } 493 listeners->masks[i] = mask; 494 } 495 /* this function is only called with the netlink table "grabbed", which 496 * makes sure updates are visible before bind or setsockopt return. */ 497 } 498 499 static int netlink_insert(struct sock *sk, u32 portid) 500 { 501 struct netlink_table *table = &nl_table[sk->sk_protocol]; 502 int err; 503 504 lock_sock(sk); 505 506 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 507 if (nlk_sk(sk)->bound) 508 goto err; 509 510 err = -ENOMEM; 511 if (BITS_PER_LONG > 32 && 512 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 513 goto err; 514 515 nlk_sk(sk)->portid = portid; 516 sock_hold(sk); 517 518 err = __netlink_insert(table, sk); 519 if (err) { 520 /* In case the hashtable backend returns with -EBUSY 521 * from here, it must not escape to the caller. 522 */ 523 if (unlikely(err == -EBUSY)) 524 err = -EOVERFLOW; 525 if (err == -EEXIST) 526 err = -EADDRINUSE; 527 sock_put(sk); 528 goto err; 529 } 530 531 /* We need to ensure that the socket is hashed and visible. */ 532 smp_wmb(); 533 nlk_sk(sk)->bound = portid; 534 535 err: 536 release_sock(sk); 537 return err; 538 } 539 540 static void netlink_remove(struct sock *sk) 541 { 542 struct netlink_table *table; 543 544 table = &nl_table[sk->sk_protocol]; 545 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 546 netlink_rhashtable_params)) { 547 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 548 __sock_put(sk); 549 } 550 551 netlink_table_grab(); 552 if (nlk_sk(sk)->subscriptions) { 553 __sk_del_bind_node(sk); 554 netlink_update_listeners(sk); 555 } 556 if (sk->sk_protocol == NETLINK_GENERIC) 557 atomic_inc(&genl_sk_destructing_cnt); 558 netlink_table_ungrab(); 559 } 560 561 static struct proto netlink_proto = { 562 .name = "NETLINK", 563 .owner = THIS_MODULE, 564 .obj_size = sizeof(struct netlink_sock), 565 }; 566 567 static int __netlink_create(struct net *net, struct socket *sock, 568 struct mutex *cb_mutex, int protocol, 569 int kern) 570 { 571 struct sock *sk; 572 struct netlink_sock *nlk; 573 574 sock->ops = &netlink_ops; 575 576 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 577 if (!sk) 578 return -ENOMEM; 579 580 sock_init_data(sock, sk); 581 582 nlk = nlk_sk(sk); 583 if (cb_mutex) { 584 nlk->cb_mutex = cb_mutex; 585 } else { 586 nlk->cb_mutex = &nlk->cb_def_mutex; 587 mutex_init(nlk->cb_mutex); 588 } 589 init_waitqueue_head(&nlk->wait); 590 591 sk->sk_destruct = netlink_sock_destruct; 592 sk->sk_protocol = protocol; 593 return 0; 594 } 595 596 static int netlink_create(struct net *net, struct socket *sock, int protocol, 597 int kern) 598 { 599 struct module *module = NULL; 600 struct mutex *cb_mutex; 601 struct netlink_sock *nlk; 602 int (*bind)(struct net *net, int group); 603 void (*unbind)(struct net *net, int group); 604 int err = 0; 605 606 sock->state = SS_UNCONNECTED; 607 608 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 609 return -ESOCKTNOSUPPORT; 610 611 if (protocol < 0 || protocol >= MAX_LINKS) 612 return -EPROTONOSUPPORT; 613 614 netlink_lock_table(); 615 #ifdef CONFIG_MODULES 616 if (!nl_table[protocol].registered) { 617 netlink_unlock_table(); 618 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 619 netlink_lock_table(); 620 } 621 #endif 622 if (nl_table[protocol].registered && 623 try_module_get(nl_table[protocol].module)) 624 module = nl_table[protocol].module; 625 else 626 err = -EPROTONOSUPPORT; 627 cb_mutex = nl_table[protocol].cb_mutex; 628 bind = nl_table[protocol].bind; 629 unbind = nl_table[protocol].unbind; 630 netlink_unlock_table(); 631 632 if (err < 0) 633 goto out; 634 635 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 636 if (err < 0) 637 goto out_module; 638 639 local_bh_disable(); 640 sock_prot_inuse_add(net, &netlink_proto, 1); 641 local_bh_enable(); 642 643 nlk = nlk_sk(sock->sk); 644 nlk->module = module; 645 nlk->netlink_bind = bind; 646 nlk->netlink_unbind = unbind; 647 out: 648 return err; 649 650 out_module: 651 module_put(module); 652 goto out; 653 } 654 655 static void deferred_put_nlk_sk(struct rcu_head *head) 656 { 657 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 658 struct sock *sk = &nlk->sk; 659 660 if (!atomic_dec_and_test(&sk->sk_refcnt)) 661 return; 662 663 if (nlk->cb_running && nlk->cb.done) { 664 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 665 schedule_work(&nlk->work); 666 return; 667 } 668 669 sk_free(sk); 670 } 671 672 static int netlink_release(struct socket *sock) 673 { 674 struct sock *sk = sock->sk; 675 struct netlink_sock *nlk; 676 677 if (!sk) 678 return 0; 679 680 netlink_remove(sk); 681 sock_orphan(sk); 682 nlk = nlk_sk(sk); 683 684 /* 685 * OK. Socket is unlinked, any packets that arrive now 686 * will be purged. 687 */ 688 689 /* must not acquire netlink_table_lock in any way again before unbind 690 * and notifying genetlink is done as otherwise it might deadlock 691 */ 692 if (nlk->netlink_unbind) { 693 int i; 694 695 for (i = 0; i < nlk->ngroups; i++) 696 if (test_bit(i, nlk->groups)) 697 nlk->netlink_unbind(sock_net(sk), i + 1); 698 } 699 if (sk->sk_protocol == NETLINK_GENERIC && 700 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 701 wake_up(&genl_sk_destructing_waitq); 702 703 sock->sk = NULL; 704 wake_up_interruptible_all(&nlk->wait); 705 706 skb_queue_purge(&sk->sk_write_queue); 707 708 if (nlk->portid && nlk->bound) { 709 struct netlink_notify n = { 710 .net = sock_net(sk), 711 .protocol = sk->sk_protocol, 712 .portid = nlk->portid, 713 }; 714 blocking_notifier_call_chain(&netlink_chain, 715 NETLINK_URELEASE, &n); 716 } 717 718 module_put(nlk->module); 719 720 if (netlink_is_kernel(sk)) { 721 netlink_table_grab(); 722 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 723 if (--nl_table[sk->sk_protocol].registered == 0) { 724 struct listeners *old; 725 726 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 727 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 728 kfree_rcu(old, rcu); 729 nl_table[sk->sk_protocol].module = NULL; 730 nl_table[sk->sk_protocol].bind = NULL; 731 nl_table[sk->sk_protocol].unbind = NULL; 732 nl_table[sk->sk_protocol].flags = 0; 733 nl_table[sk->sk_protocol].registered = 0; 734 } 735 netlink_table_ungrab(); 736 } 737 738 kfree(nlk->groups); 739 nlk->groups = NULL; 740 741 local_bh_disable(); 742 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 743 local_bh_enable(); 744 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 745 return 0; 746 } 747 748 static int netlink_autobind(struct socket *sock) 749 { 750 struct sock *sk = sock->sk; 751 struct net *net = sock_net(sk); 752 struct netlink_table *table = &nl_table[sk->sk_protocol]; 753 s32 portid = task_tgid_vnr(current); 754 int err; 755 s32 rover = -4096; 756 bool ok; 757 758 retry: 759 cond_resched(); 760 rcu_read_lock(); 761 ok = !__netlink_lookup(table, portid, net); 762 rcu_read_unlock(); 763 if (!ok) { 764 /* Bind collision, search negative portid values. */ 765 if (rover == -4096) 766 /* rover will be in range [S32_MIN, -4097] */ 767 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 768 else if (rover >= -4096) 769 rover = -4097; 770 portid = rover--; 771 goto retry; 772 } 773 774 err = netlink_insert(sk, portid); 775 if (err == -EADDRINUSE) 776 goto retry; 777 778 /* If 2 threads race to autobind, that is fine. */ 779 if (err == -EBUSY) 780 err = 0; 781 782 return err; 783 } 784 785 /** 786 * __netlink_ns_capable - General netlink message capability test 787 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 788 * @user_ns: The user namespace of the capability to use 789 * @cap: The capability to use 790 * 791 * Test to see if the opener of the socket we received the message 792 * from had when the netlink socket was created and the sender of the 793 * message has has the capability @cap in the user namespace @user_ns. 794 */ 795 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 796 struct user_namespace *user_ns, int cap) 797 { 798 return ((nsp->flags & NETLINK_SKB_DST) || 799 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 800 ns_capable(user_ns, cap); 801 } 802 EXPORT_SYMBOL(__netlink_ns_capable); 803 804 /** 805 * netlink_ns_capable - General netlink message capability test 806 * @skb: socket buffer holding a netlink command from userspace 807 * @user_ns: The user namespace of the capability to use 808 * @cap: The capability to use 809 * 810 * Test to see if the opener of the socket we received the message 811 * from had when the netlink socket was created and the sender of the 812 * message has has the capability @cap in the user namespace @user_ns. 813 */ 814 bool netlink_ns_capable(const struct sk_buff *skb, 815 struct user_namespace *user_ns, int cap) 816 { 817 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 818 } 819 EXPORT_SYMBOL(netlink_ns_capable); 820 821 /** 822 * netlink_capable - Netlink global message capability test 823 * @skb: socket buffer holding a netlink command from userspace 824 * @cap: The capability to use 825 * 826 * Test to see if the opener of the socket we received the message 827 * from had when the netlink socket was created and the sender of the 828 * message has has the capability @cap in all user namespaces. 829 */ 830 bool netlink_capable(const struct sk_buff *skb, int cap) 831 { 832 return netlink_ns_capable(skb, &init_user_ns, cap); 833 } 834 EXPORT_SYMBOL(netlink_capable); 835 836 /** 837 * netlink_net_capable - Netlink network namespace message capability test 838 * @skb: socket buffer holding a netlink command from userspace 839 * @cap: The capability to use 840 * 841 * Test to see if the opener of the socket we received the message 842 * from had when the netlink socket was created and the sender of the 843 * message has has the capability @cap over the network namespace of 844 * the socket we received the message from. 845 */ 846 bool netlink_net_capable(const struct sk_buff *skb, int cap) 847 { 848 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 849 } 850 EXPORT_SYMBOL(netlink_net_capable); 851 852 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 853 { 854 return (nl_table[sock->sk->sk_protocol].flags & flag) || 855 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 856 } 857 858 static void 859 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 860 { 861 struct netlink_sock *nlk = nlk_sk(sk); 862 863 if (nlk->subscriptions && !subscriptions) 864 __sk_del_bind_node(sk); 865 else if (!nlk->subscriptions && subscriptions) 866 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 867 nlk->subscriptions = subscriptions; 868 } 869 870 static int netlink_realloc_groups(struct sock *sk) 871 { 872 struct netlink_sock *nlk = nlk_sk(sk); 873 unsigned int groups; 874 unsigned long *new_groups; 875 int err = 0; 876 877 netlink_table_grab(); 878 879 groups = nl_table[sk->sk_protocol].groups; 880 if (!nl_table[sk->sk_protocol].registered) { 881 err = -ENOENT; 882 goto out_unlock; 883 } 884 885 if (nlk->ngroups >= groups) 886 goto out_unlock; 887 888 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 889 if (new_groups == NULL) { 890 err = -ENOMEM; 891 goto out_unlock; 892 } 893 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 894 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 895 896 nlk->groups = new_groups; 897 nlk->ngroups = groups; 898 out_unlock: 899 netlink_table_ungrab(); 900 return err; 901 } 902 903 static void netlink_undo_bind(int group, long unsigned int groups, 904 struct sock *sk) 905 { 906 struct netlink_sock *nlk = nlk_sk(sk); 907 int undo; 908 909 if (!nlk->netlink_unbind) 910 return; 911 912 for (undo = 0; undo < group; undo++) 913 if (test_bit(undo, &groups)) 914 nlk->netlink_unbind(sock_net(sk), undo + 1); 915 } 916 917 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 918 int addr_len) 919 { 920 struct sock *sk = sock->sk; 921 struct net *net = sock_net(sk); 922 struct netlink_sock *nlk = nlk_sk(sk); 923 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 924 int err; 925 long unsigned int groups = nladdr->nl_groups; 926 bool bound; 927 928 if (addr_len < sizeof(struct sockaddr_nl)) 929 return -EINVAL; 930 931 if (nladdr->nl_family != AF_NETLINK) 932 return -EINVAL; 933 934 /* Only superuser is allowed to listen multicasts */ 935 if (groups) { 936 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 937 return -EPERM; 938 err = netlink_realloc_groups(sk); 939 if (err) 940 return err; 941 } 942 943 bound = nlk->bound; 944 if (bound) { 945 /* Ensure nlk->portid is up-to-date. */ 946 smp_rmb(); 947 948 if (nladdr->nl_pid != nlk->portid) 949 return -EINVAL; 950 } 951 952 if (nlk->netlink_bind && groups) { 953 int group; 954 955 for (group = 0; group < nlk->ngroups; group++) { 956 if (!test_bit(group, &groups)) 957 continue; 958 err = nlk->netlink_bind(net, group + 1); 959 if (!err) 960 continue; 961 netlink_undo_bind(group, groups, sk); 962 return err; 963 } 964 } 965 966 /* No need for barriers here as we return to user-space without 967 * using any of the bound attributes. 968 */ 969 if (!bound) { 970 err = nladdr->nl_pid ? 971 netlink_insert(sk, nladdr->nl_pid) : 972 netlink_autobind(sock); 973 if (err) { 974 netlink_undo_bind(nlk->ngroups, groups, sk); 975 return err; 976 } 977 } 978 979 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 980 return 0; 981 982 netlink_table_grab(); 983 netlink_update_subscriptions(sk, nlk->subscriptions + 984 hweight32(groups) - 985 hweight32(nlk->groups[0])); 986 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 987 netlink_update_listeners(sk); 988 netlink_table_ungrab(); 989 990 return 0; 991 } 992 993 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 994 int alen, int flags) 995 { 996 int err = 0; 997 struct sock *sk = sock->sk; 998 struct netlink_sock *nlk = nlk_sk(sk); 999 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1000 1001 if (alen < sizeof(addr->sa_family)) 1002 return -EINVAL; 1003 1004 if (addr->sa_family == AF_UNSPEC) { 1005 sk->sk_state = NETLINK_UNCONNECTED; 1006 nlk->dst_portid = 0; 1007 nlk->dst_group = 0; 1008 return 0; 1009 } 1010 if (addr->sa_family != AF_NETLINK) 1011 return -EINVAL; 1012 1013 if ((nladdr->nl_groups || nladdr->nl_pid) && 1014 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1015 return -EPERM; 1016 1017 /* No need for barriers here as we return to user-space without 1018 * using any of the bound attributes. 1019 */ 1020 if (!nlk->bound) 1021 err = netlink_autobind(sock); 1022 1023 if (err == 0) { 1024 sk->sk_state = NETLINK_CONNECTED; 1025 nlk->dst_portid = nladdr->nl_pid; 1026 nlk->dst_group = ffs(nladdr->nl_groups); 1027 } 1028 1029 return err; 1030 } 1031 1032 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1033 int *addr_len, int peer) 1034 { 1035 struct sock *sk = sock->sk; 1036 struct netlink_sock *nlk = nlk_sk(sk); 1037 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1038 1039 nladdr->nl_family = AF_NETLINK; 1040 nladdr->nl_pad = 0; 1041 *addr_len = sizeof(*nladdr); 1042 1043 if (peer) { 1044 nladdr->nl_pid = nlk->dst_portid; 1045 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1046 } else { 1047 nladdr->nl_pid = nlk->portid; 1048 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1049 } 1050 return 0; 1051 } 1052 1053 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1054 unsigned long arg) 1055 { 1056 /* try to hand this ioctl down to the NIC drivers. 1057 */ 1058 return -ENOIOCTLCMD; 1059 } 1060 1061 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1062 { 1063 struct sock *sock; 1064 struct netlink_sock *nlk; 1065 1066 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1067 if (!sock) 1068 return ERR_PTR(-ECONNREFUSED); 1069 1070 /* Don't bother queuing skb if kernel socket has no input function */ 1071 nlk = nlk_sk(sock); 1072 if (sock->sk_state == NETLINK_CONNECTED && 1073 nlk->dst_portid != nlk_sk(ssk)->portid) { 1074 sock_put(sock); 1075 return ERR_PTR(-ECONNREFUSED); 1076 } 1077 return sock; 1078 } 1079 1080 struct sock *netlink_getsockbyfilp(struct file *filp) 1081 { 1082 struct inode *inode = file_inode(filp); 1083 struct sock *sock; 1084 1085 if (!S_ISSOCK(inode->i_mode)) 1086 return ERR_PTR(-ENOTSOCK); 1087 1088 sock = SOCKET_I(inode)->sk; 1089 if (sock->sk_family != AF_NETLINK) 1090 return ERR_PTR(-EINVAL); 1091 1092 sock_hold(sock); 1093 return sock; 1094 } 1095 1096 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1097 int broadcast) 1098 { 1099 struct sk_buff *skb; 1100 void *data; 1101 1102 if (size <= NLMSG_GOODSIZE || broadcast) 1103 return alloc_skb(size, GFP_KERNEL); 1104 1105 size = SKB_DATA_ALIGN(size) + 1106 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1107 1108 data = vmalloc(size); 1109 if (data == NULL) 1110 return NULL; 1111 1112 skb = __build_skb(data, size); 1113 if (skb == NULL) 1114 vfree(data); 1115 else 1116 skb->destructor = netlink_skb_destructor; 1117 1118 return skb; 1119 } 1120 1121 /* 1122 * Attach a skb to a netlink socket. 1123 * The caller must hold a reference to the destination socket. On error, the 1124 * reference is dropped. The skb is not send to the destination, just all 1125 * all error checks are performed and memory in the queue is reserved. 1126 * Return values: 1127 * < 0: error. skb freed, reference to sock dropped. 1128 * 0: continue 1129 * 1: repeat lookup - reference dropped while waiting for socket memory. 1130 */ 1131 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1132 long *timeo, struct sock *ssk) 1133 { 1134 struct netlink_sock *nlk; 1135 1136 nlk = nlk_sk(sk); 1137 1138 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1139 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1140 DECLARE_WAITQUEUE(wait, current); 1141 if (!*timeo) { 1142 if (!ssk || netlink_is_kernel(ssk)) 1143 netlink_overrun(sk); 1144 sock_put(sk); 1145 kfree_skb(skb); 1146 return -EAGAIN; 1147 } 1148 1149 __set_current_state(TASK_INTERRUPTIBLE); 1150 add_wait_queue(&nlk->wait, &wait); 1151 1152 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1153 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1154 !sock_flag(sk, SOCK_DEAD)) 1155 *timeo = schedule_timeout(*timeo); 1156 1157 __set_current_state(TASK_RUNNING); 1158 remove_wait_queue(&nlk->wait, &wait); 1159 sock_put(sk); 1160 1161 if (signal_pending(current)) { 1162 kfree_skb(skb); 1163 return sock_intr_errno(*timeo); 1164 } 1165 return 1; 1166 } 1167 netlink_skb_set_owner_r(skb, sk); 1168 return 0; 1169 } 1170 1171 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1172 { 1173 int len = skb->len; 1174 1175 netlink_deliver_tap(skb); 1176 1177 skb_queue_tail(&sk->sk_receive_queue, skb); 1178 sk->sk_data_ready(sk); 1179 return len; 1180 } 1181 1182 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1183 { 1184 int len = __netlink_sendskb(sk, skb); 1185 1186 sock_put(sk); 1187 return len; 1188 } 1189 1190 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1191 { 1192 kfree_skb(skb); 1193 sock_put(sk); 1194 } 1195 1196 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1197 { 1198 int delta; 1199 1200 WARN_ON(skb->sk != NULL); 1201 delta = skb->end - skb->tail; 1202 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1203 return skb; 1204 1205 if (skb_shared(skb)) { 1206 struct sk_buff *nskb = skb_clone(skb, allocation); 1207 if (!nskb) 1208 return skb; 1209 consume_skb(skb); 1210 skb = nskb; 1211 } 1212 1213 pskb_expand_head(skb, 0, -delta, 1214 (allocation & ~__GFP_DIRECT_RECLAIM) | 1215 __GFP_NOWARN | __GFP_NORETRY); 1216 return skb; 1217 } 1218 1219 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1220 struct sock *ssk) 1221 { 1222 int ret; 1223 struct netlink_sock *nlk = nlk_sk(sk); 1224 1225 ret = -ECONNREFUSED; 1226 if (nlk->netlink_rcv != NULL) { 1227 ret = skb->len; 1228 netlink_skb_set_owner_r(skb, sk); 1229 NETLINK_CB(skb).sk = ssk; 1230 netlink_deliver_tap_kernel(sk, ssk, skb); 1231 nlk->netlink_rcv(skb); 1232 consume_skb(skb); 1233 } else { 1234 kfree_skb(skb); 1235 } 1236 sock_put(sk); 1237 return ret; 1238 } 1239 1240 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1241 u32 portid, int nonblock) 1242 { 1243 struct sock *sk; 1244 int err; 1245 long timeo; 1246 1247 skb = netlink_trim(skb, gfp_any()); 1248 1249 timeo = sock_sndtimeo(ssk, nonblock); 1250 retry: 1251 sk = netlink_getsockbyportid(ssk, portid); 1252 if (IS_ERR(sk)) { 1253 kfree_skb(skb); 1254 return PTR_ERR(sk); 1255 } 1256 if (netlink_is_kernel(sk)) 1257 return netlink_unicast_kernel(sk, skb, ssk); 1258 1259 if (sk_filter(sk, skb)) { 1260 err = skb->len; 1261 kfree_skb(skb); 1262 sock_put(sk); 1263 return err; 1264 } 1265 1266 err = netlink_attachskb(sk, skb, &timeo, ssk); 1267 if (err == 1) 1268 goto retry; 1269 if (err) 1270 return err; 1271 1272 return netlink_sendskb(sk, skb); 1273 } 1274 EXPORT_SYMBOL(netlink_unicast); 1275 1276 int netlink_has_listeners(struct sock *sk, unsigned int group) 1277 { 1278 int res = 0; 1279 struct listeners *listeners; 1280 1281 BUG_ON(!netlink_is_kernel(sk)); 1282 1283 rcu_read_lock(); 1284 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1285 1286 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1287 res = test_bit(group - 1, listeners->masks); 1288 1289 rcu_read_unlock(); 1290 1291 return res; 1292 } 1293 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1294 1295 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1296 { 1297 struct netlink_sock *nlk = nlk_sk(sk); 1298 1299 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1300 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1301 netlink_skb_set_owner_r(skb, sk); 1302 __netlink_sendskb(sk, skb); 1303 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1304 } 1305 return -1; 1306 } 1307 1308 struct netlink_broadcast_data { 1309 struct sock *exclude_sk; 1310 struct net *net; 1311 u32 portid; 1312 u32 group; 1313 int failure; 1314 int delivery_failure; 1315 int congested; 1316 int delivered; 1317 gfp_t allocation; 1318 struct sk_buff *skb, *skb2; 1319 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1320 void *tx_data; 1321 }; 1322 1323 static void do_one_broadcast(struct sock *sk, 1324 struct netlink_broadcast_data *p) 1325 { 1326 struct netlink_sock *nlk = nlk_sk(sk); 1327 int val; 1328 1329 if (p->exclude_sk == sk) 1330 return; 1331 1332 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1333 !test_bit(p->group - 1, nlk->groups)) 1334 return; 1335 1336 if (!net_eq(sock_net(sk), p->net)) { 1337 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1338 return; 1339 1340 if (!peernet_has_id(sock_net(sk), p->net)) 1341 return; 1342 1343 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1344 CAP_NET_BROADCAST)) 1345 return; 1346 } 1347 1348 if (p->failure) { 1349 netlink_overrun(sk); 1350 return; 1351 } 1352 1353 sock_hold(sk); 1354 if (p->skb2 == NULL) { 1355 if (skb_shared(p->skb)) { 1356 p->skb2 = skb_clone(p->skb, p->allocation); 1357 } else { 1358 p->skb2 = skb_get(p->skb); 1359 /* 1360 * skb ownership may have been set when 1361 * delivered to a previous socket. 1362 */ 1363 skb_orphan(p->skb2); 1364 } 1365 } 1366 if (p->skb2 == NULL) { 1367 netlink_overrun(sk); 1368 /* Clone failed. Notify ALL listeners. */ 1369 p->failure = 1; 1370 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1371 p->delivery_failure = 1; 1372 goto out; 1373 } 1374 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1375 kfree_skb(p->skb2); 1376 p->skb2 = NULL; 1377 goto out; 1378 } 1379 if (sk_filter(sk, p->skb2)) { 1380 kfree_skb(p->skb2); 1381 p->skb2 = NULL; 1382 goto out; 1383 } 1384 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1385 NETLINK_CB(p->skb2).nsid_is_set = true; 1386 val = netlink_broadcast_deliver(sk, p->skb2); 1387 if (val < 0) { 1388 netlink_overrun(sk); 1389 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1390 p->delivery_failure = 1; 1391 } else { 1392 p->congested |= val; 1393 p->delivered = 1; 1394 p->skb2 = NULL; 1395 } 1396 out: 1397 sock_put(sk); 1398 } 1399 1400 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1401 u32 group, gfp_t allocation, 1402 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1403 void *filter_data) 1404 { 1405 struct net *net = sock_net(ssk); 1406 struct netlink_broadcast_data info; 1407 struct sock *sk; 1408 1409 skb = netlink_trim(skb, allocation); 1410 1411 info.exclude_sk = ssk; 1412 info.net = net; 1413 info.portid = portid; 1414 info.group = group; 1415 info.failure = 0; 1416 info.delivery_failure = 0; 1417 info.congested = 0; 1418 info.delivered = 0; 1419 info.allocation = allocation; 1420 info.skb = skb; 1421 info.skb2 = NULL; 1422 info.tx_filter = filter; 1423 info.tx_data = filter_data; 1424 1425 /* While we sleep in clone, do not allow to change socket list */ 1426 1427 netlink_lock_table(); 1428 1429 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1430 do_one_broadcast(sk, &info); 1431 1432 consume_skb(skb); 1433 1434 netlink_unlock_table(); 1435 1436 if (info.delivery_failure) { 1437 kfree_skb(info.skb2); 1438 return -ENOBUFS; 1439 } 1440 consume_skb(info.skb2); 1441 1442 if (info.delivered) { 1443 if (info.congested && gfpflags_allow_blocking(allocation)) 1444 yield(); 1445 return 0; 1446 } 1447 return -ESRCH; 1448 } 1449 EXPORT_SYMBOL(netlink_broadcast_filtered); 1450 1451 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1452 u32 group, gfp_t allocation) 1453 { 1454 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1455 NULL, NULL); 1456 } 1457 EXPORT_SYMBOL(netlink_broadcast); 1458 1459 struct netlink_set_err_data { 1460 struct sock *exclude_sk; 1461 u32 portid; 1462 u32 group; 1463 int code; 1464 }; 1465 1466 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1467 { 1468 struct netlink_sock *nlk = nlk_sk(sk); 1469 int ret = 0; 1470 1471 if (sk == p->exclude_sk) 1472 goto out; 1473 1474 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1475 goto out; 1476 1477 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1478 !test_bit(p->group - 1, nlk->groups)) 1479 goto out; 1480 1481 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 1482 ret = 1; 1483 goto out; 1484 } 1485 1486 sk->sk_err = p->code; 1487 sk->sk_error_report(sk); 1488 out: 1489 return ret; 1490 } 1491 1492 /** 1493 * netlink_set_err - report error to broadcast listeners 1494 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1495 * @portid: the PORTID of a process that we want to skip (if any) 1496 * @group: the broadcast group that will notice the error 1497 * @code: error code, must be negative (as usual in kernelspace) 1498 * 1499 * This function returns the number of broadcast listeners that have set the 1500 * NETLINK_NO_ENOBUFS socket option. 1501 */ 1502 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1503 { 1504 struct netlink_set_err_data info; 1505 struct sock *sk; 1506 int ret = 0; 1507 1508 info.exclude_sk = ssk; 1509 info.portid = portid; 1510 info.group = group; 1511 /* sk->sk_err wants a positive error value */ 1512 info.code = -code; 1513 1514 read_lock(&nl_table_lock); 1515 1516 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1517 ret += do_one_set_err(sk, &info); 1518 1519 read_unlock(&nl_table_lock); 1520 return ret; 1521 } 1522 EXPORT_SYMBOL(netlink_set_err); 1523 1524 /* must be called with netlink table grabbed */ 1525 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1526 unsigned int group, 1527 int is_new) 1528 { 1529 int old, new = !!is_new, subscriptions; 1530 1531 old = test_bit(group - 1, nlk->groups); 1532 subscriptions = nlk->subscriptions - old + new; 1533 if (new) 1534 __set_bit(group - 1, nlk->groups); 1535 else 1536 __clear_bit(group - 1, nlk->groups); 1537 netlink_update_subscriptions(&nlk->sk, subscriptions); 1538 netlink_update_listeners(&nlk->sk); 1539 } 1540 1541 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1542 char __user *optval, unsigned int optlen) 1543 { 1544 struct sock *sk = sock->sk; 1545 struct netlink_sock *nlk = nlk_sk(sk); 1546 unsigned int val = 0; 1547 int err; 1548 1549 if (level != SOL_NETLINK) 1550 return -ENOPROTOOPT; 1551 1552 if (optlen >= sizeof(int) && 1553 get_user(val, (unsigned int __user *)optval)) 1554 return -EFAULT; 1555 1556 switch (optname) { 1557 case NETLINK_PKTINFO: 1558 if (val) 1559 nlk->flags |= NETLINK_F_RECV_PKTINFO; 1560 else 1561 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 1562 err = 0; 1563 break; 1564 case NETLINK_ADD_MEMBERSHIP: 1565 case NETLINK_DROP_MEMBERSHIP: { 1566 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1567 return -EPERM; 1568 err = netlink_realloc_groups(sk); 1569 if (err) 1570 return err; 1571 if (!val || val - 1 >= nlk->ngroups) 1572 return -EINVAL; 1573 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1574 err = nlk->netlink_bind(sock_net(sk), val); 1575 if (err) 1576 return err; 1577 } 1578 netlink_table_grab(); 1579 netlink_update_socket_mc(nlk, val, 1580 optname == NETLINK_ADD_MEMBERSHIP); 1581 netlink_table_ungrab(); 1582 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1583 nlk->netlink_unbind(sock_net(sk), val); 1584 1585 err = 0; 1586 break; 1587 } 1588 case NETLINK_BROADCAST_ERROR: 1589 if (val) 1590 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 1591 else 1592 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 1593 err = 0; 1594 break; 1595 case NETLINK_NO_ENOBUFS: 1596 if (val) { 1597 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 1598 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1599 wake_up_interruptible(&nlk->wait); 1600 } else { 1601 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 1602 } 1603 err = 0; 1604 break; 1605 case NETLINK_LISTEN_ALL_NSID: 1606 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1607 return -EPERM; 1608 1609 if (val) 1610 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 1611 else 1612 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 1613 err = 0; 1614 break; 1615 case NETLINK_CAP_ACK: 1616 if (val) 1617 nlk->flags |= NETLINK_F_CAP_ACK; 1618 else 1619 nlk->flags &= ~NETLINK_F_CAP_ACK; 1620 err = 0; 1621 break; 1622 default: 1623 err = -ENOPROTOOPT; 1624 } 1625 return err; 1626 } 1627 1628 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1629 char __user *optval, int __user *optlen) 1630 { 1631 struct sock *sk = sock->sk; 1632 struct netlink_sock *nlk = nlk_sk(sk); 1633 int len, val, err; 1634 1635 if (level != SOL_NETLINK) 1636 return -ENOPROTOOPT; 1637 1638 if (get_user(len, optlen)) 1639 return -EFAULT; 1640 if (len < 0) 1641 return -EINVAL; 1642 1643 switch (optname) { 1644 case NETLINK_PKTINFO: 1645 if (len < sizeof(int)) 1646 return -EINVAL; 1647 len = sizeof(int); 1648 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 1649 if (put_user(len, optlen) || 1650 put_user(val, optval)) 1651 return -EFAULT; 1652 err = 0; 1653 break; 1654 case NETLINK_BROADCAST_ERROR: 1655 if (len < sizeof(int)) 1656 return -EINVAL; 1657 len = sizeof(int); 1658 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 1659 if (put_user(len, optlen) || 1660 put_user(val, optval)) 1661 return -EFAULT; 1662 err = 0; 1663 break; 1664 case NETLINK_NO_ENOBUFS: 1665 if (len < sizeof(int)) 1666 return -EINVAL; 1667 len = sizeof(int); 1668 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 1669 if (put_user(len, optlen) || 1670 put_user(val, optval)) 1671 return -EFAULT; 1672 err = 0; 1673 break; 1674 case NETLINK_LIST_MEMBERSHIPS: { 1675 int pos, idx, shift; 1676 1677 err = 0; 1678 netlink_lock_table(); 1679 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1680 if (len - pos < sizeof(u32)) 1681 break; 1682 1683 idx = pos / sizeof(unsigned long); 1684 shift = (pos % sizeof(unsigned long)) * 8; 1685 if (put_user((u32)(nlk->groups[idx] >> shift), 1686 (u32 __user *)(optval + pos))) { 1687 err = -EFAULT; 1688 break; 1689 } 1690 } 1691 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 1692 err = -EFAULT; 1693 netlink_unlock_table(); 1694 break; 1695 } 1696 case NETLINK_CAP_ACK: 1697 if (len < sizeof(int)) 1698 return -EINVAL; 1699 len = sizeof(int); 1700 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 1701 if (put_user(len, optlen) || 1702 put_user(val, optval)) 1703 return -EFAULT; 1704 err = 0; 1705 break; 1706 default: 1707 err = -ENOPROTOOPT; 1708 } 1709 return err; 1710 } 1711 1712 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1713 { 1714 struct nl_pktinfo info; 1715 1716 info.group = NETLINK_CB(skb).dst_group; 1717 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1718 } 1719 1720 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1721 struct sk_buff *skb) 1722 { 1723 if (!NETLINK_CB(skb).nsid_is_set) 1724 return; 1725 1726 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1727 &NETLINK_CB(skb).nsid); 1728 } 1729 1730 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1731 { 1732 struct sock *sk = sock->sk; 1733 struct netlink_sock *nlk = nlk_sk(sk); 1734 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1735 u32 dst_portid; 1736 u32 dst_group; 1737 struct sk_buff *skb; 1738 int err; 1739 struct scm_cookie scm; 1740 u32 netlink_skb_flags = 0; 1741 1742 if (msg->msg_flags&MSG_OOB) 1743 return -EOPNOTSUPP; 1744 1745 err = scm_send(sock, msg, &scm, true); 1746 if (err < 0) 1747 return err; 1748 1749 if (msg->msg_namelen) { 1750 err = -EINVAL; 1751 if (addr->nl_family != AF_NETLINK) 1752 goto out; 1753 dst_portid = addr->nl_pid; 1754 dst_group = ffs(addr->nl_groups); 1755 err = -EPERM; 1756 if ((dst_group || dst_portid) && 1757 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1758 goto out; 1759 netlink_skb_flags |= NETLINK_SKB_DST; 1760 } else { 1761 dst_portid = nlk->dst_portid; 1762 dst_group = nlk->dst_group; 1763 } 1764 1765 if (!nlk->bound) { 1766 err = netlink_autobind(sock); 1767 if (err) 1768 goto out; 1769 } else { 1770 /* Ensure nlk is hashed and visible. */ 1771 smp_rmb(); 1772 } 1773 1774 err = -EMSGSIZE; 1775 if (len > sk->sk_sndbuf - 32) 1776 goto out; 1777 err = -ENOBUFS; 1778 skb = netlink_alloc_large_skb(len, dst_group); 1779 if (skb == NULL) 1780 goto out; 1781 1782 NETLINK_CB(skb).portid = nlk->portid; 1783 NETLINK_CB(skb).dst_group = dst_group; 1784 NETLINK_CB(skb).creds = scm.creds; 1785 NETLINK_CB(skb).flags = netlink_skb_flags; 1786 1787 err = -EFAULT; 1788 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1789 kfree_skb(skb); 1790 goto out; 1791 } 1792 1793 err = security_netlink_send(sk, skb); 1794 if (err) { 1795 kfree_skb(skb); 1796 goto out; 1797 } 1798 1799 if (dst_group) { 1800 atomic_inc(&skb->users); 1801 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1802 } 1803 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 1804 1805 out: 1806 scm_destroy(&scm); 1807 return err; 1808 } 1809 1810 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1811 int flags) 1812 { 1813 struct scm_cookie scm; 1814 struct sock *sk = sock->sk; 1815 struct netlink_sock *nlk = nlk_sk(sk); 1816 int noblock = flags&MSG_DONTWAIT; 1817 size_t copied; 1818 struct sk_buff *skb, *data_skb; 1819 int err, ret; 1820 1821 if (flags&MSG_OOB) 1822 return -EOPNOTSUPP; 1823 1824 copied = 0; 1825 1826 skb = skb_recv_datagram(sk, flags, noblock, &err); 1827 if (skb == NULL) 1828 goto out; 1829 1830 data_skb = skb; 1831 1832 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1833 if (unlikely(skb_shinfo(skb)->frag_list)) { 1834 /* 1835 * If this skb has a frag_list, then here that means that we 1836 * will have to use the frag_list skb's data for compat tasks 1837 * and the regular skb's data for normal (non-compat) tasks. 1838 * 1839 * If we need to send the compat skb, assign it to the 1840 * 'data_skb' variable so that it will be used below for data 1841 * copying. We keep 'skb' for everything else, including 1842 * freeing both later. 1843 */ 1844 if (flags & MSG_CMSG_COMPAT) 1845 data_skb = skb_shinfo(skb)->frag_list; 1846 } 1847 #endif 1848 1849 /* Record the max length of recvmsg() calls for future allocations */ 1850 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 1851 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 1852 SKB_WITH_OVERHEAD(32768)); 1853 1854 copied = data_skb->len; 1855 if (len < copied) { 1856 msg->msg_flags |= MSG_TRUNC; 1857 copied = len; 1858 } 1859 1860 skb_reset_transport_header(data_skb); 1861 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1862 1863 if (msg->msg_name) { 1864 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1865 addr->nl_family = AF_NETLINK; 1866 addr->nl_pad = 0; 1867 addr->nl_pid = NETLINK_CB(skb).portid; 1868 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1869 msg->msg_namelen = sizeof(*addr); 1870 } 1871 1872 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 1873 netlink_cmsg_recv_pktinfo(msg, skb); 1874 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 1875 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1876 1877 memset(&scm, 0, sizeof(scm)); 1878 scm.creds = *NETLINK_CREDS(skb); 1879 if (flags & MSG_TRUNC) 1880 copied = data_skb->len; 1881 1882 skb_free_datagram(sk, skb); 1883 1884 if (nlk->cb_running && 1885 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 1886 ret = netlink_dump(sk); 1887 if (ret) { 1888 sk->sk_err = -ret; 1889 sk->sk_error_report(sk); 1890 } 1891 } 1892 1893 scm_recv(sock, msg, &scm, flags); 1894 out: 1895 netlink_rcv_wake(sk); 1896 return err ? : copied; 1897 } 1898 1899 static void netlink_data_ready(struct sock *sk) 1900 { 1901 BUG(); 1902 } 1903 1904 /* 1905 * We export these functions to other modules. They provide a 1906 * complete set of kernel non-blocking support for message 1907 * queueing. 1908 */ 1909 1910 struct sock * 1911 __netlink_kernel_create(struct net *net, int unit, struct module *module, 1912 struct netlink_kernel_cfg *cfg) 1913 { 1914 struct socket *sock; 1915 struct sock *sk; 1916 struct netlink_sock *nlk; 1917 struct listeners *listeners = NULL; 1918 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 1919 unsigned int groups; 1920 1921 BUG_ON(!nl_table); 1922 1923 if (unit < 0 || unit >= MAX_LINKS) 1924 return NULL; 1925 1926 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 1927 return NULL; 1928 1929 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 1930 goto out_sock_release_nosk; 1931 1932 sk = sock->sk; 1933 1934 if (!cfg || cfg->groups < 32) 1935 groups = 32; 1936 else 1937 groups = cfg->groups; 1938 1939 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 1940 if (!listeners) 1941 goto out_sock_release; 1942 1943 sk->sk_data_ready = netlink_data_ready; 1944 if (cfg && cfg->input) 1945 nlk_sk(sk)->netlink_rcv = cfg->input; 1946 1947 if (netlink_insert(sk, 0)) 1948 goto out_sock_release; 1949 1950 nlk = nlk_sk(sk); 1951 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 1952 1953 netlink_table_grab(); 1954 if (!nl_table[unit].registered) { 1955 nl_table[unit].groups = groups; 1956 rcu_assign_pointer(nl_table[unit].listeners, listeners); 1957 nl_table[unit].cb_mutex = cb_mutex; 1958 nl_table[unit].module = module; 1959 if (cfg) { 1960 nl_table[unit].bind = cfg->bind; 1961 nl_table[unit].unbind = cfg->unbind; 1962 nl_table[unit].flags = cfg->flags; 1963 if (cfg->compare) 1964 nl_table[unit].compare = cfg->compare; 1965 } 1966 nl_table[unit].registered = 1; 1967 } else { 1968 kfree(listeners); 1969 nl_table[unit].registered++; 1970 } 1971 netlink_table_ungrab(); 1972 return sk; 1973 1974 out_sock_release: 1975 kfree(listeners); 1976 netlink_kernel_release(sk); 1977 return NULL; 1978 1979 out_sock_release_nosk: 1980 sock_release(sock); 1981 return NULL; 1982 } 1983 EXPORT_SYMBOL(__netlink_kernel_create); 1984 1985 void 1986 netlink_kernel_release(struct sock *sk) 1987 { 1988 if (sk == NULL || sk->sk_socket == NULL) 1989 return; 1990 1991 sock_release(sk->sk_socket); 1992 } 1993 EXPORT_SYMBOL(netlink_kernel_release); 1994 1995 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 1996 { 1997 struct listeners *new, *old; 1998 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1999 2000 if (groups < 32) 2001 groups = 32; 2002 2003 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2004 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2005 if (!new) 2006 return -ENOMEM; 2007 old = nl_deref_protected(tbl->listeners); 2008 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2009 rcu_assign_pointer(tbl->listeners, new); 2010 2011 kfree_rcu(old, rcu); 2012 } 2013 tbl->groups = groups; 2014 2015 return 0; 2016 } 2017 2018 /** 2019 * netlink_change_ngroups - change number of multicast groups 2020 * 2021 * This changes the number of multicast groups that are available 2022 * on a certain netlink family. Note that it is not possible to 2023 * change the number of groups to below 32. Also note that it does 2024 * not implicitly call netlink_clear_multicast_users() when the 2025 * number of groups is reduced. 2026 * 2027 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2028 * @groups: The new number of groups. 2029 */ 2030 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2031 { 2032 int err; 2033 2034 netlink_table_grab(); 2035 err = __netlink_change_ngroups(sk, groups); 2036 netlink_table_ungrab(); 2037 2038 return err; 2039 } 2040 2041 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2042 { 2043 struct sock *sk; 2044 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2045 2046 sk_for_each_bound(sk, &tbl->mc_list) 2047 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2048 } 2049 2050 struct nlmsghdr * 2051 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2052 { 2053 struct nlmsghdr *nlh; 2054 int size = nlmsg_msg_size(len); 2055 2056 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2057 nlh->nlmsg_type = type; 2058 nlh->nlmsg_len = size; 2059 nlh->nlmsg_flags = flags; 2060 nlh->nlmsg_pid = portid; 2061 nlh->nlmsg_seq = seq; 2062 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2063 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2064 return nlh; 2065 } 2066 EXPORT_SYMBOL(__nlmsg_put); 2067 2068 /* 2069 * It looks a bit ugly. 2070 * It would be better to create kernel thread. 2071 */ 2072 2073 static int netlink_dump(struct sock *sk) 2074 { 2075 struct netlink_sock *nlk = nlk_sk(sk); 2076 struct netlink_callback *cb; 2077 struct sk_buff *skb = NULL; 2078 struct nlmsghdr *nlh; 2079 struct module *module; 2080 int len, err = -ENOBUFS; 2081 int alloc_min_size; 2082 int alloc_size; 2083 2084 mutex_lock(nlk->cb_mutex); 2085 if (!nlk->cb_running) { 2086 err = -EINVAL; 2087 goto errout_skb; 2088 } 2089 2090 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2091 goto errout_skb; 2092 2093 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2094 * required, but it makes sense to _attempt_ a 16K bytes allocation 2095 * to reduce number of system calls on dump operations, if user 2096 * ever provided a big enough buffer. 2097 */ 2098 cb = &nlk->cb; 2099 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2100 2101 if (alloc_min_size < nlk->max_recvmsg_len) { 2102 alloc_size = nlk->max_recvmsg_len; 2103 skb = alloc_skb(alloc_size, 2104 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2105 __GFP_NOWARN | __GFP_NORETRY); 2106 } 2107 if (!skb) { 2108 alloc_size = alloc_min_size; 2109 skb = alloc_skb(alloc_size, GFP_KERNEL); 2110 } 2111 if (!skb) 2112 goto errout_skb; 2113 2114 /* Trim skb to allocated size. User is expected to provide buffer as 2115 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2116 * netlink_recvmsg())). dump will pack as many smaller messages as 2117 * could fit within the allocated skb. skb is typically allocated 2118 * with larger space than required (could be as much as near 2x the 2119 * requested size with align to next power of 2 approach). Allowing 2120 * dump to use the excess space makes it difficult for a user to have a 2121 * reasonable static buffer based on the expected largest dump of a 2122 * single netdev. The outcome is MSG_TRUNC error. 2123 */ 2124 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2125 netlink_skb_set_owner_r(skb, sk); 2126 2127 len = cb->dump(skb, cb); 2128 2129 if (len > 0) { 2130 mutex_unlock(nlk->cb_mutex); 2131 2132 if (sk_filter(sk, skb)) 2133 kfree_skb(skb); 2134 else 2135 __netlink_sendskb(sk, skb); 2136 return 0; 2137 } 2138 2139 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2140 if (!nlh) 2141 goto errout_skb; 2142 2143 nl_dump_check_consistent(cb, nlh); 2144 2145 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2146 2147 if (sk_filter(sk, skb)) 2148 kfree_skb(skb); 2149 else 2150 __netlink_sendskb(sk, skb); 2151 2152 if (cb->done) 2153 cb->done(cb); 2154 2155 nlk->cb_running = false; 2156 module = cb->module; 2157 skb = cb->skb; 2158 mutex_unlock(nlk->cb_mutex); 2159 module_put(module); 2160 consume_skb(skb); 2161 return 0; 2162 2163 errout_skb: 2164 mutex_unlock(nlk->cb_mutex); 2165 kfree_skb(skb); 2166 return err; 2167 } 2168 2169 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2170 const struct nlmsghdr *nlh, 2171 struct netlink_dump_control *control) 2172 { 2173 struct netlink_callback *cb; 2174 struct sock *sk; 2175 struct netlink_sock *nlk; 2176 int ret; 2177 2178 atomic_inc(&skb->users); 2179 2180 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2181 if (sk == NULL) { 2182 ret = -ECONNREFUSED; 2183 goto error_free; 2184 } 2185 2186 nlk = nlk_sk(sk); 2187 mutex_lock(nlk->cb_mutex); 2188 /* A dump is in progress... */ 2189 if (nlk->cb_running) { 2190 ret = -EBUSY; 2191 goto error_unlock; 2192 } 2193 /* add reference of module which cb->dump belongs to */ 2194 if (!try_module_get(control->module)) { 2195 ret = -EPROTONOSUPPORT; 2196 goto error_unlock; 2197 } 2198 2199 cb = &nlk->cb; 2200 memset(cb, 0, sizeof(*cb)); 2201 cb->start = control->start; 2202 cb->dump = control->dump; 2203 cb->done = control->done; 2204 cb->nlh = nlh; 2205 cb->data = control->data; 2206 cb->module = control->module; 2207 cb->min_dump_alloc = control->min_dump_alloc; 2208 cb->skb = skb; 2209 2210 nlk->cb_running = true; 2211 2212 mutex_unlock(nlk->cb_mutex); 2213 2214 if (cb->start) 2215 cb->start(cb); 2216 2217 ret = netlink_dump(sk); 2218 sock_put(sk); 2219 2220 if (ret) 2221 return ret; 2222 2223 /* We successfully started a dump, by returning -EINTR we 2224 * signal not to send ACK even if it was requested. 2225 */ 2226 return -EINTR; 2227 2228 error_unlock: 2229 sock_put(sk); 2230 mutex_unlock(nlk->cb_mutex); 2231 error_free: 2232 kfree_skb(skb); 2233 return ret; 2234 } 2235 EXPORT_SYMBOL(__netlink_dump_start); 2236 2237 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2238 { 2239 struct sk_buff *skb; 2240 struct nlmsghdr *rep; 2241 struct nlmsgerr *errmsg; 2242 size_t payload = sizeof(*errmsg); 2243 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2244 2245 /* Error messages get the original request appened, unless the user 2246 * requests to cap the error message. 2247 */ 2248 if (!(nlk->flags & NETLINK_F_CAP_ACK) && err) 2249 payload += nlmsg_len(nlh); 2250 2251 skb = nlmsg_new(payload, GFP_KERNEL); 2252 if (!skb) { 2253 struct sock *sk; 2254 2255 sk = netlink_lookup(sock_net(in_skb->sk), 2256 in_skb->sk->sk_protocol, 2257 NETLINK_CB(in_skb).portid); 2258 if (sk) { 2259 sk->sk_err = ENOBUFS; 2260 sk->sk_error_report(sk); 2261 sock_put(sk); 2262 } 2263 return; 2264 } 2265 2266 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2267 NLMSG_ERROR, payload, 0); 2268 errmsg = nlmsg_data(rep); 2269 errmsg->error = err; 2270 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2271 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2272 } 2273 EXPORT_SYMBOL(netlink_ack); 2274 2275 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2276 struct nlmsghdr *)) 2277 { 2278 struct nlmsghdr *nlh; 2279 int err; 2280 2281 while (skb->len >= nlmsg_total_size(0)) { 2282 int msglen; 2283 2284 nlh = nlmsg_hdr(skb); 2285 err = 0; 2286 2287 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2288 return 0; 2289 2290 /* Only requests are handled by the kernel */ 2291 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2292 goto ack; 2293 2294 /* Skip control messages */ 2295 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2296 goto ack; 2297 2298 err = cb(skb, nlh); 2299 if (err == -EINTR) 2300 goto skip; 2301 2302 ack: 2303 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2304 netlink_ack(skb, nlh, err); 2305 2306 skip: 2307 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2308 if (msglen > skb->len) 2309 msglen = skb->len; 2310 skb_pull(skb, msglen); 2311 } 2312 2313 return 0; 2314 } 2315 EXPORT_SYMBOL(netlink_rcv_skb); 2316 2317 /** 2318 * nlmsg_notify - send a notification netlink message 2319 * @sk: netlink socket to use 2320 * @skb: notification message 2321 * @portid: destination netlink portid for reports or 0 2322 * @group: destination multicast group or 0 2323 * @report: 1 to report back, 0 to disable 2324 * @flags: allocation flags 2325 */ 2326 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2327 unsigned int group, int report, gfp_t flags) 2328 { 2329 int err = 0; 2330 2331 if (group) { 2332 int exclude_portid = 0; 2333 2334 if (report) { 2335 atomic_inc(&skb->users); 2336 exclude_portid = portid; 2337 } 2338 2339 /* errors reported via destination sk->sk_err, but propagate 2340 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2341 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2342 } 2343 2344 if (report) { 2345 int err2; 2346 2347 err2 = nlmsg_unicast(sk, skb, portid); 2348 if (!err || err == -ESRCH) 2349 err = err2; 2350 } 2351 2352 return err; 2353 } 2354 EXPORT_SYMBOL(nlmsg_notify); 2355 2356 #ifdef CONFIG_PROC_FS 2357 struct nl_seq_iter { 2358 struct seq_net_private p; 2359 struct rhashtable_iter hti; 2360 int link; 2361 }; 2362 2363 static int netlink_walk_start(struct nl_seq_iter *iter) 2364 { 2365 int err; 2366 2367 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti, 2368 GFP_KERNEL); 2369 if (err) { 2370 iter->link = MAX_LINKS; 2371 return err; 2372 } 2373 2374 err = rhashtable_walk_start(&iter->hti); 2375 return err == -EAGAIN ? 0 : err; 2376 } 2377 2378 static void netlink_walk_stop(struct nl_seq_iter *iter) 2379 { 2380 rhashtable_walk_stop(&iter->hti); 2381 rhashtable_walk_exit(&iter->hti); 2382 } 2383 2384 static void *__netlink_seq_next(struct seq_file *seq) 2385 { 2386 struct nl_seq_iter *iter = seq->private; 2387 struct netlink_sock *nlk; 2388 2389 do { 2390 for (;;) { 2391 int err; 2392 2393 nlk = rhashtable_walk_next(&iter->hti); 2394 2395 if (IS_ERR(nlk)) { 2396 if (PTR_ERR(nlk) == -EAGAIN) 2397 continue; 2398 2399 return nlk; 2400 } 2401 2402 if (nlk) 2403 break; 2404 2405 netlink_walk_stop(iter); 2406 if (++iter->link >= MAX_LINKS) 2407 return NULL; 2408 2409 err = netlink_walk_start(iter); 2410 if (err) 2411 return ERR_PTR(err); 2412 } 2413 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2414 2415 return nlk; 2416 } 2417 2418 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2419 { 2420 struct nl_seq_iter *iter = seq->private; 2421 void *obj = SEQ_START_TOKEN; 2422 loff_t pos; 2423 int err; 2424 2425 iter->link = 0; 2426 2427 err = netlink_walk_start(iter); 2428 if (err) 2429 return ERR_PTR(err); 2430 2431 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2432 obj = __netlink_seq_next(seq); 2433 2434 return obj; 2435 } 2436 2437 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2438 { 2439 ++*pos; 2440 return __netlink_seq_next(seq); 2441 } 2442 2443 static void netlink_seq_stop(struct seq_file *seq, void *v) 2444 { 2445 struct nl_seq_iter *iter = seq->private; 2446 2447 if (iter->link >= MAX_LINKS) 2448 return; 2449 2450 netlink_walk_stop(iter); 2451 } 2452 2453 2454 static int netlink_seq_show(struct seq_file *seq, void *v) 2455 { 2456 if (v == SEQ_START_TOKEN) { 2457 seq_puts(seq, 2458 "sk Eth Pid Groups " 2459 "Rmem Wmem Dump Locks Drops Inode\n"); 2460 } else { 2461 struct sock *s = v; 2462 struct netlink_sock *nlk = nlk_sk(s); 2463 2464 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 2465 s, 2466 s->sk_protocol, 2467 nlk->portid, 2468 nlk->groups ? (u32)nlk->groups[0] : 0, 2469 sk_rmem_alloc_get(s), 2470 sk_wmem_alloc_get(s), 2471 nlk->cb_running, 2472 atomic_read(&s->sk_refcnt), 2473 atomic_read(&s->sk_drops), 2474 sock_i_ino(s) 2475 ); 2476 2477 } 2478 return 0; 2479 } 2480 2481 static const struct seq_operations netlink_seq_ops = { 2482 .start = netlink_seq_start, 2483 .next = netlink_seq_next, 2484 .stop = netlink_seq_stop, 2485 .show = netlink_seq_show, 2486 }; 2487 2488 2489 static int netlink_seq_open(struct inode *inode, struct file *file) 2490 { 2491 return seq_open_net(inode, file, &netlink_seq_ops, 2492 sizeof(struct nl_seq_iter)); 2493 } 2494 2495 static const struct file_operations netlink_seq_fops = { 2496 .owner = THIS_MODULE, 2497 .open = netlink_seq_open, 2498 .read = seq_read, 2499 .llseek = seq_lseek, 2500 .release = seq_release_net, 2501 }; 2502 2503 #endif 2504 2505 int netlink_register_notifier(struct notifier_block *nb) 2506 { 2507 return blocking_notifier_chain_register(&netlink_chain, nb); 2508 } 2509 EXPORT_SYMBOL(netlink_register_notifier); 2510 2511 int netlink_unregister_notifier(struct notifier_block *nb) 2512 { 2513 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2514 } 2515 EXPORT_SYMBOL(netlink_unregister_notifier); 2516 2517 static const struct proto_ops netlink_ops = { 2518 .family = PF_NETLINK, 2519 .owner = THIS_MODULE, 2520 .release = netlink_release, 2521 .bind = netlink_bind, 2522 .connect = netlink_connect, 2523 .socketpair = sock_no_socketpair, 2524 .accept = sock_no_accept, 2525 .getname = netlink_getname, 2526 .poll = datagram_poll, 2527 .ioctl = netlink_ioctl, 2528 .listen = sock_no_listen, 2529 .shutdown = sock_no_shutdown, 2530 .setsockopt = netlink_setsockopt, 2531 .getsockopt = netlink_getsockopt, 2532 .sendmsg = netlink_sendmsg, 2533 .recvmsg = netlink_recvmsg, 2534 .mmap = sock_no_mmap, 2535 .sendpage = sock_no_sendpage, 2536 }; 2537 2538 static const struct net_proto_family netlink_family_ops = { 2539 .family = PF_NETLINK, 2540 .create = netlink_create, 2541 .owner = THIS_MODULE, /* for consistency 8) */ 2542 }; 2543 2544 static int __net_init netlink_net_init(struct net *net) 2545 { 2546 #ifdef CONFIG_PROC_FS 2547 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 2548 return -ENOMEM; 2549 #endif 2550 return 0; 2551 } 2552 2553 static void __net_exit netlink_net_exit(struct net *net) 2554 { 2555 #ifdef CONFIG_PROC_FS 2556 remove_proc_entry("netlink", net->proc_net); 2557 #endif 2558 } 2559 2560 static void __init netlink_add_usersock_entry(void) 2561 { 2562 struct listeners *listeners; 2563 int groups = 32; 2564 2565 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2566 if (!listeners) 2567 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2568 2569 netlink_table_grab(); 2570 2571 nl_table[NETLINK_USERSOCK].groups = groups; 2572 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2573 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2574 nl_table[NETLINK_USERSOCK].registered = 1; 2575 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2576 2577 netlink_table_ungrab(); 2578 } 2579 2580 static struct pernet_operations __net_initdata netlink_net_ops = { 2581 .init = netlink_net_init, 2582 .exit = netlink_net_exit, 2583 }; 2584 2585 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2586 { 2587 const struct netlink_sock *nlk = data; 2588 struct netlink_compare_arg arg; 2589 2590 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2591 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2592 } 2593 2594 static const struct rhashtable_params netlink_rhashtable_params = { 2595 .head_offset = offsetof(struct netlink_sock, node), 2596 .key_len = netlink_compare_arg_len, 2597 .obj_hashfn = netlink_hash, 2598 .obj_cmpfn = netlink_compare, 2599 .automatic_shrinking = true, 2600 }; 2601 2602 static int __init netlink_proto_init(void) 2603 { 2604 int i; 2605 int err = proto_register(&netlink_proto, 0); 2606 2607 if (err != 0) 2608 goto out; 2609 2610 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 2611 2612 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2613 if (!nl_table) 2614 goto panic; 2615 2616 for (i = 0; i < MAX_LINKS; i++) { 2617 if (rhashtable_init(&nl_table[i].hash, 2618 &netlink_rhashtable_params) < 0) { 2619 while (--i > 0) 2620 rhashtable_destroy(&nl_table[i].hash); 2621 kfree(nl_table); 2622 goto panic; 2623 } 2624 } 2625 2626 INIT_LIST_HEAD(&netlink_tap_all); 2627 2628 netlink_add_usersock_entry(); 2629 2630 sock_register(&netlink_family_ops); 2631 register_pernet_subsys(&netlink_net_ops); 2632 /* The netlink device handler may be needed early. */ 2633 rtnetlink_init(); 2634 out: 2635 return err; 2636 panic: 2637 panic("netlink_init: Cannot allocate nl_table\n"); 2638 } 2639 2640 core_initcall(netlink_proto_init); 2641