1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <asm/cacheflush.h> 62 63 #include <net/net_namespace.h> 64 #include <net/sock.h> 65 #include <net/scm.h> 66 #include <net/netlink.h> 67 68 #include "af_netlink.h" 69 70 struct listeners { 71 struct rcu_head rcu; 72 unsigned long masks[0]; 73 }; 74 75 /* state bits */ 76 #define NETLINK_CONGESTED 0x0 77 78 /* flags */ 79 #define NETLINK_KERNEL_SOCKET 0x1 80 #define NETLINK_RECV_PKTINFO 0x2 81 #define NETLINK_BROADCAST_SEND_ERROR 0x4 82 #define NETLINK_RECV_NO_ENOBUFS 0x8 83 84 static inline int netlink_is_kernel(struct sock *sk) 85 { 86 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 87 } 88 89 struct netlink_table *nl_table; 90 EXPORT_SYMBOL_GPL(nl_table); 91 92 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 93 94 static int netlink_dump(struct sock *sk); 95 static void netlink_skb_destructor(struct sk_buff *skb); 96 97 DEFINE_RWLOCK(nl_table_lock); 98 EXPORT_SYMBOL_GPL(nl_table_lock); 99 static atomic_t nl_table_users = ATOMIC_INIT(0); 100 101 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 102 103 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 104 105 static DEFINE_SPINLOCK(netlink_tap_lock); 106 static struct list_head netlink_tap_all __read_mostly; 107 108 static inline u32 netlink_group_mask(u32 group) 109 { 110 return group ? 1 << (group - 1) : 0; 111 } 112 113 static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid) 114 { 115 return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask]; 116 } 117 118 int netlink_add_tap(struct netlink_tap *nt) 119 { 120 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 121 return -EINVAL; 122 123 spin_lock(&netlink_tap_lock); 124 list_add_rcu(&nt->list, &netlink_tap_all); 125 spin_unlock(&netlink_tap_lock); 126 127 if (nt->module) 128 __module_get(nt->module); 129 130 return 0; 131 } 132 EXPORT_SYMBOL_GPL(netlink_add_tap); 133 134 static int __netlink_remove_tap(struct netlink_tap *nt) 135 { 136 bool found = false; 137 struct netlink_tap *tmp; 138 139 spin_lock(&netlink_tap_lock); 140 141 list_for_each_entry(tmp, &netlink_tap_all, list) { 142 if (nt == tmp) { 143 list_del_rcu(&nt->list); 144 found = true; 145 goto out; 146 } 147 } 148 149 pr_warn("__netlink_remove_tap: %p not found\n", nt); 150 out: 151 spin_unlock(&netlink_tap_lock); 152 153 if (found && nt->module) 154 module_put(nt->module); 155 156 return found ? 0 : -ENODEV; 157 } 158 159 int netlink_remove_tap(struct netlink_tap *nt) 160 { 161 int ret; 162 163 ret = __netlink_remove_tap(nt); 164 synchronize_net(); 165 166 return ret; 167 } 168 EXPORT_SYMBOL_GPL(netlink_remove_tap); 169 170 static bool netlink_filter_tap(const struct sk_buff *skb) 171 { 172 struct sock *sk = skb->sk; 173 bool pass = false; 174 175 /* We take the more conservative approach and 176 * whitelist socket protocols that may pass. 177 */ 178 switch (sk->sk_protocol) { 179 case NETLINK_ROUTE: 180 case NETLINK_USERSOCK: 181 case NETLINK_SOCK_DIAG: 182 case NETLINK_NFLOG: 183 case NETLINK_XFRM: 184 case NETLINK_FIB_LOOKUP: 185 case NETLINK_NETFILTER: 186 case NETLINK_GENERIC: 187 pass = true; 188 break; 189 } 190 191 return pass; 192 } 193 194 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 195 struct net_device *dev) 196 { 197 struct sk_buff *nskb; 198 struct sock *sk = skb->sk; 199 int ret = -ENOMEM; 200 201 dev_hold(dev); 202 nskb = skb_clone(skb, GFP_ATOMIC); 203 if (nskb) { 204 nskb->dev = dev; 205 nskb->protocol = htons((u16) sk->sk_protocol); 206 nskb->pkt_type = netlink_is_kernel(sk) ? 207 PACKET_KERNEL : PACKET_USER; 208 209 ret = dev_queue_xmit(nskb); 210 if (unlikely(ret > 0)) 211 ret = net_xmit_errno(ret); 212 } 213 214 dev_put(dev); 215 return ret; 216 } 217 218 static void __netlink_deliver_tap(struct sk_buff *skb) 219 { 220 int ret; 221 struct netlink_tap *tmp; 222 223 if (!netlink_filter_tap(skb)) 224 return; 225 226 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 227 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 228 if (unlikely(ret)) 229 break; 230 } 231 } 232 233 static void netlink_deliver_tap(struct sk_buff *skb) 234 { 235 rcu_read_lock(); 236 237 if (unlikely(!list_empty(&netlink_tap_all))) 238 __netlink_deliver_tap(skb); 239 240 rcu_read_unlock(); 241 } 242 243 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 244 struct sk_buff *skb) 245 { 246 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 247 netlink_deliver_tap(skb); 248 } 249 250 static void netlink_overrun(struct sock *sk) 251 { 252 struct netlink_sock *nlk = nlk_sk(sk); 253 254 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 255 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 256 sk->sk_err = ENOBUFS; 257 sk->sk_error_report(sk); 258 } 259 } 260 atomic_inc(&sk->sk_drops); 261 } 262 263 static void netlink_rcv_wake(struct sock *sk) 264 { 265 struct netlink_sock *nlk = nlk_sk(sk); 266 267 if (skb_queue_empty(&sk->sk_receive_queue)) 268 clear_bit(NETLINK_CONGESTED, &nlk->state); 269 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 270 wake_up_interruptible(&nlk->wait); 271 } 272 273 #ifdef CONFIG_NETLINK_MMAP 274 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 275 { 276 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 277 } 278 279 static bool netlink_rx_is_mmaped(struct sock *sk) 280 { 281 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 282 } 283 284 static bool netlink_tx_is_mmaped(struct sock *sk) 285 { 286 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 287 } 288 289 static __pure struct page *pgvec_to_page(const void *addr) 290 { 291 if (is_vmalloc_addr(addr)) 292 return vmalloc_to_page(addr); 293 else 294 return virt_to_page(addr); 295 } 296 297 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 298 { 299 unsigned int i; 300 301 for (i = 0; i < len; i++) { 302 if (pg_vec[i] != NULL) { 303 if (is_vmalloc_addr(pg_vec[i])) 304 vfree(pg_vec[i]); 305 else 306 free_pages((unsigned long)pg_vec[i], order); 307 } 308 } 309 kfree(pg_vec); 310 } 311 312 static void *alloc_one_pg_vec_page(unsigned long order) 313 { 314 void *buffer; 315 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 316 __GFP_NOWARN | __GFP_NORETRY; 317 318 buffer = (void *)__get_free_pages(gfp_flags, order); 319 if (buffer != NULL) 320 return buffer; 321 322 buffer = vzalloc((1 << order) * PAGE_SIZE); 323 if (buffer != NULL) 324 return buffer; 325 326 gfp_flags &= ~__GFP_NORETRY; 327 return (void *)__get_free_pages(gfp_flags, order); 328 } 329 330 static void **alloc_pg_vec(struct netlink_sock *nlk, 331 struct nl_mmap_req *req, unsigned int order) 332 { 333 unsigned int block_nr = req->nm_block_nr; 334 unsigned int i; 335 void **pg_vec; 336 337 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 338 if (pg_vec == NULL) 339 return NULL; 340 341 for (i = 0; i < block_nr; i++) { 342 pg_vec[i] = alloc_one_pg_vec_page(order); 343 if (pg_vec[i] == NULL) 344 goto err1; 345 } 346 347 return pg_vec; 348 err1: 349 free_pg_vec(pg_vec, order, block_nr); 350 return NULL; 351 } 352 353 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 354 bool closing, bool tx_ring) 355 { 356 struct netlink_sock *nlk = nlk_sk(sk); 357 struct netlink_ring *ring; 358 struct sk_buff_head *queue; 359 void **pg_vec = NULL; 360 unsigned int order = 0; 361 int err; 362 363 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 364 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 365 366 if (!closing) { 367 if (atomic_read(&nlk->mapped)) 368 return -EBUSY; 369 if (atomic_read(&ring->pending)) 370 return -EBUSY; 371 } 372 373 if (req->nm_block_nr) { 374 if (ring->pg_vec != NULL) 375 return -EBUSY; 376 377 if ((int)req->nm_block_size <= 0) 378 return -EINVAL; 379 if (!IS_ALIGNED(req->nm_block_size, PAGE_SIZE)) 380 return -EINVAL; 381 if (req->nm_frame_size < NL_MMAP_HDRLEN) 382 return -EINVAL; 383 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 384 return -EINVAL; 385 386 ring->frames_per_block = req->nm_block_size / 387 req->nm_frame_size; 388 if (ring->frames_per_block == 0) 389 return -EINVAL; 390 if (ring->frames_per_block * req->nm_block_nr != 391 req->nm_frame_nr) 392 return -EINVAL; 393 394 order = get_order(req->nm_block_size); 395 pg_vec = alloc_pg_vec(nlk, req, order); 396 if (pg_vec == NULL) 397 return -ENOMEM; 398 } else { 399 if (req->nm_frame_nr) 400 return -EINVAL; 401 } 402 403 err = -EBUSY; 404 mutex_lock(&nlk->pg_vec_lock); 405 if (closing || atomic_read(&nlk->mapped) == 0) { 406 err = 0; 407 spin_lock_bh(&queue->lock); 408 409 ring->frame_max = req->nm_frame_nr - 1; 410 ring->head = 0; 411 ring->frame_size = req->nm_frame_size; 412 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 413 414 swap(ring->pg_vec_len, req->nm_block_nr); 415 swap(ring->pg_vec_order, order); 416 swap(ring->pg_vec, pg_vec); 417 418 __skb_queue_purge(queue); 419 spin_unlock_bh(&queue->lock); 420 421 WARN_ON(atomic_read(&nlk->mapped)); 422 } 423 mutex_unlock(&nlk->pg_vec_lock); 424 425 if (pg_vec) 426 free_pg_vec(pg_vec, order, req->nm_block_nr); 427 return err; 428 } 429 430 static void netlink_mm_open(struct vm_area_struct *vma) 431 { 432 struct file *file = vma->vm_file; 433 struct socket *sock = file->private_data; 434 struct sock *sk = sock->sk; 435 436 if (sk) 437 atomic_inc(&nlk_sk(sk)->mapped); 438 } 439 440 static void netlink_mm_close(struct vm_area_struct *vma) 441 { 442 struct file *file = vma->vm_file; 443 struct socket *sock = file->private_data; 444 struct sock *sk = sock->sk; 445 446 if (sk) 447 atomic_dec(&nlk_sk(sk)->mapped); 448 } 449 450 static const struct vm_operations_struct netlink_mmap_ops = { 451 .open = netlink_mm_open, 452 .close = netlink_mm_close, 453 }; 454 455 static int netlink_mmap(struct file *file, struct socket *sock, 456 struct vm_area_struct *vma) 457 { 458 struct sock *sk = sock->sk; 459 struct netlink_sock *nlk = nlk_sk(sk); 460 struct netlink_ring *ring; 461 unsigned long start, size, expected; 462 unsigned int i; 463 int err = -EINVAL; 464 465 if (vma->vm_pgoff) 466 return -EINVAL; 467 468 mutex_lock(&nlk->pg_vec_lock); 469 470 expected = 0; 471 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 472 if (ring->pg_vec == NULL) 473 continue; 474 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 475 } 476 477 if (expected == 0) 478 goto out; 479 480 size = vma->vm_end - vma->vm_start; 481 if (size != expected) 482 goto out; 483 484 start = vma->vm_start; 485 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 486 if (ring->pg_vec == NULL) 487 continue; 488 489 for (i = 0; i < ring->pg_vec_len; i++) { 490 struct page *page; 491 void *kaddr = ring->pg_vec[i]; 492 unsigned int pg_num; 493 494 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 495 page = pgvec_to_page(kaddr); 496 err = vm_insert_page(vma, start, page); 497 if (err < 0) 498 goto out; 499 start += PAGE_SIZE; 500 kaddr += PAGE_SIZE; 501 } 502 } 503 } 504 505 atomic_inc(&nlk->mapped); 506 vma->vm_ops = &netlink_mmap_ops; 507 err = 0; 508 out: 509 mutex_unlock(&nlk->pg_vec_lock); 510 return err; 511 } 512 513 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr) 514 { 515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 516 struct page *p_start, *p_end; 517 518 /* First page is flushed through netlink_{get,set}_status */ 519 p_start = pgvec_to_page(hdr + PAGE_SIZE); 520 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1); 521 while (p_start <= p_end) { 522 flush_dcache_page(p_start); 523 p_start++; 524 } 525 #endif 526 } 527 528 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 529 { 530 smp_rmb(); 531 flush_dcache_page(pgvec_to_page(hdr)); 532 return hdr->nm_status; 533 } 534 535 static void netlink_set_status(struct nl_mmap_hdr *hdr, 536 enum nl_mmap_status status) 537 { 538 hdr->nm_status = status; 539 flush_dcache_page(pgvec_to_page(hdr)); 540 smp_wmb(); 541 } 542 543 static struct nl_mmap_hdr * 544 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 545 { 546 unsigned int pg_vec_pos, frame_off; 547 548 pg_vec_pos = pos / ring->frames_per_block; 549 frame_off = pos % ring->frames_per_block; 550 551 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 552 } 553 554 static struct nl_mmap_hdr * 555 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 556 enum nl_mmap_status status) 557 { 558 struct nl_mmap_hdr *hdr; 559 560 hdr = __netlink_lookup_frame(ring, pos); 561 if (netlink_get_status(hdr) != status) 562 return NULL; 563 564 return hdr; 565 } 566 567 static struct nl_mmap_hdr * 568 netlink_current_frame(const struct netlink_ring *ring, 569 enum nl_mmap_status status) 570 { 571 return netlink_lookup_frame(ring, ring->head, status); 572 } 573 574 static struct nl_mmap_hdr * 575 netlink_previous_frame(const struct netlink_ring *ring, 576 enum nl_mmap_status status) 577 { 578 unsigned int prev; 579 580 prev = ring->head ? ring->head - 1 : ring->frame_max; 581 return netlink_lookup_frame(ring, prev, status); 582 } 583 584 static void netlink_increment_head(struct netlink_ring *ring) 585 { 586 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 587 } 588 589 static void netlink_forward_ring(struct netlink_ring *ring) 590 { 591 unsigned int head = ring->head, pos = head; 592 const struct nl_mmap_hdr *hdr; 593 594 do { 595 hdr = __netlink_lookup_frame(ring, pos); 596 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 597 break; 598 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 599 break; 600 netlink_increment_head(ring); 601 } while (ring->head != head); 602 } 603 604 static bool netlink_dump_space(struct netlink_sock *nlk) 605 { 606 struct netlink_ring *ring = &nlk->rx_ring; 607 struct nl_mmap_hdr *hdr; 608 unsigned int n; 609 610 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 611 if (hdr == NULL) 612 return false; 613 614 n = ring->head + ring->frame_max / 2; 615 if (n > ring->frame_max) 616 n -= ring->frame_max; 617 618 hdr = __netlink_lookup_frame(ring, n); 619 620 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 621 } 622 623 static unsigned int netlink_poll(struct file *file, struct socket *sock, 624 poll_table *wait) 625 { 626 struct sock *sk = sock->sk; 627 struct netlink_sock *nlk = nlk_sk(sk); 628 unsigned int mask; 629 int err; 630 631 if (nlk->rx_ring.pg_vec != NULL) { 632 /* Memory mapped sockets don't call recvmsg(), so flow control 633 * for dumps is performed here. A dump is allowed to continue 634 * if at least half the ring is unused. 635 */ 636 while (nlk->cb_running && netlink_dump_space(nlk)) { 637 err = netlink_dump(sk); 638 if (err < 0) { 639 sk->sk_err = err; 640 sk->sk_error_report(sk); 641 break; 642 } 643 } 644 netlink_rcv_wake(sk); 645 } 646 647 mask = datagram_poll(file, sock, wait); 648 649 spin_lock_bh(&sk->sk_receive_queue.lock); 650 if (nlk->rx_ring.pg_vec) { 651 netlink_forward_ring(&nlk->rx_ring); 652 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 653 mask |= POLLIN | POLLRDNORM; 654 } 655 spin_unlock_bh(&sk->sk_receive_queue.lock); 656 657 spin_lock_bh(&sk->sk_write_queue.lock); 658 if (nlk->tx_ring.pg_vec) { 659 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 660 mask |= POLLOUT | POLLWRNORM; 661 } 662 spin_unlock_bh(&sk->sk_write_queue.lock); 663 664 return mask; 665 } 666 667 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 668 { 669 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 670 } 671 672 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 673 struct netlink_ring *ring, 674 struct nl_mmap_hdr *hdr) 675 { 676 unsigned int size; 677 void *data; 678 679 size = ring->frame_size - NL_MMAP_HDRLEN; 680 data = (void *)hdr + NL_MMAP_HDRLEN; 681 682 skb->head = data; 683 skb->data = data; 684 skb_reset_tail_pointer(skb); 685 skb->end = skb->tail + size; 686 skb->len = 0; 687 688 skb->destructor = netlink_skb_destructor; 689 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 690 NETLINK_CB(skb).sk = sk; 691 } 692 693 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 694 u32 dst_portid, u32 dst_group, 695 struct sock_iocb *siocb) 696 { 697 struct netlink_sock *nlk = nlk_sk(sk); 698 struct netlink_ring *ring; 699 struct nl_mmap_hdr *hdr; 700 struct sk_buff *skb; 701 unsigned int maxlen; 702 bool excl = true; 703 int err = 0, len = 0; 704 705 /* Netlink messages are validated by the receiver before processing. 706 * In order to avoid userspace changing the contents of the message 707 * after validation, the socket and the ring may only be used by a 708 * single process, otherwise we fall back to copying. 709 */ 710 if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 || 711 atomic_read(&nlk->mapped) > 1) 712 excl = false; 713 714 mutex_lock(&nlk->pg_vec_lock); 715 716 ring = &nlk->tx_ring; 717 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 718 719 do { 720 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 721 if (hdr == NULL) { 722 if (!(msg->msg_flags & MSG_DONTWAIT) && 723 atomic_read(&nlk->tx_ring.pending)) 724 schedule(); 725 continue; 726 } 727 if (hdr->nm_len > maxlen) { 728 err = -EINVAL; 729 goto out; 730 } 731 732 netlink_frame_flush_dcache(hdr); 733 734 if (likely(dst_portid == 0 && dst_group == 0 && excl)) { 735 skb = alloc_skb_head(GFP_KERNEL); 736 if (skb == NULL) { 737 err = -ENOBUFS; 738 goto out; 739 } 740 sock_hold(sk); 741 netlink_ring_setup_skb(skb, sk, ring, hdr); 742 NETLINK_CB(skb).flags |= NETLINK_SKB_TX; 743 __skb_put(skb, hdr->nm_len); 744 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 745 atomic_inc(&ring->pending); 746 } else { 747 skb = alloc_skb(hdr->nm_len, GFP_KERNEL); 748 if (skb == NULL) { 749 err = -ENOBUFS; 750 goto out; 751 } 752 __skb_put(skb, hdr->nm_len); 753 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len); 754 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 755 } 756 757 netlink_increment_head(ring); 758 759 NETLINK_CB(skb).portid = nlk->portid; 760 NETLINK_CB(skb).dst_group = dst_group; 761 NETLINK_CB(skb).creds = siocb->scm->creds; 762 763 err = security_netlink_send(sk, skb); 764 if (err) { 765 kfree_skb(skb); 766 goto out; 767 } 768 769 if (unlikely(dst_group)) { 770 atomic_inc(&skb->users); 771 netlink_broadcast(sk, skb, dst_portid, dst_group, 772 GFP_KERNEL); 773 } 774 err = netlink_unicast(sk, skb, dst_portid, 775 msg->msg_flags & MSG_DONTWAIT); 776 if (err < 0) 777 goto out; 778 len += err; 779 780 } while (hdr != NULL || 781 (!(msg->msg_flags & MSG_DONTWAIT) && 782 atomic_read(&nlk->tx_ring.pending))); 783 784 if (len > 0) 785 err = len; 786 out: 787 mutex_unlock(&nlk->pg_vec_lock); 788 return err; 789 } 790 791 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 792 { 793 struct nl_mmap_hdr *hdr; 794 795 hdr = netlink_mmap_hdr(skb); 796 hdr->nm_len = skb->len; 797 hdr->nm_group = NETLINK_CB(skb).dst_group; 798 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 799 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 800 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 801 netlink_frame_flush_dcache(hdr); 802 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 803 804 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 805 kfree_skb(skb); 806 } 807 808 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 809 { 810 struct netlink_sock *nlk = nlk_sk(sk); 811 struct netlink_ring *ring = &nlk->rx_ring; 812 struct nl_mmap_hdr *hdr; 813 814 spin_lock_bh(&sk->sk_receive_queue.lock); 815 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 816 if (hdr == NULL) { 817 spin_unlock_bh(&sk->sk_receive_queue.lock); 818 kfree_skb(skb); 819 netlink_overrun(sk); 820 return; 821 } 822 netlink_increment_head(ring); 823 __skb_queue_tail(&sk->sk_receive_queue, skb); 824 spin_unlock_bh(&sk->sk_receive_queue.lock); 825 826 hdr->nm_len = skb->len; 827 hdr->nm_group = NETLINK_CB(skb).dst_group; 828 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 829 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 830 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 831 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 832 } 833 834 #else /* CONFIG_NETLINK_MMAP */ 835 #define netlink_skb_is_mmaped(skb) false 836 #define netlink_rx_is_mmaped(sk) false 837 #define netlink_tx_is_mmaped(sk) false 838 #define netlink_mmap sock_no_mmap 839 #define netlink_poll datagram_poll 840 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 841 #endif /* CONFIG_NETLINK_MMAP */ 842 843 static void netlink_skb_destructor(struct sk_buff *skb) 844 { 845 #ifdef CONFIG_NETLINK_MMAP 846 struct nl_mmap_hdr *hdr; 847 struct netlink_ring *ring; 848 struct sock *sk; 849 850 /* If a packet from the kernel to userspace was freed because of an 851 * error without being delivered to userspace, the kernel must reset 852 * the status. In the direction userspace to kernel, the status is 853 * always reset here after the packet was processed and freed. 854 */ 855 if (netlink_skb_is_mmaped(skb)) { 856 hdr = netlink_mmap_hdr(skb); 857 sk = NETLINK_CB(skb).sk; 858 859 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 860 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 861 ring = &nlk_sk(sk)->tx_ring; 862 } else { 863 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 864 hdr->nm_len = 0; 865 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 866 } 867 ring = &nlk_sk(sk)->rx_ring; 868 } 869 870 WARN_ON(atomic_read(&ring->pending) == 0); 871 atomic_dec(&ring->pending); 872 sock_put(sk); 873 874 skb->head = NULL; 875 } 876 #endif 877 if (is_vmalloc_addr(skb->head)) { 878 if (!skb->cloned || 879 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 880 vfree(skb->head); 881 882 skb->head = NULL; 883 } 884 if (skb->sk != NULL) 885 sock_rfree(skb); 886 } 887 888 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 889 { 890 WARN_ON(skb->sk != NULL); 891 skb->sk = sk; 892 skb->destructor = netlink_skb_destructor; 893 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 894 sk_mem_charge(sk, skb->truesize); 895 } 896 897 static void netlink_sock_destruct(struct sock *sk) 898 { 899 struct netlink_sock *nlk = nlk_sk(sk); 900 901 if (nlk->cb_running) { 902 if (nlk->cb.done) 903 nlk->cb.done(&nlk->cb); 904 905 module_put(nlk->cb.module); 906 kfree_skb(nlk->cb.skb); 907 } 908 909 skb_queue_purge(&sk->sk_receive_queue); 910 #ifdef CONFIG_NETLINK_MMAP 911 if (1) { 912 struct nl_mmap_req req; 913 914 memset(&req, 0, sizeof(req)); 915 if (nlk->rx_ring.pg_vec) 916 netlink_set_ring(sk, &req, true, false); 917 memset(&req, 0, sizeof(req)); 918 if (nlk->tx_ring.pg_vec) 919 netlink_set_ring(sk, &req, true, true); 920 } 921 #endif /* CONFIG_NETLINK_MMAP */ 922 923 if (!sock_flag(sk, SOCK_DEAD)) { 924 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 925 return; 926 } 927 928 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 929 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 930 WARN_ON(nlk_sk(sk)->groups); 931 } 932 933 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 934 * SMP. Look, when several writers sleep and reader wakes them up, all but one 935 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 936 * this, _but_ remember, it adds useless work on UP machines. 937 */ 938 939 void netlink_table_grab(void) 940 __acquires(nl_table_lock) 941 { 942 might_sleep(); 943 944 write_lock_irq(&nl_table_lock); 945 946 if (atomic_read(&nl_table_users)) { 947 DECLARE_WAITQUEUE(wait, current); 948 949 add_wait_queue_exclusive(&nl_table_wait, &wait); 950 for (;;) { 951 set_current_state(TASK_UNINTERRUPTIBLE); 952 if (atomic_read(&nl_table_users) == 0) 953 break; 954 write_unlock_irq(&nl_table_lock); 955 schedule(); 956 write_lock_irq(&nl_table_lock); 957 } 958 959 __set_current_state(TASK_RUNNING); 960 remove_wait_queue(&nl_table_wait, &wait); 961 } 962 } 963 964 void netlink_table_ungrab(void) 965 __releases(nl_table_lock) 966 { 967 write_unlock_irq(&nl_table_lock); 968 wake_up(&nl_table_wait); 969 } 970 971 static inline void 972 netlink_lock_table(void) 973 { 974 /* read_lock() synchronizes us to netlink_table_grab */ 975 976 read_lock(&nl_table_lock); 977 atomic_inc(&nl_table_users); 978 read_unlock(&nl_table_lock); 979 } 980 981 static inline void 982 netlink_unlock_table(void) 983 { 984 if (atomic_dec_and_test(&nl_table_users)) 985 wake_up(&nl_table_wait); 986 } 987 988 static bool netlink_compare(struct net *net, struct sock *sk) 989 { 990 return net_eq(sock_net(sk), net); 991 } 992 993 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 994 { 995 struct netlink_table *table = &nl_table[protocol]; 996 struct nl_portid_hash *hash = &table->hash; 997 struct hlist_head *head; 998 struct sock *sk; 999 1000 read_lock(&nl_table_lock); 1001 head = nl_portid_hashfn(hash, portid); 1002 sk_for_each(sk, head) { 1003 if (table->compare(net, sk) && 1004 (nlk_sk(sk)->portid == portid)) { 1005 sock_hold(sk); 1006 goto found; 1007 } 1008 } 1009 sk = NULL; 1010 found: 1011 read_unlock(&nl_table_lock); 1012 return sk; 1013 } 1014 1015 static struct hlist_head *nl_portid_hash_zalloc(size_t size) 1016 { 1017 if (size <= PAGE_SIZE) 1018 return kzalloc(size, GFP_ATOMIC); 1019 else 1020 return (struct hlist_head *) 1021 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 1022 get_order(size)); 1023 } 1024 1025 static void nl_portid_hash_free(struct hlist_head *table, size_t size) 1026 { 1027 if (size <= PAGE_SIZE) 1028 kfree(table); 1029 else 1030 free_pages((unsigned long)table, get_order(size)); 1031 } 1032 1033 static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow) 1034 { 1035 unsigned int omask, mask, shift; 1036 size_t osize, size; 1037 struct hlist_head *otable, *table; 1038 int i; 1039 1040 omask = mask = hash->mask; 1041 osize = size = (mask + 1) * sizeof(*table); 1042 shift = hash->shift; 1043 1044 if (grow) { 1045 if (++shift > hash->max_shift) 1046 return 0; 1047 mask = mask * 2 + 1; 1048 size *= 2; 1049 } 1050 1051 table = nl_portid_hash_zalloc(size); 1052 if (!table) 1053 return 0; 1054 1055 otable = hash->table; 1056 hash->table = table; 1057 hash->mask = mask; 1058 hash->shift = shift; 1059 get_random_bytes(&hash->rnd, sizeof(hash->rnd)); 1060 1061 for (i = 0; i <= omask; i++) { 1062 struct sock *sk; 1063 struct hlist_node *tmp; 1064 1065 sk_for_each_safe(sk, tmp, &otable[i]) 1066 __sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid)); 1067 } 1068 1069 nl_portid_hash_free(otable, osize); 1070 hash->rehash_time = jiffies + 10 * 60 * HZ; 1071 return 1; 1072 } 1073 1074 static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len) 1075 { 1076 int avg = hash->entries >> hash->shift; 1077 1078 if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1)) 1079 return 1; 1080 1081 if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) { 1082 nl_portid_hash_rehash(hash, 0); 1083 return 1; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static const struct proto_ops netlink_ops; 1090 1091 static void 1092 netlink_update_listeners(struct sock *sk) 1093 { 1094 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1095 unsigned long mask; 1096 unsigned int i; 1097 struct listeners *listeners; 1098 1099 listeners = nl_deref_protected(tbl->listeners); 1100 if (!listeners) 1101 return; 1102 1103 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1104 mask = 0; 1105 sk_for_each_bound(sk, &tbl->mc_list) { 1106 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1107 mask |= nlk_sk(sk)->groups[i]; 1108 } 1109 listeners->masks[i] = mask; 1110 } 1111 /* this function is only called with the netlink table "grabbed", which 1112 * makes sure updates are visible before bind or setsockopt return. */ 1113 } 1114 1115 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1116 { 1117 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1118 struct nl_portid_hash *hash = &table->hash; 1119 struct hlist_head *head; 1120 int err = -EADDRINUSE; 1121 struct sock *osk; 1122 int len; 1123 1124 netlink_table_grab(); 1125 head = nl_portid_hashfn(hash, portid); 1126 len = 0; 1127 sk_for_each(osk, head) { 1128 if (table->compare(net, osk) && 1129 (nlk_sk(osk)->portid == portid)) 1130 break; 1131 len++; 1132 } 1133 if (osk) 1134 goto err; 1135 1136 err = -EBUSY; 1137 if (nlk_sk(sk)->portid) 1138 goto err; 1139 1140 err = -ENOMEM; 1141 if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX)) 1142 goto err; 1143 1144 if (len && nl_portid_hash_dilute(hash, len)) 1145 head = nl_portid_hashfn(hash, portid); 1146 hash->entries++; 1147 nlk_sk(sk)->portid = portid; 1148 sk_add_node(sk, head); 1149 err = 0; 1150 1151 err: 1152 netlink_table_ungrab(); 1153 return err; 1154 } 1155 1156 static void netlink_remove(struct sock *sk) 1157 { 1158 netlink_table_grab(); 1159 if (sk_del_node_init(sk)) 1160 nl_table[sk->sk_protocol].hash.entries--; 1161 if (nlk_sk(sk)->subscriptions) 1162 __sk_del_bind_node(sk); 1163 netlink_table_ungrab(); 1164 } 1165 1166 static struct proto netlink_proto = { 1167 .name = "NETLINK", 1168 .owner = THIS_MODULE, 1169 .obj_size = sizeof(struct netlink_sock), 1170 }; 1171 1172 static int __netlink_create(struct net *net, struct socket *sock, 1173 struct mutex *cb_mutex, int protocol) 1174 { 1175 struct sock *sk; 1176 struct netlink_sock *nlk; 1177 1178 sock->ops = &netlink_ops; 1179 1180 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1181 if (!sk) 1182 return -ENOMEM; 1183 1184 sock_init_data(sock, sk); 1185 1186 nlk = nlk_sk(sk); 1187 if (cb_mutex) { 1188 nlk->cb_mutex = cb_mutex; 1189 } else { 1190 nlk->cb_mutex = &nlk->cb_def_mutex; 1191 mutex_init(nlk->cb_mutex); 1192 } 1193 init_waitqueue_head(&nlk->wait); 1194 #ifdef CONFIG_NETLINK_MMAP 1195 mutex_init(&nlk->pg_vec_lock); 1196 #endif 1197 1198 sk->sk_destruct = netlink_sock_destruct; 1199 sk->sk_protocol = protocol; 1200 return 0; 1201 } 1202 1203 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1204 int kern) 1205 { 1206 struct module *module = NULL; 1207 struct mutex *cb_mutex; 1208 struct netlink_sock *nlk; 1209 int (*bind)(int group); 1210 void (*unbind)(int group); 1211 int err = 0; 1212 1213 sock->state = SS_UNCONNECTED; 1214 1215 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1216 return -ESOCKTNOSUPPORT; 1217 1218 if (protocol < 0 || protocol >= MAX_LINKS) 1219 return -EPROTONOSUPPORT; 1220 1221 netlink_lock_table(); 1222 #ifdef CONFIG_MODULES 1223 if (!nl_table[protocol].registered) { 1224 netlink_unlock_table(); 1225 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1226 netlink_lock_table(); 1227 } 1228 #endif 1229 if (nl_table[protocol].registered && 1230 try_module_get(nl_table[protocol].module)) 1231 module = nl_table[protocol].module; 1232 else 1233 err = -EPROTONOSUPPORT; 1234 cb_mutex = nl_table[protocol].cb_mutex; 1235 bind = nl_table[protocol].bind; 1236 unbind = nl_table[protocol].unbind; 1237 netlink_unlock_table(); 1238 1239 if (err < 0) 1240 goto out; 1241 1242 err = __netlink_create(net, sock, cb_mutex, protocol); 1243 if (err < 0) 1244 goto out_module; 1245 1246 local_bh_disable(); 1247 sock_prot_inuse_add(net, &netlink_proto, 1); 1248 local_bh_enable(); 1249 1250 nlk = nlk_sk(sock->sk); 1251 nlk->module = module; 1252 nlk->netlink_bind = bind; 1253 nlk->netlink_unbind = unbind; 1254 out: 1255 return err; 1256 1257 out_module: 1258 module_put(module); 1259 goto out; 1260 } 1261 1262 static int netlink_release(struct socket *sock) 1263 { 1264 struct sock *sk = sock->sk; 1265 struct netlink_sock *nlk; 1266 1267 if (!sk) 1268 return 0; 1269 1270 netlink_remove(sk); 1271 sock_orphan(sk); 1272 nlk = nlk_sk(sk); 1273 1274 /* 1275 * OK. Socket is unlinked, any packets that arrive now 1276 * will be purged. 1277 */ 1278 1279 sock->sk = NULL; 1280 wake_up_interruptible_all(&nlk->wait); 1281 1282 skb_queue_purge(&sk->sk_write_queue); 1283 1284 if (nlk->portid) { 1285 struct netlink_notify n = { 1286 .net = sock_net(sk), 1287 .protocol = sk->sk_protocol, 1288 .portid = nlk->portid, 1289 }; 1290 atomic_notifier_call_chain(&netlink_chain, 1291 NETLINK_URELEASE, &n); 1292 } 1293 1294 module_put(nlk->module); 1295 1296 netlink_table_grab(); 1297 if (netlink_is_kernel(sk)) { 1298 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1299 if (--nl_table[sk->sk_protocol].registered == 0) { 1300 struct listeners *old; 1301 1302 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1303 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1304 kfree_rcu(old, rcu); 1305 nl_table[sk->sk_protocol].module = NULL; 1306 nl_table[sk->sk_protocol].bind = NULL; 1307 nl_table[sk->sk_protocol].unbind = NULL; 1308 nl_table[sk->sk_protocol].flags = 0; 1309 nl_table[sk->sk_protocol].registered = 0; 1310 } 1311 } else if (nlk->subscriptions) { 1312 netlink_update_listeners(sk); 1313 } 1314 netlink_table_ungrab(); 1315 1316 kfree(nlk->groups); 1317 nlk->groups = NULL; 1318 1319 local_bh_disable(); 1320 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1321 local_bh_enable(); 1322 sock_put(sk); 1323 return 0; 1324 } 1325 1326 static int netlink_autobind(struct socket *sock) 1327 { 1328 struct sock *sk = sock->sk; 1329 struct net *net = sock_net(sk); 1330 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1331 struct nl_portid_hash *hash = &table->hash; 1332 struct hlist_head *head; 1333 struct sock *osk; 1334 s32 portid = task_tgid_vnr(current); 1335 int err; 1336 static s32 rover = -4097; 1337 1338 retry: 1339 cond_resched(); 1340 netlink_table_grab(); 1341 head = nl_portid_hashfn(hash, portid); 1342 sk_for_each(osk, head) { 1343 if (!table->compare(net, osk)) 1344 continue; 1345 if (nlk_sk(osk)->portid == portid) { 1346 /* Bind collision, search negative portid values. */ 1347 portid = rover--; 1348 if (rover > -4097) 1349 rover = -4097; 1350 netlink_table_ungrab(); 1351 goto retry; 1352 } 1353 } 1354 netlink_table_ungrab(); 1355 1356 err = netlink_insert(sk, net, portid); 1357 if (err == -EADDRINUSE) 1358 goto retry; 1359 1360 /* If 2 threads race to autobind, that is fine. */ 1361 if (err == -EBUSY) 1362 err = 0; 1363 1364 return err; 1365 } 1366 1367 /** 1368 * __netlink_ns_capable - General netlink message capability test 1369 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1370 * @user_ns: The user namespace of the capability to use 1371 * @cap: The capability to use 1372 * 1373 * Test to see if the opener of the socket we received the message 1374 * from had when the netlink socket was created and the sender of the 1375 * message has has the capability @cap in the user namespace @user_ns. 1376 */ 1377 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1378 struct user_namespace *user_ns, int cap) 1379 { 1380 return ((nsp->flags & NETLINK_SKB_DST) || 1381 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1382 ns_capable(user_ns, cap); 1383 } 1384 EXPORT_SYMBOL(__netlink_ns_capable); 1385 1386 /** 1387 * netlink_ns_capable - General netlink message capability test 1388 * @skb: socket buffer holding a netlink command from userspace 1389 * @user_ns: The user namespace of the capability to use 1390 * @cap: The capability to use 1391 * 1392 * Test to see if the opener of the socket we received the message 1393 * from had when the netlink socket was created and the sender of the 1394 * message has has the capability @cap in the user namespace @user_ns. 1395 */ 1396 bool netlink_ns_capable(const struct sk_buff *skb, 1397 struct user_namespace *user_ns, int cap) 1398 { 1399 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1400 } 1401 EXPORT_SYMBOL(netlink_ns_capable); 1402 1403 /** 1404 * netlink_capable - Netlink global message capability test 1405 * @skb: socket buffer holding a netlink command from userspace 1406 * @cap: The capability to use 1407 * 1408 * Test to see if the opener of the socket we received the message 1409 * from had when the netlink socket was created and the sender of the 1410 * message has has the capability @cap in all user namespaces. 1411 */ 1412 bool netlink_capable(const struct sk_buff *skb, int cap) 1413 { 1414 return netlink_ns_capable(skb, &init_user_ns, cap); 1415 } 1416 EXPORT_SYMBOL(netlink_capable); 1417 1418 /** 1419 * netlink_net_capable - Netlink network namespace message capability test 1420 * @skb: socket buffer holding a netlink command from userspace 1421 * @cap: The capability to use 1422 * 1423 * Test to see if the opener of the socket we received the message 1424 * from had when the netlink socket was created and the sender of the 1425 * message has has the capability @cap over the network namespace of 1426 * the socket we received the message from. 1427 */ 1428 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1429 { 1430 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1431 } 1432 EXPORT_SYMBOL(netlink_net_capable); 1433 1434 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1435 { 1436 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1437 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1438 } 1439 1440 static void 1441 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1442 { 1443 struct netlink_sock *nlk = nlk_sk(sk); 1444 1445 if (nlk->subscriptions && !subscriptions) 1446 __sk_del_bind_node(sk); 1447 else if (!nlk->subscriptions && subscriptions) 1448 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1449 nlk->subscriptions = subscriptions; 1450 } 1451 1452 static int netlink_realloc_groups(struct sock *sk) 1453 { 1454 struct netlink_sock *nlk = nlk_sk(sk); 1455 unsigned int groups; 1456 unsigned long *new_groups; 1457 int err = 0; 1458 1459 netlink_table_grab(); 1460 1461 groups = nl_table[sk->sk_protocol].groups; 1462 if (!nl_table[sk->sk_protocol].registered) { 1463 err = -ENOENT; 1464 goto out_unlock; 1465 } 1466 1467 if (nlk->ngroups >= groups) 1468 goto out_unlock; 1469 1470 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1471 if (new_groups == NULL) { 1472 err = -ENOMEM; 1473 goto out_unlock; 1474 } 1475 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1476 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1477 1478 nlk->groups = new_groups; 1479 nlk->ngroups = groups; 1480 out_unlock: 1481 netlink_table_ungrab(); 1482 return err; 1483 } 1484 1485 static void netlink_unbind(int group, long unsigned int groups, 1486 struct netlink_sock *nlk) 1487 { 1488 int undo; 1489 1490 if (!nlk->netlink_unbind) 1491 return; 1492 1493 for (undo = 0; undo < group; undo++) 1494 if (test_bit(group, &groups)) 1495 nlk->netlink_unbind(undo); 1496 } 1497 1498 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1499 int addr_len) 1500 { 1501 struct sock *sk = sock->sk; 1502 struct net *net = sock_net(sk); 1503 struct netlink_sock *nlk = nlk_sk(sk); 1504 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1505 int err; 1506 long unsigned int groups = nladdr->nl_groups; 1507 1508 if (addr_len < sizeof(struct sockaddr_nl)) 1509 return -EINVAL; 1510 1511 if (nladdr->nl_family != AF_NETLINK) 1512 return -EINVAL; 1513 1514 /* Only superuser is allowed to listen multicasts */ 1515 if (groups) { 1516 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1517 return -EPERM; 1518 err = netlink_realloc_groups(sk); 1519 if (err) 1520 return err; 1521 } 1522 1523 if (nlk->portid) 1524 if (nladdr->nl_pid != nlk->portid) 1525 return -EINVAL; 1526 1527 if (nlk->netlink_bind && groups) { 1528 int group; 1529 1530 for (group = 0; group < nlk->ngroups; group++) { 1531 if (!test_bit(group, &groups)) 1532 continue; 1533 err = nlk->netlink_bind(group); 1534 if (!err) 1535 continue; 1536 netlink_unbind(group, groups, nlk); 1537 return err; 1538 } 1539 } 1540 1541 if (!nlk->portid) { 1542 err = nladdr->nl_pid ? 1543 netlink_insert(sk, net, nladdr->nl_pid) : 1544 netlink_autobind(sock); 1545 if (err) { 1546 netlink_unbind(nlk->ngroups - 1, groups, nlk); 1547 return err; 1548 } 1549 } 1550 1551 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1552 return 0; 1553 1554 netlink_table_grab(); 1555 netlink_update_subscriptions(sk, nlk->subscriptions + 1556 hweight32(groups) - 1557 hweight32(nlk->groups[0])); 1558 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1559 netlink_update_listeners(sk); 1560 netlink_table_ungrab(); 1561 1562 return 0; 1563 } 1564 1565 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1566 int alen, int flags) 1567 { 1568 int err = 0; 1569 struct sock *sk = sock->sk; 1570 struct netlink_sock *nlk = nlk_sk(sk); 1571 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1572 1573 if (alen < sizeof(addr->sa_family)) 1574 return -EINVAL; 1575 1576 if (addr->sa_family == AF_UNSPEC) { 1577 sk->sk_state = NETLINK_UNCONNECTED; 1578 nlk->dst_portid = 0; 1579 nlk->dst_group = 0; 1580 return 0; 1581 } 1582 if (addr->sa_family != AF_NETLINK) 1583 return -EINVAL; 1584 1585 if ((nladdr->nl_groups || nladdr->nl_pid) && 1586 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1587 return -EPERM; 1588 1589 if (!nlk->portid) 1590 err = netlink_autobind(sock); 1591 1592 if (err == 0) { 1593 sk->sk_state = NETLINK_CONNECTED; 1594 nlk->dst_portid = nladdr->nl_pid; 1595 nlk->dst_group = ffs(nladdr->nl_groups); 1596 } 1597 1598 return err; 1599 } 1600 1601 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1602 int *addr_len, int peer) 1603 { 1604 struct sock *sk = sock->sk; 1605 struct netlink_sock *nlk = nlk_sk(sk); 1606 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1607 1608 nladdr->nl_family = AF_NETLINK; 1609 nladdr->nl_pad = 0; 1610 *addr_len = sizeof(*nladdr); 1611 1612 if (peer) { 1613 nladdr->nl_pid = nlk->dst_portid; 1614 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1615 } else { 1616 nladdr->nl_pid = nlk->portid; 1617 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1618 } 1619 return 0; 1620 } 1621 1622 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1623 { 1624 struct sock *sock; 1625 struct netlink_sock *nlk; 1626 1627 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1628 if (!sock) 1629 return ERR_PTR(-ECONNREFUSED); 1630 1631 /* Don't bother queuing skb if kernel socket has no input function */ 1632 nlk = nlk_sk(sock); 1633 if (sock->sk_state == NETLINK_CONNECTED && 1634 nlk->dst_portid != nlk_sk(ssk)->portid) { 1635 sock_put(sock); 1636 return ERR_PTR(-ECONNREFUSED); 1637 } 1638 return sock; 1639 } 1640 1641 struct sock *netlink_getsockbyfilp(struct file *filp) 1642 { 1643 struct inode *inode = file_inode(filp); 1644 struct sock *sock; 1645 1646 if (!S_ISSOCK(inode->i_mode)) 1647 return ERR_PTR(-ENOTSOCK); 1648 1649 sock = SOCKET_I(inode)->sk; 1650 if (sock->sk_family != AF_NETLINK) 1651 return ERR_PTR(-EINVAL); 1652 1653 sock_hold(sock); 1654 return sock; 1655 } 1656 1657 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1658 int broadcast) 1659 { 1660 struct sk_buff *skb; 1661 void *data; 1662 1663 if (size <= NLMSG_GOODSIZE || broadcast) 1664 return alloc_skb(size, GFP_KERNEL); 1665 1666 size = SKB_DATA_ALIGN(size) + 1667 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1668 1669 data = vmalloc(size); 1670 if (data == NULL) 1671 return NULL; 1672 1673 skb = build_skb(data, size); 1674 if (skb == NULL) 1675 vfree(data); 1676 else { 1677 skb->head_frag = 0; 1678 skb->destructor = netlink_skb_destructor; 1679 } 1680 1681 return skb; 1682 } 1683 1684 /* 1685 * Attach a skb to a netlink socket. 1686 * The caller must hold a reference to the destination socket. On error, the 1687 * reference is dropped. The skb is not send to the destination, just all 1688 * all error checks are performed and memory in the queue is reserved. 1689 * Return values: 1690 * < 0: error. skb freed, reference to sock dropped. 1691 * 0: continue 1692 * 1: repeat lookup - reference dropped while waiting for socket memory. 1693 */ 1694 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1695 long *timeo, struct sock *ssk) 1696 { 1697 struct netlink_sock *nlk; 1698 1699 nlk = nlk_sk(sk); 1700 1701 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1702 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1703 !netlink_skb_is_mmaped(skb)) { 1704 DECLARE_WAITQUEUE(wait, current); 1705 if (!*timeo) { 1706 if (!ssk || netlink_is_kernel(ssk)) 1707 netlink_overrun(sk); 1708 sock_put(sk); 1709 kfree_skb(skb); 1710 return -EAGAIN; 1711 } 1712 1713 __set_current_state(TASK_INTERRUPTIBLE); 1714 add_wait_queue(&nlk->wait, &wait); 1715 1716 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1717 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1718 !sock_flag(sk, SOCK_DEAD)) 1719 *timeo = schedule_timeout(*timeo); 1720 1721 __set_current_state(TASK_RUNNING); 1722 remove_wait_queue(&nlk->wait, &wait); 1723 sock_put(sk); 1724 1725 if (signal_pending(current)) { 1726 kfree_skb(skb); 1727 return sock_intr_errno(*timeo); 1728 } 1729 return 1; 1730 } 1731 netlink_skb_set_owner_r(skb, sk); 1732 return 0; 1733 } 1734 1735 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1736 { 1737 int len = skb->len; 1738 1739 netlink_deliver_tap(skb); 1740 1741 #ifdef CONFIG_NETLINK_MMAP 1742 if (netlink_skb_is_mmaped(skb)) 1743 netlink_queue_mmaped_skb(sk, skb); 1744 else if (netlink_rx_is_mmaped(sk)) 1745 netlink_ring_set_copied(sk, skb); 1746 else 1747 #endif /* CONFIG_NETLINK_MMAP */ 1748 skb_queue_tail(&sk->sk_receive_queue, skb); 1749 sk->sk_data_ready(sk); 1750 return len; 1751 } 1752 1753 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1754 { 1755 int len = __netlink_sendskb(sk, skb); 1756 1757 sock_put(sk); 1758 return len; 1759 } 1760 1761 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1762 { 1763 kfree_skb(skb); 1764 sock_put(sk); 1765 } 1766 1767 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1768 { 1769 int delta; 1770 1771 WARN_ON(skb->sk != NULL); 1772 if (netlink_skb_is_mmaped(skb)) 1773 return skb; 1774 1775 delta = skb->end - skb->tail; 1776 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1777 return skb; 1778 1779 if (skb_shared(skb)) { 1780 struct sk_buff *nskb = skb_clone(skb, allocation); 1781 if (!nskb) 1782 return skb; 1783 consume_skb(skb); 1784 skb = nskb; 1785 } 1786 1787 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1788 skb->truesize -= delta; 1789 1790 return skb; 1791 } 1792 1793 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1794 struct sock *ssk) 1795 { 1796 int ret; 1797 struct netlink_sock *nlk = nlk_sk(sk); 1798 1799 ret = -ECONNREFUSED; 1800 if (nlk->netlink_rcv != NULL) { 1801 ret = skb->len; 1802 netlink_skb_set_owner_r(skb, sk); 1803 NETLINK_CB(skb).sk = ssk; 1804 netlink_deliver_tap_kernel(sk, ssk, skb); 1805 nlk->netlink_rcv(skb); 1806 consume_skb(skb); 1807 } else { 1808 kfree_skb(skb); 1809 } 1810 sock_put(sk); 1811 return ret; 1812 } 1813 1814 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1815 u32 portid, int nonblock) 1816 { 1817 struct sock *sk; 1818 int err; 1819 long timeo; 1820 1821 skb = netlink_trim(skb, gfp_any()); 1822 1823 timeo = sock_sndtimeo(ssk, nonblock); 1824 retry: 1825 sk = netlink_getsockbyportid(ssk, portid); 1826 if (IS_ERR(sk)) { 1827 kfree_skb(skb); 1828 return PTR_ERR(sk); 1829 } 1830 if (netlink_is_kernel(sk)) 1831 return netlink_unicast_kernel(sk, skb, ssk); 1832 1833 if (sk_filter(sk, skb)) { 1834 err = skb->len; 1835 kfree_skb(skb); 1836 sock_put(sk); 1837 return err; 1838 } 1839 1840 err = netlink_attachskb(sk, skb, &timeo, ssk); 1841 if (err == 1) 1842 goto retry; 1843 if (err) 1844 return err; 1845 1846 return netlink_sendskb(sk, skb); 1847 } 1848 EXPORT_SYMBOL(netlink_unicast); 1849 1850 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1851 u32 dst_portid, gfp_t gfp_mask) 1852 { 1853 #ifdef CONFIG_NETLINK_MMAP 1854 struct sock *sk = NULL; 1855 struct sk_buff *skb; 1856 struct netlink_ring *ring; 1857 struct nl_mmap_hdr *hdr; 1858 unsigned int maxlen; 1859 1860 sk = netlink_getsockbyportid(ssk, dst_portid); 1861 if (IS_ERR(sk)) 1862 goto out; 1863 1864 ring = &nlk_sk(sk)->rx_ring; 1865 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1866 if (ring->pg_vec == NULL) 1867 goto out_put; 1868 1869 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1870 goto out_put; 1871 1872 skb = alloc_skb_head(gfp_mask); 1873 if (skb == NULL) 1874 goto err1; 1875 1876 spin_lock_bh(&sk->sk_receive_queue.lock); 1877 /* check again under lock */ 1878 if (ring->pg_vec == NULL) 1879 goto out_free; 1880 1881 /* check again under lock */ 1882 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1883 if (maxlen < size) 1884 goto out_free; 1885 1886 netlink_forward_ring(ring); 1887 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1888 if (hdr == NULL) 1889 goto err2; 1890 netlink_ring_setup_skb(skb, sk, ring, hdr); 1891 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1892 atomic_inc(&ring->pending); 1893 netlink_increment_head(ring); 1894 1895 spin_unlock_bh(&sk->sk_receive_queue.lock); 1896 return skb; 1897 1898 err2: 1899 kfree_skb(skb); 1900 spin_unlock_bh(&sk->sk_receive_queue.lock); 1901 netlink_overrun(sk); 1902 err1: 1903 sock_put(sk); 1904 return NULL; 1905 1906 out_free: 1907 kfree_skb(skb); 1908 spin_unlock_bh(&sk->sk_receive_queue.lock); 1909 out_put: 1910 sock_put(sk); 1911 out: 1912 #endif 1913 return alloc_skb(size, gfp_mask); 1914 } 1915 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1916 1917 int netlink_has_listeners(struct sock *sk, unsigned int group) 1918 { 1919 int res = 0; 1920 struct listeners *listeners; 1921 1922 BUG_ON(!netlink_is_kernel(sk)); 1923 1924 rcu_read_lock(); 1925 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1926 1927 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1928 res = test_bit(group - 1, listeners->masks); 1929 1930 rcu_read_unlock(); 1931 1932 return res; 1933 } 1934 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1935 1936 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1937 { 1938 struct netlink_sock *nlk = nlk_sk(sk); 1939 1940 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1941 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1942 netlink_skb_set_owner_r(skb, sk); 1943 __netlink_sendskb(sk, skb); 1944 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1945 } 1946 return -1; 1947 } 1948 1949 struct netlink_broadcast_data { 1950 struct sock *exclude_sk; 1951 struct net *net; 1952 u32 portid; 1953 u32 group; 1954 int failure; 1955 int delivery_failure; 1956 int congested; 1957 int delivered; 1958 gfp_t allocation; 1959 struct sk_buff *skb, *skb2; 1960 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1961 void *tx_data; 1962 }; 1963 1964 static int do_one_broadcast(struct sock *sk, 1965 struct netlink_broadcast_data *p) 1966 { 1967 struct netlink_sock *nlk = nlk_sk(sk); 1968 int val; 1969 1970 if (p->exclude_sk == sk) 1971 goto out; 1972 1973 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1974 !test_bit(p->group - 1, nlk->groups)) 1975 goto out; 1976 1977 if (!net_eq(sock_net(sk), p->net)) 1978 goto out; 1979 1980 if (p->failure) { 1981 netlink_overrun(sk); 1982 goto out; 1983 } 1984 1985 sock_hold(sk); 1986 if (p->skb2 == NULL) { 1987 if (skb_shared(p->skb)) { 1988 p->skb2 = skb_clone(p->skb, p->allocation); 1989 } else { 1990 p->skb2 = skb_get(p->skb); 1991 /* 1992 * skb ownership may have been set when 1993 * delivered to a previous socket. 1994 */ 1995 skb_orphan(p->skb2); 1996 } 1997 } 1998 if (p->skb2 == NULL) { 1999 netlink_overrun(sk); 2000 /* Clone failed. Notify ALL listeners. */ 2001 p->failure = 1; 2002 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 2003 p->delivery_failure = 1; 2004 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 2005 kfree_skb(p->skb2); 2006 p->skb2 = NULL; 2007 } else if (sk_filter(sk, p->skb2)) { 2008 kfree_skb(p->skb2); 2009 p->skb2 = NULL; 2010 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 2011 netlink_overrun(sk); 2012 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 2013 p->delivery_failure = 1; 2014 } else { 2015 p->congested |= val; 2016 p->delivered = 1; 2017 p->skb2 = NULL; 2018 } 2019 sock_put(sk); 2020 2021 out: 2022 return 0; 2023 } 2024 2025 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2026 u32 group, gfp_t allocation, 2027 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2028 void *filter_data) 2029 { 2030 struct net *net = sock_net(ssk); 2031 struct netlink_broadcast_data info; 2032 struct sock *sk; 2033 2034 skb = netlink_trim(skb, allocation); 2035 2036 info.exclude_sk = ssk; 2037 info.net = net; 2038 info.portid = portid; 2039 info.group = group; 2040 info.failure = 0; 2041 info.delivery_failure = 0; 2042 info.congested = 0; 2043 info.delivered = 0; 2044 info.allocation = allocation; 2045 info.skb = skb; 2046 info.skb2 = NULL; 2047 info.tx_filter = filter; 2048 info.tx_data = filter_data; 2049 2050 /* While we sleep in clone, do not allow to change socket list */ 2051 2052 netlink_lock_table(); 2053 2054 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2055 do_one_broadcast(sk, &info); 2056 2057 consume_skb(skb); 2058 2059 netlink_unlock_table(); 2060 2061 if (info.delivery_failure) { 2062 kfree_skb(info.skb2); 2063 return -ENOBUFS; 2064 } 2065 consume_skb(info.skb2); 2066 2067 if (info.delivered) { 2068 if (info.congested && (allocation & __GFP_WAIT)) 2069 yield(); 2070 return 0; 2071 } 2072 return -ESRCH; 2073 } 2074 EXPORT_SYMBOL(netlink_broadcast_filtered); 2075 2076 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2077 u32 group, gfp_t allocation) 2078 { 2079 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2080 NULL, NULL); 2081 } 2082 EXPORT_SYMBOL(netlink_broadcast); 2083 2084 struct netlink_set_err_data { 2085 struct sock *exclude_sk; 2086 u32 portid; 2087 u32 group; 2088 int code; 2089 }; 2090 2091 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2092 { 2093 struct netlink_sock *nlk = nlk_sk(sk); 2094 int ret = 0; 2095 2096 if (sk == p->exclude_sk) 2097 goto out; 2098 2099 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2100 goto out; 2101 2102 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2103 !test_bit(p->group - 1, nlk->groups)) 2104 goto out; 2105 2106 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2107 ret = 1; 2108 goto out; 2109 } 2110 2111 sk->sk_err = p->code; 2112 sk->sk_error_report(sk); 2113 out: 2114 return ret; 2115 } 2116 2117 /** 2118 * netlink_set_err - report error to broadcast listeners 2119 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2120 * @portid: the PORTID of a process that we want to skip (if any) 2121 * @group: the broadcast group that will notice the error 2122 * @code: error code, must be negative (as usual in kernelspace) 2123 * 2124 * This function returns the number of broadcast listeners that have set the 2125 * NETLINK_RECV_NO_ENOBUFS socket option. 2126 */ 2127 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2128 { 2129 struct netlink_set_err_data info; 2130 struct sock *sk; 2131 int ret = 0; 2132 2133 info.exclude_sk = ssk; 2134 info.portid = portid; 2135 info.group = group; 2136 /* sk->sk_err wants a positive error value */ 2137 info.code = -code; 2138 2139 read_lock(&nl_table_lock); 2140 2141 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2142 ret += do_one_set_err(sk, &info); 2143 2144 read_unlock(&nl_table_lock); 2145 return ret; 2146 } 2147 EXPORT_SYMBOL(netlink_set_err); 2148 2149 /* must be called with netlink table grabbed */ 2150 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2151 unsigned int group, 2152 int is_new) 2153 { 2154 int old, new = !!is_new, subscriptions; 2155 2156 old = test_bit(group - 1, nlk->groups); 2157 subscriptions = nlk->subscriptions - old + new; 2158 if (new) 2159 __set_bit(group - 1, nlk->groups); 2160 else 2161 __clear_bit(group - 1, nlk->groups); 2162 netlink_update_subscriptions(&nlk->sk, subscriptions); 2163 netlink_update_listeners(&nlk->sk); 2164 } 2165 2166 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2167 char __user *optval, unsigned int optlen) 2168 { 2169 struct sock *sk = sock->sk; 2170 struct netlink_sock *nlk = nlk_sk(sk); 2171 unsigned int val = 0; 2172 int err; 2173 2174 if (level != SOL_NETLINK) 2175 return -ENOPROTOOPT; 2176 2177 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2178 optlen >= sizeof(int) && 2179 get_user(val, (unsigned int __user *)optval)) 2180 return -EFAULT; 2181 2182 switch (optname) { 2183 case NETLINK_PKTINFO: 2184 if (val) 2185 nlk->flags |= NETLINK_RECV_PKTINFO; 2186 else 2187 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2188 err = 0; 2189 break; 2190 case NETLINK_ADD_MEMBERSHIP: 2191 case NETLINK_DROP_MEMBERSHIP: { 2192 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2193 return -EPERM; 2194 err = netlink_realloc_groups(sk); 2195 if (err) 2196 return err; 2197 if (!val || val - 1 >= nlk->ngroups) 2198 return -EINVAL; 2199 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2200 err = nlk->netlink_bind(val); 2201 if (err) 2202 return err; 2203 } 2204 netlink_table_grab(); 2205 netlink_update_socket_mc(nlk, val, 2206 optname == NETLINK_ADD_MEMBERSHIP); 2207 netlink_table_ungrab(); 2208 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2209 nlk->netlink_unbind(val); 2210 2211 err = 0; 2212 break; 2213 } 2214 case NETLINK_BROADCAST_ERROR: 2215 if (val) 2216 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2217 else 2218 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2219 err = 0; 2220 break; 2221 case NETLINK_NO_ENOBUFS: 2222 if (val) { 2223 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2224 clear_bit(NETLINK_CONGESTED, &nlk->state); 2225 wake_up_interruptible(&nlk->wait); 2226 } else { 2227 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2228 } 2229 err = 0; 2230 break; 2231 #ifdef CONFIG_NETLINK_MMAP 2232 case NETLINK_RX_RING: 2233 case NETLINK_TX_RING: { 2234 struct nl_mmap_req req; 2235 2236 /* Rings might consume more memory than queue limits, require 2237 * CAP_NET_ADMIN. 2238 */ 2239 if (!capable(CAP_NET_ADMIN)) 2240 return -EPERM; 2241 if (optlen < sizeof(req)) 2242 return -EINVAL; 2243 if (copy_from_user(&req, optval, sizeof(req))) 2244 return -EFAULT; 2245 err = netlink_set_ring(sk, &req, false, 2246 optname == NETLINK_TX_RING); 2247 break; 2248 } 2249 #endif /* CONFIG_NETLINK_MMAP */ 2250 default: 2251 err = -ENOPROTOOPT; 2252 } 2253 return err; 2254 } 2255 2256 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2257 char __user *optval, int __user *optlen) 2258 { 2259 struct sock *sk = sock->sk; 2260 struct netlink_sock *nlk = nlk_sk(sk); 2261 int len, val, err; 2262 2263 if (level != SOL_NETLINK) 2264 return -ENOPROTOOPT; 2265 2266 if (get_user(len, optlen)) 2267 return -EFAULT; 2268 if (len < 0) 2269 return -EINVAL; 2270 2271 switch (optname) { 2272 case NETLINK_PKTINFO: 2273 if (len < sizeof(int)) 2274 return -EINVAL; 2275 len = sizeof(int); 2276 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2277 if (put_user(len, optlen) || 2278 put_user(val, optval)) 2279 return -EFAULT; 2280 err = 0; 2281 break; 2282 case NETLINK_BROADCAST_ERROR: 2283 if (len < sizeof(int)) 2284 return -EINVAL; 2285 len = sizeof(int); 2286 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2287 if (put_user(len, optlen) || 2288 put_user(val, optval)) 2289 return -EFAULT; 2290 err = 0; 2291 break; 2292 case NETLINK_NO_ENOBUFS: 2293 if (len < sizeof(int)) 2294 return -EINVAL; 2295 len = sizeof(int); 2296 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2297 if (put_user(len, optlen) || 2298 put_user(val, optval)) 2299 return -EFAULT; 2300 err = 0; 2301 break; 2302 default: 2303 err = -ENOPROTOOPT; 2304 } 2305 return err; 2306 } 2307 2308 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2309 { 2310 struct nl_pktinfo info; 2311 2312 info.group = NETLINK_CB(skb).dst_group; 2313 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2314 } 2315 2316 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2317 struct msghdr *msg, size_t len) 2318 { 2319 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2320 struct sock *sk = sock->sk; 2321 struct netlink_sock *nlk = nlk_sk(sk); 2322 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2323 u32 dst_portid; 2324 u32 dst_group; 2325 struct sk_buff *skb; 2326 int err; 2327 struct scm_cookie scm; 2328 u32 netlink_skb_flags = 0; 2329 2330 if (msg->msg_flags&MSG_OOB) 2331 return -EOPNOTSUPP; 2332 2333 if (NULL == siocb->scm) 2334 siocb->scm = &scm; 2335 2336 err = scm_send(sock, msg, siocb->scm, true); 2337 if (err < 0) 2338 return err; 2339 2340 if (msg->msg_namelen) { 2341 err = -EINVAL; 2342 if (addr->nl_family != AF_NETLINK) 2343 goto out; 2344 dst_portid = addr->nl_pid; 2345 dst_group = ffs(addr->nl_groups); 2346 err = -EPERM; 2347 if ((dst_group || dst_portid) && 2348 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2349 goto out; 2350 netlink_skb_flags |= NETLINK_SKB_DST; 2351 } else { 2352 dst_portid = nlk->dst_portid; 2353 dst_group = nlk->dst_group; 2354 } 2355 2356 if (!nlk->portid) { 2357 err = netlink_autobind(sock); 2358 if (err) 2359 goto out; 2360 } 2361 2362 if (netlink_tx_is_mmaped(sk) && 2363 msg->msg_iov->iov_base == NULL) { 2364 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2365 siocb); 2366 goto out; 2367 } 2368 2369 err = -EMSGSIZE; 2370 if (len > sk->sk_sndbuf - 32) 2371 goto out; 2372 err = -ENOBUFS; 2373 skb = netlink_alloc_large_skb(len, dst_group); 2374 if (skb == NULL) 2375 goto out; 2376 2377 NETLINK_CB(skb).portid = nlk->portid; 2378 NETLINK_CB(skb).dst_group = dst_group; 2379 NETLINK_CB(skb).creds = siocb->scm->creds; 2380 NETLINK_CB(skb).flags = netlink_skb_flags; 2381 2382 err = -EFAULT; 2383 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) { 2384 kfree_skb(skb); 2385 goto out; 2386 } 2387 2388 err = security_netlink_send(sk, skb); 2389 if (err) { 2390 kfree_skb(skb); 2391 goto out; 2392 } 2393 2394 if (dst_group) { 2395 atomic_inc(&skb->users); 2396 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2397 } 2398 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2399 2400 out: 2401 scm_destroy(siocb->scm); 2402 return err; 2403 } 2404 2405 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2406 struct msghdr *msg, size_t len, 2407 int flags) 2408 { 2409 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2410 struct scm_cookie scm; 2411 struct sock *sk = sock->sk; 2412 struct netlink_sock *nlk = nlk_sk(sk); 2413 int noblock = flags&MSG_DONTWAIT; 2414 size_t copied; 2415 struct sk_buff *skb, *data_skb; 2416 int err, ret; 2417 2418 if (flags&MSG_OOB) 2419 return -EOPNOTSUPP; 2420 2421 copied = 0; 2422 2423 skb = skb_recv_datagram(sk, flags, noblock, &err); 2424 if (skb == NULL) 2425 goto out; 2426 2427 data_skb = skb; 2428 2429 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2430 if (unlikely(skb_shinfo(skb)->frag_list)) { 2431 /* 2432 * If this skb has a frag_list, then here that means that we 2433 * will have to use the frag_list skb's data for compat tasks 2434 * and the regular skb's data for normal (non-compat) tasks. 2435 * 2436 * If we need to send the compat skb, assign it to the 2437 * 'data_skb' variable so that it will be used below for data 2438 * copying. We keep 'skb' for everything else, including 2439 * freeing both later. 2440 */ 2441 if (flags & MSG_CMSG_COMPAT) 2442 data_skb = skb_shinfo(skb)->frag_list; 2443 } 2444 #endif 2445 2446 /* Record the max length of recvmsg() calls for future allocations */ 2447 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2448 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2449 16384); 2450 2451 copied = data_skb->len; 2452 if (len < copied) { 2453 msg->msg_flags |= MSG_TRUNC; 2454 copied = len; 2455 } 2456 2457 skb_reset_transport_header(data_skb); 2458 err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied); 2459 2460 if (msg->msg_name) { 2461 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2462 addr->nl_family = AF_NETLINK; 2463 addr->nl_pad = 0; 2464 addr->nl_pid = NETLINK_CB(skb).portid; 2465 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2466 msg->msg_namelen = sizeof(*addr); 2467 } 2468 2469 if (nlk->flags & NETLINK_RECV_PKTINFO) 2470 netlink_cmsg_recv_pktinfo(msg, skb); 2471 2472 if (NULL == siocb->scm) { 2473 memset(&scm, 0, sizeof(scm)); 2474 siocb->scm = &scm; 2475 } 2476 siocb->scm->creds = *NETLINK_CREDS(skb); 2477 if (flags & MSG_TRUNC) 2478 copied = data_skb->len; 2479 2480 skb_free_datagram(sk, skb); 2481 2482 if (nlk->cb_running && 2483 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2484 ret = netlink_dump(sk); 2485 if (ret) { 2486 sk->sk_err = ret; 2487 sk->sk_error_report(sk); 2488 } 2489 } 2490 2491 scm_recv(sock, msg, siocb->scm, flags); 2492 out: 2493 netlink_rcv_wake(sk); 2494 return err ? : copied; 2495 } 2496 2497 static void netlink_data_ready(struct sock *sk) 2498 { 2499 BUG(); 2500 } 2501 2502 /* 2503 * We export these functions to other modules. They provide a 2504 * complete set of kernel non-blocking support for message 2505 * queueing. 2506 */ 2507 2508 struct sock * 2509 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2510 struct netlink_kernel_cfg *cfg) 2511 { 2512 struct socket *sock; 2513 struct sock *sk; 2514 struct netlink_sock *nlk; 2515 struct listeners *listeners = NULL; 2516 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2517 unsigned int groups; 2518 2519 BUG_ON(!nl_table); 2520 2521 if (unit < 0 || unit >= MAX_LINKS) 2522 return NULL; 2523 2524 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2525 return NULL; 2526 2527 /* 2528 * We have to just have a reference on the net from sk, but don't 2529 * get_net it. Besides, we cannot get and then put the net here. 2530 * So we create one inside init_net and the move it to net. 2531 */ 2532 2533 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2534 goto out_sock_release_nosk; 2535 2536 sk = sock->sk; 2537 sk_change_net(sk, net); 2538 2539 if (!cfg || cfg->groups < 32) 2540 groups = 32; 2541 else 2542 groups = cfg->groups; 2543 2544 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2545 if (!listeners) 2546 goto out_sock_release; 2547 2548 sk->sk_data_ready = netlink_data_ready; 2549 if (cfg && cfg->input) 2550 nlk_sk(sk)->netlink_rcv = cfg->input; 2551 2552 if (netlink_insert(sk, net, 0)) 2553 goto out_sock_release; 2554 2555 nlk = nlk_sk(sk); 2556 nlk->flags |= NETLINK_KERNEL_SOCKET; 2557 2558 netlink_table_grab(); 2559 if (!nl_table[unit].registered) { 2560 nl_table[unit].groups = groups; 2561 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2562 nl_table[unit].cb_mutex = cb_mutex; 2563 nl_table[unit].module = module; 2564 if (cfg) { 2565 nl_table[unit].bind = cfg->bind; 2566 nl_table[unit].flags = cfg->flags; 2567 if (cfg->compare) 2568 nl_table[unit].compare = cfg->compare; 2569 } 2570 nl_table[unit].registered = 1; 2571 } else { 2572 kfree(listeners); 2573 nl_table[unit].registered++; 2574 } 2575 netlink_table_ungrab(); 2576 return sk; 2577 2578 out_sock_release: 2579 kfree(listeners); 2580 netlink_kernel_release(sk); 2581 return NULL; 2582 2583 out_sock_release_nosk: 2584 sock_release(sock); 2585 return NULL; 2586 } 2587 EXPORT_SYMBOL(__netlink_kernel_create); 2588 2589 void 2590 netlink_kernel_release(struct sock *sk) 2591 { 2592 sk_release_kernel(sk); 2593 } 2594 EXPORT_SYMBOL(netlink_kernel_release); 2595 2596 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2597 { 2598 struct listeners *new, *old; 2599 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2600 2601 if (groups < 32) 2602 groups = 32; 2603 2604 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2605 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2606 if (!new) 2607 return -ENOMEM; 2608 old = nl_deref_protected(tbl->listeners); 2609 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2610 rcu_assign_pointer(tbl->listeners, new); 2611 2612 kfree_rcu(old, rcu); 2613 } 2614 tbl->groups = groups; 2615 2616 return 0; 2617 } 2618 2619 /** 2620 * netlink_change_ngroups - change number of multicast groups 2621 * 2622 * This changes the number of multicast groups that are available 2623 * on a certain netlink family. Note that it is not possible to 2624 * change the number of groups to below 32. Also note that it does 2625 * not implicitly call netlink_clear_multicast_users() when the 2626 * number of groups is reduced. 2627 * 2628 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2629 * @groups: The new number of groups. 2630 */ 2631 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2632 { 2633 int err; 2634 2635 netlink_table_grab(); 2636 err = __netlink_change_ngroups(sk, groups); 2637 netlink_table_ungrab(); 2638 2639 return err; 2640 } 2641 2642 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2643 { 2644 struct sock *sk; 2645 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2646 2647 sk_for_each_bound(sk, &tbl->mc_list) 2648 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2649 } 2650 2651 struct nlmsghdr * 2652 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2653 { 2654 struct nlmsghdr *nlh; 2655 int size = nlmsg_msg_size(len); 2656 2657 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2658 nlh->nlmsg_type = type; 2659 nlh->nlmsg_len = size; 2660 nlh->nlmsg_flags = flags; 2661 nlh->nlmsg_pid = portid; 2662 nlh->nlmsg_seq = seq; 2663 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2664 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2665 return nlh; 2666 } 2667 EXPORT_SYMBOL(__nlmsg_put); 2668 2669 /* 2670 * It looks a bit ugly. 2671 * It would be better to create kernel thread. 2672 */ 2673 2674 static int netlink_dump(struct sock *sk) 2675 { 2676 struct netlink_sock *nlk = nlk_sk(sk); 2677 struct netlink_callback *cb; 2678 struct sk_buff *skb = NULL; 2679 struct nlmsghdr *nlh; 2680 int len, err = -ENOBUFS; 2681 int alloc_size; 2682 2683 mutex_lock(nlk->cb_mutex); 2684 if (!nlk->cb_running) { 2685 err = -EINVAL; 2686 goto errout_skb; 2687 } 2688 2689 cb = &nlk->cb; 2690 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2691 2692 if (!netlink_rx_is_mmaped(sk) && 2693 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2694 goto errout_skb; 2695 2696 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2697 * required, but it makes sense to _attempt_ a 16K bytes allocation 2698 * to reduce number of system calls on dump operations, if user 2699 * ever provided a big enough buffer. 2700 */ 2701 if (alloc_size < nlk->max_recvmsg_len) { 2702 skb = netlink_alloc_skb(sk, 2703 nlk->max_recvmsg_len, 2704 nlk->portid, 2705 GFP_KERNEL | 2706 __GFP_NOWARN | 2707 __GFP_NORETRY); 2708 /* available room should be exact amount to avoid MSG_TRUNC */ 2709 if (skb) 2710 skb_reserve(skb, skb_tailroom(skb) - 2711 nlk->max_recvmsg_len); 2712 } 2713 if (!skb) 2714 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2715 GFP_KERNEL); 2716 if (!skb) 2717 goto errout_skb; 2718 netlink_skb_set_owner_r(skb, sk); 2719 2720 len = cb->dump(skb, cb); 2721 2722 if (len > 0) { 2723 mutex_unlock(nlk->cb_mutex); 2724 2725 if (sk_filter(sk, skb)) 2726 kfree_skb(skb); 2727 else 2728 __netlink_sendskb(sk, skb); 2729 return 0; 2730 } 2731 2732 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2733 if (!nlh) 2734 goto errout_skb; 2735 2736 nl_dump_check_consistent(cb, nlh); 2737 2738 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2739 2740 if (sk_filter(sk, skb)) 2741 kfree_skb(skb); 2742 else 2743 __netlink_sendskb(sk, skb); 2744 2745 if (cb->done) 2746 cb->done(cb); 2747 2748 nlk->cb_running = false; 2749 mutex_unlock(nlk->cb_mutex); 2750 module_put(cb->module); 2751 consume_skb(cb->skb); 2752 return 0; 2753 2754 errout_skb: 2755 mutex_unlock(nlk->cb_mutex); 2756 kfree_skb(skb); 2757 return err; 2758 } 2759 2760 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2761 const struct nlmsghdr *nlh, 2762 struct netlink_dump_control *control) 2763 { 2764 struct netlink_callback *cb; 2765 struct sock *sk; 2766 struct netlink_sock *nlk; 2767 int ret; 2768 2769 /* Memory mapped dump requests need to be copied to avoid looping 2770 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2771 * a reference to the skb. 2772 */ 2773 if (netlink_skb_is_mmaped(skb)) { 2774 skb = skb_copy(skb, GFP_KERNEL); 2775 if (skb == NULL) 2776 return -ENOBUFS; 2777 } else 2778 atomic_inc(&skb->users); 2779 2780 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2781 if (sk == NULL) { 2782 ret = -ECONNREFUSED; 2783 goto error_free; 2784 } 2785 2786 nlk = nlk_sk(sk); 2787 mutex_lock(nlk->cb_mutex); 2788 /* A dump is in progress... */ 2789 if (nlk->cb_running) { 2790 ret = -EBUSY; 2791 goto error_unlock; 2792 } 2793 /* add reference of module which cb->dump belongs to */ 2794 if (!try_module_get(control->module)) { 2795 ret = -EPROTONOSUPPORT; 2796 goto error_unlock; 2797 } 2798 2799 cb = &nlk->cb; 2800 memset(cb, 0, sizeof(*cb)); 2801 cb->dump = control->dump; 2802 cb->done = control->done; 2803 cb->nlh = nlh; 2804 cb->data = control->data; 2805 cb->module = control->module; 2806 cb->min_dump_alloc = control->min_dump_alloc; 2807 cb->skb = skb; 2808 2809 nlk->cb_running = true; 2810 2811 mutex_unlock(nlk->cb_mutex); 2812 2813 ret = netlink_dump(sk); 2814 sock_put(sk); 2815 2816 if (ret) 2817 return ret; 2818 2819 /* We successfully started a dump, by returning -EINTR we 2820 * signal not to send ACK even if it was requested. 2821 */ 2822 return -EINTR; 2823 2824 error_unlock: 2825 sock_put(sk); 2826 mutex_unlock(nlk->cb_mutex); 2827 error_free: 2828 kfree_skb(skb); 2829 return ret; 2830 } 2831 EXPORT_SYMBOL(__netlink_dump_start); 2832 2833 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2834 { 2835 struct sk_buff *skb; 2836 struct nlmsghdr *rep; 2837 struct nlmsgerr *errmsg; 2838 size_t payload = sizeof(*errmsg); 2839 2840 /* error messages get the original request appened */ 2841 if (err) 2842 payload += nlmsg_len(nlh); 2843 2844 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2845 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2846 if (!skb) { 2847 struct sock *sk; 2848 2849 sk = netlink_lookup(sock_net(in_skb->sk), 2850 in_skb->sk->sk_protocol, 2851 NETLINK_CB(in_skb).portid); 2852 if (sk) { 2853 sk->sk_err = ENOBUFS; 2854 sk->sk_error_report(sk); 2855 sock_put(sk); 2856 } 2857 return; 2858 } 2859 2860 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2861 NLMSG_ERROR, payload, 0); 2862 errmsg = nlmsg_data(rep); 2863 errmsg->error = err; 2864 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2865 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2866 } 2867 EXPORT_SYMBOL(netlink_ack); 2868 2869 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2870 struct nlmsghdr *)) 2871 { 2872 struct nlmsghdr *nlh; 2873 int err; 2874 2875 while (skb->len >= nlmsg_total_size(0)) { 2876 int msglen; 2877 2878 nlh = nlmsg_hdr(skb); 2879 err = 0; 2880 2881 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2882 return 0; 2883 2884 /* Only requests are handled by the kernel */ 2885 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2886 goto ack; 2887 2888 /* Skip control messages */ 2889 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2890 goto ack; 2891 2892 err = cb(skb, nlh); 2893 if (err == -EINTR) 2894 goto skip; 2895 2896 ack: 2897 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2898 netlink_ack(skb, nlh, err); 2899 2900 skip: 2901 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2902 if (msglen > skb->len) 2903 msglen = skb->len; 2904 skb_pull(skb, msglen); 2905 } 2906 2907 return 0; 2908 } 2909 EXPORT_SYMBOL(netlink_rcv_skb); 2910 2911 /** 2912 * nlmsg_notify - send a notification netlink message 2913 * @sk: netlink socket to use 2914 * @skb: notification message 2915 * @portid: destination netlink portid for reports or 0 2916 * @group: destination multicast group or 0 2917 * @report: 1 to report back, 0 to disable 2918 * @flags: allocation flags 2919 */ 2920 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2921 unsigned int group, int report, gfp_t flags) 2922 { 2923 int err = 0; 2924 2925 if (group) { 2926 int exclude_portid = 0; 2927 2928 if (report) { 2929 atomic_inc(&skb->users); 2930 exclude_portid = portid; 2931 } 2932 2933 /* errors reported via destination sk->sk_err, but propagate 2934 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2935 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2936 } 2937 2938 if (report) { 2939 int err2; 2940 2941 err2 = nlmsg_unicast(sk, skb, portid); 2942 if (!err || err == -ESRCH) 2943 err = err2; 2944 } 2945 2946 return err; 2947 } 2948 EXPORT_SYMBOL(nlmsg_notify); 2949 2950 #ifdef CONFIG_PROC_FS 2951 struct nl_seq_iter { 2952 struct seq_net_private p; 2953 int link; 2954 int hash_idx; 2955 }; 2956 2957 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2958 { 2959 struct nl_seq_iter *iter = seq->private; 2960 int i, j; 2961 struct sock *s; 2962 loff_t off = 0; 2963 2964 for (i = 0; i < MAX_LINKS; i++) { 2965 struct nl_portid_hash *hash = &nl_table[i].hash; 2966 2967 for (j = 0; j <= hash->mask; j++) { 2968 sk_for_each(s, &hash->table[j]) { 2969 if (sock_net(s) != seq_file_net(seq)) 2970 continue; 2971 if (off == pos) { 2972 iter->link = i; 2973 iter->hash_idx = j; 2974 return s; 2975 } 2976 ++off; 2977 } 2978 } 2979 } 2980 return NULL; 2981 } 2982 2983 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2984 __acquires(nl_table_lock) 2985 { 2986 read_lock(&nl_table_lock); 2987 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2988 } 2989 2990 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2991 { 2992 struct sock *s; 2993 struct nl_seq_iter *iter; 2994 struct net *net; 2995 int i, j; 2996 2997 ++*pos; 2998 2999 if (v == SEQ_START_TOKEN) 3000 return netlink_seq_socket_idx(seq, 0); 3001 3002 net = seq_file_net(seq); 3003 iter = seq->private; 3004 s = v; 3005 do { 3006 s = sk_next(s); 3007 } while (s && !nl_table[s->sk_protocol].compare(net, s)); 3008 if (s) 3009 return s; 3010 3011 i = iter->link; 3012 j = iter->hash_idx + 1; 3013 3014 do { 3015 struct nl_portid_hash *hash = &nl_table[i].hash; 3016 3017 for (; j <= hash->mask; j++) { 3018 s = sk_head(&hash->table[j]); 3019 3020 while (s && !nl_table[s->sk_protocol].compare(net, s)) 3021 s = sk_next(s); 3022 if (s) { 3023 iter->link = i; 3024 iter->hash_idx = j; 3025 return s; 3026 } 3027 } 3028 3029 j = 0; 3030 } while (++i < MAX_LINKS); 3031 3032 return NULL; 3033 } 3034 3035 static void netlink_seq_stop(struct seq_file *seq, void *v) 3036 __releases(nl_table_lock) 3037 { 3038 read_unlock(&nl_table_lock); 3039 } 3040 3041 3042 static int netlink_seq_show(struct seq_file *seq, void *v) 3043 { 3044 if (v == SEQ_START_TOKEN) { 3045 seq_puts(seq, 3046 "sk Eth Pid Groups " 3047 "Rmem Wmem Dump Locks Drops Inode\n"); 3048 } else { 3049 struct sock *s = v; 3050 struct netlink_sock *nlk = nlk_sk(s); 3051 3052 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3053 s, 3054 s->sk_protocol, 3055 nlk->portid, 3056 nlk->groups ? (u32)nlk->groups[0] : 0, 3057 sk_rmem_alloc_get(s), 3058 sk_wmem_alloc_get(s), 3059 nlk->cb_running, 3060 atomic_read(&s->sk_refcnt), 3061 atomic_read(&s->sk_drops), 3062 sock_i_ino(s) 3063 ); 3064 3065 } 3066 return 0; 3067 } 3068 3069 static const struct seq_operations netlink_seq_ops = { 3070 .start = netlink_seq_start, 3071 .next = netlink_seq_next, 3072 .stop = netlink_seq_stop, 3073 .show = netlink_seq_show, 3074 }; 3075 3076 3077 static int netlink_seq_open(struct inode *inode, struct file *file) 3078 { 3079 return seq_open_net(inode, file, &netlink_seq_ops, 3080 sizeof(struct nl_seq_iter)); 3081 } 3082 3083 static const struct file_operations netlink_seq_fops = { 3084 .owner = THIS_MODULE, 3085 .open = netlink_seq_open, 3086 .read = seq_read, 3087 .llseek = seq_lseek, 3088 .release = seq_release_net, 3089 }; 3090 3091 #endif 3092 3093 int netlink_register_notifier(struct notifier_block *nb) 3094 { 3095 return atomic_notifier_chain_register(&netlink_chain, nb); 3096 } 3097 EXPORT_SYMBOL(netlink_register_notifier); 3098 3099 int netlink_unregister_notifier(struct notifier_block *nb) 3100 { 3101 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3102 } 3103 EXPORT_SYMBOL(netlink_unregister_notifier); 3104 3105 static const struct proto_ops netlink_ops = { 3106 .family = PF_NETLINK, 3107 .owner = THIS_MODULE, 3108 .release = netlink_release, 3109 .bind = netlink_bind, 3110 .connect = netlink_connect, 3111 .socketpair = sock_no_socketpair, 3112 .accept = sock_no_accept, 3113 .getname = netlink_getname, 3114 .poll = netlink_poll, 3115 .ioctl = sock_no_ioctl, 3116 .listen = sock_no_listen, 3117 .shutdown = sock_no_shutdown, 3118 .setsockopt = netlink_setsockopt, 3119 .getsockopt = netlink_getsockopt, 3120 .sendmsg = netlink_sendmsg, 3121 .recvmsg = netlink_recvmsg, 3122 .mmap = netlink_mmap, 3123 .sendpage = sock_no_sendpage, 3124 }; 3125 3126 static const struct net_proto_family netlink_family_ops = { 3127 .family = PF_NETLINK, 3128 .create = netlink_create, 3129 .owner = THIS_MODULE, /* for consistency 8) */ 3130 }; 3131 3132 static int __net_init netlink_net_init(struct net *net) 3133 { 3134 #ifdef CONFIG_PROC_FS 3135 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3136 return -ENOMEM; 3137 #endif 3138 return 0; 3139 } 3140 3141 static void __net_exit netlink_net_exit(struct net *net) 3142 { 3143 #ifdef CONFIG_PROC_FS 3144 remove_proc_entry("netlink", net->proc_net); 3145 #endif 3146 } 3147 3148 static void __init netlink_add_usersock_entry(void) 3149 { 3150 struct listeners *listeners; 3151 int groups = 32; 3152 3153 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3154 if (!listeners) 3155 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3156 3157 netlink_table_grab(); 3158 3159 nl_table[NETLINK_USERSOCK].groups = groups; 3160 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3161 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3162 nl_table[NETLINK_USERSOCK].registered = 1; 3163 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3164 3165 netlink_table_ungrab(); 3166 } 3167 3168 static struct pernet_operations __net_initdata netlink_net_ops = { 3169 .init = netlink_net_init, 3170 .exit = netlink_net_exit, 3171 }; 3172 3173 static int __init netlink_proto_init(void) 3174 { 3175 int i; 3176 unsigned long limit; 3177 unsigned int order; 3178 int err = proto_register(&netlink_proto, 0); 3179 3180 if (err != 0) 3181 goto out; 3182 3183 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3184 3185 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3186 if (!nl_table) 3187 goto panic; 3188 3189 if (totalram_pages >= (128 * 1024)) 3190 limit = totalram_pages >> (21 - PAGE_SHIFT); 3191 else 3192 limit = totalram_pages >> (23 - PAGE_SHIFT); 3193 3194 order = get_bitmask_order(limit) - 1 + PAGE_SHIFT; 3195 limit = (1UL << order) / sizeof(struct hlist_head); 3196 order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1; 3197 3198 for (i = 0; i < MAX_LINKS; i++) { 3199 struct nl_portid_hash *hash = &nl_table[i].hash; 3200 3201 hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table)); 3202 if (!hash->table) { 3203 while (i-- > 0) 3204 nl_portid_hash_free(nl_table[i].hash.table, 3205 1 * sizeof(*hash->table)); 3206 kfree(nl_table); 3207 goto panic; 3208 } 3209 hash->max_shift = order; 3210 hash->shift = 0; 3211 hash->mask = 0; 3212 hash->rehash_time = jiffies; 3213 3214 nl_table[i].compare = netlink_compare; 3215 } 3216 3217 INIT_LIST_HEAD(&netlink_tap_all); 3218 3219 netlink_add_usersock_entry(); 3220 3221 sock_register(&netlink_family_ops); 3222 register_pernet_subsys(&netlink_net_ops); 3223 /* The netlink device handler may be needed early. */ 3224 rtnetlink_init(); 3225 out: 3226 return err; 3227 panic: 3228 panic("netlink_init: Cannot allocate nl_table\n"); 3229 } 3230 3231 core_initcall(netlink_proto_init); 3232