xref: /openbmc/linux/net/netlink/af_netlink.c (revision a8a28aff)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <asm/cacheflush.h>
62 
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65 #include <net/scm.h>
66 #include <net/netlink.h>
67 
68 #include "af_netlink.h"
69 
70 struct listeners {
71 	struct rcu_head		rcu;
72 	unsigned long		masks[0];
73 };
74 
75 /* state bits */
76 #define NETLINK_CONGESTED	0x0
77 
78 /* flags */
79 #define NETLINK_KERNEL_SOCKET	0x1
80 #define NETLINK_RECV_PKTINFO	0x2
81 #define NETLINK_BROADCAST_SEND_ERROR	0x4
82 #define NETLINK_RECV_NO_ENOBUFS	0x8
83 
84 static inline int netlink_is_kernel(struct sock *sk)
85 {
86 	return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
87 }
88 
89 struct netlink_table *nl_table;
90 EXPORT_SYMBOL_GPL(nl_table);
91 
92 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
93 
94 static int netlink_dump(struct sock *sk);
95 static void netlink_skb_destructor(struct sk_buff *skb);
96 
97 DEFINE_RWLOCK(nl_table_lock);
98 EXPORT_SYMBOL_GPL(nl_table_lock);
99 static atomic_t nl_table_users = ATOMIC_INIT(0);
100 
101 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
102 
103 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
104 
105 static DEFINE_SPINLOCK(netlink_tap_lock);
106 static struct list_head netlink_tap_all __read_mostly;
107 
108 static inline u32 netlink_group_mask(u32 group)
109 {
110 	return group ? 1 << (group - 1) : 0;
111 }
112 
113 static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid)
114 {
115 	return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask];
116 }
117 
118 int netlink_add_tap(struct netlink_tap *nt)
119 {
120 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
121 		return -EINVAL;
122 
123 	spin_lock(&netlink_tap_lock);
124 	list_add_rcu(&nt->list, &netlink_tap_all);
125 	spin_unlock(&netlink_tap_lock);
126 
127 	if (nt->module)
128 		__module_get(nt->module);
129 
130 	return 0;
131 }
132 EXPORT_SYMBOL_GPL(netlink_add_tap);
133 
134 static int __netlink_remove_tap(struct netlink_tap *nt)
135 {
136 	bool found = false;
137 	struct netlink_tap *tmp;
138 
139 	spin_lock(&netlink_tap_lock);
140 
141 	list_for_each_entry(tmp, &netlink_tap_all, list) {
142 		if (nt == tmp) {
143 			list_del_rcu(&nt->list);
144 			found = true;
145 			goto out;
146 		}
147 	}
148 
149 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
150 out:
151 	spin_unlock(&netlink_tap_lock);
152 
153 	if (found && nt->module)
154 		module_put(nt->module);
155 
156 	return found ? 0 : -ENODEV;
157 }
158 
159 int netlink_remove_tap(struct netlink_tap *nt)
160 {
161 	int ret;
162 
163 	ret = __netlink_remove_tap(nt);
164 	synchronize_net();
165 
166 	return ret;
167 }
168 EXPORT_SYMBOL_GPL(netlink_remove_tap);
169 
170 static bool netlink_filter_tap(const struct sk_buff *skb)
171 {
172 	struct sock *sk = skb->sk;
173 	bool pass = false;
174 
175 	/* We take the more conservative approach and
176 	 * whitelist socket protocols that may pass.
177 	 */
178 	switch (sk->sk_protocol) {
179 	case NETLINK_ROUTE:
180 	case NETLINK_USERSOCK:
181 	case NETLINK_SOCK_DIAG:
182 	case NETLINK_NFLOG:
183 	case NETLINK_XFRM:
184 	case NETLINK_FIB_LOOKUP:
185 	case NETLINK_NETFILTER:
186 	case NETLINK_GENERIC:
187 		pass = true;
188 		break;
189 	}
190 
191 	return pass;
192 }
193 
194 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
195 				     struct net_device *dev)
196 {
197 	struct sk_buff *nskb;
198 	struct sock *sk = skb->sk;
199 	int ret = -ENOMEM;
200 
201 	dev_hold(dev);
202 	nskb = skb_clone(skb, GFP_ATOMIC);
203 	if (nskb) {
204 		nskb->dev = dev;
205 		nskb->protocol = htons((u16) sk->sk_protocol);
206 		nskb->pkt_type = netlink_is_kernel(sk) ?
207 				 PACKET_KERNEL : PACKET_USER;
208 
209 		ret = dev_queue_xmit(nskb);
210 		if (unlikely(ret > 0))
211 			ret = net_xmit_errno(ret);
212 	}
213 
214 	dev_put(dev);
215 	return ret;
216 }
217 
218 static void __netlink_deliver_tap(struct sk_buff *skb)
219 {
220 	int ret;
221 	struct netlink_tap *tmp;
222 
223 	if (!netlink_filter_tap(skb))
224 		return;
225 
226 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
227 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
228 		if (unlikely(ret))
229 			break;
230 	}
231 }
232 
233 static void netlink_deliver_tap(struct sk_buff *skb)
234 {
235 	rcu_read_lock();
236 
237 	if (unlikely(!list_empty(&netlink_tap_all)))
238 		__netlink_deliver_tap(skb);
239 
240 	rcu_read_unlock();
241 }
242 
243 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
244 				       struct sk_buff *skb)
245 {
246 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
247 		netlink_deliver_tap(skb);
248 }
249 
250 static void netlink_overrun(struct sock *sk)
251 {
252 	struct netlink_sock *nlk = nlk_sk(sk);
253 
254 	if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
255 		if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
256 			sk->sk_err = ENOBUFS;
257 			sk->sk_error_report(sk);
258 		}
259 	}
260 	atomic_inc(&sk->sk_drops);
261 }
262 
263 static void netlink_rcv_wake(struct sock *sk)
264 {
265 	struct netlink_sock *nlk = nlk_sk(sk);
266 
267 	if (skb_queue_empty(&sk->sk_receive_queue))
268 		clear_bit(NETLINK_CONGESTED, &nlk->state);
269 	if (!test_bit(NETLINK_CONGESTED, &nlk->state))
270 		wake_up_interruptible(&nlk->wait);
271 }
272 
273 #ifdef CONFIG_NETLINK_MMAP
274 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
275 {
276 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
277 }
278 
279 static bool netlink_rx_is_mmaped(struct sock *sk)
280 {
281 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
282 }
283 
284 static bool netlink_tx_is_mmaped(struct sock *sk)
285 {
286 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
287 }
288 
289 static __pure struct page *pgvec_to_page(const void *addr)
290 {
291 	if (is_vmalloc_addr(addr))
292 		return vmalloc_to_page(addr);
293 	else
294 		return virt_to_page(addr);
295 }
296 
297 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
298 {
299 	unsigned int i;
300 
301 	for (i = 0; i < len; i++) {
302 		if (pg_vec[i] != NULL) {
303 			if (is_vmalloc_addr(pg_vec[i]))
304 				vfree(pg_vec[i]);
305 			else
306 				free_pages((unsigned long)pg_vec[i], order);
307 		}
308 	}
309 	kfree(pg_vec);
310 }
311 
312 static void *alloc_one_pg_vec_page(unsigned long order)
313 {
314 	void *buffer;
315 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
316 			  __GFP_NOWARN | __GFP_NORETRY;
317 
318 	buffer = (void *)__get_free_pages(gfp_flags, order);
319 	if (buffer != NULL)
320 		return buffer;
321 
322 	buffer = vzalloc((1 << order) * PAGE_SIZE);
323 	if (buffer != NULL)
324 		return buffer;
325 
326 	gfp_flags &= ~__GFP_NORETRY;
327 	return (void *)__get_free_pages(gfp_flags, order);
328 }
329 
330 static void **alloc_pg_vec(struct netlink_sock *nlk,
331 			   struct nl_mmap_req *req, unsigned int order)
332 {
333 	unsigned int block_nr = req->nm_block_nr;
334 	unsigned int i;
335 	void **pg_vec;
336 
337 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
338 	if (pg_vec == NULL)
339 		return NULL;
340 
341 	for (i = 0; i < block_nr; i++) {
342 		pg_vec[i] = alloc_one_pg_vec_page(order);
343 		if (pg_vec[i] == NULL)
344 			goto err1;
345 	}
346 
347 	return pg_vec;
348 err1:
349 	free_pg_vec(pg_vec, order, block_nr);
350 	return NULL;
351 }
352 
353 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
354 			    bool closing, bool tx_ring)
355 {
356 	struct netlink_sock *nlk = nlk_sk(sk);
357 	struct netlink_ring *ring;
358 	struct sk_buff_head *queue;
359 	void **pg_vec = NULL;
360 	unsigned int order = 0;
361 	int err;
362 
363 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
364 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
365 
366 	if (!closing) {
367 		if (atomic_read(&nlk->mapped))
368 			return -EBUSY;
369 		if (atomic_read(&ring->pending))
370 			return -EBUSY;
371 	}
372 
373 	if (req->nm_block_nr) {
374 		if (ring->pg_vec != NULL)
375 			return -EBUSY;
376 
377 		if ((int)req->nm_block_size <= 0)
378 			return -EINVAL;
379 		if (!IS_ALIGNED(req->nm_block_size, PAGE_SIZE))
380 			return -EINVAL;
381 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
382 			return -EINVAL;
383 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
384 			return -EINVAL;
385 
386 		ring->frames_per_block = req->nm_block_size /
387 					 req->nm_frame_size;
388 		if (ring->frames_per_block == 0)
389 			return -EINVAL;
390 		if (ring->frames_per_block * req->nm_block_nr !=
391 		    req->nm_frame_nr)
392 			return -EINVAL;
393 
394 		order = get_order(req->nm_block_size);
395 		pg_vec = alloc_pg_vec(nlk, req, order);
396 		if (pg_vec == NULL)
397 			return -ENOMEM;
398 	} else {
399 		if (req->nm_frame_nr)
400 			return -EINVAL;
401 	}
402 
403 	err = -EBUSY;
404 	mutex_lock(&nlk->pg_vec_lock);
405 	if (closing || atomic_read(&nlk->mapped) == 0) {
406 		err = 0;
407 		spin_lock_bh(&queue->lock);
408 
409 		ring->frame_max		= req->nm_frame_nr - 1;
410 		ring->head		= 0;
411 		ring->frame_size	= req->nm_frame_size;
412 		ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
413 
414 		swap(ring->pg_vec_len, req->nm_block_nr);
415 		swap(ring->pg_vec_order, order);
416 		swap(ring->pg_vec, pg_vec);
417 
418 		__skb_queue_purge(queue);
419 		spin_unlock_bh(&queue->lock);
420 
421 		WARN_ON(atomic_read(&nlk->mapped));
422 	}
423 	mutex_unlock(&nlk->pg_vec_lock);
424 
425 	if (pg_vec)
426 		free_pg_vec(pg_vec, order, req->nm_block_nr);
427 	return err;
428 }
429 
430 static void netlink_mm_open(struct vm_area_struct *vma)
431 {
432 	struct file *file = vma->vm_file;
433 	struct socket *sock = file->private_data;
434 	struct sock *sk = sock->sk;
435 
436 	if (sk)
437 		atomic_inc(&nlk_sk(sk)->mapped);
438 }
439 
440 static void netlink_mm_close(struct vm_area_struct *vma)
441 {
442 	struct file *file = vma->vm_file;
443 	struct socket *sock = file->private_data;
444 	struct sock *sk = sock->sk;
445 
446 	if (sk)
447 		atomic_dec(&nlk_sk(sk)->mapped);
448 }
449 
450 static const struct vm_operations_struct netlink_mmap_ops = {
451 	.open	= netlink_mm_open,
452 	.close	= netlink_mm_close,
453 };
454 
455 static int netlink_mmap(struct file *file, struct socket *sock,
456 			struct vm_area_struct *vma)
457 {
458 	struct sock *sk = sock->sk;
459 	struct netlink_sock *nlk = nlk_sk(sk);
460 	struct netlink_ring *ring;
461 	unsigned long start, size, expected;
462 	unsigned int i;
463 	int err = -EINVAL;
464 
465 	if (vma->vm_pgoff)
466 		return -EINVAL;
467 
468 	mutex_lock(&nlk->pg_vec_lock);
469 
470 	expected = 0;
471 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
472 		if (ring->pg_vec == NULL)
473 			continue;
474 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
475 	}
476 
477 	if (expected == 0)
478 		goto out;
479 
480 	size = vma->vm_end - vma->vm_start;
481 	if (size != expected)
482 		goto out;
483 
484 	start = vma->vm_start;
485 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
486 		if (ring->pg_vec == NULL)
487 			continue;
488 
489 		for (i = 0; i < ring->pg_vec_len; i++) {
490 			struct page *page;
491 			void *kaddr = ring->pg_vec[i];
492 			unsigned int pg_num;
493 
494 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
495 				page = pgvec_to_page(kaddr);
496 				err = vm_insert_page(vma, start, page);
497 				if (err < 0)
498 					goto out;
499 				start += PAGE_SIZE;
500 				kaddr += PAGE_SIZE;
501 			}
502 		}
503 	}
504 
505 	atomic_inc(&nlk->mapped);
506 	vma->vm_ops = &netlink_mmap_ops;
507 	err = 0;
508 out:
509 	mutex_unlock(&nlk->pg_vec_lock);
510 	return err;
511 }
512 
513 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr)
514 {
515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
516 	struct page *p_start, *p_end;
517 
518 	/* First page is flushed through netlink_{get,set}_status */
519 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
520 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1);
521 	while (p_start <= p_end) {
522 		flush_dcache_page(p_start);
523 		p_start++;
524 	}
525 #endif
526 }
527 
528 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
529 {
530 	smp_rmb();
531 	flush_dcache_page(pgvec_to_page(hdr));
532 	return hdr->nm_status;
533 }
534 
535 static void netlink_set_status(struct nl_mmap_hdr *hdr,
536 			       enum nl_mmap_status status)
537 {
538 	hdr->nm_status = status;
539 	flush_dcache_page(pgvec_to_page(hdr));
540 	smp_wmb();
541 }
542 
543 static struct nl_mmap_hdr *
544 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
545 {
546 	unsigned int pg_vec_pos, frame_off;
547 
548 	pg_vec_pos = pos / ring->frames_per_block;
549 	frame_off  = pos % ring->frames_per_block;
550 
551 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
552 }
553 
554 static struct nl_mmap_hdr *
555 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
556 		     enum nl_mmap_status status)
557 {
558 	struct nl_mmap_hdr *hdr;
559 
560 	hdr = __netlink_lookup_frame(ring, pos);
561 	if (netlink_get_status(hdr) != status)
562 		return NULL;
563 
564 	return hdr;
565 }
566 
567 static struct nl_mmap_hdr *
568 netlink_current_frame(const struct netlink_ring *ring,
569 		      enum nl_mmap_status status)
570 {
571 	return netlink_lookup_frame(ring, ring->head, status);
572 }
573 
574 static struct nl_mmap_hdr *
575 netlink_previous_frame(const struct netlink_ring *ring,
576 		       enum nl_mmap_status status)
577 {
578 	unsigned int prev;
579 
580 	prev = ring->head ? ring->head - 1 : ring->frame_max;
581 	return netlink_lookup_frame(ring, prev, status);
582 }
583 
584 static void netlink_increment_head(struct netlink_ring *ring)
585 {
586 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
587 }
588 
589 static void netlink_forward_ring(struct netlink_ring *ring)
590 {
591 	unsigned int head = ring->head, pos = head;
592 	const struct nl_mmap_hdr *hdr;
593 
594 	do {
595 		hdr = __netlink_lookup_frame(ring, pos);
596 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
597 			break;
598 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
599 			break;
600 		netlink_increment_head(ring);
601 	} while (ring->head != head);
602 }
603 
604 static bool netlink_dump_space(struct netlink_sock *nlk)
605 {
606 	struct netlink_ring *ring = &nlk->rx_ring;
607 	struct nl_mmap_hdr *hdr;
608 	unsigned int n;
609 
610 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
611 	if (hdr == NULL)
612 		return false;
613 
614 	n = ring->head + ring->frame_max / 2;
615 	if (n > ring->frame_max)
616 		n -= ring->frame_max;
617 
618 	hdr = __netlink_lookup_frame(ring, n);
619 
620 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
621 }
622 
623 static unsigned int netlink_poll(struct file *file, struct socket *sock,
624 				 poll_table *wait)
625 {
626 	struct sock *sk = sock->sk;
627 	struct netlink_sock *nlk = nlk_sk(sk);
628 	unsigned int mask;
629 	int err;
630 
631 	if (nlk->rx_ring.pg_vec != NULL) {
632 		/* Memory mapped sockets don't call recvmsg(), so flow control
633 		 * for dumps is performed here. A dump is allowed to continue
634 		 * if at least half the ring is unused.
635 		 */
636 		while (nlk->cb_running && netlink_dump_space(nlk)) {
637 			err = netlink_dump(sk);
638 			if (err < 0) {
639 				sk->sk_err = err;
640 				sk->sk_error_report(sk);
641 				break;
642 			}
643 		}
644 		netlink_rcv_wake(sk);
645 	}
646 
647 	mask = datagram_poll(file, sock, wait);
648 
649 	spin_lock_bh(&sk->sk_receive_queue.lock);
650 	if (nlk->rx_ring.pg_vec) {
651 		netlink_forward_ring(&nlk->rx_ring);
652 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
653 			mask |= POLLIN | POLLRDNORM;
654 	}
655 	spin_unlock_bh(&sk->sk_receive_queue.lock);
656 
657 	spin_lock_bh(&sk->sk_write_queue.lock);
658 	if (nlk->tx_ring.pg_vec) {
659 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
660 			mask |= POLLOUT | POLLWRNORM;
661 	}
662 	spin_unlock_bh(&sk->sk_write_queue.lock);
663 
664 	return mask;
665 }
666 
667 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
668 {
669 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
670 }
671 
672 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
673 				   struct netlink_ring *ring,
674 				   struct nl_mmap_hdr *hdr)
675 {
676 	unsigned int size;
677 	void *data;
678 
679 	size = ring->frame_size - NL_MMAP_HDRLEN;
680 	data = (void *)hdr + NL_MMAP_HDRLEN;
681 
682 	skb->head	= data;
683 	skb->data	= data;
684 	skb_reset_tail_pointer(skb);
685 	skb->end	= skb->tail + size;
686 	skb->len	= 0;
687 
688 	skb->destructor	= netlink_skb_destructor;
689 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
690 	NETLINK_CB(skb).sk = sk;
691 }
692 
693 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
694 				u32 dst_portid, u32 dst_group,
695 				struct sock_iocb *siocb)
696 {
697 	struct netlink_sock *nlk = nlk_sk(sk);
698 	struct netlink_ring *ring;
699 	struct nl_mmap_hdr *hdr;
700 	struct sk_buff *skb;
701 	unsigned int maxlen;
702 	bool excl = true;
703 	int err = 0, len = 0;
704 
705 	/* Netlink messages are validated by the receiver before processing.
706 	 * In order to avoid userspace changing the contents of the message
707 	 * after validation, the socket and the ring may only be used by a
708 	 * single process, otherwise we fall back to copying.
709 	 */
710 	if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 ||
711 	    atomic_read(&nlk->mapped) > 1)
712 		excl = false;
713 
714 	mutex_lock(&nlk->pg_vec_lock);
715 
716 	ring   = &nlk->tx_ring;
717 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
718 
719 	do {
720 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
721 		if (hdr == NULL) {
722 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
723 			    atomic_read(&nlk->tx_ring.pending))
724 				schedule();
725 			continue;
726 		}
727 		if (hdr->nm_len > maxlen) {
728 			err = -EINVAL;
729 			goto out;
730 		}
731 
732 		netlink_frame_flush_dcache(hdr);
733 
734 		if (likely(dst_portid == 0 && dst_group == 0 && excl)) {
735 			skb = alloc_skb_head(GFP_KERNEL);
736 			if (skb == NULL) {
737 				err = -ENOBUFS;
738 				goto out;
739 			}
740 			sock_hold(sk);
741 			netlink_ring_setup_skb(skb, sk, ring, hdr);
742 			NETLINK_CB(skb).flags |= NETLINK_SKB_TX;
743 			__skb_put(skb, hdr->nm_len);
744 			netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
745 			atomic_inc(&ring->pending);
746 		} else {
747 			skb = alloc_skb(hdr->nm_len, GFP_KERNEL);
748 			if (skb == NULL) {
749 				err = -ENOBUFS;
750 				goto out;
751 			}
752 			__skb_put(skb, hdr->nm_len);
753 			memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len);
754 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
755 		}
756 
757 		netlink_increment_head(ring);
758 
759 		NETLINK_CB(skb).portid	  = nlk->portid;
760 		NETLINK_CB(skb).dst_group = dst_group;
761 		NETLINK_CB(skb).creds	  = siocb->scm->creds;
762 
763 		err = security_netlink_send(sk, skb);
764 		if (err) {
765 			kfree_skb(skb);
766 			goto out;
767 		}
768 
769 		if (unlikely(dst_group)) {
770 			atomic_inc(&skb->users);
771 			netlink_broadcast(sk, skb, dst_portid, dst_group,
772 					  GFP_KERNEL);
773 		}
774 		err = netlink_unicast(sk, skb, dst_portid,
775 				      msg->msg_flags & MSG_DONTWAIT);
776 		if (err < 0)
777 			goto out;
778 		len += err;
779 
780 	} while (hdr != NULL ||
781 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
782 		  atomic_read(&nlk->tx_ring.pending)));
783 
784 	if (len > 0)
785 		err = len;
786 out:
787 	mutex_unlock(&nlk->pg_vec_lock);
788 	return err;
789 }
790 
791 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
792 {
793 	struct nl_mmap_hdr *hdr;
794 
795 	hdr = netlink_mmap_hdr(skb);
796 	hdr->nm_len	= skb->len;
797 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
798 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
799 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
800 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
801 	netlink_frame_flush_dcache(hdr);
802 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
803 
804 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
805 	kfree_skb(skb);
806 }
807 
808 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
809 {
810 	struct netlink_sock *nlk = nlk_sk(sk);
811 	struct netlink_ring *ring = &nlk->rx_ring;
812 	struct nl_mmap_hdr *hdr;
813 
814 	spin_lock_bh(&sk->sk_receive_queue.lock);
815 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
816 	if (hdr == NULL) {
817 		spin_unlock_bh(&sk->sk_receive_queue.lock);
818 		kfree_skb(skb);
819 		netlink_overrun(sk);
820 		return;
821 	}
822 	netlink_increment_head(ring);
823 	__skb_queue_tail(&sk->sk_receive_queue, skb);
824 	spin_unlock_bh(&sk->sk_receive_queue.lock);
825 
826 	hdr->nm_len	= skb->len;
827 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
828 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
829 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
830 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
831 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
832 }
833 
834 #else /* CONFIG_NETLINK_MMAP */
835 #define netlink_skb_is_mmaped(skb)	false
836 #define netlink_rx_is_mmaped(sk)	false
837 #define netlink_tx_is_mmaped(sk)	false
838 #define netlink_mmap			sock_no_mmap
839 #define netlink_poll			datagram_poll
840 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb)	0
841 #endif /* CONFIG_NETLINK_MMAP */
842 
843 static void netlink_skb_destructor(struct sk_buff *skb)
844 {
845 #ifdef CONFIG_NETLINK_MMAP
846 	struct nl_mmap_hdr *hdr;
847 	struct netlink_ring *ring;
848 	struct sock *sk;
849 
850 	/* If a packet from the kernel to userspace was freed because of an
851 	 * error without being delivered to userspace, the kernel must reset
852 	 * the status. In the direction userspace to kernel, the status is
853 	 * always reset here after the packet was processed and freed.
854 	 */
855 	if (netlink_skb_is_mmaped(skb)) {
856 		hdr = netlink_mmap_hdr(skb);
857 		sk = NETLINK_CB(skb).sk;
858 
859 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
860 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
861 			ring = &nlk_sk(sk)->tx_ring;
862 		} else {
863 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
864 				hdr->nm_len = 0;
865 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
866 			}
867 			ring = &nlk_sk(sk)->rx_ring;
868 		}
869 
870 		WARN_ON(atomic_read(&ring->pending) == 0);
871 		atomic_dec(&ring->pending);
872 		sock_put(sk);
873 
874 		skb->head = NULL;
875 	}
876 #endif
877 	if (is_vmalloc_addr(skb->head)) {
878 		if (!skb->cloned ||
879 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
880 			vfree(skb->head);
881 
882 		skb->head = NULL;
883 	}
884 	if (skb->sk != NULL)
885 		sock_rfree(skb);
886 }
887 
888 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
889 {
890 	WARN_ON(skb->sk != NULL);
891 	skb->sk = sk;
892 	skb->destructor = netlink_skb_destructor;
893 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
894 	sk_mem_charge(sk, skb->truesize);
895 }
896 
897 static void netlink_sock_destruct(struct sock *sk)
898 {
899 	struct netlink_sock *nlk = nlk_sk(sk);
900 
901 	if (nlk->cb_running) {
902 		if (nlk->cb.done)
903 			nlk->cb.done(&nlk->cb);
904 
905 		module_put(nlk->cb.module);
906 		kfree_skb(nlk->cb.skb);
907 	}
908 
909 	skb_queue_purge(&sk->sk_receive_queue);
910 #ifdef CONFIG_NETLINK_MMAP
911 	if (1) {
912 		struct nl_mmap_req req;
913 
914 		memset(&req, 0, sizeof(req));
915 		if (nlk->rx_ring.pg_vec)
916 			netlink_set_ring(sk, &req, true, false);
917 		memset(&req, 0, sizeof(req));
918 		if (nlk->tx_ring.pg_vec)
919 			netlink_set_ring(sk, &req, true, true);
920 	}
921 #endif /* CONFIG_NETLINK_MMAP */
922 
923 	if (!sock_flag(sk, SOCK_DEAD)) {
924 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
925 		return;
926 	}
927 
928 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
929 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
930 	WARN_ON(nlk_sk(sk)->groups);
931 }
932 
933 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
934  * SMP. Look, when several writers sleep and reader wakes them up, all but one
935  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
936  * this, _but_ remember, it adds useless work on UP machines.
937  */
938 
939 void netlink_table_grab(void)
940 	__acquires(nl_table_lock)
941 {
942 	might_sleep();
943 
944 	write_lock_irq(&nl_table_lock);
945 
946 	if (atomic_read(&nl_table_users)) {
947 		DECLARE_WAITQUEUE(wait, current);
948 
949 		add_wait_queue_exclusive(&nl_table_wait, &wait);
950 		for (;;) {
951 			set_current_state(TASK_UNINTERRUPTIBLE);
952 			if (atomic_read(&nl_table_users) == 0)
953 				break;
954 			write_unlock_irq(&nl_table_lock);
955 			schedule();
956 			write_lock_irq(&nl_table_lock);
957 		}
958 
959 		__set_current_state(TASK_RUNNING);
960 		remove_wait_queue(&nl_table_wait, &wait);
961 	}
962 }
963 
964 void netlink_table_ungrab(void)
965 	__releases(nl_table_lock)
966 {
967 	write_unlock_irq(&nl_table_lock);
968 	wake_up(&nl_table_wait);
969 }
970 
971 static inline void
972 netlink_lock_table(void)
973 {
974 	/* read_lock() synchronizes us to netlink_table_grab */
975 
976 	read_lock(&nl_table_lock);
977 	atomic_inc(&nl_table_users);
978 	read_unlock(&nl_table_lock);
979 }
980 
981 static inline void
982 netlink_unlock_table(void)
983 {
984 	if (atomic_dec_and_test(&nl_table_users))
985 		wake_up(&nl_table_wait);
986 }
987 
988 static bool netlink_compare(struct net *net, struct sock *sk)
989 {
990 	return net_eq(sock_net(sk), net);
991 }
992 
993 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
994 {
995 	struct netlink_table *table = &nl_table[protocol];
996 	struct nl_portid_hash *hash = &table->hash;
997 	struct hlist_head *head;
998 	struct sock *sk;
999 
1000 	read_lock(&nl_table_lock);
1001 	head = nl_portid_hashfn(hash, portid);
1002 	sk_for_each(sk, head) {
1003 		if (table->compare(net, sk) &&
1004 		    (nlk_sk(sk)->portid == portid)) {
1005 			sock_hold(sk);
1006 			goto found;
1007 		}
1008 	}
1009 	sk = NULL;
1010 found:
1011 	read_unlock(&nl_table_lock);
1012 	return sk;
1013 }
1014 
1015 static struct hlist_head *nl_portid_hash_zalloc(size_t size)
1016 {
1017 	if (size <= PAGE_SIZE)
1018 		return kzalloc(size, GFP_ATOMIC);
1019 	else
1020 		return (struct hlist_head *)
1021 			__get_free_pages(GFP_ATOMIC | __GFP_ZERO,
1022 					 get_order(size));
1023 }
1024 
1025 static void nl_portid_hash_free(struct hlist_head *table, size_t size)
1026 {
1027 	if (size <= PAGE_SIZE)
1028 		kfree(table);
1029 	else
1030 		free_pages((unsigned long)table, get_order(size));
1031 }
1032 
1033 static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow)
1034 {
1035 	unsigned int omask, mask, shift;
1036 	size_t osize, size;
1037 	struct hlist_head *otable, *table;
1038 	int i;
1039 
1040 	omask = mask = hash->mask;
1041 	osize = size = (mask + 1) * sizeof(*table);
1042 	shift = hash->shift;
1043 
1044 	if (grow) {
1045 		if (++shift > hash->max_shift)
1046 			return 0;
1047 		mask = mask * 2 + 1;
1048 		size *= 2;
1049 	}
1050 
1051 	table = nl_portid_hash_zalloc(size);
1052 	if (!table)
1053 		return 0;
1054 
1055 	otable = hash->table;
1056 	hash->table = table;
1057 	hash->mask = mask;
1058 	hash->shift = shift;
1059 	get_random_bytes(&hash->rnd, sizeof(hash->rnd));
1060 
1061 	for (i = 0; i <= omask; i++) {
1062 		struct sock *sk;
1063 		struct hlist_node *tmp;
1064 
1065 		sk_for_each_safe(sk, tmp, &otable[i])
1066 			__sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid));
1067 	}
1068 
1069 	nl_portid_hash_free(otable, osize);
1070 	hash->rehash_time = jiffies + 10 * 60 * HZ;
1071 	return 1;
1072 }
1073 
1074 static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len)
1075 {
1076 	int avg = hash->entries >> hash->shift;
1077 
1078 	if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1))
1079 		return 1;
1080 
1081 	if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
1082 		nl_portid_hash_rehash(hash, 0);
1083 		return 1;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static const struct proto_ops netlink_ops;
1090 
1091 static void
1092 netlink_update_listeners(struct sock *sk)
1093 {
1094 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1095 	unsigned long mask;
1096 	unsigned int i;
1097 	struct listeners *listeners;
1098 
1099 	listeners = nl_deref_protected(tbl->listeners);
1100 	if (!listeners)
1101 		return;
1102 
1103 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1104 		mask = 0;
1105 		sk_for_each_bound(sk, &tbl->mc_list) {
1106 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1107 				mask |= nlk_sk(sk)->groups[i];
1108 		}
1109 		listeners->masks[i] = mask;
1110 	}
1111 	/* this function is only called with the netlink table "grabbed", which
1112 	 * makes sure updates are visible before bind or setsockopt return. */
1113 }
1114 
1115 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1116 {
1117 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1118 	struct nl_portid_hash *hash = &table->hash;
1119 	struct hlist_head *head;
1120 	int err = -EADDRINUSE;
1121 	struct sock *osk;
1122 	int len;
1123 
1124 	netlink_table_grab();
1125 	head = nl_portid_hashfn(hash, portid);
1126 	len = 0;
1127 	sk_for_each(osk, head) {
1128 		if (table->compare(net, osk) &&
1129 		    (nlk_sk(osk)->portid == portid))
1130 			break;
1131 		len++;
1132 	}
1133 	if (osk)
1134 		goto err;
1135 
1136 	err = -EBUSY;
1137 	if (nlk_sk(sk)->portid)
1138 		goto err;
1139 
1140 	err = -ENOMEM;
1141 	if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
1142 		goto err;
1143 
1144 	if (len && nl_portid_hash_dilute(hash, len))
1145 		head = nl_portid_hashfn(hash, portid);
1146 	hash->entries++;
1147 	nlk_sk(sk)->portid = portid;
1148 	sk_add_node(sk, head);
1149 	err = 0;
1150 
1151 err:
1152 	netlink_table_ungrab();
1153 	return err;
1154 }
1155 
1156 static void netlink_remove(struct sock *sk)
1157 {
1158 	netlink_table_grab();
1159 	if (sk_del_node_init(sk))
1160 		nl_table[sk->sk_protocol].hash.entries--;
1161 	if (nlk_sk(sk)->subscriptions)
1162 		__sk_del_bind_node(sk);
1163 	netlink_table_ungrab();
1164 }
1165 
1166 static struct proto netlink_proto = {
1167 	.name	  = "NETLINK",
1168 	.owner	  = THIS_MODULE,
1169 	.obj_size = sizeof(struct netlink_sock),
1170 };
1171 
1172 static int __netlink_create(struct net *net, struct socket *sock,
1173 			    struct mutex *cb_mutex, int protocol)
1174 {
1175 	struct sock *sk;
1176 	struct netlink_sock *nlk;
1177 
1178 	sock->ops = &netlink_ops;
1179 
1180 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1181 	if (!sk)
1182 		return -ENOMEM;
1183 
1184 	sock_init_data(sock, sk);
1185 
1186 	nlk = nlk_sk(sk);
1187 	if (cb_mutex) {
1188 		nlk->cb_mutex = cb_mutex;
1189 	} else {
1190 		nlk->cb_mutex = &nlk->cb_def_mutex;
1191 		mutex_init(nlk->cb_mutex);
1192 	}
1193 	init_waitqueue_head(&nlk->wait);
1194 #ifdef CONFIG_NETLINK_MMAP
1195 	mutex_init(&nlk->pg_vec_lock);
1196 #endif
1197 
1198 	sk->sk_destruct = netlink_sock_destruct;
1199 	sk->sk_protocol = protocol;
1200 	return 0;
1201 }
1202 
1203 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1204 			  int kern)
1205 {
1206 	struct module *module = NULL;
1207 	struct mutex *cb_mutex;
1208 	struct netlink_sock *nlk;
1209 	int (*bind)(int group);
1210 	void (*unbind)(int group);
1211 	int err = 0;
1212 
1213 	sock->state = SS_UNCONNECTED;
1214 
1215 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1216 		return -ESOCKTNOSUPPORT;
1217 
1218 	if (protocol < 0 || protocol >= MAX_LINKS)
1219 		return -EPROTONOSUPPORT;
1220 
1221 	netlink_lock_table();
1222 #ifdef CONFIG_MODULES
1223 	if (!nl_table[protocol].registered) {
1224 		netlink_unlock_table();
1225 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1226 		netlink_lock_table();
1227 	}
1228 #endif
1229 	if (nl_table[protocol].registered &&
1230 	    try_module_get(nl_table[protocol].module))
1231 		module = nl_table[protocol].module;
1232 	else
1233 		err = -EPROTONOSUPPORT;
1234 	cb_mutex = nl_table[protocol].cb_mutex;
1235 	bind = nl_table[protocol].bind;
1236 	unbind = nl_table[protocol].unbind;
1237 	netlink_unlock_table();
1238 
1239 	if (err < 0)
1240 		goto out;
1241 
1242 	err = __netlink_create(net, sock, cb_mutex, protocol);
1243 	if (err < 0)
1244 		goto out_module;
1245 
1246 	local_bh_disable();
1247 	sock_prot_inuse_add(net, &netlink_proto, 1);
1248 	local_bh_enable();
1249 
1250 	nlk = nlk_sk(sock->sk);
1251 	nlk->module = module;
1252 	nlk->netlink_bind = bind;
1253 	nlk->netlink_unbind = unbind;
1254 out:
1255 	return err;
1256 
1257 out_module:
1258 	module_put(module);
1259 	goto out;
1260 }
1261 
1262 static int netlink_release(struct socket *sock)
1263 {
1264 	struct sock *sk = sock->sk;
1265 	struct netlink_sock *nlk;
1266 
1267 	if (!sk)
1268 		return 0;
1269 
1270 	netlink_remove(sk);
1271 	sock_orphan(sk);
1272 	nlk = nlk_sk(sk);
1273 
1274 	/*
1275 	 * OK. Socket is unlinked, any packets that arrive now
1276 	 * will be purged.
1277 	 */
1278 
1279 	sock->sk = NULL;
1280 	wake_up_interruptible_all(&nlk->wait);
1281 
1282 	skb_queue_purge(&sk->sk_write_queue);
1283 
1284 	if (nlk->portid) {
1285 		struct netlink_notify n = {
1286 						.net = sock_net(sk),
1287 						.protocol = sk->sk_protocol,
1288 						.portid = nlk->portid,
1289 					  };
1290 		atomic_notifier_call_chain(&netlink_chain,
1291 				NETLINK_URELEASE, &n);
1292 	}
1293 
1294 	module_put(nlk->module);
1295 
1296 	netlink_table_grab();
1297 	if (netlink_is_kernel(sk)) {
1298 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1299 		if (--nl_table[sk->sk_protocol].registered == 0) {
1300 			struct listeners *old;
1301 
1302 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1303 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1304 			kfree_rcu(old, rcu);
1305 			nl_table[sk->sk_protocol].module = NULL;
1306 			nl_table[sk->sk_protocol].bind = NULL;
1307 			nl_table[sk->sk_protocol].unbind = NULL;
1308 			nl_table[sk->sk_protocol].flags = 0;
1309 			nl_table[sk->sk_protocol].registered = 0;
1310 		}
1311 	} else if (nlk->subscriptions) {
1312 		netlink_update_listeners(sk);
1313 	}
1314 	netlink_table_ungrab();
1315 
1316 	kfree(nlk->groups);
1317 	nlk->groups = NULL;
1318 
1319 	local_bh_disable();
1320 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1321 	local_bh_enable();
1322 	sock_put(sk);
1323 	return 0;
1324 }
1325 
1326 static int netlink_autobind(struct socket *sock)
1327 {
1328 	struct sock *sk = sock->sk;
1329 	struct net *net = sock_net(sk);
1330 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1331 	struct nl_portid_hash *hash = &table->hash;
1332 	struct hlist_head *head;
1333 	struct sock *osk;
1334 	s32 portid = task_tgid_vnr(current);
1335 	int err;
1336 	static s32 rover = -4097;
1337 
1338 retry:
1339 	cond_resched();
1340 	netlink_table_grab();
1341 	head = nl_portid_hashfn(hash, portid);
1342 	sk_for_each(osk, head) {
1343 		if (!table->compare(net, osk))
1344 			continue;
1345 		if (nlk_sk(osk)->portid == portid) {
1346 			/* Bind collision, search negative portid values. */
1347 			portid = rover--;
1348 			if (rover > -4097)
1349 				rover = -4097;
1350 			netlink_table_ungrab();
1351 			goto retry;
1352 		}
1353 	}
1354 	netlink_table_ungrab();
1355 
1356 	err = netlink_insert(sk, net, portid);
1357 	if (err == -EADDRINUSE)
1358 		goto retry;
1359 
1360 	/* If 2 threads race to autobind, that is fine.  */
1361 	if (err == -EBUSY)
1362 		err = 0;
1363 
1364 	return err;
1365 }
1366 
1367 /**
1368  * __netlink_ns_capable - General netlink message capability test
1369  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1370  * @user_ns: The user namespace of the capability to use
1371  * @cap: The capability to use
1372  *
1373  * Test to see if the opener of the socket we received the message
1374  * from had when the netlink socket was created and the sender of the
1375  * message has has the capability @cap in the user namespace @user_ns.
1376  */
1377 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1378 			struct user_namespace *user_ns, int cap)
1379 {
1380 	return ((nsp->flags & NETLINK_SKB_DST) ||
1381 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1382 		ns_capable(user_ns, cap);
1383 }
1384 EXPORT_SYMBOL(__netlink_ns_capable);
1385 
1386 /**
1387  * netlink_ns_capable - General netlink message capability test
1388  * @skb: socket buffer holding a netlink command from userspace
1389  * @user_ns: The user namespace of the capability to use
1390  * @cap: The capability to use
1391  *
1392  * Test to see if the opener of the socket we received the message
1393  * from had when the netlink socket was created and the sender of the
1394  * message has has the capability @cap in the user namespace @user_ns.
1395  */
1396 bool netlink_ns_capable(const struct sk_buff *skb,
1397 			struct user_namespace *user_ns, int cap)
1398 {
1399 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1400 }
1401 EXPORT_SYMBOL(netlink_ns_capable);
1402 
1403 /**
1404  * netlink_capable - Netlink global message capability test
1405  * @skb: socket buffer holding a netlink command from userspace
1406  * @cap: The capability to use
1407  *
1408  * Test to see if the opener of the socket we received the message
1409  * from had when the netlink socket was created and the sender of the
1410  * message has has the capability @cap in all user namespaces.
1411  */
1412 bool netlink_capable(const struct sk_buff *skb, int cap)
1413 {
1414 	return netlink_ns_capable(skb, &init_user_ns, cap);
1415 }
1416 EXPORT_SYMBOL(netlink_capable);
1417 
1418 /**
1419  * netlink_net_capable - Netlink network namespace message capability test
1420  * @skb: socket buffer holding a netlink command from userspace
1421  * @cap: The capability to use
1422  *
1423  * Test to see if the opener of the socket we received the message
1424  * from had when the netlink socket was created and the sender of the
1425  * message has has the capability @cap over the network namespace of
1426  * the socket we received the message from.
1427  */
1428 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1429 {
1430 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1431 }
1432 EXPORT_SYMBOL(netlink_net_capable);
1433 
1434 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1435 {
1436 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1437 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1438 }
1439 
1440 static void
1441 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1442 {
1443 	struct netlink_sock *nlk = nlk_sk(sk);
1444 
1445 	if (nlk->subscriptions && !subscriptions)
1446 		__sk_del_bind_node(sk);
1447 	else if (!nlk->subscriptions && subscriptions)
1448 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1449 	nlk->subscriptions = subscriptions;
1450 }
1451 
1452 static int netlink_realloc_groups(struct sock *sk)
1453 {
1454 	struct netlink_sock *nlk = nlk_sk(sk);
1455 	unsigned int groups;
1456 	unsigned long *new_groups;
1457 	int err = 0;
1458 
1459 	netlink_table_grab();
1460 
1461 	groups = nl_table[sk->sk_protocol].groups;
1462 	if (!nl_table[sk->sk_protocol].registered) {
1463 		err = -ENOENT;
1464 		goto out_unlock;
1465 	}
1466 
1467 	if (nlk->ngroups >= groups)
1468 		goto out_unlock;
1469 
1470 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1471 	if (new_groups == NULL) {
1472 		err = -ENOMEM;
1473 		goto out_unlock;
1474 	}
1475 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1476 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1477 
1478 	nlk->groups = new_groups;
1479 	nlk->ngroups = groups;
1480  out_unlock:
1481 	netlink_table_ungrab();
1482 	return err;
1483 }
1484 
1485 static void netlink_unbind(int group, long unsigned int groups,
1486 			   struct netlink_sock *nlk)
1487 {
1488 	int undo;
1489 
1490 	if (!nlk->netlink_unbind)
1491 		return;
1492 
1493 	for (undo = 0; undo < group; undo++)
1494 		if (test_bit(group, &groups))
1495 			nlk->netlink_unbind(undo);
1496 }
1497 
1498 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1499 			int addr_len)
1500 {
1501 	struct sock *sk = sock->sk;
1502 	struct net *net = sock_net(sk);
1503 	struct netlink_sock *nlk = nlk_sk(sk);
1504 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1505 	int err;
1506 	long unsigned int groups = nladdr->nl_groups;
1507 
1508 	if (addr_len < sizeof(struct sockaddr_nl))
1509 		return -EINVAL;
1510 
1511 	if (nladdr->nl_family != AF_NETLINK)
1512 		return -EINVAL;
1513 
1514 	/* Only superuser is allowed to listen multicasts */
1515 	if (groups) {
1516 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1517 			return -EPERM;
1518 		err = netlink_realloc_groups(sk);
1519 		if (err)
1520 			return err;
1521 	}
1522 
1523 	if (nlk->portid)
1524 		if (nladdr->nl_pid != nlk->portid)
1525 			return -EINVAL;
1526 
1527 	if (nlk->netlink_bind && groups) {
1528 		int group;
1529 
1530 		for (group = 0; group < nlk->ngroups; group++) {
1531 			if (!test_bit(group, &groups))
1532 				continue;
1533 			err = nlk->netlink_bind(group);
1534 			if (!err)
1535 				continue;
1536 			netlink_unbind(group, groups, nlk);
1537 			return err;
1538 		}
1539 	}
1540 
1541 	if (!nlk->portid) {
1542 		err = nladdr->nl_pid ?
1543 			netlink_insert(sk, net, nladdr->nl_pid) :
1544 			netlink_autobind(sock);
1545 		if (err) {
1546 			netlink_unbind(nlk->ngroups - 1, groups, nlk);
1547 			return err;
1548 		}
1549 	}
1550 
1551 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1552 		return 0;
1553 
1554 	netlink_table_grab();
1555 	netlink_update_subscriptions(sk, nlk->subscriptions +
1556 					 hweight32(groups) -
1557 					 hweight32(nlk->groups[0]));
1558 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1559 	netlink_update_listeners(sk);
1560 	netlink_table_ungrab();
1561 
1562 	return 0;
1563 }
1564 
1565 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1566 			   int alen, int flags)
1567 {
1568 	int err = 0;
1569 	struct sock *sk = sock->sk;
1570 	struct netlink_sock *nlk = nlk_sk(sk);
1571 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1572 
1573 	if (alen < sizeof(addr->sa_family))
1574 		return -EINVAL;
1575 
1576 	if (addr->sa_family == AF_UNSPEC) {
1577 		sk->sk_state	= NETLINK_UNCONNECTED;
1578 		nlk->dst_portid	= 0;
1579 		nlk->dst_group  = 0;
1580 		return 0;
1581 	}
1582 	if (addr->sa_family != AF_NETLINK)
1583 		return -EINVAL;
1584 
1585 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1586 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1587 		return -EPERM;
1588 
1589 	if (!nlk->portid)
1590 		err = netlink_autobind(sock);
1591 
1592 	if (err == 0) {
1593 		sk->sk_state	= NETLINK_CONNECTED;
1594 		nlk->dst_portid = nladdr->nl_pid;
1595 		nlk->dst_group  = ffs(nladdr->nl_groups);
1596 	}
1597 
1598 	return err;
1599 }
1600 
1601 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1602 			   int *addr_len, int peer)
1603 {
1604 	struct sock *sk = sock->sk;
1605 	struct netlink_sock *nlk = nlk_sk(sk);
1606 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1607 
1608 	nladdr->nl_family = AF_NETLINK;
1609 	nladdr->nl_pad = 0;
1610 	*addr_len = sizeof(*nladdr);
1611 
1612 	if (peer) {
1613 		nladdr->nl_pid = nlk->dst_portid;
1614 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1615 	} else {
1616 		nladdr->nl_pid = nlk->portid;
1617 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1618 	}
1619 	return 0;
1620 }
1621 
1622 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1623 {
1624 	struct sock *sock;
1625 	struct netlink_sock *nlk;
1626 
1627 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1628 	if (!sock)
1629 		return ERR_PTR(-ECONNREFUSED);
1630 
1631 	/* Don't bother queuing skb if kernel socket has no input function */
1632 	nlk = nlk_sk(sock);
1633 	if (sock->sk_state == NETLINK_CONNECTED &&
1634 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1635 		sock_put(sock);
1636 		return ERR_PTR(-ECONNREFUSED);
1637 	}
1638 	return sock;
1639 }
1640 
1641 struct sock *netlink_getsockbyfilp(struct file *filp)
1642 {
1643 	struct inode *inode = file_inode(filp);
1644 	struct sock *sock;
1645 
1646 	if (!S_ISSOCK(inode->i_mode))
1647 		return ERR_PTR(-ENOTSOCK);
1648 
1649 	sock = SOCKET_I(inode)->sk;
1650 	if (sock->sk_family != AF_NETLINK)
1651 		return ERR_PTR(-EINVAL);
1652 
1653 	sock_hold(sock);
1654 	return sock;
1655 }
1656 
1657 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1658 					       int broadcast)
1659 {
1660 	struct sk_buff *skb;
1661 	void *data;
1662 
1663 	if (size <= NLMSG_GOODSIZE || broadcast)
1664 		return alloc_skb(size, GFP_KERNEL);
1665 
1666 	size = SKB_DATA_ALIGN(size) +
1667 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1668 
1669 	data = vmalloc(size);
1670 	if (data == NULL)
1671 		return NULL;
1672 
1673 	skb = build_skb(data, size);
1674 	if (skb == NULL)
1675 		vfree(data);
1676 	else {
1677 		skb->head_frag = 0;
1678 		skb->destructor = netlink_skb_destructor;
1679 	}
1680 
1681 	return skb;
1682 }
1683 
1684 /*
1685  * Attach a skb to a netlink socket.
1686  * The caller must hold a reference to the destination socket. On error, the
1687  * reference is dropped. The skb is not send to the destination, just all
1688  * all error checks are performed and memory in the queue is reserved.
1689  * Return values:
1690  * < 0: error. skb freed, reference to sock dropped.
1691  * 0: continue
1692  * 1: repeat lookup - reference dropped while waiting for socket memory.
1693  */
1694 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1695 		      long *timeo, struct sock *ssk)
1696 {
1697 	struct netlink_sock *nlk;
1698 
1699 	nlk = nlk_sk(sk);
1700 
1701 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1702 	     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1703 	    !netlink_skb_is_mmaped(skb)) {
1704 		DECLARE_WAITQUEUE(wait, current);
1705 		if (!*timeo) {
1706 			if (!ssk || netlink_is_kernel(ssk))
1707 				netlink_overrun(sk);
1708 			sock_put(sk);
1709 			kfree_skb(skb);
1710 			return -EAGAIN;
1711 		}
1712 
1713 		__set_current_state(TASK_INTERRUPTIBLE);
1714 		add_wait_queue(&nlk->wait, &wait);
1715 
1716 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1717 		     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1718 		    !sock_flag(sk, SOCK_DEAD))
1719 			*timeo = schedule_timeout(*timeo);
1720 
1721 		__set_current_state(TASK_RUNNING);
1722 		remove_wait_queue(&nlk->wait, &wait);
1723 		sock_put(sk);
1724 
1725 		if (signal_pending(current)) {
1726 			kfree_skb(skb);
1727 			return sock_intr_errno(*timeo);
1728 		}
1729 		return 1;
1730 	}
1731 	netlink_skb_set_owner_r(skb, sk);
1732 	return 0;
1733 }
1734 
1735 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1736 {
1737 	int len = skb->len;
1738 
1739 	netlink_deliver_tap(skb);
1740 
1741 #ifdef CONFIG_NETLINK_MMAP
1742 	if (netlink_skb_is_mmaped(skb))
1743 		netlink_queue_mmaped_skb(sk, skb);
1744 	else if (netlink_rx_is_mmaped(sk))
1745 		netlink_ring_set_copied(sk, skb);
1746 	else
1747 #endif /* CONFIG_NETLINK_MMAP */
1748 		skb_queue_tail(&sk->sk_receive_queue, skb);
1749 	sk->sk_data_ready(sk);
1750 	return len;
1751 }
1752 
1753 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1754 {
1755 	int len = __netlink_sendskb(sk, skb);
1756 
1757 	sock_put(sk);
1758 	return len;
1759 }
1760 
1761 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1762 {
1763 	kfree_skb(skb);
1764 	sock_put(sk);
1765 }
1766 
1767 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1768 {
1769 	int delta;
1770 
1771 	WARN_ON(skb->sk != NULL);
1772 	if (netlink_skb_is_mmaped(skb))
1773 		return skb;
1774 
1775 	delta = skb->end - skb->tail;
1776 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1777 		return skb;
1778 
1779 	if (skb_shared(skb)) {
1780 		struct sk_buff *nskb = skb_clone(skb, allocation);
1781 		if (!nskb)
1782 			return skb;
1783 		consume_skb(skb);
1784 		skb = nskb;
1785 	}
1786 
1787 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1788 		skb->truesize -= delta;
1789 
1790 	return skb;
1791 }
1792 
1793 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1794 				  struct sock *ssk)
1795 {
1796 	int ret;
1797 	struct netlink_sock *nlk = nlk_sk(sk);
1798 
1799 	ret = -ECONNREFUSED;
1800 	if (nlk->netlink_rcv != NULL) {
1801 		ret = skb->len;
1802 		netlink_skb_set_owner_r(skb, sk);
1803 		NETLINK_CB(skb).sk = ssk;
1804 		netlink_deliver_tap_kernel(sk, ssk, skb);
1805 		nlk->netlink_rcv(skb);
1806 		consume_skb(skb);
1807 	} else {
1808 		kfree_skb(skb);
1809 	}
1810 	sock_put(sk);
1811 	return ret;
1812 }
1813 
1814 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1815 		    u32 portid, int nonblock)
1816 {
1817 	struct sock *sk;
1818 	int err;
1819 	long timeo;
1820 
1821 	skb = netlink_trim(skb, gfp_any());
1822 
1823 	timeo = sock_sndtimeo(ssk, nonblock);
1824 retry:
1825 	sk = netlink_getsockbyportid(ssk, portid);
1826 	if (IS_ERR(sk)) {
1827 		kfree_skb(skb);
1828 		return PTR_ERR(sk);
1829 	}
1830 	if (netlink_is_kernel(sk))
1831 		return netlink_unicast_kernel(sk, skb, ssk);
1832 
1833 	if (sk_filter(sk, skb)) {
1834 		err = skb->len;
1835 		kfree_skb(skb);
1836 		sock_put(sk);
1837 		return err;
1838 	}
1839 
1840 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1841 	if (err == 1)
1842 		goto retry;
1843 	if (err)
1844 		return err;
1845 
1846 	return netlink_sendskb(sk, skb);
1847 }
1848 EXPORT_SYMBOL(netlink_unicast);
1849 
1850 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1851 				  u32 dst_portid, gfp_t gfp_mask)
1852 {
1853 #ifdef CONFIG_NETLINK_MMAP
1854 	struct sock *sk = NULL;
1855 	struct sk_buff *skb;
1856 	struct netlink_ring *ring;
1857 	struct nl_mmap_hdr *hdr;
1858 	unsigned int maxlen;
1859 
1860 	sk = netlink_getsockbyportid(ssk, dst_portid);
1861 	if (IS_ERR(sk))
1862 		goto out;
1863 
1864 	ring = &nlk_sk(sk)->rx_ring;
1865 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1866 	if (ring->pg_vec == NULL)
1867 		goto out_put;
1868 
1869 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1870 		goto out_put;
1871 
1872 	skb = alloc_skb_head(gfp_mask);
1873 	if (skb == NULL)
1874 		goto err1;
1875 
1876 	spin_lock_bh(&sk->sk_receive_queue.lock);
1877 	/* check again under lock */
1878 	if (ring->pg_vec == NULL)
1879 		goto out_free;
1880 
1881 	/* check again under lock */
1882 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1883 	if (maxlen < size)
1884 		goto out_free;
1885 
1886 	netlink_forward_ring(ring);
1887 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1888 	if (hdr == NULL)
1889 		goto err2;
1890 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1891 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1892 	atomic_inc(&ring->pending);
1893 	netlink_increment_head(ring);
1894 
1895 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1896 	return skb;
1897 
1898 err2:
1899 	kfree_skb(skb);
1900 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1901 	netlink_overrun(sk);
1902 err1:
1903 	sock_put(sk);
1904 	return NULL;
1905 
1906 out_free:
1907 	kfree_skb(skb);
1908 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1909 out_put:
1910 	sock_put(sk);
1911 out:
1912 #endif
1913 	return alloc_skb(size, gfp_mask);
1914 }
1915 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1916 
1917 int netlink_has_listeners(struct sock *sk, unsigned int group)
1918 {
1919 	int res = 0;
1920 	struct listeners *listeners;
1921 
1922 	BUG_ON(!netlink_is_kernel(sk));
1923 
1924 	rcu_read_lock();
1925 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1926 
1927 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1928 		res = test_bit(group - 1, listeners->masks);
1929 
1930 	rcu_read_unlock();
1931 
1932 	return res;
1933 }
1934 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1935 
1936 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1937 {
1938 	struct netlink_sock *nlk = nlk_sk(sk);
1939 
1940 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1941 	    !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1942 		netlink_skb_set_owner_r(skb, sk);
1943 		__netlink_sendskb(sk, skb);
1944 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1945 	}
1946 	return -1;
1947 }
1948 
1949 struct netlink_broadcast_data {
1950 	struct sock *exclude_sk;
1951 	struct net *net;
1952 	u32 portid;
1953 	u32 group;
1954 	int failure;
1955 	int delivery_failure;
1956 	int congested;
1957 	int delivered;
1958 	gfp_t allocation;
1959 	struct sk_buff *skb, *skb2;
1960 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1961 	void *tx_data;
1962 };
1963 
1964 static int do_one_broadcast(struct sock *sk,
1965 				   struct netlink_broadcast_data *p)
1966 {
1967 	struct netlink_sock *nlk = nlk_sk(sk);
1968 	int val;
1969 
1970 	if (p->exclude_sk == sk)
1971 		goto out;
1972 
1973 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1974 	    !test_bit(p->group - 1, nlk->groups))
1975 		goto out;
1976 
1977 	if (!net_eq(sock_net(sk), p->net))
1978 		goto out;
1979 
1980 	if (p->failure) {
1981 		netlink_overrun(sk);
1982 		goto out;
1983 	}
1984 
1985 	sock_hold(sk);
1986 	if (p->skb2 == NULL) {
1987 		if (skb_shared(p->skb)) {
1988 			p->skb2 = skb_clone(p->skb, p->allocation);
1989 		} else {
1990 			p->skb2 = skb_get(p->skb);
1991 			/*
1992 			 * skb ownership may have been set when
1993 			 * delivered to a previous socket.
1994 			 */
1995 			skb_orphan(p->skb2);
1996 		}
1997 	}
1998 	if (p->skb2 == NULL) {
1999 		netlink_overrun(sk);
2000 		/* Clone failed. Notify ALL listeners. */
2001 		p->failure = 1;
2002 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
2003 			p->delivery_failure = 1;
2004 	} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2005 		kfree_skb(p->skb2);
2006 		p->skb2 = NULL;
2007 	} else if (sk_filter(sk, p->skb2)) {
2008 		kfree_skb(p->skb2);
2009 		p->skb2 = NULL;
2010 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
2011 		netlink_overrun(sk);
2012 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
2013 			p->delivery_failure = 1;
2014 	} else {
2015 		p->congested |= val;
2016 		p->delivered = 1;
2017 		p->skb2 = NULL;
2018 	}
2019 	sock_put(sk);
2020 
2021 out:
2022 	return 0;
2023 }
2024 
2025 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2026 	u32 group, gfp_t allocation,
2027 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2028 	void *filter_data)
2029 {
2030 	struct net *net = sock_net(ssk);
2031 	struct netlink_broadcast_data info;
2032 	struct sock *sk;
2033 
2034 	skb = netlink_trim(skb, allocation);
2035 
2036 	info.exclude_sk = ssk;
2037 	info.net = net;
2038 	info.portid = portid;
2039 	info.group = group;
2040 	info.failure = 0;
2041 	info.delivery_failure = 0;
2042 	info.congested = 0;
2043 	info.delivered = 0;
2044 	info.allocation = allocation;
2045 	info.skb = skb;
2046 	info.skb2 = NULL;
2047 	info.tx_filter = filter;
2048 	info.tx_data = filter_data;
2049 
2050 	/* While we sleep in clone, do not allow to change socket list */
2051 
2052 	netlink_lock_table();
2053 
2054 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2055 		do_one_broadcast(sk, &info);
2056 
2057 	consume_skb(skb);
2058 
2059 	netlink_unlock_table();
2060 
2061 	if (info.delivery_failure) {
2062 		kfree_skb(info.skb2);
2063 		return -ENOBUFS;
2064 	}
2065 	consume_skb(info.skb2);
2066 
2067 	if (info.delivered) {
2068 		if (info.congested && (allocation & __GFP_WAIT))
2069 			yield();
2070 		return 0;
2071 	}
2072 	return -ESRCH;
2073 }
2074 EXPORT_SYMBOL(netlink_broadcast_filtered);
2075 
2076 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2077 		      u32 group, gfp_t allocation)
2078 {
2079 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2080 		NULL, NULL);
2081 }
2082 EXPORT_SYMBOL(netlink_broadcast);
2083 
2084 struct netlink_set_err_data {
2085 	struct sock *exclude_sk;
2086 	u32 portid;
2087 	u32 group;
2088 	int code;
2089 };
2090 
2091 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2092 {
2093 	struct netlink_sock *nlk = nlk_sk(sk);
2094 	int ret = 0;
2095 
2096 	if (sk == p->exclude_sk)
2097 		goto out;
2098 
2099 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2100 		goto out;
2101 
2102 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2103 	    !test_bit(p->group - 1, nlk->groups))
2104 		goto out;
2105 
2106 	if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2107 		ret = 1;
2108 		goto out;
2109 	}
2110 
2111 	sk->sk_err = p->code;
2112 	sk->sk_error_report(sk);
2113 out:
2114 	return ret;
2115 }
2116 
2117 /**
2118  * netlink_set_err - report error to broadcast listeners
2119  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2120  * @portid: the PORTID of a process that we want to skip (if any)
2121  * @group: the broadcast group that will notice the error
2122  * @code: error code, must be negative (as usual in kernelspace)
2123  *
2124  * This function returns the number of broadcast listeners that have set the
2125  * NETLINK_RECV_NO_ENOBUFS socket option.
2126  */
2127 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2128 {
2129 	struct netlink_set_err_data info;
2130 	struct sock *sk;
2131 	int ret = 0;
2132 
2133 	info.exclude_sk = ssk;
2134 	info.portid = portid;
2135 	info.group = group;
2136 	/* sk->sk_err wants a positive error value */
2137 	info.code = -code;
2138 
2139 	read_lock(&nl_table_lock);
2140 
2141 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2142 		ret += do_one_set_err(sk, &info);
2143 
2144 	read_unlock(&nl_table_lock);
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL(netlink_set_err);
2148 
2149 /* must be called with netlink table grabbed */
2150 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2151 				     unsigned int group,
2152 				     int is_new)
2153 {
2154 	int old, new = !!is_new, subscriptions;
2155 
2156 	old = test_bit(group - 1, nlk->groups);
2157 	subscriptions = nlk->subscriptions - old + new;
2158 	if (new)
2159 		__set_bit(group - 1, nlk->groups);
2160 	else
2161 		__clear_bit(group - 1, nlk->groups);
2162 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2163 	netlink_update_listeners(&nlk->sk);
2164 }
2165 
2166 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2167 			      char __user *optval, unsigned int optlen)
2168 {
2169 	struct sock *sk = sock->sk;
2170 	struct netlink_sock *nlk = nlk_sk(sk);
2171 	unsigned int val = 0;
2172 	int err;
2173 
2174 	if (level != SOL_NETLINK)
2175 		return -ENOPROTOOPT;
2176 
2177 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2178 	    optlen >= sizeof(int) &&
2179 	    get_user(val, (unsigned int __user *)optval))
2180 		return -EFAULT;
2181 
2182 	switch (optname) {
2183 	case NETLINK_PKTINFO:
2184 		if (val)
2185 			nlk->flags |= NETLINK_RECV_PKTINFO;
2186 		else
2187 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
2188 		err = 0;
2189 		break;
2190 	case NETLINK_ADD_MEMBERSHIP:
2191 	case NETLINK_DROP_MEMBERSHIP: {
2192 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2193 			return -EPERM;
2194 		err = netlink_realloc_groups(sk);
2195 		if (err)
2196 			return err;
2197 		if (!val || val - 1 >= nlk->ngroups)
2198 			return -EINVAL;
2199 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2200 			err = nlk->netlink_bind(val);
2201 			if (err)
2202 				return err;
2203 		}
2204 		netlink_table_grab();
2205 		netlink_update_socket_mc(nlk, val,
2206 					 optname == NETLINK_ADD_MEMBERSHIP);
2207 		netlink_table_ungrab();
2208 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2209 			nlk->netlink_unbind(val);
2210 
2211 		err = 0;
2212 		break;
2213 	}
2214 	case NETLINK_BROADCAST_ERROR:
2215 		if (val)
2216 			nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2217 		else
2218 			nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2219 		err = 0;
2220 		break;
2221 	case NETLINK_NO_ENOBUFS:
2222 		if (val) {
2223 			nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2224 			clear_bit(NETLINK_CONGESTED, &nlk->state);
2225 			wake_up_interruptible(&nlk->wait);
2226 		} else {
2227 			nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2228 		}
2229 		err = 0;
2230 		break;
2231 #ifdef CONFIG_NETLINK_MMAP
2232 	case NETLINK_RX_RING:
2233 	case NETLINK_TX_RING: {
2234 		struct nl_mmap_req req;
2235 
2236 		/* Rings might consume more memory than queue limits, require
2237 		 * CAP_NET_ADMIN.
2238 		 */
2239 		if (!capable(CAP_NET_ADMIN))
2240 			return -EPERM;
2241 		if (optlen < sizeof(req))
2242 			return -EINVAL;
2243 		if (copy_from_user(&req, optval, sizeof(req)))
2244 			return -EFAULT;
2245 		err = netlink_set_ring(sk, &req, false,
2246 				       optname == NETLINK_TX_RING);
2247 		break;
2248 	}
2249 #endif /* CONFIG_NETLINK_MMAP */
2250 	default:
2251 		err = -ENOPROTOOPT;
2252 	}
2253 	return err;
2254 }
2255 
2256 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2257 			      char __user *optval, int __user *optlen)
2258 {
2259 	struct sock *sk = sock->sk;
2260 	struct netlink_sock *nlk = nlk_sk(sk);
2261 	int len, val, err;
2262 
2263 	if (level != SOL_NETLINK)
2264 		return -ENOPROTOOPT;
2265 
2266 	if (get_user(len, optlen))
2267 		return -EFAULT;
2268 	if (len < 0)
2269 		return -EINVAL;
2270 
2271 	switch (optname) {
2272 	case NETLINK_PKTINFO:
2273 		if (len < sizeof(int))
2274 			return -EINVAL;
2275 		len = sizeof(int);
2276 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2277 		if (put_user(len, optlen) ||
2278 		    put_user(val, optval))
2279 			return -EFAULT;
2280 		err = 0;
2281 		break;
2282 	case NETLINK_BROADCAST_ERROR:
2283 		if (len < sizeof(int))
2284 			return -EINVAL;
2285 		len = sizeof(int);
2286 		val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2287 		if (put_user(len, optlen) ||
2288 		    put_user(val, optval))
2289 			return -EFAULT;
2290 		err = 0;
2291 		break;
2292 	case NETLINK_NO_ENOBUFS:
2293 		if (len < sizeof(int))
2294 			return -EINVAL;
2295 		len = sizeof(int);
2296 		val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2297 		if (put_user(len, optlen) ||
2298 		    put_user(val, optval))
2299 			return -EFAULT;
2300 		err = 0;
2301 		break;
2302 	default:
2303 		err = -ENOPROTOOPT;
2304 	}
2305 	return err;
2306 }
2307 
2308 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2309 {
2310 	struct nl_pktinfo info;
2311 
2312 	info.group = NETLINK_CB(skb).dst_group;
2313 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2314 }
2315 
2316 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2317 			   struct msghdr *msg, size_t len)
2318 {
2319 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2320 	struct sock *sk = sock->sk;
2321 	struct netlink_sock *nlk = nlk_sk(sk);
2322 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2323 	u32 dst_portid;
2324 	u32 dst_group;
2325 	struct sk_buff *skb;
2326 	int err;
2327 	struct scm_cookie scm;
2328 	u32 netlink_skb_flags = 0;
2329 
2330 	if (msg->msg_flags&MSG_OOB)
2331 		return -EOPNOTSUPP;
2332 
2333 	if (NULL == siocb->scm)
2334 		siocb->scm = &scm;
2335 
2336 	err = scm_send(sock, msg, siocb->scm, true);
2337 	if (err < 0)
2338 		return err;
2339 
2340 	if (msg->msg_namelen) {
2341 		err = -EINVAL;
2342 		if (addr->nl_family != AF_NETLINK)
2343 			goto out;
2344 		dst_portid = addr->nl_pid;
2345 		dst_group = ffs(addr->nl_groups);
2346 		err =  -EPERM;
2347 		if ((dst_group || dst_portid) &&
2348 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2349 			goto out;
2350 		netlink_skb_flags |= NETLINK_SKB_DST;
2351 	} else {
2352 		dst_portid = nlk->dst_portid;
2353 		dst_group = nlk->dst_group;
2354 	}
2355 
2356 	if (!nlk->portid) {
2357 		err = netlink_autobind(sock);
2358 		if (err)
2359 			goto out;
2360 	}
2361 
2362 	if (netlink_tx_is_mmaped(sk) &&
2363 	    msg->msg_iov->iov_base == NULL) {
2364 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2365 					   siocb);
2366 		goto out;
2367 	}
2368 
2369 	err = -EMSGSIZE;
2370 	if (len > sk->sk_sndbuf - 32)
2371 		goto out;
2372 	err = -ENOBUFS;
2373 	skb = netlink_alloc_large_skb(len, dst_group);
2374 	if (skb == NULL)
2375 		goto out;
2376 
2377 	NETLINK_CB(skb).portid	= nlk->portid;
2378 	NETLINK_CB(skb).dst_group = dst_group;
2379 	NETLINK_CB(skb).creds	= siocb->scm->creds;
2380 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2381 
2382 	err = -EFAULT;
2383 	if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
2384 		kfree_skb(skb);
2385 		goto out;
2386 	}
2387 
2388 	err = security_netlink_send(sk, skb);
2389 	if (err) {
2390 		kfree_skb(skb);
2391 		goto out;
2392 	}
2393 
2394 	if (dst_group) {
2395 		atomic_inc(&skb->users);
2396 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2397 	}
2398 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2399 
2400 out:
2401 	scm_destroy(siocb->scm);
2402 	return err;
2403 }
2404 
2405 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2406 			   struct msghdr *msg, size_t len,
2407 			   int flags)
2408 {
2409 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2410 	struct scm_cookie scm;
2411 	struct sock *sk = sock->sk;
2412 	struct netlink_sock *nlk = nlk_sk(sk);
2413 	int noblock = flags&MSG_DONTWAIT;
2414 	size_t copied;
2415 	struct sk_buff *skb, *data_skb;
2416 	int err, ret;
2417 
2418 	if (flags&MSG_OOB)
2419 		return -EOPNOTSUPP;
2420 
2421 	copied = 0;
2422 
2423 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2424 	if (skb == NULL)
2425 		goto out;
2426 
2427 	data_skb = skb;
2428 
2429 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2430 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2431 		/*
2432 		 * If this skb has a frag_list, then here that means that we
2433 		 * will have to use the frag_list skb's data for compat tasks
2434 		 * and the regular skb's data for normal (non-compat) tasks.
2435 		 *
2436 		 * If we need to send the compat skb, assign it to the
2437 		 * 'data_skb' variable so that it will be used below for data
2438 		 * copying. We keep 'skb' for everything else, including
2439 		 * freeing both later.
2440 		 */
2441 		if (flags & MSG_CMSG_COMPAT)
2442 			data_skb = skb_shinfo(skb)->frag_list;
2443 	}
2444 #endif
2445 
2446 	/* Record the max length of recvmsg() calls for future allocations */
2447 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2448 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2449 				     16384);
2450 
2451 	copied = data_skb->len;
2452 	if (len < copied) {
2453 		msg->msg_flags |= MSG_TRUNC;
2454 		copied = len;
2455 	}
2456 
2457 	skb_reset_transport_header(data_skb);
2458 	err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
2459 
2460 	if (msg->msg_name) {
2461 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2462 		addr->nl_family = AF_NETLINK;
2463 		addr->nl_pad    = 0;
2464 		addr->nl_pid	= NETLINK_CB(skb).portid;
2465 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2466 		msg->msg_namelen = sizeof(*addr);
2467 	}
2468 
2469 	if (nlk->flags & NETLINK_RECV_PKTINFO)
2470 		netlink_cmsg_recv_pktinfo(msg, skb);
2471 
2472 	if (NULL == siocb->scm) {
2473 		memset(&scm, 0, sizeof(scm));
2474 		siocb->scm = &scm;
2475 	}
2476 	siocb->scm->creds = *NETLINK_CREDS(skb);
2477 	if (flags & MSG_TRUNC)
2478 		copied = data_skb->len;
2479 
2480 	skb_free_datagram(sk, skb);
2481 
2482 	if (nlk->cb_running &&
2483 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2484 		ret = netlink_dump(sk);
2485 		if (ret) {
2486 			sk->sk_err = ret;
2487 			sk->sk_error_report(sk);
2488 		}
2489 	}
2490 
2491 	scm_recv(sock, msg, siocb->scm, flags);
2492 out:
2493 	netlink_rcv_wake(sk);
2494 	return err ? : copied;
2495 }
2496 
2497 static void netlink_data_ready(struct sock *sk)
2498 {
2499 	BUG();
2500 }
2501 
2502 /*
2503  *	We export these functions to other modules. They provide a
2504  *	complete set of kernel non-blocking support for message
2505  *	queueing.
2506  */
2507 
2508 struct sock *
2509 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2510 			struct netlink_kernel_cfg *cfg)
2511 {
2512 	struct socket *sock;
2513 	struct sock *sk;
2514 	struct netlink_sock *nlk;
2515 	struct listeners *listeners = NULL;
2516 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2517 	unsigned int groups;
2518 
2519 	BUG_ON(!nl_table);
2520 
2521 	if (unit < 0 || unit >= MAX_LINKS)
2522 		return NULL;
2523 
2524 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2525 		return NULL;
2526 
2527 	/*
2528 	 * We have to just have a reference on the net from sk, but don't
2529 	 * get_net it. Besides, we cannot get and then put the net here.
2530 	 * So we create one inside init_net and the move it to net.
2531 	 */
2532 
2533 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2534 		goto out_sock_release_nosk;
2535 
2536 	sk = sock->sk;
2537 	sk_change_net(sk, net);
2538 
2539 	if (!cfg || cfg->groups < 32)
2540 		groups = 32;
2541 	else
2542 		groups = cfg->groups;
2543 
2544 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2545 	if (!listeners)
2546 		goto out_sock_release;
2547 
2548 	sk->sk_data_ready = netlink_data_ready;
2549 	if (cfg && cfg->input)
2550 		nlk_sk(sk)->netlink_rcv = cfg->input;
2551 
2552 	if (netlink_insert(sk, net, 0))
2553 		goto out_sock_release;
2554 
2555 	nlk = nlk_sk(sk);
2556 	nlk->flags |= NETLINK_KERNEL_SOCKET;
2557 
2558 	netlink_table_grab();
2559 	if (!nl_table[unit].registered) {
2560 		nl_table[unit].groups = groups;
2561 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2562 		nl_table[unit].cb_mutex = cb_mutex;
2563 		nl_table[unit].module = module;
2564 		if (cfg) {
2565 			nl_table[unit].bind = cfg->bind;
2566 			nl_table[unit].flags = cfg->flags;
2567 			if (cfg->compare)
2568 				nl_table[unit].compare = cfg->compare;
2569 		}
2570 		nl_table[unit].registered = 1;
2571 	} else {
2572 		kfree(listeners);
2573 		nl_table[unit].registered++;
2574 	}
2575 	netlink_table_ungrab();
2576 	return sk;
2577 
2578 out_sock_release:
2579 	kfree(listeners);
2580 	netlink_kernel_release(sk);
2581 	return NULL;
2582 
2583 out_sock_release_nosk:
2584 	sock_release(sock);
2585 	return NULL;
2586 }
2587 EXPORT_SYMBOL(__netlink_kernel_create);
2588 
2589 void
2590 netlink_kernel_release(struct sock *sk)
2591 {
2592 	sk_release_kernel(sk);
2593 }
2594 EXPORT_SYMBOL(netlink_kernel_release);
2595 
2596 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2597 {
2598 	struct listeners *new, *old;
2599 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2600 
2601 	if (groups < 32)
2602 		groups = 32;
2603 
2604 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2605 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2606 		if (!new)
2607 			return -ENOMEM;
2608 		old = nl_deref_protected(tbl->listeners);
2609 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2610 		rcu_assign_pointer(tbl->listeners, new);
2611 
2612 		kfree_rcu(old, rcu);
2613 	}
2614 	tbl->groups = groups;
2615 
2616 	return 0;
2617 }
2618 
2619 /**
2620  * netlink_change_ngroups - change number of multicast groups
2621  *
2622  * This changes the number of multicast groups that are available
2623  * on a certain netlink family. Note that it is not possible to
2624  * change the number of groups to below 32. Also note that it does
2625  * not implicitly call netlink_clear_multicast_users() when the
2626  * number of groups is reduced.
2627  *
2628  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2629  * @groups: The new number of groups.
2630  */
2631 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2632 {
2633 	int err;
2634 
2635 	netlink_table_grab();
2636 	err = __netlink_change_ngroups(sk, groups);
2637 	netlink_table_ungrab();
2638 
2639 	return err;
2640 }
2641 
2642 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2643 {
2644 	struct sock *sk;
2645 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2646 
2647 	sk_for_each_bound(sk, &tbl->mc_list)
2648 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2649 }
2650 
2651 struct nlmsghdr *
2652 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2653 {
2654 	struct nlmsghdr *nlh;
2655 	int size = nlmsg_msg_size(len);
2656 
2657 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2658 	nlh->nlmsg_type = type;
2659 	nlh->nlmsg_len = size;
2660 	nlh->nlmsg_flags = flags;
2661 	nlh->nlmsg_pid = portid;
2662 	nlh->nlmsg_seq = seq;
2663 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2664 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2665 	return nlh;
2666 }
2667 EXPORT_SYMBOL(__nlmsg_put);
2668 
2669 /*
2670  * It looks a bit ugly.
2671  * It would be better to create kernel thread.
2672  */
2673 
2674 static int netlink_dump(struct sock *sk)
2675 {
2676 	struct netlink_sock *nlk = nlk_sk(sk);
2677 	struct netlink_callback *cb;
2678 	struct sk_buff *skb = NULL;
2679 	struct nlmsghdr *nlh;
2680 	int len, err = -ENOBUFS;
2681 	int alloc_size;
2682 
2683 	mutex_lock(nlk->cb_mutex);
2684 	if (!nlk->cb_running) {
2685 		err = -EINVAL;
2686 		goto errout_skb;
2687 	}
2688 
2689 	cb = &nlk->cb;
2690 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2691 
2692 	if (!netlink_rx_is_mmaped(sk) &&
2693 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2694 		goto errout_skb;
2695 
2696 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2697 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2698 	 * to reduce number of system calls on dump operations, if user
2699 	 * ever provided a big enough buffer.
2700 	 */
2701 	if (alloc_size < nlk->max_recvmsg_len) {
2702 		skb = netlink_alloc_skb(sk,
2703 					nlk->max_recvmsg_len,
2704 					nlk->portid,
2705 					GFP_KERNEL |
2706 					__GFP_NOWARN |
2707 					__GFP_NORETRY);
2708 		/* available room should be exact amount to avoid MSG_TRUNC */
2709 		if (skb)
2710 			skb_reserve(skb, skb_tailroom(skb) -
2711 					 nlk->max_recvmsg_len);
2712 	}
2713 	if (!skb)
2714 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2715 					GFP_KERNEL);
2716 	if (!skb)
2717 		goto errout_skb;
2718 	netlink_skb_set_owner_r(skb, sk);
2719 
2720 	len = cb->dump(skb, cb);
2721 
2722 	if (len > 0) {
2723 		mutex_unlock(nlk->cb_mutex);
2724 
2725 		if (sk_filter(sk, skb))
2726 			kfree_skb(skb);
2727 		else
2728 			__netlink_sendskb(sk, skb);
2729 		return 0;
2730 	}
2731 
2732 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2733 	if (!nlh)
2734 		goto errout_skb;
2735 
2736 	nl_dump_check_consistent(cb, nlh);
2737 
2738 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2739 
2740 	if (sk_filter(sk, skb))
2741 		kfree_skb(skb);
2742 	else
2743 		__netlink_sendskb(sk, skb);
2744 
2745 	if (cb->done)
2746 		cb->done(cb);
2747 
2748 	nlk->cb_running = false;
2749 	mutex_unlock(nlk->cb_mutex);
2750 	module_put(cb->module);
2751 	consume_skb(cb->skb);
2752 	return 0;
2753 
2754 errout_skb:
2755 	mutex_unlock(nlk->cb_mutex);
2756 	kfree_skb(skb);
2757 	return err;
2758 }
2759 
2760 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2761 			 const struct nlmsghdr *nlh,
2762 			 struct netlink_dump_control *control)
2763 {
2764 	struct netlink_callback *cb;
2765 	struct sock *sk;
2766 	struct netlink_sock *nlk;
2767 	int ret;
2768 
2769 	/* Memory mapped dump requests need to be copied to avoid looping
2770 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2771 	 * a reference to the skb.
2772 	 */
2773 	if (netlink_skb_is_mmaped(skb)) {
2774 		skb = skb_copy(skb, GFP_KERNEL);
2775 		if (skb == NULL)
2776 			return -ENOBUFS;
2777 	} else
2778 		atomic_inc(&skb->users);
2779 
2780 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2781 	if (sk == NULL) {
2782 		ret = -ECONNREFUSED;
2783 		goto error_free;
2784 	}
2785 
2786 	nlk = nlk_sk(sk);
2787 	mutex_lock(nlk->cb_mutex);
2788 	/* A dump is in progress... */
2789 	if (nlk->cb_running) {
2790 		ret = -EBUSY;
2791 		goto error_unlock;
2792 	}
2793 	/* add reference of module which cb->dump belongs to */
2794 	if (!try_module_get(control->module)) {
2795 		ret = -EPROTONOSUPPORT;
2796 		goto error_unlock;
2797 	}
2798 
2799 	cb = &nlk->cb;
2800 	memset(cb, 0, sizeof(*cb));
2801 	cb->dump = control->dump;
2802 	cb->done = control->done;
2803 	cb->nlh = nlh;
2804 	cb->data = control->data;
2805 	cb->module = control->module;
2806 	cb->min_dump_alloc = control->min_dump_alloc;
2807 	cb->skb = skb;
2808 
2809 	nlk->cb_running = true;
2810 
2811 	mutex_unlock(nlk->cb_mutex);
2812 
2813 	ret = netlink_dump(sk);
2814 	sock_put(sk);
2815 
2816 	if (ret)
2817 		return ret;
2818 
2819 	/* We successfully started a dump, by returning -EINTR we
2820 	 * signal not to send ACK even if it was requested.
2821 	 */
2822 	return -EINTR;
2823 
2824 error_unlock:
2825 	sock_put(sk);
2826 	mutex_unlock(nlk->cb_mutex);
2827 error_free:
2828 	kfree_skb(skb);
2829 	return ret;
2830 }
2831 EXPORT_SYMBOL(__netlink_dump_start);
2832 
2833 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2834 {
2835 	struct sk_buff *skb;
2836 	struct nlmsghdr *rep;
2837 	struct nlmsgerr *errmsg;
2838 	size_t payload = sizeof(*errmsg);
2839 
2840 	/* error messages get the original request appened */
2841 	if (err)
2842 		payload += nlmsg_len(nlh);
2843 
2844 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2845 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2846 	if (!skb) {
2847 		struct sock *sk;
2848 
2849 		sk = netlink_lookup(sock_net(in_skb->sk),
2850 				    in_skb->sk->sk_protocol,
2851 				    NETLINK_CB(in_skb).portid);
2852 		if (sk) {
2853 			sk->sk_err = ENOBUFS;
2854 			sk->sk_error_report(sk);
2855 			sock_put(sk);
2856 		}
2857 		return;
2858 	}
2859 
2860 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2861 			  NLMSG_ERROR, payload, 0);
2862 	errmsg = nlmsg_data(rep);
2863 	errmsg->error = err;
2864 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2865 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2866 }
2867 EXPORT_SYMBOL(netlink_ack);
2868 
2869 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2870 						     struct nlmsghdr *))
2871 {
2872 	struct nlmsghdr *nlh;
2873 	int err;
2874 
2875 	while (skb->len >= nlmsg_total_size(0)) {
2876 		int msglen;
2877 
2878 		nlh = nlmsg_hdr(skb);
2879 		err = 0;
2880 
2881 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2882 			return 0;
2883 
2884 		/* Only requests are handled by the kernel */
2885 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2886 			goto ack;
2887 
2888 		/* Skip control messages */
2889 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2890 			goto ack;
2891 
2892 		err = cb(skb, nlh);
2893 		if (err == -EINTR)
2894 			goto skip;
2895 
2896 ack:
2897 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2898 			netlink_ack(skb, nlh, err);
2899 
2900 skip:
2901 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2902 		if (msglen > skb->len)
2903 			msglen = skb->len;
2904 		skb_pull(skb, msglen);
2905 	}
2906 
2907 	return 0;
2908 }
2909 EXPORT_SYMBOL(netlink_rcv_skb);
2910 
2911 /**
2912  * nlmsg_notify - send a notification netlink message
2913  * @sk: netlink socket to use
2914  * @skb: notification message
2915  * @portid: destination netlink portid for reports or 0
2916  * @group: destination multicast group or 0
2917  * @report: 1 to report back, 0 to disable
2918  * @flags: allocation flags
2919  */
2920 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2921 		 unsigned int group, int report, gfp_t flags)
2922 {
2923 	int err = 0;
2924 
2925 	if (group) {
2926 		int exclude_portid = 0;
2927 
2928 		if (report) {
2929 			atomic_inc(&skb->users);
2930 			exclude_portid = portid;
2931 		}
2932 
2933 		/* errors reported via destination sk->sk_err, but propagate
2934 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2935 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2936 	}
2937 
2938 	if (report) {
2939 		int err2;
2940 
2941 		err2 = nlmsg_unicast(sk, skb, portid);
2942 		if (!err || err == -ESRCH)
2943 			err = err2;
2944 	}
2945 
2946 	return err;
2947 }
2948 EXPORT_SYMBOL(nlmsg_notify);
2949 
2950 #ifdef CONFIG_PROC_FS
2951 struct nl_seq_iter {
2952 	struct seq_net_private p;
2953 	int link;
2954 	int hash_idx;
2955 };
2956 
2957 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2958 {
2959 	struct nl_seq_iter *iter = seq->private;
2960 	int i, j;
2961 	struct sock *s;
2962 	loff_t off = 0;
2963 
2964 	for (i = 0; i < MAX_LINKS; i++) {
2965 		struct nl_portid_hash *hash = &nl_table[i].hash;
2966 
2967 		for (j = 0; j <= hash->mask; j++) {
2968 			sk_for_each(s, &hash->table[j]) {
2969 				if (sock_net(s) != seq_file_net(seq))
2970 					continue;
2971 				if (off == pos) {
2972 					iter->link = i;
2973 					iter->hash_idx = j;
2974 					return s;
2975 				}
2976 				++off;
2977 			}
2978 		}
2979 	}
2980 	return NULL;
2981 }
2982 
2983 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2984 	__acquires(nl_table_lock)
2985 {
2986 	read_lock(&nl_table_lock);
2987 	return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2988 }
2989 
2990 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2991 {
2992 	struct sock *s;
2993 	struct nl_seq_iter *iter;
2994 	struct net *net;
2995 	int i, j;
2996 
2997 	++*pos;
2998 
2999 	if (v == SEQ_START_TOKEN)
3000 		return netlink_seq_socket_idx(seq, 0);
3001 
3002 	net = seq_file_net(seq);
3003 	iter = seq->private;
3004 	s = v;
3005 	do {
3006 		s = sk_next(s);
3007 	} while (s && !nl_table[s->sk_protocol].compare(net, s));
3008 	if (s)
3009 		return s;
3010 
3011 	i = iter->link;
3012 	j = iter->hash_idx + 1;
3013 
3014 	do {
3015 		struct nl_portid_hash *hash = &nl_table[i].hash;
3016 
3017 		for (; j <= hash->mask; j++) {
3018 			s = sk_head(&hash->table[j]);
3019 
3020 			while (s && !nl_table[s->sk_protocol].compare(net, s))
3021 				s = sk_next(s);
3022 			if (s) {
3023 				iter->link = i;
3024 				iter->hash_idx = j;
3025 				return s;
3026 			}
3027 		}
3028 
3029 		j = 0;
3030 	} while (++i < MAX_LINKS);
3031 
3032 	return NULL;
3033 }
3034 
3035 static void netlink_seq_stop(struct seq_file *seq, void *v)
3036 	__releases(nl_table_lock)
3037 {
3038 	read_unlock(&nl_table_lock);
3039 }
3040 
3041 
3042 static int netlink_seq_show(struct seq_file *seq, void *v)
3043 {
3044 	if (v == SEQ_START_TOKEN) {
3045 		seq_puts(seq,
3046 			 "sk       Eth Pid    Groups   "
3047 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
3048 	} else {
3049 		struct sock *s = v;
3050 		struct netlink_sock *nlk = nlk_sk(s);
3051 
3052 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3053 			   s,
3054 			   s->sk_protocol,
3055 			   nlk->portid,
3056 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3057 			   sk_rmem_alloc_get(s),
3058 			   sk_wmem_alloc_get(s),
3059 			   nlk->cb_running,
3060 			   atomic_read(&s->sk_refcnt),
3061 			   atomic_read(&s->sk_drops),
3062 			   sock_i_ino(s)
3063 			);
3064 
3065 	}
3066 	return 0;
3067 }
3068 
3069 static const struct seq_operations netlink_seq_ops = {
3070 	.start  = netlink_seq_start,
3071 	.next   = netlink_seq_next,
3072 	.stop   = netlink_seq_stop,
3073 	.show   = netlink_seq_show,
3074 };
3075 
3076 
3077 static int netlink_seq_open(struct inode *inode, struct file *file)
3078 {
3079 	return seq_open_net(inode, file, &netlink_seq_ops,
3080 				sizeof(struct nl_seq_iter));
3081 }
3082 
3083 static const struct file_operations netlink_seq_fops = {
3084 	.owner		= THIS_MODULE,
3085 	.open		= netlink_seq_open,
3086 	.read		= seq_read,
3087 	.llseek		= seq_lseek,
3088 	.release	= seq_release_net,
3089 };
3090 
3091 #endif
3092 
3093 int netlink_register_notifier(struct notifier_block *nb)
3094 {
3095 	return atomic_notifier_chain_register(&netlink_chain, nb);
3096 }
3097 EXPORT_SYMBOL(netlink_register_notifier);
3098 
3099 int netlink_unregister_notifier(struct notifier_block *nb)
3100 {
3101 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3102 }
3103 EXPORT_SYMBOL(netlink_unregister_notifier);
3104 
3105 static const struct proto_ops netlink_ops = {
3106 	.family =	PF_NETLINK,
3107 	.owner =	THIS_MODULE,
3108 	.release =	netlink_release,
3109 	.bind =		netlink_bind,
3110 	.connect =	netlink_connect,
3111 	.socketpair =	sock_no_socketpair,
3112 	.accept =	sock_no_accept,
3113 	.getname =	netlink_getname,
3114 	.poll =		netlink_poll,
3115 	.ioctl =	sock_no_ioctl,
3116 	.listen =	sock_no_listen,
3117 	.shutdown =	sock_no_shutdown,
3118 	.setsockopt =	netlink_setsockopt,
3119 	.getsockopt =	netlink_getsockopt,
3120 	.sendmsg =	netlink_sendmsg,
3121 	.recvmsg =	netlink_recvmsg,
3122 	.mmap =		netlink_mmap,
3123 	.sendpage =	sock_no_sendpage,
3124 };
3125 
3126 static const struct net_proto_family netlink_family_ops = {
3127 	.family = PF_NETLINK,
3128 	.create = netlink_create,
3129 	.owner	= THIS_MODULE,	/* for consistency 8) */
3130 };
3131 
3132 static int __net_init netlink_net_init(struct net *net)
3133 {
3134 #ifdef CONFIG_PROC_FS
3135 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3136 		return -ENOMEM;
3137 #endif
3138 	return 0;
3139 }
3140 
3141 static void __net_exit netlink_net_exit(struct net *net)
3142 {
3143 #ifdef CONFIG_PROC_FS
3144 	remove_proc_entry("netlink", net->proc_net);
3145 #endif
3146 }
3147 
3148 static void __init netlink_add_usersock_entry(void)
3149 {
3150 	struct listeners *listeners;
3151 	int groups = 32;
3152 
3153 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3154 	if (!listeners)
3155 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3156 
3157 	netlink_table_grab();
3158 
3159 	nl_table[NETLINK_USERSOCK].groups = groups;
3160 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3161 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3162 	nl_table[NETLINK_USERSOCK].registered = 1;
3163 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3164 
3165 	netlink_table_ungrab();
3166 }
3167 
3168 static struct pernet_operations __net_initdata netlink_net_ops = {
3169 	.init = netlink_net_init,
3170 	.exit = netlink_net_exit,
3171 };
3172 
3173 static int __init netlink_proto_init(void)
3174 {
3175 	int i;
3176 	unsigned long limit;
3177 	unsigned int order;
3178 	int err = proto_register(&netlink_proto, 0);
3179 
3180 	if (err != 0)
3181 		goto out;
3182 
3183 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3184 
3185 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3186 	if (!nl_table)
3187 		goto panic;
3188 
3189 	if (totalram_pages >= (128 * 1024))
3190 		limit = totalram_pages >> (21 - PAGE_SHIFT);
3191 	else
3192 		limit = totalram_pages >> (23 - PAGE_SHIFT);
3193 
3194 	order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
3195 	limit = (1UL << order) / sizeof(struct hlist_head);
3196 	order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
3197 
3198 	for (i = 0; i < MAX_LINKS; i++) {
3199 		struct nl_portid_hash *hash = &nl_table[i].hash;
3200 
3201 		hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table));
3202 		if (!hash->table) {
3203 			while (i-- > 0)
3204 				nl_portid_hash_free(nl_table[i].hash.table,
3205 						 1 * sizeof(*hash->table));
3206 			kfree(nl_table);
3207 			goto panic;
3208 		}
3209 		hash->max_shift = order;
3210 		hash->shift = 0;
3211 		hash->mask = 0;
3212 		hash->rehash_time = jiffies;
3213 
3214 		nl_table[i].compare = netlink_compare;
3215 	}
3216 
3217 	INIT_LIST_HEAD(&netlink_tap_all);
3218 
3219 	netlink_add_usersock_entry();
3220 
3221 	sock_register(&netlink_family_ops);
3222 	register_pernet_subsys(&netlink_net_ops);
3223 	/* The netlink device handler may be needed early. */
3224 	rtnetlink_init();
3225 out:
3226 	return err;
3227 panic:
3228 	panic("netlink_init: Cannot allocate nl_table\n");
3229 }
3230 
3231 core_initcall(netlink_proto_init);
3232