1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 #define NETLINK_F_CAP_ACK 0x20 88 89 static inline int netlink_is_kernel(struct sock *sk) 90 { 91 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 92 } 93 94 struct netlink_table *nl_table __read_mostly; 95 EXPORT_SYMBOL_GPL(nl_table); 96 97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 98 99 static int netlink_dump(struct sock *sk); 100 static void netlink_skb_destructor(struct sk_buff *skb); 101 102 /* nl_table locking explained: 103 * Lookup and traversal are protected with an RCU read-side lock. Insertion 104 * and removal are protected with per bucket lock while using RCU list 105 * modification primitives and may run in parallel to RCU protected lookups. 106 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 107 * been acquired * either during or after the socket has been removed from 108 * the list and after an RCU grace period. 109 */ 110 DEFINE_RWLOCK(nl_table_lock); 111 EXPORT_SYMBOL_GPL(nl_table_lock); 112 static atomic_t nl_table_users = ATOMIC_INIT(0); 113 114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 115 116 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 117 118 static DEFINE_SPINLOCK(netlink_tap_lock); 119 static struct list_head netlink_tap_all __read_mostly; 120 121 static const struct rhashtable_params netlink_rhashtable_params; 122 123 static inline u32 netlink_group_mask(u32 group) 124 { 125 return group ? 1 << (group - 1) : 0; 126 } 127 128 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 129 gfp_t gfp_mask) 130 { 131 unsigned int len = skb_end_offset(skb); 132 struct sk_buff *new; 133 134 new = alloc_skb(len, gfp_mask); 135 if (new == NULL) 136 return NULL; 137 138 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 139 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 140 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 141 142 memcpy(skb_put(new, len), skb->data, len); 143 return new; 144 } 145 146 int netlink_add_tap(struct netlink_tap *nt) 147 { 148 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 149 return -EINVAL; 150 151 spin_lock(&netlink_tap_lock); 152 list_add_rcu(&nt->list, &netlink_tap_all); 153 spin_unlock(&netlink_tap_lock); 154 155 __module_get(nt->module); 156 157 return 0; 158 } 159 EXPORT_SYMBOL_GPL(netlink_add_tap); 160 161 static int __netlink_remove_tap(struct netlink_tap *nt) 162 { 163 bool found = false; 164 struct netlink_tap *tmp; 165 166 spin_lock(&netlink_tap_lock); 167 168 list_for_each_entry(tmp, &netlink_tap_all, list) { 169 if (nt == tmp) { 170 list_del_rcu(&nt->list); 171 found = true; 172 goto out; 173 } 174 } 175 176 pr_warn("__netlink_remove_tap: %p not found\n", nt); 177 out: 178 spin_unlock(&netlink_tap_lock); 179 180 if (found) 181 module_put(nt->module); 182 183 return found ? 0 : -ENODEV; 184 } 185 186 int netlink_remove_tap(struct netlink_tap *nt) 187 { 188 int ret; 189 190 ret = __netlink_remove_tap(nt); 191 synchronize_net(); 192 193 return ret; 194 } 195 EXPORT_SYMBOL_GPL(netlink_remove_tap); 196 197 static bool netlink_filter_tap(const struct sk_buff *skb) 198 { 199 struct sock *sk = skb->sk; 200 201 /* We take the more conservative approach and 202 * whitelist socket protocols that may pass. 203 */ 204 switch (sk->sk_protocol) { 205 case NETLINK_ROUTE: 206 case NETLINK_USERSOCK: 207 case NETLINK_SOCK_DIAG: 208 case NETLINK_NFLOG: 209 case NETLINK_XFRM: 210 case NETLINK_FIB_LOOKUP: 211 case NETLINK_NETFILTER: 212 case NETLINK_GENERIC: 213 return true; 214 } 215 216 return false; 217 } 218 219 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 220 struct net_device *dev) 221 { 222 struct sk_buff *nskb; 223 struct sock *sk = skb->sk; 224 int ret = -ENOMEM; 225 226 dev_hold(dev); 227 228 if (netlink_skb_is_mmaped(skb) || is_vmalloc_addr(skb->head)) 229 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 230 else 231 nskb = skb_clone(skb, GFP_ATOMIC); 232 if (nskb) { 233 nskb->dev = dev; 234 nskb->protocol = htons((u16) sk->sk_protocol); 235 nskb->pkt_type = netlink_is_kernel(sk) ? 236 PACKET_KERNEL : PACKET_USER; 237 skb_reset_network_header(nskb); 238 ret = dev_queue_xmit(nskb); 239 if (unlikely(ret > 0)) 240 ret = net_xmit_errno(ret); 241 } 242 243 dev_put(dev); 244 return ret; 245 } 246 247 static void __netlink_deliver_tap(struct sk_buff *skb) 248 { 249 int ret; 250 struct netlink_tap *tmp; 251 252 if (!netlink_filter_tap(skb)) 253 return; 254 255 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 256 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 257 if (unlikely(ret)) 258 break; 259 } 260 } 261 262 static void netlink_deliver_tap(struct sk_buff *skb) 263 { 264 rcu_read_lock(); 265 266 if (unlikely(!list_empty(&netlink_tap_all))) 267 __netlink_deliver_tap(skb); 268 269 rcu_read_unlock(); 270 } 271 272 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 273 struct sk_buff *skb) 274 { 275 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 276 netlink_deliver_tap(skb); 277 } 278 279 static void netlink_overrun(struct sock *sk) 280 { 281 struct netlink_sock *nlk = nlk_sk(sk); 282 283 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 284 if (!test_and_set_bit(NETLINK_S_CONGESTED, 285 &nlk_sk(sk)->state)) { 286 sk->sk_err = ENOBUFS; 287 sk->sk_error_report(sk); 288 } 289 } 290 atomic_inc(&sk->sk_drops); 291 } 292 293 static void netlink_rcv_wake(struct sock *sk) 294 { 295 struct netlink_sock *nlk = nlk_sk(sk); 296 297 if (skb_queue_empty(&sk->sk_receive_queue)) 298 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 299 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 300 wake_up_interruptible(&nlk->wait); 301 } 302 303 #ifdef CONFIG_NETLINK_MMAP 304 static bool netlink_rx_is_mmaped(struct sock *sk) 305 { 306 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 307 } 308 309 static bool netlink_tx_is_mmaped(struct sock *sk) 310 { 311 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 312 } 313 314 static __pure struct page *pgvec_to_page(const void *addr) 315 { 316 if (is_vmalloc_addr(addr)) 317 return vmalloc_to_page(addr); 318 else 319 return virt_to_page(addr); 320 } 321 322 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 323 { 324 unsigned int i; 325 326 for (i = 0; i < len; i++) { 327 if (pg_vec[i] != NULL) { 328 if (is_vmalloc_addr(pg_vec[i])) 329 vfree(pg_vec[i]); 330 else 331 free_pages((unsigned long)pg_vec[i], order); 332 } 333 } 334 kfree(pg_vec); 335 } 336 337 static void *alloc_one_pg_vec_page(unsigned long order) 338 { 339 void *buffer; 340 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 341 __GFP_NOWARN | __GFP_NORETRY; 342 343 buffer = (void *)__get_free_pages(gfp_flags, order); 344 if (buffer != NULL) 345 return buffer; 346 347 buffer = vzalloc((1 << order) * PAGE_SIZE); 348 if (buffer != NULL) 349 return buffer; 350 351 gfp_flags &= ~__GFP_NORETRY; 352 return (void *)__get_free_pages(gfp_flags, order); 353 } 354 355 static void **alloc_pg_vec(struct netlink_sock *nlk, 356 struct nl_mmap_req *req, unsigned int order) 357 { 358 unsigned int block_nr = req->nm_block_nr; 359 unsigned int i; 360 void **pg_vec; 361 362 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 363 if (pg_vec == NULL) 364 return NULL; 365 366 for (i = 0; i < block_nr; i++) { 367 pg_vec[i] = alloc_one_pg_vec_page(order); 368 if (pg_vec[i] == NULL) 369 goto err1; 370 } 371 372 return pg_vec; 373 err1: 374 free_pg_vec(pg_vec, order, block_nr); 375 return NULL; 376 } 377 378 379 static void 380 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec, 381 unsigned int order) 382 { 383 struct netlink_sock *nlk = nlk_sk(sk); 384 struct sk_buff_head *queue; 385 struct netlink_ring *ring; 386 387 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 388 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 389 390 spin_lock_bh(&queue->lock); 391 392 ring->frame_max = req->nm_frame_nr - 1; 393 ring->head = 0; 394 ring->frame_size = req->nm_frame_size; 395 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 396 397 swap(ring->pg_vec_len, req->nm_block_nr); 398 swap(ring->pg_vec_order, order); 399 swap(ring->pg_vec, pg_vec); 400 401 __skb_queue_purge(queue); 402 spin_unlock_bh(&queue->lock); 403 404 WARN_ON(atomic_read(&nlk->mapped)); 405 406 if (pg_vec) 407 free_pg_vec(pg_vec, order, req->nm_block_nr); 408 } 409 410 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 411 bool tx_ring) 412 { 413 struct netlink_sock *nlk = nlk_sk(sk); 414 struct netlink_ring *ring; 415 void **pg_vec = NULL; 416 unsigned int order = 0; 417 418 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 419 420 if (atomic_read(&nlk->mapped)) 421 return -EBUSY; 422 if (atomic_read(&ring->pending)) 423 return -EBUSY; 424 425 if (req->nm_block_nr) { 426 if (ring->pg_vec != NULL) 427 return -EBUSY; 428 429 if ((int)req->nm_block_size <= 0) 430 return -EINVAL; 431 if (!PAGE_ALIGNED(req->nm_block_size)) 432 return -EINVAL; 433 if (req->nm_frame_size < NL_MMAP_HDRLEN) 434 return -EINVAL; 435 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 436 return -EINVAL; 437 438 ring->frames_per_block = req->nm_block_size / 439 req->nm_frame_size; 440 if (ring->frames_per_block == 0) 441 return -EINVAL; 442 if (ring->frames_per_block * req->nm_block_nr != 443 req->nm_frame_nr) 444 return -EINVAL; 445 446 order = get_order(req->nm_block_size); 447 pg_vec = alloc_pg_vec(nlk, req, order); 448 if (pg_vec == NULL) 449 return -ENOMEM; 450 } else { 451 if (req->nm_frame_nr) 452 return -EINVAL; 453 } 454 455 mutex_lock(&nlk->pg_vec_lock); 456 if (atomic_read(&nlk->mapped) == 0) { 457 __netlink_set_ring(sk, req, tx_ring, pg_vec, order); 458 mutex_unlock(&nlk->pg_vec_lock); 459 return 0; 460 } 461 462 mutex_unlock(&nlk->pg_vec_lock); 463 464 if (pg_vec) 465 free_pg_vec(pg_vec, order, req->nm_block_nr); 466 467 return -EBUSY; 468 } 469 470 static void netlink_mm_open(struct vm_area_struct *vma) 471 { 472 struct file *file = vma->vm_file; 473 struct socket *sock = file->private_data; 474 struct sock *sk = sock->sk; 475 476 if (sk) 477 atomic_inc(&nlk_sk(sk)->mapped); 478 } 479 480 static void netlink_mm_close(struct vm_area_struct *vma) 481 { 482 struct file *file = vma->vm_file; 483 struct socket *sock = file->private_data; 484 struct sock *sk = sock->sk; 485 486 if (sk) 487 atomic_dec(&nlk_sk(sk)->mapped); 488 } 489 490 static const struct vm_operations_struct netlink_mmap_ops = { 491 .open = netlink_mm_open, 492 .close = netlink_mm_close, 493 }; 494 495 static int netlink_mmap(struct file *file, struct socket *sock, 496 struct vm_area_struct *vma) 497 { 498 struct sock *sk = sock->sk; 499 struct netlink_sock *nlk = nlk_sk(sk); 500 struct netlink_ring *ring; 501 unsigned long start, size, expected; 502 unsigned int i; 503 int err = -EINVAL; 504 505 if (vma->vm_pgoff) 506 return -EINVAL; 507 508 mutex_lock(&nlk->pg_vec_lock); 509 510 expected = 0; 511 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 512 if (ring->pg_vec == NULL) 513 continue; 514 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 515 } 516 517 if (expected == 0) 518 goto out; 519 520 size = vma->vm_end - vma->vm_start; 521 if (size != expected) 522 goto out; 523 524 start = vma->vm_start; 525 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 526 if (ring->pg_vec == NULL) 527 continue; 528 529 for (i = 0; i < ring->pg_vec_len; i++) { 530 struct page *page; 531 void *kaddr = ring->pg_vec[i]; 532 unsigned int pg_num; 533 534 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 535 page = pgvec_to_page(kaddr); 536 err = vm_insert_page(vma, start, page); 537 if (err < 0) 538 goto out; 539 start += PAGE_SIZE; 540 kaddr += PAGE_SIZE; 541 } 542 } 543 } 544 545 atomic_inc(&nlk->mapped); 546 vma->vm_ops = &netlink_mmap_ops; 547 err = 0; 548 out: 549 mutex_unlock(&nlk->pg_vec_lock); 550 return err; 551 } 552 553 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 554 { 555 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 556 struct page *p_start, *p_end; 557 558 /* First page is flushed through netlink_{get,set}_status */ 559 p_start = pgvec_to_page(hdr + PAGE_SIZE); 560 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 561 while (p_start <= p_end) { 562 flush_dcache_page(p_start); 563 p_start++; 564 } 565 #endif 566 } 567 568 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 569 { 570 smp_rmb(); 571 flush_dcache_page(pgvec_to_page(hdr)); 572 return hdr->nm_status; 573 } 574 575 static void netlink_set_status(struct nl_mmap_hdr *hdr, 576 enum nl_mmap_status status) 577 { 578 smp_mb(); 579 hdr->nm_status = status; 580 flush_dcache_page(pgvec_to_page(hdr)); 581 } 582 583 static struct nl_mmap_hdr * 584 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 585 { 586 unsigned int pg_vec_pos, frame_off; 587 588 pg_vec_pos = pos / ring->frames_per_block; 589 frame_off = pos % ring->frames_per_block; 590 591 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 592 } 593 594 static struct nl_mmap_hdr * 595 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 596 enum nl_mmap_status status) 597 { 598 struct nl_mmap_hdr *hdr; 599 600 hdr = __netlink_lookup_frame(ring, pos); 601 if (netlink_get_status(hdr) != status) 602 return NULL; 603 604 return hdr; 605 } 606 607 static struct nl_mmap_hdr * 608 netlink_current_frame(const struct netlink_ring *ring, 609 enum nl_mmap_status status) 610 { 611 return netlink_lookup_frame(ring, ring->head, status); 612 } 613 614 static void netlink_increment_head(struct netlink_ring *ring) 615 { 616 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 617 } 618 619 static void netlink_forward_ring(struct netlink_ring *ring) 620 { 621 unsigned int head = ring->head; 622 const struct nl_mmap_hdr *hdr; 623 624 do { 625 hdr = __netlink_lookup_frame(ring, ring->head); 626 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 627 break; 628 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 629 break; 630 netlink_increment_head(ring); 631 } while (ring->head != head); 632 } 633 634 static bool netlink_has_valid_frame(struct netlink_ring *ring) 635 { 636 unsigned int head = ring->head, pos = head; 637 const struct nl_mmap_hdr *hdr; 638 639 do { 640 hdr = __netlink_lookup_frame(ring, pos); 641 if (hdr->nm_status == NL_MMAP_STATUS_VALID) 642 return true; 643 pos = pos != 0 ? pos - 1 : ring->frame_max; 644 } while (pos != head); 645 646 return false; 647 } 648 649 static bool netlink_dump_space(struct netlink_sock *nlk) 650 { 651 struct netlink_ring *ring = &nlk->rx_ring; 652 struct nl_mmap_hdr *hdr; 653 unsigned int n; 654 655 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 656 if (hdr == NULL) 657 return false; 658 659 n = ring->head + ring->frame_max / 2; 660 if (n > ring->frame_max) 661 n -= ring->frame_max; 662 663 hdr = __netlink_lookup_frame(ring, n); 664 665 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 666 } 667 668 static unsigned int netlink_poll(struct file *file, struct socket *sock, 669 poll_table *wait) 670 { 671 struct sock *sk = sock->sk; 672 struct netlink_sock *nlk = nlk_sk(sk); 673 unsigned int mask; 674 int err; 675 676 if (nlk->rx_ring.pg_vec != NULL) { 677 /* Memory mapped sockets don't call recvmsg(), so flow control 678 * for dumps is performed here. A dump is allowed to continue 679 * if at least half the ring is unused. 680 */ 681 while (nlk->cb_running && netlink_dump_space(nlk)) { 682 err = netlink_dump(sk); 683 if (err < 0) { 684 sk->sk_err = -err; 685 sk->sk_error_report(sk); 686 break; 687 } 688 } 689 netlink_rcv_wake(sk); 690 } 691 692 mask = datagram_poll(file, sock, wait); 693 694 /* We could already have received frames in the normal receive 695 * queue, that will show up as NL_MMAP_STATUS_COPY in the ring, 696 * so if mask contains pollin/etc already, there's no point 697 * walking the ring. 698 */ 699 if ((mask & (POLLIN | POLLRDNORM)) != (POLLIN | POLLRDNORM)) { 700 spin_lock_bh(&sk->sk_receive_queue.lock); 701 if (nlk->rx_ring.pg_vec) { 702 if (netlink_has_valid_frame(&nlk->rx_ring)) 703 mask |= POLLIN | POLLRDNORM; 704 } 705 spin_unlock_bh(&sk->sk_receive_queue.lock); 706 } 707 708 spin_lock_bh(&sk->sk_write_queue.lock); 709 if (nlk->tx_ring.pg_vec) { 710 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 711 mask |= POLLOUT | POLLWRNORM; 712 } 713 spin_unlock_bh(&sk->sk_write_queue.lock); 714 715 return mask; 716 } 717 718 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 719 { 720 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 721 } 722 723 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 724 struct netlink_ring *ring, 725 struct nl_mmap_hdr *hdr) 726 { 727 unsigned int size; 728 void *data; 729 730 size = ring->frame_size - NL_MMAP_HDRLEN; 731 data = (void *)hdr + NL_MMAP_HDRLEN; 732 733 skb->head = data; 734 skb->data = data; 735 skb_reset_tail_pointer(skb); 736 skb->end = skb->tail + size; 737 skb->len = 0; 738 739 skb->destructor = netlink_skb_destructor; 740 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 741 NETLINK_CB(skb).sk = sk; 742 } 743 744 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 745 u32 dst_portid, u32 dst_group, 746 struct scm_cookie *scm) 747 { 748 struct netlink_sock *nlk = nlk_sk(sk); 749 struct netlink_ring *ring; 750 struct nl_mmap_hdr *hdr; 751 struct sk_buff *skb; 752 unsigned int maxlen; 753 int err = 0, len = 0; 754 755 mutex_lock(&nlk->pg_vec_lock); 756 757 ring = &nlk->tx_ring; 758 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 759 760 do { 761 unsigned int nm_len; 762 763 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 764 if (hdr == NULL) { 765 if (!(msg->msg_flags & MSG_DONTWAIT) && 766 atomic_read(&nlk->tx_ring.pending)) 767 schedule(); 768 continue; 769 } 770 771 nm_len = ACCESS_ONCE(hdr->nm_len); 772 if (nm_len > maxlen) { 773 err = -EINVAL; 774 goto out; 775 } 776 777 netlink_frame_flush_dcache(hdr, nm_len); 778 779 skb = alloc_skb(nm_len, GFP_KERNEL); 780 if (skb == NULL) { 781 err = -ENOBUFS; 782 goto out; 783 } 784 __skb_put(skb, nm_len); 785 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 786 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 787 788 netlink_increment_head(ring); 789 790 NETLINK_CB(skb).portid = nlk->portid; 791 NETLINK_CB(skb).dst_group = dst_group; 792 NETLINK_CB(skb).creds = scm->creds; 793 794 err = security_netlink_send(sk, skb); 795 if (err) { 796 kfree_skb(skb); 797 goto out; 798 } 799 800 if (unlikely(dst_group)) { 801 atomic_inc(&skb->users); 802 netlink_broadcast(sk, skb, dst_portid, dst_group, 803 GFP_KERNEL); 804 } 805 err = netlink_unicast(sk, skb, dst_portid, 806 msg->msg_flags & MSG_DONTWAIT); 807 if (err < 0) 808 goto out; 809 len += err; 810 811 } while (hdr != NULL || 812 (!(msg->msg_flags & MSG_DONTWAIT) && 813 atomic_read(&nlk->tx_ring.pending))); 814 815 if (len > 0) 816 err = len; 817 out: 818 mutex_unlock(&nlk->pg_vec_lock); 819 return err; 820 } 821 822 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 823 { 824 struct nl_mmap_hdr *hdr; 825 826 hdr = netlink_mmap_hdr(skb); 827 hdr->nm_len = skb->len; 828 hdr->nm_group = NETLINK_CB(skb).dst_group; 829 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 830 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 831 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 832 netlink_frame_flush_dcache(hdr, hdr->nm_len); 833 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 834 835 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 836 kfree_skb(skb); 837 } 838 839 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 840 { 841 struct netlink_sock *nlk = nlk_sk(sk); 842 struct netlink_ring *ring = &nlk->rx_ring; 843 struct nl_mmap_hdr *hdr; 844 845 spin_lock_bh(&sk->sk_receive_queue.lock); 846 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 847 if (hdr == NULL) { 848 spin_unlock_bh(&sk->sk_receive_queue.lock); 849 kfree_skb(skb); 850 netlink_overrun(sk); 851 return; 852 } 853 netlink_increment_head(ring); 854 __skb_queue_tail(&sk->sk_receive_queue, skb); 855 spin_unlock_bh(&sk->sk_receive_queue.lock); 856 857 hdr->nm_len = skb->len; 858 hdr->nm_group = NETLINK_CB(skb).dst_group; 859 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 860 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 861 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 862 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 863 } 864 865 #else /* CONFIG_NETLINK_MMAP */ 866 #define netlink_rx_is_mmaped(sk) false 867 #define netlink_tx_is_mmaped(sk) false 868 #define netlink_mmap sock_no_mmap 869 #define netlink_poll datagram_poll 870 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 871 #endif /* CONFIG_NETLINK_MMAP */ 872 873 static void netlink_skb_destructor(struct sk_buff *skb) 874 { 875 #ifdef CONFIG_NETLINK_MMAP 876 struct nl_mmap_hdr *hdr; 877 struct netlink_ring *ring; 878 struct sock *sk; 879 880 /* If a packet from the kernel to userspace was freed because of an 881 * error without being delivered to userspace, the kernel must reset 882 * the status. In the direction userspace to kernel, the status is 883 * always reset here after the packet was processed and freed. 884 */ 885 if (netlink_skb_is_mmaped(skb)) { 886 hdr = netlink_mmap_hdr(skb); 887 sk = NETLINK_CB(skb).sk; 888 889 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 890 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 891 ring = &nlk_sk(sk)->tx_ring; 892 } else { 893 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 894 hdr->nm_len = 0; 895 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 896 } 897 ring = &nlk_sk(sk)->rx_ring; 898 } 899 900 WARN_ON(atomic_read(&ring->pending) == 0); 901 atomic_dec(&ring->pending); 902 sock_put(sk); 903 904 skb->head = NULL; 905 } 906 #endif 907 if (is_vmalloc_addr(skb->head)) { 908 if (!skb->cloned || 909 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 910 vfree(skb->head); 911 912 skb->head = NULL; 913 } 914 if (skb->sk != NULL) 915 sock_rfree(skb); 916 } 917 918 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 919 { 920 WARN_ON(skb->sk != NULL); 921 skb->sk = sk; 922 skb->destructor = netlink_skb_destructor; 923 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 924 sk_mem_charge(sk, skb->truesize); 925 } 926 927 static void netlink_sock_destruct(struct sock *sk) 928 { 929 struct netlink_sock *nlk = nlk_sk(sk); 930 931 if (nlk->cb_running) { 932 if (nlk->cb.done) 933 nlk->cb.done(&nlk->cb); 934 935 module_put(nlk->cb.module); 936 kfree_skb(nlk->cb.skb); 937 } 938 939 skb_queue_purge(&sk->sk_receive_queue); 940 #ifdef CONFIG_NETLINK_MMAP 941 if (1) { 942 struct nl_mmap_req req; 943 944 memset(&req, 0, sizeof(req)); 945 if (nlk->rx_ring.pg_vec) 946 __netlink_set_ring(sk, &req, false, NULL, 0); 947 memset(&req, 0, sizeof(req)); 948 if (nlk->tx_ring.pg_vec) 949 __netlink_set_ring(sk, &req, true, NULL, 0); 950 } 951 #endif /* CONFIG_NETLINK_MMAP */ 952 953 if (!sock_flag(sk, SOCK_DEAD)) { 954 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 955 return; 956 } 957 958 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 959 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 960 WARN_ON(nlk_sk(sk)->groups); 961 } 962 963 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 964 * SMP. Look, when several writers sleep and reader wakes them up, all but one 965 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 966 * this, _but_ remember, it adds useless work on UP machines. 967 */ 968 969 void netlink_table_grab(void) 970 __acquires(nl_table_lock) 971 { 972 might_sleep(); 973 974 write_lock_irq(&nl_table_lock); 975 976 if (atomic_read(&nl_table_users)) { 977 DECLARE_WAITQUEUE(wait, current); 978 979 add_wait_queue_exclusive(&nl_table_wait, &wait); 980 for (;;) { 981 set_current_state(TASK_UNINTERRUPTIBLE); 982 if (atomic_read(&nl_table_users) == 0) 983 break; 984 write_unlock_irq(&nl_table_lock); 985 schedule(); 986 write_lock_irq(&nl_table_lock); 987 } 988 989 __set_current_state(TASK_RUNNING); 990 remove_wait_queue(&nl_table_wait, &wait); 991 } 992 } 993 994 void netlink_table_ungrab(void) 995 __releases(nl_table_lock) 996 { 997 write_unlock_irq(&nl_table_lock); 998 wake_up(&nl_table_wait); 999 } 1000 1001 static inline void 1002 netlink_lock_table(void) 1003 { 1004 /* read_lock() synchronizes us to netlink_table_grab */ 1005 1006 read_lock(&nl_table_lock); 1007 atomic_inc(&nl_table_users); 1008 read_unlock(&nl_table_lock); 1009 } 1010 1011 static inline void 1012 netlink_unlock_table(void) 1013 { 1014 if (atomic_dec_and_test(&nl_table_users)) 1015 wake_up(&nl_table_wait); 1016 } 1017 1018 struct netlink_compare_arg 1019 { 1020 possible_net_t pnet; 1021 u32 portid; 1022 }; 1023 1024 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 1025 #define netlink_compare_arg_len \ 1026 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 1027 1028 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 1029 const void *ptr) 1030 { 1031 const struct netlink_compare_arg *x = arg->key; 1032 const struct netlink_sock *nlk = ptr; 1033 1034 return nlk->portid != x->portid || 1035 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 1036 } 1037 1038 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 1039 struct net *net, u32 portid) 1040 { 1041 memset(arg, 0, sizeof(*arg)); 1042 write_pnet(&arg->pnet, net); 1043 arg->portid = portid; 1044 } 1045 1046 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1047 struct net *net) 1048 { 1049 struct netlink_compare_arg arg; 1050 1051 netlink_compare_arg_init(&arg, net, portid); 1052 return rhashtable_lookup_fast(&table->hash, &arg, 1053 netlink_rhashtable_params); 1054 } 1055 1056 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 1057 { 1058 struct netlink_compare_arg arg; 1059 1060 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 1061 return rhashtable_lookup_insert_key(&table->hash, &arg, 1062 &nlk_sk(sk)->node, 1063 netlink_rhashtable_params); 1064 } 1065 1066 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1067 { 1068 struct netlink_table *table = &nl_table[protocol]; 1069 struct sock *sk; 1070 1071 rcu_read_lock(); 1072 sk = __netlink_lookup(table, portid, net); 1073 if (sk) 1074 sock_hold(sk); 1075 rcu_read_unlock(); 1076 1077 return sk; 1078 } 1079 1080 static const struct proto_ops netlink_ops; 1081 1082 static void 1083 netlink_update_listeners(struct sock *sk) 1084 { 1085 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1086 unsigned long mask; 1087 unsigned int i; 1088 struct listeners *listeners; 1089 1090 listeners = nl_deref_protected(tbl->listeners); 1091 if (!listeners) 1092 return; 1093 1094 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1095 mask = 0; 1096 sk_for_each_bound(sk, &tbl->mc_list) { 1097 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1098 mask |= nlk_sk(sk)->groups[i]; 1099 } 1100 listeners->masks[i] = mask; 1101 } 1102 /* this function is only called with the netlink table "grabbed", which 1103 * makes sure updates are visible before bind or setsockopt return. */ 1104 } 1105 1106 static int netlink_insert(struct sock *sk, u32 portid) 1107 { 1108 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1109 int err; 1110 1111 lock_sock(sk); 1112 1113 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 1114 if (nlk_sk(sk)->bound) 1115 goto err; 1116 1117 err = -ENOMEM; 1118 if (BITS_PER_LONG > 32 && 1119 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1120 goto err; 1121 1122 nlk_sk(sk)->portid = portid; 1123 sock_hold(sk); 1124 1125 err = __netlink_insert(table, sk); 1126 if (err) { 1127 /* In case the hashtable backend returns with -EBUSY 1128 * from here, it must not escape to the caller. 1129 */ 1130 if (unlikely(err == -EBUSY)) 1131 err = -EOVERFLOW; 1132 if (err == -EEXIST) 1133 err = -EADDRINUSE; 1134 sock_put(sk); 1135 goto err; 1136 } 1137 1138 /* We need to ensure that the socket is hashed and visible. */ 1139 smp_wmb(); 1140 nlk_sk(sk)->bound = portid; 1141 1142 err: 1143 release_sock(sk); 1144 return err; 1145 } 1146 1147 static void netlink_remove(struct sock *sk) 1148 { 1149 struct netlink_table *table; 1150 1151 table = &nl_table[sk->sk_protocol]; 1152 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 1153 netlink_rhashtable_params)) { 1154 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1155 __sock_put(sk); 1156 } 1157 1158 netlink_table_grab(); 1159 if (nlk_sk(sk)->subscriptions) { 1160 __sk_del_bind_node(sk); 1161 netlink_update_listeners(sk); 1162 } 1163 if (sk->sk_protocol == NETLINK_GENERIC) 1164 atomic_inc(&genl_sk_destructing_cnt); 1165 netlink_table_ungrab(); 1166 } 1167 1168 static struct proto netlink_proto = { 1169 .name = "NETLINK", 1170 .owner = THIS_MODULE, 1171 .obj_size = sizeof(struct netlink_sock), 1172 }; 1173 1174 static int __netlink_create(struct net *net, struct socket *sock, 1175 struct mutex *cb_mutex, int protocol, 1176 int kern) 1177 { 1178 struct sock *sk; 1179 struct netlink_sock *nlk; 1180 1181 sock->ops = &netlink_ops; 1182 1183 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 1184 if (!sk) 1185 return -ENOMEM; 1186 1187 sock_init_data(sock, sk); 1188 1189 nlk = nlk_sk(sk); 1190 if (cb_mutex) { 1191 nlk->cb_mutex = cb_mutex; 1192 } else { 1193 nlk->cb_mutex = &nlk->cb_def_mutex; 1194 mutex_init(nlk->cb_mutex); 1195 } 1196 init_waitqueue_head(&nlk->wait); 1197 #ifdef CONFIG_NETLINK_MMAP 1198 mutex_init(&nlk->pg_vec_lock); 1199 #endif 1200 1201 sk->sk_destruct = netlink_sock_destruct; 1202 sk->sk_protocol = protocol; 1203 return 0; 1204 } 1205 1206 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1207 int kern) 1208 { 1209 struct module *module = NULL; 1210 struct mutex *cb_mutex; 1211 struct netlink_sock *nlk; 1212 int (*bind)(struct net *net, int group); 1213 void (*unbind)(struct net *net, int group); 1214 int err = 0; 1215 1216 sock->state = SS_UNCONNECTED; 1217 1218 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1219 return -ESOCKTNOSUPPORT; 1220 1221 if (protocol < 0 || protocol >= MAX_LINKS) 1222 return -EPROTONOSUPPORT; 1223 1224 netlink_lock_table(); 1225 #ifdef CONFIG_MODULES 1226 if (!nl_table[protocol].registered) { 1227 netlink_unlock_table(); 1228 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1229 netlink_lock_table(); 1230 } 1231 #endif 1232 if (nl_table[protocol].registered && 1233 try_module_get(nl_table[protocol].module)) 1234 module = nl_table[protocol].module; 1235 else 1236 err = -EPROTONOSUPPORT; 1237 cb_mutex = nl_table[protocol].cb_mutex; 1238 bind = nl_table[protocol].bind; 1239 unbind = nl_table[protocol].unbind; 1240 netlink_unlock_table(); 1241 1242 if (err < 0) 1243 goto out; 1244 1245 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 1246 if (err < 0) 1247 goto out_module; 1248 1249 local_bh_disable(); 1250 sock_prot_inuse_add(net, &netlink_proto, 1); 1251 local_bh_enable(); 1252 1253 nlk = nlk_sk(sock->sk); 1254 nlk->module = module; 1255 nlk->netlink_bind = bind; 1256 nlk->netlink_unbind = unbind; 1257 out: 1258 return err; 1259 1260 out_module: 1261 module_put(module); 1262 goto out; 1263 } 1264 1265 static void deferred_put_nlk_sk(struct rcu_head *head) 1266 { 1267 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1268 1269 sock_put(&nlk->sk); 1270 } 1271 1272 static int netlink_release(struct socket *sock) 1273 { 1274 struct sock *sk = sock->sk; 1275 struct netlink_sock *nlk; 1276 1277 if (!sk) 1278 return 0; 1279 1280 netlink_remove(sk); 1281 sock_orphan(sk); 1282 nlk = nlk_sk(sk); 1283 1284 /* 1285 * OK. Socket is unlinked, any packets that arrive now 1286 * will be purged. 1287 */ 1288 1289 /* must not acquire netlink_table_lock in any way again before unbind 1290 * and notifying genetlink is done as otherwise it might deadlock 1291 */ 1292 if (nlk->netlink_unbind) { 1293 int i; 1294 1295 for (i = 0; i < nlk->ngroups; i++) 1296 if (test_bit(i, nlk->groups)) 1297 nlk->netlink_unbind(sock_net(sk), i + 1); 1298 } 1299 if (sk->sk_protocol == NETLINK_GENERIC && 1300 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1301 wake_up(&genl_sk_destructing_waitq); 1302 1303 sock->sk = NULL; 1304 wake_up_interruptible_all(&nlk->wait); 1305 1306 skb_queue_purge(&sk->sk_write_queue); 1307 1308 if (nlk->portid) { 1309 struct netlink_notify n = { 1310 .net = sock_net(sk), 1311 .protocol = sk->sk_protocol, 1312 .portid = nlk->portid, 1313 }; 1314 atomic_notifier_call_chain(&netlink_chain, 1315 NETLINK_URELEASE, &n); 1316 } 1317 1318 module_put(nlk->module); 1319 1320 if (netlink_is_kernel(sk)) { 1321 netlink_table_grab(); 1322 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1323 if (--nl_table[sk->sk_protocol].registered == 0) { 1324 struct listeners *old; 1325 1326 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1327 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1328 kfree_rcu(old, rcu); 1329 nl_table[sk->sk_protocol].module = NULL; 1330 nl_table[sk->sk_protocol].bind = NULL; 1331 nl_table[sk->sk_protocol].unbind = NULL; 1332 nl_table[sk->sk_protocol].flags = 0; 1333 nl_table[sk->sk_protocol].registered = 0; 1334 } 1335 netlink_table_ungrab(); 1336 } 1337 1338 kfree(nlk->groups); 1339 nlk->groups = NULL; 1340 1341 local_bh_disable(); 1342 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1343 local_bh_enable(); 1344 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1345 return 0; 1346 } 1347 1348 static int netlink_autobind(struct socket *sock) 1349 { 1350 struct sock *sk = sock->sk; 1351 struct net *net = sock_net(sk); 1352 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1353 s32 portid = task_tgid_vnr(current); 1354 int err; 1355 s32 rover = -4096; 1356 bool ok; 1357 1358 retry: 1359 cond_resched(); 1360 rcu_read_lock(); 1361 ok = !__netlink_lookup(table, portid, net); 1362 rcu_read_unlock(); 1363 if (!ok) { 1364 /* Bind collision, search negative portid values. */ 1365 if (rover == -4096) 1366 /* rover will be in range [S32_MIN, -4097] */ 1367 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 1368 else if (rover >= -4096) 1369 rover = -4097; 1370 portid = rover--; 1371 goto retry; 1372 } 1373 1374 err = netlink_insert(sk, portid); 1375 if (err == -EADDRINUSE) 1376 goto retry; 1377 1378 /* If 2 threads race to autobind, that is fine. */ 1379 if (err == -EBUSY) 1380 err = 0; 1381 1382 return err; 1383 } 1384 1385 /** 1386 * __netlink_ns_capable - General netlink message capability test 1387 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1388 * @user_ns: The user namespace of the capability to use 1389 * @cap: The capability to use 1390 * 1391 * Test to see if the opener of the socket we received the message 1392 * from had when the netlink socket was created and the sender of the 1393 * message has has the capability @cap in the user namespace @user_ns. 1394 */ 1395 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1396 struct user_namespace *user_ns, int cap) 1397 { 1398 return ((nsp->flags & NETLINK_SKB_DST) || 1399 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1400 ns_capable(user_ns, cap); 1401 } 1402 EXPORT_SYMBOL(__netlink_ns_capable); 1403 1404 /** 1405 * netlink_ns_capable - General netlink message capability test 1406 * @skb: socket buffer holding a netlink command from userspace 1407 * @user_ns: The user namespace of the capability to use 1408 * @cap: The capability to use 1409 * 1410 * Test to see if the opener of the socket we received the message 1411 * from had when the netlink socket was created and the sender of the 1412 * message has has the capability @cap in the user namespace @user_ns. 1413 */ 1414 bool netlink_ns_capable(const struct sk_buff *skb, 1415 struct user_namespace *user_ns, int cap) 1416 { 1417 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1418 } 1419 EXPORT_SYMBOL(netlink_ns_capable); 1420 1421 /** 1422 * netlink_capable - Netlink global message capability test 1423 * @skb: socket buffer holding a netlink command from userspace 1424 * @cap: The capability to use 1425 * 1426 * Test to see if the opener of the socket we received the message 1427 * from had when the netlink socket was created and the sender of the 1428 * message has has the capability @cap in all user namespaces. 1429 */ 1430 bool netlink_capable(const struct sk_buff *skb, int cap) 1431 { 1432 return netlink_ns_capable(skb, &init_user_ns, cap); 1433 } 1434 EXPORT_SYMBOL(netlink_capable); 1435 1436 /** 1437 * netlink_net_capable - Netlink network namespace message capability test 1438 * @skb: socket buffer holding a netlink command from userspace 1439 * @cap: The capability to use 1440 * 1441 * Test to see if the opener of the socket we received the message 1442 * from had when the netlink socket was created and the sender of the 1443 * message has has the capability @cap over the network namespace of 1444 * the socket we received the message from. 1445 */ 1446 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1447 { 1448 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1449 } 1450 EXPORT_SYMBOL(netlink_net_capable); 1451 1452 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1453 { 1454 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1455 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1456 } 1457 1458 static void 1459 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1460 { 1461 struct netlink_sock *nlk = nlk_sk(sk); 1462 1463 if (nlk->subscriptions && !subscriptions) 1464 __sk_del_bind_node(sk); 1465 else if (!nlk->subscriptions && subscriptions) 1466 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1467 nlk->subscriptions = subscriptions; 1468 } 1469 1470 static int netlink_realloc_groups(struct sock *sk) 1471 { 1472 struct netlink_sock *nlk = nlk_sk(sk); 1473 unsigned int groups; 1474 unsigned long *new_groups; 1475 int err = 0; 1476 1477 netlink_table_grab(); 1478 1479 groups = nl_table[sk->sk_protocol].groups; 1480 if (!nl_table[sk->sk_protocol].registered) { 1481 err = -ENOENT; 1482 goto out_unlock; 1483 } 1484 1485 if (nlk->ngroups >= groups) 1486 goto out_unlock; 1487 1488 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1489 if (new_groups == NULL) { 1490 err = -ENOMEM; 1491 goto out_unlock; 1492 } 1493 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1494 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1495 1496 nlk->groups = new_groups; 1497 nlk->ngroups = groups; 1498 out_unlock: 1499 netlink_table_ungrab(); 1500 return err; 1501 } 1502 1503 static void netlink_undo_bind(int group, long unsigned int groups, 1504 struct sock *sk) 1505 { 1506 struct netlink_sock *nlk = nlk_sk(sk); 1507 int undo; 1508 1509 if (!nlk->netlink_unbind) 1510 return; 1511 1512 for (undo = 0; undo < group; undo++) 1513 if (test_bit(undo, &groups)) 1514 nlk->netlink_unbind(sock_net(sk), undo + 1); 1515 } 1516 1517 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1518 int addr_len) 1519 { 1520 struct sock *sk = sock->sk; 1521 struct net *net = sock_net(sk); 1522 struct netlink_sock *nlk = nlk_sk(sk); 1523 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1524 int err; 1525 long unsigned int groups = nladdr->nl_groups; 1526 bool bound; 1527 1528 if (addr_len < sizeof(struct sockaddr_nl)) 1529 return -EINVAL; 1530 1531 if (nladdr->nl_family != AF_NETLINK) 1532 return -EINVAL; 1533 1534 /* Only superuser is allowed to listen multicasts */ 1535 if (groups) { 1536 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1537 return -EPERM; 1538 err = netlink_realloc_groups(sk); 1539 if (err) 1540 return err; 1541 } 1542 1543 bound = nlk->bound; 1544 if (bound) { 1545 /* Ensure nlk->portid is up-to-date. */ 1546 smp_rmb(); 1547 1548 if (nladdr->nl_pid != nlk->portid) 1549 return -EINVAL; 1550 } 1551 1552 if (nlk->netlink_bind && groups) { 1553 int group; 1554 1555 for (group = 0; group < nlk->ngroups; group++) { 1556 if (!test_bit(group, &groups)) 1557 continue; 1558 err = nlk->netlink_bind(net, group + 1); 1559 if (!err) 1560 continue; 1561 netlink_undo_bind(group, groups, sk); 1562 return err; 1563 } 1564 } 1565 1566 /* No need for barriers here as we return to user-space without 1567 * using any of the bound attributes. 1568 */ 1569 if (!bound) { 1570 err = nladdr->nl_pid ? 1571 netlink_insert(sk, nladdr->nl_pid) : 1572 netlink_autobind(sock); 1573 if (err) { 1574 netlink_undo_bind(nlk->ngroups, groups, sk); 1575 return err; 1576 } 1577 } 1578 1579 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1580 return 0; 1581 1582 netlink_table_grab(); 1583 netlink_update_subscriptions(sk, nlk->subscriptions + 1584 hweight32(groups) - 1585 hweight32(nlk->groups[0])); 1586 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1587 netlink_update_listeners(sk); 1588 netlink_table_ungrab(); 1589 1590 return 0; 1591 } 1592 1593 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1594 int alen, int flags) 1595 { 1596 int err = 0; 1597 struct sock *sk = sock->sk; 1598 struct netlink_sock *nlk = nlk_sk(sk); 1599 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1600 1601 if (alen < sizeof(addr->sa_family)) 1602 return -EINVAL; 1603 1604 if (addr->sa_family == AF_UNSPEC) { 1605 sk->sk_state = NETLINK_UNCONNECTED; 1606 nlk->dst_portid = 0; 1607 nlk->dst_group = 0; 1608 return 0; 1609 } 1610 if (addr->sa_family != AF_NETLINK) 1611 return -EINVAL; 1612 1613 if ((nladdr->nl_groups || nladdr->nl_pid) && 1614 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1615 return -EPERM; 1616 1617 /* No need for barriers here as we return to user-space without 1618 * using any of the bound attributes. 1619 */ 1620 if (!nlk->bound) 1621 err = netlink_autobind(sock); 1622 1623 if (err == 0) { 1624 sk->sk_state = NETLINK_CONNECTED; 1625 nlk->dst_portid = nladdr->nl_pid; 1626 nlk->dst_group = ffs(nladdr->nl_groups); 1627 } 1628 1629 return err; 1630 } 1631 1632 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1633 int *addr_len, int peer) 1634 { 1635 struct sock *sk = sock->sk; 1636 struct netlink_sock *nlk = nlk_sk(sk); 1637 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1638 1639 nladdr->nl_family = AF_NETLINK; 1640 nladdr->nl_pad = 0; 1641 *addr_len = sizeof(*nladdr); 1642 1643 if (peer) { 1644 nladdr->nl_pid = nlk->dst_portid; 1645 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1646 } else { 1647 nladdr->nl_pid = nlk->portid; 1648 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1649 } 1650 return 0; 1651 } 1652 1653 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1654 { 1655 struct sock *sock; 1656 struct netlink_sock *nlk; 1657 1658 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1659 if (!sock) 1660 return ERR_PTR(-ECONNREFUSED); 1661 1662 /* Don't bother queuing skb if kernel socket has no input function */ 1663 nlk = nlk_sk(sock); 1664 if (sock->sk_state == NETLINK_CONNECTED && 1665 nlk->dst_portid != nlk_sk(ssk)->portid) { 1666 sock_put(sock); 1667 return ERR_PTR(-ECONNREFUSED); 1668 } 1669 return sock; 1670 } 1671 1672 struct sock *netlink_getsockbyfilp(struct file *filp) 1673 { 1674 struct inode *inode = file_inode(filp); 1675 struct sock *sock; 1676 1677 if (!S_ISSOCK(inode->i_mode)) 1678 return ERR_PTR(-ENOTSOCK); 1679 1680 sock = SOCKET_I(inode)->sk; 1681 if (sock->sk_family != AF_NETLINK) 1682 return ERR_PTR(-EINVAL); 1683 1684 sock_hold(sock); 1685 return sock; 1686 } 1687 1688 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1689 int broadcast) 1690 { 1691 struct sk_buff *skb; 1692 void *data; 1693 1694 if (size <= NLMSG_GOODSIZE || broadcast) 1695 return alloc_skb(size, GFP_KERNEL); 1696 1697 size = SKB_DATA_ALIGN(size) + 1698 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1699 1700 data = vmalloc(size); 1701 if (data == NULL) 1702 return NULL; 1703 1704 skb = __build_skb(data, size); 1705 if (skb == NULL) 1706 vfree(data); 1707 else 1708 skb->destructor = netlink_skb_destructor; 1709 1710 return skb; 1711 } 1712 1713 /* 1714 * Attach a skb to a netlink socket. 1715 * The caller must hold a reference to the destination socket. On error, the 1716 * reference is dropped. The skb is not send to the destination, just all 1717 * all error checks are performed and memory in the queue is reserved. 1718 * Return values: 1719 * < 0: error. skb freed, reference to sock dropped. 1720 * 0: continue 1721 * 1: repeat lookup - reference dropped while waiting for socket memory. 1722 */ 1723 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1724 long *timeo, struct sock *ssk) 1725 { 1726 struct netlink_sock *nlk; 1727 1728 nlk = nlk_sk(sk); 1729 1730 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1731 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1732 !netlink_skb_is_mmaped(skb)) { 1733 DECLARE_WAITQUEUE(wait, current); 1734 if (!*timeo) { 1735 if (!ssk || netlink_is_kernel(ssk)) 1736 netlink_overrun(sk); 1737 sock_put(sk); 1738 kfree_skb(skb); 1739 return -EAGAIN; 1740 } 1741 1742 __set_current_state(TASK_INTERRUPTIBLE); 1743 add_wait_queue(&nlk->wait, &wait); 1744 1745 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1746 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1747 !sock_flag(sk, SOCK_DEAD)) 1748 *timeo = schedule_timeout(*timeo); 1749 1750 __set_current_state(TASK_RUNNING); 1751 remove_wait_queue(&nlk->wait, &wait); 1752 sock_put(sk); 1753 1754 if (signal_pending(current)) { 1755 kfree_skb(skb); 1756 return sock_intr_errno(*timeo); 1757 } 1758 return 1; 1759 } 1760 netlink_skb_set_owner_r(skb, sk); 1761 return 0; 1762 } 1763 1764 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1765 { 1766 int len = skb->len; 1767 1768 netlink_deliver_tap(skb); 1769 1770 #ifdef CONFIG_NETLINK_MMAP 1771 if (netlink_skb_is_mmaped(skb)) 1772 netlink_queue_mmaped_skb(sk, skb); 1773 else if (netlink_rx_is_mmaped(sk)) 1774 netlink_ring_set_copied(sk, skb); 1775 else 1776 #endif /* CONFIG_NETLINK_MMAP */ 1777 skb_queue_tail(&sk->sk_receive_queue, skb); 1778 sk->sk_data_ready(sk); 1779 return len; 1780 } 1781 1782 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1783 { 1784 int len = __netlink_sendskb(sk, skb); 1785 1786 sock_put(sk); 1787 return len; 1788 } 1789 1790 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1791 { 1792 kfree_skb(skb); 1793 sock_put(sk); 1794 } 1795 1796 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1797 { 1798 int delta; 1799 1800 WARN_ON(skb->sk != NULL); 1801 if (netlink_skb_is_mmaped(skb)) 1802 return skb; 1803 1804 delta = skb->end - skb->tail; 1805 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1806 return skb; 1807 1808 if (skb_shared(skb)) { 1809 struct sk_buff *nskb = skb_clone(skb, allocation); 1810 if (!nskb) 1811 return skb; 1812 consume_skb(skb); 1813 skb = nskb; 1814 } 1815 1816 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1817 skb->truesize -= delta; 1818 1819 return skb; 1820 } 1821 1822 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1823 struct sock *ssk) 1824 { 1825 int ret; 1826 struct netlink_sock *nlk = nlk_sk(sk); 1827 1828 ret = -ECONNREFUSED; 1829 if (nlk->netlink_rcv != NULL) { 1830 ret = skb->len; 1831 netlink_skb_set_owner_r(skb, sk); 1832 NETLINK_CB(skb).sk = ssk; 1833 netlink_deliver_tap_kernel(sk, ssk, skb); 1834 nlk->netlink_rcv(skb); 1835 consume_skb(skb); 1836 } else { 1837 kfree_skb(skb); 1838 } 1839 sock_put(sk); 1840 return ret; 1841 } 1842 1843 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1844 u32 portid, int nonblock) 1845 { 1846 struct sock *sk; 1847 int err; 1848 long timeo; 1849 1850 skb = netlink_trim(skb, gfp_any()); 1851 1852 timeo = sock_sndtimeo(ssk, nonblock); 1853 retry: 1854 sk = netlink_getsockbyportid(ssk, portid); 1855 if (IS_ERR(sk)) { 1856 kfree_skb(skb); 1857 return PTR_ERR(sk); 1858 } 1859 if (netlink_is_kernel(sk)) 1860 return netlink_unicast_kernel(sk, skb, ssk); 1861 1862 if (sk_filter(sk, skb)) { 1863 err = skb->len; 1864 kfree_skb(skb); 1865 sock_put(sk); 1866 return err; 1867 } 1868 1869 err = netlink_attachskb(sk, skb, &timeo, ssk); 1870 if (err == 1) 1871 goto retry; 1872 if (err) 1873 return err; 1874 1875 return netlink_sendskb(sk, skb); 1876 } 1877 EXPORT_SYMBOL(netlink_unicast); 1878 1879 struct sk_buff *__netlink_alloc_skb(struct sock *ssk, unsigned int size, 1880 unsigned int ldiff, u32 dst_portid, 1881 gfp_t gfp_mask) 1882 { 1883 #ifdef CONFIG_NETLINK_MMAP 1884 unsigned int maxlen, linear_size; 1885 struct sock *sk = NULL; 1886 struct sk_buff *skb; 1887 struct netlink_ring *ring; 1888 struct nl_mmap_hdr *hdr; 1889 1890 sk = netlink_getsockbyportid(ssk, dst_portid); 1891 if (IS_ERR(sk)) 1892 goto out; 1893 1894 ring = &nlk_sk(sk)->rx_ring; 1895 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1896 if (ring->pg_vec == NULL) 1897 goto out_put; 1898 1899 /* We need to account the full linear size needed as a ring 1900 * slot cannot have non-linear parts. 1901 */ 1902 linear_size = size + ldiff; 1903 if (ring->frame_size - NL_MMAP_HDRLEN < linear_size) 1904 goto out_put; 1905 1906 skb = alloc_skb_head(gfp_mask); 1907 if (skb == NULL) 1908 goto err1; 1909 1910 spin_lock_bh(&sk->sk_receive_queue.lock); 1911 /* check again under lock */ 1912 if (ring->pg_vec == NULL) 1913 goto out_free; 1914 1915 /* check again under lock */ 1916 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1917 if (maxlen < linear_size) 1918 goto out_free; 1919 1920 netlink_forward_ring(ring); 1921 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1922 if (hdr == NULL) 1923 goto err2; 1924 1925 netlink_ring_setup_skb(skb, sk, ring, hdr); 1926 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1927 atomic_inc(&ring->pending); 1928 netlink_increment_head(ring); 1929 1930 spin_unlock_bh(&sk->sk_receive_queue.lock); 1931 return skb; 1932 1933 err2: 1934 kfree_skb(skb); 1935 spin_unlock_bh(&sk->sk_receive_queue.lock); 1936 netlink_overrun(sk); 1937 err1: 1938 sock_put(sk); 1939 return NULL; 1940 1941 out_free: 1942 kfree_skb(skb); 1943 spin_unlock_bh(&sk->sk_receive_queue.lock); 1944 out_put: 1945 sock_put(sk); 1946 out: 1947 #endif 1948 return alloc_skb(size, gfp_mask); 1949 } 1950 EXPORT_SYMBOL_GPL(__netlink_alloc_skb); 1951 1952 int netlink_has_listeners(struct sock *sk, unsigned int group) 1953 { 1954 int res = 0; 1955 struct listeners *listeners; 1956 1957 BUG_ON(!netlink_is_kernel(sk)); 1958 1959 rcu_read_lock(); 1960 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1961 1962 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1963 res = test_bit(group - 1, listeners->masks); 1964 1965 rcu_read_unlock(); 1966 1967 return res; 1968 } 1969 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1970 1971 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1972 { 1973 struct netlink_sock *nlk = nlk_sk(sk); 1974 1975 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1976 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1977 netlink_skb_set_owner_r(skb, sk); 1978 __netlink_sendskb(sk, skb); 1979 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1980 } 1981 return -1; 1982 } 1983 1984 struct netlink_broadcast_data { 1985 struct sock *exclude_sk; 1986 struct net *net; 1987 u32 portid; 1988 u32 group; 1989 int failure; 1990 int delivery_failure; 1991 int congested; 1992 int delivered; 1993 gfp_t allocation; 1994 struct sk_buff *skb, *skb2; 1995 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1996 void *tx_data; 1997 }; 1998 1999 static void do_one_broadcast(struct sock *sk, 2000 struct netlink_broadcast_data *p) 2001 { 2002 struct netlink_sock *nlk = nlk_sk(sk); 2003 int val; 2004 2005 if (p->exclude_sk == sk) 2006 return; 2007 2008 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2009 !test_bit(p->group - 1, nlk->groups)) 2010 return; 2011 2012 if (!net_eq(sock_net(sk), p->net)) { 2013 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 2014 return; 2015 2016 if (!peernet_has_id(sock_net(sk), p->net)) 2017 return; 2018 2019 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 2020 CAP_NET_BROADCAST)) 2021 return; 2022 } 2023 2024 if (p->failure) { 2025 netlink_overrun(sk); 2026 return; 2027 } 2028 2029 sock_hold(sk); 2030 if (p->skb2 == NULL) { 2031 if (skb_shared(p->skb)) { 2032 p->skb2 = skb_clone(p->skb, p->allocation); 2033 } else { 2034 p->skb2 = skb_get(p->skb); 2035 /* 2036 * skb ownership may have been set when 2037 * delivered to a previous socket. 2038 */ 2039 skb_orphan(p->skb2); 2040 } 2041 } 2042 if (p->skb2 == NULL) { 2043 netlink_overrun(sk); 2044 /* Clone failed. Notify ALL listeners. */ 2045 p->failure = 1; 2046 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2047 p->delivery_failure = 1; 2048 goto out; 2049 } 2050 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 2051 kfree_skb(p->skb2); 2052 p->skb2 = NULL; 2053 goto out; 2054 } 2055 if (sk_filter(sk, p->skb2)) { 2056 kfree_skb(p->skb2); 2057 p->skb2 = NULL; 2058 goto out; 2059 } 2060 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 2061 NETLINK_CB(p->skb2).nsid_is_set = true; 2062 val = netlink_broadcast_deliver(sk, p->skb2); 2063 if (val < 0) { 2064 netlink_overrun(sk); 2065 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2066 p->delivery_failure = 1; 2067 } else { 2068 p->congested |= val; 2069 p->delivered = 1; 2070 p->skb2 = NULL; 2071 } 2072 out: 2073 sock_put(sk); 2074 } 2075 2076 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2077 u32 group, gfp_t allocation, 2078 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2079 void *filter_data) 2080 { 2081 struct net *net = sock_net(ssk); 2082 struct netlink_broadcast_data info; 2083 struct sock *sk; 2084 2085 skb = netlink_trim(skb, allocation); 2086 2087 info.exclude_sk = ssk; 2088 info.net = net; 2089 info.portid = portid; 2090 info.group = group; 2091 info.failure = 0; 2092 info.delivery_failure = 0; 2093 info.congested = 0; 2094 info.delivered = 0; 2095 info.allocation = allocation; 2096 info.skb = skb; 2097 info.skb2 = NULL; 2098 info.tx_filter = filter; 2099 info.tx_data = filter_data; 2100 2101 /* While we sleep in clone, do not allow to change socket list */ 2102 2103 netlink_lock_table(); 2104 2105 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2106 do_one_broadcast(sk, &info); 2107 2108 consume_skb(skb); 2109 2110 netlink_unlock_table(); 2111 2112 if (info.delivery_failure) { 2113 kfree_skb(info.skb2); 2114 return -ENOBUFS; 2115 } 2116 consume_skb(info.skb2); 2117 2118 if (info.delivered) { 2119 if (info.congested && gfpflags_allow_blocking(allocation)) 2120 yield(); 2121 return 0; 2122 } 2123 return -ESRCH; 2124 } 2125 EXPORT_SYMBOL(netlink_broadcast_filtered); 2126 2127 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2128 u32 group, gfp_t allocation) 2129 { 2130 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2131 NULL, NULL); 2132 } 2133 EXPORT_SYMBOL(netlink_broadcast); 2134 2135 struct netlink_set_err_data { 2136 struct sock *exclude_sk; 2137 u32 portid; 2138 u32 group; 2139 int code; 2140 }; 2141 2142 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2143 { 2144 struct netlink_sock *nlk = nlk_sk(sk); 2145 int ret = 0; 2146 2147 if (sk == p->exclude_sk) 2148 goto out; 2149 2150 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2151 goto out; 2152 2153 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2154 !test_bit(p->group - 1, nlk->groups)) 2155 goto out; 2156 2157 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 2158 ret = 1; 2159 goto out; 2160 } 2161 2162 sk->sk_err = p->code; 2163 sk->sk_error_report(sk); 2164 out: 2165 return ret; 2166 } 2167 2168 /** 2169 * netlink_set_err - report error to broadcast listeners 2170 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2171 * @portid: the PORTID of a process that we want to skip (if any) 2172 * @group: the broadcast group that will notice the error 2173 * @code: error code, must be negative (as usual in kernelspace) 2174 * 2175 * This function returns the number of broadcast listeners that have set the 2176 * NETLINK_NO_ENOBUFS socket option. 2177 */ 2178 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2179 { 2180 struct netlink_set_err_data info; 2181 struct sock *sk; 2182 int ret = 0; 2183 2184 info.exclude_sk = ssk; 2185 info.portid = portid; 2186 info.group = group; 2187 /* sk->sk_err wants a positive error value */ 2188 info.code = -code; 2189 2190 read_lock(&nl_table_lock); 2191 2192 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2193 ret += do_one_set_err(sk, &info); 2194 2195 read_unlock(&nl_table_lock); 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(netlink_set_err); 2199 2200 /* must be called with netlink table grabbed */ 2201 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2202 unsigned int group, 2203 int is_new) 2204 { 2205 int old, new = !!is_new, subscriptions; 2206 2207 old = test_bit(group - 1, nlk->groups); 2208 subscriptions = nlk->subscriptions - old + new; 2209 if (new) 2210 __set_bit(group - 1, nlk->groups); 2211 else 2212 __clear_bit(group - 1, nlk->groups); 2213 netlink_update_subscriptions(&nlk->sk, subscriptions); 2214 netlink_update_listeners(&nlk->sk); 2215 } 2216 2217 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2218 char __user *optval, unsigned int optlen) 2219 { 2220 struct sock *sk = sock->sk; 2221 struct netlink_sock *nlk = nlk_sk(sk); 2222 unsigned int val = 0; 2223 int err; 2224 2225 if (level != SOL_NETLINK) 2226 return -ENOPROTOOPT; 2227 2228 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2229 optlen >= sizeof(int) && 2230 get_user(val, (unsigned int __user *)optval)) 2231 return -EFAULT; 2232 2233 switch (optname) { 2234 case NETLINK_PKTINFO: 2235 if (val) 2236 nlk->flags |= NETLINK_F_RECV_PKTINFO; 2237 else 2238 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 2239 err = 0; 2240 break; 2241 case NETLINK_ADD_MEMBERSHIP: 2242 case NETLINK_DROP_MEMBERSHIP: { 2243 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2244 return -EPERM; 2245 err = netlink_realloc_groups(sk); 2246 if (err) 2247 return err; 2248 if (!val || val - 1 >= nlk->ngroups) 2249 return -EINVAL; 2250 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2251 err = nlk->netlink_bind(sock_net(sk), val); 2252 if (err) 2253 return err; 2254 } 2255 netlink_table_grab(); 2256 netlink_update_socket_mc(nlk, val, 2257 optname == NETLINK_ADD_MEMBERSHIP); 2258 netlink_table_ungrab(); 2259 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2260 nlk->netlink_unbind(sock_net(sk), val); 2261 2262 err = 0; 2263 break; 2264 } 2265 case NETLINK_BROADCAST_ERROR: 2266 if (val) 2267 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 2268 else 2269 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 2270 err = 0; 2271 break; 2272 case NETLINK_NO_ENOBUFS: 2273 if (val) { 2274 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 2275 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 2276 wake_up_interruptible(&nlk->wait); 2277 } else { 2278 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 2279 } 2280 err = 0; 2281 break; 2282 #ifdef CONFIG_NETLINK_MMAP 2283 case NETLINK_RX_RING: 2284 case NETLINK_TX_RING: { 2285 struct nl_mmap_req req; 2286 2287 /* Rings might consume more memory than queue limits, require 2288 * CAP_NET_ADMIN. 2289 */ 2290 if (!capable(CAP_NET_ADMIN)) 2291 return -EPERM; 2292 if (optlen < sizeof(req)) 2293 return -EINVAL; 2294 if (copy_from_user(&req, optval, sizeof(req))) 2295 return -EFAULT; 2296 err = netlink_set_ring(sk, &req, 2297 optname == NETLINK_TX_RING); 2298 break; 2299 } 2300 #endif /* CONFIG_NETLINK_MMAP */ 2301 case NETLINK_LISTEN_ALL_NSID: 2302 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 2303 return -EPERM; 2304 2305 if (val) 2306 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 2307 else 2308 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 2309 err = 0; 2310 break; 2311 case NETLINK_CAP_ACK: 2312 if (val) 2313 nlk->flags |= NETLINK_F_CAP_ACK; 2314 else 2315 nlk->flags &= ~NETLINK_F_CAP_ACK; 2316 err = 0; 2317 break; 2318 default: 2319 err = -ENOPROTOOPT; 2320 } 2321 return err; 2322 } 2323 2324 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2325 char __user *optval, int __user *optlen) 2326 { 2327 struct sock *sk = sock->sk; 2328 struct netlink_sock *nlk = nlk_sk(sk); 2329 int len, val, err; 2330 2331 if (level != SOL_NETLINK) 2332 return -ENOPROTOOPT; 2333 2334 if (get_user(len, optlen)) 2335 return -EFAULT; 2336 if (len < 0) 2337 return -EINVAL; 2338 2339 switch (optname) { 2340 case NETLINK_PKTINFO: 2341 if (len < sizeof(int)) 2342 return -EINVAL; 2343 len = sizeof(int); 2344 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 2345 if (put_user(len, optlen) || 2346 put_user(val, optval)) 2347 return -EFAULT; 2348 err = 0; 2349 break; 2350 case NETLINK_BROADCAST_ERROR: 2351 if (len < sizeof(int)) 2352 return -EINVAL; 2353 len = sizeof(int); 2354 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 2355 if (put_user(len, optlen) || 2356 put_user(val, optval)) 2357 return -EFAULT; 2358 err = 0; 2359 break; 2360 case NETLINK_NO_ENOBUFS: 2361 if (len < sizeof(int)) 2362 return -EINVAL; 2363 len = sizeof(int); 2364 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 2365 if (put_user(len, optlen) || 2366 put_user(val, optval)) 2367 return -EFAULT; 2368 err = 0; 2369 break; 2370 case NETLINK_LIST_MEMBERSHIPS: { 2371 int pos, idx, shift; 2372 2373 err = 0; 2374 netlink_lock_table(); 2375 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 2376 if (len - pos < sizeof(u32)) 2377 break; 2378 2379 idx = pos / sizeof(unsigned long); 2380 shift = (pos % sizeof(unsigned long)) * 8; 2381 if (put_user((u32)(nlk->groups[idx] >> shift), 2382 (u32 __user *)(optval + pos))) { 2383 err = -EFAULT; 2384 break; 2385 } 2386 } 2387 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 2388 err = -EFAULT; 2389 netlink_unlock_table(); 2390 break; 2391 } 2392 case NETLINK_CAP_ACK: 2393 if (len < sizeof(int)) 2394 return -EINVAL; 2395 len = sizeof(int); 2396 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 2397 if (put_user(len, optlen) || 2398 put_user(val, optval)) 2399 return -EFAULT; 2400 err = 0; 2401 break; 2402 default: 2403 err = -ENOPROTOOPT; 2404 } 2405 return err; 2406 } 2407 2408 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2409 { 2410 struct nl_pktinfo info; 2411 2412 info.group = NETLINK_CB(skb).dst_group; 2413 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2414 } 2415 2416 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 2417 struct sk_buff *skb) 2418 { 2419 if (!NETLINK_CB(skb).nsid_is_set) 2420 return; 2421 2422 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 2423 &NETLINK_CB(skb).nsid); 2424 } 2425 2426 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2427 { 2428 struct sock *sk = sock->sk; 2429 struct netlink_sock *nlk = nlk_sk(sk); 2430 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2431 u32 dst_portid; 2432 u32 dst_group; 2433 struct sk_buff *skb; 2434 int err; 2435 struct scm_cookie scm; 2436 u32 netlink_skb_flags = 0; 2437 2438 if (msg->msg_flags&MSG_OOB) 2439 return -EOPNOTSUPP; 2440 2441 err = scm_send(sock, msg, &scm, true); 2442 if (err < 0) 2443 return err; 2444 2445 if (msg->msg_namelen) { 2446 err = -EINVAL; 2447 if (addr->nl_family != AF_NETLINK) 2448 goto out; 2449 dst_portid = addr->nl_pid; 2450 dst_group = ffs(addr->nl_groups); 2451 err = -EPERM; 2452 if ((dst_group || dst_portid) && 2453 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2454 goto out; 2455 netlink_skb_flags |= NETLINK_SKB_DST; 2456 } else { 2457 dst_portid = nlk->dst_portid; 2458 dst_group = nlk->dst_group; 2459 } 2460 2461 if (!nlk->bound) { 2462 err = netlink_autobind(sock); 2463 if (err) 2464 goto out; 2465 } else { 2466 /* Ensure nlk is hashed and visible. */ 2467 smp_rmb(); 2468 } 2469 2470 /* It's a really convoluted way for userland to ask for mmaped 2471 * sendmsg(), but that's what we've got... 2472 */ 2473 if (netlink_tx_is_mmaped(sk) && 2474 iter_is_iovec(&msg->msg_iter) && 2475 msg->msg_iter.nr_segs == 1 && 2476 msg->msg_iter.iov->iov_base == NULL) { 2477 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2478 &scm); 2479 goto out; 2480 } 2481 2482 err = -EMSGSIZE; 2483 if (len > sk->sk_sndbuf - 32) 2484 goto out; 2485 err = -ENOBUFS; 2486 skb = netlink_alloc_large_skb(len, dst_group); 2487 if (skb == NULL) 2488 goto out; 2489 2490 NETLINK_CB(skb).portid = nlk->portid; 2491 NETLINK_CB(skb).dst_group = dst_group; 2492 NETLINK_CB(skb).creds = scm.creds; 2493 NETLINK_CB(skb).flags = netlink_skb_flags; 2494 2495 err = -EFAULT; 2496 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2497 kfree_skb(skb); 2498 goto out; 2499 } 2500 2501 err = security_netlink_send(sk, skb); 2502 if (err) { 2503 kfree_skb(skb); 2504 goto out; 2505 } 2506 2507 if (dst_group) { 2508 atomic_inc(&skb->users); 2509 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2510 } 2511 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2512 2513 out: 2514 scm_destroy(&scm); 2515 return err; 2516 } 2517 2518 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2519 int flags) 2520 { 2521 struct scm_cookie scm; 2522 struct sock *sk = sock->sk; 2523 struct netlink_sock *nlk = nlk_sk(sk); 2524 int noblock = flags&MSG_DONTWAIT; 2525 size_t copied; 2526 struct sk_buff *skb, *data_skb; 2527 int err, ret; 2528 2529 if (flags&MSG_OOB) 2530 return -EOPNOTSUPP; 2531 2532 copied = 0; 2533 2534 skb = skb_recv_datagram(sk, flags, noblock, &err); 2535 if (skb == NULL) 2536 goto out; 2537 2538 data_skb = skb; 2539 2540 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2541 if (unlikely(skb_shinfo(skb)->frag_list)) { 2542 /* 2543 * If this skb has a frag_list, then here that means that we 2544 * will have to use the frag_list skb's data for compat tasks 2545 * and the regular skb's data for normal (non-compat) tasks. 2546 * 2547 * If we need to send the compat skb, assign it to the 2548 * 'data_skb' variable so that it will be used below for data 2549 * copying. We keep 'skb' for everything else, including 2550 * freeing both later. 2551 */ 2552 if (flags & MSG_CMSG_COMPAT) 2553 data_skb = skb_shinfo(skb)->frag_list; 2554 } 2555 #endif 2556 2557 /* Record the max length of recvmsg() calls for future allocations */ 2558 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2559 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2560 16384); 2561 2562 copied = data_skb->len; 2563 if (len < copied) { 2564 msg->msg_flags |= MSG_TRUNC; 2565 copied = len; 2566 } 2567 2568 skb_reset_transport_header(data_skb); 2569 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2570 2571 if (msg->msg_name) { 2572 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2573 addr->nl_family = AF_NETLINK; 2574 addr->nl_pad = 0; 2575 addr->nl_pid = NETLINK_CB(skb).portid; 2576 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2577 msg->msg_namelen = sizeof(*addr); 2578 } 2579 2580 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 2581 netlink_cmsg_recv_pktinfo(msg, skb); 2582 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 2583 netlink_cmsg_listen_all_nsid(sk, msg, skb); 2584 2585 memset(&scm, 0, sizeof(scm)); 2586 scm.creds = *NETLINK_CREDS(skb); 2587 if (flags & MSG_TRUNC) 2588 copied = data_skb->len; 2589 2590 skb_free_datagram(sk, skb); 2591 2592 if (nlk->cb_running && 2593 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2594 ret = netlink_dump(sk); 2595 if (ret) { 2596 sk->sk_err = -ret; 2597 sk->sk_error_report(sk); 2598 } 2599 } 2600 2601 scm_recv(sock, msg, &scm, flags); 2602 out: 2603 netlink_rcv_wake(sk); 2604 return err ? : copied; 2605 } 2606 2607 static void netlink_data_ready(struct sock *sk) 2608 { 2609 BUG(); 2610 } 2611 2612 /* 2613 * We export these functions to other modules. They provide a 2614 * complete set of kernel non-blocking support for message 2615 * queueing. 2616 */ 2617 2618 struct sock * 2619 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2620 struct netlink_kernel_cfg *cfg) 2621 { 2622 struct socket *sock; 2623 struct sock *sk; 2624 struct netlink_sock *nlk; 2625 struct listeners *listeners = NULL; 2626 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2627 unsigned int groups; 2628 2629 BUG_ON(!nl_table); 2630 2631 if (unit < 0 || unit >= MAX_LINKS) 2632 return NULL; 2633 2634 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2635 return NULL; 2636 2637 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2638 goto out_sock_release_nosk; 2639 2640 sk = sock->sk; 2641 2642 if (!cfg || cfg->groups < 32) 2643 groups = 32; 2644 else 2645 groups = cfg->groups; 2646 2647 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2648 if (!listeners) 2649 goto out_sock_release; 2650 2651 sk->sk_data_ready = netlink_data_ready; 2652 if (cfg && cfg->input) 2653 nlk_sk(sk)->netlink_rcv = cfg->input; 2654 2655 if (netlink_insert(sk, 0)) 2656 goto out_sock_release; 2657 2658 nlk = nlk_sk(sk); 2659 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2660 2661 netlink_table_grab(); 2662 if (!nl_table[unit].registered) { 2663 nl_table[unit].groups = groups; 2664 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2665 nl_table[unit].cb_mutex = cb_mutex; 2666 nl_table[unit].module = module; 2667 if (cfg) { 2668 nl_table[unit].bind = cfg->bind; 2669 nl_table[unit].unbind = cfg->unbind; 2670 nl_table[unit].flags = cfg->flags; 2671 if (cfg->compare) 2672 nl_table[unit].compare = cfg->compare; 2673 } 2674 nl_table[unit].registered = 1; 2675 } else { 2676 kfree(listeners); 2677 nl_table[unit].registered++; 2678 } 2679 netlink_table_ungrab(); 2680 return sk; 2681 2682 out_sock_release: 2683 kfree(listeners); 2684 netlink_kernel_release(sk); 2685 return NULL; 2686 2687 out_sock_release_nosk: 2688 sock_release(sock); 2689 return NULL; 2690 } 2691 EXPORT_SYMBOL(__netlink_kernel_create); 2692 2693 void 2694 netlink_kernel_release(struct sock *sk) 2695 { 2696 if (sk == NULL || sk->sk_socket == NULL) 2697 return; 2698 2699 sock_release(sk->sk_socket); 2700 } 2701 EXPORT_SYMBOL(netlink_kernel_release); 2702 2703 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2704 { 2705 struct listeners *new, *old; 2706 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2707 2708 if (groups < 32) 2709 groups = 32; 2710 2711 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2712 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2713 if (!new) 2714 return -ENOMEM; 2715 old = nl_deref_protected(tbl->listeners); 2716 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2717 rcu_assign_pointer(tbl->listeners, new); 2718 2719 kfree_rcu(old, rcu); 2720 } 2721 tbl->groups = groups; 2722 2723 return 0; 2724 } 2725 2726 /** 2727 * netlink_change_ngroups - change number of multicast groups 2728 * 2729 * This changes the number of multicast groups that are available 2730 * on a certain netlink family. Note that it is not possible to 2731 * change the number of groups to below 32. Also note that it does 2732 * not implicitly call netlink_clear_multicast_users() when the 2733 * number of groups is reduced. 2734 * 2735 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2736 * @groups: The new number of groups. 2737 */ 2738 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2739 { 2740 int err; 2741 2742 netlink_table_grab(); 2743 err = __netlink_change_ngroups(sk, groups); 2744 netlink_table_ungrab(); 2745 2746 return err; 2747 } 2748 2749 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2750 { 2751 struct sock *sk; 2752 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2753 2754 sk_for_each_bound(sk, &tbl->mc_list) 2755 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2756 } 2757 2758 struct nlmsghdr * 2759 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2760 { 2761 struct nlmsghdr *nlh; 2762 int size = nlmsg_msg_size(len); 2763 2764 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2765 nlh->nlmsg_type = type; 2766 nlh->nlmsg_len = size; 2767 nlh->nlmsg_flags = flags; 2768 nlh->nlmsg_pid = portid; 2769 nlh->nlmsg_seq = seq; 2770 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2771 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2772 return nlh; 2773 } 2774 EXPORT_SYMBOL(__nlmsg_put); 2775 2776 /* 2777 * It looks a bit ugly. 2778 * It would be better to create kernel thread. 2779 */ 2780 2781 static int netlink_dump(struct sock *sk) 2782 { 2783 struct netlink_sock *nlk = nlk_sk(sk); 2784 struct netlink_callback *cb; 2785 struct sk_buff *skb = NULL; 2786 struct nlmsghdr *nlh; 2787 int len, err = -ENOBUFS; 2788 int alloc_min_size; 2789 int alloc_size; 2790 2791 mutex_lock(nlk->cb_mutex); 2792 if (!nlk->cb_running) { 2793 err = -EINVAL; 2794 goto errout_skb; 2795 } 2796 2797 if (!netlink_rx_is_mmaped(sk) && 2798 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2799 goto errout_skb; 2800 2801 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2802 * required, but it makes sense to _attempt_ a 16K bytes allocation 2803 * to reduce number of system calls on dump operations, if user 2804 * ever provided a big enough buffer. 2805 */ 2806 cb = &nlk->cb; 2807 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2808 2809 if (alloc_min_size < nlk->max_recvmsg_len) { 2810 alloc_size = nlk->max_recvmsg_len; 2811 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2812 GFP_KERNEL | 2813 __GFP_NOWARN | 2814 __GFP_NORETRY); 2815 } 2816 if (!skb) { 2817 alloc_size = alloc_min_size; 2818 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2819 GFP_KERNEL); 2820 } 2821 if (!skb) 2822 goto errout_skb; 2823 2824 /* Trim skb to allocated size. User is expected to provide buffer as 2825 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2826 * netlink_recvmsg())). dump will pack as many smaller messages as 2827 * could fit within the allocated skb. skb is typically allocated 2828 * with larger space than required (could be as much as near 2x the 2829 * requested size with align to next power of 2 approach). Allowing 2830 * dump to use the excess space makes it difficult for a user to have a 2831 * reasonable static buffer based on the expected largest dump of a 2832 * single netdev. The outcome is MSG_TRUNC error. 2833 */ 2834 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2835 netlink_skb_set_owner_r(skb, sk); 2836 2837 len = cb->dump(skb, cb); 2838 2839 if (len > 0) { 2840 mutex_unlock(nlk->cb_mutex); 2841 2842 if (sk_filter(sk, skb)) 2843 kfree_skb(skb); 2844 else 2845 __netlink_sendskb(sk, skb); 2846 return 0; 2847 } 2848 2849 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2850 if (!nlh) 2851 goto errout_skb; 2852 2853 nl_dump_check_consistent(cb, nlh); 2854 2855 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2856 2857 if (sk_filter(sk, skb)) 2858 kfree_skb(skb); 2859 else 2860 __netlink_sendskb(sk, skb); 2861 2862 if (cb->done) 2863 cb->done(cb); 2864 2865 nlk->cb_running = false; 2866 mutex_unlock(nlk->cb_mutex); 2867 module_put(cb->module); 2868 consume_skb(cb->skb); 2869 return 0; 2870 2871 errout_skb: 2872 mutex_unlock(nlk->cb_mutex); 2873 kfree_skb(skb); 2874 return err; 2875 } 2876 2877 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2878 const struct nlmsghdr *nlh, 2879 struct netlink_dump_control *control) 2880 { 2881 struct netlink_callback *cb; 2882 struct sock *sk; 2883 struct netlink_sock *nlk; 2884 int ret; 2885 2886 /* Memory mapped dump requests need to be copied to avoid looping 2887 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2888 * a reference to the skb. 2889 */ 2890 if (netlink_skb_is_mmaped(skb)) { 2891 skb = skb_copy(skb, GFP_KERNEL); 2892 if (skb == NULL) 2893 return -ENOBUFS; 2894 } else 2895 atomic_inc(&skb->users); 2896 2897 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2898 if (sk == NULL) { 2899 ret = -ECONNREFUSED; 2900 goto error_free; 2901 } 2902 2903 nlk = nlk_sk(sk); 2904 mutex_lock(nlk->cb_mutex); 2905 /* A dump is in progress... */ 2906 if (nlk->cb_running) { 2907 ret = -EBUSY; 2908 goto error_unlock; 2909 } 2910 /* add reference of module which cb->dump belongs to */ 2911 if (!try_module_get(control->module)) { 2912 ret = -EPROTONOSUPPORT; 2913 goto error_unlock; 2914 } 2915 2916 cb = &nlk->cb; 2917 memset(cb, 0, sizeof(*cb)); 2918 cb->start = control->start; 2919 cb->dump = control->dump; 2920 cb->done = control->done; 2921 cb->nlh = nlh; 2922 cb->data = control->data; 2923 cb->module = control->module; 2924 cb->min_dump_alloc = control->min_dump_alloc; 2925 cb->skb = skb; 2926 2927 nlk->cb_running = true; 2928 2929 mutex_unlock(nlk->cb_mutex); 2930 2931 if (cb->start) 2932 cb->start(cb); 2933 2934 ret = netlink_dump(sk); 2935 sock_put(sk); 2936 2937 if (ret) 2938 return ret; 2939 2940 /* We successfully started a dump, by returning -EINTR we 2941 * signal not to send ACK even if it was requested. 2942 */ 2943 return -EINTR; 2944 2945 error_unlock: 2946 sock_put(sk); 2947 mutex_unlock(nlk->cb_mutex); 2948 error_free: 2949 kfree_skb(skb); 2950 return ret; 2951 } 2952 EXPORT_SYMBOL(__netlink_dump_start); 2953 2954 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2955 { 2956 struct sk_buff *skb; 2957 struct nlmsghdr *rep; 2958 struct nlmsgerr *errmsg; 2959 size_t payload = sizeof(*errmsg); 2960 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2961 2962 /* Error messages get the original request appened, unless the user 2963 * requests to cap the error message. 2964 */ 2965 if (!(nlk->flags & NETLINK_F_CAP_ACK) && err) 2966 payload += nlmsg_len(nlh); 2967 2968 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2969 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2970 if (!skb) { 2971 struct sock *sk; 2972 2973 sk = netlink_lookup(sock_net(in_skb->sk), 2974 in_skb->sk->sk_protocol, 2975 NETLINK_CB(in_skb).portid); 2976 if (sk) { 2977 sk->sk_err = ENOBUFS; 2978 sk->sk_error_report(sk); 2979 sock_put(sk); 2980 } 2981 return; 2982 } 2983 2984 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2985 NLMSG_ERROR, payload, 0); 2986 errmsg = nlmsg_data(rep); 2987 errmsg->error = err; 2988 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2989 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2990 } 2991 EXPORT_SYMBOL(netlink_ack); 2992 2993 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2994 struct nlmsghdr *)) 2995 { 2996 struct nlmsghdr *nlh; 2997 int err; 2998 2999 while (skb->len >= nlmsg_total_size(0)) { 3000 int msglen; 3001 3002 nlh = nlmsg_hdr(skb); 3003 err = 0; 3004 3005 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 3006 return 0; 3007 3008 /* Only requests are handled by the kernel */ 3009 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 3010 goto ack; 3011 3012 /* Skip control messages */ 3013 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 3014 goto ack; 3015 3016 err = cb(skb, nlh); 3017 if (err == -EINTR) 3018 goto skip; 3019 3020 ack: 3021 if (nlh->nlmsg_flags & NLM_F_ACK || err) 3022 netlink_ack(skb, nlh, err); 3023 3024 skip: 3025 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 3026 if (msglen > skb->len) 3027 msglen = skb->len; 3028 skb_pull(skb, msglen); 3029 } 3030 3031 return 0; 3032 } 3033 EXPORT_SYMBOL(netlink_rcv_skb); 3034 3035 /** 3036 * nlmsg_notify - send a notification netlink message 3037 * @sk: netlink socket to use 3038 * @skb: notification message 3039 * @portid: destination netlink portid for reports or 0 3040 * @group: destination multicast group or 0 3041 * @report: 1 to report back, 0 to disable 3042 * @flags: allocation flags 3043 */ 3044 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 3045 unsigned int group, int report, gfp_t flags) 3046 { 3047 int err = 0; 3048 3049 if (group) { 3050 int exclude_portid = 0; 3051 3052 if (report) { 3053 atomic_inc(&skb->users); 3054 exclude_portid = portid; 3055 } 3056 3057 /* errors reported via destination sk->sk_err, but propagate 3058 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 3059 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 3060 } 3061 3062 if (report) { 3063 int err2; 3064 3065 err2 = nlmsg_unicast(sk, skb, portid); 3066 if (!err || err == -ESRCH) 3067 err = err2; 3068 } 3069 3070 return err; 3071 } 3072 EXPORT_SYMBOL(nlmsg_notify); 3073 3074 #ifdef CONFIG_PROC_FS 3075 struct nl_seq_iter { 3076 struct seq_net_private p; 3077 struct rhashtable_iter hti; 3078 int link; 3079 }; 3080 3081 static int netlink_walk_start(struct nl_seq_iter *iter) 3082 { 3083 int err; 3084 3085 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 3086 if (err) { 3087 iter->link = MAX_LINKS; 3088 return err; 3089 } 3090 3091 err = rhashtable_walk_start(&iter->hti); 3092 return err == -EAGAIN ? 0 : err; 3093 } 3094 3095 static void netlink_walk_stop(struct nl_seq_iter *iter) 3096 { 3097 rhashtable_walk_stop(&iter->hti); 3098 rhashtable_walk_exit(&iter->hti); 3099 } 3100 3101 static void *__netlink_seq_next(struct seq_file *seq) 3102 { 3103 struct nl_seq_iter *iter = seq->private; 3104 struct netlink_sock *nlk; 3105 3106 do { 3107 for (;;) { 3108 int err; 3109 3110 nlk = rhashtable_walk_next(&iter->hti); 3111 3112 if (IS_ERR(nlk)) { 3113 if (PTR_ERR(nlk) == -EAGAIN) 3114 continue; 3115 3116 return nlk; 3117 } 3118 3119 if (nlk) 3120 break; 3121 3122 netlink_walk_stop(iter); 3123 if (++iter->link >= MAX_LINKS) 3124 return NULL; 3125 3126 err = netlink_walk_start(iter); 3127 if (err) 3128 return ERR_PTR(err); 3129 } 3130 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 3131 3132 return nlk; 3133 } 3134 3135 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 3136 { 3137 struct nl_seq_iter *iter = seq->private; 3138 void *obj = SEQ_START_TOKEN; 3139 loff_t pos; 3140 int err; 3141 3142 iter->link = 0; 3143 3144 err = netlink_walk_start(iter); 3145 if (err) 3146 return ERR_PTR(err); 3147 3148 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 3149 obj = __netlink_seq_next(seq); 3150 3151 return obj; 3152 } 3153 3154 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3155 { 3156 ++*pos; 3157 return __netlink_seq_next(seq); 3158 } 3159 3160 static void netlink_seq_stop(struct seq_file *seq, void *v) 3161 { 3162 struct nl_seq_iter *iter = seq->private; 3163 3164 if (iter->link >= MAX_LINKS) 3165 return; 3166 3167 netlink_walk_stop(iter); 3168 } 3169 3170 3171 static int netlink_seq_show(struct seq_file *seq, void *v) 3172 { 3173 if (v == SEQ_START_TOKEN) { 3174 seq_puts(seq, 3175 "sk Eth Pid Groups " 3176 "Rmem Wmem Dump Locks Drops Inode\n"); 3177 } else { 3178 struct sock *s = v; 3179 struct netlink_sock *nlk = nlk_sk(s); 3180 3181 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3182 s, 3183 s->sk_protocol, 3184 nlk->portid, 3185 nlk->groups ? (u32)nlk->groups[0] : 0, 3186 sk_rmem_alloc_get(s), 3187 sk_wmem_alloc_get(s), 3188 nlk->cb_running, 3189 atomic_read(&s->sk_refcnt), 3190 atomic_read(&s->sk_drops), 3191 sock_i_ino(s) 3192 ); 3193 3194 } 3195 return 0; 3196 } 3197 3198 static const struct seq_operations netlink_seq_ops = { 3199 .start = netlink_seq_start, 3200 .next = netlink_seq_next, 3201 .stop = netlink_seq_stop, 3202 .show = netlink_seq_show, 3203 }; 3204 3205 3206 static int netlink_seq_open(struct inode *inode, struct file *file) 3207 { 3208 return seq_open_net(inode, file, &netlink_seq_ops, 3209 sizeof(struct nl_seq_iter)); 3210 } 3211 3212 static const struct file_operations netlink_seq_fops = { 3213 .owner = THIS_MODULE, 3214 .open = netlink_seq_open, 3215 .read = seq_read, 3216 .llseek = seq_lseek, 3217 .release = seq_release_net, 3218 }; 3219 3220 #endif 3221 3222 int netlink_register_notifier(struct notifier_block *nb) 3223 { 3224 return atomic_notifier_chain_register(&netlink_chain, nb); 3225 } 3226 EXPORT_SYMBOL(netlink_register_notifier); 3227 3228 int netlink_unregister_notifier(struct notifier_block *nb) 3229 { 3230 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3231 } 3232 EXPORT_SYMBOL(netlink_unregister_notifier); 3233 3234 static const struct proto_ops netlink_ops = { 3235 .family = PF_NETLINK, 3236 .owner = THIS_MODULE, 3237 .release = netlink_release, 3238 .bind = netlink_bind, 3239 .connect = netlink_connect, 3240 .socketpair = sock_no_socketpair, 3241 .accept = sock_no_accept, 3242 .getname = netlink_getname, 3243 .poll = netlink_poll, 3244 .ioctl = sock_no_ioctl, 3245 .listen = sock_no_listen, 3246 .shutdown = sock_no_shutdown, 3247 .setsockopt = netlink_setsockopt, 3248 .getsockopt = netlink_getsockopt, 3249 .sendmsg = netlink_sendmsg, 3250 .recvmsg = netlink_recvmsg, 3251 .mmap = netlink_mmap, 3252 .sendpage = sock_no_sendpage, 3253 }; 3254 3255 static const struct net_proto_family netlink_family_ops = { 3256 .family = PF_NETLINK, 3257 .create = netlink_create, 3258 .owner = THIS_MODULE, /* for consistency 8) */ 3259 }; 3260 3261 static int __net_init netlink_net_init(struct net *net) 3262 { 3263 #ifdef CONFIG_PROC_FS 3264 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3265 return -ENOMEM; 3266 #endif 3267 return 0; 3268 } 3269 3270 static void __net_exit netlink_net_exit(struct net *net) 3271 { 3272 #ifdef CONFIG_PROC_FS 3273 remove_proc_entry("netlink", net->proc_net); 3274 #endif 3275 } 3276 3277 static void __init netlink_add_usersock_entry(void) 3278 { 3279 struct listeners *listeners; 3280 int groups = 32; 3281 3282 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3283 if (!listeners) 3284 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3285 3286 netlink_table_grab(); 3287 3288 nl_table[NETLINK_USERSOCK].groups = groups; 3289 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3290 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3291 nl_table[NETLINK_USERSOCK].registered = 1; 3292 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3293 3294 netlink_table_ungrab(); 3295 } 3296 3297 static struct pernet_operations __net_initdata netlink_net_ops = { 3298 .init = netlink_net_init, 3299 .exit = netlink_net_exit, 3300 }; 3301 3302 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 3303 { 3304 const struct netlink_sock *nlk = data; 3305 struct netlink_compare_arg arg; 3306 3307 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 3308 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 3309 } 3310 3311 static const struct rhashtable_params netlink_rhashtable_params = { 3312 .head_offset = offsetof(struct netlink_sock, node), 3313 .key_len = netlink_compare_arg_len, 3314 .obj_hashfn = netlink_hash, 3315 .obj_cmpfn = netlink_compare, 3316 .automatic_shrinking = true, 3317 }; 3318 3319 static int __init netlink_proto_init(void) 3320 { 3321 int i; 3322 int err = proto_register(&netlink_proto, 0); 3323 3324 if (err != 0) 3325 goto out; 3326 3327 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3328 3329 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3330 if (!nl_table) 3331 goto panic; 3332 3333 for (i = 0; i < MAX_LINKS; i++) { 3334 if (rhashtable_init(&nl_table[i].hash, 3335 &netlink_rhashtable_params) < 0) { 3336 while (--i > 0) 3337 rhashtable_destroy(&nl_table[i].hash); 3338 kfree(nl_table); 3339 goto panic; 3340 } 3341 } 3342 3343 INIT_LIST_HEAD(&netlink_tap_all); 3344 3345 netlink_add_usersock_entry(); 3346 3347 sock_register(&netlink_family_ops); 3348 register_pernet_subsys(&netlink_net_ops); 3349 /* The netlink device handler may be needed early. */ 3350 rtnetlink_init(); 3351 out: 3352 return err; 3353 panic: 3354 panic("netlink_init: Cannot allocate nl_table\n"); 3355 } 3356 3357 core_initcall(netlink_proto_init); 3358