1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_KERNEL_SOCKET 0x1 83 #define NETLINK_RECV_PKTINFO 0x2 84 #define NETLINK_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_RECV_NO_ENOBUFS 0x8 86 87 static inline int netlink_is_kernel(struct sock *sk) 88 { 89 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 90 } 91 92 struct netlink_table *nl_table; 93 EXPORT_SYMBOL_GPL(nl_table); 94 95 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 96 97 static int netlink_dump(struct sock *sk); 98 static void netlink_skb_destructor(struct sk_buff *skb); 99 100 /* nl_table locking explained: 101 * Lookup and traversal are protected with an RCU read-side lock. Insertion 102 * and removal are protected with per bucket lock while using RCU list 103 * modification primitives and may run in parallel to RCU protected lookups. 104 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 105 * been acquired * either during or after the socket has been removed from 106 * the list and after an RCU grace period. 107 */ 108 DEFINE_RWLOCK(nl_table_lock); 109 EXPORT_SYMBOL_GPL(nl_table_lock); 110 static atomic_t nl_table_users = ATOMIC_INIT(0); 111 112 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 113 114 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 115 116 static DEFINE_SPINLOCK(netlink_tap_lock); 117 static struct list_head netlink_tap_all __read_mostly; 118 119 static inline u32 netlink_group_mask(u32 group) 120 { 121 return group ? 1 << (group - 1) : 0; 122 } 123 124 int netlink_add_tap(struct netlink_tap *nt) 125 { 126 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 127 return -EINVAL; 128 129 spin_lock(&netlink_tap_lock); 130 list_add_rcu(&nt->list, &netlink_tap_all); 131 spin_unlock(&netlink_tap_lock); 132 133 __module_get(nt->module); 134 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(netlink_add_tap); 138 139 static int __netlink_remove_tap(struct netlink_tap *nt) 140 { 141 bool found = false; 142 struct netlink_tap *tmp; 143 144 spin_lock(&netlink_tap_lock); 145 146 list_for_each_entry(tmp, &netlink_tap_all, list) { 147 if (nt == tmp) { 148 list_del_rcu(&nt->list); 149 found = true; 150 goto out; 151 } 152 } 153 154 pr_warn("__netlink_remove_tap: %p not found\n", nt); 155 out: 156 spin_unlock(&netlink_tap_lock); 157 158 if (found && nt->module) 159 module_put(nt->module); 160 161 return found ? 0 : -ENODEV; 162 } 163 164 int netlink_remove_tap(struct netlink_tap *nt) 165 { 166 int ret; 167 168 ret = __netlink_remove_tap(nt); 169 synchronize_net(); 170 171 return ret; 172 } 173 EXPORT_SYMBOL_GPL(netlink_remove_tap); 174 175 static bool netlink_filter_tap(const struct sk_buff *skb) 176 { 177 struct sock *sk = skb->sk; 178 179 /* We take the more conservative approach and 180 * whitelist socket protocols that may pass. 181 */ 182 switch (sk->sk_protocol) { 183 case NETLINK_ROUTE: 184 case NETLINK_USERSOCK: 185 case NETLINK_SOCK_DIAG: 186 case NETLINK_NFLOG: 187 case NETLINK_XFRM: 188 case NETLINK_FIB_LOOKUP: 189 case NETLINK_NETFILTER: 190 case NETLINK_GENERIC: 191 return true; 192 } 193 194 return false; 195 } 196 197 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 198 struct net_device *dev) 199 { 200 struct sk_buff *nskb; 201 struct sock *sk = skb->sk; 202 int ret = -ENOMEM; 203 204 dev_hold(dev); 205 nskb = skb_clone(skb, GFP_ATOMIC); 206 if (nskb) { 207 nskb->dev = dev; 208 nskb->protocol = htons((u16) sk->sk_protocol); 209 nskb->pkt_type = netlink_is_kernel(sk) ? 210 PACKET_KERNEL : PACKET_USER; 211 skb_reset_network_header(nskb); 212 ret = dev_queue_xmit(nskb); 213 if (unlikely(ret > 0)) 214 ret = net_xmit_errno(ret); 215 } 216 217 dev_put(dev); 218 return ret; 219 } 220 221 static void __netlink_deliver_tap(struct sk_buff *skb) 222 { 223 int ret; 224 struct netlink_tap *tmp; 225 226 if (!netlink_filter_tap(skb)) 227 return; 228 229 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 230 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 231 if (unlikely(ret)) 232 break; 233 } 234 } 235 236 static void netlink_deliver_tap(struct sk_buff *skb) 237 { 238 rcu_read_lock(); 239 240 if (unlikely(!list_empty(&netlink_tap_all))) 241 __netlink_deliver_tap(skb); 242 243 rcu_read_unlock(); 244 } 245 246 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 247 struct sk_buff *skb) 248 { 249 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 250 netlink_deliver_tap(skb); 251 } 252 253 static void netlink_overrun(struct sock *sk) 254 { 255 struct netlink_sock *nlk = nlk_sk(sk); 256 257 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 258 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 259 sk->sk_err = ENOBUFS; 260 sk->sk_error_report(sk); 261 } 262 } 263 atomic_inc(&sk->sk_drops); 264 } 265 266 static void netlink_rcv_wake(struct sock *sk) 267 { 268 struct netlink_sock *nlk = nlk_sk(sk); 269 270 if (skb_queue_empty(&sk->sk_receive_queue)) 271 clear_bit(NETLINK_CONGESTED, &nlk->state); 272 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 273 wake_up_interruptible(&nlk->wait); 274 } 275 276 #ifdef CONFIG_NETLINK_MMAP 277 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 278 { 279 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 280 } 281 282 static bool netlink_rx_is_mmaped(struct sock *sk) 283 { 284 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 285 } 286 287 static bool netlink_tx_is_mmaped(struct sock *sk) 288 { 289 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 290 } 291 292 static __pure struct page *pgvec_to_page(const void *addr) 293 { 294 if (is_vmalloc_addr(addr)) 295 return vmalloc_to_page(addr); 296 else 297 return virt_to_page(addr); 298 } 299 300 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 301 { 302 unsigned int i; 303 304 for (i = 0; i < len; i++) { 305 if (pg_vec[i] != NULL) { 306 if (is_vmalloc_addr(pg_vec[i])) 307 vfree(pg_vec[i]); 308 else 309 free_pages((unsigned long)pg_vec[i], order); 310 } 311 } 312 kfree(pg_vec); 313 } 314 315 static void *alloc_one_pg_vec_page(unsigned long order) 316 { 317 void *buffer; 318 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 319 __GFP_NOWARN | __GFP_NORETRY; 320 321 buffer = (void *)__get_free_pages(gfp_flags, order); 322 if (buffer != NULL) 323 return buffer; 324 325 buffer = vzalloc((1 << order) * PAGE_SIZE); 326 if (buffer != NULL) 327 return buffer; 328 329 gfp_flags &= ~__GFP_NORETRY; 330 return (void *)__get_free_pages(gfp_flags, order); 331 } 332 333 static void **alloc_pg_vec(struct netlink_sock *nlk, 334 struct nl_mmap_req *req, unsigned int order) 335 { 336 unsigned int block_nr = req->nm_block_nr; 337 unsigned int i; 338 void **pg_vec; 339 340 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 341 if (pg_vec == NULL) 342 return NULL; 343 344 for (i = 0; i < block_nr; i++) { 345 pg_vec[i] = alloc_one_pg_vec_page(order); 346 if (pg_vec[i] == NULL) 347 goto err1; 348 } 349 350 return pg_vec; 351 err1: 352 free_pg_vec(pg_vec, order, block_nr); 353 return NULL; 354 } 355 356 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 357 bool closing, bool tx_ring) 358 { 359 struct netlink_sock *nlk = nlk_sk(sk); 360 struct netlink_ring *ring; 361 struct sk_buff_head *queue; 362 void **pg_vec = NULL; 363 unsigned int order = 0; 364 int err; 365 366 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 367 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 368 369 if (!closing) { 370 if (atomic_read(&nlk->mapped)) 371 return -EBUSY; 372 if (atomic_read(&ring->pending)) 373 return -EBUSY; 374 } 375 376 if (req->nm_block_nr) { 377 if (ring->pg_vec != NULL) 378 return -EBUSY; 379 380 if ((int)req->nm_block_size <= 0) 381 return -EINVAL; 382 if (!PAGE_ALIGNED(req->nm_block_size)) 383 return -EINVAL; 384 if (req->nm_frame_size < NL_MMAP_HDRLEN) 385 return -EINVAL; 386 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 387 return -EINVAL; 388 389 ring->frames_per_block = req->nm_block_size / 390 req->nm_frame_size; 391 if (ring->frames_per_block == 0) 392 return -EINVAL; 393 if (ring->frames_per_block * req->nm_block_nr != 394 req->nm_frame_nr) 395 return -EINVAL; 396 397 order = get_order(req->nm_block_size); 398 pg_vec = alloc_pg_vec(nlk, req, order); 399 if (pg_vec == NULL) 400 return -ENOMEM; 401 } else { 402 if (req->nm_frame_nr) 403 return -EINVAL; 404 } 405 406 err = -EBUSY; 407 mutex_lock(&nlk->pg_vec_lock); 408 if (closing || atomic_read(&nlk->mapped) == 0) { 409 err = 0; 410 spin_lock_bh(&queue->lock); 411 412 ring->frame_max = req->nm_frame_nr - 1; 413 ring->head = 0; 414 ring->frame_size = req->nm_frame_size; 415 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 416 417 swap(ring->pg_vec_len, req->nm_block_nr); 418 swap(ring->pg_vec_order, order); 419 swap(ring->pg_vec, pg_vec); 420 421 __skb_queue_purge(queue); 422 spin_unlock_bh(&queue->lock); 423 424 WARN_ON(atomic_read(&nlk->mapped)); 425 } 426 mutex_unlock(&nlk->pg_vec_lock); 427 428 if (pg_vec) 429 free_pg_vec(pg_vec, order, req->nm_block_nr); 430 return err; 431 } 432 433 static void netlink_mm_open(struct vm_area_struct *vma) 434 { 435 struct file *file = vma->vm_file; 436 struct socket *sock = file->private_data; 437 struct sock *sk = sock->sk; 438 439 if (sk) 440 atomic_inc(&nlk_sk(sk)->mapped); 441 } 442 443 static void netlink_mm_close(struct vm_area_struct *vma) 444 { 445 struct file *file = vma->vm_file; 446 struct socket *sock = file->private_data; 447 struct sock *sk = sock->sk; 448 449 if (sk) 450 atomic_dec(&nlk_sk(sk)->mapped); 451 } 452 453 static const struct vm_operations_struct netlink_mmap_ops = { 454 .open = netlink_mm_open, 455 .close = netlink_mm_close, 456 }; 457 458 static int netlink_mmap(struct file *file, struct socket *sock, 459 struct vm_area_struct *vma) 460 { 461 struct sock *sk = sock->sk; 462 struct netlink_sock *nlk = nlk_sk(sk); 463 struct netlink_ring *ring; 464 unsigned long start, size, expected; 465 unsigned int i; 466 int err = -EINVAL; 467 468 if (vma->vm_pgoff) 469 return -EINVAL; 470 471 mutex_lock(&nlk->pg_vec_lock); 472 473 expected = 0; 474 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 475 if (ring->pg_vec == NULL) 476 continue; 477 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 478 } 479 480 if (expected == 0) 481 goto out; 482 483 size = vma->vm_end - vma->vm_start; 484 if (size != expected) 485 goto out; 486 487 start = vma->vm_start; 488 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 489 if (ring->pg_vec == NULL) 490 continue; 491 492 for (i = 0; i < ring->pg_vec_len; i++) { 493 struct page *page; 494 void *kaddr = ring->pg_vec[i]; 495 unsigned int pg_num; 496 497 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 498 page = pgvec_to_page(kaddr); 499 err = vm_insert_page(vma, start, page); 500 if (err < 0) 501 goto out; 502 start += PAGE_SIZE; 503 kaddr += PAGE_SIZE; 504 } 505 } 506 } 507 508 atomic_inc(&nlk->mapped); 509 vma->vm_ops = &netlink_mmap_ops; 510 err = 0; 511 out: 512 mutex_unlock(&nlk->pg_vec_lock); 513 return err; 514 } 515 516 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 517 { 518 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 519 struct page *p_start, *p_end; 520 521 /* First page is flushed through netlink_{get,set}_status */ 522 p_start = pgvec_to_page(hdr + PAGE_SIZE); 523 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 524 while (p_start <= p_end) { 525 flush_dcache_page(p_start); 526 p_start++; 527 } 528 #endif 529 } 530 531 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 532 { 533 smp_rmb(); 534 flush_dcache_page(pgvec_to_page(hdr)); 535 return hdr->nm_status; 536 } 537 538 static void netlink_set_status(struct nl_mmap_hdr *hdr, 539 enum nl_mmap_status status) 540 { 541 smp_mb(); 542 hdr->nm_status = status; 543 flush_dcache_page(pgvec_to_page(hdr)); 544 } 545 546 static struct nl_mmap_hdr * 547 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 548 { 549 unsigned int pg_vec_pos, frame_off; 550 551 pg_vec_pos = pos / ring->frames_per_block; 552 frame_off = pos % ring->frames_per_block; 553 554 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 555 } 556 557 static struct nl_mmap_hdr * 558 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 559 enum nl_mmap_status status) 560 { 561 struct nl_mmap_hdr *hdr; 562 563 hdr = __netlink_lookup_frame(ring, pos); 564 if (netlink_get_status(hdr) != status) 565 return NULL; 566 567 return hdr; 568 } 569 570 static struct nl_mmap_hdr * 571 netlink_current_frame(const struct netlink_ring *ring, 572 enum nl_mmap_status status) 573 { 574 return netlink_lookup_frame(ring, ring->head, status); 575 } 576 577 static struct nl_mmap_hdr * 578 netlink_previous_frame(const struct netlink_ring *ring, 579 enum nl_mmap_status status) 580 { 581 unsigned int prev; 582 583 prev = ring->head ? ring->head - 1 : ring->frame_max; 584 return netlink_lookup_frame(ring, prev, status); 585 } 586 587 static void netlink_increment_head(struct netlink_ring *ring) 588 { 589 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 590 } 591 592 static void netlink_forward_ring(struct netlink_ring *ring) 593 { 594 unsigned int head = ring->head, pos = head; 595 const struct nl_mmap_hdr *hdr; 596 597 do { 598 hdr = __netlink_lookup_frame(ring, pos); 599 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 600 break; 601 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 602 break; 603 netlink_increment_head(ring); 604 } while (ring->head != head); 605 } 606 607 static bool netlink_dump_space(struct netlink_sock *nlk) 608 { 609 struct netlink_ring *ring = &nlk->rx_ring; 610 struct nl_mmap_hdr *hdr; 611 unsigned int n; 612 613 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 614 if (hdr == NULL) 615 return false; 616 617 n = ring->head + ring->frame_max / 2; 618 if (n > ring->frame_max) 619 n -= ring->frame_max; 620 621 hdr = __netlink_lookup_frame(ring, n); 622 623 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 624 } 625 626 static unsigned int netlink_poll(struct file *file, struct socket *sock, 627 poll_table *wait) 628 { 629 struct sock *sk = sock->sk; 630 struct netlink_sock *nlk = nlk_sk(sk); 631 unsigned int mask; 632 int err; 633 634 if (nlk->rx_ring.pg_vec != NULL) { 635 /* Memory mapped sockets don't call recvmsg(), so flow control 636 * for dumps is performed here. A dump is allowed to continue 637 * if at least half the ring is unused. 638 */ 639 while (nlk->cb_running && netlink_dump_space(nlk)) { 640 err = netlink_dump(sk); 641 if (err < 0) { 642 sk->sk_err = -err; 643 sk->sk_error_report(sk); 644 break; 645 } 646 } 647 netlink_rcv_wake(sk); 648 } 649 650 mask = datagram_poll(file, sock, wait); 651 652 spin_lock_bh(&sk->sk_receive_queue.lock); 653 if (nlk->rx_ring.pg_vec) { 654 netlink_forward_ring(&nlk->rx_ring); 655 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 656 mask |= POLLIN | POLLRDNORM; 657 } 658 spin_unlock_bh(&sk->sk_receive_queue.lock); 659 660 spin_lock_bh(&sk->sk_write_queue.lock); 661 if (nlk->tx_ring.pg_vec) { 662 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 663 mask |= POLLOUT | POLLWRNORM; 664 } 665 spin_unlock_bh(&sk->sk_write_queue.lock); 666 667 return mask; 668 } 669 670 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 671 { 672 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 673 } 674 675 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 676 struct netlink_ring *ring, 677 struct nl_mmap_hdr *hdr) 678 { 679 unsigned int size; 680 void *data; 681 682 size = ring->frame_size - NL_MMAP_HDRLEN; 683 data = (void *)hdr + NL_MMAP_HDRLEN; 684 685 skb->head = data; 686 skb->data = data; 687 skb_reset_tail_pointer(skb); 688 skb->end = skb->tail + size; 689 skb->len = 0; 690 691 skb->destructor = netlink_skb_destructor; 692 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 693 NETLINK_CB(skb).sk = sk; 694 } 695 696 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 697 u32 dst_portid, u32 dst_group, 698 struct scm_cookie *scm) 699 { 700 struct netlink_sock *nlk = nlk_sk(sk); 701 struct netlink_ring *ring; 702 struct nl_mmap_hdr *hdr; 703 struct sk_buff *skb; 704 unsigned int maxlen; 705 int err = 0, len = 0; 706 707 mutex_lock(&nlk->pg_vec_lock); 708 709 ring = &nlk->tx_ring; 710 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 711 712 do { 713 unsigned int nm_len; 714 715 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 716 if (hdr == NULL) { 717 if (!(msg->msg_flags & MSG_DONTWAIT) && 718 atomic_read(&nlk->tx_ring.pending)) 719 schedule(); 720 continue; 721 } 722 723 nm_len = ACCESS_ONCE(hdr->nm_len); 724 if (nm_len > maxlen) { 725 err = -EINVAL; 726 goto out; 727 } 728 729 netlink_frame_flush_dcache(hdr, nm_len); 730 731 skb = alloc_skb(nm_len, GFP_KERNEL); 732 if (skb == NULL) { 733 err = -ENOBUFS; 734 goto out; 735 } 736 __skb_put(skb, nm_len); 737 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 738 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 739 740 netlink_increment_head(ring); 741 742 NETLINK_CB(skb).portid = nlk->portid; 743 NETLINK_CB(skb).dst_group = dst_group; 744 NETLINK_CB(skb).creds = scm->creds; 745 746 err = security_netlink_send(sk, skb); 747 if (err) { 748 kfree_skb(skb); 749 goto out; 750 } 751 752 if (unlikely(dst_group)) { 753 atomic_inc(&skb->users); 754 netlink_broadcast(sk, skb, dst_portid, dst_group, 755 GFP_KERNEL); 756 } 757 err = netlink_unicast(sk, skb, dst_portid, 758 msg->msg_flags & MSG_DONTWAIT); 759 if (err < 0) 760 goto out; 761 len += err; 762 763 } while (hdr != NULL || 764 (!(msg->msg_flags & MSG_DONTWAIT) && 765 atomic_read(&nlk->tx_ring.pending))); 766 767 if (len > 0) 768 err = len; 769 out: 770 mutex_unlock(&nlk->pg_vec_lock); 771 return err; 772 } 773 774 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 775 { 776 struct nl_mmap_hdr *hdr; 777 778 hdr = netlink_mmap_hdr(skb); 779 hdr->nm_len = skb->len; 780 hdr->nm_group = NETLINK_CB(skb).dst_group; 781 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 782 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 783 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 784 netlink_frame_flush_dcache(hdr, hdr->nm_len); 785 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 786 787 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 788 kfree_skb(skb); 789 } 790 791 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 792 { 793 struct netlink_sock *nlk = nlk_sk(sk); 794 struct netlink_ring *ring = &nlk->rx_ring; 795 struct nl_mmap_hdr *hdr; 796 797 spin_lock_bh(&sk->sk_receive_queue.lock); 798 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 799 if (hdr == NULL) { 800 spin_unlock_bh(&sk->sk_receive_queue.lock); 801 kfree_skb(skb); 802 netlink_overrun(sk); 803 return; 804 } 805 netlink_increment_head(ring); 806 __skb_queue_tail(&sk->sk_receive_queue, skb); 807 spin_unlock_bh(&sk->sk_receive_queue.lock); 808 809 hdr->nm_len = skb->len; 810 hdr->nm_group = NETLINK_CB(skb).dst_group; 811 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 812 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 813 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 814 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 815 } 816 817 #else /* CONFIG_NETLINK_MMAP */ 818 #define netlink_skb_is_mmaped(skb) false 819 #define netlink_rx_is_mmaped(sk) false 820 #define netlink_tx_is_mmaped(sk) false 821 #define netlink_mmap sock_no_mmap 822 #define netlink_poll datagram_poll 823 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 824 #endif /* CONFIG_NETLINK_MMAP */ 825 826 static void netlink_skb_destructor(struct sk_buff *skb) 827 { 828 #ifdef CONFIG_NETLINK_MMAP 829 struct nl_mmap_hdr *hdr; 830 struct netlink_ring *ring; 831 struct sock *sk; 832 833 /* If a packet from the kernel to userspace was freed because of an 834 * error without being delivered to userspace, the kernel must reset 835 * the status. In the direction userspace to kernel, the status is 836 * always reset here after the packet was processed and freed. 837 */ 838 if (netlink_skb_is_mmaped(skb)) { 839 hdr = netlink_mmap_hdr(skb); 840 sk = NETLINK_CB(skb).sk; 841 842 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 843 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 844 ring = &nlk_sk(sk)->tx_ring; 845 } else { 846 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 847 hdr->nm_len = 0; 848 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 849 } 850 ring = &nlk_sk(sk)->rx_ring; 851 } 852 853 WARN_ON(atomic_read(&ring->pending) == 0); 854 atomic_dec(&ring->pending); 855 sock_put(sk); 856 857 skb->head = NULL; 858 } 859 #endif 860 if (is_vmalloc_addr(skb->head)) { 861 if (!skb->cloned || 862 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 863 vfree(skb->head); 864 865 skb->head = NULL; 866 } 867 if (skb->sk != NULL) 868 sock_rfree(skb); 869 } 870 871 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 872 { 873 WARN_ON(skb->sk != NULL); 874 skb->sk = sk; 875 skb->destructor = netlink_skb_destructor; 876 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 877 sk_mem_charge(sk, skb->truesize); 878 } 879 880 static void netlink_sock_destruct(struct sock *sk) 881 { 882 struct netlink_sock *nlk = nlk_sk(sk); 883 884 if (nlk->cb_running) { 885 if (nlk->cb.done) 886 nlk->cb.done(&nlk->cb); 887 888 module_put(nlk->cb.module); 889 kfree_skb(nlk->cb.skb); 890 } 891 892 skb_queue_purge(&sk->sk_receive_queue); 893 #ifdef CONFIG_NETLINK_MMAP 894 if (1) { 895 struct nl_mmap_req req; 896 897 memset(&req, 0, sizeof(req)); 898 if (nlk->rx_ring.pg_vec) 899 netlink_set_ring(sk, &req, true, false); 900 memset(&req, 0, sizeof(req)); 901 if (nlk->tx_ring.pg_vec) 902 netlink_set_ring(sk, &req, true, true); 903 } 904 #endif /* CONFIG_NETLINK_MMAP */ 905 906 if (!sock_flag(sk, SOCK_DEAD)) { 907 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 908 return; 909 } 910 911 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 912 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 913 WARN_ON(nlk_sk(sk)->groups); 914 } 915 916 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 917 * SMP. Look, when several writers sleep and reader wakes them up, all but one 918 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 919 * this, _but_ remember, it adds useless work on UP machines. 920 */ 921 922 void netlink_table_grab(void) 923 __acquires(nl_table_lock) 924 { 925 might_sleep(); 926 927 write_lock_irq(&nl_table_lock); 928 929 if (atomic_read(&nl_table_users)) { 930 DECLARE_WAITQUEUE(wait, current); 931 932 add_wait_queue_exclusive(&nl_table_wait, &wait); 933 for (;;) { 934 set_current_state(TASK_UNINTERRUPTIBLE); 935 if (atomic_read(&nl_table_users) == 0) 936 break; 937 write_unlock_irq(&nl_table_lock); 938 schedule(); 939 write_lock_irq(&nl_table_lock); 940 } 941 942 __set_current_state(TASK_RUNNING); 943 remove_wait_queue(&nl_table_wait, &wait); 944 } 945 } 946 947 void netlink_table_ungrab(void) 948 __releases(nl_table_lock) 949 { 950 write_unlock_irq(&nl_table_lock); 951 wake_up(&nl_table_wait); 952 } 953 954 static inline void 955 netlink_lock_table(void) 956 { 957 /* read_lock() synchronizes us to netlink_table_grab */ 958 959 read_lock(&nl_table_lock); 960 atomic_inc(&nl_table_users); 961 read_unlock(&nl_table_lock); 962 } 963 964 static inline void 965 netlink_unlock_table(void) 966 { 967 if (atomic_dec_and_test(&nl_table_users)) 968 wake_up(&nl_table_wait); 969 } 970 971 struct netlink_compare_arg 972 { 973 struct net *net; 974 u32 portid; 975 }; 976 977 static bool netlink_compare(void *ptr, void *arg) 978 { 979 struct netlink_compare_arg *x = arg; 980 struct sock *sk = ptr; 981 982 return nlk_sk(sk)->portid == x->portid && 983 net_eq(sock_net(sk), x->net); 984 } 985 986 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 987 struct net *net) 988 { 989 struct netlink_compare_arg arg = { 990 .net = net, 991 .portid = portid, 992 }; 993 994 return rhashtable_lookup_compare(&table->hash, &portid, 995 &netlink_compare, &arg); 996 } 997 998 static bool __netlink_insert(struct netlink_table *table, struct sock *sk) 999 { 1000 struct netlink_compare_arg arg = { 1001 .net = sock_net(sk), 1002 .portid = nlk_sk(sk)->portid, 1003 }; 1004 1005 return rhashtable_lookup_compare_insert(&table->hash, 1006 &nlk_sk(sk)->node, 1007 &netlink_compare, &arg); 1008 } 1009 1010 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1011 { 1012 struct netlink_table *table = &nl_table[protocol]; 1013 struct sock *sk; 1014 1015 rcu_read_lock(); 1016 sk = __netlink_lookup(table, portid, net); 1017 if (sk) 1018 sock_hold(sk); 1019 rcu_read_unlock(); 1020 1021 return sk; 1022 } 1023 1024 static const struct proto_ops netlink_ops; 1025 1026 static void 1027 netlink_update_listeners(struct sock *sk) 1028 { 1029 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1030 unsigned long mask; 1031 unsigned int i; 1032 struct listeners *listeners; 1033 1034 listeners = nl_deref_protected(tbl->listeners); 1035 if (!listeners) 1036 return; 1037 1038 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1039 mask = 0; 1040 sk_for_each_bound(sk, &tbl->mc_list) { 1041 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1042 mask |= nlk_sk(sk)->groups[i]; 1043 } 1044 listeners->masks[i] = mask; 1045 } 1046 /* this function is only called with the netlink table "grabbed", which 1047 * makes sure updates are visible before bind or setsockopt return. */ 1048 } 1049 1050 static int netlink_insert(struct sock *sk, u32 portid) 1051 { 1052 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1053 int err; 1054 1055 lock_sock(sk); 1056 1057 err = -EBUSY; 1058 if (nlk_sk(sk)->portid) 1059 goto err; 1060 1061 err = -ENOMEM; 1062 if (BITS_PER_LONG > 32 && 1063 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1064 goto err; 1065 1066 nlk_sk(sk)->portid = portid; 1067 sock_hold(sk); 1068 1069 err = 0; 1070 if (!__netlink_insert(table, sk)) { 1071 err = -EADDRINUSE; 1072 sock_put(sk); 1073 } 1074 1075 err: 1076 release_sock(sk); 1077 return err; 1078 } 1079 1080 static void netlink_remove(struct sock *sk) 1081 { 1082 struct netlink_table *table; 1083 1084 table = &nl_table[sk->sk_protocol]; 1085 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) { 1086 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1087 __sock_put(sk); 1088 } 1089 1090 netlink_table_grab(); 1091 if (nlk_sk(sk)->subscriptions) { 1092 __sk_del_bind_node(sk); 1093 netlink_update_listeners(sk); 1094 } 1095 if (sk->sk_protocol == NETLINK_GENERIC) 1096 atomic_inc(&genl_sk_destructing_cnt); 1097 netlink_table_ungrab(); 1098 } 1099 1100 static struct proto netlink_proto = { 1101 .name = "NETLINK", 1102 .owner = THIS_MODULE, 1103 .obj_size = sizeof(struct netlink_sock), 1104 }; 1105 1106 static int __netlink_create(struct net *net, struct socket *sock, 1107 struct mutex *cb_mutex, int protocol) 1108 { 1109 struct sock *sk; 1110 struct netlink_sock *nlk; 1111 1112 sock->ops = &netlink_ops; 1113 1114 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1115 if (!sk) 1116 return -ENOMEM; 1117 1118 sock_init_data(sock, sk); 1119 1120 nlk = nlk_sk(sk); 1121 if (cb_mutex) { 1122 nlk->cb_mutex = cb_mutex; 1123 } else { 1124 nlk->cb_mutex = &nlk->cb_def_mutex; 1125 mutex_init(nlk->cb_mutex); 1126 } 1127 init_waitqueue_head(&nlk->wait); 1128 #ifdef CONFIG_NETLINK_MMAP 1129 mutex_init(&nlk->pg_vec_lock); 1130 #endif 1131 1132 sk->sk_destruct = netlink_sock_destruct; 1133 sk->sk_protocol = protocol; 1134 return 0; 1135 } 1136 1137 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1138 int kern) 1139 { 1140 struct module *module = NULL; 1141 struct mutex *cb_mutex; 1142 struct netlink_sock *nlk; 1143 int (*bind)(struct net *net, int group); 1144 void (*unbind)(struct net *net, int group); 1145 int err = 0; 1146 1147 sock->state = SS_UNCONNECTED; 1148 1149 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1150 return -ESOCKTNOSUPPORT; 1151 1152 if (protocol < 0 || protocol >= MAX_LINKS) 1153 return -EPROTONOSUPPORT; 1154 1155 netlink_lock_table(); 1156 #ifdef CONFIG_MODULES 1157 if (!nl_table[protocol].registered) { 1158 netlink_unlock_table(); 1159 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1160 netlink_lock_table(); 1161 } 1162 #endif 1163 if (nl_table[protocol].registered && 1164 try_module_get(nl_table[protocol].module)) 1165 module = nl_table[protocol].module; 1166 else 1167 err = -EPROTONOSUPPORT; 1168 cb_mutex = nl_table[protocol].cb_mutex; 1169 bind = nl_table[protocol].bind; 1170 unbind = nl_table[protocol].unbind; 1171 netlink_unlock_table(); 1172 1173 if (err < 0) 1174 goto out; 1175 1176 err = __netlink_create(net, sock, cb_mutex, protocol); 1177 if (err < 0) 1178 goto out_module; 1179 1180 local_bh_disable(); 1181 sock_prot_inuse_add(net, &netlink_proto, 1); 1182 local_bh_enable(); 1183 1184 nlk = nlk_sk(sock->sk); 1185 nlk->module = module; 1186 nlk->netlink_bind = bind; 1187 nlk->netlink_unbind = unbind; 1188 out: 1189 return err; 1190 1191 out_module: 1192 module_put(module); 1193 goto out; 1194 } 1195 1196 static void deferred_put_nlk_sk(struct rcu_head *head) 1197 { 1198 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1199 1200 sock_put(&nlk->sk); 1201 } 1202 1203 static int netlink_release(struct socket *sock) 1204 { 1205 struct sock *sk = sock->sk; 1206 struct netlink_sock *nlk; 1207 1208 if (!sk) 1209 return 0; 1210 1211 netlink_remove(sk); 1212 sock_orphan(sk); 1213 nlk = nlk_sk(sk); 1214 1215 /* 1216 * OK. Socket is unlinked, any packets that arrive now 1217 * will be purged. 1218 */ 1219 1220 /* must not acquire netlink_table_lock in any way again before unbind 1221 * and notifying genetlink is done as otherwise it might deadlock 1222 */ 1223 if (nlk->netlink_unbind) { 1224 int i; 1225 1226 for (i = 0; i < nlk->ngroups; i++) 1227 if (test_bit(i, nlk->groups)) 1228 nlk->netlink_unbind(sock_net(sk), i + 1); 1229 } 1230 if (sk->sk_protocol == NETLINK_GENERIC && 1231 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1232 wake_up(&genl_sk_destructing_waitq); 1233 1234 sock->sk = NULL; 1235 wake_up_interruptible_all(&nlk->wait); 1236 1237 skb_queue_purge(&sk->sk_write_queue); 1238 1239 if (nlk->portid) { 1240 struct netlink_notify n = { 1241 .net = sock_net(sk), 1242 .protocol = sk->sk_protocol, 1243 .portid = nlk->portid, 1244 }; 1245 atomic_notifier_call_chain(&netlink_chain, 1246 NETLINK_URELEASE, &n); 1247 } 1248 1249 module_put(nlk->module); 1250 1251 if (netlink_is_kernel(sk)) { 1252 netlink_table_grab(); 1253 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1254 if (--nl_table[sk->sk_protocol].registered == 0) { 1255 struct listeners *old; 1256 1257 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1258 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1259 kfree_rcu(old, rcu); 1260 nl_table[sk->sk_protocol].module = NULL; 1261 nl_table[sk->sk_protocol].bind = NULL; 1262 nl_table[sk->sk_protocol].unbind = NULL; 1263 nl_table[sk->sk_protocol].flags = 0; 1264 nl_table[sk->sk_protocol].registered = 0; 1265 } 1266 netlink_table_ungrab(); 1267 } 1268 1269 kfree(nlk->groups); 1270 nlk->groups = NULL; 1271 1272 local_bh_disable(); 1273 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1274 local_bh_enable(); 1275 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1276 return 0; 1277 } 1278 1279 static int netlink_autobind(struct socket *sock) 1280 { 1281 struct sock *sk = sock->sk; 1282 struct net *net = sock_net(sk); 1283 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1284 s32 portid = task_tgid_vnr(current); 1285 int err; 1286 static s32 rover = -4097; 1287 1288 retry: 1289 cond_resched(); 1290 rcu_read_lock(); 1291 if (__netlink_lookup(table, portid, net)) { 1292 /* Bind collision, search negative portid values. */ 1293 portid = rover--; 1294 if (rover > -4097) 1295 rover = -4097; 1296 rcu_read_unlock(); 1297 goto retry; 1298 } 1299 rcu_read_unlock(); 1300 1301 err = netlink_insert(sk, portid); 1302 if (err == -EADDRINUSE) 1303 goto retry; 1304 1305 /* If 2 threads race to autobind, that is fine. */ 1306 if (err == -EBUSY) 1307 err = 0; 1308 1309 return err; 1310 } 1311 1312 /** 1313 * __netlink_ns_capable - General netlink message capability test 1314 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1315 * @user_ns: The user namespace of the capability to use 1316 * @cap: The capability to use 1317 * 1318 * Test to see if the opener of the socket we received the message 1319 * from had when the netlink socket was created and the sender of the 1320 * message has has the capability @cap in the user namespace @user_ns. 1321 */ 1322 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1323 struct user_namespace *user_ns, int cap) 1324 { 1325 return ((nsp->flags & NETLINK_SKB_DST) || 1326 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1327 ns_capable(user_ns, cap); 1328 } 1329 EXPORT_SYMBOL(__netlink_ns_capable); 1330 1331 /** 1332 * netlink_ns_capable - General netlink message capability test 1333 * @skb: socket buffer holding a netlink command from userspace 1334 * @user_ns: The user namespace of the capability to use 1335 * @cap: The capability to use 1336 * 1337 * Test to see if the opener of the socket we received the message 1338 * from had when the netlink socket was created and the sender of the 1339 * message has has the capability @cap in the user namespace @user_ns. 1340 */ 1341 bool netlink_ns_capable(const struct sk_buff *skb, 1342 struct user_namespace *user_ns, int cap) 1343 { 1344 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1345 } 1346 EXPORT_SYMBOL(netlink_ns_capable); 1347 1348 /** 1349 * netlink_capable - Netlink global message capability test 1350 * @skb: socket buffer holding a netlink command from userspace 1351 * @cap: The capability to use 1352 * 1353 * Test to see if the opener of the socket we received the message 1354 * from had when the netlink socket was created and the sender of the 1355 * message has has the capability @cap in all user namespaces. 1356 */ 1357 bool netlink_capable(const struct sk_buff *skb, int cap) 1358 { 1359 return netlink_ns_capable(skb, &init_user_ns, cap); 1360 } 1361 EXPORT_SYMBOL(netlink_capable); 1362 1363 /** 1364 * netlink_net_capable - Netlink network namespace message capability test 1365 * @skb: socket buffer holding a netlink command from userspace 1366 * @cap: The capability to use 1367 * 1368 * Test to see if the opener of the socket we received the message 1369 * from had when the netlink socket was created and the sender of the 1370 * message has has the capability @cap over the network namespace of 1371 * the socket we received the message from. 1372 */ 1373 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1374 { 1375 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1376 } 1377 EXPORT_SYMBOL(netlink_net_capable); 1378 1379 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1380 { 1381 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1382 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1383 } 1384 1385 static void 1386 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1387 { 1388 struct netlink_sock *nlk = nlk_sk(sk); 1389 1390 if (nlk->subscriptions && !subscriptions) 1391 __sk_del_bind_node(sk); 1392 else if (!nlk->subscriptions && subscriptions) 1393 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1394 nlk->subscriptions = subscriptions; 1395 } 1396 1397 static int netlink_realloc_groups(struct sock *sk) 1398 { 1399 struct netlink_sock *nlk = nlk_sk(sk); 1400 unsigned int groups; 1401 unsigned long *new_groups; 1402 int err = 0; 1403 1404 netlink_table_grab(); 1405 1406 groups = nl_table[sk->sk_protocol].groups; 1407 if (!nl_table[sk->sk_protocol].registered) { 1408 err = -ENOENT; 1409 goto out_unlock; 1410 } 1411 1412 if (nlk->ngroups >= groups) 1413 goto out_unlock; 1414 1415 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1416 if (new_groups == NULL) { 1417 err = -ENOMEM; 1418 goto out_unlock; 1419 } 1420 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1421 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1422 1423 nlk->groups = new_groups; 1424 nlk->ngroups = groups; 1425 out_unlock: 1426 netlink_table_ungrab(); 1427 return err; 1428 } 1429 1430 static void netlink_undo_bind(int group, long unsigned int groups, 1431 struct sock *sk) 1432 { 1433 struct netlink_sock *nlk = nlk_sk(sk); 1434 int undo; 1435 1436 if (!nlk->netlink_unbind) 1437 return; 1438 1439 for (undo = 0; undo < group; undo++) 1440 if (test_bit(undo, &groups)) 1441 nlk->netlink_unbind(sock_net(sk), undo + 1); 1442 } 1443 1444 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1445 int addr_len) 1446 { 1447 struct sock *sk = sock->sk; 1448 struct net *net = sock_net(sk); 1449 struct netlink_sock *nlk = nlk_sk(sk); 1450 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1451 int err; 1452 long unsigned int groups = nladdr->nl_groups; 1453 1454 if (addr_len < sizeof(struct sockaddr_nl)) 1455 return -EINVAL; 1456 1457 if (nladdr->nl_family != AF_NETLINK) 1458 return -EINVAL; 1459 1460 /* Only superuser is allowed to listen multicasts */ 1461 if (groups) { 1462 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1463 return -EPERM; 1464 err = netlink_realloc_groups(sk); 1465 if (err) 1466 return err; 1467 } 1468 1469 if (nlk->portid) 1470 if (nladdr->nl_pid != nlk->portid) 1471 return -EINVAL; 1472 1473 if (nlk->netlink_bind && groups) { 1474 int group; 1475 1476 for (group = 0; group < nlk->ngroups; group++) { 1477 if (!test_bit(group, &groups)) 1478 continue; 1479 err = nlk->netlink_bind(net, group + 1); 1480 if (!err) 1481 continue; 1482 netlink_undo_bind(group, groups, sk); 1483 return err; 1484 } 1485 } 1486 1487 if (!nlk->portid) { 1488 err = nladdr->nl_pid ? 1489 netlink_insert(sk, nladdr->nl_pid) : 1490 netlink_autobind(sock); 1491 if (err) { 1492 netlink_undo_bind(nlk->ngroups, groups, sk); 1493 return err; 1494 } 1495 } 1496 1497 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1498 return 0; 1499 1500 netlink_table_grab(); 1501 netlink_update_subscriptions(sk, nlk->subscriptions + 1502 hweight32(groups) - 1503 hweight32(nlk->groups[0])); 1504 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1505 netlink_update_listeners(sk); 1506 netlink_table_ungrab(); 1507 1508 return 0; 1509 } 1510 1511 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1512 int alen, int flags) 1513 { 1514 int err = 0; 1515 struct sock *sk = sock->sk; 1516 struct netlink_sock *nlk = nlk_sk(sk); 1517 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1518 1519 if (alen < sizeof(addr->sa_family)) 1520 return -EINVAL; 1521 1522 if (addr->sa_family == AF_UNSPEC) { 1523 sk->sk_state = NETLINK_UNCONNECTED; 1524 nlk->dst_portid = 0; 1525 nlk->dst_group = 0; 1526 return 0; 1527 } 1528 if (addr->sa_family != AF_NETLINK) 1529 return -EINVAL; 1530 1531 if ((nladdr->nl_groups || nladdr->nl_pid) && 1532 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1533 return -EPERM; 1534 1535 if (!nlk->portid) 1536 err = netlink_autobind(sock); 1537 1538 if (err == 0) { 1539 sk->sk_state = NETLINK_CONNECTED; 1540 nlk->dst_portid = nladdr->nl_pid; 1541 nlk->dst_group = ffs(nladdr->nl_groups); 1542 } 1543 1544 return err; 1545 } 1546 1547 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1548 int *addr_len, int peer) 1549 { 1550 struct sock *sk = sock->sk; 1551 struct netlink_sock *nlk = nlk_sk(sk); 1552 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1553 1554 nladdr->nl_family = AF_NETLINK; 1555 nladdr->nl_pad = 0; 1556 *addr_len = sizeof(*nladdr); 1557 1558 if (peer) { 1559 nladdr->nl_pid = nlk->dst_portid; 1560 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1561 } else { 1562 nladdr->nl_pid = nlk->portid; 1563 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1564 } 1565 return 0; 1566 } 1567 1568 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1569 { 1570 struct sock *sock; 1571 struct netlink_sock *nlk; 1572 1573 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1574 if (!sock) 1575 return ERR_PTR(-ECONNREFUSED); 1576 1577 /* Don't bother queuing skb if kernel socket has no input function */ 1578 nlk = nlk_sk(sock); 1579 if (sock->sk_state == NETLINK_CONNECTED && 1580 nlk->dst_portid != nlk_sk(ssk)->portid) { 1581 sock_put(sock); 1582 return ERR_PTR(-ECONNREFUSED); 1583 } 1584 return sock; 1585 } 1586 1587 struct sock *netlink_getsockbyfilp(struct file *filp) 1588 { 1589 struct inode *inode = file_inode(filp); 1590 struct sock *sock; 1591 1592 if (!S_ISSOCK(inode->i_mode)) 1593 return ERR_PTR(-ENOTSOCK); 1594 1595 sock = SOCKET_I(inode)->sk; 1596 if (sock->sk_family != AF_NETLINK) 1597 return ERR_PTR(-EINVAL); 1598 1599 sock_hold(sock); 1600 return sock; 1601 } 1602 1603 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1604 int broadcast) 1605 { 1606 struct sk_buff *skb; 1607 void *data; 1608 1609 if (size <= NLMSG_GOODSIZE || broadcast) 1610 return alloc_skb(size, GFP_KERNEL); 1611 1612 size = SKB_DATA_ALIGN(size) + 1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1614 1615 data = vmalloc(size); 1616 if (data == NULL) 1617 return NULL; 1618 1619 skb = build_skb(data, size); 1620 if (skb == NULL) 1621 vfree(data); 1622 else { 1623 skb->head_frag = 0; 1624 skb->destructor = netlink_skb_destructor; 1625 } 1626 1627 return skb; 1628 } 1629 1630 /* 1631 * Attach a skb to a netlink socket. 1632 * The caller must hold a reference to the destination socket. On error, the 1633 * reference is dropped. The skb is not send to the destination, just all 1634 * all error checks are performed and memory in the queue is reserved. 1635 * Return values: 1636 * < 0: error. skb freed, reference to sock dropped. 1637 * 0: continue 1638 * 1: repeat lookup - reference dropped while waiting for socket memory. 1639 */ 1640 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1641 long *timeo, struct sock *ssk) 1642 { 1643 struct netlink_sock *nlk; 1644 1645 nlk = nlk_sk(sk); 1646 1647 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1648 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1649 !netlink_skb_is_mmaped(skb)) { 1650 DECLARE_WAITQUEUE(wait, current); 1651 if (!*timeo) { 1652 if (!ssk || netlink_is_kernel(ssk)) 1653 netlink_overrun(sk); 1654 sock_put(sk); 1655 kfree_skb(skb); 1656 return -EAGAIN; 1657 } 1658 1659 __set_current_state(TASK_INTERRUPTIBLE); 1660 add_wait_queue(&nlk->wait, &wait); 1661 1662 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1663 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1664 !sock_flag(sk, SOCK_DEAD)) 1665 *timeo = schedule_timeout(*timeo); 1666 1667 __set_current_state(TASK_RUNNING); 1668 remove_wait_queue(&nlk->wait, &wait); 1669 sock_put(sk); 1670 1671 if (signal_pending(current)) { 1672 kfree_skb(skb); 1673 return sock_intr_errno(*timeo); 1674 } 1675 return 1; 1676 } 1677 netlink_skb_set_owner_r(skb, sk); 1678 return 0; 1679 } 1680 1681 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1682 { 1683 int len = skb->len; 1684 1685 netlink_deliver_tap(skb); 1686 1687 #ifdef CONFIG_NETLINK_MMAP 1688 if (netlink_skb_is_mmaped(skb)) 1689 netlink_queue_mmaped_skb(sk, skb); 1690 else if (netlink_rx_is_mmaped(sk)) 1691 netlink_ring_set_copied(sk, skb); 1692 else 1693 #endif /* CONFIG_NETLINK_MMAP */ 1694 skb_queue_tail(&sk->sk_receive_queue, skb); 1695 sk->sk_data_ready(sk); 1696 return len; 1697 } 1698 1699 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1700 { 1701 int len = __netlink_sendskb(sk, skb); 1702 1703 sock_put(sk); 1704 return len; 1705 } 1706 1707 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1708 { 1709 kfree_skb(skb); 1710 sock_put(sk); 1711 } 1712 1713 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1714 { 1715 int delta; 1716 1717 WARN_ON(skb->sk != NULL); 1718 if (netlink_skb_is_mmaped(skb)) 1719 return skb; 1720 1721 delta = skb->end - skb->tail; 1722 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1723 return skb; 1724 1725 if (skb_shared(skb)) { 1726 struct sk_buff *nskb = skb_clone(skb, allocation); 1727 if (!nskb) 1728 return skb; 1729 consume_skb(skb); 1730 skb = nskb; 1731 } 1732 1733 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1734 skb->truesize -= delta; 1735 1736 return skb; 1737 } 1738 1739 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1740 struct sock *ssk) 1741 { 1742 int ret; 1743 struct netlink_sock *nlk = nlk_sk(sk); 1744 1745 ret = -ECONNREFUSED; 1746 if (nlk->netlink_rcv != NULL) { 1747 ret = skb->len; 1748 netlink_skb_set_owner_r(skb, sk); 1749 NETLINK_CB(skb).sk = ssk; 1750 netlink_deliver_tap_kernel(sk, ssk, skb); 1751 nlk->netlink_rcv(skb); 1752 consume_skb(skb); 1753 } else { 1754 kfree_skb(skb); 1755 } 1756 sock_put(sk); 1757 return ret; 1758 } 1759 1760 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1761 u32 portid, int nonblock) 1762 { 1763 struct sock *sk; 1764 int err; 1765 long timeo; 1766 1767 skb = netlink_trim(skb, gfp_any()); 1768 1769 timeo = sock_sndtimeo(ssk, nonblock); 1770 retry: 1771 sk = netlink_getsockbyportid(ssk, portid); 1772 if (IS_ERR(sk)) { 1773 kfree_skb(skb); 1774 return PTR_ERR(sk); 1775 } 1776 if (netlink_is_kernel(sk)) 1777 return netlink_unicast_kernel(sk, skb, ssk); 1778 1779 if (sk_filter(sk, skb)) { 1780 err = skb->len; 1781 kfree_skb(skb); 1782 sock_put(sk); 1783 return err; 1784 } 1785 1786 err = netlink_attachskb(sk, skb, &timeo, ssk); 1787 if (err == 1) 1788 goto retry; 1789 if (err) 1790 return err; 1791 1792 return netlink_sendskb(sk, skb); 1793 } 1794 EXPORT_SYMBOL(netlink_unicast); 1795 1796 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1797 u32 dst_portid, gfp_t gfp_mask) 1798 { 1799 #ifdef CONFIG_NETLINK_MMAP 1800 struct sock *sk = NULL; 1801 struct sk_buff *skb; 1802 struct netlink_ring *ring; 1803 struct nl_mmap_hdr *hdr; 1804 unsigned int maxlen; 1805 1806 sk = netlink_getsockbyportid(ssk, dst_portid); 1807 if (IS_ERR(sk)) 1808 goto out; 1809 1810 ring = &nlk_sk(sk)->rx_ring; 1811 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1812 if (ring->pg_vec == NULL) 1813 goto out_put; 1814 1815 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1816 goto out_put; 1817 1818 skb = alloc_skb_head(gfp_mask); 1819 if (skb == NULL) 1820 goto err1; 1821 1822 spin_lock_bh(&sk->sk_receive_queue.lock); 1823 /* check again under lock */ 1824 if (ring->pg_vec == NULL) 1825 goto out_free; 1826 1827 /* check again under lock */ 1828 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1829 if (maxlen < size) 1830 goto out_free; 1831 1832 netlink_forward_ring(ring); 1833 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1834 if (hdr == NULL) 1835 goto err2; 1836 netlink_ring_setup_skb(skb, sk, ring, hdr); 1837 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1838 atomic_inc(&ring->pending); 1839 netlink_increment_head(ring); 1840 1841 spin_unlock_bh(&sk->sk_receive_queue.lock); 1842 return skb; 1843 1844 err2: 1845 kfree_skb(skb); 1846 spin_unlock_bh(&sk->sk_receive_queue.lock); 1847 netlink_overrun(sk); 1848 err1: 1849 sock_put(sk); 1850 return NULL; 1851 1852 out_free: 1853 kfree_skb(skb); 1854 spin_unlock_bh(&sk->sk_receive_queue.lock); 1855 out_put: 1856 sock_put(sk); 1857 out: 1858 #endif 1859 return alloc_skb(size, gfp_mask); 1860 } 1861 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1862 1863 int netlink_has_listeners(struct sock *sk, unsigned int group) 1864 { 1865 int res = 0; 1866 struct listeners *listeners; 1867 1868 BUG_ON(!netlink_is_kernel(sk)); 1869 1870 rcu_read_lock(); 1871 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1872 1873 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1874 res = test_bit(group - 1, listeners->masks); 1875 1876 rcu_read_unlock(); 1877 1878 return res; 1879 } 1880 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1881 1882 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1883 { 1884 struct netlink_sock *nlk = nlk_sk(sk); 1885 1886 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1887 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1888 netlink_skb_set_owner_r(skb, sk); 1889 __netlink_sendskb(sk, skb); 1890 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1891 } 1892 return -1; 1893 } 1894 1895 struct netlink_broadcast_data { 1896 struct sock *exclude_sk; 1897 struct net *net; 1898 u32 portid; 1899 u32 group; 1900 int failure; 1901 int delivery_failure; 1902 int congested; 1903 int delivered; 1904 gfp_t allocation; 1905 struct sk_buff *skb, *skb2; 1906 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1907 void *tx_data; 1908 }; 1909 1910 static void do_one_broadcast(struct sock *sk, 1911 struct netlink_broadcast_data *p) 1912 { 1913 struct netlink_sock *nlk = nlk_sk(sk); 1914 int val; 1915 1916 if (p->exclude_sk == sk) 1917 return; 1918 1919 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1920 !test_bit(p->group - 1, nlk->groups)) 1921 return; 1922 1923 if (!net_eq(sock_net(sk), p->net)) 1924 return; 1925 1926 if (p->failure) { 1927 netlink_overrun(sk); 1928 return; 1929 } 1930 1931 sock_hold(sk); 1932 if (p->skb2 == NULL) { 1933 if (skb_shared(p->skb)) { 1934 p->skb2 = skb_clone(p->skb, p->allocation); 1935 } else { 1936 p->skb2 = skb_get(p->skb); 1937 /* 1938 * skb ownership may have been set when 1939 * delivered to a previous socket. 1940 */ 1941 skb_orphan(p->skb2); 1942 } 1943 } 1944 if (p->skb2 == NULL) { 1945 netlink_overrun(sk); 1946 /* Clone failed. Notify ALL listeners. */ 1947 p->failure = 1; 1948 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1949 p->delivery_failure = 1; 1950 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1951 kfree_skb(p->skb2); 1952 p->skb2 = NULL; 1953 } else if (sk_filter(sk, p->skb2)) { 1954 kfree_skb(p->skb2); 1955 p->skb2 = NULL; 1956 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1957 netlink_overrun(sk); 1958 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1959 p->delivery_failure = 1; 1960 } else { 1961 p->congested |= val; 1962 p->delivered = 1; 1963 p->skb2 = NULL; 1964 } 1965 sock_put(sk); 1966 } 1967 1968 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1969 u32 group, gfp_t allocation, 1970 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1971 void *filter_data) 1972 { 1973 struct net *net = sock_net(ssk); 1974 struct netlink_broadcast_data info; 1975 struct sock *sk; 1976 1977 skb = netlink_trim(skb, allocation); 1978 1979 info.exclude_sk = ssk; 1980 info.net = net; 1981 info.portid = portid; 1982 info.group = group; 1983 info.failure = 0; 1984 info.delivery_failure = 0; 1985 info.congested = 0; 1986 info.delivered = 0; 1987 info.allocation = allocation; 1988 info.skb = skb; 1989 info.skb2 = NULL; 1990 info.tx_filter = filter; 1991 info.tx_data = filter_data; 1992 1993 /* While we sleep in clone, do not allow to change socket list */ 1994 1995 netlink_lock_table(); 1996 1997 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1998 do_one_broadcast(sk, &info); 1999 2000 consume_skb(skb); 2001 2002 netlink_unlock_table(); 2003 2004 if (info.delivery_failure) { 2005 kfree_skb(info.skb2); 2006 return -ENOBUFS; 2007 } 2008 consume_skb(info.skb2); 2009 2010 if (info.delivered) { 2011 if (info.congested && (allocation & __GFP_WAIT)) 2012 yield(); 2013 return 0; 2014 } 2015 return -ESRCH; 2016 } 2017 EXPORT_SYMBOL(netlink_broadcast_filtered); 2018 2019 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2020 u32 group, gfp_t allocation) 2021 { 2022 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2023 NULL, NULL); 2024 } 2025 EXPORT_SYMBOL(netlink_broadcast); 2026 2027 struct netlink_set_err_data { 2028 struct sock *exclude_sk; 2029 u32 portid; 2030 u32 group; 2031 int code; 2032 }; 2033 2034 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2035 { 2036 struct netlink_sock *nlk = nlk_sk(sk); 2037 int ret = 0; 2038 2039 if (sk == p->exclude_sk) 2040 goto out; 2041 2042 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2043 goto out; 2044 2045 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2046 !test_bit(p->group - 1, nlk->groups)) 2047 goto out; 2048 2049 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2050 ret = 1; 2051 goto out; 2052 } 2053 2054 sk->sk_err = p->code; 2055 sk->sk_error_report(sk); 2056 out: 2057 return ret; 2058 } 2059 2060 /** 2061 * netlink_set_err - report error to broadcast listeners 2062 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2063 * @portid: the PORTID of a process that we want to skip (if any) 2064 * @group: the broadcast group that will notice the error 2065 * @code: error code, must be negative (as usual in kernelspace) 2066 * 2067 * This function returns the number of broadcast listeners that have set the 2068 * NETLINK_RECV_NO_ENOBUFS socket option. 2069 */ 2070 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2071 { 2072 struct netlink_set_err_data info; 2073 struct sock *sk; 2074 int ret = 0; 2075 2076 info.exclude_sk = ssk; 2077 info.portid = portid; 2078 info.group = group; 2079 /* sk->sk_err wants a positive error value */ 2080 info.code = -code; 2081 2082 read_lock(&nl_table_lock); 2083 2084 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2085 ret += do_one_set_err(sk, &info); 2086 2087 read_unlock(&nl_table_lock); 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(netlink_set_err); 2091 2092 /* must be called with netlink table grabbed */ 2093 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2094 unsigned int group, 2095 int is_new) 2096 { 2097 int old, new = !!is_new, subscriptions; 2098 2099 old = test_bit(group - 1, nlk->groups); 2100 subscriptions = nlk->subscriptions - old + new; 2101 if (new) 2102 __set_bit(group - 1, nlk->groups); 2103 else 2104 __clear_bit(group - 1, nlk->groups); 2105 netlink_update_subscriptions(&nlk->sk, subscriptions); 2106 netlink_update_listeners(&nlk->sk); 2107 } 2108 2109 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2110 char __user *optval, unsigned int optlen) 2111 { 2112 struct sock *sk = sock->sk; 2113 struct netlink_sock *nlk = nlk_sk(sk); 2114 unsigned int val = 0; 2115 int err; 2116 2117 if (level != SOL_NETLINK) 2118 return -ENOPROTOOPT; 2119 2120 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2121 optlen >= sizeof(int) && 2122 get_user(val, (unsigned int __user *)optval)) 2123 return -EFAULT; 2124 2125 switch (optname) { 2126 case NETLINK_PKTINFO: 2127 if (val) 2128 nlk->flags |= NETLINK_RECV_PKTINFO; 2129 else 2130 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2131 err = 0; 2132 break; 2133 case NETLINK_ADD_MEMBERSHIP: 2134 case NETLINK_DROP_MEMBERSHIP: { 2135 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2136 return -EPERM; 2137 err = netlink_realloc_groups(sk); 2138 if (err) 2139 return err; 2140 if (!val || val - 1 >= nlk->ngroups) 2141 return -EINVAL; 2142 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2143 err = nlk->netlink_bind(sock_net(sk), val); 2144 if (err) 2145 return err; 2146 } 2147 netlink_table_grab(); 2148 netlink_update_socket_mc(nlk, val, 2149 optname == NETLINK_ADD_MEMBERSHIP); 2150 netlink_table_ungrab(); 2151 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2152 nlk->netlink_unbind(sock_net(sk), val); 2153 2154 err = 0; 2155 break; 2156 } 2157 case NETLINK_BROADCAST_ERROR: 2158 if (val) 2159 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2160 else 2161 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2162 err = 0; 2163 break; 2164 case NETLINK_NO_ENOBUFS: 2165 if (val) { 2166 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2167 clear_bit(NETLINK_CONGESTED, &nlk->state); 2168 wake_up_interruptible(&nlk->wait); 2169 } else { 2170 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2171 } 2172 err = 0; 2173 break; 2174 #ifdef CONFIG_NETLINK_MMAP 2175 case NETLINK_RX_RING: 2176 case NETLINK_TX_RING: { 2177 struct nl_mmap_req req; 2178 2179 /* Rings might consume more memory than queue limits, require 2180 * CAP_NET_ADMIN. 2181 */ 2182 if (!capable(CAP_NET_ADMIN)) 2183 return -EPERM; 2184 if (optlen < sizeof(req)) 2185 return -EINVAL; 2186 if (copy_from_user(&req, optval, sizeof(req))) 2187 return -EFAULT; 2188 err = netlink_set_ring(sk, &req, false, 2189 optname == NETLINK_TX_RING); 2190 break; 2191 } 2192 #endif /* CONFIG_NETLINK_MMAP */ 2193 default: 2194 err = -ENOPROTOOPT; 2195 } 2196 return err; 2197 } 2198 2199 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2200 char __user *optval, int __user *optlen) 2201 { 2202 struct sock *sk = sock->sk; 2203 struct netlink_sock *nlk = nlk_sk(sk); 2204 int len, val, err; 2205 2206 if (level != SOL_NETLINK) 2207 return -ENOPROTOOPT; 2208 2209 if (get_user(len, optlen)) 2210 return -EFAULT; 2211 if (len < 0) 2212 return -EINVAL; 2213 2214 switch (optname) { 2215 case NETLINK_PKTINFO: 2216 if (len < sizeof(int)) 2217 return -EINVAL; 2218 len = sizeof(int); 2219 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2220 if (put_user(len, optlen) || 2221 put_user(val, optval)) 2222 return -EFAULT; 2223 err = 0; 2224 break; 2225 case NETLINK_BROADCAST_ERROR: 2226 if (len < sizeof(int)) 2227 return -EINVAL; 2228 len = sizeof(int); 2229 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2230 if (put_user(len, optlen) || 2231 put_user(val, optval)) 2232 return -EFAULT; 2233 err = 0; 2234 break; 2235 case NETLINK_NO_ENOBUFS: 2236 if (len < sizeof(int)) 2237 return -EINVAL; 2238 len = sizeof(int); 2239 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2240 if (put_user(len, optlen) || 2241 put_user(val, optval)) 2242 return -EFAULT; 2243 err = 0; 2244 break; 2245 default: 2246 err = -ENOPROTOOPT; 2247 } 2248 return err; 2249 } 2250 2251 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2252 { 2253 struct nl_pktinfo info; 2254 2255 info.group = NETLINK_CB(skb).dst_group; 2256 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2257 } 2258 2259 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2260 { 2261 struct sock *sk = sock->sk; 2262 struct netlink_sock *nlk = nlk_sk(sk); 2263 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2264 u32 dst_portid; 2265 u32 dst_group; 2266 struct sk_buff *skb; 2267 int err; 2268 struct scm_cookie scm; 2269 u32 netlink_skb_flags = 0; 2270 2271 if (msg->msg_flags&MSG_OOB) 2272 return -EOPNOTSUPP; 2273 2274 err = scm_send(sock, msg, &scm, true); 2275 if (err < 0) 2276 return err; 2277 2278 if (msg->msg_namelen) { 2279 err = -EINVAL; 2280 if (addr->nl_family != AF_NETLINK) 2281 goto out; 2282 dst_portid = addr->nl_pid; 2283 dst_group = ffs(addr->nl_groups); 2284 err = -EPERM; 2285 if ((dst_group || dst_portid) && 2286 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2287 goto out; 2288 netlink_skb_flags |= NETLINK_SKB_DST; 2289 } else { 2290 dst_portid = nlk->dst_portid; 2291 dst_group = nlk->dst_group; 2292 } 2293 2294 if (!nlk->portid) { 2295 err = netlink_autobind(sock); 2296 if (err) 2297 goto out; 2298 } 2299 2300 /* It's a really convoluted way for userland to ask for mmaped 2301 * sendmsg(), but that's what we've got... 2302 */ 2303 if (netlink_tx_is_mmaped(sk) && 2304 msg->msg_iter.type == ITER_IOVEC && 2305 msg->msg_iter.nr_segs == 1 && 2306 msg->msg_iter.iov->iov_base == NULL) { 2307 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2308 &scm); 2309 goto out; 2310 } 2311 2312 err = -EMSGSIZE; 2313 if (len > sk->sk_sndbuf - 32) 2314 goto out; 2315 err = -ENOBUFS; 2316 skb = netlink_alloc_large_skb(len, dst_group); 2317 if (skb == NULL) 2318 goto out; 2319 2320 NETLINK_CB(skb).portid = nlk->portid; 2321 NETLINK_CB(skb).dst_group = dst_group; 2322 NETLINK_CB(skb).creds = scm.creds; 2323 NETLINK_CB(skb).flags = netlink_skb_flags; 2324 2325 err = -EFAULT; 2326 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2327 kfree_skb(skb); 2328 goto out; 2329 } 2330 2331 err = security_netlink_send(sk, skb); 2332 if (err) { 2333 kfree_skb(skb); 2334 goto out; 2335 } 2336 2337 if (dst_group) { 2338 atomic_inc(&skb->users); 2339 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2340 } 2341 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2342 2343 out: 2344 scm_destroy(&scm); 2345 return err; 2346 } 2347 2348 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2349 int flags) 2350 { 2351 struct scm_cookie scm; 2352 struct sock *sk = sock->sk; 2353 struct netlink_sock *nlk = nlk_sk(sk); 2354 int noblock = flags&MSG_DONTWAIT; 2355 size_t copied; 2356 struct sk_buff *skb, *data_skb; 2357 int err, ret; 2358 2359 if (flags&MSG_OOB) 2360 return -EOPNOTSUPP; 2361 2362 copied = 0; 2363 2364 skb = skb_recv_datagram(sk, flags, noblock, &err); 2365 if (skb == NULL) 2366 goto out; 2367 2368 data_skb = skb; 2369 2370 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2371 if (unlikely(skb_shinfo(skb)->frag_list)) { 2372 /* 2373 * If this skb has a frag_list, then here that means that we 2374 * will have to use the frag_list skb's data for compat tasks 2375 * and the regular skb's data for normal (non-compat) tasks. 2376 * 2377 * If we need to send the compat skb, assign it to the 2378 * 'data_skb' variable so that it will be used below for data 2379 * copying. We keep 'skb' for everything else, including 2380 * freeing both later. 2381 */ 2382 if (flags & MSG_CMSG_COMPAT) 2383 data_skb = skb_shinfo(skb)->frag_list; 2384 } 2385 #endif 2386 2387 /* Record the max length of recvmsg() calls for future allocations */ 2388 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2389 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2390 16384); 2391 2392 copied = data_skb->len; 2393 if (len < copied) { 2394 msg->msg_flags |= MSG_TRUNC; 2395 copied = len; 2396 } 2397 2398 skb_reset_transport_header(data_skb); 2399 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2400 2401 if (msg->msg_name) { 2402 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2403 addr->nl_family = AF_NETLINK; 2404 addr->nl_pad = 0; 2405 addr->nl_pid = NETLINK_CB(skb).portid; 2406 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2407 msg->msg_namelen = sizeof(*addr); 2408 } 2409 2410 if (nlk->flags & NETLINK_RECV_PKTINFO) 2411 netlink_cmsg_recv_pktinfo(msg, skb); 2412 2413 memset(&scm, 0, sizeof(scm)); 2414 scm.creds = *NETLINK_CREDS(skb); 2415 if (flags & MSG_TRUNC) 2416 copied = data_skb->len; 2417 2418 skb_free_datagram(sk, skb); 2419 2420 if (nlk->cb_running && 2421 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2422 ret = netlink_dump(sk); 2423 if (ret) { 2424 sk->sk_err = -ret; 2425 sk->sk_error_report(sk); 2426 } 2427 } 2428 2429 scm_recv(sock, msg, &scm, flags); 2430 out: 2431 netlink_rcv_wake(sk); 2432 return err ? : copied; 2433 } 2434 2435 static void netlink_data_ready(struct sock *sk) 2436 { 2437 BUG(); 2438 } 2439 2440 /* 2441 * We export these functions to other modules. They provide a 2442 * complete set of kernel non-blocking support for message 2443 * queueing. 2444 */ 2445 2446 struct sock * 2447 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2448 struct netlink_kernel_cfg *cfg) 2449 { 2450 struct socket *sock; 2451 struct sock *sk; 2452 struct netlink_sock *nlk; 2453 struct listeners *listeners = NULL; 2454 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2455 unsigned int groups; 2456 2457 BUG_ON(!nl_table); 2458 2459 if (unit < 0 || unit >= MAX_LINKS) 2460 return NULL; 2461 2462 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2463 return NULL; 2464 2465 /* 2466 * We have to just have a reference on the net from sk, but don't 2467 * get_net it. Besides, we cannot get and then put the net here. 2468 * So we create one inside init_net and the move it to net. 2469 */ 2470 2471 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2472 goto out_sock_release_nosk; 2473 2474 sk = sock->sk; 2475 sk_change_net(sk, net); 2476 2477 if (!cfg || cfg->groups < 32) 2478 groups = 32; 2479 else 2480 groups = cfg->groups; 2481 2482 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2483 if (!listeners) 2484 goto out_sock_release; 2485 2486 sk->sk_data_ready = netlink_data_ready; 2487 if (cfg && cfg->input) 2488 nlk_sk(sk)->netlink_rcv = cfg->input; 2489 2490 if (netlink_insert(sk, 0)) 2491 goto out_sock_release; 2492 2493 nlk = nlk_sk(sk); 2494 nlk->flags |= NETLINK_KERNEL_SOCKET; 2495 2496 netlink_table_grab(); 2497 if (!nl_table[unit].registered) { 2498 nl_table[unit].groups = groups; 2499 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2500 nl_table[unit].cb_mutex = cb_mutex; 2501 nl_table[unit].module = module; 2502 if (cfg) { 2503 nl_table[unit].bind = cfg->bind; 2504 nl_table[unit].unbind = cfg->unbind; 2505 nl_table[unit].flags = cfg->flags; 2506 if (cfg->compare) 2507 nl_table[unit].compare = cfg->compare; 2508 } 2509 nl_table[unit].registered = 1; 2510 } else { 2511 kfree(listeners); 2512 nl_table[unit].registered++; 2513 } 2514 netlink_table_ungrab(); 2515 return sk; 2516 2517 out_sock_release: 2518 kfree(listeners); 2519 netlink_kernel_release(sk); 2520 return NULL; 2521 2522 out_sock_release_nosk: 2523 sock_release(sock); 2524 return NULL; 2525 } 2526 EXPORT_SYMBOL(__netlink_kernel_create); 2527 2528 void 2529 netlink_kernel_release(struct sock *sk) 2530 { 2531 sk_release_kernel(sk); 2532 } 2533 EXPORT_SYMBOL(netlink_kernel_release); 2534 2535 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2536 { 2537 struct listeners *new, *old; 2538 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2539 2540 if (groups < 32) 2541 groups = 32; 2542 2543 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2544 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2545 if (!new) 2546 return -ENOMEM; 2547 old = nl_deref_protected(tbl->listeners); 2548 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2549 rcu_assign_pointer(tbl->listeners, new); 2550 2551 kfree_rcu(old, rcu); 2552 } 2553 tbl->groups = groups; 2554 2555 return 0; 2556 } 2557 2558 /** 2559 * netlink_change_ngroups - change number of multicast groups 2560 * 2561 * This changes the number of multicast groups that are available 2562 * on a certain netlink family. Note that it is not possible to 2563 * change the number of groups to below 32. Also note that it does 2564 * not implicitly call netlink_clear_multicast_users() when the 2565 * number of groups is reduced. 2566 * 2567 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2568 * @groups: The new number of groups. 2569 */ 2570 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2571 { 2572 int err; 2573 2574 netlink_table_grab(); 2575 err = __netlink_change_ngroups(sk, groups); 2576 netlink_table_ungrab(); 2577 2578 return err; 2579 } 2580 2581 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2582 { 2583 struct sock *sk; 2584 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2585 2586 sk_for_each_bound(sk, &tbl->mc_list) 2587 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2588 } 2589 2590 struct nlmsghdr * 2591 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2592 { 2593 struct nlmsghdr *nlh; 2594 int size = nlmsg_msg_size(len); 2595 2596 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2597 nlh->nlmsg_type = type; 2598 nlh->nlmsg_len = size; 2599 nlh->nlmsg_flags = flags; 2600 nlh->nlmsg_pid = portid; 2601 nlh->nlmsg_seq = seq; 2602 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2603 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2604 return nlh; 2605 } 2606 EXPORT_SYMBOL(__nlmsg_put); 2607 2608 /* 2609 * It looks a bit ugly. 2610 * It would be better to create kernel thread. 2611 */ 2612 2613 static int netlink_dump(struct sock *sk) 2614 { 2615 struct netlink_sock *nlk = nlk_sk(sk); 2616 struct netlink_callback *cb; 2617 struct sk_buff *skb = NULL; 2618 struct nlmsghdr *nlh; 2619 int len, err = -ENOBUFS; 2620 int alloc_size; 2621 2622 mutex_lock(nlk->cb_mutex); 2623 if (!nlk->cb_running) { 2624 err = -EINVAL; 2625 goto errout_skb; 2626 } 2627 2628 cb = &nlk->cb; 2629 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2630 2631 if (!netlink_rx_is_mmaped(sk) && 2632 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2633 goto errout_skb; 2634 2635 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2636 * required, but it makes sense to _attempt_ a 16K bytes allocation 2637 * to reduce number of system calls on dump operations, if user 2638 * ever provided a big enough buffer. 2639 */ 2640 if (alloc_size < nlk->max_recvmsg_len) { 2641 skb = netlink_alloc_skb(sk, 2642 nlk->max_recvmsg_len, 2643 nlk->portid, 2644 GFP_KERNEL | 2645 __GFP_NOWARN | 2646 __GFP_NORETRY); 2647 /* available room should be exact amount to avoid MSG_TRUNC */ 2648 if (skb) 2649 skb_reserve(skb, skb_tailroom(skb) - 2650 nlk->max_recvmsg_len); 2651 } 2652 if (!skb) 2653 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2654 GFP_KERNEL); 2655 if (!skb) 2656 goto errout_skb; 2657 netlink_skb_set_owner_r(skb, sk); 2658 2659 len = cb->dump(skb, cb); 2660 2661 if (len > 0) { 2662 mutex_unlock(nlk->cb_mutex); 2663 2664 if (sk_filter(sk, skb)) 2665 kfree_skb(skb); 2666 else 2667 __netlink_sendskb(sk, skb); 2668 return 0; 2669 } 2670 2671 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2672 if (!nlh) 2673 goto errout_skb; 2674 2675 nl_dump_check_consistent(cb, nlh); 2676 2677 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2678 2679 if (sk_filter(sk, skb)) 2680 kfree_skb(skb); 2681 else 2682 __netlink_sendskb(sk, skb); 2683 2684 if (cb->done) 2685 cb->done(cb); 2686 2687 nlk->cb_running = false; 2688 mutex_unlock(nlk->cb_mutex); 2689 module_put(cb->module); 2690 consume_skb(cb->skb); 2691 return 0; 2692 2693 errout_skb: 2694 mutex_unlock(nlk->cb_mutex); 2695 kfree_skb(skb); 2696 return err; 2697 } 2698 2699 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2700 const struct nlmsghdr *nlh, 2701 struct netlink_dump_control *control) 2702 { 2703 struct netlink_callback *cb; 2704 struct sock *sk; 2705 struct netlink_sock *nlk; 2706 int ret; 2707 2708 /* Memory mapped dump requests need to be copied to avoid looping 2709 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2710 * a reference to the skb. 2711 */ 2712 if (netlink_skb_is_mmaped(skb)) { 2713 skb = skb_copy(skb, GFP_KERNEL); 2714 if (skb == NULL) 2715 return -ENOBUFS; 2716 } else 2717 atomic_inc(&skb->users); 2718 2719 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2720 if (sk == NULL) { 2721 ret = -ECONNREFUSED; 2722 goto error_free; 2723 } 2724 2725 nlk = nlk_sk(sk); 2726 mutex_lock(nlk->cb_mutex); 2727 /* A dump is in progress... */ 2728 if (nlk->cb_running) { 2729 ret = -EBUSY; 2730 goto error_unlock; 2731 } 2732 /* add reference of module which cb->dump belongs to */ 2733 if (!try_module_get(control->module)) { 2734 ret = -EPROTONOSUPPORT; 2735 goto error_unlock; 2736 } 2737 2738 cb = &nlk->cb; 2739 memset(cb, 0, sizeof(*cb)); 2740 cb->dump = control->dump; 2741 cb->done = control->done; 2742 cb->nlh = nlh; 2743 cb->data = control->data; 2744 cb->module = control->module; 2745 cb->min_dump_alloc = control->min_dump_alloc; 2746 cb->skb = skb; 2747 2748 nlk->cb_running = true; 2749 2750 mutex_unlock(nlk->cb_mutex); 2751 2752 ret = netlink_dump(sk); 2753 sock_put(sk); 2754 2755 if (ret) 2756 return ret; 2757 2758 /* We successfully started a dump, by returning -EINTR we 2759 * signal not to send ACK even if it was requested. 2760 */ 2761 return -EINTR; 2762 2763 error_unlock: 2764 sock_put(sk); 2765 mutex_unlock(nlk->cb_mutex); 2766 error_free: 2767 kfree_skb(skb); 2768 return ret; 2769 } 2770 EXPORT_SYMBOL(__netlink_dump_start); 2771 2772 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2773 { 2774 struct sk_buff *skb; 2775 struct nlmsghdr *rep; 2776 struct nlmsgerr *errmsg; 2777 size_t payload = sizeof(*errmsg); 2778 2779 /* error messages get the original request appened */ 2780 if (err) 2781 payload += nlmsg_len(nlh); 2782 2783 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2784 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2785 if (!skb) { 2786 struct sock *sk; 2787 2788 sk = netlink_lookup(sock_net(in_skb->sk), 2789 in_skb->sk->sk_protocol, 2790 NETLINK_CB(in_skb).portid); 2791 if (sk) { 2792 sk->sk_err = ENOBUFS; 2793 sk->sk_error_report(sk); 2794 sock_put(sk); 2795 } 2796 return; 2797 } 2798 2799 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2800 NLMSG_ERROR, payload, 0); 2801 errmsg = nlmsg_data(rep); 2802 errmsg->error = err; 2803 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2804 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2805 } 2806 EXPORT_SYMBOL(netlink_ack); 2807 2808 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2809 struct nlmsghdr *)) 2810 { 2811 struct nlmsghdr *nlh; 2812 int err; 2813 2814 while (skb->len >= nlmsg_total_size(0)) { 2815 int msglen; 2816 2817 nlh = nlmsg_hdr(skb); 2818 err = 0; 2819 2820 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2821 return 0; 2822 2823 /* Only requests are handled by the kernel */ 2824 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2825 goto ack; 2826 2827 /* Skip control messages */ 2828 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2829 goto ack; 2830 2831 err = cb(skb, nlh); 2832 if (err == -EINTR) 2833 goto skip; 2834 2835 ack: 2836 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2837 netlink_ack(skb, nlh, err); 2838 2839 skip: 2840 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2841 if (msglen > skb->len) 2842 msglen = skb->len; 2843 skb_pull(skb, msglen); 2844 } 2845 2846 return 0; 2847 } 2848 EXPORT_SYMBOL(netlink_rcv_skb); 2849 2850 /** 2851 * nlmsg_notify - send a notification netlink message 2852 * @sk: netlink socket to use 2853 * @skb: notification message 2854 * @portid: destination netlink portid for reports or 0 2855 * @group: destination multicast group or 0 2856 * @report: 1 to report back, 0 to disable 2857 * @flags: allocation flags 2858 */ 2859 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2860 unsigned int group, int report, gfp_t flags) 2861 { 2862 int err = 0; 2863 2864 if (group) { 2865 int exclude_portid = 0; 2866 2867 if (report) { 2868 atomic_inc(&skb->users); 2869 exclude_portid = portid; 2870 } 2871 2872 /* errors reported via destination sk->sk_err, but propagate 2873 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2874 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2875 } 2876 2877 if (report) { 2878 int err2; 2879 2880 err2 = nlmsg_unicast(sk, skb, portid); 2881 if (!err || err == -ESRCH) 2882 err = err2; 2883 } 2884 2885 return err; 2886 } 2887 EXPORT_SYMBOL(nlmsg_notify); 2888 2889 #ifdef CONFIG_PROC_FS 2890 struct nl_seq_iter { 2891 struct seq_net_private p; 2892 struct rhashtable_iter hti; 2893 int link; 2894 }; 2895 2896 static int netlink_walk_start(struct nl_seq_iter *iter) 2897 { 2898 int err; 2899 2900 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 2901 if (err) { 2902 iter->link = MAX_LINKS; 2903 return err; 2904 } 2905 2906 err = rhashtable_walk_start(&iter->hti); 2907 return err == -EAGAIN ? 0 : err; 2908 } 2909 2910 static void netlink_walk_stop(struct nl_seq_iter *iter) 2911 { 2912 rhashtable_walk_stop(&iter->hti); 2913 rhashtable_walk_exit(&iter->hti); 2914 } 2915 2916 static void *__netlink_seq_next(struct seq_file *seq) 2917 { 2918 struct nl_seq_iter *iter = seq->private; 2919 struct netlink_sock *nlk; 2920 2921 do { 2922 for (;;) { 2923 int err; 2924 2925 nlk = rhashtable_walk_next(&iter->hti); 2926 2927 if (IS_ERR(nlk)) { 2928 if (PTR_ERR(nlk) == -EAGAIN) 2929 continue; 2930 2931 return nlk; 2932 } 2933 2934 if (nlk) 2935 break; 2936 2937 netlink_walk_stop(iter); 2938 if (++iter->link >= MAX_LINKS) 2939 return NULL; 2940 2941 err = netlink_walk_start(iter); 2942 if (err) 2943 return ERR_PTR(err); 2944 } 2945 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2946 2947 return nlk; 2948 } 2949 2950 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2951 { 2952 struct nl_seq_iter *iter = seq->private; 2953 void *obj = SEQ_START_TOKEN; 2954 loff_t pos; 2955 int err; 2956 2957 iter->link = 0; 2958 2959 err = netlink_walk_start(iter); 2960 if (err) 2961 return ERR_PTR(err); 2962 2963 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2964 obj = __netlink_seq_next(seq); 2965 2966 return obj; 2967 } 2968 2969 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2970 { 2971 ++*pos; 2972 return __netlink_seq_next(seq); 2973 } 2974 2975 static void netlink_seq_stop(struct seq_file *seq, void *v) 2976 { 2977 struct nl_seq_iter *iter = seq->private; 2978 2979 if (iter->link >= MAX_LINKS) 2980 return; 2981 2982 netlink_walk_stop(iter); 2983 } 2984 2985 2986 static int netlink_seq_show(struct seq_file *seq, void *v) 2987 { 2988 if (v == SEQ_START_TOKEN) { 2989 seq_puts(seq, 2990 "sk Eth Pid Groups " 2991 "Rmem Wmem Dump Locks Drops Inode\n"); 2992 } else { 2993 struct sock *s = v; 2994 struct netlink_sock *nlk = nlk_sk(s); 2995 2996 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 2997 s, 2998 s->sk_protocol, 2999 nlk->portid, 3000 nlk->groups ? (u32)nlk->groups[0] : 0, 3001 sk_rmem_alloc_get(s), 3002 sk_wmem_alloc_get(s), 3003 nlk->cb_running, 3004 atomic_read(&s->sk_refcnt), 3005 atomic_read(&s->sk_drops), 3006 sock_i_ino(s) 3007 ); 3008 3009 } 3010 return 0; 3011 } 3012 3013 static const struct seq_operations netlink_seq_ops = { 3014 .start = netlink_seq_start, 3015 .next = netlink_seq_next, 3016 .stop = netlink_seq_stop, 3017 .show = netlink_seq_show, 3018 }; 3019 3020 3021 static int netlink_seq_open(struct inode *inode, struct file *file) 3022 { 3023 return seq_open_net(inode, file, &netlink_seq_ops, 3024 sizeof(struct nl_seq_iter)); 3025 } 3026 3027 static const struct file_operations netlink_seq_fops = { 3028 .owner = THIS_MODULE, 3029 .open = netlink_seq_open, 3030 .read = seq_read, 3031 .llseek = seq_lseek, 3032 .release = seq_release_net, 3033 }; 3034 3035 #endif 3036 3037 int netlink_register_notifier(struct notifier_block *nb) 3038 { 3039 return atomic_notifier_chain_register(&netlink_chain, nb); 3040 } 3041 EXPORT_SYMBOL(netlink_register_notifier); 3042 3043 int netlink_unregister_notifier(struct notifier_block *nb) 3044 { 3045 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3046 } 3047 EXPORT_SYMBOL(netlink_unregister_notifier); 3048 3049 static const struct proto_ops netlink_ops = { 3050 .family = PF_NETLINK, 3051 .owner = THIS_MODULE, 3052 .release = netlink_release, 3053 .bind = netlink_bind, 3054 .connect = netlink_connect, 3055 .socketpair = sock_no_socketpair, 3056 .accept = sock_no_accept, 3057 .getname = netlink_getname, 3058 .poll = netlink_poll, 3059 .ioctl = sock_no_ioctl, 3060 .listen = sock_no_listen, 3061 .shutdown = sock_no_shutdown, 3062 .setsockopt = netlink_setsockopt, 3063 .getsockopt = netlink_getsockopt, 3064 .sendmsg = netlink_sendmsg, 3065 .recvmsg = netlink_recvmsg, 3066 .mmap = netlink_mmap, 3067 .sendpage = sock_no_sendpage, 3068 }; 3069 3070 static const struct net_proto_family netlink_family_ops = { 3071 .family = PF_NETLINK, 3072 .create = netlink_create, 3073 .owner = THIS_MODULE, /* for consistency 8) */ 3074 }; 3075 3076 static int __net_init netlink_net_init(struct net *net) 3077 { 3078 #ifdef CONFIG_PROC_FS 3079 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3080 return -ENOMEM; 3081 #endif 3082 return 0; 3083 } 3084 3085 static void __net_exit netlink_net_exit(struct net *net) 3086 { 3087 #ifdef CONFIG_PROC_FS 3088 remove_proc_entry("netlink", net->proc_net); 3089 #endif 3090 } 3091 3092 static void __init netlink_add_usersock_entry(void) 3093 { 3094 struct listeners *listeners; 3095 int groups = 32; 3096 3097 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3098 if (!listeners) 3099 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3100 3101 netlink_table_grab(); 3102 3103 nl_table[NETLINK_USERSOCK].groups = groups; 3104 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3105 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3106 nl_table[NETLINK_USERSOCK].registered = 1; 3107 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3108 3109 netlink_table_ungrab(); 3110 } 3111 3112 static struct pernet_operations __net_initdata netlink_net_ops = { 3113 .init = netlink_net_init, 3114 .exit = netlink_net_exit, 3115 }; 3116 3117 static int __init netlink_proto_init(void) 3118 { 3119 int i; 3120 int err = proto_register(&netlink_proto, 0); 3121 struct rhashtable_params ht_params = { 3122 .head_offset = offsetof(struct netlink_sock, node), 3123 .key_offset = offsetof(struct netlink_sock, portid), 3124 .key_len = sizeof(u32), /* portid */ 3125 .hashfn = jhash, 3126 .max_shift = 16, /* 64K */ 3127 }; 3128 3129 if (err != 0) 3130 goto out; 3131 3132 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3133 3134 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3135 if (!nl_table) 3136 goto panic; 3137 3138 for (i = 0; i < MAX_LINKS; i++) { 3139 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) { 3140 while (--i > 0) 3141 rhashtable_destroy(&nl_table[i].hash); 3142 kfree(nl_table); 3143 goto panic; 3144 } 3145 } 3146 3147 INIT_LIST_HEAD(&netlink_tap_all); 3148 3149 netlink_add_usersock_entry(); 3150 3151 sock_register(&netlink_family_ops); 3152 register_pernet_subsys(&netlink_net_ops); 3153 /* The netlink device handler may be needed early. */ 3154 rtnetlink_init(); 3155 out: 3156 return err; 3157 panic: 3158 panic("netlink_init: Cannot allocate nl_table\n"); 3159 } 3160 3161 core_initcall(netlink_proto_init); 3162