xref: /openbmc/linux/net/netlink/af_netlink.c (revision 9cfc5c90)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_S_CONGESTED		0x0
80 
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET		0x1
83 #define NETLINK_F_RECV_PKTINFO		0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR	0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS	0x8
86 #define NETLINK_F_LISTEN_ALL_NSID	0x10
87 #define NETLINK_F_CAP_ACK		0x20
88 
89 static inline int netlink_is_kernel(struct sock *sk)
90 {
91 	return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
92 }
93 
94 struct netlink_table *nl_table __read_mostly;
95 EXPORT_SYMBOL_GPL(nl_table);
96 
97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
98 
99 static int netlink_dump(struct sock *sk);
100 static void netlink_skb_destructor(struct sk_buff *skb);
101 
102 /* nl_table locking explained:
103  * Lookup and traversal are protected with an RCU read-side lock. Insertion
104  * and removal are protected with per bucket lock while using RCU list
105  * modification primitives and may run in parallel to RCU protected lookups.
106  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
107  * been acquired * either during or after the socket has been removed from
108  * the list and after an RCU grace period.
109  */
110 DEFINE_RWLOCK(nl_table_lock);
111 EXPORT_SYMBOL_GPL(nl_table_lock);
112 static atomic_t nl_table_users = ATOMIC_INIT(0);
113 
114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
115 
116 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
117 
118 static DEFINE_SPINLOCK(netlink_tap_lock);
119 static struct list_head netlink_tap_all __read_mostly;
120 
121 static const struct rhashtable_params netlink_rhashtable_params;
122 
123 static inline u32 netlink_group_mask(u32 group)
124 {
125 	return group ? 1 << (group - 1) : 0;
126 }
127 
128 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
129 					   gfp_t gfp_mask)
130 {
131 	unsigned int len = skb_end_offset(skb);
132 	struct sk_buff *new;
133 
134 	new = alloc_skb(len, gfp_mask);
135 	if (new == NULL)
136 		return NULL;
137 
138 	NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
139 	NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
140 	NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
141 
142 	memcpy(skb_put(new, len), skb->data, len);
143 	return new;
144 }
145 
146 int netlink_add_tap(struct netlink_tap *nt)
147 {
148 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
149 		return -EINVAL;
150 
151 	spin_lock(&netlink_tap_lock);
152 	list_add_rcu(&nt->list, &netlink_tap_all);
153 	spin_unlock(&netlink_tap_lock);
154 
155 	__module_get(nt->module);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(netlink_add_tap);
160 
161 static int __netlink_remove_tap(struct netlink_tap *nt)
162 {
163 	bool found = false;
164 	struct netlink_tap *tmp;
165 
166 	spin_lock(&netlink_tap_lock);
167 
168 	list_for_each_entry(tmp, &netlink_tap_all, list) {
169 		if (nt == tmp) {
170 			list_del_rcu(&nt->list);
171 			found = true;
172 			goto out;
173 		}
174 	}
175 
176 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
177 out:
178 	spin_unlock(&netlink_tap_lock);
179 
180 	if (found)
181 		module_put(nt->module);
182 
183 	return found ? 0 : -ENODEV;
184 }
185 
186 int netlink_remove_tap(struct netlink_tap *nt)
187 {
188 	int ret;
189 
190 	ret = __netlink_remove_tap(nt);
191 	synchronize_net();
192 
193 	return ret;
194 }
195 EXPORT_SYMBOL_GPL(netlink_remove_tap);
196 
197 static bool netlink_filter_tap(const struct sk_buff *skb)
198 {
199 	struct sock *sk = skb->sk;
200 
201 	/* We take the more conservative approach and
202 	 * whitelist socket protocols that may pass.
203 	 */
204 	switch (sk->sk_protocol) {
205 	case NETLINK_ROUTE:
206 	case NETLINK_USERSOCK:
207 	case NETLINK_SOCK_DIAG:
208 	case NETLINK_NFLOG:
209 	case NETLINK_XFRM:
210 	case NETLINK_FIB_LOOKUP:
211 	case NETLINK_NETFILTER:
212 	case NETLINK_GENERIC:
213 		return true;
214 	}
215 
216 	return false;
217 }
218 
219 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
220 				     struct net_device *dev)
221 {
222 	struct sk_buff *nskb;
223 	struct sock *sk = skb->sk;
224 	int ret = -ENOMEM;
225 
226 	dev_hold(dev);
227 
228 	if (netlink_skb_is_mmaped(skb) || is_vmalloc_addr(skb->head))
229 		nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
230 	else
231 		nskb = skb_clone(skb, GFP_ATOMIC);
232 	if (nskb) {
233 		nskb->dev = dev;
234 		nskb->protocol = htons((u16) sk->sk_protocol);
235 		nskb->pkt_type = netlink_is_kernel(sk) ?
236 				 PACKET_KERNEL : PACKET_USER;
237 		skb_reset_network_header(nskb);
238 		ret = dev_queue_xmit(nskb);
239 		if (unlikely(ret > 0))
240 			ret = net_xmit_errno(ret);
241 	}
242 
243 	dev_put(dev);
244 	return ret;
245 }
246 
247 static void __netlink_deliver_tap(struct sk_buff *skb)
248 {
249 	int ret;
250 	struct netlink_tap *tmp;
251 
252 	if (!netlink_filter_tap(skb))
253 		return;
254 
255 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
256 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
257 		if (unlikely(ret))
258 			break;
259 	}
260 }
261 
262 static void netlink_deliver_tap(struct sk_buff *skb)
263 {
264 	rcu_read_lock();
265 
266 	if (unlikely(!list_empty(&netlink_tap_all)))
267 		__netlink_deliver_tap(skb);
268 
269 	rcu_read_unlock();
270 }
271 
272 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
273 				       struct sk_buff *skb)
274 {
275 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
276 		netlink_deliver_tap(skb);
277 }
278 
279 static void netlink_overrun(struct sock *sk)
280 {
281 	struct netlink_sock *nlk = nlk_sk(sk);
282 
283 	if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
284 		if (!test_and_set_bit(NETLINK_S_CONGESTED,
285 				      &nlk_sk(sk)->state)) {
286 			sk->sk_err = ENOBUFS;
287 			sk->sk_error_report(sk);
288 		}
289 	}
290 	atomic_inc(&sk->sk_drops);
291 }
292 
293 static void netlink_rcv_wake(struct sock *sk)
294 {
295 	struct netlink_sock *nlk = nlk_sk(sk);
296 
297 	if (skb_queue_empty(&sk->sk_receive_queue))
298 		clear_bit(NETLINK_S_CONGESTED, &nlk->state);
299 	if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
300 		wake_up_interruptible(&nlk->wait);
301 }
302 
303 #ifdef CONFIG_NETLINK_MMAP
304 static bool netlink_rx_is_mmaped(struct sock *sk)
305 {
306 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
307 }
308 
309 static bool netlink_tx_is_mmaped(struct sock *sk)
310 {
311 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
312 }
313 
314 static __pure struct page *pgvec_to_page(const void *addr)
315 {
316 	if (is_vmalloc_addr(addr))
317 		return vmalloc_to_page(addr);
318 	else
319 		return virt_to_page(addr);
320 }
321 
322 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
323 {
324 	unsigned int i;
325 
326 	for (i = 0; i < len; i++) {
327 		if (pg_vec[i] != NULL) {
328 			if (is_vmalloc_addr(pg_vec[i]))
329 				vfree(pg_vec[i]);
330 			else
331 				free_pages((unsigned long)pg_vec[i], order);
332 		}
333 	}
334 	kfree(pg_vec);
335 }
336 
337 static void *alloc_one_pg_vec_page(unsigned long order)
338 {
339 	void *buffer;
340 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
341 			  __GFP_NOWARN | __GFP_NORETRY;
342 
343 	buffer = (void *)__get_free_pages(gfp_flags, order);
344 	if (buffer != NULL)
345 		return buffer;
346 
347 	buffer = vzalloc((1 << order) * PAGE_SIZE);
348 	if (buffer != NULL)
349 		return buffer;
350 
351 	gfp_flags &= ~__GFP_NORETRY;
352 	return (void *)__get_free_pages(gfp_flags, order);
353 }
354 
355 static void **alloc_pg_vec(struct netlink_sock *nlk,
356 			   struct nl_mmap_req *req, unsigned int order)
357 {
358 	unsigned int block_nr = req->nm_block_nr;
359 	unsigned int i;
360 	void **pg_vec;
361 
362 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
363 	if (pg_vec == NULL)
364 		return NULL;
365 
366 	for (i = 0; i < block_nr; i++) {
367 		pg_vec[i] = alloc_one_pg_vec_page(order);
368 		if (pg_vec[i] == NULL)
369 			goto err1;
370 	}
371 
372 	return pg_vec;
373 err1:
374 	free_pg_vec(pg_vec, order, block_nr);
375 	return NULL;
376 }
377 
378 
379 static void
380 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
381 		   unsigned int order)
382 {
383 	struct netlink_sock *nlk = nlk_sk(sk);
384 	struct sk_buff_head *queue;
385 	struct netlink_ring *ring;
386 
387 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
388 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
389 
390 	spin_lock_bh(&queue->lock);
391 
392 	ring->frame_max		= req->nm_frame_nr - 1;
393 	ring->head		= 0;
394 	ring->frame_size	= req->nm_frame_size;
395 	ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
396 
397 	swap(ring->pg_vec_len, req->nm_block_nr);
398 	swap(ring->pg_vec_order, order);
399 	swap(ring->pg_vec, pg_vec);
400 
401 	__skb_queue_purge(queue);
402 	spin_unlock_bh(&queue->lock);
403 
404 	WARN_ON(atomic_read(&nlk->mapped));
405 
406 	if (pg_vec)
407 		free_pg_vec(pg_vec, order, req->nm_block_nr);
408 }
409 
410 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
411 			    bool tx_ring)
412 {
413 	struct netlink_sock *nlk = nlk_sk(sk);
414 	struct netlink_ring *ring;
415 	void **pg_vec = NULL;
416 	unsigned int order = 0;
417 
418 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
419 
420 	if (atomic_read(&nlk->mapped))
421 		return -EBUSY;
422 	if (atomic_read(&ring->pending))
423 		return -EBUSY;
424 
425 	if (req->nm_block_nr) {
426 		if (ring->pg_vec != NULL)
427 			return -EBUSY;
428 
429 		if ((int)req->nm_block_size <= 0)
430 			return -EINVAL;
431 		if (!PAGE_ALIGNED(req->nm_block_size))
432 			return -EINVAL;
433 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
434 			return -EINVAL;
435 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
436 			return -EINVAL;
437 
438 		ring->frames_per_block = req->nm_block_size /
439 					 req->nm_frame_size;
440 		if (ring->frames_per_block == 0)
441 			return -EINVAL;
442 		if (ring->frames_per_block * req->nm_block_nr !=
443 		    req->nm_frame_nr)
444 			return -EINVAL;
445 
446 		order = get_order(req->nm_block_size);
447 		pg_vec = alloc_pg_vec(nlk, req, order);
448 		if (pg_vec == NULL)
449 			return -ENOMEM;
450 	} else {
451 		if (req->nm_frame_nr)
452 			return -EINVAL;
453 	}
454 
455 	mutex_lock(&nlk->pg_vec_lock);
456 	if (atomic_read(&nlk->mapped) == 0) {
457 		__netlink_set_ring(sk, req, tx_ring, pg_vec, order);
458 		mutex_unlock(&nlk->pg_vec_lock);
459 		return 0;
460 	}
461 
462 	mutex_unlock(&nlk->pg_vec_lock);
463 
464 	if (pg_vec)
465 		free_pg_vec(pg_vec, order, req->nm_block_nr);
466 
467 	return -EBUSY;
468 }
469 
470 static void netlink_mm_open(struct vm_area_struct *vma)
471 {
472 	struct file *file = vma->vm_file;
473 	struct socket *sock = file->private_data;
474 	struct sock *sk = sock->sk;
475 
476 	if (sk)
477 		atomic_inc(&nlk_sk(sk)->mapped);
478 }
479 
480 static void netlink_mm_close(struct vm_area_struct *vma)
481 {
482 	struct file *file = vma->vm_file;
483 	struct socket *sock = file->private_data;
484 	struct sock *sk = sock->sk;
485 
486 	if (sk)
487 		atomic_dec(&nlk_sk(sk)->mapped);
488 }
489 
490 static const struct vm_operations_struct netlink_mmap_ops = {
491 	.open	= netlink_mm_open,
492 	.close	= netlink_mm_close,
493 };
494 
495 static int netlink_mmap(struct file *file, struct socket *sock,
496 			struct vm_area_struct *vma)
497 {
498 	struct sock *sk = sock->sk;
499 	struct netlink_sock *nlk = nlk_sk(sk);
500 	struct netlink_ring *ring;
501 	unsigned long start, size, expected;
502 	unsigned int i;
503 	int err = -EINVAL;
504 
505 	if (vma->vm_pgoff)
506 		return -EINVAL;
507 
508 	mutex_lock(&nlk->pg_vec_lock);
509 
510 	expected = 0;
511 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
512 		if (ring->pg_vec == NULL)
513 			continue;
514 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
515 	}
516 
517 	if (expected == 0)
518 		goto out;
519 
520 	size = vma->vm_end - vma->vm_start;
521 	if (size != expected)
522 		goto out;
523 
524 	start = vma->vm_start;
525 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
526 		if (ring->pg_vec == NULL)
527 			continue;
528 
529 		for (i = 0; i < ring->pg_vec_len; i++) {
530 			struct page *page;
531 			void *kaddr = ring->pg_vec[i];
532 			unsigned int pg_num;
533 
534 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
535 				page = pgvec_to_page(kaddr);
536 				err = vm_insert_page(vma, start, page);
537 				if (err < 0)
538 					goto out;
539 				start += PAGE_SIZE;
540 				kaddr += PAGE_SIZE;
541 			}
542 		}
543 	}
544 
545 	atomic_inc(&nlk->mapped);
546 	vma->vm_ops = &netlink_mmap_ops;
547 	err = 0;
548 out:
549 	mutex_unlock(&nlk->pg_vec_lock);
550 	return err;
551 }
552 
553 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
554 {
555 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
556 	struct page *p_start, *p_end;
557 
558 	/* First page is flushed through netlink_{get,set}_status */
559 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
560 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
561 	while (p_start <= p_end) {
562 		flush_dcache_page(p_start);
563 		p_start++;
564 	}
565 #endif
566 }
567 
568 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
569 {
570 	smp_rmb();
571 	flush_dcache_page(pgvec_to_page(hdr));
572 	return hdr->nm_status;
573 }
574 
575 static void netlink_set_status(struct nl_mmap_hdr *hdr,
576 			       enum nl_mmap_status status)
577 {
578 	smp_mb();
579 	hdr->nm_status = status;
580 	flush_dcache_page(pgvec_to_page(hdr));
581 }
582 
583 static struct nl_mmap_hdr *
584 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
585 {
586 	unsigned int pg_vec_pos, frame_off;
587 
588 	pg_vec_pos = pos / ring->frames_per_block;
589 	frame_off  = pos % ring->frames_per_block;
590 
591 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
592 }
593 
594 static struct nl_mmap_hdr *
595 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
596 		     enum nl_mmap_status status)
597 {
598 	struct nl_mmap_hdr *hdr;
599 
600 	hdr = __netlink_lookup_frame(ring, pos);
601 	if (netlink_get_status(hdr) != status)
602 		return NULL;
603 
604 	return hdr;
605 }
606 
607 static struct nl_mmap_hdr *
608 netlink_current_frame(const struct netlink_ring *ring,
609 		      enum nl_mmap_status status)
610 {
611 	return netlink_lookup_frame(ring, ring->head, status);
612 }
613 
614 static void netlink_increment_head(struct netlink_ring *ring)
615 {
616 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
617 }
618 
619 static void netlink_forward_ring(struct netlink_ring *ring)
620 {
621 	unsigned int head = ring->head;
622 	const struct nl_mmap_hdr *hdr;
623 
624 	do {
625 		hdr = __netlink_lookup_frame(ring, ring->head);
626 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
627 			break;
628 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
629 			break;
630 		netlink_increment_head(ring);
631 	} while (ring->head != head);
632 }
633 
634 static bool netlink_has_valid_frame(struct netlink_ring *ring)
635 {
636 	unsigned int head = ring->head, pos = head;
637 	const struct nl_mmap_hdr *hdr;
638 
639 	do {
640 		hdr = __netlink_lookup_frame(ring, pos);
641 		if (hdr->nm_status == NL_MMAP_STATUS_VALID)
642 			return true;
643 		pos = pos != 0 ? pos - 1 : ring->frame_max;
644 	} while (pos != head);
645 
646 	return false;
647 }
648 
649 static bool netlink_dump_space(struct netlink_sock *nlk)
650 {
651 	struct netlink_ring *ring = &nlk->rx_ring;
652 	struct nl_mmap_hdr *hdr;
653 	unsigned int n;
654 
655 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
656 	if (hdr == NULL)
657 		return false;
658 
659 	n = ring->head + ring->frame_max / 2;
660 	if (n > ring->frame_max)
661 		n -= ring->frame_max;
662 
663 	hdr = __netlink_lookup_frame(ring, n);
664 
665 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
666 }
667 
668 static unsigned int netlink_poll(struct file *file, struct socket *sock,
669 				 poll_table *wait)
670 {
671 	struct sock *sk = sock->sk;
672 	struct netlink_sock *nlk = nlk_sk(sk);
673 	unsigned int mask;
674 	int err;
675 
676 	if (nlk->rx_ring.pg_vec != NULL) {
677 		/* Memory mapped sockets don't call recvmsg(), so flow control
678 		 * for dumps is performed here. A dump is allowed to continue
679 		 * if at least half the ring is unused.
680 		 */
681 		while (nlk->cb_running && netlink_dump_space(nlk)) {
682 			err = netlink_dump(sk);
683 			if (err < 0) {
684 				sk->sk_err = -err;
685 				sk->sk_error_report(sk);
686 				break;
687 			}
688 		}
689 		netlink_rcv_wake(sk);
690 	}
691 
692 	mask = datagram_poll(file, sock, wait);
693 
694 	/* We could already have received frames in the normal receive
695 	 * queue, that will show up as NL_MMAP_STATUS_COPY in the ring,
696 	 * so if mask contains pollin/etc already, there's no point
697 	 * walking the ring.
698 	 */
699 	if ((mask & (POLLIN | POLLRDNORM)) != (POLLIN | POLLRDNORM)) {
700 		spin_lock_bh(&sk->sk_receive_queue.lock);
701 		if (nlk->rx_ring.pg_vec) {
702 			if (netlink_has_valid_frame(&nlk->rx_ring))
703 				mask |= POLLIN | POLLRDNORM;
704 		}
705 		spin_unlock_bh(&sk->sk_receive_queue.lock);
706 	}
707 
708 	spin_lock_bh(&sk->sk_write_queue.lock);
709 	if (nlk->tx_ring.pg_vec) {
710 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
711 			mask |= POLLOUT | POLLWRNORM;
712 	}
713 	spin_unlock_bh(&sk->sk_write_queue.lock);
714 
715 	return mask;
716 }
717 
718 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
719 {
720 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
721 }
722 
723 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
724 				   struct netlink_ring *ring,
725 				   struct nl_mmap_hdr *hdr)
726 {
727 	unsigned int size;
728 	void *data;
729 
730 	size = ring->frame_size - NL_MMAP_HDRLEN;
731 	data = (void *)hdr + NL_MMAP_HDRLEN;
732 
733 	skb->head	= data;
734 	skb->data	= data;
735 	skb_reset_tail_pointer(skb);
736 	skb->end	= skb->tail + size;
737 	skb->len	= 0;
738 
739 	skb->destructor	= netlink_skb_destructor;
740 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
741 	NETLINK_CB(skb).sk = sk;
742 }
743 
744 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
745 				u32 dst_portid, u32 dst_group,
746 				struct scm_cookie *scm)
747 {
748 	struct netlink_sock *nlk = nlk_sk(sk);
749 	struct netlink_ring *ring;
750 	struct nl_mmap_hdr *hdr;
751 	struct sk_buff *skb;
752 	unsigned int maxlen;
753 	int err = 0, len = 0;
754 
755 	mutex_lock(&nlk->pg_vec_lock);
756 
757 	ring   = &nlk->tx_ring;
758 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
759 
760 	do {
761 		unsigned int nm_len;
762 
763 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
764 		if (hdr == NULL) {
765 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
766 			    atomic_read(&nlk->tx_ring.pending))
767 				schedule();
768 			continue;
769 		}
770 
771 		nm_len = ACCESS_ONCE(hdr->nm_len);
772 		if (nm_len > maxlen) {
773 			err = -EINVAL;
774 			goto out;
775 		}
776 
777 		netlink_frame_flush_dcache(hdr, nm_len);
778 
779 		skb = alloc_skb(nm_len, GFP_KERNEL);
780 		if (skb == NULL) {
781 			err = -ENOBUFS;
782 			goto out;
783 		}
784 		__skb_put(skb, nm_len);
785 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
786 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
787 
788 		netlink_increment_head(ring);
789 
790 		NETLINK_CB(skb).portid	  = nlk->portid;
791 		NETLINK_CB(skb).dst_group = dst_group;
792 		NETLINK_CB(skb).creds	  = scm->creds;
793 
794 		err = security_netlink_send(sk, skb);
795 		if (err) {
796 			kfree_skb(skb);
797 			goto out;
798 		}
799 
800 		if (unlikely(dst_group)) {
801 			atomic_inc(&skb->users);
802 			netlink_broadcast(sk, skb, dst_portid, dst_group,
803 					  GFP_KERNEL);
804 		}
805 		err = netlink_unicast(sk, skb, dst_portid,
806 				      msg->msg_flags & MSG_DONTWAIT);
807 		if (err < 0)
808 			goto out;
809 		len += err;
810 
811 	} while (hdr != NULL ||
812 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
813 		  atomic_read(&nlk->tx_ring.pending)));
814 
815 	if (len > 0)
816 		err = len;
817 out:
818 	mutex_unlock(&nlk->pg_vec_lock);
819 	return err;
820 }
821 
822 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
823 {
824 	struct nl_mmap_hdr *hdr;
825 
826 	hdr = netlink_mmap_hdr(skb);
827 	hdr->nm_len	= skb->len;
828 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
829 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
830 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
831 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
832 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
833 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
834 
835 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
836 	kfree_skb(skb);
837 }
838 
839 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
840 {
841 	struct netlink_sock *nlk = nlk_sk(sk);
842 	struct netlink_ring *ring = &nlk->rx_ring;
843 	struct nl_mmap_hdr *hdr;
844 
845 	spin_lock_bh(&sk->sk_receive_queue.lock);
846 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
847 	if (hdr == NULL) {
848 		spin_unlock_bh(&sk->sk_receive_queue.lock);
849 		kfree_skb(skb);
850 		netlink_overrun(sk);
851 		return;
852 	}
853 	netlink_increment_head(ring);
854 	__skb_queue_tail(&sk->sk_receive_queue, skb);
855 	spin_unlock_bh(&sk->sk_receive_queue.lock);
856 
857 	hdr->nm_len	= skb->len;
858 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
859 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
860 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
861 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
862 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
863 }
864 
865 #else /* CONFIG_NETLINK_MMAP */
866 #define netlink_rx_is_mmaped(sk)	false
867 #define netlink_tx_is_mmaped(sk)	false
868 #define netlink_mmap			sock_no_mmap
869 #define netlink_poll			datagram_poll
870 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm)	0
871 #endif /* CONFIG_NETLINK_MMAP */
872 
873 static void netlink_skb_destructor(struct sk_buff *skb)
874 {
875 #ifdef CONFIG_NETLINK_MMAP
876 	struct nl_mmap_hdr *hdr;
877 	struct netlink_ring *ring;
878 	struct sock *sk;
879 
880 	/* If a packet from the kernel to userspace was freed because of an
881 	 * error without being delivered to userspace, the kernel must reset
882 	 * the status. In the direction userspace to kernel, the status is
883 	 * always reset here after the packet was processed and freed.
884 	 */
885 	if (netlink_skb_is_mmaped(skb)) {
886 		hdr = netlink_mmap_hdr(skb);
887 		sk = NETLINK_CB(skb).sk;
888 
889 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
890 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
891 			ring = &nlk_sk(sk)->tx_ring;
892 		} else {
893 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
894 				hdr->nm_len = 0;
895 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
896 			}
897 			ring = &nlk_sk(sk)->rx_ring;
898 		}
899 
900 		WARN_ON(atomic_read(&ring->pending) == 0);
901 		atomic_dec(&ring->pending);
902 		sock_put(sk);
903 
904 		skb->head = NULL;
905 	}
906 #endif
907 	if (is_vmalloc_addr(skb->head)) {
908 		if (!skb->cloned ||
909 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
910 			vfree(skb->head);
911 
912 		skb->head = NULL;
913 	}
914 	if (skb->sk != NULL)
915 		sock_rfree(skb);
916 }
917 
918 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
919 {
920 	WARN_ON(skb->sk != NULL);
921 	skb->sk = sk;
922 	skb->destructor = netlink_skb_destructor;
923 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
924 	sk_mem_charge(sk, skb->truesize);
925 }
926 
927 static void netlink_sock_destruct(struct sock *sk)
928 {
929 	struct netlink_sock *nlk = nlk_sk(sk);
930 
931 	if (nlk->cb_running) {
932 		if (nlk->cb.done)
933 			nlk->cb.done(&nlk->cb);
934 
935 		module_put(nlk->cb.module);
936 		kfree_skb(nlk->cb.skb);
937 	}
938 
939 	skb_queue_purge(&sk->sk_receive_queue);
940 #ifdef CONFIG_NETLINK_MMAP
941 	if (1) {
942 		struct nl_mmap_req req;
943 
944 		memset(&req, 0, sizeof(req));
945 		if (nlk->rx_ring.pg_vec)
946 			__netlink_set_ring(sk, &req, false, NULL, 0);
947 		memset(&req, 0, sizeof(req));
948 		if (nlk->tx_ring.pg_vec)
949 			__netlink_set_ring(sk, &req, true, NULL, 0);
950 	}
951 #endif /* CONFIG_NETLINK_MMAP */
952 
953 	if (!sock_flag(sk, SOCK_DEAD)) {
954 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
955 		return;
956 	}
957 
958 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
959 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
960 	WARN_ON(nlk_sk(sk)->groups);
961 }
962 
963 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
964  * SMP. Look, when several writers sleep and reader wakes them up, all but one
965  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
966  * this, _but_ remember, it adds useless work on UP machines.
967  */
968 
969 void netlink_table_grab(void)
970 	__acquires(nl_table_lock)
971 {
972 	might_sleep();
973 
974 	write_lock_irq(&nl_table_lock);
975 
976 	if (atomic_read(&nl_table_users)) {
977 		DECLARE_WAITQUEUE(wait, current);
978 
979 		add_wait_queue_exclusive(&nl_table_wait, &wait);
980 		for (;;) {
981 			set_current_state(TASK_UNINTERRUPTIBLE);
982 			if (atomic_read(&nl_table_users) == 0)
983 				break;
984 			write_unlock_irq(&nl_table_lock);
985 			schedule();
986 			write_lock_irq(&nl_table_lock);
987 		}
988 
989 		__set_current_state(TASK_RUNNING);
990 		remove_wait_queue(&nl_table_wait, &wait);
991 	}
992 }
993 
994 void netlink_table_ungrab(void)
995 	__releases(nl_table_lock)
996 {
997 	write_unlock_irq(&nl_table_lock);
998 	wake_up(&nl_table_wait);
999 }
1000 
1001 static inline void
1002 netlink_lock_table(void)
1003 {
1004 	/* read_lock() synchronizes us to netlink_table_grab */
1005 
1006 	read_lock(&nl_table_lock);
1007 	atomic_inc(&nl_table_users);
1008 	read_unlock(&nl_table_lock);
1009 }
1010 
1011 static inline void
1012 netlink_unlock_table(void)
1013 {
1014 	if (atomic_dec_and_test(&nl_table_users))
1015 		wake_up(&nl_table_wait);
1016 }
1017 
1018 struct netlink_compare_arg
1019 {
1020 	possible_net_t pnet;
1021 	u32 portid;
1022 };
1023 
1024 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
1025 #define netlink_compare_arg_len \
1026 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
1027 
1028 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1029 				  const void *ptr)
1030 {
1031 	const struct netlink_compare_arg *x = arg->key;
1032 	const struct netlink_sock *nlk = ptr;
1033 
1034 	return nlk->portid != x->portid ||
1035 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1036 }
1037 
1038 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1039 				     struct net *net, u32 portid)
1040 {
1041 	memset(arg, 0, sizeof(*arg));
1042 	write_pnet(&arg->pnet, net);
1043 	arg->portid = portid;
1044 }
1045 
1046 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1047 				     struct net *net)
1048 {
1049 	struct netlink_compare_arg arg;
1050 
1051 	netlink_compare_arg_init(&arg, net, portid);
1052 	return rhashtable_lookup_fast(&table->hash, &arg,
1053 				      netlink_rhashtable_params);
1054 }
1055 
1056 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1057 {
1058 	struct netlink_compare_arg arg;
1059 
1060 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1061 	return rhashtable_lookup_insert_key(&table->hash, &arg,
1062 					    &nlk_sk(sk)->node,
1063 					    netlink_rhashtable_params);
1064 }
1065 
1066 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1067 {
1068 	struct netlink_table *table = &nl_table[protocol];
1069 	struct sock *sk;
1070 
1071 	rcu_read_lock();
1072 	sk = __netlink_lookup(table, portid, net);
1073 	if (sk)
1074 		sock_hold(sk);
1075 	rcu_read_unlock();
1076 
1077 	return sk;
1078 }
1079 
1080 static const struct proto_ops netlink_ops;
1081 
1082 static void
1083 netlink_update_listeners(struct sock *sk)
1084 {
1085 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1086 	unsigned long mask;
1087 	unsigned int i;
1088 	struct listeners *listeners;
1089 
1090 	listeners = nl_deref_protected(tbl->listeners);
1091 	if (!listeners)
1092 		return;
1093 
1094 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1095 		mask = 0;
1096 		sk_for_each_bound(sk, &tbl->mc_list) {
1097 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1098 				mask |= nlk_sk(sk)->groups[i];
1099 		}
1100 		listeners->masks[i] = mask;
1101 	}
1102 	/* this function is only called with the netlink table "grabbed", which
1103 	 * makes sure updates are visible before bind or setsockopt return. */
1104 }
1105 
1106 static int netlink_insert(struct sock *sk, u32 portid)
1107 {
1108 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1109 	int err;
1110 
1111 	lock_sock(sk);
1112 
1113 	err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
1114 	if (nlk_sk(sk)->bound)
1115 		goto err;
1116 
1117 	err = -ENOMEM;
1118 	if (BITS_PER_LONG > 32 &&
1119 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1120 		goto err;
1121 
1122 	nlk_sk(sk)->portid = portid;
1123 	sock_hold(sk);
1124 
1125 	err = __netlink_insert(table, sk);
1126 	if (err) {
1127 		/* In case the hashtable backend returns with -EBUSY
1128 		 * from here, it must not escape to the caller.
1129 		 */
1130 		if (unlikely(err == -EBUSY))
1131 			err = -EOVERFLOW;
1132 		if (err == -EEXIST)
1133 			err = -EADDRINUSE;
1134 		sock_put(sk);
1135 		goto err;
1136 	}
1137 
1138 	/* We need to ensure that the socket is hashed and visible. */
1139 	smp_wmb();
1140 	nlk_sk(sk)->bound = portid;
1141 
1142 err:
1143 	release_sock(sk);
1144 	return err;
1145 }
1146 
1147 static void netlink_remove(struct sock *sk)
1148 {
1149 	struct netlink_table *table;
1150 
1151 	table = &nl_table[sk->sk_protocol];
1152 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1153 				    netlink_rhashtable_params)) {
1154 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1155 		__sock_put(sk);
1156 	}
1157 
1158 	netlink_table_grab();
1159 	if (nlk_sk(sk)->subscriptions) {
1160 		__sk_del_bind_node(sk);
1161 		netlink_update_listeners(sk);
1162 	}
1163 	if (sk->sk_protocol == NETLINK_GENERIC)
1164 		atomic_inc(&genl_sk_destructing_cnt);
1165 	netlink_table_ungrab();
1166 }
1167 
1168 static struct proto netlink_proto = {
1169 	.name	  = "NETLINK",
1170 	.owner	  = THIS_MODULE,
1171 	.obj_size = sizeof(struct netlink_sock),
1172 };
1173 
1174 static int __netlink_create(struct net *net, struct socket *sock,
1175 			    struct mutex *cb_mutex, int protocol,
1176 			    int kern)
1177 {
1178 	struct sock *sk;
1179 	struct netlink_sock *nlk;
1180 
1181 	sock->ops = &netlink_ops;
1182 
1183 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1184 	if (!sk)
1185 		return -ENOMEM;
1186 
1187 	sock_init_data(sock, sk);
1188 
1189 	nlk = nlk_sk(sk);
1190 	if (cb_mutex) {
1191 		nlk->cb_mutex = cb_mutex;
1192 	} else {
1193 		nlk->cb_mutex = &nlk->cb_def_mutex;
1194 		mutex_init(nlk->cb_mutex);
1195 	}
1196 	init_waitqueue_head(&nlk->wait);
1197 #ifdef CONFIG_NETLINK_MMAP
1198 	mutex_init(&nlk->pg_vec_lock);
1199 #endif
1200 
1201 	sk->sk_destruct = netlink_sock_destruct;
1202 	sk->sk_protocol = protocol;
1203 	return 0;
1204 }
1205 
1206 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1207 			  int kern)
1208 {
1209 	struct module *module = NULL;
1210 	struct mutex *cb_mutex;
1211 	struct netlink_sock *nlk;
1212 	int (*bind)(struct net *net, int group);
1213 	void (*unbind)(struct net *net, int group);
1214 	int err = 0;
1215 
1216 	sock->state = SS_UNCONNECTED;
1217 
1218 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1219 		return -ESOCKTNOSUPPORT;
1220 
1221 	if (protocol < 0 || protocol >= MAX_LINKS)
1222 		return -EPROTONOSUPPORT;
1223 
1224 	netlink_lock_table();
1225 #ifdef CONFIG_MODULES
1226 	if (!nl_table[protocol].registered) {
1227 		netlink_unlock_table();
1228 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1229 		netlink_lock_table();
1230 	}
1231 #endif
1232 	if (nl_table[protocol].registered &&
1233 	    try_module_get(nl_table[protocol].module))
1234 		module = nl_table[protocol].module;
1235 	else
1236 		err = -EPROTONOSUPPORT;
1237 	cb_mutex = nl_table[protocol].cb_mutex;
1238 	bind = nl_table[protocol].bind;
1239 	unbind = nl_table[protocol].unbind;
1240 	netlink_unlock_table();
1241 
1242 	if (err < 0)
1243 		goto out;
1244 
1245 	err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1246 	if (err < 0)
1247 		goto out_module;
1248 
1249 	local_bh_disable();
1250 	sock_prot_inuse_add(net, &netlink_proto, 1);
1251 	local_bh_enable();
1252 
1253 	nlk = nlk_sk(sock->sk);
1254 	nlk->module = module;
1255 	nlk->netlink_bind = bind;
1256 	nlk->netlink_unbind = unbind;
1257 out:
1258 	return err;
1259 
1260 out_module:
1261 	module_put(module);
1262 	goto out;
1263 }
1264 
1265 static void deferred_put_nlk_sk(struct rcu_head *head)
1266 {
1267 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1268 
1269 	sock_put(&nlk->sk);
1270 }
1271 
1272 static int netlink_release(struct socket *sock)
1273 {
1274 	struct sock *sk = sock->sk;
1275 	struct netlink_sock *nlk;
1276 
1277 	if (!sk)
1278 		return 0;
1279 
1280 	netlink_remove(sk);
1281 	sock_orphan(sk);
1282 	nlk = nlk_sk(sk);
1283 
1284 	/*
1285 	 * OK. Socket is unlinked, any packets that arrive now
1286 	 * will be purged.
1287 	 */
1288 
1289 	/* must not acquire netlink_table_lock in any way again before unbind
1290 	 * and notifying genetlink is done as otherwise it might deadlock
1291 	 */
1292 	if (nlk->netlink_unbind) {
1293 		int i;
1294 
1295 		for (i = 0; i < nlk->ngroups; i++)
1296 			if (test_bit(i, nlk->groups))
1297 				nlk->netlink_unbind(sock_net(sk), i + 1);
1298 	}
1299 	if (sk->sk_protocol == NETLINK_GENERIC &&
1300 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1301 		wake_up(&genl_sk_destructing_waitq);
1302 
1303 	sock->sk = NULL;
1304 	wake_up_interruptible_all(&nlk->wait);
1305 
1306 	skb_queue_purge(&sk->sk_write_queue);
1307 
1308 	if (nlk->portid) {
1309 		struct netlink_notify n = {
1310 						.net = sock_net(sk),
1311 						.protocol = sk->sk_protocol,
1312 						.portid = nlk->portid,
1313 					  };
1314 		atomic_notifier_call_chain(&netlink_chain,
1315 				NETLINK_URELEASE, &n);
1316 	}
1317 
1318 	module_put(nlk->module);
1319 
1320 	if (netlink_is_kernel(sk)) {
1321 		netlink_table_grab();
1322 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1323 		if (--nl_table[sk->sk_protocol].registered == 0) {
1324 			struct listeners *old;
1325 
1326 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1327 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1328 			kfree_rcu(old, rcu);
1329 			nl_table[sk->sk_protocol].module = NULL;
1330 			nl_table[sk->sk_protocol].bind = NULL;
1331 			nl_table[sk->sk_protocol].unbind = NULL;
1332 			nl_table[sk->sk_protocol].flags = 0;
1333 			nl_table[sk->sk_protocol].registered = 0;
1334 		}
1335 		netlink_table_ungrab();
1336 	}
1337 
1338 	kfree(nlk->groups);
1339 	nlk->groups = NULL;
1340 
1341 	local_bh_disable();
1342 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1343 	local_bh_enable();
1344 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1345 	return 0;
1346 }
1347 
1348 static int netlink_autobind(struct socket *sock)
1349 {
1350 	struct sock *sk = sock->sk;
1351 	struct net *net = sock_net(sk);
1352 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1353 	s32 portid = task_tgid_vnr(current);
1354 	int err;
1355 	s32 rover = -4096;
1356 	bool ok;
1357 
1358 retry:
1359 	cond_resched();
1360 	rcu_read_lock();
1361 	ok = !__netlink_lookup(table, portid, net);
1362 	rcu_read_unlock();
1363 	if (!ok) {
1364 		/* Bind collision, search negative portid values. */
1365 		if (rover == -4096)
1366 			/* rover will be in range [S32_MIN, -4097] */
1367 			rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1368 		else if (rover >= -4096)
1369 			rover = -4097;
1370 		portid = rover--;
1371 		goto retry;
1372 	}
1373 
1374 	err = netlink_insert(sk, portid);
1375 	if (err == -EADDRINUSE)
1376 		goto retry;
1377 
1378 	/* If 2 threads race to autobind, that is fine.  */
1379 	if (err == -EBUSY)
1380 		err = 0;
1381 
1382 	return err;
1383 }
1384 
1385 /**
1386  * __netlink_ns_capable - General netlink message capability test
1387  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1388  * @user_ns: The user namespace of the capability to use
1389  * @cap: The capability to use
1390  *
1391  * Test to see if the opener of the socket we received the message
1392  * from had when the netlink socket was created and the sender of the
1393  * message has has the capability @cap in the user namespace @user_ns.
1394  */
1395 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1396 			struct user_namespace *user_ns, int cap)
1397 {
1398 	return ((nsp->flags & NETLINK_SKB_DST) ||
1399 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1400 		ns_capable(user_ns, cap);
1401 }
1402 EXPORT_SYMBOL(__netlink_ns_capable);
1403 
1404 /**
1405  * netlink_ns_capable - General netlink message capability test
1406  * @skb: socket buffer holding a netlink command from userspace
1407  * @user_ns: The user namespace of the capability to use
1408  * @cap: The capability to use
1409  *
1410  * Test to see if the opener of the socket we received the message
1411  * from had when the netlink socket was created and the sender of the
1412  * message has has the capability @cap in the user namespace @user_ns.
1413  */
1414 bool netlink_ns_capable(const struct sk_buff *skb,
1415 			struct user_namespace *user_ns, int cap)
1416 {
1417 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1418 }
1419 EXPORT_SYMBOL(netlink_ns_capable);
1420 
1421 /**
1422  * netlink_capable - Netlink global message capability test
1423  * @skb: socket buffer holding a netlink command from userspace
1424  * @cap: The capability to use
1425  *
1426  * Test to see if the opener of the socket we received the message
1427  * from had when the netlink socket was created and the sender of the
1428  * message has has the capability @cap in all user namespaces.
1429  */
1430 bool netlink_capable(const struct sk_buff *skb, int cap)
1431 {
1432 	return netlink_ns_capable(skb, &init_user_ns, cap);
1433 }
1434 EXPORT_SYMBOL(netlink_capable);
1435 
1436 /**
1437  * netlink_net_capable - Netlink network namespace message capability test
1438  * @skb: socket buffer holding a netlink command from userspace
1439  * @cap: The capability to use
1440  *
1441  * Test to see if the opener of the socket we received the message
1442  * from had when the netlink socket was created and the sender of the
1443  * message has has the capability @cap over the network namespace of
1444  * the socket we received the message from.
1445  */
1446 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1447 {
1448 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1449 }
1450 EXPORT_SYMBOL(netlink_net_capable);
1451 
1452 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1453 {
1454 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1455 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1456 }
1457 
1458 static void
1459 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1460 {
1461 	struct netlink_sock *nlk = nlk_sk(sk);
1462 
1463 	if (nlk->subscriptions && !subscriptions)
1464 		__sk_del_bind_node(sk);
1465 	else if (!nlk->subscriptions && subscriptions)
1466 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1467 	nlk->subscriptions = subscriptions;
1468 }
1469 
1470 static int netlink_realloc_groups(struct sock *sk)
1471 {
1472 	struct netlink_sock *nlk = nlk_sk(sk);
1473 	unsigned int groups;
1474 	unsigned long *new_groups;
1475 	int err = 0;
1476 
1477 	netlink_table_grab();
1478 
1479 	groups = nl_table[sk->sk_protocol].groups;
1480 	if (!nl_table[sk->sk_protocol].registered) {
1481 		err = -ENOENT;
1482 		goto out_unlock;
1483 	}
1484 
1485 	if (nlk->ngroups >= groups)
1486 		goto out_unlock;
1487 
1488 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1489 	if (new_groups == NULL) {
1490 		err = -ENOMEM;
1491 		goto out_unlock;
1492 	}
1493 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1494 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1495 
1496 	nlk->groups = new_groups;
1497 	nlk->ngroups = groups;
1498  out_unlock:
1499 	netlink_table_ungrab();
1500 	return err;
1501 }
1502 
1503 static void netlink_undo_bind(int group, long unsigned int groups,
1504 			      struct sock *sk)
1505 {
1506 	struct netlink_sock *nlk = nlk_sk(sk);
1507 	int undo;
1508 
1509 	if (!nlk->netlink_unbind)
1510 		return;
1511 
1512 	for (undo = 0; undo < group; undo++)
1513 		if (test_bit(undo, &groups))
1514 			nlk->netlink_unbind(sock_net(sk), undo + 1);
1515 }
1516 
1517 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1518 			int addr_len)
1519 {
1520 	struct sock *sk = sock->sk;
1521 	struct net *net = sock_net(sk);
1522 	struct netlink_sock *nlk = nlk_sk(sk);
1523 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1524 	int err;
1525 	long unsigned int groups = nladdr->nl_groups;
1526 	bool bound;
1527 
1528 	if (addr_len < sizeof(struct sockaddr_nl))
1529 		return -EINVAL;
1530 
1531 	if (nladdr->nl_family != AF_NETLINK)
1532 		return -EINVAL;
1533 
1534 	/* Only superuser is allowed to listen multicasts */
1535 	if (groups) {
1536 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1537 			return -EPERM;
1538 		err = netlink_realloc_groups(sk);
1539 		if (err)
1540 			return err;
1541 	}
1542 
1543 	bound = nlk->bound;
1544 	if (bound) {
1545 		/* Ensure nlk->portid is up-to-date. */
1546 		smp_rmb();
1547 
1548 		if (nladdr->nl_pid != nlk->portid)
1549 			return -EINVAL;
1550 	}
1551 
1552 	if (nlk->netlink_bind && groups) {
1553 		int group;
1554 
1555 		for (group = 0; group < nlk->ngroups; group++) {
1556 			if (!test_bit(group, &groups))
1557 				continue;
1558 			err = nlk->netlink_bind(net, group + 1);
1559 			if (!err)
1560 				continue;
1561 			netlink_undo_bind(group, groups, sk);
1562 			return err;
1563 		}
1564 	}
1565 
1566 	/* No need for barriers here as we return to user-space without
1567 	 * using any of the bound attributes.
1568 	 */
1569 	if (!bound) {
1570 		err = nladdr->nl_pid ?
1571 			netlink_insert(sk, nladdr->nl_pid) :
1572 			netlink_autobind(sock);
1573 		if (err) {
1574 			netlink_undo_bind(nlk->ngroups, groups, sk);
1575 			return err;
1576 		}
1577 	}
1578 
1579 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1580 		return 0;
1581 
1582 	netlink_table_grab();
1583 	netlink_update_subscriptions(sk, nlk->subscriptions +
1584 					 hweight32(groups) -
1585 					 hweight32(nlk->groups[0]));
1586 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1587 	netlink_update_listeners(sk);
1588 	netlink_table_ungrab();
1589 
1590 	return 0;
1591 }
1592 
1593 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1594 			   int alen, int flags)
1595 {
1596 	int err = 0;
1597 	struct sock *sk = sock->sk;
1598 	struct netlink_sock *nlk = nlk_sk(sk);
1599 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1600 
1601 	if (alen < sizeof(addr->sa_family))
1602 		return -EINVAL;
1603 
1604 	if (addr->sa_family == AF_UNSPEC) {
1605 		sk->sk_state	= NETLINK_UNCONNECTED;
1606 		nlk->dst_portid	= 0;
1607 		nlk->dst_group  = 0;
1608 		return 0;
1609 	}
1610 	if (addr->sa_family != AF_NETLINK)
1611 		return -EINVAL;
1612 
1613 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1614 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1615 		return -EPERM;
1616 
1617 	/* No need for barriers here as we return to user-space without
1618 	 * using any of the bound attributes.
1619 	 */
1620 	if (!nlk->bound)
1621 		err = netlink_autobind(sock);
1622 
1623 	if (err == 0) {
1624 		sk->sk_state	= NETLINK_CONNECTED;
1625 		nlk->dst_portid = nladdr->nl_pid;
1626 		nlk->dst_group  = ffs(nladdr->nl_groups);
1627 	}
1628 
1629 	return err;
1630 }
1631 
1632 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1633 			   int *addr_len, int peer)
1634 {
1635 	struct sock *sk = sock->sk;
1636 	struct netlink_sock *nlk = nlk_sk(sk);
1637 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1638 
1639 	nladdr->nl_family = AF_NETLINK;
1640 	nladdr->nl_pad = 0;
1641 	*addr_len = sizeof(*nladdr);
1642 
1643 	if (peer) {
1644 		nladdr->nl_pid = nlk->dst_portid;
1645 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1646 	} else {
1647 		nladdr->nl_pid = nlk->portid;
1648 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1649 	}
1650 	return 0;
1651 }
1652 
1653 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1654 {
1655 	struct sock *sock;
1656 	struct netlink_sock *nlk;
1657 
1658 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1659 	if (!sock)
1660 		return ERR_PTR(-ECONNREFUSED);
1661 
1662 	/* Don't bother queuing skb if kernel socket has no input function */
1663 	nlk = nlk_sk(sock);
1664 	if (sock->sk_state == NETLINK_CONNECTED &&
1665 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1666 		sock_put(sock);
1667 		return ERR_PTR(-ECONNREFUSED);
1668 	}
1669 	return sock;
1670 }
1671 
1672 struct sock *netlink_getsockbyfilp(struct file *filp)
1673 {
1674 	struct inode *inode = file_inode(filp);
1675 	struct sock *sock;
1676 
1677 	if (!S_ISSOCK(inode->i_mode))
1678 		return ERR_PTR(-ENOTSOCK);
1679 
1680 	sock = SOCKET_I(inode)->sk;
1681 	if (sock->sk_family != AF_NETLINK)
1682 		return ERR_PTR(-EINVAL);
1683 
1684 	sock_hold(sock);
1685 	return sock;
1686 }
1687 
1688 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1689 					       int broadcast)
1690 {
1691 	struct sk_buff *skb;
1692 	void *data;
1693 
1694 	if (size <= NLMSG_GOODSIZE || broadcast)
1695 		return alloc_skb(size, GFP_KERNEL);
1696 
1697 	size = SKB_DATA_ALIGN(size) +
1698 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1699 
1700 	data = vmalloc(size);
1701 	if (data == NULL)
1702 		return NULL;
1703 
1704 	skb = __build_skb(data, size);
1705 	if (skb == NULL)
1706 		vfree(data);
1707 	else
1708 		skb->destructor = netlink_skb_destructor;
1709 
1710 	return skb;
1711 }
1712 
1713 /*
1714  * Attach a skb to a netlink socket.
1715  * The caller must hold a reference to the destination socket. On error, the
1716  * reference is dropped. The skb is not send to the destination, just all
1717  * all error checks are performed and memory in the queue is reserved.
1718  * Return values:
1719  * < 0: error. skb freed, reference to sock dropped.
1720  * 0: continue
1721  * 1: repeat lookup - reference dropped while waiting for socket memory.
1722  */
1723 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1724 		      long *timeo, struct sock *ssk)
1725 {
1726 	struct netlink_sock *nlk;
1727 
1728 	nlk = nlk_sk(sk);
1729 
1730 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1731 	     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1732 	    !netlink_skb_is_mmaped(skb)) {
1733 		DECLARE_WAITQUEUE(wait, current);
1734 		if (!*timeo) {
1735 			if (!ssk || netlink_is_kernel(ssk))
1736 				netlink_overrun(sk);
1737 			sock_put(sk);
1738 			kfree_skb(skb);
1739 			return -EAGAIN;
1740 		}
1741 
1742 		__set_current_state(TASK_INTERRUPTIBLE);
1743 		add_wait_queue(&nlk->wait, &wait);
1744 
1745 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1746 		     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1747 		    !sock_flag(sk, SOCK_DEAD))
1748 			*timeo = schedule_timeout(*timeo);
1749 
1750 		__set_current_state(TASK_RUNNING);
1751 		remove_wait_queue(&nlk->wait, &wait);
1752 		sock_put(sk);
1753 
1754 		if (signal_pending(current)) {
1755 			kfree_skb(skb);
1756 			return sock_intr_errno(*timeo);
1757 		}
1758 		return 1;
1759 	}
1760 	netlink_skb_set_owner_r(skb, sk);
1761 	return 0;
1762 }
1763 
1764 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1765 {
1766 	int len = skb->len;
1767 
1768 	netlink_deliver_tap(skb);
1769 
1770 #ifdef CONFIG_NETLINK_MMAP
1771 	if (netlink_skb_is_mmaped(skb))
1772 		netlink_queue_mmaped_skb(sk, skb);
1773 	else if (netlink_rx_is_mmaped(sk))
1774 		netlink_ring_set_copied(sk, skb);
1775 	else
1776 #endif /* CONFIG_NETLINK_MMAP */
1777 		skb_queue_tail(&sk->sk_receive_queue, skb);
1778 	sk->sk_data_ready(sk);
1779 	return len;
1780 }
1781 
1782 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1783 {
1784 	int len = __netlink_sendskb(sk, skb);
1785 
1786 	sock_put(sk);
1787 	return len;
1788 }
1789 
1790 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1791 {
1792 	kfree_skb(skb);
1793 	sock_put(sk);
1794 }
1795 
1796 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1797 {
1798 	int delta;
1799 
1800 	WARN_ON(skb->sk != NULL);
1801 	if (netlink_skb_is_mmaped(skb))
1802 		return skb;
1803 
1804 	delta = skb->end - skb->tail;
1805 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1806 		return skb;
1807 
1808 	if (skb_shared(skb)) {
1809 		struct sk_buff *nskb = skb_clone(skb, allocation);
1810 		if (!nskb)
1811 			return skb;
1812 		consume_skb(skb);
1813 		skb = nskb;
1814 	}
1815 
1816 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1817 		skb->truesize -= delta;
1818 
1819 	return skb;
1820 }
1821 
1822 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1823 				  struct sock *ssk)
1824 {
1825 	int ret;
1826 	struct netlink_sock *nlk = nlk_sk(sk);
1827 
1828 	ret = -ECONNREFUSED;
1829 	if (nlk->netlink_rcv != NULL) {
1830 		ret = skb->len;
1831 		netlink_skb_set_owner_r(skb, sk);
1832 		NETLINK_CB(skb).sk = ssk;
1833 		netlink_deliver_tap_kernel(sk, ssk, skb);
1834 		nlk->netlink_rcv(skb);
1835 		consume_skb(skb);
1836 	} else {
1837 		kfree_skb(skb);
1838 	}
1839 	sock_put(sk);
1840 	return ret;
1841 }
1842 
1843 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1844 		    u32 portid, int nonblock)
1845 {
1846 	struct sock *sk;
1847 	int err;
1848 	long timeo;
1849 
1850 	skb = netlink_trim(skb, gfp_any());
1851 
1852 	timeo = sock_sndtimeo(ssk, nonblock);
1853 retry:
1854 	sk = netlink_getsockbyportid(ssk, portid);
1855 	if (IS_ERR(sk)) {
1856 		kfree_skb(skb);
1857 		return PTR_ERR(sk);
1858 	}
1859 	if (netlink_is_kernel(sk))
1860 		return netlink_unicast_kernel(sk, skb, ssk);
1861 
1862 	if (sk_filter(sk, skb)) {
1863 		err = skb->len;
1864 		kfree_skb(skb);
1865 		sock_put(sk);
1866 		return err;
1867 	}
1868 
1869 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1870 	if (err == 1)
1871 		goto retry;
1872 	if (err)
1873 		return err;
1874 
1875 	return netlink_sendskb(sk, skb);
1876 }
1877 EXPORT_SYMBOL(netlink_unicast);
1878 
1879 struct sk_buff *__netlink_alloc_skb(struct sock *ssk, unsigned int size,
1880 				    unsigned int ldiff, u32 dst_portid,
1881 				    gfp_t gfp_mask)
1882 {
1883 #ifdef CONFIG_NETLINK_MMAP
1884 	unsigned int maxlen, linear_size;
1885 	struct sock *sk = NULL;
1886 	struct sk_buff *skb;
1887 	struct netlink_ring *ring;
1888 	struct nl_mmap_hdr *hdr;
1889 
1890 	sk = netlink_getsockbyportid(ssk, dst_portid);
1891 	if (IS_ERR(sk))
1892 		goto out;
1893 
1894 	ring = &nlk_sk(sk)->rx_ring;
1895 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1896 	if (ring->pg_vec == NULL)
1897 		goto out_put;
1898 
1899 	/* We need to account the full linear size needed as a ring
1900 	 * slot cannot have non-linear parts.
1901 	 */
1902 	linear_size = size + ldiff;
1903 	if (ring->frame_size - NL_MMAP_HDRLEN < linear_size)
1904 		goto out_put;
1905 
1906 	skb = alloc_skb_head(gfp_mask);
1907 	if (skb == NULL)
1908 		goto err1;
1909 
1910 	spin_lock_bh(&sk->sk_receive_queue.lock);
1911 	/* check again under lock */
1912 	if (ring->pg_vec == NULL)
1913 		goto out_free;
1914 
1915 	/* check again under lock */
1916 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1917 	if (maxlen < linear_size)
1918 		goto out_free;
1919 
1920 	netlink_forward_ring(ring);
1921 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1922 	if (hdr == NULL)
1923 		goto err2;
1924 
1925 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1926 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1927 	atomic_inc(&ring->pending);
1928 	netlink_increment_head(ring);
1929 
1930 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1931 	return skb;
1932 
1933 err2:
1934 	kfree_skb(skb);
1935 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1936 	netlink_overrun(sk);
1937 err1:
1938 	sock_put(sk);
1939 	return NULL;
1940 
1941 out_free:
1942 	kfree_skb(skb);
1943 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1944 out_put:
1945 	sock_put(sk);
1946 out:
1947 #endif
1948 	return alloc_skb(size, gfp_mask);
1949 }
1950 EXPORT_SYMBOL_GPL(__netlink_alloc_skb);
1951 
1952 int netlink_has_listeners(struct sock *sk, unsigned int group)
1953 {
1954 	int res = 0;
1955 	struct listeners *listeners;
1956 
1957 	BUG_ON(!netlink_is_kernel(sk));
1958 
1959 	rcu_read_lock();
1960 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1961 
1962 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1963 		res = test_bit(group - 1, listeners->masks);
1964 
1965 	rcu_read_unlock();
1966 
1967 	return res;
1968 }
1969 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1970 
1971 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1972 {
1973 	struct netlink_sock *nlk = nlk_sk(sk);
1974 
1975 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1976 	    !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1977 		netlink_skb_set_owner_r(skb, sk);
1978 		__netlink_sendskb(sk, skb);
1979 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1980 	}
1981 	return -1;
1982 }
1983 
1984 struct netlink_broadcast_data {
1985 	struct sock *exclude_sk;
1986 	struct net *net;
1987 	u32 portid;
1988 	u32 group;
1989 	int failure;
1990 	int delivery_failure;
1991 	int congested;
1992 	int delivered;
1993 	gfp_t allocation;
1994 	struct sk_buff *skb, *skb2;
1995 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1996 	void *tx_data;
1997 };
1998 
1999 static void do_one_broadcast(struct sock *sk,
2000 				    struct netlink_broadcast_data *p)
2001 {
2002 	struct netlink_sock *nlk = nlk_sk(sk);
2003 	int val;
2004 
2005 	if (p->exclude_sk == sk)
2006 		return;
2007 
2008 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2009 	    !test_bit(p->group - 1, nlk->groups))
2010 		return;
2011 
2012 	if (!net_eq(sock_net(sk), p->net)) {
2013 		if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
2014 			return;
2015 
2016 		if (!peernet_has_id(sock_net(sk), p->net))
2017 			return;
2018 
2019 		if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
2020 				     CAP_NET_BROADCAST))
2021 			return;
2022 	}
2023 
2024 	if (p->failure) {
2025 		netlink_overrun(sk);
2026 		return;
2027 	}
2028 
2029 	sock_hold(sk);
2030 	if (p->skb2 == NULL) {
2031 		if (skb_shared(p->skb)) {
2032 			p->skb2 = skb_clone(p->skb, p->allocation);
2033 		} else {
2034 			p->skb2 = skb_get(p->skb);
2035 			/*
2036 			 * skb ownership may have been set when
2037 			 * delivered to a previous socket.
2038 			 */
2039 			skb_orphan(p->skb2);
2040 		}
2041 	}
2042 	if (p->skb2 == NULL) {
2043 		netlink_overrun(sk);
2044 		/* Clone failed. Notify ALL listeners. */
2045 		p->failure = 1;
2046 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2047 			p->delivery_failure = 1;
2048 		goto out;
2049 	}
2050 	if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2051 		kfree_skb(p->skb2);
2052 		p->skb2 = NULL;
2053 		goto out;
2054 	}
2055 	if (sk_filter(sk, p->skb2)) {
2056 		kfree_skb(p->skb2);
2057 		p->skb2 = NULL;
2058 		goto out;
2059 	}
2060 	NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
2061 	NETLINK_CB(p->skb2).nsid_is_set = true;
2062 	val = netlink_broadcast_deliver(sk, p->skb2);
2063 	if (val < 0) {
2064 		netlink_overrun(sk);
2065 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2066 			p->delivery_failure = 1;
2067 	} else {
2068 		p->congested |= val;
2069 		p->delivered = 1;
2070 		p->skb2 = NULL;
2071 	}
2072 out:
2073 	sock_put(sk);
2074 }
2075 
2076 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2077 	u32 group, gfp_t allocation,
2078 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2079 	void *filter_data)
2080 {
2081 	struct net *net = sock_net(ssk);
2082 	struct netlink_broadcast_data info;
2083 	struct sock *sk;
2084 
2085 	skb = netlink_trim(skb, allocation);
2086 
2087 	info.exclude_sk = ssk;
2088 	info.net = net;
2089 	info.portid = portid;
2090 	info.group = group;
2091 	info.failure = 0;
2092 	info.delivery_failure = 0;
2093 	info.congested = 0;
2094 	info.delivered = 0;
2095 	info.allocation = allocation;
2096 	info.skb = skb;
2097 	info.skb2 = NULL;
2098 	info.tx_filter = filter;
2099 	info.tx_data = filter_data;
2100 
2101 	/* While we sleep in clone, do not allow to change socket list */
2102 
2103 	netlink_lock_table();
2104 
2105 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2106 		do_one_broadcast(sk, &info);
2107 
2108 	consume_skb(skb);
2109 
2110 	netlink_unlock_table();
2111 
2112 	if (info.delivery_failure) {
2113 		kfree_skb(info.skb2);
2114 		return -ENOBUFS;
2115 	}
2116 	consume_skb(info.skb2);
2117 
2118 	if (info.delivered) {
2119 		if (info.congested && gfpflags_allow_blocking(allocation))
2120 			yield();
2121 		return 0;
2122 	}
2123 	return -ESRCH;
2124 }
2125 EXPORT_SYMBOL(netlink_broadcast_filtered);
2126 
2127 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2128 		      u32 group, gfp_t allocation)
2129 {
2130 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2131 		NULL, NULL);
2132 }
2133 EXPORT_SYMBOL(netlink_broadcast);
2134 
2135 struct netlink_set_err_data {
2136 	struct sock *exclude_sk;
2137 	u32 portid;
2138 	u32 group;
2139 	int code;
2140 };
2141 
2142 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2143 {
2144 	struct netlink_sock *nlk = nlk_sk(sk);
2145 	int ret = 0;
2146 
2147 	if (sk == p->exclude_sk)
2148 		goto out;
2149 
2150 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2151 		goto out;
2152 
2153 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2154 	    !test_bit(p->group - 1, nlk->groups))
2155 		goto out;
2156 
2157 	if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2158 		ret = 1;
2159 		goto out;
2160 	}
2161 
2162 	sk->sk_err = p->code;
2163 	sk->sk_error_report(sk);
2164 out:
2165 	return ret;
2166 }
2167 
2168 /**
2169  * netlink_set_err - report error to broadcast listeners
2170  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2171  * @portid: the PORTID of a process that we want to skip (if any)
2172  * @group: the broadcast group that will notice the error
2173  * @code: error code, must be negative (as usual in kernelspace)
2174  *
2175  * This function returns the number of broadcast listeners that have set the
2176  * NETLINK_NO_ENOBUFS socket option.
2177  */
2178 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2179 {
2180 	struct netlink_set_err_data info;
2181 	struct sock *sk;
2182 	int ret = 0;
2183 
2184 	info.exclude_sk = ssk;
2185 	info.portid = portid;
2186 	info.group = group;
2187 	/* sk->sk_err wants a positive error value */
2188 	info.code = -code;
2189 
2190 	read_lock(&nl_table_lock);
2191 
2192 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2193 		ret += do_one_set_err(sk, &info);
2194 
2195 	read_unlock(&nl_table_lock);
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL(netlink_set_err);
2199 
2200 /* must be called with netlink table grabbed */
2201 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2202 				     unsigned int group,
2203 				     int is_new)
2204 {
2205 	int old, new = !!is_new, subscriptions;
2206 
2207 	old = test_bit(group - 1, nlk->groups);
2208 	subscriptions = nlk->subscriptions - old + new;
2209 	if (new)
2210 		__set_bit(group - 1, nlk->groups);
2211 	else
2212 		__clear_bit(group - 1, nlk->groups);
2213 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2214 	netlink_update_listeners(&nlk->sk);
2215 }
2216 
2217 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2218 			      char __user *optval, unsigned int optlen)
2219 {
2220 	struct sock *sk = sock->sk;
2221 	struct netlink_sock *nlk = nlk_sk(sk);
2222 	unsigned int val = 0;
2223 	int err;
2224 
2225 	if (level != SOL_NETLINK)
2226 		return -ENOPROTOOPT;
2227 
2228 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2229 	    optlen >= sizeof(int) &&
2230 	    get_user(val, (unsigned int __user *)optval))
2231 		return -EFAULT;
2232 
2233 	switch (optname) {
2234 	case NETLINK_PKTINFO:
2235 		if (val)
2236 			nlk->flags |= NETLINK_F_RECV_PKTINFO;
2237 		else
2238 			nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2239 		err = 0;
2240 		break;
2241 	case NETLINK_ADD_MEMBERSHIP:
2242 	case NETLINK_DROP_MEMBERSHIP: {
2243 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2244 			return -EPERM;
2245 		err = netlink_realloc_groups(sk);
2246 		if (err)
2247 			return err;
2248 		if (!val || val - 1 >= nlk->ngroups)
2249 			return -EINVAL;
2250 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2251 			err = nlk->netlink_bind(sock_net(sk), val);
2252 			if (err)
2253 				return err;
2254 		}
2255 		netlink_table_grab();
2256 		netlink_update_socket_mc(nlk, val,
2257 					 optname == NETLINK_ADD_MEMBERSHIP);
2258 		netlink_table_ungrab();
2259 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2260 			nlk->netlink_unbind(sock_net(sk), val);
2261 
2262 		err = 0;
2263 		break;
2264 	}
2265 	case NETLINK_BROADCAST_ERROR:
2266 		if (val)
2267 			nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2268 		else
2269 			nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2270 		err = 0;
2271 		break;
2272 	case NETLINK_NO_ENOBUFS:
2273 		if (val) {
2274 			nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2275 			clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2276 			wake_up_interruptible(&nlk->wait);
2277 		} else {
2278 			nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2279 		}
2280 		err = 0;
2281 		break;
2282 #ifdef CONFIG_NETLINK_MMAP
2283 	case NETLINK_RX_RING:
2284 	case NETLINK_TX_RING: {
2285 		struct nl_mmap_req req;
2286 
2287 		/* Rings might consume more memory than queue limits, require
2288 		 * CAP_NET_ADMIN.
2289 		 */
2290 		if (!capable(CAP_NET_ADMIN))
2291 			return -EPERM;
2292 		if (optlen < sizeof(req))
2293 			return -EINVAL;
2294 		if (copy_from_user(&req, optval, sizeof(req)))
2295 			return -EFAULT;
2296 		err = netlink_set_ring(sk, &req,
2297 				       optname == NETLINK_TX_RING);
2298 		break;
2299 	}
2300 #endif /* CONFIG_NETLINK_MMAP */
2301 	case NETLINK_LISTEN_ALL_NSID:
2302 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2303 			return -EPERM;
2304 
2305 		if (val)
2306 			nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2307 		else
2308 			nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2309 		err = 0;
2310 		break;
2311 	case NETLINK_CAP_ACK:
2312 		if (val)
2313 			nlk->flags |= NETLINK_F_CAP_ACK;
2314 		else
2315 			nlk->flags &= ~NETLINK_F_CAP_ACK;
2316 		err = 0;
2317 		break;
2318 	default:
2319 		err = -ENOPROTOOPT;
2320 	}
2321 	return err;
2322 }
2323 
2324 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2325 			      char __user *optval, int __user *optlen)
2326 {
2327 	struct sock *sk = sock->sk;
2328 	struct netlink_sock *nlk = nlk_sk(sk);
2329 	int len, val, err;
2330 
2331 	if (level != SOL_NETLINK)
2332 		return -ENOPROTOOPT;
2333 
2334 	if (get_user(len, optlen))
2335 		return -EFAULT;
2336 	if (len < 0)
2337 		return -EINVAL;
2338 
2339 	switch (optname) {
2340 	case NETLINK_PKTINFO:
2341 		if (len < sizeof(int))
2342 			return -EINVAL;
2343 		len = sizeof(int);
2344 		val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2345 		if (put_user(len, optlen) ||
2346 		    put_user(val, optval))
2347 			return -EFAULT;
2348 		err = 0;
2349 		break;
2350 	case NETLINK_BROADCAST_ERROR:
2351 		if (len < sizeof(int))
2352 			return -EINVAL;
2353 		len = sizeof(int);
2354 		val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2355 		if (put_user(len, optlen) ||
2356 		    put_user(val, optval))
2357 			return -EFAULT;
2358 		err = 0;
2359 		break;
2360 	case NETLINK_NO_ENOBUFS:
2361 		if (len < sizeof(int))
2362 			return -EINVAL;
2363 		len = sizeof(int);
2364 		val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2365 		if (put_user(len, optlen) ||
2366 		    put_user(val, optval))
2367 			return -EFAULT;
2368 		err = 0;
2369 		break;
2370 	case NETLINK_LIST_MEMBERSHIPS: {
2371 		int pos, idx, shift;
2372 
2373 		err = 0;
2374 		netlink_lock_table();
2375 		for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2376 			if (len - pos < sizeof(u32))
2377 				break;
2378 
2379 			idx = pos / sizeof(unsigned long);
2380 			shift = (pos % sizeof(unsigned long)) * 8;
2381 			if (put_user((u32)(nlk->groups[idx] >> shift),
2382 				     (u32 __user *)(optval + pos))) {
2383 				err = -EFAULT;
2384 				break;
2385 			}
2386 		}
2387 		if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2388 			err = -EFAULT;
2389 		netlink_unlock_table();
2390 		break;
2391 	}
2392 	case NETLINK_CAP_ACK:
2393 		if (len < sizeof(int))
2394 			return -EINVAL;
2395 		len = sizeof(int);
2396 		val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
2397 		if (put_user(len, optlen) ||
2398 		    put_user(val, optval))
2399 			return -EFAULT;
2400 		err = 0;
2401 		break;
2402 	default:
2403 		err = -ENOPROTOOPT;
2404 	}
2405 	return err;
2406 }
2407 
2408 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2409 {
2410 	struct nl_pktinfo info;
2411 
2412 	info.group = NETLINK_CB(skb).dst_group;
2413 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2414 }
2415 
2416 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2417 					 struct sk_buff *skb)
2418 {
2419 	if (!NETLINK_CB(skb).nsid_is_set)
2420 		return;
2421 
2422 	put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2423 		 &NETLINK_CB(skb).nsid);
2424 }
2425 
2426 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2427 {
2428 	struct sock *sk = sock->sk;
2429 	struct netlink_sock *nlk = nlk_sk(sk);
2430 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2431 	u32 dst_portid;
2432 	u32 dst_group;
2433 	struct sk_buff *skb;
2434 	int err;
2435 	struct scm_cookie scm;
2436 	u32 netlink_skb_flags = 0;
2437 
2438 	if (msg->msg_flags&MSG_OOB)
2439 		return -EOPNOTSUPP;
2440 
2441 	err = scm_send(sock, msg, &scm, true);
2442 	if (err < 0)
2443 		return err;
2444 
2445 	if (msg->msg_namelen) {
2446 		err = -EINVAL;
2447 		if (addr->nl_family != AF_NETLINK)
2448 			goto out;
2449 		dst_portid = addr->nl_pid;
2450 		dst_group = ffs(addr->nl_groups);
2451 		err =  -EPERM;
2452 		if ((dst_group || dst_portid) &&
2453 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2454 			goto out;
2455 		netlink_skb_flags |= NETLINK_SKB_DST;
2456 	} else {
2457 		dst_portid = nlk->dst_portid;
2458 		dst_group = nlk->dst_group;
2459 	}
2460 
2461 	if (!nlk->bound) {
2462 		err = netlink_autobind(sock);
2463 		if (err)
2464 			goto out;
2465 	} else {
2466 		/* Ensure nlk is hashed and visible. */
2467 		smp_rmb();
2468 	}
2469 
2470 	/* It's a really convoluted way for userland to ask for mmaped
2471 	 * sendmsg(), but that's what we've got...
2472 	 */
2473 	if (netlink_tx_is_mmaped(sk) &&
2474 	    iter_is_iovec(&msg->msg_iter) &&
2475 	    msg->msg_iter.nr_segs == 1 &&
2476 	    msg->msg_iter.iov->iov_base == NULL) {
2477 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2478 					   &scm);
2479 		goto out;
2480 	}
2481 
2482 	err = -EMSGSIZE;
2483 	if (len > sk->sk_sndbuf - 32)
2484 		goto out;
2485 	err = -ENOBUFS;
2486 	skb = netlink_alloc_large_skb(len, dst_group);
2487 	if (skb == NULL)
2488 		goto out;
2489 
2490 	NETLINK_CB(skb).portid	= nlk->portid;
2491 	NETLINK_CB(skb).dst_group = dst_group;
2492 	NETLINK_CB(skb).creds	= scm.creds;
2493 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2494 
2495 	err = -EFAULT;
2496 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2497 		kfree_skb(skb);
2498 		goto out;
2499 	}
2500 
2501 	err = security_netlink_send(sk, skb);
2502 	if (err) {
2503 		kfree_skb(skb);
2504 		goto out;
2505 	}
2506 
2507 	if (dst_group) {
2508 		atomic_inc(&skb->users);
2509 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2510 	}
2511 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2512 
2513 out:
2514 	scm_destroy(&scm);
2515 	return err;
2516 }
2517 
2518 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2519 			   int flags)
2520 {
2521 	struct scm_cookie scm;
2522 	struct sock *sk = sock->sk;
2523 	struct netlink_sock *nlk = nlk_sk(sk);
2524 	int noblock = flags&MSG_DONTWAIT;
2525 	size_t copied;
2526 	struct sk_buff *skb, *data_skb;
2527 	int err, ret;
2528 
2529 	if (flags&MSG_OOB)
2530 		return -EOPNOTSUPP;
2531 
2532 	copied = 0;
2533 
2534 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2535 	if (skb == NULL)
2536 		goto out;
2537 
2538 	data_skb = skb;
2539 
2540 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2541 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2542 		/*
2543 		 * If this skb has a frag_list, then here that means that we
2544 		 * will have to use the frag_list skb's data for compat tasks
2545 		 * and the regular skb's data for normal (non-compat) tasks.
2546 		 *
2547 		 * If we need to send the compat skb, assign it to the
2548 		 * 'data_skb' variable so that it will be used below for data
2549 		 * copying. We keep 'skb' for everything else, including
2550 		 * freeing both later.
2551 		 */
2552 		if (flags & MSG_CMSG_COMPAT)
2553 			data_skb = skb_shinfo(skb)->frag_list;
2554 	}
2555 #endif
2556 
2557 	/* Record the max length of recvmsg() calls for future allocations */
2558 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2559 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2560 				     16384);
2561 
2562 	copied = data_skb->len;
2563 	if (len < copied) {
2564 		msg->msg_flags |= MSG_TRUNC;
2565 		copied = len;
2566 	}
2567 
2568 	skb_reset_transport_header(data_skb);
2569 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2570 
2571 	if (msg->msg_name) {
2572 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2573 		addr->nl_family = AF_NETLINK;
2574 		addr->nl_pad    = 0;
2575 		addr->nl_pid	= NETLINK_CB(skb).portid;
2576 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2577 		msg->msg_namelen = sizeof(*addr);
2578 	}
2579 
2580 	if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2581 		netlink_cmsg_recv_pktinfo(msg, skb);
2582 	if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2583 		netlink_cmsg_listen_all_nsid(sk, msg, skb);
2584 
2585 	memset(&scm, 0, sizeof(scm));
2586 	scm.creds = *NETLINK_CREDS(skb);
2587 	if (flags & MSG_TRUNC)
2588 		copied = data_skb->len;
2589 
2590 	skb_free_datagram(sk, skb);
2591 
2592 	if (nlk->cb_running &&
2593 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2594 		ret = netlink_dump(sk);
2595 		if (ret) {
2596 			sk->sk_err = -ret;
2597 			sk->sk_error_report(sk);
2598 		}
2599 	}
2600 
2601 	scm_recv(sock, msg, &scm, flags);
2602 out:
2603 	netlink_rcv_wake(sk);
2604 	return err ? : copied;
2605 }
2606 
2607 static void netlink_data_ready(struct sock *sk)
2608 {
2609 	BUG();
2610 }
2611 
2612 /*
2613  *	We export these functions to other modules. They provide a
2614  *	complete set of kernel non-blocking support for message
2615  *	queueing.
2616  */
2617 
2618 struct sock *
2619 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2620 			struct netlink_kernel_cfg *cfg)
2621 {
2622 	struct socket *sock;
2623 	struct sock *sk;
2624 	struct netlink_sock *nlk;
2625 	struct listeners *listeners = NULL;
2626 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2627 	unsigned int groups;
2628 
2629 	BUG_ON(!nl_table);
2630 
2631 	if (unit < 0 || unit >= MAX_LINKS)
2632 		return NULL;
2633 
2634 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2635 		return NULL;
2636 
2637 	if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2638 		goto out_sock_release_nosk;
2639 
2640 	sk = sock->sk;
2641 
2642 	if (!cfg || cfg->groups < 32)
2643 		groups = 32;
2644 	else
2645 		groups = cfg->groups;
2646 
2647 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2648 	if (!listeners)
2649 		goto out_sock_release;
2650 
2651 	sk->sk_data_ready = netlink_data_ready;
2652 	if (cfg && cfg->input)
2653 		nlk_sk(sk)->netlink_rcv = cfg->input;
2654 
2655 	if (netlink_insert(sk, 0))
2656 		goto out_sock_release;
2657 
2658 	nlk = nlk_sk(sk);
2659 	nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2660 
2661 	netlink_table_grab();
2662 	if (!nl_table[unit].registered) {
2663 		nl_table[unit].groups = groups;
2664 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2665 		nl_table[unit].cb_mutex = cb_mutex;
2666 		nl_table[unit].module = module;
2667 		if (cfg) {
2668 			nl_table[unit].bind = cfg->bind;
2669 			nl_table[unit].unbind = cfg->unbind;
2670 			nl_table[unit].flags = cfg->flags;
2671 			if (cfg->compare)
2672 				nl_table[unit].compare = cfg->compare;
2673 		}
2674 		nl_table[unit].registered = 1;
2675 	} else {
2676 		kfree(listeners);
2677 		nl_table[unit].registered++;
2678 	}
2679 	netlink_table_ungrab();
2680 	return sk;
2681 
2682 out_sock_release:
2683 	kfree(listeners);
2684 	netlink_kernel_release(sk);
2685 	return NULL;
2686 
2687 out_sock_release_nosk:
2688 	sock_release(sock);
2689 	return NULL;
2690 }
2691 EXPORT_SYMBOL(__netlink_kernel_create);
2692 
2693 void
2694 netlink_kernel_release(struct sock *sk)
2695 {
2696 	if (sk == NULL || sk->sk_socket == NULL)
2697 		return;
2698 
2699 	sock_release(sk->sk_socket);
2700 }
2701 EXPORT_SYMBOL(netlink_kernel_release);
2702 
2703 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2704 {
2705 	struct listeners *new, *old;
2706 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2707 
2708 	if (groups < 32)
2709 		groups = 32;
2710 
2711 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2712 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2713 		if (!new)
2714 			return -ENOMEM;
2715 		old = nl_deref_protected(tbl->listeners);
2716 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2717 		rcu_assign_pointer(tbl->listeners, new);
2718 
2719 		kfree_rcu(old, rcu);
2720 	}
2721 	tbl->groups = groups;
2722 
2723 	return 0;
2724 }
2725 
2726 /**
2727  * netlink_change_ngroups - change number of multicast groups
2728  *
2729  * This changes the number of multicast groups that are available
2730  * on a certain netlink family. Note that it is not possible to
2731  * change the number of groups to below 32. Also note that it does
2732  * not implicitly call netlink_clear_multicast_users() when the
2733  * number of groups is reduced.
2734  *
2735  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2736  * @groups: The new number of groups.
2737  */
2738 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2739 {
2740 	int err;
2741 
2742 	netlink_table_grab();
2743 	err = __netlink_change_ngroups(sk, groups);
2744 	netlink_table_ungrab();
2745 
2746 	return err;
2747 }
2748 
2749 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2750 {
2751 	struct sock *sk;
2752 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2753 
2754 	sk_for_each_bound(sk, &tbl->mc_list)
2755 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2756 }
2757 
2758 struct nlmsghdr *
2759 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2760 {
2761 	struct nlmsghdr *nlh;
2762 	int size = nlmsg_msg_size(len);
2763 
2764 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2765 	nlh->nlmsg_type = type;
2766 	nlh->nlmsg_len = size;
2767 	nlh->nlmsg_flags = flags;
2768 	nlh->nlmsg_pid = portid;
2769 	nlh->nlmsg_seq = seq;
2770 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2771 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2772 	return nlh;
2773 }
2774 EXPORT_SYMBOL(__nlmsg_put);
2775 
2776 /*
2777  * It looks a bit ugly.
2778  * It would be better to create kernel thread.
2779  */
2780 
2781 static int netlink_dump(struct sock *sk)
2782 {
2783 	struct netlink_sock *nlk = nlk_sk(sk);
2784 	struct netlink_callback *cb;
2785 	struct sk_buff *skb = NULL;
2786 	struct nlmsghdr *nlh;
2787 	int len, err = -ENOBUFS;
2788 	int alloc_min_size;
2789 	int alloc_size;
2790 
2791 	mutex_lock(nlk->cb_mutex);
2792 	if (!nlk->cb_running) {
2793 		err = -EINVAL;
2794 		goto errout_skb;
2795 	}
2796 
2797 	if (!netlink_rx_is_mmaped(sk) &&
2798 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2799 		goto errout_skb;
2800 
2801 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2802 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2803 	 * to reduce number of system calls on dump operations, if user
2804 	 * ever provided a big enough buffer.
2805 	 */
2806 	cb = &nlk->cb;
2807 	alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2808 
2809 	if (alloc_min_size < nlk->max_recvmsg_len) {
2810 		alloc_size = nlk->max_recvmsg_len;
2811 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2812 					GFP_KERNEL |
2813 					__GFP_NOWARN |
2814 					__GFP_NORETRY);
2815 	}
2816 	if (!skb) {
2817 		alloc_size = alloc_min_size;
2818 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2819 					GFP_KERNEL);
2820 	}
2821 	if (!skb)
2822 		goto errout_skb;
2823 
2824 	/* Trim skb to allocated size. User is expected to provide buffer as
2825 	 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
2826 	 * netlink_recvmsg())). dump will pack as many smaller messages as
2827 	 * could fit within the allocated skb. skb is typically allocated
2828 	 * with larger space than required (could be as much as near 2x the
2829 	 * requested size with align to next power of 2 approach). Allowing
2830 	 * dump to use the excess space makes it difficult for a user to have a
2831 	 * reasonable static buffer based on the expected largest dump of a
2832 	 * single netdev. The outcome is MSG_TRUNC error.
2833 	 */
2834 	skb_reserve(skb, skb_tailroom(skb) - alloc_size);
2835 	netlink_skb_set_owner_r(skb, sk);
2836 
2837 	len = cb->dump(skb, cb);
2838 
2839 	if (len > 0) {
2840 		mutex_unlock(nlk->cb_mutex);
2841 
2842 		if (sk_filter(sk, skb))
2843 			kfree_skb(skb);
2844 		else
2845 			__netlink_sendskb(sk, skb);
2846 		return 0;
2847 	}
2848 
2849 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2850 	if (!nlh)
2851 		goto errout_skb;
2852 
2853 	nl_dump_check_consistent(cb, nlh);
2854 
2855 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2856 
2857 	if (sk_filter(sk, skb))
2858 		kfree_skb(skb);
2859 	else
2860 		__netlink_sendskb(sk, skb);
2861 
2862 	if (cb->done)
2863 		cb->done(cb);
2864 
2865 	nlk->cb_running = false;
2866 	mutex_unlock(nlk->cb_mutex);
2867 	module_put(cb->module);
2868 	consume_skb(cb->skb);
2869 	return 0;
2870 
2871 errout_skb:
2872 	mutex_unlock(nlk->cb_mutex);
2873 	kfree_skb(skb);
2874 	return err;
2875 }
2876 
2877 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2878 			 const struct nlmsghdr *nlh,
2879 			 struct netlink_dump_control *control)
2880 {
2881 	struct netlink_callback *cb;
2882 	struct sock *sk;
2883 	struct netlink_sock *nlk;
2884 	int ret;
2885 
2886 	/* Memory mapped dump requests need to be copied to avoid looping
2887 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2888 	 * a reference to the skb.
2889 	 */
2890 	if (netlink_skb_is_mmaped(skb)) {
2891 		skb = skb_copy(skb, GFP_KERNEL);
2892 		if (skb == NULL)
2893 			return -ENOBUFS;
2894 	} else
2895 		atomic_inc(&skb->users);
2896 
2897 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2898 	if (sk == NULL) {
2899 		ret = -ECONNREFUSED;
2900 		goto error_free;
2901 	}
2902 
2903 	nlk = nlk_sk(sk);
2904 	mutex_lock(nlk->cb_mutex);
2905 	/* A dump is in progress... */
2906 	if (nlk->cb_running) {
2907 		ret = -EBUSY;
2908 		goto error_unlock;
2909 	}
2910 	/* add reference of module which cb->dump belongs to */
2911 	if (!try_module_get(control->module)) {
2912 		ret = -EPROTONOSUPPORT;
2913 		goto error_unlock;
2914 	}
2915 
2916 	cb = &nlk->cb;
2917 	memset(cb, 0, sizeof(*cb));
2918 	cb->dump = control->dump;
2919 	cb->done = control->done;
2920 	cb->nlh = nlh;
2921 	cb->data = control->data;
2922 	cb->module = control->module;
2923 	cb->min_dump_alloc = control->min_dump_alloc;
2924 	cb->skb = skb;
2925 
2926 	nlk->cb_running = true;
2927 
2928 	mutex_unlock(nlk->cb_mutex);
2929 
2930 	ret = netlink_dump(sk);
2931 	sock_put(sk);
2932 
2933 	if (ret)
2934 		return ret;
2935 
2936 	/* We successfully started a dump, by returning -EINTR we
2937 	 * signal not to send ACK even if it was requested.
2938 	 */
2939 	return -EINTR;
2940 
2941 error_unlock:
2942 	sock_put(sk);
2943 	mutex_unlock(nlk->cb_mutex);
2944 error_free:
2945 	kfree_skb(skb);
2946 	return ret;
2947 }
2948 EXPORT_SYMBOL(__netlink_dump_start);
2949 
2950 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2951 {
2952 	struct sk_buff *skb;
2953 	struct nlmsghdr *rep;
2954 	struct nlmsgerr *errmsg;
2955 	size_t payload = sizeof(*errmsg);
2956 	struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
2957 
2958 	/* Error messages get the original request appened, unless the user
2959 	 * requests to cap the error message.
2960 	 */
2961 	if (!(nlk->flags & NETLINK_F_CAP_ACK) && err)
2962 		payload += nlmsg_len(nlh);
2963 
2964 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2965 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2966 	if (!skb) {
2967 		struct sock *sk;
2968 
2969 		sk = netlink_lookup(sock_net(in_skb->sk),
2970 				    in_skb->sk->sk_protocol,
2971 				    NETLINK_CB(in_skb).portid);
2972 		if (sk) {
2973 			sk->sk_err = ENOBUFS;
2974 			sk->sk_error_report(sk);
2975 			sock_put(sk);
2976 		}
2977 		return;
2978 	}
2979 
2980 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2981 			  NLMSG_ERROR, payload, 0);
2982 	errmsg = nlmsg_data(rep);
2983 	errmsg->error = err;
2984 	memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
2985 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2986 }
2987 EXPORT_SYMBOL(netlink_ack);
2988 
2989 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2990 						     struct nlmsghdr *))
2991 {
2992 	struct nlmsghdr *nlh;
2993 	int err;
2994 
2995 	while (skb->len >= nlmsg_total_size(0)) {
2996 		int msglen;
2997 
2998 		nlh = nlmsg_hdr(skb);
2999 		err = 0;
3000 
3001 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
3002 			return 0;
3003 
3004 		/* Only requests are handled by the kernel */
3005 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
3006 			goto ack;
3007 
3008 		/* Skip control messages */
3009 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
3010 			goto ack;
3011 
3012 		err = cb(skb, nlh);
3013 		if (err == -EINTR)
3014 			goto skip;
3015 
3016 ack:
3017 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
3018 			netlink_ack(skb, nlh, err);
3019 
3020 skip:
3021 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
3022 		if (msglen > skb->len)
3023 			msglen = skb->len;
3024 		skb_pull(skb, msglen);
3025 	}
3026 
3027 	return 0;
3028 }
3029 EXPORT_SYMBOL(netlink_rcv_skb);
3030 
3031 /**
3032  * nlmsg_notify - send a notification netlink message
3033  * @sk: netlink socket to use
3034  * @skb: notification message
3035  * @portid: destination netlink portid for reports or 0
3036  * @group: destination multicast group or 0
3037  * @report: 1 to report back, 0 to disable
3038  * @flags: allocation flags
3039  */
3040 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
3041 		 unsigned int group, int report, gfp_t flags)
3042 {
3043 	int err = 0;
3044 
3045 	if (group) {
3046 		int exclude_portid = 0;
3047 
3048 		if (report) {
3049 			atomic_inc(&skb->users);
3050 			exclude_portid = portid;
3051 		}
3052 
3053 		/* errors reported via destination sk->sk_err, but propagate
3054 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
3055 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
3056 	}
3057 
3058 	if (report) {
3059 		int err2;
3060 
3061 		err2 = nlmsg_unicast(sk, skb, portid);
3062 		if (!err || err == -ESRCH)
3063 			err = err2;
3064 	}
3065 
3066 	return err;
3067 }
3068 EXPORT_SYMBOL(nlmsg_notify);
3069 
3070 #ifdef CONFIG_PROC_FS
3071 struct nl_seq_iter {
3072 	struct seq_net_private p;
3073 	struct rhashtable_iter hti;
3074 	int link;
3075 };
3076 
3077 static int netlink_walk_start(struct nl_seq_iter *iter)
3078 {
3079 	int err;
3080 
3081 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
3082 	if (err) {
3083 		iter->link = MAX_LINKS;
3084 		return err;
3085 	}
3086 
3087 	err = rhashtable_walk_start(&iter->hti);
3088 	return err == -EAGAIN ? 0 : err;
3089 }
3090 
3091 static void netlink_walk_stop(struct nl_seq_iter *iter)
3092 {
3093 	rhashtable_walk_stop(&iter->hti);
3094 	rhashtable_walk_exit(&iter->hti);
3095 }
3096 
3097 static void *__netlink_seq_next(struct seq_file *seq)
3098 {
3099 	struct nl_seq_iter *iter = seq->private;
3100 	struct netlink_sock *nlk;
3101 
3102 	do {
3103 		for (;;) {
3104 			int err;
3105 
3106 			nlk = rhashtable_walk_next(&iter->hti);
3107 
3108 			if (IS_ERR(nlk)) {
3109 				if (PTR_ERR(nlk) == -EAGAIN)
3110 					continue;
3111 
3112 				return nlk;
3113 			}
3114 
3115 			if (nlk)
3116 				break;
3117 
3118 			netlink_walk_stop(iter);
3119 			if (++iter->link >= MAX_LINKS)
3120 				return NULL;
3121 
3122 			err = netlink_walk_start(iter);
3123 			if (err)
3124 				return ERR_PTR(err);
3125 		}
3126 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
3127 
3128 	return nlk;
3129 }
3130 
3131 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3132 {
3133 	struct nl_seq_iter *iter = seq->private;
3134 	void *obj = SEQ_START_TOKEN;
3135 	loff_t pos;
3136 	int err;
3137 
3138 	iter->link = 0;
3139 
3140 	err = netlink_walk_start(iter);
3141 	if (err)
3142 		return ERR_PTR(err);
3143 
3144 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3145 		obj = __netlink_seq_next(seq);
3146 
3147 	return obj;
3148 }
3149 
3150 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3151 {
3152 	++*pos;
3153 	return __netlink_seq_next(seq);
3154 }
3155 
3156 static void netlink_seq_stop(struct seq_file *seq, void *v)
3157 {
3158 	struct nl_seq_iter *iter = seq->private;
3159 
3160 	if (iter->link >= MAX_LINKS)
3161 		return;
3162 
3163 	netlink_walk_stop(iter);
3164 }
3165 
3166 
3167 static int netlink_seq_show(struct seq_file *seq, void *v)
3168 {
3169 	if (v == SEQ_START_TOKEN) {
3170 		seq_puts(seq,
3171 			 "sk       Eth Pid    Groups   "
3172 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
3173 	} else {
3174 		struct sock *s = v;
3175 		struct netlink_sock *nlk = nlk_sk(s);
3176 
3177 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3178 			   s,
3179 			   s->sk_protocol,
3180 			   nlk->portid,
3181 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3182 			   sk_rmem_alloc_get(s),
3183 			   sk_wmem_alloc_get(s),
3184 			   nlk->cb_running,
3185 			   atomic_read(&s->sk_refcnt),
3186 			   atomic_read(&s->sk_drops),
3187 			   sock_i_ino(s)
3188 			);
3189 
3190 	}
3191 	return 0;
3192 }
3193 
3194 static const struct seq_operations netlink_seq_ops = {
3195 	.start  = netlink_seq_start,
3196 	.next   = netlink_seq_next,
3197 	.stop   = netlink_seq_stop,
3198 	.show   = netlink_seq_show,
3199 };
3200 
3201 
3202 static int netlink_seq_open(struct inode *inode, struct file *file)
3203 {
3204 	return seq_open_net(inode, file, &netlink_seq_ops,
3205 				sizeof(struct nl_seq_iter));
3206 }
3207 
3208 static const struct file_operations netlink_seq_fops = {
3209 	.owner		= THIS_MODULE,
3210 	.open		= netlink_seq_open,
3211 	.read		= seq_read,
3212 	.llseek		= seq_lseek,
3213 	.release	= seq_release_net,
3214 };
3215 
3216 #endif
3217 
3218 int netlink_register_notifier(struct notifier_block *nb)
3219 {
3220 	return atomic_notifier_chain_register(&netlink_chain, nb);
3221 }
3222 EXPORT_SYMBOL(netlink_register_notifier);
3223 
3224 int netlink_unregister_notifier(struct notifier_block *nb)
3225 {
3226 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3227 }
3228 EXPORT_SYMBOL(netlink_unregister_notifier);
3229 
3230 static const struct proto_ops netlink_ops = {
3231 	.family =	PF_NETLINK,
3232 	.owner =	THIS_MODULE,
3233 	.release =	netlink_release,
3234 	.bind =		netlink_bind,
3235 	.connect =	netlink_connect,
3236 	.socketpair =	sock_no_socketpair,
3237 	.accept =	sock_no_accept,
3238 	.getname =	netlink_getname,
3239 	.poll =		netlink_poll,
3240 	.ioctl =	sock_no_ioctl,
3241 	.listen =	sock_no_listen,
3242 	.shutdown =	sock_no_shutdown,
3243 	.setsockopt =	netlink_setsockopt,
3244 	.getsockopt =	netlink_getsockopt,
3245 	.sendmsg =	netlink_sendmsg,
3246 	.recvmsg =	netlink_recvmsg,
3247 	.mmap =		netlink_mmap,
3248 	.sendpage =	sock_no_sendpage,
3249 };
3250 
3251 static const struct net_proto_family netlink_family_ops = {
3252 	.family = PF_NETLINK,
3253 	.create = netlink_create,
3254 	.owner	= THIS_MODULE,	/* for consistency 8) */
3255 };
3256 
3257 static int __net_init netlink_net_init(struct net *net)
3258 {
3259 #ifdef CONFIG_PROC_FS
3260 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3261 		return -ENOMEM;
3262 #endif
3263 	return 0;
3264 }
3265 
3266 static void __net_exit netlink_net_exit(struct net *net)
3267 {
3268 #ifdef CONFIG_PROC_FS
3269 	remove_proc_entry("netlink", net->proc_net);
3270 #endif
3271 }
3272 
3273 static void __init netlink_add_usersock_entry(void)
3274 {
3275 	struct listeners *listeners;
3276 	int groups = 32;
3277 
3278 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3279 	if (!listeners)
3280 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3281 
3282 	netlink_table_grab();
3283 
3284 	nl_table[NETLINK_USERSOCK].groups = groups;
3285 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3286 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3287 	nl_table[NETLINK_USERSOCK].registered = 1;
3288 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3289 
3290 	netlink_table_ungrab();
3291 }
3292 
3293 static struct pernet_operations __net_initdata netlink_net_ops = {
3294 	.init = netlink_net_init,
3295 	.exit = netlink_net_exit,
3296 };
3297 
3298 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3299 {
3300 	const struct netlink_sock *nlk = data;
3301 	struct netlink_compare_arg arg;
3302 
3303 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3304 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3305 }
3306 
3307 static const struct rhashtable_params netlink_rhashtable_params = {
3308 	.head_offset = offsetof(struct netlink_sock, node),
3309 	.key_len = netlink_compare_arg_len,
3310 	.obj_hashfn = netlink_hash,
3311 	.obj_cmpfn = netlink_compare,
3312 	.automatic_shrinking = true,
3313 };
3314 
3315 static int __init netlink_proto_init(void)
3316 {
3317 	int i;
3318 	int err = proto_register(&netlink_proto, 0);
3319 
3320 	if (err != 0)
3321 		goto out;
3322 
3323 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3324 
3325 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3326 	if (!nl_table)
3327 		goto panic;
3328 
3329 	for (i = 0; i < MAX_LINKS; i++) {
3330 		if (rhashtable_init(&nl_table[i].hash,
3331 				    &netlink_rhashtable_params) < 0) {
3332 			while (--i > 0)
3333 				rhashtable_destroy(&nl_table[i].hash);
3334 			kfree(nl_table);
3335 			goto panic;
3336 		}
3337 	}
3338 
3339 	INIT_LIST_HEAD(&netlink_tap_all);
3340 
3341 	netlink_add_usersock_entry();
3342 
3343 	sock_register(&netlink_family_ops);
3344 	register_pernet_subsys(&netlink_net_ops);
3345 	/* The netlink device handler may be needed early. */
3346 	rtnetlink_init();
3347 out:
3348 	return err;
3349 panic:
3350 	panic("netlink_init: Cannot allocate nl_table\n");
3351 }
3352 
3353 core_initcall(netlink_proto_init);
3354