1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 88 static inline int netlink_is_kernel(struct sock *sk) 89 { 90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 91 } 92 93 struct netlink_table *nl_table __read_mostly; 94 EXPORT_SYMBOL_GPL(nl_table); 95 96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 97 98 static int netlink_dump(struct sock *sk); 99 static void netlink_skb_destructor(struct sk_buff *skb); 100 101 /* nl_table locking explained: 102 * Lookup and traversal are protected with an RCU read-side lock. Insertion 103 * and removal are protected with per bucket lock while using RCU list 104 * modification primitives and may run in parallel to RCU protected lookups. 105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 106 * been acquired * either during or after the socket has been removed from 107 * the list and after an RCU grace period. 108 */ 109 DEFINE_RWLOCK(nl_table_lock); 110 EXPORT_SYMBOL_GPL(nl_table_lock); 111 static atomic_t nl_table_users = ATOMIC_INIT(0); 112 113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 114 115 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 116 117 static DEFINE_SPINLOCK(netlink_tap_lock); 118 static struct list_head netlink_tap_all __read_mostly; 119 120 static const struct rhashtable_params netlink_rhashtable_params; 121 122 static inline u32 netlink_group_mask(u32 group) 123 { 124 return group ? 1 << (group - 1) : 0; 125 } 126 127 int netlink_add_tap(struct netlink_tap *nt) 128 { 129 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 130 return -EINVAL; 131 132 spin_lock(&netlink_tap_lock); 133 list_add_rcu(&nt->list, &netlink_tap_all); 134 spin_unlock(&netlink_tap_lock); 135 136 __module_get(nt->module); 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(netlink_add_tap); 141 142 static int __netlink_remove_tap(struct netlink_tap *nt) 143 { 144 bool found = false; 145 struct netlink_tap *tmp; 146 147 spin_lock(&netlink_tap_lock); 148 149 list_for_each_entry(tmp, &netlink_tap_all, list) { 150 if (nt == tmp) { 151 list_del_rcu(&nt->list); 152 found = true; 153 goto out; 154 } 155 } 156 157 pr_warn("__netlink_remove_tap: %p not found\n", nt); 158 out: 159 spin_unlock(&netlink_tap_lock); 160 161 if (found) 162 module_put(nt->module); 163 164 return found ? 0 : -ENODEV; 165 } 166 167 int netlink_remove_tap(struct netlink_tap *nt) 168 { 169 int ret; 170 171 ret = __netlink_remove_tap(nt); 172 synchronize_net(); 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(netlink_remove_tap); 177 178 static bool netlink_filter_tap(const struct sk_buff *skb) 179 { 180 struct sock *sk = skb->sk; 181 182 /* We take the more conservative approach and 183 * whitelist socket protocols that may pass. 184 */ 185 switch (sk->sk_protocol) { 186 case NETLINK_ROUTE: 187 case NETLINK_USERSOCK: 188 case NETLINK_SOCK_DIAG: 189 case NETLINK_NFLOG: 190 case NETLINK_XFRM: 191 case NETLINK_FIB_LOOKUP: 192 case NETLINK_NETFILTER: 193 case NETLINK_GENERIC: 194 return true; 195 } 196 197 return false; 198 } 199 200 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 201 struct net_device *dev) 202 { 203 struct sk_buff *nskb; 204 struct sock *sk = skb->sk; 205 int ret = -ENOMEM; 206 207 dev_hold(dev); 208 nskb = skb_clone(skb, GFP_ATOMIC); 209 if (nskb) { 210 nskb->dev = dev; 211 nskb->protocol = htons((u16) sk->sk_protocol); 212 nskb->pkt_type = netlink_is_kernel(sk) ? 213 PACKET_KERNEL : PACKET_USER; 214 skb_reset_network_header(nskb); 215 ret = dev_queue_xmit(nskb); 216 if (unlikely(ret > 0)) 217 ret = net_xmit_errno(ret); 218 } 219 220 dev_put(dev); 221 return ret; 222 } 223 224 static void __netlink_deliver_tap(struct sk_buff *skb) 225 { 226 int ret; 227 struct netlink_tap *tmp; 228 229 if (!netlink_filter_tap(skb)) 230 return; 231 232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 233 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 234 if (unlikely(ret)) 235 break; 236 } 237 } 238 239 static void netlink_deliver_tap(struct sk_buff *skb) 240 { 241 rcu_read_lock(); 242 243 if (unlikely(!list_empty(&netlink_tap_all))) 244 __netlink_deliver_tap(skb); 245 246 rcu_read_unlock(); 247 } 248 249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 250 struct sk_buff *skb) 251 { 252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 253 netlink_deliver_tap(skb); 254 } 255 256 static void netlink_overrun(struct sock *sk) 257 { 258 struct netlink_sock *nlk = nlk_sk(sk); 259 260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 261 if (!test_and_set_bit(NETLINK_S_CONGESTED, 262 &nlk_sk(sk)->state)) { 263 sk->sk_err = ENOBUFS; 264 sk->sk_error_report(sk); 265 } 266 } 267 atomic_inc(&sk->sk_drops); 268 } 269 270 static void netlink_rcv_wake(struct sock *sk) 271 { 272 struct netlink_sock *nlk = nlk_sk(sk); 273 274 if (skb_queue_empty(&sk->sk_receive_queue)) 275 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 277 wake_up_interruptible(&nlk->wait); 278 } 279 280 #ifdef CONFIG_NETLINK_MMAP 281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 282 { 283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 284 } 285 286 static bool netlink_rx_is_mmaped(struct sock *sk) 287 { 288 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 289 } 290 291 static bool netlink_tx_is_mmaped(struct sock *sk) 292 { 293 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 294 } 295 296 static __pure struct page *pgvec_to_page(const void *addr) 297 { 298 if (is_vmalloc_addr(addr)) 299 return vmalloc_to_page(addr); 300 else 301 return virt_to_page(addr); 302 } 303 304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 305 { 306 unsigned int i; 307 308 for (i = 0; i < len; i++) { 309 if (pg_vec[i] != NULL) { 310 if (is_vmalloc_addr(pg_vec[i])) 311 vfree(pg_vec[i]); 312 else 313 free_pages((unsigned long)pg_vec[i], order); 314 } 315 } 316 kfree(pg_vec); 317 } 318 319 static void *alloc_one_pg_vec_page(unsigned long order) 320 { 321 void *buffer; 322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 323 __GFP_NOWARN | __GFP_NORETRY; 324 325 buffer = (void *)__get_free_pages(gfp_flags, order); 326 if (buffer != NULL) 327 return buffer; 328 329 buffer = vzalloc((1 << order) * PAGE_SIZE); 330 if (buffer != NULL) 331 return buffer; 332 333 gfp_flags &= ~__GFP_NORETRY; 334 return (void *)__get_free_pages(gfp_flags, order); 335 } 336 337 static void **alloc_pg_vec(struct netlink_sock *nlk, 338 struct nl_mmap_req *req, unsigned int order) 339 { 340 unsigned int block_nr = req->nm_block_nr; 341 unsigned int i; 342 void **pg_vec; 343 344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 345 if (pg_vec == NULL) 346 return NULL; 347 348 for (i = 0; i < block_nr; i++) { 349 pg_vec[i] = alloc_one_pg_vec_page(order); 350 if (pg_vec[i] == NULL) 351 goto err1; 352 } 353 354 return pg_vec; 355 err1: 356 free_pg_vec(pg_vec, order, block_nr); 357 return NULL; 358 } 359 360 361 static void 362 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec, 363 unsigned int order) 364 { 365 struct netlink_sock *nlk = nlk_sk(sk); 366 struct sk_buff_head *queue; 367 struct netlink_ring *ring; 368 369 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 371 372 spin_lock_bh(&queue->lock); 373 374 ring->frame_max = req->nm_frame_nr - 1; 375 ring->head = 0; 376 ring->frame_size = req->nm_frame_size; 377 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 378 379 swap(ring->pg_vec_len, req->nm_block_nr); 380 swap(ring->pg_vec_order, order); 381 swap(ring->pg_vec, pg_vec); 382 383 __skb_queue_purge(queue); 384 spin_unlock_bh(&queue->lock); 385 386 WARN_ON(atomic_read(&nlk->mapped)); 387 388 if (pg_vec) 389 free_pg_vec(pg_vec, order, req->nm_block_nr); 390 } 391 392 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 393 bool tx_ring) 394 { 395 struct netlink_sock *nlk = nlk_sk(sk); 396 struct netlink_ring *ring; 397 void **pg_vec = NULL; 398 unsigned int order = 0; 399 400 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 401 402 if (atomic_read(&nlk->mapped)) 403 return -EBUSY; 404 if (atomic_read(&ring->pending)) 405 return -EBUSY; 406 407 if (req->nm_block_nr) { 408 if (ring->pg_vec != NULL) 409 return -EBUSY; 410 411 if ((int)req->nm_block_size <= 0) 412 return -EINVAL; 413 if (!PAGE_ALIGNED(req->nm_block_size)) 414 return -EINVAL; 415 if (req->nm_frame_size < NL_MMAP_HDRLEN) 416 return -EINVAL; 417 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 418 return -EINVAL; 419 420 ring->frames_per_block = req->nm_block_size / 421 req->nm_frame_size; 422 if (ring->frames_per_block == 0) 423 return -EINVAL; 424 if (ring->frames_per_block * req->nm_block_nr != 425 req->nm_frame_nr) 426 return -EINVAL; 427 428 order = get_order(req->nm_block_size); 429 pg_vec = alloc_pg_vec(nlk, req, order); 430 if (pg_vec == NULL) 431 return -ENOMEM; 432 } else { 433 if (req->nm_frame_nr) 434 return -EINVAL; 435 } 436 437 mutex_lock(&nlk->pg_vec_lock); 438 if (atomic_read(&nlk->mapped) == 0) { 439 __netlink_set_ring(sk, req, tx_ring, pg_vec, order); 440 mutex_unlock(&nlk->pg_vec_lock); 441 return 0; 442 } 443 444 mutex_unlock(&nlk->pg_vec_lock); 445 446 if (pg_vec) 447 free_pg_vec(pg_vec, order, req->nm_block_nr); 448 449 return -EBUSY; 450 } 451 452 static void netlink_mm_open(struct vm_area_struct *vma) 453 { 454 struct file *file = vma->vm_file; 455 struct socket *sock = file->private_data; 456 struct sock *sk = sock->sk; 457 458 if (sk) 459 atomic_inc(&nlk_sk(sk)->mapped); 460 } 461 462 static void netlink_mm_close(struct vm_area_struct *vma) 463 { 464 struct file *file = vma->vm_file; 465 struct socket *sock = file->private_data; 466 struct sock *sk = sock->sk; 467 468 if (sk) 469 atomic_dec(&nlk_sk(sk)->mapped); 470 } 471 472 static const struct vm_operations_struct netlink_mmap_ops = { 473 .open = netlink_mm_open, 474 .close = netlink_mm_close, 475 }; 476 477 static int netlink_mmap(struct file *file, struct socket *sock, 478 struct vm_area_struct *vma) 479 { 480 struct sock *sk = sock->sk; 481 struct netlink_sock *nlk = nlk_sk(sk); 482 struct netlink_ring *ring; 483 unsigned long start, size, expected; 484 unsigned int i; 485 int err = -EINVAL; 486 487 if (vma->vm_pgoff) 488 return -EINVAL; 489 490 mutex_lock(&nlk->pg_vec_lock); 491 492 expected = 0; 493 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 494 if (ring->pg_vec == NULL) 495 continue; 496 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 497 } 498 499 if (expected == 0) 500 goto out; 501 502 size = vma->vm_end - vma->vm_start; 503 if (size != expected) 504 goto out; 505 506 start = vma->vm_start; 507 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 508 if (ring->pg_vec == NULL) 509 continue; 510 511 for (i = 0; i < ring->pg_vec_len; i++) { 512 struct page *page; 513 void *kaddr = ring->pg_vec[i]; 514 unsigned int pg_num; 515 516 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 517 page = pgvec_to_page(kaddr); 518 err = vm_insert_page(vma, start, page); 519 if (err < 0) 520 goto out; 521 start += PAGE_SIZE; 522 kaddr += PAGE_SIZE; 523 } 524 } 525 } 526 527 atomic_inc(&nlk->mapped); 528 vma->vm_ops = &netlink_mmap_ops; 529 err = 0; 530 out: 531 mutex_unlock(&nlk->pg_vec_lock); 532 return err; 533 } 534 535 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 536 { 537 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 538 struct page *p_start, *p_end; 539 540 /* First page is flushed through netlink_{get,set}_status */ 541 p_start = pgvec_to_page(hdr + PAGE_SIZE); 542 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 543 while (p_start <= p_end) { 544 flush_dcache_page(p_start); 545 p_start++; 546 } 547 #endif 548 } 549 550 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 551 { 552 smp_rmb(); 553 flush_dcache_page(pgvec_to_page(hdr)); 554 return hdr->nm_status; 555 } 556 557 static void netlink_set_status(struct nl_mmap_hdr *hdr, 558 enum nl_mmap_status status) 559 { 560 smp_mb(); 561 hdr->nm_status = status; 562 flush_dcache_page(pgvec_to_page(hdr)); 563 } 564 565 static struct nl_mmap_hdr * 566 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 567 { 568 unsigned int pg_vec_pos, frame_off; 569 570 pg_vec_pos = pos / ring->frames_per_block; 571 frame_off = pos % ring->frames_per_block; 572 573 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 574 } 575 576 static struct nl_mmap_hdr * 577 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 578 enum nl_mmap_status status) 579 { 580 struct nl_mmap_hdr *hdr; 581 582 hdr = __netlink_lookup_frame(ring, pos); 583 if (netlink_get_status(hdr) != status) 584 return NULL; 585 586 return hdr; 587 } 588 589 static struct nl_mmap_hdr * 590 netlink_current_frame(const struct netlink_ring *ring, 591 enum nl_mmap_status status) 592 { 593 return netlink_lookup_frame(ring, ring->head, status); 594 } 595 596 static struct nl_mmap_hdr * 597 netlink_previous_frame(const struct netlink_ring *ring, 598 enum nl_mmap_status status) 599 { 600 unsigned int prev; 601 602 prev = ring->head ? ring->head - 1 : ring->frame_max; 603 return netlink_lookup_frame(ring, prev, status); 604 } 605 606 static void netlink_increment_head(struct netlink_ring *ring) 607 { 608 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 609 } 610 611 static void netlink_forward_ring(struct netlink_ring *ring) 612 { 613 unsigned int head = ring->head, pos = head; 614 const struct nl_mmap_hdr *hdr; 615 616 do { 617 hdr = __netlink_lookup_frame(ring, pos); 618 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 619 break; 620 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 621 break; 622 netlink_increment_head(ring); 623 } while (ring->head != head); 624 } 625 626 static bool netlink_dump_space(struct netlink_sock *nlk) 627 { 628 struct netlink_ring *ring = &nlk->rx_ring; 629 struct nl_mmap_hdr *hdr; 630 unsigned int n; 631 632 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 633 if (hdr == NULL) 634 return false; 635 636 n = ring->head + ring->frame_max / 2; 637 if (n > ring->frame_max) 638 n -= ring->frame_max; 639 640 hdr = __netlink_lookup_frame(ring, n); 641 642 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 643 } 644 645 static unsigned int netlink_poll(struct file *file, struct socket *sock, 646 poll_table *wait) 647 { 648 struct sock *sk = sock->sk; 649 struct netlink_sock *nlk = nlk_sk(sk); 650 unsigned int mask; 651 int err; 652 653 if (nlk->rx_ring.pg_vec != NULL) { 654 /* Memory mapped sockets don't call recvmsg(), so flow control 655 * for dumps is performed here. A dump is allowed to continue 656 * if at least half the ring is unused. 657 */ 658 while (nlk->cb_running && netlink_dump_space(nlk)) { 659 err = netlink_dump(sk); 660 if (err < 0) { 661 sk->sk_err = -err; 662 sk->sk_error_report(sk); 663 break; 664 } 665 } 666 netlink_rcv_wake(sk); 667 } 668 669 mask = datagram_poll(file, sock, wait); 670 671 spin_lock_bh(&sk->sk_receive_queue.lock); 672 if (nlk->rx_ring.pg_vec) { 673 netlink_forward_ring(&nlk->rx_ring); 674 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 675 mask |= POLLIN | POLLRDNORM; 676 } 677 spin_unlock_bh(&sk->sk_receive_queue.lock); 678 679 spin_lock_bh(&sk->sk_write_queue.lock); 680 if (nlk->tx_ring.pg_vec) { 681 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 682 mask |= POLLOUT | POLLWRNORM; 683 } 684 spin_unlock_bh(&sk->sk_write_queue.lock); 685 686 return mask; 687 } 688 689 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 690 { 691 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 692 } 693 694 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 695 struct netlink_ring *ring, 696 struct nl_mmap_hdr *hdr) 697 { 698 unsigned int size; 699 void *data; 700 701 size = ring->frame_size - NL_MMAP_HDRLEN; 702 data = (void *)hdr + NL_MMAP_HDRLEN; 703 704 skb->head = data; 705 skb->data = data; 706 skb_reset_tail_pointer(skb); 707 skb->end = skb->tail + size; 708 skb->len = 0; 709 710 skb->destructor = netlink_skb_destructor; 711 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 712 NETLINK_CB(skb).sk = sk; 713 } 714 715 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 716 u32 dst_portid, u32 dst_group, 717 struct scm_cookie *scm) 718 { 719 struct netlink_sock *nlk = nlk_sk(sk); 720 struct netlink_ring *ring; 721 struct nl_mmap_hdr *hdr; 722 struct sk_buff *skb; 723 unsigned int maxlen; 724 int err = 0, len = 0; 725 726 mutex_lock(&nlk->pg_vec_lock); 727 728 ring = &nlk->tx_ring; 729 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 730 731 do { 732 unsigned int nm_len; 733 734 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 735 if (hdr == NULL) { 736 if (!(msg->msg_flags & MSG_DONTWAIT) && 737 atomic_read(&nlk->tx_ring.pending)) 738 schedule(); 739 continue; 740 } 741 742 nm_len = ACCESS_ONCE(hdr->nm_len); 743 if (nm_len > maxlen) { 744 err = -EINVAL; 745 goto out; 746 } 747 748 netlink_frame_flush_dcache(hdr, nm_len); 749 750 skb = alloc_skb(nm_len, GFP_KERNEL); 751 if (skb == NULL) { 752 err = -ENOBUFS; 753 goto out; 754 } 755 __skb_put(skb, nm_len); 756 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 757 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 758 759 netlink_increment_head(ring); 760 761 NETLINK_CB(skb).portid = nlk->portid; 762 NETLINK_CB(skb).dst_group = dst_group; 763 NETLINK_CB(skb).creds = scm->creds; 764 765 err = security_netlink_send(sk, skb); 766 if (err) { 767 kfree_skb(skb); 768 goto out; 769 } 770 771 if (unlikely(dst_group)) { 772 atomic_inc(&skb->users); 773 netlink_broadcast(sk, skb, dst_portid, dst_group, 774 GFP_KERNEL); 775 } 776 err = netlink_unicast(sk, skb, dst_portid, 777 msg->msg_flags & MSG_DONTWAIT); 778 if (err < 0) 779 goto out; 780 len += err; 781 782 } while (hdr != NULL || 783 (!(msg->msg_flags & MSG_DONTWAIT) && 784 atomic_read(&nlk->tx_ring.pending))); 785 786 if (len > 0) 787 err = len; 788 out: 789 mutex_unlock(&nlk->pg_vec_lock); 790 return err; 791 } 792 793 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 794 { 795 struct nl_mmap_hdr *hdr; 796 797 hdr = netlink_mmap_hdr(skb); 798 hdr->nm_len = skb->len; 799 hdr->nm_group = NETLINK_CB(skb).dst_group; 800 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 801 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 802 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 803 netlink_frame_flush_dcache(hdr, hdr->nm_len); 804 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 805 806 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 807 kfree_skb(skb); 808 } 809 810 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 811 { 812 struct netlink_sock *nlk = nlk_sk(sk); 813 struct netlink_ring *ring = &nlk->rx_ring; 814 struct nl_mmap_hdr *hdr; 815 816 spin_lock_bh(&sk->sk_receive_queue.lock); 817 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 818 if (hdr == NULL) { 819 spin_unlock_bh(&sk->sk_receive_queue.lock); 820 kfree_skb(skb); 821 netlink_overrun(sk); 822 return; 823 } 824 netlink_increment_head(ring); 825 __skb_queue_tail(&sk->sk_receive_queue, skb); 826 spin_unlock_bh(&sk->sk_receive_queue.lock); 827 828 hdr->nm_len = skb->len; 829 hdr->nm_group = NETLINK_CB(skb).dst_group; 830 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 831 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 832 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 833 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 834 } 835 836 #else /* CONFIG_NETLINK_MMAP */ 837 #define netlink_skb_is_mmaped(skb) false 838 #define netlink_rx_is_mmaped(sk) false 839 #define netlink_tx_is_mmaped(sk) false 840 #define netlink_mmap sock_no_mmap 841 #define netlink_poll datagram_poll 842 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 843 #endif /* CONFIG_NETLINK_MMAP */ 844 845 static void netlink_skb_destructor(struct sk_buff *skb) 846 { 847 #ifdef CONFIG_NETLINK_MMAP 848 struct nl_mmap_hdr *hdr; 849 struct netlink_ring *ring; 850 struct sock *sk; 851 852 /* If a packet from the kernel to userspace was freed because of an 853 * error without being delivered to userspace, the kernel must reset 854 * the status. In the direction userspace to kernel, the status is 855 * always reset here after the packet was processed and freed. 856 */ 857 if (netlink_skb_is_mmaped(skb)) { 858 hdr = netlink_mmap_hdr(skb); 859 sk = NETLINK_CB(skb).sk; 860 861 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 862 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 863 ring = &nlk_sk(sk)->tx_ring; 864 } else { 865 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 866 hdr->nm_len = 0; 867 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 868 } 869 ring = &nlk_sk(sk)->rx_ring; 870 } 871 872 WARN_ON(atomic_read(&ring->pending) == 0); 873 atomic_dec(&ring->pending); 874 sock_put(sk); 875 876 skb->head = NULL; 877 } 878 #endif 879 if (is_vmalloc_addr(skb->head)) { 880 if (!skb->cloned || 881 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 882 vfree(skb->head); 883 884 skb->head = NULL; 885 } 886 if (skb->sk != NULL) 887 sock_rfree(skb); 888 } 889 890 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 891 { 892 WARN_ON(skb->sk != NULL); 893 skb->sk = sk; 894 skb->destructor = netlink_skb_destructor; 895 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 896 sk_mem_charge(sk, skb->truesize); 897 } 898 899 static void netlink_sock_destruct(struct sock *sk) 900 { 901 struct netlink_sock *nlk = nlk_sk(sk); 902 903 if (nlk->cb_running) { 904 if (nlk->cb.done) 905 nlk->cb.done(&nlk->cb); 906 907 module_put(nlk->cb.module); 908 kfree_skb(nlk->cb.skb); 909 } 910 911 skb_queue_purge(&sk->sk_receive_queue); 912 #ifdef CONFIG_NETLINK_MMAP 913 if (1) { 914 struct nl_mmap_req req; 915 916 memset(&req, 0, sizeof(req)); 917 if (nlk->rx_ring.pg_vec) 918 __netlink_set_ring(sk, &req, false, NULL, 0); 919 memset(&req, 0, sizeof(req)); 920 if (nlk->tx_ring.pg_vec) 921 __netlink_set_ring(sk, &req, true, NULL, 0); 922 } 923 #endif /* CONFIG_NETLINK_MMAP */ 924 925 if (!sock_flag(sk, SOCK_DEAD)) { 926 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 927 return; 928 } 929 930 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 931 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 932 WARN_ON(nlk_sk(sk)->groups); 933 } 934 935 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 936 * SMP. Look, when several writers sleep and reader wakes them up, all but one 937 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 938 * this, _but_ remember, it adds useless work on UP machines. 939 */ 940 941 void netlink_table_grab(void) 942 __acquires(nl_table_lock) 943 { 944 might_sleep(); 945 946 write_lock_irq(&nl_table_lock); 947 948 if (atomic_read(&nl_table_users)) { 949 DECLARE_WAITQUEUE(wait, current); 950 951 add_wait_queue_exclusive(&nl_table_wait, &wait); 952 for (;;) { 953 set_current_state(TASK_UNINTERRUPTIBLE); 954 if (atomic_read(&nl_table_users) == 0) 955 break; 956 write_unlock_irq(&nl_table_lock); 957 schedule(); 958 write_lock_irq(&nl_table_lock); 959 } 960 961 __set_current_state(TASK_RUNNING); 962 remove_wait_queue(&nl_table_wait, &wait); 963 } 964 } 965 966 void netlink_table_ungrab(void) 967 __releases(nl_table_lock) 968 { 969 write_unlock_irq(&nl_table_lock); 970 wake_up(&nl_table_wait); 971 } 972 973 static inline void 974 netlink_lock_table(void) 975 { 976 /* read_lock() synchronizes us to netlink_table_grab */ 977 978 read_lock(&nl_table_lock); 979 atomic_inc(&nl_table_users); 980 read_unlock(&nl_table_lock); 981 } 982 983 static inline void 984 netlink_unlock_table(void) 985 { 986 if (atomic_dec_and_test(&nl_table_users)) 987 wake_up(&nl_table_wait); 988 } 989 990 struct netlink_compare_arg 991 { 992 possible_net_t pnet; 993 u32 portid; 994 }; 995 996 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 997 #define netlink_compare_arg_len \ 998 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 999 1000 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 1001 const void *ptr) 1002 { 1003 const struct netlink_compare_arg *x = arg->key; 1004 const struct netlink_sock *nlk = ptr; 1005 1006 return nlk->portid != x->portid || 1007 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 1008 } 1009 1010 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 1011 struct net *net, u32 portid) 1012 { 1013 memset(arg, 0, sizeof(*arg)); 1014 write_pnet(&arg->pnet, net); 1015 arg->portid = portid; 1016 } 1017 1018 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1019 struct net *net) 1020 { 1021 struct netlink_compare_arg arg; 1022 1023 netlink_compare_arg_init(&arg, net, portid); 1024 return rhashtable_lookup_fast(&table->hash, &arg, 1025 netlink_rhashtable_params); 1026 } 1027 1028 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 1029 { 1030 struct netlink_compare_arg arg; 1031 1032 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 1033 return rhashtable_lookup_insert_key(&table->hash, &arg, 1034 &nlk_sk(sk)->node, 1035 netlink_rhashtable_params); 1036 } 1037 1038 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1039 { 1040 struct netlink_table *table = &nl_table[protocol]; 1041 struct sock *sk; 1042 1043 rcu_read_lock(); 1044 sk = __netlink_lookup(table, portid, net); 1045 if (sk) 1046 sock_hold(sk); 1047 rcu_read_unlock(); 1048 1049 return sk; 1050 } 1051 1052 static const struct proto_ops netlink_ops; 1053 1054 static void 1055 netlink_update_listeners(struct sock *sk) 1056 { 1057 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1058 unsigned long mask; 1059 unsigned int i; 1060 struct listeners *listeners; 1061 1062 listeners = nl_deref_protected(tbl->listeners); 1063 if (!listeners) 1064 return; 1065 1066 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1067 mask = 0; 1068 sk_for_each_bound(sk, &tbl->mc_list) { 1069 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1070 mask |= nlk_sk(sk)->groups[i]; 1071 } 1072 listeners->masks[i] = mask; 1073 } 1074 /* this function is only called with the netlink table "grabbed", which 1075 * makes sure updates are visible before bind or setsockopt return. */ 1076 } 1077 1078 static int netlink_insert(struct sock *sk, u32 portid) 1079 { 1080 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1081 int err; 1082 1083 lock_sock(sk); 1084 1085 err = -EBUSY; 1086 if (nlk_sk(sk)->portid) 1087 goto err; 1088 1089 err = -ENOMEM; 1090 if (BITS_PER_LONG > 32 && 1091 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1092 goto err; 1093 1094 nlk_sk(sk)->portid = portid; 1095 sock_hold(sk); 1096 1097 err = __netlink_insert(table, sk); 1098 if (err) { 1099 if (err == -EEXIST) 1100 err = -EADDRINUSE; 1101 nlk_sk(sk)->portid = 0; 1102 sock_put(sk); 1103 } 1104 1105 err: 1106 release_sock(sk); 1107 return err; 1108 } 1109 1110 static void netlink_remove(struct sock *sk) 1111 { 1112 struct netlink_table *table; 1113 1114 table = &nl_table[sk->sk_protocol]; 1115 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 1116 netlink_rhashtable_params)) { 1117 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1118 __sock_put(sk); 1119 } 1120 1121 netlink_table_grab(); 1122 if (nlk_sk(sk)->subscriptions) { 1123 __sk_del_bind_node(sk); 1124 netlink_update_listeners(sk); 1125 } 1126 if (sk->sk_protocol == NETLINK_GENERIC) 1127 atomic_inc(&genl_sk_destructing_cnt); 1128 netlink_table_ungrab(); 1129 } 1130 1131 static struct proto netlink_proto = { 1132 .name = "NETLINK", 1133 .owner = THIS_MODULE, 1134 .obj_size = sizeof(struct netlink_sock), 1135 }; 1136 1137 static int __netlink_create(struct net *net, struct socket *sock, 1138 struct mutex *cb_mutex, int protocol, 1139 int kern) 1140 { 1141 struct sock *sk; 1142 struct netlink_sock *nlk; 1143 1144 sock->ops = &netlink_ops; 1145 1146 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 1147 if (!sk) 1148 return -ENOMEM; 1149 1150 sock_init_data(sock, sk); 1151 1152 nlk = nlk_sk(sk); 1153 if (cb_mutex) { 1154 nlk->cb_mutex = cb_mutex; 1155 } else { 1156 nlk->cb_mutex = &nlk->cb_def_mutex; 1157 mutex_init(nlk->cb_mutex); 1158 } 1159 init_waitqueue_head(&nlk->wait); 1160 #ifdef CONFIG_NETLINK_MMAP 1161 mutex_init(&nlk->pg_vec_lock); 1162 #endif 1163 1164 sk->sk_destruct = netlink_sock_destruct; 1165 sk->sk_protocol = protocol; 1166 return 0; 1167 } 1168 1169 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1170 int kern) 1171 { 1172 struct module *module = NULL; 1173 struct mutex *cb_mutex; 1174 struct netlink_sock *nlk; 1175 int (*bind)(struct net *net, int group); 1176 void (*unbind)(struct net *net, int group); 1177 int err = 0; 1178 1179 sock->state = SS_UNCONNECTED; 1180 1181 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1182 return -ESOCKTNOSUPPORT; 1183 1184 if (protocol < 0 || protocol >= MAX_LINKS) 1185 return -EPROTONOSUPPORT; 1186 1187 netlink_lock_table(); 1188 #ifdef CONFIG_MODULES 1189 if (!nl_table[protocol].registered) { 1190 netlink_unlock_table(); 1191 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1192 netlink_lock_table(); 1193 } 1194 #endif 1195 if (nl_table[protocol].registered && 1196 try_module_get(nl_table[protocol].module)) 1197 module = nl_table[protocol].module; 1198 else 1199 err = -EPROTONOSUPPORT; 1200 cb_mutex = nl_table[protocol].cb_mutex; 1201 bind = nl_table[protocol].bind; 1202 unbind = nl_table[protocol].unbind; 1203 netlink_unlock_table(); 1204 1205 if (err < 0) 1206 goto out; 1207 1208 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 1209 if (err < 0) 1210 goto out_module; 1211 1212 local_bh_disable(); 1213 sock_prot_inuse_add(net, &netlink_proto, 1); 1214 local_bh_enable(); 1215 1216 nlk = nlk_sk(sock->sk); 1217 nlk->module = module; 1218 nlk->netlink_bind = bind; 1219 nlk->netlink_unbind = unbind; 1220 out: 1221 return err; 1222 1223 out_module: 1224 module_put(module); 1225 goto out; 1226 } 1227 1228 static void deferred_put_nlk_sk(struct rcu_head *head) 1229 { 1230 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1231 1232 sock_put(&nlk->sk); 1233 } 1234 1235 static int netlink_release(struct socket *sock) 1236 { 1237 struct sock *sk = sock->sk; 1238 struct netlink_sock *nlk; 1239 1240 if (!sk) 1241 return 0; 1242 1243 netlink_remove(sk); 1244 sock_orphan(sk); 1245 nlk = nlk_sk(sk); 1246 1247 /* 1248 * OK. Socket is unlinked, any packets that arrive now 1249 * will be purged. 1250 */ 1251 1252 /* must not acquire netlink_table_lock in any way again before unbind 1253 * and notifying genetlink is done as otherwise it might deadlock 1254 */ 1255 if (nlk->netlink_unbind) { 1256 int i; 1257 1258 for (i = 0; i < nlk->ngroups; i++) 1259 if (test_bit(i, nlk->groups)) 1260 nlk->netlink_unbind(sock_net(sk), i + 1); 1261 } 1262 if (sk->sk_protocol == NETLINK_GENERIC && 1263 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1264 wake_up(&genl_sk_destructing_waitq); 1265 1266 sock->sk = NULL; 1267 wake_up_interruptible_all(&nlk->wait); 1268 1269 skb_queue_purge(&sk->sk_write_queue); 1270 1271 if (nlk->portid) { 1272 struct netlink_notify n = { 1273 .net = sock_net(sk), 1274 .protocol = sk->sk_protocol, 1275 .portid = nlk->portid, 1276 }; 1277 atomic_notifier_call_chain(&netlink_chain, 1278 NETLINK_URELEASE, &n); 1279 } 1280 1281 module_put(nlk->module); 1282 1283 if (netlink_is_kernel(sk)) { 1284 netlink_table_grab(); 1285 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1286 if (--nl_table[sk->sk_protocol].registered == 0) { 1287 struct listeners *old; 1288 1289 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1290 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1291 kfree_rcu(old, rcu); 1292 nl_table[sk->sk_protocol].module = NULL; 1293 nl_table[sk->sk_protocol].bind = NULL; 1294 nl_table[sk->sk_protocol].unbind = NULL; 1295 nl_table[sk->sk_protocol].flags = 0; 1296 nl_table[sk->sk_protocol].registered = 0; 1297 } 1298 netlink_table_ungrab(); 1299 } 1300 1301 kfree(nlk->groups); 1302 nlk->groups = NULL; 1303 1304 local_bh_disable(); 1305 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1306 local_bh_enable(); 1307 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1308 return 0; 1309 } 1310 1311 static int netlink_autobind(struct socket *sock) 1312 { 1313 struct sock *sk = sock->sk; 1314 struct net *net = sock_net(sk); 1315 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1316 s32 portid = task_tgid_vnr(current); 1317 int err; 1318 s32 rover = -4096; 1319 bool ok; 1320 1321 retry: 1322 cond_resched(); 1323 rcu_read_lock(); 1324 ok = !__netlink_lookup(table, portid, net); 1325 rcu_read_unlock(); 1326 if (!ok) { 1327 /* Bind collision, search negative portid values. */ 1328 if (rover == -4096) 1329 /* rover will be in range [S32_MIN, -4097] */ 1330 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 1331 else if (rover >= -4096) 1332 rover = -4097; 1333 portid = rover--; 1334 goto retry; 1335 } 1336 1337 err = netlink_insert(sk, portid); 1338 if (err == -EADDRINUSE) 1339 goto retry; 1340 1341 /* If 2 threads race to autobind, that is fine. */ 1342 if (err == -EBUSY) 1343 err = 0; 1344 1345 return err; 1346 } 1347 1348 /** 1349 * __netlink_ns_capable - General netlink message capability test 1350 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1351 * @user_ns: The user namespace of the capability to use 1352 * @cap: The capability to use 1353 * 1354 * Test to see if the opener of the socket we received the message 1355 * from had when the netlink socket was created and the sender of the 1356 * message has has the capability @cap in the user namespace @user_ns. 1357 */ 1358 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1359 struct user_namespace *user_ns, int cap) 1360 { 1361 return ((nsp->flags & NETLINK_SKB_DST) || 1362 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1363 ns_capable(user_ns, cap); 1364 } 1365 EXPORT_SYMBOL(__netlink_ns_capable); 1366 1367 /** 1368 * netlink_ns_capable - General netlink message capability test 1369 * @skb: socket buffer holding a netlink command from userspace 1370 * @user_ns: The user namespace of the capability to use 1371 * @cap: The capability to use 1372 * 1373 * Test to see if the opener of the socket we received the message 1374 * from had when the netlink socket was created and the sender of the 1375 * message has has the capability @cap in the user namespace @user_ns. 1376 */ 1377 bool netlink_ns_capable(const struct sk_buff *skb, 1378 struct user_namespace *user_ns, int cap) 1379 { 1380 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1381 } 1382 EXPORT_SYMBOL(netlink_ns_capable); 1383 1384 /** 1385 * netlink_capable - Netlink global message capability test 1386 * @skb: socket buffer holding a netlink command from userspace 1387 * @cap: The capability to use 1388 * 1389 * Test to see if the opener of the socket we received the message 1390 * from had when the netlink socket was created and the sender of the 1391 * message has has the capability @cap in all user namespaces. 1392 */ 1393 bool netlink_capable(const struct sk_buff *skb, int cap) 1394 { 1395 return netlink_ns_capable(skb, &init_user_ns, cap); 1396 } 1397 EXPORT_SYMBOL(netlink_capable); 1398 1399 /** 1400 * netlink_net_capable - Netlink network namespace message capability test 1401 * @skb: socket buffer holding a netlink command from userspace 1402 * @cap: The capability to use 1403 * 1404 * Test to see if the opener of the socket we received the message 1405 * from had when the netlink socket was created and the sender of the 1406 * message has has the capability @cap over the network namespace of 1407 * the socket we received the message from. 1408 */ 1409 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1410 { 1411 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1412 } 1413 EXPORT_SYMBOL(netlink_net_capable); 1414 1415 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1416 { 1417 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1418 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1419 } 1420 1421 static void 1422 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1423 { 1424 struct netlink_sock *nlk = nlk_sk(sk); 1425 1426 if (nlk->subscriptions && !subscriptions) 1427 __sk_del_bind_node(sk); 1428 else if (!nlk->subscriptions && subscriptions) 1429 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1430 nlk->subscriptions = subscriptions; 1431 } 1432 1433 static int netlink_realloc_groups(struct sock *sk) 1434 { 1435 struct netlink_sock *nlk = nlk_sk(sk); 1436 unsigned int groups; 1437 unsigned long *new_groups; 1438 int err = 0; 1439 1440 netlink_table_grab(); 1441 1442 groups = nl_table[sk->sk_protocol].groups; 1443 if (!nl_table[sk->sk_protocol].registered) { 1444 err = -ENOENT; 1445 goto out_unlock; 1446 } 1447 1448 if (nlk->ngroups >= groups) 1449 goto out_unlock; 1450 1451 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1452 if (new_groups == NULL) { 1453 err = -ENOMEM; 1454 goto out_unlock; 1455 } 1456 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1457 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1458 1459 nlk->groups = new_groups; 1460 nlk->ngroups = groups; 1461 out_unlock: 1462 netlink_table_ungrab(); 1463 return err; 1464 } 1465 1466 static void netlink_undo_bind(int group, long unsigned int groups, 1467 struct sock *sk) 1468 { 1469 struct netlink_sock *nlk = nlk_sk(sk); 1470 int undo; 1471 1472 if (!nlk->netlink_unbind) 1473 return; 1474 1475 for (undo = 0; undo < group; undo++) 1476 if (test_bit(undo, &groups)) 1477 nlk->netlink_unbind(sock_net(sk), undo + 1); 1478 } 1479 1480 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1481 int addr_len) 1482 { 1483 struct sock *sk = sock->sk; 1484 struct net *net = sock_net(sk); 1485 struct netlink_sock *nlk = nlk_sk(sk); 1486 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1487 int err; 1488 long unsigned int groups = nladdr->nl_groups; 1489 1490 if (addr_len < sizeof(struct sockaddr_nl)) 1491 return -EINVAL; 1492 1493 if (nladdr->nl_family != AF_NETLINK) 1494 return -EINVAL; 1495 1496 /* Only superuser is allowed to listen multicasts */ 1497 if (groups) { 1498 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1499 return -EPERM; 1500 err = netlink_realloc_groups(sk); 1501 if (err) 1502 return err; 1503 } 1504 1505 if (nlk->portid) 1506 if (nladdr->nl_pid != nlk->portid) 1507 return -EINVAL; 1508 1509 if (nlk->netlink_bind && groups) { 1510 int group; 1511 1512 for (group = 0; group < nlk->ngroups; group++) { 1513 if (!test_bit(group, &groups)) 1514 continue; 1515 err = nlk->netlink_bind(net, group + 1); 1516 if (!err) 1517 continue; 1518 netlink_undo_bind(group, groups, sk); 1519 return err; 1520 } 1521 } 1522 1523 if (!nlk->portid) { 1524 err = nladdr->nl_pid ? 1525 netlink_insert(sk, nladdr->nl_pid) : 1526 netlink_autobind(sock); 1527 if (err) { 1528 netlink_undo_bind(nlk->ngroups, groups, sk); 1529 return err; 1530 } 1531 } 1532 1533 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1534 return 0; 1535 1536 netlink_table_grab(); 1537 netlink_update_subscriptions(sk, nlk->subscriptions + 1538 hweight32(groups) - 1539 hweight32(nlk->groups[0])); 1540 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1541 netlink_update_listeners(sk); 1542 netlink_table_ungrab(); 1543 1544 return 0; 1545 } 1546 1547 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1548 int alen, int flags) 1549 { 1550 int err = 0; 1551 struct sock *sk = sock->sk; 1552 struct netlink_sock *nlk = nlk_sk(sk); 1553 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1554 1555 if (alen < sizeof(addr->sa_family)) 1556 return -EINVAL; 1557 1558 if (addr->sa_family == AF_UNSPEC) { 1559 sk->sk_state = NETLINK_UNCONNECTED; 1560 nlk->dst_portid = 0; 1561 nlk->dst_group = 0; 1562 return 0; 1563 } 1564 if (addr->sa_family != AF_NETLINK) 1565 return -EINVAL; 1566 1567 if ((nladdr->nl_groups || nladdr->nl_pid) && 1568 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1569 return -EPERM; 1570 1571 if (!nlk->portid) 1572 err = netlink_autobind(sock); 1573 1574 if (err == 0) { 1575 sk->sk_state = NETLINK_CONNECTED; 1576 nlk->dst_portid = nladdr->nl_pid; 1577 nlk->dst_group = ffs(nladdr->nl_groups); 1578 } 1579 1580 return err; 1581 } 1582 1583 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1584 int *addr_len, int peer) 1585 { 1586 struct sock *sk = sock->sk; 1587 struct netlink_sock *nlk = nlk_sk(sk); 1588 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1589 1590 nladdr->nl_family = AF_NETLINK; 1591 nladdr->nl_pad = 0; 1592 *addr_len = sizeof(*nladdr); 1593 1594 if (peer) { 1595 nladdr->nl_pid = nlk->dst_portid; 1596 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1597 } else { 1598 nladdr->nl_pid = nlk->portid; 1599 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1600 } 1601 return 0; 1602 } 1603 1604 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1605 { 1606 struct sock *sock; 1607 struct netlink_sock *nlk; 1608 1609 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1610 if (!sock) 1611 return ERR_PTR(-ECONNREFUSED); 1612 1613 /* Don't bother queuing skb if kernel socket has no input function */ 1614 nlk = nlk_sk(sock); 1615 if (sock->sk_state == NETLINK_CONNECTED && 1616 nlk->dst_portid != nlk_sk(ssk)->portid) { 1617 sock_put(sock); 1618 return ERR_PTR(-ECONNREFUSED); 1619 } 1620 return sock; 1621 } 1622 1623 struct sock *netlink_getsockbyfilp(struct file *filp) 1624 { 1625 struct inode *inode = file_inode(filp); 1626 struct sock *sock; 1627 1628 if (!S_ISSOCK(inode->i_mode)) 1629 return ERR_PTR(-ENOTSOCK); 1630 1631 sock = SOCKET_I(inode)->sk; 1632 if (sock->sk_family != AF_NETLINK) 1633 return ERR_PTR(-EINVAL); 1634 1635 sock_hold(sock); 1636 return sock; 1637 } 1638 1639 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1640 int broadcast) 1641 { 1642 struct sk_buff *skb; 1643 void *data; 1644 1645 if (size <= NLMSG_GOODSIZE || broadcast) 1646 return alloc_skb(size, GFP_KERNEL); 1647 1648 size = SKB_DATA_ALIGN(size) + 1649 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1650 1651 data = vmalloc(size); 1652 if (data == NULL) 1653 return NULL; 1654 1655 skb = __build_skb(data, size); 1656 if (skb == NULL) 1657 vfree(data); 1658 else 1659 skb->destructor = netlink_skb_destructor; 1660 1661 return skb; 1662 } 1663 1664 /* 1665 * Attach a skb to a netlink socket. 1666 * The caller must hold a reference to the destination socket. On error, the 1667 * reference is dropped. The skb is not send to the destination, just all 1668 * all error checks are performed and memory in the queue is reserved. 1669 * Return values: 1670 * < 0: error. skb freed, reference to sock dropped. 1671 * 0: continue 1672 * 1: repeat lookup - reference dropped while waiting for socket memory. 1673 */ 1674 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1675 long *timeo, struct sock *ssk) 1676 { 1677 struct netlink_sock *nlk; 1678 1679 nlk = nlk_sk(sk); 1680 1681 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1682 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1683 !netlink_skb_is_mmaped(skb)) { 1684 DECLARE_WAITQUEUE(wait, current); 1685 if (!*timeo) { 1686 if (!ssk || netlink_is_kernel(ssk)) 1687 netlink_overrun(sk); 1688 sock_put(sk); 1689 kfree_skb(skb); 1690 return -EAGAIN; 1691 } 1692 1693 __set_current_state(TASK_INTERRUPTIBLE); 1694 add_wait_queue(&nlk->wait, &wait); 1695 1696 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1697 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1698 !sock_flag(sk, SOCK_DEAD)) 1699 *timeo = schedule_timeout(*timeo); 1700 1701 __set_current_state(TASK_RUNNING); 1702 remove_wait_queue(&nlk->wait, &wait); 1703 sock_put(sk); 1704 1705 if (signal_pending(current)) { 1706 kfree_skb(skb); 1707 return sock_intr_errno(*timeo); 1708 } 1709 return 1; 1710 } 1711 netlink_skb_set_owner_r(skb, sk); 1712 return 0; 1713 } 1714 1715 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1716 { 1717 int len = skb->len; 1718 1719 netlink_deliver_tap(skb); 1720 1721 #ifdef CONFIG_NETLINK_MMAP 1722 if (netlink_skb_is_mmaped(skb)) 1723 netlink_queue_mmaped_skb(sk, skb); 1724 else if (netlink_rx_is_mmaped(sk)) 1725 netlink_ring_set_copied(sk, skb); 1726 else 1727 #endif /* CONFIG_NETLINK_MMAP */ 1728 skb_queue_tail(&sk->sk_receive_queue, skb); 1729 sk->sk_data_ready(sk); 1730 return len; 1731 } 1732 1733 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1734 { 1735 int len = __netlink_sendskb(sk, skb); 1736 1737 sock_put(sk); 1738 return len; 1739 } 1740 1741 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1742 { 1743 kfree_skb(skb); 1744 sock_put(sk); 1745 } 1746 1747 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1748 { 1749 int delta; 1750 1751 WARN_ON(skb->sk != NULL); 1752 if (netlink_skb_is_mmaped(skb)) 1753 return skb; 1754 1755 delta = skb->end - skb->tail; 1756 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1757 return skb; 1758 1759 if (skb_shared(skb)) { 1760 struct sk_buff *nskb = skb_clone(skb, allocation); 1761 if (!nskb) 1762 return skb; 1763 consume_skb(skb); 1764 skb = nskb; 1765 } 1766 1767 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1768 skb->truesize -= delta; 1769 1770 return skb; 1771 } 1772 1773 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1774 struct sock *ssk) 1775 { 1776 int ret; 1777 struct netlink_sock *nlk = nlk_sk(sk); 1778 1779 ret = -ECONNREFUSED; 1780 if (nlk->netlink_rcv != NULL) { 1781 ret = skb->len; 1782 netlink_skb_set_owner_r(skb, sk); 1783 NETLINK_CB(skb).sk = ssk; 1784 netlink_deliver_tap_kernel(sk, ssk, skb); 1785 nlk->netlink_rcv(skb); 1786 consume_skb(skb); 1787 } else { 1788 kfree_skb(skb); 1789 } 1790 sock_put(sk); 1791 return ret; 1792 } 1793 1794 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1795 u32 portid, int nonblock) 1796 { 1797 struct sock *sk; 1798 int err; 1799 long timeo; 1800 1801 skb = netlink_trim(skb, gfp_any()); 1802 1803 timeo = sock_sndtimeo(ssk, nonblock); 1804 retry: 1805 sk = netlink_getsockbyportid(ssk, portid); 1806 if (IS_ERR(sk)) { 1807 kfree_skb(skb); 1808 return PTR_ERR(sk); 1809 } 1810 if (netlink_is_kernel(sk)) 1811 return netlink_unicast_kernel(sk, skb, ssk); 1812 1813 if (sk_filter(sk, skb)) { 1814 err = skb->len; 1815 kfree_skb(skb); 1816 sock_put(sk); 1817 return err; 1818 } 1819 1820 err = netlink_attachskb(sk, skb, &timeo, ssk); 1821 if (err == 1) 1822 goto retry; 1823 if (err) 1824 return err; 1825 1826 return netlink_sendskb(sk, skb); 1827 } 1828 EXPORT_SYMBOL(netlink_unicast); 1829 1830 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1831 u32 dst_portid, gfp_t gfp_mask) 1832 { 1833 #ifdef CONFIG_NETLINK_MMAP 1834 struct sock *sk = NULL; 1835 struct sk_buff *skb; 1836 struct netlink_ring *ring; 1837 struct nl_mmap_hdr *hdr; 1838 unsigned int maxlen; 1839 1840 sk = netlink_getsockbyportid(ssk, dst_portid); 1841 if (IS_ERR(sk)) 1842 goto out; 1843 1844 ring = &nlk_sk(sk)->rx_ring; 1845 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1846 if (ring->pg_vec == NULL) 1847 goto out_put; 1848 1849 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1850 goto out_put; 1851 1852 skb = alloc_skb_head(gfp_mask); 1853 if (skb == NULL) 1854 goto err1; 1855 1856 spin_lock_bh(&sk->sk_receive_queue.lock); 1857 /* check again under lock */ 1858 if (ring->pg_vec == NULL) 1859 goto out_free; 1860 1861 /* check again under lock */ 1862 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1863 if (maxlen < size) 1864 goto out_free; 1865 1866 netlink_forward_ring(ring); 1867 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1868 if (hdr == NULL) 1869 goto err2; 1870 netlink_ring_setup_skb(skb, sk, ring, hdr); 1871 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1872 atomic_inc(&ring->pending); 1873 netlink_increment_head(ring); 1874 1875 spin_unlock_bh(&sk->sk_receive_queue.lock); 1876 return skb; 1877 1878 err2: 1879 kfree_skb(skb); 1880 spin_unlock_bh(&sk->sk_receive_queue.lock); 1881 netlink_overrun(sk); 1882 err1: 1883 sock_put(sk); 1884 return NULL; 1885 1886 out_free: 1887 kfree_skb(skb); 1888 spin_unlock_bh(&sk->sk_receive_queue.lock); 1889 out_put: 1890 sock_put(sk); 1891 out: 1892 #endif 1893 return alloc_skb(size, gfp_mask); 1894 } 1895 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1896 1897 int netlink_has_listeners(struct sock *sk, unsigned int group) 1898 { 1899 int res = 0; 1900 struct listeners *listeners; 1901 1902 BUG_ON(!netlink_is_kernel(sk)); 1903 1904 rcu_read_lock(); 1905 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1906 1907 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1908 res = test_bit(group - 1, listeners->masks); 1909 1910 rcu_read_unlock(); 1911 1912 return res; 1913 } 1914 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1915 1916 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1917 { 1918 struct netlink_sock *nlk = nlk_sk(sk); 1919 1920 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1921 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1922 netlink_skb_set_owner_r(skb, sk); 1923 __netlink_sendskb(sk, skb); 1924 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1925 } 1926 return -1; 1927 } 1928 1929 struct netlink_broadcast_data { 1930 struct sock *exclude_sk; 1931 struct net *net; 1932 u32 portid; 1933 u32 group; 1934 int failure; 1935 int delivery_failure; 1936 int congested; 1937 int delivered; 1938 gfp_t allocation; 1939 struct sk_buff *skb, *skb2; 1940 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1941 void *tx_data; 1942 }; 1943 1944 static void do_one_broadcast(struct sock *sk, 1945 struct netlink_broadcast_data *p) 1946 { 1947 struct netlink_sock *nlk = nlk_sk(sk); 1948 int val; 1949 1950 if (p->exclude_sk == sk) 1951 return; 1952 1953 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1954 !test_bit(p->group - 1, nlk->groups)) 1955 return; 1956 1957 if (!net_eq(sock_net(sk), p->net)) { 1958 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1959 return; 1960 1961 if (!peernet_has_id(sock_net(sk), p->net)) 1962 return; 1963 1964 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1965 CAP_NET_BROADCAST)) 1966 return; 1967 } 1968 1969 if (p->failure) { 1970 netlink_overrun(sk); 1971 return; 1972 } 1973 1974 sock_hold(sk); 1975 if (p->skb2 == NULL) { 1976 if (skb_shared(p->skb)) { 1977 p->skb2 = skb_clone(p->skb, p->allocation); 1978 } else { 1979 p->skb2 = skb_get(p->skb); 1980 /* 1981 * skb ownership may have been set when 1982 * delivered to a previous socket. 1983 */ 1984 skb_orphan(p->skb2); 1985 } 1986 } 1987 if (p->skb2 == NULL) { 1988 netlink_overrun(sk); 1989 /* Clone failed. Notify ALL listeners. */ 1990 p->failure = 1; 1991 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1992 p->delivery_failure = 1; 1993 goto out; 1994 } 1995 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1996 kfree_skb(p->skb2); 1997 p->skb2 = NULL; 1998 goto out; 1999 } 2000 if (sk_filter(sk, p->skb2)) { 2001 kfree_skb(p->skb2); 2002 p->skb2 = NULL; 2003 goto out; 2004 } 2005 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 2006 NETLINK_CB(p->skb2).nsid_is_set = true; 2007 val = netlink_broadcast_deliver(sk, p->skb2); 2008 if (val < 0) { 2009 netlink_overrun(sk); 2010 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2011 p->delivery_failure = 1; 2012 } else { 2013 p->congested |= val; 2014 p->delivered = 1; 2015 p->skb2 = NULL; 2016 } 2017 out: 2018 sock_put(sk); 2019 } 2020 2021 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2022 u32 group, gfp_t allocation, 2023 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2024 void *filter_data) 2025 { 2026 struct net *net = sock_net(ssk); 2027 struct netlink_broadcast_data info; 2028 struct sock *sk; 2029 2030 skb = netlink_trim(skb, allocation); 2031 2032 info.exclude_sk = ssk; 2033 info.net = net; 2034 info.portid = portid; 2035 info.group = group; 2036 info.failure = 0; 2037 info.delivery_failure = 0; 2038 info.congested = 0; 2039 info.delivered = 0; 2040 info.allocation = allocation; 2041 info.skb = skb; 2042 info.skb2 = NULL; 2043 info.tx_filter = filter; 2044 info.tx_data = filter_data; 2045 2046 /* While we sleep in clone, do not allow to change socket list */ 2047 2048 netlink_lock_table(); 2049 2050 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2051 do_one_broadcast(sk, &info); 2052 2053 consume_skb(skb); 2054 2055 netlink_unlock_table(); 2056 2057 if (info.delivery_failure) { 2058 kfree_skb(info.skb2); 2059 return -ENOBUFS; 2060 } 2061 consume_skb(info.skb2); 2062 2063 if (info.delivered) { 2064 if (info.congested && (allocation & __GFP_WAIT)) 2065 yield(); 2066 return 0; 2067 } 2068 return -ESRCH; 2069 } 2070 EXPORT_SYMBOL(netlink_broadcast_filtered); 2071 2072 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2073 u32 group, gfp_t allocation) 2074 { 2075 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2076 NULL, NULL); 2077 } 2078 EXPORT_SYMBOL(netlink_broadcast); 2079 2080 struct netlink_set_err_data { 2081 struct sock *exclude_sk; 2082 u32 portid; 2083 u32 group; 2084 int code; 2085 }; 2086 2087 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2088 { 2089 struct netlink_sock *nlk = nlk_sk(sk); 2090 int ret = 0; 2091 2092 if (sk == p->exclude_sk) 2093 goto out; 2094 2095 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2096 goto out; 2097 2098 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2099 !test_bit(p->group - 1, nlk->groups)) 2100 goto out; 2101 2102 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 2103 ret = 1; 2104 goto out; 2105 } 2106 2107 sk->sk_err = p->code; 2108 sk->sk_error_report(sk); 2109 out: 2110 return ret; 2111 } 2112 2113 /** 2114 * netlink_set_err - report error to broadcast listeners 2115 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2116 * @portid: the PORTID of a process that we want to skip (if any) 2117 * @group: the broadcast group that will notice the error 2118 * @code: error code, must be negative (as usual in kernelspace) 2119 * 2120 * This function returns the number of broadcast listeners that have set the 2121 * NETLINK_NO_ENOBUFS socket option. 2122 */ 2123 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2124 { 2125 struct netlink_set_err_data info; 2126 struct sock *sk; 2127 int ret = 0; 2128 2129 info.exclude_sk = ssk; 2130 info.portid = portid; 2131 info.group = group; 2132 /* sk->sk_err wants a positive error value */ 2133 info.code = -code; 2134 2135 read_lock(&nl_table_lock); 2136 2137 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2138 ret += do_one_set_err(sk, &info); 2139 2140 read_unlock(&nl_table_lock); 2141 return ret; 2142 } 2143 EXPORT_SYMBOL(netlink_set_err); 2144 2145 /* must be called with netlink table grabbed */ 2146 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2147 unsigned int group, 2148 int is_new) 2149 { 2150 int old, new = !!is_new, subscriptions; 2151 2152 old = test_bit(group - 1, nlk->groups); 2153 subscriptions = nlk->subscriptions - old + new; 2154 if (new) 2155 __set_bit(group - 1, nlk->groups); 2156 else 2157 __clear_bit(group - 1, nlk->groups); 2158 netlink_update_subscriptions(&nlk->sk, subscriptions); 2159 netlink_update_listeners(&nlk->sk); 2160 } 2161 2162 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2163 char __user *optval, unsigned int optlen) 2164 { 2165 struct sock *sk = sock->sk; 2166 struct netlink_sock *nlk = nlk_sk(sk); 2167 unsigned int val = 0; 2168 int err; 2169 2170 if (level != SOL_NETLINK) 2171 return -ENOPROTOOPT; 2172 2173 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2174 optlen >= sizeof(int) && 2175 get_user(val, (unsigned int __user *)optval)) 2176 return -EFAULT; 2177 2178 switch (optname) { 2179 case NETLINK_PKTINFO: 2180 if (val) 2181 nlk->flags |= NETLINK_F_RECV_PKTINFO; 2182 else 2183 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 2184 err = 0; 2185 break; 2186 case NETLINK_ADD_MEMBERSHIP: 2187 case NETLINK_DROP_MEMBERSHIP: { 2188 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2189 return -EPERM; 2190 err = netlink_realloc_groups(sk); 2191 if (err) 2192 return err; 2193 if (!val || val - 1 >= nlk->ngroups) 2194 return -EINVAL; 2195 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2196 err = nlk->netlink_bind(sock_net(sk), val); 2197 if (err) 2198 return err; 2199 } 2200 netlink_table_grab(); 2201 netlink_update_socket_mc(nlk, val, 2202 optname == NETLINK_ADD_MEMBERSHIP); 2203 netlink_table_ungrab(); 2204 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2205 nlk->netlink_unbind(sock_net(sk), val); 2206 2207 err = 0; 2208 break; 2209 } 2210 case NETLINK_BROADCAST_ERROR: 2211 if (val) 2212 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 2213 else 2214 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 2215 err = 0; 2216 break; 2217 case NETLINK_NO_ENOBUFS: 2218 if (val) { 2219 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 2220 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 2221 wake_up_interruptible(&nlk->wait); 2222 } else { 2223 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 2224 } 2225 err = 0; 2226 break; 2227 #ifdef CONFIG_NETLINK_MMAP 2228 case NETLINK_RX_RING: 2229 case NETLINK_TX_RING: { 2230 struct nl_mmap_req req; 2231 2232 /* Rings might consume more memory than queue limits, require 2233 * CAP_NET_ADMIN. 2234 */ 2235 if (!capable(CAP_NET_ADMIN)) 2236 return -EPERM; 2237 if (optlen < sizeof(req)) 2238 return -EINVAL; 2239 if (copy_from_user(&req, optval, sizeof(req))) 2240 return -EFAULT; 2241 err = netlink_set_ring(sk, &req, 2242 optname == NETLINK_TX_RING); 2243 break; 2244 } 2245 #endif /* CONFIG_NETLINK_MMAP */ 2246 case NETLINK_LISTEN_ALL_NSID: 2247 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 2248 return -EPERM; 2249 2250 if (val) 2251 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 2252 else 2253 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 2254 err = 0; 2255 break; 2256 default: 2257 err = -ENOPROTOOPT; 2258 } 2259 return err; 2260 } 2261 2262 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2263 char __user *optval, int __user *optlen) 2264 { 2265 struct sock *sk = sock->sk; 2266 struct netlink_sock *nlk = nlk_sk(sk); 2267 int len, val, err; 2268 2269 if (level != SOL_NETLINK) 2270 return -ENOPROTOOPT; 2271 2272 if (get_user(len, optlen)) 2273 return -EFAULT; 2274 if (len < 0) 2275 return -EINVAL; 2276 2277 switch (optname) { 2278 case NETLINK_PKTINFO: 2279 if (len < sizeof(int)) 2280 return -EINVAL; 2281 len = sizeof(int); 2282 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 2283 if (put_user(len, optlen) || 2284 put_user(val, optval)) 2285 return -EFAULT; 2286 err = 0; 2287 break; 2288 case NETLINK_BROADCAST_ERROR: 2289 if (len < sizeof(int)) 2290 return -EINVAL; 2291 len = sizeof(int); 2292 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 2293 if (put_user(len, optlen) || 2294 put_user(val, optval)) 2295 return -EFAULT; 2296 err = 0; 2297 break; 2298 case NETLINK_NO_ENOBUFS: 2299 if (len < sizeof(int)) 2300 return -EINVAL; 2301 len = sizeof(int); 2302 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 2303 if (put_user(len, optlen) || 2304 put_user(val, optval)) 2305 return -EFAULT; 2306 err = 0; 2307 break; 2308 case NETLINK_LIST_MEMBERSHIPS: { 2309 int pos, idx, shift; 2310 2311 err = 0; 2312 netlink_table_grab(); 2313 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 2314 if (len - pos < sizeof(u32)) 2315 break; 2316 2317 idx = pos / sizeof(unsigned long); 2318 shift = (pos % sizeof(unsigned long)) * 8; 2319 if (put_user((u32)(nlk->groups[idx] >> shift), 2320 (u32 __user *)(optval + pos))) { 2321 err = -EFAULT; 2322 break; 2323 } 2324 } 2325 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 2326 err = -EFAULT; 2327 netlink_table_ungrab(); 2328 break; 2329 } 2330 default: 2331 err = -ENOPROTOOPT; 2332 } 2333 return err; 2334 } 2335 2336 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2337 { 2338 struct nl_pktinfo info; 2339 2340 info.group = NETLINK_CB(skb).dst_group; 2341 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2342 } 2343 2344 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 2345 struct sk_buff *skb) 2346 { 2347 if (!NETLINK_CB(skb).nsid_is_set) 2348 return; 2349 2350 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 2351 &NETLINK_CB(skb).nsid); 2352 } 2353 2354 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2355 { 2356 struct sock *sk = sock->sk; 2357 struct netlink_sock *nlk = nlk_sk(sk); 2358 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2359 u32 dst_portid; 2360 u32 dst_group; 2361 struct sk_buff *skb; 2362 int err; 2363 struct scm_cookie scm; 2364 u32 netlink_skb_flags = 0; 2365 2366 if (msg->msg_flags&MSG_OOB) 2367 return -EOPNOTSUPP; 2368 2369 err = scm_send(sock, msg, &scm, true); 2370 if (err < 0) 2371 return err; 2372 2373 if (msg->msg_namelen) { 2374 err = -EINVAL; 2375 if (addr->nl_family != AF_NETLINK) 2376 goto out; 2377 dst_portid = addr->nl_pid; 2378 dst_group = ffs(addr->nl_groups); 2379 err = -EPERM; 2380 if ((dst_group || dst_portid) && 2381 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2382 goto out; 2383 netlink_skb_flags |= NETLINK_SKB_DST; 2384 } else { 2385 dst_portid = nlk->dst_portid; 2386 dst_group = nlk->dst_group; 2387 } 2388 2389 if (!nlk->portid) { 2390 err = netlink_autobind(sock); 2391 if (err) 2392 goto out; 2393 } 2394 2395 /* It's a really convoluted way for userland to ask for mmaped 2396 * sendmsg(), but that's what we've got... 2397 */ 2398 if (netlink_tx_is_mmaped(sk) && 2399 msg->msg_iter.type == ITER_IOVEC && 2400 msg->msg_iter.nr_segs == 1 && 2401 msg->msg_iter.iov->iov_base == NULL) { 2402 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2403 &scm); 2404 goto out; 2405 } 2406 2407 err = -EMSGSIZE; 2408 if (len > sk->sk_sndbuf - 32) 2409 goto out; 2410 err = -ENOBUFS; 2411 skb = netlink_alloc_large_skb(len, dst_group); 2412 if (skb == NULL) 2413 goto out; 2414 2415 NETLINK_CB(skb).portid = nlk->portid; 2416 NETLINK_CB(skb).dst_group = dst_group; 2417 NETLINK_CB(skb).creds = scm.creds; 2418 NETLINK_CB(skb).flags = netlink_skb_flags; 2419 2420 err = -EFAULT; 2421 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2422 kfree_skb(skb); 2423 goto out; 2424 } 2425 2426 err = security_netlink_send(sk, skb); 2427 if (err) { 2428 kfree_skb(skb); 2429 goto out; 2430 } 2431 2432 if (dst_group) { 2433 atomic_inc(&skb->users); 2434 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2435 } 2436 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2437 2438 out: 2439 scm_destroy(&scm); 2440 return err; 2441 } 2442 2443 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2444 int flags) 2445 { 2446 struct scm_cookie scm; 2447 struct sock *sk = sock->sk; 2448 struct netlink_sock *nlk = nlk_sk(sk); 2449 int noblock = flags&MSG_DONTWAIT; 2450 size_t copied; 2451 struct sk_buff *skb, *data_skb; 2452 int err, ret; 2453 2454 if (flags&MSG_OOB) 2455 return -EOPNOTSUPP; 2456 2457 copied = 0; 2458 2459 skb = skb_recv_datagram(sk, flags, noblock, &err); 2460 if (skb == NULL) 2461 goto out; 2462 2463 data_skb = skb; 2464 2465 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2466 if (unlikely(skb_shinfo(skb)->frag_list)) { 2467 /* 2468 * If this skb has a frag_list, then here that means that we 2469 * will have to use the frag_list skb's data for compat tasks 2470 * and the regular skb's data for normal (non-compat) tasks. 2471 * 2472 * If we need to send the compat skb, assign it to the 2473 * 'data_skb' variable so that it will be used below for data 2474 * copying. We keep 'skb' for everything else, including 2475 * freeing both later. 2476 */ 2477 if (flags & MSG_CMSG_COMPAT) 2478 data_skb = skb_shinfo(skb)->frag_list; 2479 } 2480 #endif 2481 2482 /* Record the max length of recvmsg() calls for future allocations */ 2483 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2484 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2485 16384); 2486 2487 copied = data_skb->len; 2488 if (len < copied) { 2489 msg->msg_flags |= MSG_TRUNC; 2490 copied = len; 2491 } 2492 2493 skb_reset_transport_header(data_skb); 2494 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2495 2496 if (msg->msg_name) { 2497 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2498 addr->nl_family = AF_NETLINK; 2499 addr->nl_pad = 0; 2500 addr->nl_pid = NETLINK_CB(skb).portid; 2501 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2502 msg->msg_namelen = sizeof(*addr); 2503 } 2504 2505 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 2506 netlink_cmsg_recv_pktinfo(msg, skb); 2507 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 2508 netlink_cmsg_listen_all_nsid(sk, msg, skb); 2509 2510 memset(&scm, 0, sizeof(scm)); 2511 scm.creds = *NETLINK_CREDS(skb); 2512 if (flags & MSG_TRUNC) 2513 copied = data_skb->len; 2514 2515 skb_free_datagram(sk, skb); 2516 2517 if (nlk->cb_running && 2518 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2519 ret = netlink_dump(sk); 2520 if (ret) { 2521 sk->sk_err = -ret; 2522 sk->sk_error_report(sk); 2523 } 2524 } 2525 2526 scm_recv(sock, msg, &scm, flags); 2527 out: 2528 netlink_rcv_wake(sk); 2529 return err ? : copied; 2530 } 2531 2532 static void netlink_data_ready(struct sock *sk) 2533 { 2534 BUG(); 2535 } 2536 2537 /* 2538 * We export these functions to other modules. They provide a 2539 * complete set of kernel non-blocking support for message 2540 * queueing. 2541 */ 2542 2543 struct sock * 2544 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2545 struct netlink_kernel_cfg *cfg) 2546 { 2547 struct socket *sock; 2548 struct sock *sk; 2549 struct netlink_sock *nlk; 2550 struct listeners *listeners = NULL; 2551 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2552 unsigned int groups; 2553 2554 BUG_ON(!nl_table); 2555 2556 if (unit < 0 || unit >= MAX_LINKS) 2557 return NULL; 2558 2559 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2560 return NULL; 2561 2562 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2563 goto out_sock_release_nosk; 2564 2565 sk = sock->sk; 2566 2567 if (!cfg || cfg->groups < 32) 2568 groups = 32; 2569 else 2570 groups = cfg->groups; 2571 2572 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2573 if (!listeners) 2574 goto out_sock_release; 2575 2576 sk->sk_data_ready = netlink_data_ready; 2577 if (cfg && cfg->input) 2578 nlk_sk(sk)->netlink_rcv = cfg->input; 2579 2580 if (netlink_insert(sk, 0)) 2581 goto out_sock_release; 2582 2583 nlk = nlk_sk(sk); 2584 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2585 2586 netlink_table_grab(); 2587 if (!nl_table[unit].registered) { 2588 nl_table[unit].groups = groups; 2589 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2590 nl_table[unit].cb_mutex = cb_mutex; 2591 nl_table[unit].module = module; 2592 if (cfg) { 2593 nl_table[unit].bind = cfg->bind; 2594 nl_table[unit].unbind = cfg->unbind; 2595 nl_table[unit].flags = cfg->flags; 2596 if (cfg->compare) 2597 nl_table[unit].compare = cfg->compare; 2598 } 2599 nl_table[unit].registered = 1; 2600 } else { 2601 kfree(listeners); 2602 nl_table[unit].registered++; 2603 } 2604 netlink_table_ungrab(); 2605 return sk; 2606 2607 out_sock_release: 2608 kfree(listeners); 2609 netlink_kernel_release(sk); 2610 return NULL; 2611 2612 out_sock_release_nosk: 2613 sock_release(sock); 2614 return NULL; 2615 } 2616 EXPORT_SYMBOL(__netlink_kernel_create); 2617 2618 void 2619 netlink_kernel_release(struct sock *sk) 2620 { 2621 if (sk == NULL || sk->sk_socket == NULL) 2622 return; 2623 2624 sock_release(sk->sk_socket); 2625 } 2626 EXPORT_SYMBOL(netlink_kernel_release); 2627 2628 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2629 { 2630 struct listeners *new, *old; 2631 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2632 2633 if (groups < 32) 2634 groups = 32; 2635 2636 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2637 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2638 if (!new) 2639 return -ENOMEM; 2640 old = nl_deref_protected(tbl->listeners); 2641 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2642 rcu_assign_pointer(tbl->listeners, new); 2643 2644 kfree_rcu(old, rcu); 2645 } 2646 tbl->groups = groups; 2647 2648 return 0; 2649 } 2650 2651 /** 2652 * netlink_change_ngroups - change number of multicast groups 2653 * 2654 * This changes the number of multicast groups that are available 2655 * on a certain netlink family. Note that it is not possible to 2656 * change the number of groups to below 32. Also note that it does 2657 * not implicitly call netlink_clear_multicast_users() when the 2658 * number of groups is reduced. 2659 * 2660 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2661 * @groups: The new number of groups. 2662 */ 2663 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2664 { 2665 int err; 2666 2667 netlink_table_grab(); 2668 err = __netlink_change_ngroups(sk, groups); 2669 netlink_table_ungrab(); 2670 2671 return err; 2672 } 2673 2674 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2675 { 2676 struct sock *sk; 2677 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2678 2679 sk_for_each_bound(sk, &tbl->mc_list) 2680 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2681 } 2682 2683 struct nlmsghdr * 2684 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2685 { 2686 struct nlmsghdr *nlh; 2687 int size = nlmsg_msg_size(len); 2688 2689 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2690 nlh->nlmsg_type = type; 2691 nlh->nlmsg_len = size; 2692 nlh->nlmsg_flags = flags; 2693 nlh->nlmsg_pid = portid; 2694 nlh->nlmsg_seq = seq; 2695 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2696 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2697 return nlh; 2698 } 2699 EXPORT_SYMBOL(__nlmsg_put); 2700 2701 /* 2702 * It looks a bit ugly. 2703 * It would be better to create kernel thread. 2704 */ 2705 2706 static int netlink_dump(struct sock *sk) 2707 { 2708 struct netlink_sock *nlk = nlk_sk(sk); 2709 struct netlink_callback *cb; 2710 struct sk_buff *skb = NULL; 2711 struct nlmsghdr *nlh; 2712 int len, err = -ENOBUFS; 2713 int alloc_size; 2714 2715 mutex_lock(nlk->cb_mutex); 2716 if (!nlk->cb_running) { 2717 err = -EINVAL; 2718 goto errout_skb; 2719 } 2720 2721 cb = &nlk->cb; 2722 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2723 2724 if (!netlink_rx_is_mmaped(sk) && 2725 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2726 goto errout_skb; 2727 2728 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2729 * required, but it makes sense to _attempt_ a 16K bytes allocation 2730 * to reduce number of system calls on dump operations, if user 2731 * ever provided a big enough buffer. 2732 */ 2733 if (alloc_size < nlk->max_recvmsg_len) { 2734 skb = netlink_alloc_skb(sk, 2735 nlk->max_recvmsg_len, 2736 nlk->portid, 2737 GFP_KERNEL | 2738 __GFP_NOWARN | 2739 __GFP_NORETRY); 2740 /* available room should be exact amount to avoid MSG_TRUNC */ 2741 if (skb) 2742 skb_reserve(skb, skb_tailroom(skb) - 2743 nlk->max_recvmsg_len); 2744 } 2745 if (!skb) 2746 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2747 GFP_KERNEL); 2748 if (!skb) 2749 goto errout_skb; 2750 netlink_skb_set_owner_r(skb, sk); 2751 2752 len = cb->dump(skb, cb); 2753 2754 if (len > 0) { 2755 mutex_unlock(nlk->cb_mutex); 2756 2757 if (sk_filter(sk, skb)) 2758 kfree_skb(skb); 2759 else 2760 __netlink_sendskb(sk, skb); 2761 return 0; 2762 } 2763 2764 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2765 if (!nlh) 2766 goto errout_skb; 2767 2768 nl_dump_check_consistent(cb, nlh); 2769 2770 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2771 2772 if (sk_filter(sk, skb)) 2773 kfree_skb(skb); 2774 else 2775 __netlink_sendskb(sk, skb); 2776 2777 if (cb->done) 2778 cb->done(cb); 2779 2780 nlk->cb_running = false; 2781 mutex_unlock(nlk->cb_mutex); 2782 module_put(cb->module); 2783 consume_skb(cb->skb); 2784 return 0; 2785 2786 errout_skb: 2787 mutex_unlock(nlk->cb_mutex); 2788 kfree_skb(skb); 2789 return err; 2790 } 2791 2792 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2793 const struct nlmsghdr *nlh, 2794 struct netlink_dump_control *control) 2795 { 2796 struct netlink_callback *cb; 2797 struct sock *sk; 2798 struct netlink_sock *nlk; 2799 int ret; 2800 2801 /* Memory mapped dump requests need to be copied to avoid looping 2802 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2803 * a reference to the skb. 2804 */ 2805 if (netlink_skb_is_mmaped(skb)) { 2806 skb = skb_copy(skb, GFP_KERNEL); 2807 if (skb == NULL) 2808 return -ENOBUFS; 2809 } else 2810 atomic_inc(&skb->users); 2811 2812 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2813 if (sk == NULL) { 2814 ret = -ECONNREFUSED; 2815 goto error_free; 2816 } 2817 2818 nlk = nlk_sk(sk); 2819 mutex_lock(nlk->cb_mutex); 2820 /* A dump is in progress... */ 2821 if (nlk->cb_running) { 2822 ret = -EBUSY; 2823 goto error_unlock; 2824 } 2825 /* add reference of module which cb->dump belongs to */ 2826 if (!try_module_get(control->module)) { 2827 ret = -EPROTONOSUPPORT; 2828 goto error_unlock; 2829 } 2830 2831 cb = &nlk->cb; 2832 memset(cb, 0, sizeof(*cb)); 2833 cb->dump = control->dump; 2834 cb->done = control->done; 2835 cb->nlh = nlh; 2836 cb->data = control->data; 2837 cb->module = control->module; 2838 cb->min_dump_alloc = control->min_dump_alloc; 2839 cb->skb = skb; 2840 2841 nlk->cb_running = true; 2842 2843 mutex_unlock(nlk->cb_mutex); 2844 2845 ret = netlink_dump(sk); 2846 sock_put(sk); 2847 2848 if (ret) 2849 return ret; 2850 2851 /* We successfully started a dump, by returning -EINTR we 2852 * signal not to send ACK even if it was requested. 2853 */ 2854 return -EINTR; 2855 2856 error_unlock: 2857 sock_put(sk); 2858 mutex_unlock(nlk->cb_mutex); 2859 error_free: 2860 kfree_skb(skb); 2861 return ret; 2862 } 2863 EXPORT_SYMBOL(__netlink_dump_start); 2864 2865 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2866 { 2867 struct sk_buff *skb; 2868 struct nlmsghdr *rep; 2869 struct nlmsgerr *errmsg; 2870 size_t payload = sizeof(*errmsg); 2871 2872 /* error messages get the original request appened */ 2873 if (err) 2874 payload += nlmsg_len(nlh); 2875 2876 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2877 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2878 if (!skb) { 2879 struct sock *sk; 2880 2881 sk = netlink_lookup(sock_net(in_skb->sk), 2882 in_skb->sk->sk_protocol, 2883 NETLINK_CB(in_skb).portid); 2884 if (sk) { 2885 sk->sk_err = ENOBUFS; 2886 sk->sk_error_report(sk); 2887 sock_put(sk); 2888 } 2889 return; 2890 } 2891 2892 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2893 NLMSG_ERROR, payload, 0); 2894 errmsg = nlmsg_data(rep); 2895 errmsg->error = err; 2896 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2897 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2898 } 2899 EXPORT_SYMBOL(netlink_ack); 2900 2901 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2902 struct nlmsghdr *)) 2903 { 2904 struct nlmsghdr *nlh; 2905 int err; 2906 2907 while (skb->len >= nlmsg_total_size(0)) { 2908 int msglen; 2909 2910 nlh = nlmsg_hdr(skb); 2911 err = 0; 2912 2913 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2914 return 0; 2915 2916 /* Only requests are handled by the kernel */ 2917 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2918 goto ack; 2919 2920 /* Skip control messages */ 2921 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2922 goto ack; 2923 2924 err = cb(skb, nlh); 2925 if (err == -EINTR) 2926 goto skip; 2927 2928 ack: 2929 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2930 netlink_ack(skb, nlh, err); 2931 2932 skip: 2933 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2934 if (msglen > skb->len) 2935 msglen = skb->len; 2936 skb_pull(skb, msglen); 2937 } 2938 2939 return 0; 2940 } 2941 EXPORT_SYMBOL(netlink_rcv_skb); 2942 2943 /** 2944 * nlmsg_notify - send a notification netlink message 2945 * @sk: netlink socket to use 2946 * @skb: notification message 2947 * @portid: destination netlink portid for reports or 0 2948 * @group: destination multicast group or 0 2949 * @report: 1 to report back, 0 to disable 2950 * @flags: allocation flags 2951 */ 2952 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2953 unsigned int group, int report, gfp_t flags) 2954 { 2955 int err = 0; 2956 2957 if (group) { 2958 int exclude_portid = 0; 2959 2960 if (report) { 2961 atomic_inc(&skb->users); 2962 exclude_portid = portid; 2963 } 2964 2965 /* errors reported via destination sk->sk_err, but propagate 2966 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2967 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2968 } 2969 2970 if (report) { 2971 int err2; 2972 2973 err2 = nlmsg_unicast(sk, skb, portid); 2974 if (!err || err == -ESRCH) 2975 err = err2; 2976 } 2977 2978 return err; 2979 } 2980 EXPORT_SYMBOL(nlmsg_notify); 2981 2982 #ifdef CONFIG_PROC_FS 2983 struct nl_seq_iter { 2984 struct seq_net_private p; 2985 struct rhashtable_iter hti; 2986 int link; 2987 }; 2988 2989 static int netlink_walk_start(struct nl_seq_iter *iter) 2990 { 2991 int err; 2992 2993 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 2994 if (err) { 2995 iter->link = MAX_LINKS; 2996 return err; 2997 } 2998 2999 err = rhashtable_walk_start(&iter->hti); 3000 return err == -EAGAIN ? 0 : err; 3001 } 3002 3003 static void netlink_walk_stop(struct nl_seq_iter *iter) 3004 { 3005 rhashtable_walk_stop(&iter->hti); 3006 rhashtable_walk_exit(&iter->hti); 3007 } 3008 3009 static void *__netlink_seq_next(struct seq_file *seq) 3010 { 3011 struct nl_seq_iter *iter = seq->private; 3012 struct netlink_sock *nlk; 3013 3014 do { 3015 for (;;) { 3016 int err; 3017 3018 nlk = rhashtable_walk_next(&iter->hti); 3019 3020 if (IS_ERR(nlk)) { 3021 if (PTR_ERR(nlk) == -EAGAIN) 3022 continue; 3023 3024 return nlk; 3025 } 3026 3027 if (nlk) 3028 break; 3029 3030 netlink_walk_stop(iter); 3031 if (++iter->link >= MAX_LINKS) 3032 return NULL; 3033 3034 err = netlink_walk_start(iter); 3035 if (err) 3036 return ERR_PTR(err); 3037 } 3038 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 3039 3040 return nlk; 3041 } 3042 3043 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 3044 { 3045 struct nl_seq_iter *iter = seq->private; 3046 void *obj = SEQ_START_TOKEN; 3047 loff_t pos; 3048 int err; 3049 3050 iter->link = 0; 3051 3052 err = netlink_walk_start(iter); 3053 if (err) 3054 return ERR_PTR(err); 3055 3056 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 3057 obj = __netlink_seq_next(seq); 3058 3059 return obj; 3060 } 3061 3062 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3063 { 3064 ++*pos; 3065 return __netlink_seq_next(seq); 3066 } 3067 3068 static void netlink_seq_stop(struct seq_file *seq, void *v) 3069 { 3070 struct nl_seq_iter *iter = seq->private; 3071 3072 if (iter->link >= MAX_LINKS) 3073 return; 3074 3075 netlink_walk_stop(iter); 3076 } 3077 3078 3079 static int netlink_seq_show(struct seq_file *seq, void *v) 3080 { 3081 if (v == SEQ_START_TOKEN) { 3082 seq_puts(seq, 3083 "sk Eth Pid Groups " 3084 "Rmem Wmem Dump Locks Drops Inode\n"); 3085 } else { 3086 struct sock *s = v; 3087 struct netlink_sock *nlk = nlk_sk(s); 3088 3089 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3090 s, 3091 s->sk_protocol, 3092 nlk->portid, 3093 nlk->groups ? (u32)nlk->groups[0] : 0, 3094 sk_rmem_alloc_get(s), 3095 sk_wmem_alloc_get(s), 3096 nlk->cb_running, 3097 atomic_read(&s->sk_refcnt), 3098 atomic_read(&s->sk_drops), 3099 sock_i_ino(s) 3100 ); 3101 3102 } 3103 return 0; 3104 } 3105 3106 static const struct seq_operations netlink_seq_ops = { 3107 .start = netlink_seq_start, 3108 .next = netlink_seq_next, 3109 .stop = netlink_seq_stop, 3110 .show = netlink_seq_show, 3111 }; 3112 3113 3114 static int netlink_seq_open(struct inode *inode, struct file *file) 3115 { 3116 return seq_open_net(inode, file, &netlink_seq_ops, 3117 sizeof(struct nl_seq_iter)); 3118 } 3119 3120 static const struct file_operations netlink_seq_fops = { 3121 .owner = THIS_MODULE, 3122 .open = netlink_seq_open, 3123 .read = seq_read, 3124 .llseek = seq_lseek, 3125 .release = seq_release_net, 3126 }; 3127 3128 #endif 3129 3130 int netlink_register_notifier(struct notifier_block *nb) 3131 { 3132 return atomic_notifier_chain_register(&netlink_chain, nb); 3133 } 3134 EXPORT_SYMBOL(netlink_register_notifier); 3135 3136 int netlink_unregister_notifier(struct notifier_block *nb) 3137 { 3138 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3139 } 3140 EXPORT_SYMBOL(netlink_unregister_notifier); 3141 3142 static const struct proto_ops netlink_ops = { 3143 .family = PF_NETLINK, 3144 .owner = THIS_MODULE, 3145 .release = netlink_release, 3146 .bind = netlink_bind, 3147 .connect = netlink_connect, 3148 .socketpair = sock_no_socketpair, 3149 .accept = sock_no_accept, 3150 .getname = netlink_getname, 3151 .poll = netlink_poll, 3152 .ioctl = sock_no_ioctl, 3153 .listen = sock_no_listen, 3154 .shutdown = sock_no_shutdown, 3155 .setsockopt = netlink_setsockopt, 3156 .getsockopt = netlink_getsockopt, 3157 .sendmsg = netlink_sendmsg, 3158 .recvmsg = netlink_recvmsg, 3159 .mmap = netlink_mmap, 3160 .sendpage = sock_no_sendpage, 3161 }; 3162 3163 static const struct net_proto_family netlink_family_ops = { 3164 .family = PF_NETLINK, 3165 .create = netlink_create, 3166 .owner = THIS_MODULE, /* for consistency 8) */ 3167 }; 3168 3169 static int __net_init netlink_net_init(struct net *net) 3170 { 3171 #ifdef CONFIG_PROC_FS 3172 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3173 return -ENOMEM; 3174 #endif 3175 return 0; 3176 } 3177 3178 static void __net_exit netlink_net_exit(struct net *net) 3179 { 3180 #ifdef CONFIG_PROC_FS 3181 remove_proc_entry("netlink", net->proc_net); 3182 #endif 3183 } 3184 3185 static void __init netlink_add_usersock_entry(void) 3186 { 3187 struct listeners *listeners; 3188 int groups = 32; 3189 3190 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3191 if (!listeners) 3192 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3193 3194 netlink_table_grab(); 3195 3196 nl_table[NETLINK_USERSOCK].groups = groups; 3197 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3198 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3199 nl_table[NETLINK_USERSOCK].registered = 1; 3200 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3201 3202 netlink_table_ungrab(); 3203 } 3204 3205 static struct pernet_operations __net_initdata netlink_net_ops = { 3206 .init = netlink_net_init, 3207 .exit = netlink_net_exit, 3208 }; 3209 3210 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 3211 { 3212 const struct netlink_sock *nlk = data; 3213 struct netlink_compare_arg arg; 3214 3215 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 3216 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 3217 } 3218 3219 static const struct rhashtable_params netlink_rhashtable_params = { 3220 .head_offset = offsetof(struct netlink_sock, node), 3221 .key_len = netlink_compare_arg_len, 3222 .obj_hashfn = netlink_hash, 3223 .obj_cmpfn = netlink_compare, 3224 .automatic_shrinking = true, 3225 }; 3226 3227 static int __init netlink_proto_init(void) 3228 { 3229 int i; 3230 int err = proto_register(&netlink_proto, 0); 3231 3232 if (err != 0) 3233 goto out; 3234 3235 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3236 3237 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3238 if (!nl_table) 3239 goto panic; 3240 3241 for (i = 0; i < MAX_LINKS; i++) { 3242 if (rhashtable_init(&nl_table[i].hash, 3243 &netlink_rhashtable_params) < 0) { 3244 while (--i > 0) 3245 rhashtable_destroy(&nl_table[i].hash); 3246 kfree(nl_table); 3247 goto panic; 3248 } 3249 } 3250 3251 INIT_LIST_HEAD(&netlink_tap_all); 3252 3253 netlink_add_usersock_entry(); 3254 3255 sock_register(&netlink_family_ops); 3256 register_pernet_subsys(&netlink_net_ops); 3257 /* The netlink device handler may be needed early. */ 3258 rtnetlink_init(); 3259 out: 3260 return err; 3261 panic: 3262 panic("netlink_init: Cannot allocate nl_table\n"); 3263 } 3264 3265 core_initcall(netlink_proto_init); 3266