xref: /openbmc/linux/net/netlink/af_netlink.c (revision 92a2c6b2)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_CONGESTED	0x0
80 
81 /* flags */
82 #define NETLINK_KERNEL_SOCKET	0x1
83 #define NETLINK_RECV_PKTINFO	0x2
84 #define NETLINK_BROADCAST_SEND_ERROR	0x4
85 #define NETLINK_RECV_NO_ENOBUFS	0x8
86 
87 static inline int netlink_is_kernel(struct sock *sk)
88 {
89 	return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
90 }
91 
92 struct netlink_table *nl_table;
93 EXPORT_SYMBOL_GPL(nl_table);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
96 
97 static int netlink_dump(struct sock *sk);
98 static void netlink_skb_destructor(struct sk_buff *skb);
99 
100 /* nl_table locking explained:
101  * Lookup and traversal are protected with an RCU read-side lock. Insertion
102  * and removal are protected with per bucket lock while using RCU list
103  * modification primitives and may run in parallel to RCU protected lookups.
104  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
105  * been acquired * either during or after the socket has been removed from
106  * the list and after an RCU grace period.
107  */
108 DEFINE_RWLOCK(nl_table_lock);
109 EXPORT_SYMBOL_GPL(nl_table_lock);
110 static atomic_t nl_table_users = ATOMIC_INIT(0);
111 
112 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
113 
114 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
115 
116 static DEFINE_SPINLOCK(netlink_tap_lock);
117 static struct list_head netlink_tap_all __read_mostly;
118 
119 static inline u32 netlink_group_mask(u32 group)
120 {
121 	return group ? 1 << (group - 1) : 0;
122 }
123 
124 int netlink_add_tap(struct netlink_tap *nt)
125 {
126 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
127 		return -EINVAL;
128 
129 	spin_lock(&netlink_tap_lock);
130 	list_add_rcu(&nt->list, &netlink_tap_all);
131 	spin_unlock(&netlink_tap_lock);
132 
133 	__module_get(nt->module);
134 
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(netlink_add_tap);
138 
139 static int __netlink_remove_tap(struct netlink_tap *nt)
140 {
141 	bool found = false;
142 	struct netlink_tap *tmp;
143 
144 	spin_lock(&netlink_tap_lock);
145 
146 	list_for_each_entry(tmp, &netlink_tap_all, list) {
147 		if (nt == tmp) {
148 			list_del_rcu(&nt->list);
149 			found = true;
150 			goto out;
151 		}
152 	}
153 
154 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
155 out:
156 	spin_unlock(&netlink_tap_lock);
157 
158 	if (found && nt->module)
159 		module_put(nt->module);
160 
161 	return found ? 0 : -ENODEV;
162 }
163 
164 int netlink_remove_tap(struct netlink_tap *nt)
165 {
166 	int ret;
167 
168 	ret = __netlink_remove_tap(nt);
169 	synchronize_net();
170 
171 	return ret;
172 }
173 EXPORT_SYMBOL_GPL(netlink_remove_tap);
174 
175 static bool netlink_filter_tap(const struct sk_buff *skb)
176 {
177 	struct sock *sk = skb->sk;
178 
179 	/* We take the more conservative approach and
180 	 * whitelist socket protocols that may pass.
181 	 */
182 	switch (sk->sk_protocol) {
183 	case NETLINK_ROUTE:
184 	case NETLINK_USERSOCK:
185 	case NETLINK_SOCK_DIAG:
186 	case NETLINK_NFLOG:
187 	case NETLINK_XFRM:
188 	case NETLINK_FIB_LOOKUP:
189 	case NETLINK_NETFILTER:
190 	case NETLINK_GENERIC:
191 		return true;
192 	}
193 
194 	return false;
195 }
196 
197 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
198 				     struct net_device *dev)
199 {
200 	struct sk_buff *nskb;
201 	struct sock *sk = skb->sk;
202 	int ret = -ENOMEM;
203 
204 	dev_hold(dev);
205 	nskb = skb_clone(skb, GFP_ATOMIC);
206 	if (nskb) {
207 		nskb->dev = dev;
208 		nskb->protocol = htons((u16) sk->sk_protocol);
209 		nskb->pkt_type = netlink_is_kernel(sk) ?
210 				 PACKET_KERNEL : PACKET_USER;
211 		skb_reset_network_header(nskb);
212 		ret = dev_queue_xmit(nskb);
213 		if (unlikely(ret > 0))
214 			ret = net_xmit_errno(ret);
215 	}
216 
217 	dev_put(dev);
218 	return ret;
219 }
220 
221 static void __netlink_deliver_tap(struct sk_buff *skb)
222 {
223 	int ret;
224 	struct netlink_tap *tmp;
225 
226 	if (!netlink_filter_tap(skb))
227 		return;
228 
229 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
230 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
231 		if (unlikely(ret))
232 			break;
233 	}
234 }
235 
236 static void netlink_deliver_tap(struct sk_buff *skb)
237 {
238 	rcu_read_lock();
239 
240 	if (unlikely(!list_empty(&netlink_tap_all)))
241 		__netlink_deliver_tap(skb);
242 
243 	rcu_read_unlock();
244 }
245 
246 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
247 				       struct sk_buff *skb)
248 {
249 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
250 		netlink_deliver_tap(skb);
251 }
252 
253 static void netlink_overrun(struct sock *sk)
254 {
255 	struct netlink_sock *nlk = nlk_sk(sk);
256 
257 	if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
258 		if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
259 			sk->sk_err = ENOBUFS;
260 			sk->sk_error_report(sk);
261 		}
262 	}
263 	atomic_inc(&sk->sk_drops);
264 }
265 
266 static void netlink_rcv_wake(struct sock *sk)
267 {
268 	struct netlink_sock *nlk = nlk_sk(sk);
269 
270 	if (skb_queue_empty(&sk->sk_receive_queue))
271 		clear_bit(NETLINK_CONGESTED, &nlk->state);
272 	if (!test_bit(NETLINK_CONGESTED, &nlk->state))
273 		wake_up_interruptible(&nlk->wait);
274 }
275 
276 #ifdef CONFIG_NETLINK_MMAP
277 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
278 {
279 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
280 }
281 
282 static bool netlink_rx_is_mmaped(struct sock *sk)
283 {
284 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
285 }
286 
287 static bool netlink_tx_is_mmaped(struct sock *sk)
288 {
289 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
290 }
291 
292 static __pure struct page *pgvec_to_page(const void *addr)
293 {
294 	if (is_vmalloc_addr(addr))
295 		return vmalloc_to_page(addr);
296 	else
297 		return virt_to_page(addr);
298 }
299 
300 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
301 {
302 	unsigned int i;
303 
304 	for (i = 0; i < len; i++) {
305 		if (pg_vec[i] != NULL) {
306 			if (is_vmalloc_addr(pg_vec[i]))
307 				vfree(pg_vec[i]);
308 			else
309 				free_pages((unsigned long)pg_vec[i], order);
310 		}
311 	}
312 	kfree(pg_vec);
313 }
314 
315 static void *alloc_one_pg_vec_page(unsigned long order)
316 {
317 	void *buffer;
318 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
319 			  __GFP_NOWARN | __GFP_NORETRY;
320 
321 	buffer = (void *)__get_free_pages(gfp_flags, order);
322 	if (buffer != NULL)
323 		return buffer;
324 
325 	buffer = vzalloc((1 << order) * PAGE_SIZE);
326 	if (buffer != NULL)
327 		return buffer;
328 
329 	gfp_flags &= ~__GFP_NORETRY;
330 	return (void *)__get_free_pages(gfp_flags, order);
331 }
332 
333 static void **alloc_pg_vec(struct netlink_sock *nlk,
334 			   struct nl_mmap_req *req, unsigned int order)
335 {
336 	unsigned int block_nr = req->nm_block_nr;
337 	unsigned int i;
338 	void **pg_vec;
339 
340 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
341 	if (pg_vec == NULL)
342 		return NULL;
343 
344 	for (i = 0; i < block_nr; i++) {
345 		pg_vec[i] = alloc_one_pg_vec_page(order);
346 		if (pg_vec[i] == NULL)
347 			goto err1;
348 	}
349 
350 	return pg_vec;
351 err1:
352 	free_pg_vec(pg_vec, order, block_nr);
353 	return NULL;
354 }
355 
356 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
357 			    bool closing, bool tx_ring)
358 {
359 	struct netlink_sock *nlk = nlk_sk(sk);
360 	struct netlink_ring *ring;
361 	struct sk_buff_head *queue;
362 	void **pg_vec = NULL;
363 	unsigned int order = 0;
364 	int err;
365 
366 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
367 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
368 
369 	if (!closing) {
370 		if (atomic_read(&nlk->mapped))
371 			return -EBUSY;
372 		if (atomic_read(&ring->pending))
373 			return -EBUSY;
374 	}
375 
376 	if (req->nm_block_nr) {
377 		if (ring->pg_vec != NULL)
378 			return -EBUSY;
379 
380 		if ((int)req->nm_block_size <= 0)
381 			return -EINVAL;
382 		if (!PAGE_ALIGNED(req->nm_block_size))
383 			return -EINVAL;
384 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
385 			return -EINVAL;
386 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
387 			return -EINVAL;
388 
389 		ring->frames_per_block = req->nm_block_size /
390 					 req->nm_frame_size;
391 		if (ring->frames_per_block == 0)
392 			return -EINVAL;
393 		if (ring->frames_per_block * req->nm_block_nr !=
394 		    req->nm_frame_nr)
395 			return -EINVAL;
396 
397 		order = get_order(req->nm_block_size);
398 		pg_vec = alloc_pg_vec(nlk, req, order);
399 		if (pg_vec == NULL)
400 			return -ENOMEM;
401 	} else {
402 		if (req->nm_frame_nr)
403 			return -EINVAL;
404 	}
405 
406 	err = -EBUSY;
407 	mutex_lock(&nlk->pg_vec_lock);
408 	if (closing || atomic_read(&nlk->mapped) == 0) {
409 		err = 0;
410 		spin_lock_bh(&queue->lock);
411 
412 		ring->frame_max		= req->nm_frame_nr - 1;
413 		ring->head		= 0;
414 		ring->frame_size	= req->nm_frame_size;
415 		ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
416 
417 		swap(ring->pg_vec_len, req->nm_block_nr);
418 		swap(ring->pg_vec_order, order);
419 		swap(ring->pg_vec, pg_vec);
420 
421 		__skb_queue_purge(queue);
422 		spin_unlock_bh(&queue->lock);
423 
424 		WARN_ON(atomic_read(&nlk->mapped));
425 	}
426 	mutex_unlock(&nlk->pg_vec_lock);
427 
428 	if (pg_vec)
429 		free_pg_vec(pg_vec, order, req->nm_block_nr);
430 	return err;
431 }
432 
433 static void netlink_mm_open(struct vm_area_struct *vma)
434 {
435 	struct file *file = vma->vm_file;
436 	struct socket *sock = file->private_data;
437 	struct sock *sk = sock->sk;
438 
439 	if (sk)
440 		atomic_inc(&nlk_sk(sk)->mapped);
441 }
442 
443 static void netlink_mm_close(struct vm_area_struct *vma)
444 {
445 	struct file *file = vma->vm_file;
446 	struct socket *sock = file->private_data;
447 	struct sock *sk = sock->sk;
448 
449 	if (sk)
450 		atomic_dec(&nlk_sk(sk)->mapped);
451 }
452 
453 static const struct vm_operations_struct netlink_mmap_ops = {
454 	.open	= netlink_mm_open,
455 	.close	= netlink_mm_close,
456 };
457 
458 static int netlink_mmap(struct file *file, struct socket *sock,
459 			struct vm_area_struct *vma)
460 {
461 	struct sock *sk = sock->sk;
462 	struct netlink_sock *nlk = nlk_sk(sk);
463 	struct netlink_ring *ring;
464 	unsigned long start, size, expected;
465 	unsigned int i;
466 	int err = -EINVAL;
467 
468 	if (vma->vm_pgoff)
469 		return -EINVAL;
470 
471 	mutex_lock(&nlk->pg_vec_lock);
472 
473 	expected = 0;
474 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
475 		if (ring->pg_vec == NULL)
476 			continue;
477 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
478 	}
479 
480 	if (expected == 0)
481 		goto out;
482 
483 	size = vma->vm_end - vma->vm_start;
484 	if (size != expected)
485 		goto out;
486 
487 	start = vma->vm_start;
488 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
489 		if (ring->pg_vec == NULL)
490 			continue;
491 
492 		for (i = 0; i < ring->pg_vec_len; i++) {
493 			struct page *page;
494 			void *kaddr = ring->pg_vec[i];
495 			unsigned int pg_num;
496 
497 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
498 				page = pgvec_to_page(kaddr);
499 				err = vm_insert_page(vma, start, page);
500 				if (err < 0)
501 					goto out;
502 				start += PAGE_SIZE;
503 				kaddr += PAGE_SIZE;
504 			}
505 		}
506 	}
507 
508 	atomic_inc(&nlk->mapped);
509 	vma->vm_ops = &netlink_mmap_ops;
510 	err = 0;
511 out:
512 	mutex_unlock(&nlk->pg_vec_lock);
513 	return err;
514 }
515 
516 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
517 {
518 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
519 	struct page *p_start, *p_end;
520 
521 	/* First page is flushed through netlink_{get,set}_status */
522 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
523 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
524 	while (p_start <= p_end) {
525 		flush_dcache_page(p_start);
526 		p_start++;
527 	}
528 #endif
529 }
530 
531 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
532 {
533 	smp_rmb();
534 	flush_dcache_page(pgvec_to_page(hdr));
535 	return hdr->nm_status;
536 }
537 
538 static void netlink_set_status(struct nl_mmap_hdr *hdr,
539 			       enum nl_mmap_status status)
540 {
541 	smp_mb();
542 	hdr->nm_status = status;
543 	flush_dcache_page(pgvec_to_page(hdr));
544 }
545 
546 static struct nl_mmap_hdr *
547 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
548 {
549 	unsigned int pg_vec_pos, frame_off;
550 
551 	pg_vec_pos = pos / ring->frames_per_block;
552 	frame_off  = pos % ring->frames_per_block;
553 
554 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
555 }
556 
557 static struct nl_mmap_hdr *
558 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
559 		     enum nl_mmap_status status)
560 {
561 	struct nl_mmap_hdr *hdr;
562 
563 	hdr = __netlink_lookup_frame(ring, pos);
564 	if (netlink_get_status(hdr) != status)
565 		return NULL;
566 
567 	return hdr;
568 }
569 
570 static struct nl_mmap_hdr *
571 netlink_current_frame(const struct netlink_ring *ring,
572 		      enum nl_mmap_status status)
573 {
574 	return netlink_lookup_frame(ring, ring->head, status);
575 }
576 
577 static struct nl_mmap_hdr *
578 netlink_previous_frame(const struct netlink_ring *ring,
579 		       enum nl_mmap_status status)
580 {
581 	unsigned int prev;
582 
583 	prev = ring->head ? ring->head - 1 : ring->frame_max;
584 	return netlink_lookup_frame(ring, prev, status);
585 }
586 
587 static void netlink_increment_head(struct netlink_ring *ring)
588 {
589 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
590 }
591 
592 static void netlink_forward_ring(struct netlink_ring *ring)
593 {
594 	unsigned int head = ring->head, pos = head;
595 	const struct nl_mmap_hdr *hdr;
596 
597 	do {
598 		hdr = __netlink_lookup_frame(ring, pos);
599 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
600 			break;
601 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
602 			break;
603 		netlink_increment_head(ring);
604 	} while (ring->head != head);
605 }
606 
607 static bool netlink_dump_space(struct netlink_sock *nlk)
608 {
609 	struct netlink_ring *ring = &nlk->rx_ring;
610 	struct nl_mmap_hdr *hdr;
611 	unsigned int n;
612 
613 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
614 	if (hdr == NULL)
615 		return false;
616 
617 	n = ring->head + ring->frame_max / 2;
618 	if (n > ring->frame_max)
619 		n -= ring->frame_max;
620 
621 	hdr = __netlink_lookup_frame(ring, n);
622 
623 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
624 }
625 
626 static unsigned int netlink_poll(struct file *file, struct socket *sock,
627 				 poll_table *wait)
628 {
629 	struct sock *sk = sock->sk;
630 	struct netlink_sock *nlk = nlk_sk(sk);
631 	unsigned int mask;
632 	int err;
633 
634 	if (nlk->rx_ring.pg_vec != NULL) {
635 		/* Memory mapped sockets don't call recvmsg(), so flow control
636 		 * for dumps is performed here. A dump is allowed to continue
637 		 * if at least half the ring is unused.
638 		 */
639 		while (nlk->cb_running && netlink_dump_space(nlk)) {
640 			err = netlink_dump(sk);
641 			if (err < 0) {
642 				sk->sk_err = -err;
643 				sk->sk_error_report(sk);
644 				break;
645 			}
646 		}
647 		netlink_rcv_wake(sk);
648 	}
649 
650 	mask = datagram_poll(file, sock, wait);
651 
652 	spin_lock_bh(&sk->sk_receive_queue.lock);
653 	if (nlk->rx_ring.pg_vec) {
654 		netlink_forward_ring(&nlk->rx_ring);
655 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
656 			mask |= POLLIN | POLLRDNORM;
657 	}
658 	spin_unlock_bh(&sk->sk_receive_queue.lock);
659 
660 	spin_lock_bh(&sk->sk_write_queue.lock);
661 	if (nlk->tx_ring.pg_vec) {
662 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
663 			mask |= POLLOUT | POLLWRNORM;
664 	}
665 	spin_unlock_bh(&sk->sk_write_queue.lock);
666 
667 	return mask;
668 }
669 
670 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
671 {
672 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
673 }
674 
675 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
676 				   struct netlink_ring *ring,
677 				   struct nl_mmap_hdr *hdr)
678 {
679 	unsigned int size;
680 	void *data;
681 
682 	size = ring->frame_size - NL_MMAP_HDRLEN;
683 	data = (void *)hdr + NL_MMAP_HDRLEN;
684 
685 	skb->head	= data;
686 	skb->data	= data;
687 	skb_reset_tail_pointer(skb);
688 	skb->end	= skb->tail + size;
689 	skb->len	= 0;
690 
691 	skb->destructor	= netlink_skb_destructor;
692 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
693 	NETLINK_CB(skb).sk = sk;
694 }
695 
696 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
697 				u32 dst_portid, u32 dst_group,
698 				struct scm_cookie *scm)
699 {
700 	struct netlink_sock *nlk = nlk_sk(sk);
701 	struct netlink_ring *ring;
702 	struct nl_mmap_hdr *hdr;
703 	struct sk_buff *skb;
704 	unsigned int maxlen;
705 	int err = 0, len = 0;
706 
707 	mutex_lock(&nlk->pg_vec_lock);
708 
709 	ring   = &nlk->tx_ring;
710 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
711 
712 	do {
713 		unsigned int nm_len;
714 
715 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
716 		if (hdr == NULL) {
717 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
718 			    atomic_read(&nlk->tx_ring.pending))
719 				schedule();
720 			continue;
721 		}
722 
723 		nm_len = ACCESS_ONCE(hdr->nm_len);
724 		if (nm_len > maxlen) {
725 			err = -EINVAL;
726 			goto out;
727 		}
728 
729 		netlink_frame_flush_dcache(hdr, nm_len);
730 
731 		skb = alloc_skb(nm_len, GFP_KERNEL);
732 		if (skb == NULL) {
733 			err = -ENOBUFS;
734 			goto out;
735 		}
736 		__skb_put(skb, nm_len);
737 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
738 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
739 
740 		netlink_increment_head(ring);
741 
742 		NETLINK_CB(skb).portid	  = nlk->portid;
743 		NETLINK_CB(skb).dst_group = dst_group;
744 		NETLINK_CB(skb).creds	  = scm->creds;
745 
746 		err = security_netlink_send(sk, skb);
747 		if (err) {
748 			kfree_skb(skb);
749 			goto out;
750 		}
751 
752 		if (unlikely(dst_group)) {
753 			atomic_inc(&skb->users);
754 			netlink_broadcast(sk, skb, dst_portid, dst_group,
755 					  GFP_KERNEL);
756 		}
757 		err = netlink_unicast(sk, skb, dst_portid,
758 				      msg->msg_flags & MSG_DONTWAIT);
759 		if (err < 0)
760 			goto out;
761 		len += err;
762 
763 	} while (hdr != NULL ||
764 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
765 		  atomic_read(&nlk->tx_ring.pending)));
766 
767 	if (len > 0)
768 		err = len;
769 out:
770 	mutex_unlock(&nlk->pg_vec_lock);
771 	return err;
772 }
773 
774 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
775 {
776 	struct nl_mmap_hdr *hdr;
777 
778 	hdr = netlink_mmap_hdr(skb);
779 	hdr->nm_len	= skb->len;
780 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
781 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
782 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
783 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
784 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
785 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
786 
787 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
788 	kfree_skb(skb);
789 }
790 
791 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
792 {
793 	struct netlink_sock *nlk = nlk_sk(sk);
794 	struct netlink_ring *ring = &nlk->rx_ring;
795 	struct nl_mmap_hdr *hdr;
796 
797 	spin_lock_bh(&sk->sk_receive_queue.lock);
798 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
799 	if (hdr == NULL) {
800 		spin_unlock_bh(&sk->sk_receive_queue.lock);
801 		kfree_skb(skb);
802 		netlink_overrun(sk);
803 		return;
804 	}
805 	netlink_increment_head(ring);
806 	__skb_queue_tail(&sk->sk_receive_queue, skb);
807 	spin_unlock_bh(&sk->sk_receive_queue.lock);
808 
809 	hdr->nm_len	= skb->len;
810 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
811 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
812 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
813 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
814 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
815 }
816 
817 #else /* CONFIG_NETLINK_MMAP */
818 #define netlink_skb_is_mmaped(skb)	false
819 #define netlink_rx_is_mmaped(sk)	false
820 #define netlink_tx_is_mmaped(sk)	false
821 #define netlink_mmap			sock_no_mmap
822 #define netlink_poll			datagram_poll
823 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm)	0
824 #endif /* CONFIG_NETLINK_MMAP */
825 
826 static void netlink_skb_destructor(struct sk_buff *skb)
827 {
828 #ifdef CONFIG_NETLINK_MMAP
829 	struct nl_mmap_hdr *hdr;
830 	struct netlink_ring *ring;
831 	struct sock *sk;
832 
833 	/* If a packet from the kernel to userspace was freed because of an
834 	 * error without being delivered to userspace, the kernel must reset
835 	 * the status. In the direction userspace to kernel, the status is
836 	 * always reset here after the packet was processed and freed.
837 	 */
838 	if (netlink_skb_is_mmaped(skb)) {
839 		hdr = netlink_mmap_hdr(skb);
840 		sk = NETLINK_CB(skb).sk;
841 
842 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
843 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
844 			ring = &nlk_sk(sk)->tx_ring;
845 		} else {
846 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
847 				hdr->nm_len = 0;
848 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
849 			}
850 			ring = &nlk_sk(sk)->rx_ring;
851 		}
852 
853 		WARN_ON(atomic_read(&ring->pending) == 0);
854 		atomic_dec(&ring->pending);
855 		sock_put(sk);
856 
857 		skb->head = NULL;
858 	}
859 #endif
860 	if (is_vmalloc_addr(skb->head)) {
861 		if (!skb->cloned ||
862 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
863 			vfree(skb->head);
864 
865 		skb->head = NULL;
866 	}
867 	if (skb->sk != NULL)
868 		sock_rfree(skb);
869 }
870 
871 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
872 {
873 	WARN_ON(skb->sk != NULL);
874 	skb->sk = sk;
875 	skb->destructor = netlink_skb_destructor;
876 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
877 	sk_mem_charge(sk, skb->truesize);
878 }
879 
880 static void netlink_sock_destruct(struct sock *sk)
881 {
882 	struct netlink_sock *nlk = nlk_sk(sk);
883 
884 	if (nlk->cb_running) {
885 		if (nlk->cb.done)
886 			nlk->cb.done(&nlk->cb);
887 
888 		module_put(nlk->cb.module);
889 		kfree_skb(nlk->cb.skb);
890 	}
891 
892 	skb_queue_purge(&sk->sk_receive_queue);
893 #ifdef CONFIG_NETLINK_MMAP
894 	if (1) {
895 		struct nl_mmap_req req;
896 
897 		memset(&req, 0, sizeof(req));
898 		if (nlk->rx_ring.pg_vec)
899 			netlink_set_ring(sk, &req, true, false);
900 		memset(&req, 0, sizeof(req));
901 		if (nlk->tx_ring.pg_vec)
902 			netlink_set_ring(sk, &req, true, true);
903 	}
904 #endif /* CONFIG_NETLINK_MMAP */
905 
906 	if (!sock_flag(sk, SOCK_DEAD)) {
907 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
908 		return;
909 	}
910 
911 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
912 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
913 	WARN_ON(nlk_sk(sk)->groups);
914 }
915 
916 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
917  * SMP. Look, when several writers sleep and reader wakes them up, all but one
918  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
919  * this, _but_ remember, it adds useless work on UP machines.
920  */
921 
922 void netlink_table_grab(void)
923 	__acquires(nl_table_lock)
924 {
925 	might_sleep();
926 
927 	write_lock_irq(&nl_table_lock);
928 
929 	if (atomic_read(&nl_table_users)) {
930 		DECLARE_WAITQUEUE(wait, current);
931 
932 		add_wait_queue_exclusive(&nl_table_wait, &wait);
933 		for (;;) {
934 			set_current_state(TASK_UNINTERRUPTIBLE);
935 			if (atomic_read(&nl_table_users) == 0)
936 				break;
937 			write_unlock_irq(&nl_table_lock);
938 			schedule();
939 			write_lock_irq(&nl_table_lock);
940 		}
941 
942 		__set_current_state(TASK_RUNNING);
943 		remove_wait_queue(&nl_table_wait, &wait);
944 	}
945 }
946 
947 void netlink_table_ungrab(void)
948 	__releases(nl_table_lock)
949 {
950 	write_unlock_irq(&nl_table_lock);
951 	wake_up(&nl_table_wait);
952 }
953 
954 static inline void
955 netlink_lock_table(void)
956 {
957 	/* read_lock() synchronizes us to netlink_table_grab */
958 
959 	read_lock(&nl_table_lock);
960 	atomic_inc(&nl_table_users);
961 	read_unlock(&nl_table_lock);
962 }
963 
964 static inline void
965 netlink_unlock_table(void)
966 {
967 	if (atomic_dec_and_test(&nl_table_users))
968 		wake_up(&nl_table_wait);
969 }
970 
971 struct netlink_compare_arg
972 {
973 	struct net *net;
974 	u32 portid;
975 };
976 
977 static bool netlink_compare(void *ptr, void *arg)
978 {
979 	struct netlink_compare_arg *x = arg;
980 	struct sock *sk = ptr;
981 
982 	return nlk_sk(sk)->portid == x->portid &&
983 	       net_eq(sock_net(sk), x->net);
984 }
985 
986 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
987 				     struct net *net)
988 {
989 	struct netlink_compare_arg arg = {
990 		.net = net,
991 		.portid = portid,
992 	};
993 
994 	return rhashtable_lookup_compare(&table->hash, &portid,
995 					 &netlink_compare, &arg);
996 }
997 
998 static bool __netlink_insert(struct netlink_table *table, struct sock *sk)
999 {
1000 	struct netlink_compare_arg arg = {
1001 		.net = sock_net(sk),
1002 		.portid = nlk_sk(sk)->portid,
1003 	};
1004 
1005 	return rhashtable_lookup_compare_insert(&table->hash,
1006 						&nlk_sk(sk)->node,
1007 						&netlink_compare, &arg);
1008 }
1009 
1010 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1011 {
1012 	struct netlink_table *table = &nl_table[protocol];
1013 	struct sock *sk;
1014 
1015 	rcu_read_lock();
1016 	sk = __netlink_lookup(table, portid, net);
1017 	if (sk)
1018 		sock_hold(sk);
1019 	rcu_read_unlock();
1020 
1021 	return sk;
1022 }
1023 
1024 static const struct proto_ops netlink_ops;
1025 
1026 static void
1027 netlink_update_listeners(struct sock *sk)
1028 {
1029 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1030 	unsigned long mask;
1031 	unsigned int i;
1032 	struct listeners *listeners;
1033 
1034 	listeners = nl_deref_protected(tbl->listeners);
1035 	if (!listeners)
1036 		return;
1037 
1038 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1039 		mask = 0;
1040 		sk_for_each_bound(sk, &tbl->mc_list) {
1041 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1042 				mask |= nlk_sk(sk)->groups[i];
1043 		}
1044 		listeners->masks[i] = mask;
1045 	}
1046 	/* this function is only called with the netlink table "grabbed", which
1047 	 * makes sure updates are visible before bind or setsockopt return. */
1048 }
1049 
1050 static int netlink_insert(struct sock *sk, u32 portid)
1051 {
1052 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1053 	int err;
1054 
1055 	lock_sock(sk);
1056 
1057 	err = -EBUSY;
1058 	if (nlk_sk(sk)->portid)
1059 		goto err;
1060 
1061 	err = -ENOMEM;
1062 	if (BITS_PER_LONG > 32 &&
1063 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1064 		goto err;
1065 
1066 	nlk_sk(sk)->portid = portid;
1067 	sock_hold(sk);
1068 
1069 	err = 0;
1070 	if (!__netlink_insert(table, sk)) {
1071 		err = -EADDRINUSE;
1072 		sock_put(sk);
1073 	}
1074 
1075 err:
1076 	release_sock(sk);
1077 	return err;
1078 }
1079 
1080 static void netlink_remove(struct sock *sk)
1081 {
1082 	struct netlink_table *table;
1083 
1084 	table = &nl_table[sk->sk_protocol];
1085 	if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) {
1086 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1087 		__sock_put(sk);
1088 	}
1089 
1090 	netlink_table_grab();
1091 	if (nlk_sk(sk)->subscriptions) {
1092 		__sk_del_bind_node(sk);
1093 		netlink_update_listeners(sk);
1094 	}
1095 	if (sk->sk_protocol == NETLINK_GENERIC)
1096 		atomic_inc(&genl_sk_destructing_cnt);
1097 	netlink_table_ungrab();
1098 }
1099 
1100 static struct proto netlink_proto = {
1101 	.name	  = "NETLINK",
1102 	.owner	  = THIS_MODULE,
1103 	.obj_size = sizeof(struct netlink_sock),
1104 };
1105 
1106 static int __netlink_create(struct net *net, struct socket *sock,
1107 			    struct mutex *cb_mutex, int protocol)
1108 {
1109 	struct sock *sk;
1110 	struct netlink_sock *nlk;
1111 
1112 	sock->ops = &netlink_ops;
1113 
1114 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1115 	if (!sk)
1116 		return -ENOMEM;
1117 
1118 	sock_init_data(sock, sk);
1119 
1120 	nlk = nlk_sk(sk);
1121 	if (cb_mutex) {
1122 		nlk->cb_mutex = cb_mutex;
1123 	} else {
1124 		nlk->cb_mutex = &nlk->cb_def_mutex;
1125 		mutex_init(nlk->cb_mutex);
1126 	}
1127 	init_waitqueue_head(&nlk->wait);
1128 #ifdef CONFIG_NETLINK_MMAP
1129 	mutex_init(&nlk->pg_vec_lock);
1130 #endif
1131 
1132 	sk->sk_destruct = netlink_sock_destruct;
1133 	sk->sk_protocol = protocol;
1134 	return 0;
1135 }
1136 
1137 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1138 			  int kern)
1139 {
1140 	struct module *module = NULL;
1141 	struct mutex *cb_mutex;
1142 	struct netlink_sock *nlk;
1143 	int (*bind)(struct net *net, int group);
1144 	void (*unbind)(struct net *net, int group);
1145 	int err = 0;
1146 
1147 	sock->state = SS_UNCONNECTED;
1148 
1149 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1150 		return -ESOCKTNOSUPPORT;
1151 
1152 	if (protocol < 0 || protocol >= MAX_LINKS)
1153 		return -EPROTONOSUPPORT;
1154 
1155 	netlink_lock_table();
1156 #ifdef CONFIG_MODULES
1157 	if (!nl_table[protocol].registered) {
1158 		netlink_unlock_table();
1159 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1160 		netlink_lock_table();
1161 	}
1162 #endif
1163 	if (nl_table[protocol].registered &&
1164 	    try_module_get(nl_table[protocol].module))
1165 		module = nl_table[protocol].module;
1166 	else
1167 		err = -EPROTONOSUPPORT;
1168 	cb_mutex = nl_table[protocol].cb_mutex;
1169 	bind = nl_table[protocol].bind;
1170 	unbind = nl_table[protocol].unbind;
1171 	netlink_unlock_table();
1172 
1173 	if (err < 0)
1174 		goto out;
1175 
1176 	err = __netlink_create(net, sock, cb_mutex, protocol);
1177 	if (err < 0)
1178 		goto out_module;
1179 
1180 	local_bh_disable();
1181 	sock_prot_inuse_add(net, &netlink_proto, 1);
1182 	local_bh_enable();
1183 
1184 	nlk = nlk_sk(sock->sk);
1185 	nlk->module = module;
1186 	nlk->netlink_bind = bind;
1187 	nlk->netlink_unbind = unbind;
1188 out:
1189 	return err;
1190 
1191 out_module:
1192 	module_put(module);
1193 	goto out;
1194 }
1195 
1196 static void deferred_put_nlk_sk(struct rcu_head *head)
1197 {
1198 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1199 
1200 	sock_put(&nlk->sk);
1201 }
1202 
1203 static int netlink_release(struct socket *sock)
1204 {
1205 	struct sock *sk = sock->sk;
1206 	struct netlink_sock *nlk;
1207 
1208 	if (!sk)
1209 		return 0;
1210 
1211 	netlink_remove(sk);
1212 	sock_orphan(sk);
1213 	nlk = nlk_sk(sk);
1214 
1215 	/*
1216 	 * OK. Socket is unlinked, any packets that arrive now
1217 	 * will be purged.
1218 	 */
1219 
1220 	/* must not acquire netlink_table_lock in any way again before unbind
1221 	 * and notifying genetlink is done as otherwise it might deadlock
1222 	 */
1223 	if (nlk->netlink_unbind) {
1224 		int i;
1225 
1226 		for (i = 0; i < nlk->ngroups; i++)
1227 			if (test_bit(i, nlk->groups))
1228 				nlk->netlink_unbind(sock_net(sk), i + 1);
1229 	}
1230 	if (sk->sk_protocol == NETLINK_GENERIC &&
1231 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1232 		wake_up(&genl_sk_destructing_waitq);
1233 
1234 	sock->sk = NULL;
1235 	wake_up_interruptible_all(&nlk->wait);
1236 
1237 	skb_queue_purge(&sk->sk_write_queue);
1238 
1239 	if (nlk->portid) {
1240 		struct netlink_notify n = {
1241 						.net = sock_net(sk),
1242 						.protocol = sk->sk_protocol,
1243 						.portid = nlk->portid,
1244 					  };
1245 		atomic_notifier_call_chain(&netlink_chain,
1246 				NETLINK_URELEASE, &n);
1247 	}
1248 
1249 	module_put(nlk->module);
1250 
1251 	if (netlink_is_kernel(sk)) {
1252 		netlink_table_grab();
1253 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1254 		if (--nl_table[sk->sk_protocol].registered == 0) {
1255 			struct listeners *old;
1256 
1257 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1258 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1259 			kfree_rcu(old, rcu);
1260 			nl_table[sk->sk_protocol].module = NULL;
1261 			nl_table[sk->sk_protocol].bind = NULL;
1262 			nl_table[sk->sk_protocol].unbind = NULL;
1263 			nl_table[sk->sk_protocol].flags = 0;
1264 			nl_table[sk->sk_protocol].registered = 0;
1265 		}
1266 		netlink_table_ungrab();
1267 	}
1268 
1269 	kfree(nlk->groups);
1270 	nlk->groups = NULL;
1271 
1272 	local_bh_disable();
1273 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1274 	local_bh_enable();
1275 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1276 	return 0;
1277 }
1278 
1279 static int netlink_autobind(struct socket *sock)
1280 {
1281 	struct sock *sk = sock->sk;
1282 	struct net *net = sock_net(sk);
1283 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1284 	s32 portid = task_tgid_vnr(current);
1285 	int err;
1286 	static s32 rover = -4097;
1287 
1288 retry:
1289 	cond_resched();
1290 	rcu_read_lock();
1291 	if (__netlink_lookup(table, portid, net)) {
1292 		/* Bind collision, search negative portid values. */
1293 		portid = rover--;
1294 		if (rover > -4097)
1295 			rover = -4097;
1296 		rcu_read_unlock();
1297 		goto retry;
1298 	}
1299 	rcu_read_unlock();
1300 
1301 	err = netlink_insert(sk, portid);
1302 	if (err == -EADDRINUSE)
1303 		goto retry;
1304 
1305 	/* If 2 threads race to autobind, that is fine.  */
1306 	if (err == -EBUSY)
1307 		err = 0;
1308 
1309 	return err;
1310 }
1311 
1312 /**
1313  * __netlink_ns_capable - General netlink message capability test
1314  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1315  * @user_ns: The user namespace of the capability to use
1316  * @cap: The capability to use
1317  *
1318  * Test to see if the opener of the socket we received the message
1319  * from had when the netlink socket was created and the sender of the
1320  * message has has the capability @cap in the user namespace @user_ns.
1321  */
1322 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1323 			struct user_namespace *user_ns, int cap)
1324 {
1325 	return ((nsp->flags & NETLINK_SKB_DST) ||
1326 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1327 		ns_capable(user_ns, cap);
1328 }
1329 EXPORT_SYMBOL(__netlink_ns_capable);
1330 
1331 /**
1332  * netlink_ns_capable - General netlink message capability test
1333  * @skb: socket buffer holding a netlink command from userspace
1334  * @user_ns: The user namespace of the capability to use
1335  * @cap: The capability to use
1336  *
1337  * Test to see if the opener of the socket we received the message
1338  * from had when the netlink socket was created and the sender of the
1339  * message has has the capability @cap in the user namespace @user_ns.
1340  */
1341 bool netlink_ns_capable(const struct sk_buff *skb,
1342 			struct user_namespace *user_ns, int cap)
1343 {
1344 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1345 }
1346 EXPORT_SYMBOL(netlink_ns_capable);
1347 
1348 /**
1349  * netlink_capable - Netlink global message capability test
1350  * @skb: socket buffer holding a netlink command from userspace
1351  * @cap: The capability to use
1352  *
1353  * Test to see if the opener of the socket we received the message
1354  * from had when the netlink socket was created and the sender of the
1355  * message has has the capability @cap in all user namespaces.
1356  */
1357 bool netlink_capable(const struct sk_buff *skb, int cap)
1358 {
1359 	return netlink_ns_capable(skb, &init_user_ns, cap);
1360 }
1361 EXPORT_SYMBOL(netlink_capable);
1362 
1363 /**
1364  * netlink_net_capable - Netlink network namespace message capability test
1365  * @skb: socket buffer holding a netlink command from userspace
1366  * @cap: The capability to use
1367  *
1368  * Test to see if the opener of the socket we received the message
1369  * from had when the netlink socket was created and the sender of the
1370  * message has has the capability @cap over the network namespace of
1371  * the socket we received the message from.
1372  */
1373 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1374 {
1375 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1376 }
1377 EXPORT_SYMBOL(netlink_net_capable);
1378 
1379 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1380 {
1381 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1382 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1383 }
1384 
1385 static void
1386 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1387 {
1388 	struct netlink_sock *nlk = nlk_sk(sk);
1389 
1390 	if (nlk->subscriptions && !subscriptions)
1391 		__sk_del_bind_node(sk);
1392 	else if (!nlk->subscriptions && subscriptions)
1393 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1394 	nlk->subscriptions = subscriptions;
1395 }
1396 
1397 static int netlink_realloc_groups(struct sock *sk)
1398 {
1399 	struct netlink_sock *nlk = nlk_sk(sk);
1400 	unsigned int groups;
1401 	unsigned long *new_groups;
1402 	int err = 0;
1403 
1404 	netlink_table_grab();
1405 
1406 	groups = nl_table[sk->sk_protocol].groups;
1407 	if (!nl_table[sk->sk_protocol].registered) {
1408 		err = -ENOENT;
1409 		goto out_unlock;
1410 	}
1411 
1412 	if (nlk->ngroups >= groups)
1413 		goto out_unlock;
1414 
1415 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1416 	if (new_groups == NULL) {
1417 		err = -ENOMEM;
1418 		goto out_unlock;
1419 	}
1420 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1421 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1422 
1423 	nlk->groups = new_groups;
1424 	nlk->ngroups = groups;
1425  out_unlock:
1426 	netlink_table_ungrab();
1427 	return err;
1428 }
1429 
1430 static void netlink_undo_bind(int group, long unsigned int groups,
1431 			      struct sock *sk)
1432 {
1433 	struct netlink_sock *nlk = nlk_sk(sk);
1434 	int undo;
1435 
1436 	if (!nlk->netlink_unbind)
1437 		return;
1438 
1439 	for (undo = 0; undo < group; undo++)
1440 		if (test_bit(undo, &groups))
1441 			nlk->netlink_unbind(sock_net(sk), undo + 1);
1442 }
1443 
1444 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1445 			int addr_len)
1446 {
1447 	struct sock *sk = sock->sk;
1448 	struct net *net = sock_net(sk);
1449 	struct netlink_sock *nlk = nlk_sk(sk);
1450 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1451 	int err;
1452 	long unsigned int groups = nladdr->nl_groups;
1453 
1454 	if (addr_len < sizeof(struct sockaddr_nl))
1455 		return -EINVAL;
1456 
1457 	if (nladdr->nl_family != AF_NETLINK)
1458 		return -EINVAL;
1459 
1460 	/* Only superuser is allowed to listen multicasts */
1461 	if (groups) {
1462 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1463 			return -EPERM;
1464 		err = netlink_realloc_groups(sk);
1465 		if (err)
1466 			return err;
1467 	}
1468 
1469 	if (nlk->portid)
1470 		if (nladdr->nl_pid != nlk->portid)
1471 			return -EINVAL;
1472 
1473 	if (nlk->netlink_bind && groups) {
1474 		int group;
1475 
1476 		for (group = 0; group < nlk->ngroups; group++) {
1477 			if (!test_bit(group, &groups))
1478 				continue;
1479 			err = nlk->netlink_bind(net, group + 1);
1480 			if (!err)
1481 				continue;
1482 			netlink_undo_bind(group, groups, sk);
1483 			return err;
1484 		}
1485 	}
1486 
1487 	if (!nlk->portid) {
1488 		err = nladdr->nl_pid ?
1489 			netlink_insert(sk, nladdr->nl_pid) :
1490 			netlink_autobind(sock);
1491 		if (err) {
1492 			netlink_undo_bind(nlk->ngroups, groups, sk);
1493 			return err;
1494 		}
1495 	}
1496 
1497 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1498 		return 0;
1499 
1500 	netlink_table_grab();
1501 	netlink_update_subscriptions(sk, nlk->subscriptions +
1502 					 hweight32(groups) -
1503 					 hweight32(nlk->groups[0]));
1504 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1505 	netlink_update_listeners(sk);
1506 	netlink_table_ungrab();
1507 
1508 	return 0;
1509 }
1510 
1511 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1512 			   int alen, int flags)
1513 {
1514 	int err = 0;
1515 	struct sock *sk = sock->sk;
1516 	struct netlink_sock *nlk = nlk_sk(sk);
1517 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1518 
1519 	if (alen < sizeof(addr->sa_family))
1520 		return -EINVAL;
1521 
1522 	if (addr->sa_family == AF_UNSPEC) {
1523 		sk->sk_state	= NETLINK_UNCONNECTED;
1524 		nlk->dst_portid	= 0;
1525 		nlk->dst_group  = 0;
1526 		return 0;
1527 	}
1528 	if (addr->sa_family != AF_NETLINK)
1529 		return -EINVAL;
1530 
1531 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1532 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1533 		return -EPERM;
1534 
1535 	if (!nlk->portid)
1536 		err = netlink_autobind(sock);
1537 
1538 	if (err == 0) {
1539 		sk->sk_state	= NETLINK_CONNECTED;
1540 		nlk->dst_portid = nladdr->nl_pid;
1541 		nlk->dst_group  = ffs(nladdr->nl_groups);
1542 	}
1543 
1544 	return err;
1545 }
1546 
1547 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1548 			   int *addr_len, int peer)
1549 {
1550 	struct sock *sk = sock->sk;
1551 	struct netlink_sock *nlk = nlk_sk(sk);
1552 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1553 
1554 	nladdr->nl_family = AF_NETLINK;
1555 	nladdr->nl_pad = 0;
1556 	*addr_len = sizeof(*nladdr);
1557 
1558 	if (peer) {
1559 		nladdr->nl_pid = nlk->dst_portid;
1560 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1561 	} else {
1562 		nladdr->nl_pid = nlk->portid;
1563 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1564 	}
1565 	return 0;
1566 }
1567 
1568 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1569 {
1570 	struct sock *sock;
1571 	struct netlink_sock *nlk;
1572 
1573 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1574 	if (!sock)
1575 		return ERR_PTR(-ECONNREFUSED);
1576 
1577 	/* Don't bother queuing skb if kernel socket has no input function */
1578 	nlk = nlk_sk(sock);
1579 	if (sock->sk_state == NETLINK_CONNECTED &&
1580 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1581 		sock_put(sock);
1582 		return ERR_PTR(-ECONNREFUSED);
1583 	}
1584 	return sock;
1585 }
1586 
1587 struct sock *netlink_getsockbyfilp(struct file *filp)
1588 {
1589 	struct inode *inode = file_inode(filp);
1590 	struct sock *sock;
1591 
1592 	if (!S_ISSOCK(inode->i_mode))
1593 		return ERR_PTR(-ENOTSOCK);
1594 
1595 	sock = SOCKET_I(inode)->sk;
1596 	if (sock->sk_family != AF_NETLINK)
1597 		return ERR_PTR(-EINVAL);
1598 
1599 	sock_hold(sock);
1600 	return sock;
1601 }
1602 
1603 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1604 					       int broadcast)
1605 {
1606 	struct sk_buff *skb;
1607 	void *data;
1608 
1609 	if (size <= NLMSG_GOODSIZE || broadcast)
1610 		return alloc_skb(size, GFP_KERNEL);
1611 
1612 	size = SKB_DATA_ALIGN(size) +
1613 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1614 
1615 	data = vmalloc(size);
1616 	if (data == NULL)
1617 		return NULL;
1618 
1619 	skb = build_skb(data, size);
1620 	if (skb == NULL)
1621 		vfree(data);
1622 	else {
1623 		skb->head_frag = 0;
1624 		skb->destructor = netlink_skb_destructor;
1625 	}
1626 
1627 	return skb;
1628 }
1629 
1630 /*
1631  * Attach a skb to a netlink socket.
1632  * The caller must hold a reference to the destination socket. On error, the
1633  * reference is dropped. The skb is not send to the destination, just all
1634  * all error checks are performed and memory in the queue is reserved.
1635  * Return values:
1636  * < 0: error. skb freed, reference to sock dropped.
1637  * 0: continue
1638  * 1: repeat lookup - reference dropped while waiting for socket memory.
1639  */
1640 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1641 		      long *timeo, struct sock *ssk)
1642 {
1643 	struct netlink_sock *nlk;
1644 
1645 	nlk = nlk_sk(sk);
1646 
1647 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1648 	     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1649 	    !netlink_skb_is_mmaped(skb)) {
1650 		DECLARE_WAITQUEUE(wait, current);
1651 		if (!*timeo) {
1652 			if (!ssk || netlink_is_kernel(ssk))
1653 				netlink_overrun(sk);
1654 			sock_put(sk);
1655 			kfree_skb(skb);
1656 			return -EAGAIN;
1657 		}
1658 
1659 		__set_current_state(TASK_INTERRUPTIBLE);
1660 		add_wait_queue(&nlk->wait, &wait);
1661 
1662 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1663 		     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1664 		    !sock_flag(sk, SOCK_DEAD))
1665 			*timeo = schedule_timeout(*timeo);
1666 
1667 		__set_current_state(TASK_RUNNING);
1668 		remove_wait_queue(&nlk->wait, &wait);
1669 		sock_put(sk);
1670 
1671 		if (signal_pending(current)) {
1672 			kfree_skb(skb);
1673 			return sock_intr_errno(*timeo);
1674 		}
1675 		return 1;
1676 	}
1677 	netlink_skb_set_owner_r(skb, sk);
1678 	return 0;
1679 }
1680 
1681 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1682 {
1683 	int len = skb->len;
1684 
1685 	netlink_deliver_tap(skb);
1686 
1687 #ifdef CONFIG_NETLINK_MMAP
1688 	if (netlink_skb_is_mmaped(skb))
1689 		netlink_queue_mmaped_skb(sk, skb);
1690 	else if (netlink_rx_is_mmaped(sk))
1691 		netlink_ring_set_copied(sk, skb);
1692 	else
1693 #endif /* CONFIG_NETLINK_MMAP */
1694 		skb_queue_tail(&sk->sk_receive_queue, skb);
1695 	sk->sk_data_ready(sk);
1696 	return len;
1697 }
1698 
1699 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1700 {
1701 	int len = __netlink_sendskb(sk, skb);
1702 
1703 	sock_put(sk);
1704 	return len;
1705 }
1706 
1707 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1708 {
1709 	kfree_skb(skb);
1710 	sock_put(sk);
1711 }
1712 
1713 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1714 {
1715 	int delta;
1716 
1717 	WARN_ON(skb->sk != NULL);
1718 	if (netlink_skb_is_mmaped(skb))
1719 		return skb;
1720 
1721 	delta = skb->end - skb->tail;
1722 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1723 		return skb;
1724 
1725 	if (skb_shared(skb)) {
1726 		struct sk_buff *nskb = skb_clone(skb, allocation);
1727 		if (!nskb)
1728 			return skb;
1729 		consume_skb(skb);
1730 		skb = nskb;
1731 	}
1732 
1733 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1734 		skb->truesize -= delta;
1735 
1736 	return skb;
1737 }
1738 
1739 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1740 				  struct sock *ssk)
1741 {
1742 	int ret;
1743 	struct netlink_sock *nlk = nlk_sk(sk);
1744 
1745 	ret = -ECONNREFUSED;
1746 	if (nlk->netlink_rcv != NULL) {
1747 		ret = skb->len;
1748 		netlink_skb_set_owner_r(skb, sk);
1749 		NETLINK_CB(skb).sk = ssk;
1750 		netlink_deliver_tap_kernel(sk, ssk, skb);
1751 		nlk->netlink_rcv(skb);
1752 		consume_skb(skb);
1753 	} else {
1754 		kfree_skb(skb);
1755 	}
1756 	sock_put(sk);
1757 	return ret;
1758 }
1759 
1760 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1761 		    u32 portid, int nonblock)
1762 {
1763 	struct sock *sk;
1764 	int err;
1765 	long timeo;
1766 
1767 	skb = netlink_trim(skb, gfp_any());
1768 
1769 	timeo = sock_sndtimeo(ssk, nonblock);
1770 retry:
1771 	sk = netlink_getsockbyportid(ssk, portid);
1772 	if (IS_ERR(sk)) {
1773 		kfree_skb(skb);
1774 		return PTR_ERR(sk);
1775 	}
1776 	if (netlink_is_kernel(sk))
1777 		return netlink_unicast_kernel(sk, skb, ssk);
1778 
1779 	if (sk_filter(sk, skb)) {
1780 		err = skb->len;
1781 		kfree_skb(skb);
1782 		sock_put(sk);
1783 		return err;
1784 	}
1785 
1786 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1787 	if (err == 1)
1788 		goto retry;
1789 	if (err)
1790 		return err;
1791 
1792 	return netlink_sendskb(sk, skb);
1793 }
1794 EXPORT_SYMBOL(netlink_unicast);
1795 
1796 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1797 				  u32 dst_portid, gfp_t gfp_mask)
1798 {
1799 #ifdef CONFIG_NETLINK_MMAP
1800 	struct sock *sk = NULL;
1801 	struct sk_buff *skb;
1802 	struct netlink_ring *ring;
1803 	struct nl_mmap_hdr *hdr;
1804 	unsigned int maxlen;
1805 
1806 	sk = netlink_getsockbyportid(ssk, dst_portid);
1807 	if (IS_ERR(sk))
1808 		goto out;
1809 
1810 	ring = &nlk_sk(sk)->rx_ring;
1811 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1812 	if (ring->pg_vec == NULL)
1813 		goto out_put;
1814 
1815 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1816 		goto out_put;
1817 
1818 	skb = alloc_skb_head(gfp_mask);
1819 	if (skb == NULL)
1820 		goto err1;
1821 
1822 	spin_lock_bh(&sk->sk_receive_queue.lock);
1823 	/* check again under lock */
1824 	if (ring->pg_vec == NULL)
1825 		goto out_free;
1826 
1827 	/* check again under lock */
1828 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1829 	if (maxlen < size)
1830 		goto out_free;
1831 
1832 	netlink_forward_ring(ring);
1833 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1834 	if (hdr == NULL)
1835 		goto err2;
1836 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1837 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1838 	atomic_inc(&ring->pending);
1839 	netlink_increment_head(ring);
1840 
1841 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1842 	return skb;
1843 
1844 err2:
1845 	kfree_skb(skb);
1846 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1847 	netlink_overrun(sk);
1848 err1:
1849 	sock_put(sk);
1850 	return NULL;
1851 
1852 out_free:
1853 	kfree_skb(skb);
1854 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1855 out_put:
1856 	sock_put(sk);
1857 out:
1858 #endif
1859 	return alloc_skb(size, gfp_mask);
1860 }
1861 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1862 
1863 int netlink_has_listeners(struct sock *sk, unsigned int group)
1864 {
1865 	int res = 0;
1866 	struct listeners *listeners;
1867 
1868 	BUG_ON(!netlink_is_kernel(sk));
1869 
1870 	rcu_read_lock();
1871 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1872 
1873 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1874 		res = test_bit(group - 1, listeners->masks);
1875 
1876 	rcu_read_unlock();
1877 
1878 	return res;
1879 }
1880 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1881 
1882 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1883 {
1884 	struct netlink_sock *nlk = nlk_sk(sk);
1885 
1886 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1887 	    !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1888 		netlink_skb_set_owner_r(skb, sk);
1889 		__netlink_sendskb(sk, skb);
1890 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1891 	}
1892 	return -1;
1893 }
1894 
1895 struct netlink_broadcast_data {
1896 	struct sock *exclude_sk;
1897 	struct net *net;
1898 	u32 portid;
1899 	u32 group;
1900 	int failure;
1901 	int delivery_failure;
1902 	int congested;
1903 	int delivered;
1904 	gfp_t allocation;
1905 	struct sk_buff *skb, *skb2;
1906 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1907 	void *tx_data;
1908 };
1909 
1910 static void do_one_broadcast(struct sock *sk,
1911 				    struct netlink_broadcast_data *p)
1912 {
1913 	struct netlink_sock *nlk = nlk_sk(sk);
1914 	int val;
1915 
1916 	if (p->exclude_sk == sk)
1917 		return;
1918 
1919 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1920 	    !test_bit(p->group - 1, nlk->groups))
1921 		return;
1922 
1923 	if (!net_eq(sock_net(sk), p->net))
1924 		return;
1925 
1926 	if (p->failure) {
1927 		netlink_overrun(sk);
1928 		return;
1929 	}
1930 
1931 	sock_hold(sk);
1932 	if (p->skb2 == NULL) {
1933 		if (skb_shared(p->skb)) {
1934 			p->skb2 = skb_clone(p->skb, p->allocation);
1935 		} else {
1936 			p->skb2 = skb_get(p->skb);
1937 			/*
1938 			 * skb ownership may have been set when
1939 			 * delivered to a previous socket.
1940 			 */
1941 			skb_orphan(p->skb2);
1942 		}
1943 	}
1944 	if (p->skb2 == NULL) {
1945 		netlink_overrun(sk);
1946 		/* Clone failed. Notify ALL listeners. */
1947 		p->failure = 1;
1948 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1949 			p->delivery_failure = 1;
1950 	} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1951 		kfree_skb(p->skb2);
1952 		p->skb2 = NULL;
1953 	} else if (sk_filter(sk, p->skb2)) {
1954 		kfree_skb(p->skb2);
1955 		p->skb2 = NULL;
1956 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1957 		netlink_overrun(sk);
1958 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1959 			p->delivery_failure = 1;
1960 	} else {
1961 		p->congested |= val;
1962 		p->delivered = 1;
1963 		p->skb2 = NULL;
1964 	}
1965 	sock_put(sk);
1966 }
1967 
1968 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1969 	u32 group, gfp_t allocation,
1970 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1971 	void *filter_data)
1972 {
1973 	struct net *net = sock_net(ssk);
1974 	struct netlink_broadcast_data info;
1975 	struct sock *sk;
1976 
1977 	skb = netlink_trim(skb, allocation);
1978 
1979 	info.exclude_sk = ssk;
1980 	info.net = net;
1981 	info.portid = portid;
1982 	info.group = group;
1983 	info.failure = 0;
1984 	info.delivery_failure = 0;
1985 	info.congested = 0;
1986 	info.delivered = 0;
1987 	info.allocation = allocation;
1988 	info.skb = skb;
1989 	info.skb2 = NULL;
1990 	info.tx_filter = filter;
1991 	info.tx_data = filter_data;
1992 
1993 	/* While we sleep in clone, do not allow to change socket list */
1994 
1995 	netlink_lock_table();
1996 
1997 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1998 		do_one_broadcast(sk, &info);
1999 
2000 	consume_skb(skb);
2001 
2002 	netlink_unlock_table();
2003 
2004 	if (info.delivery_failure) {
2005 		kfree_skb(info.skb2);
2006 		return -ENOBUFS;
2007 	}
2008 	consume_skb(info.skb2);
2009 
2010 	if (info.delivered) {
2011 		if (info.congested && (allocation & __GFP_WAIT))
2012 			yield();
2013 		return 0;
2014 	}
2015 	return -ESRCH;
2016 }
2017 EXPORT_SYMBOL(netlink_broadcast_filtered);
2018 
2019 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2020 		      u32 group, gfp_t allocation)
2021 {
2022 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2023 		NULL, NULL);
2024 }
2025 EXPORT_SYMBOL(netlink_broadcast);
2026 
2027 struct netlink_set_err_data {
2028 	struct sock *exclude_sk;
2029 	u32 portid;
2030 	u32 group;
2031 	int code;
2032 };
2033 
2034 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2035 {
2036 	struct netlink_sock *nlk = nlk_sk(sk);
2037 	int ret = 0;
2038 
2039 	if (sk == p->exclude_sk)
2040 		goto out;
2041 
2042 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2043 		goto out;
2044 
2045 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2046 	    !test_bit(p->group - 1, nlk->groups))
2047 		goto out;
2048 
2049 	if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2050 		ret = 1;
2051 		goto out;
2052 	}
2053 
2054 	sk->sk_err = p->code;
2055 	sk->sk_error_report(sk);
2056 out:
2057 	return ret;
2058 }
2059 
2060 /**
2061  * netlink_set_err - report error to broadcast listeners
2062  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2063  * @portid: the PORTID of a process that we want to skip (if any)
2064  * @group: the broadcast group that will notice the error
2065  * @code: error code, must be negative (as usual in kernelspace)
2066  *
2067  * This function returns the number of broadcast listeners that have set the
2068  * NETLINK_RECV_NO_ENOBUFS socket option.
2069  */
2070 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2071 {
2072 	struct netlink_set_err_data info;
2073 	struct sock *sk;
2074 	int ret = 0;
2075 
2076 	info.exclude_sk = ssk;
2077 	info.portid = portid;
2078 	info.group = group;
2079 	/* sk->sk_err wants a positive error value */
2080 	info.code = -code;
2081 
2082 	read_lock(&nl_table_lock);
2083 
2084 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2085 		ret += do_one_set_err(sk, &info);
2086 
2087 	read_unlock(&nl_table_lock);
2088 	return ret;
2089 }
2090 EXPORT_SYMBOL(netlink_set_err);
2091 
2092 /* must be called with netlink table grabbed */
2093 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2094 				     unsigned int group,
2095 				     int is_new)
2096 {
2097 	int old, new = !!is_new, subscriptions;
2098 
2099 	old = test_bit(group - 1, nlk->groups);
2100 	subscriptions = nlk->subscriptions - old + new;
2101 	if (new)
2102 		__set_bit(group - 1, nlk->groups);
2103 	else
2104 		__clear_bit(group - 1, nlk->groups);
2105 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2106 	netlink_update_listeners(&nlk->sk);
2107 }
2108 
2109 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2110 			      char __user *optval, unsigned int optlen)
2111 {
2112 	struct sock *sk = sock->sk;
2113 	struct netlink_sock *nlk = nlk_sk(sk);
2114 	unsigned int val = 0;
2115 	int err;
2116 
2117 	if (level != SOL_NETLINK)
2118 		return -ENOPROTOOPT;
2119 
2120 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2121 	    optlen >= sizeof(int) &&
2122 	    get_user(val, (unsigned int __user *)optval))
2123 		return -EFAULT;
2124 
2125 	switch (optname) {
2126 	case NETLINK_PKTINFO:
2127 		if (val)
2128 			nlk->flags |= NETLINK_RECV_PKTINFO;
2129 		else
2130 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
2131 		err = 0;
2132 		break;
2133 	case NETLINK_ADD_MEMBERSHIP:
2134 	case NETLINK_DROP_MEMBERSHIP: {
2135 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2136 			return -EPERM;
2137 		err = netlink_realloc_groups(sk);
2138 		if (err)
2139 			return err;
2140 		if (!val || val - 1 >= nlk->ngroups)
2141 			return -EINVAL;
2142 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2143 			err = nlk->netlink_bind(sock_net(sk), val);
2144 			if (err)
2145 				return err;
2146 		}
2147 		netlink_table_grab();
2148 		netlink_update_socket_mc(nlk, val,
2149 					 optname == NETLINK_ADD_MEMBERSHIP);
2150 		netlink_table_ungrab();
2151 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2152 			nlk->netlink_unbind(sock_net(sk), val);
2153 
2154 		err = 0;
2155 		break;
2156 	}
2157 	case NETLINK_BROADCAST_ERROR:
2158 		if (val)
2159 			nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2160 		else
2161 			nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2162 		err = 0;
2163 		break;
2164 	case NETLINK_NO_ENOBUFS:
2165 		if (val) {
2166 			nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2167 			clear_bit(NETLINK_CONGESTED, &nlk->state);
2168 			wake_up_interruptible(&nlk->wait);
2169 		} else {
2170 			nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2171 		}
2172 		err = 0;
2173 		break;
2174 #ifdef CONFIG_NETLINK_MMAP
2175 	case NETLINK_RX_RING:
2176 	case NETLINK_TX_RING: {
2177 		struct nl_mmap_req req;
2178 
2179 		/* Rings might consume more memory than queue limits, require
2180 		 * CAP_NET_ADMIN.
2181 		 */
2182 		if (!capable(CAP_NET_ADMIN))
2183 			return -EPERM;
2184 		if (optlen < sizeof(req))
2185 			return -EINVAL;
2186 		if (copy_from_user(&req, optval, sizeof(req)))
2187 			return -EFAULT;
2188 		err = netlink_set_ring(sk, &req, false,
2189 				       optname == NETLINK_TX_RING);
2190 		break;
2191 	}
2192 #endif /* CONFIG_NETLINK_MMAP */
2193 	default:
2194 		err = -ENOPROTOOPT;
2195 	}
2196 	return err;
2197 }
2198 
2199 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2200 			      char __user *optval, int __user *optlen)
2201 {
2202 	struct sock *sk = sock->sk;
2203 	struct netlink_sock *nlk = nlk_sk(sk);
2204 	int len, val, err;
2205 
2206 	if (level != SOL_NETLINK)
2207 		return -ENOPROTOOPT;
2208 
2209 	if (get_user(len, optlen))
2210 		return -EFAULT;
2211 	if (len < 0)
2212 		return -EINVAL;
2213 
2214 	switch (optname) {
2215 	case NETLINK_PKTINFO:
2216 		if (len < sizeof(int))
2217 			return -EINVAL;
2218 		len = sizeof(int);
2219 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2220 		if (put_user(len, optlen) ||
2221 		    put_user(val, optval))
2222 			return -EFAULT;
2223 		err = 0;
2224 		break;
2225 	case NETLINK_BROADCAST_ERROR:
2226 		if (len < sizeof(int))
2227 			return -EINVAL;
2228 		len = sizeof(int);
2229 		val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2230 		if (put_user(len, optlen) ||
2231 		    put_user(val, optval))
2232 			return -EFAULT;
2233 		err = 0;
2234 		break;
2235 	case NETLINK_NO_ENOBUFS:
2236 		if (len < sizeof(int))
2237 			return -EINVAL;
2238 		len = sizeof(int);
2239 		val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2240 		if (put_user(len, optlen) ||
2241 		    put_user(val, optval))
2242 			return -EFAULT;
2243 		err = 0;
2244 		break;
2245 	default:
2246 		err = -ENOPROTOOPT;
2247 	}
2248 	return err;
2249 }
2250 
2251 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2252 {
2253 	struct nl_pktinfo info;
2254 
2255 	info.group = NETLINK_CB(skb).dst_group;
2256 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2257 }
2258 
2259 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2260 			   struct msghdr *msg, size_t len)
2261 {
2262 	struct sock *sk = sock->sk;
2263 	struct netlink_sock *nlk = nlk_sk(sk);
2264 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2265 	u32 dst_portid;
2266 	u32 dst_group;
2267 	struct sk_buff *skb;
2268 	int err;
2269 	struct scm_cookie scm;
2270 	u32 netlink_skb_flags = 0;
2271 
2272 	if (msg->msg_flags&MSG_OOB)
2273 		return -EOPNOTSUPP;
2274 
2275 	err = scm_send(sock, msg, &scm, true);
2276 	if (err < 0)
2277 		return err;
2278 
2279 	if (msg->msg_namelen) {
2280 		err = -EINVAL;
2281 		if (addr->nl_family != AF_NETLINK)
2282 			goto out;
2283 		dst_portid = addr->nl_pid;
2284 		dst_group = ffs(addr->nl_groups);
2285 		err =  -EPERM;
2286 		if ((dst_group || dst_portid) &&
2287 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2288 			goto out;
2289 		netlink_skb_flags |= NETLINK_SKB_DST;
2290 	} else {
2291 		dst_portid = nlk->dst_portid;
2292 		dst_group = nlk->dst_group;
2293 	}
2294 
2295 	if (!nlk->portid) {
2296 		err = netlink_autobind(sock);
2297 		if (err)
2298 			goto out;
2299 	}
2300 
2301 	/* It's a really convoluted way for userland to ask for mmaped
2302 	 * sendmsg(), but that's what we've got...
2303 	 */
2304 	if (netlink_tx_is_mmaped(sk) &&
2305 	    msg->msg_iter.type == ITER_IOVEC &&
2306 	    msg->msg_iter.nr_segs == 1 &&
2307 	    msg->msg_iter.iov->iov_base == NULL) {
2308 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2309 					   &scm);
2310 		goto out;
2311 	}
2312 
2313 	err = -EMSGSIZE;
2314 	if (len > sk->sk_sndbuf - 32)
2315 		goto out;
2316 	err = -ENOBUFS;
2317 	skb = netlink_alloc_large_skb(len, dst_group);
2318 	if (skb == NULL)
2319 		goto out;
2320 
2321 	NETLINK_CB(skb).portid	= nlk->portid;
2322 	NETLINK_CB(skb).dst_group = dst_group;
2323 	NETLINK_CB(skb).creds	= scm.creds;
2324 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2325 
2326 	err = -EFAULT;
2327 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2328 		kfree_skb(skb);
2329 		goto out;
2330 	}
2331 
2332 	err = security_netlink_send(sk, skb);
2333 	if (err) {
2334 		kfree_skb(skb);
2335 		goto out;
2336 	}
2337 
2338 	if (dst_group) {
2339 		atomic_inc(&skb->users);
2340 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2341 	}
2342 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2343 
2344 out:
2345 	scm_destroy(&scm);
2346 	return err;
2347 }
2348 
2349 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2350 			   struct msghdr *msg, size_t len,
2351 			   int flags)
2352 {
2353 	struct scm_cookie scm;
2354 	struct sock *sk = sock->sk;
2355 	struct netlink_sock *nlk = nlk_sk(sk);
2356 	int noblock = flags&MSG_DONTWAIT;
2357 	size_t copied;
2358 	struct sk_buff *skb, *data_skb;
2359 	int err, ret;
2360 
2361 	if (flags&MSG_OOB)
2362 		return -EOPNOTSUPP;
2363 
2364 	copied = 0;
2365 
2366 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2367 	if (skb == NULL)
2368 		goto out;
2369 
2370 	data_skb = skb;
2371 
2372 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2373 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2374 		/*
2375 		 * If this skb has a frag_list, then here that means that we
2376 		 * will have to use the frag_list skb's data for compat tasks
2377 		 * and the regular skb's data for normal (non-compat) tasks.
2378 		 *
2379 		 * If we need to send the compat skb, assign it to the
2380 		 * 'data_skb' variable so that it will be used below for data
2381 		 * copying. We keep 'skb' for everything else, including
2382 		 * freeing both later.
2383 		 */
2384 		if (flags & MSG_CMSG_COMPAT)
2385 			data_skb = skb_shinfo(skb)->frag_list;
2386 	}
2387 #endif
2388 
2389 	/* Record the max length of recvmsg() calls for future allocations */
2390 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2391 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2392 				     16384);
2393 
2394 	copied = data_skb->len;
2395 	if (len < copied) {
2396 		msg->msg_flags |= MSG_TRUNC;
2397 		copied = len;
2398 	}
2399 
2400 	skb_reset_transport_header(data_skb);
2401 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2402 
2403 	if (msg->msg_name) {
2404 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2405 		addr->nl_family = AF_NETLINK;
2406 		addr->nl_pad    = 0;
2407 		addr->nl_pid	= NETLINK_CB(skb).portid;
2408 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2409 		msg->msg_namelen = sizeof(*addr);
2410 	}
2411 
2412 	if (nlk->flags & NETLINK_RECV_PKTINFO)
2413 		netlink_cmsg_recv_pktinfo(msg, skb);
2414 
2415 	memset(&scm, 0, sizeof(scm));
2416 	scm.creds = *NETLINK_CREDS(skb);
2417 	if (flags & MSG_TRUNC)
2418 		copied = data_skb->len;
2419 
2420 	skb_free_datagram(sk, skb);
2421 
2422 	if (nlk->cb_running &&
2423 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2424 		ret = netlink_dump(sk);
2425 		if (ret) {
2426 			sk->sk_err = -ret;
2427 			sk->sk_error_report(sk);
2428 		}
2429 	}
2430 
2431 	scm_recv(sock, msg, &scm, flags);
2432 out:
2433 	netlink_rcv_wake(sk);
2434 	return err ? : copied;
2435 }
2436 
2437 static void netlink_data_ready(struct sock *sk)
2438 {
2439 	BUG();
2440 }
2441 
2442 /*
2443  *	We export these functions to other modules. They provide a
2444  *	complete set of kernel non-blocking support for message
2445  *	queueing.
2446  */
2447 
2448 struct sock *
2449 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2450 			struct netlink_kernel_cfg *cfg)
2451 {
2452 	struct socket *sock;
2453 	struct sock *sk;
2454 	struct netlink_sock *nlk;
2455 	struct listeners *listeners = NULL;
2456 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2457 	unsigned int groups;
2458 
2459 	BUG_ON(!nl_table);
2460 
2461 	if (unit < 0 || unit >= MAX_LINKS)
2462 		return NULL;
2463 
2464 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2465 		return NULL;
2466 
2467 	/*
2468 	 * We have to just have a reference on the net from sk, but don't
2469 	 * get_net it. Besides, we cannot get and then put the net here.
2470 	 * So we create one inside init_net and the move it to net.
2471 	 */
2472 
2473 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2474 		goto out_sock_release_nosk;
2475 
2476 	sk = sock->sk;
2477 	sk_change_net(sk, net);
2478 
2479 	if (!cfg || cfg->groups < 32)
2480 		groups = 32;
2481 	else
2482 		groups = cfg->groups;
2483 
2484 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2485 	if (!listeners)
2486 		goto out_sock_release;
2487 
2488 	sk->sk_data_ready = netlink_data_ready;
2489 	if (cfg && cfg->input)
2490 		nlk_sk(sk)->netlink_rcv = cfg->input;
2491 
2492 	if (netlink_insert(sk, 0))
2493 		goto out_sock_release;
2494 
2495 	nlk = nlk_sk(sk);
2496 	nlk->flags |= NETLINK_KERNEL_SOCKET;
2497 
2498 	netlink_table_grab();
2499 	if (!nl_table[unit].registered) {
2500 		nl_table[unit].groups = groups;
2501 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2502 		nl_table[unit].cb_mutex = cb_mutex;
2503 		nl_table[unit].module = module;
2504 		if (cfg) {
2505 			nl_table[unit].bind = cfg->bind;
2506 			nl_table[unit].unbind = cfg->unbind;
2507 			nl_table[unit].flags = cfg->flags;
2508 			if (cfg->compare)
2509 				nl_table[unit].compare = cfg->compare;
2510 		}
2511 		nl_table[unit].registered = 1;
2512 	} else {
2513 		kfree(listeners);
2514 		nl_table[unit].registered++;
2515 	}
2516 	netlink_table_ungrab();
2517 	return sk;
2518 
2519 out_sock_release:
2520 	kfree(listeners);
2521 	netlink_kernel_release(sk);
2522 	return NULL;
2523 
2524 out_sock_release_nosk:
2525 	sock_release(sock);
2526 	return NULL;
2527 }
2528 EXPORT_SYMBOL(__netlink_kernel_create);
2529 
2530 void
2531 netlink_kernel_release(struct sock *sk)
2532 {
2533 	sk_release_kernel(sk);
2534 }
2535 EXPORT_SYMBOL(netlink_kernel_release);
2536 
2537 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2538 {
2539 	struct listeners *new, *old;
2540 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2541 
2542 	if (groups < 32)
2543 		groups = 32;
2544 
2545 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2546 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2547 		if (!new)
2548 			return -ENOMEM;
2549 		old = nl_deref_protected(tbl->listeners);
2550 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2551 		rcu_assign_pointer(tbl->listeners, new);
2552 
2553 		kfree_rcu(old, rcu);
2554 	}
2555 	tbl->groups = groups;
2556 
2557 	return 0;
2558 }
2559 
2560 /**
2561  * netlink_change_ngroups - change number of multicast groups
2562  *
2563  * This changes the number of multicast groups that are available
2564  * on a certain netlink family. Note that it is not possible to
2565  * change the number of groups to below 32. Also note that it does
2566  * not implicitly call netlink_clear_multicast_users() when the
2567  * number of groups is reduced.
2568  *
2569  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2570  * @groups: The new number of groups.
2571  */
2572 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2573 {
2574 	int err;
2575 
2576 	netlink_table_grab();
2577 	err = __netlink_change_ngroups(sk, groups);
2578 	netlink_table_ungrab();
2579 
2580 	return err;
2581 }
2582 
2583 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2584 {
2585 	struct sock *sk;
2586 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2587 
2588 	sk_for_each_bound(sk, &tbl->mc_list)
2589 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2590 }
2591 
2592 struct nlmsghdr *
2593 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2594 {
2595 	struct nlmsghdr *nlh;
2596 	int size = nlmsg_msg_size(len);
2597 
2598 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2599 	nlh->nlmsg_type = type;
2600 	nlh->nlmsg_len = size;
2601 	nlh->nlmsg_flags = flags;
2602 	nlh->nlmsg_pid = portid;
2603 	nlh->nlmsg_seq = seq;
2604 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2605 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2606 	return nlh;
2607 }
2608 EXPORT_SYMBOL(__nlmsg_put);
2609 
2610 /*
2611  * It looks a bit ugly.
2612  * It would be better to create kernel thread.
2613  */
2614 
2615 static int netlink_dump(struct sock *sk)
2616 {
2617 	struct netlink_sock *nlk = nlk_sk(sk);
2618 	struct netlink_callback *cb;
2619 	struct sk_buff *skb = NULL;
2620 	struct nlmsghdr *nlh;
2621 	int len, err = -ENOBUFS;
2622 	int alloc_size;
2623 
2624 	mutex_lock(nlk->cb_mutex);
2625 	if (!nlk->cb_running) {
2626 		err = -EINVAL;
2627 		goto errout_skb;
2628 	}
2629 
2630 	cb = &nlk->cb;
2631 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2632 
2633 	if (!netlink_rx_is_mmaped(sk) &&
2634 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2635 		goto errout_skb;
2636 
2637 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2638 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2639 	 * to reduce number of system calls on dump operations, if user
2640 	 * ever provided a big enough buffer.
2641 	 */
2642 	if (alloc_size < nlk->max_recvmsg_len) {
2643 		skb = netlink_alloc_skb(sk,
2644 					nlk->max_recvmsg_len,
2645 					nlk->portid,
2646 					GFP_KERNEL |
2647 					__GFP_NOWARN |
2648 					__GFP_NORETRY);
2649 		/* available room should be exact amount to avoid MSG_TRUNC */
2650 		if (skb)
2651 			skb_reserve(skb, skb_tailroom(skb) -
2652 					 nlk->max_recvmsg_len);
2653 	}
2654 	if (!skb)
2655 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2656 					GFP_KERNEL);
2657 	if (!skb)
2658 		goto errout_skb;
2659 	netlink_skb_set_owner_r(skb, sk);
2660 
2661 	len = cb->dump(skb, cb);
2662 
2663 	if (len > 0) {
2664 		mutex_unlock(nlk->cb_mutex);
2665 
2666 		if (sk_filter(sk, skb))
2667 			kfree_skb(skb);
2668 		else
2669 			__netlink_sendskb(sk, skb);
2670 		return 0;
2671 	}
2672 
2673 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2674 	if (!nlh)
2675 		goto errout_skb;
2676 
2677 	nl_dump_check_consistent(cb, nlh);
2678 
2679 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2680 
2681 	if (sk_filter(sk, skb))
2682 		kfree_skb(skb);
2683 	else
2684 		__netlink_sendskb(sk, skb);
2685 
2686 	if (cb->done)
2687 		cb->done(cb);
2688 
2689 	nlk->cb_running = false;
2690 	mutex_unlock(nlk->cb_mutex);
2691 	module_put(cb->module);
2692 	consume_skb(cb->skb);
2693 	return 0;
2694 
2695 errout_skb:
2696 	mutex_unlock(nlk->cb_mutex);
2697 	kfree_skb(skb);
2698 	return err;
2699 }
2700 
2701 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2702 			 const struct nlmsghdr *nlh,
2703 			 struct netlink_dump_control *control)
2704 {
2705 	struct netlink_callback *cb;
2706 	struct sock *sk;
2707 	struct netlink_sock *nlk;
2708 	int ret;
2709 
2710 	/* Memory mapped dump requests need to be copied to avoid looping
2711 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2712 	 * a reference to the skb.
2713 	 */
2714 	if (netlink_skb_is_mmaped(skb)) {
2715 		skb = skb_copy(skb, GFP_KERNEL);
2716 		if (skb == NULL)
2717 			return -ENOBUFS;
2718 	} else
2719 		atomic_inc(&skb->users);
2720 
2721 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2722 	if (sk == NULL) {
2723 		ret = -ECONNREFUSED;
2724 		goto error_free;
2725 	}
2726 
2727 	nlk = nlk_sk(sk);
2728 	mutex_lock(nlk->cb_mutex);
2729 	/* A dump is in progress... */
2730 	if (nlk->cb_running) {
2731 		ret = -EBUSY;
2732 		goto error_unlock;
2733 	}
2734 	/* add reference of module which cb->dump belongs to */
2735 	if (!try_module_get(control->module)) {
2736 		ret = -EPROTONOSUPPORT;
2737 		goto error_unlock;
2738 	}
2739 
2740 	cb = &nlk->cb;
2741 	memset(cb, 0, sizeof(*cb));
2742 	cb->dump = control->dump;
2743 	cb->done = control->done;
2744 	cb->nlh = nlh;
2745 	cb->data = control->data;
2746 	cb->module = control->module;
2747 	cb->min_dump_alloc = control->min_dump_alloc;
2748 	cb->skb = skb;
2749 
2750 	nlk->cb_running = true;
2751 
2752 	mutex_unlock(nlk->cb_mutex);
2753 
2754 	ret = netlink_dump(sk);
2755 	sock_put(sk);
2756 
2757 	if (ret)
2758 		return ret;
2759 
2760 	/* We successfully started a dump, by returning -EINTR we
2761 	 * signal not to send ACK even if it was requested.
2762 	 */
2763 	return -EINTR;
2764 
2765 error_unlock:
2766 	sock_put(sk);
2767 	mutex_unlock(nlk->cb_mutex);
2768 error_free:
2769 	kfree_skb(skb);
2770 	return ret;
2771 }
2772 EXPORT_SYMBOL(__netlink_dump_start);
2773 
2774 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2775 {
2776 	struct sk_buff *skb;
2777 	struct nlmsghdr *rep;
2778 	struct nlmsgerr *errmsg;
2779 	size_t payload = sizeof(*errmsg);
2780 
2781 	/* error messages get the original request appened */
2782 	if (err)
2783 		payload += nlmsg_len(nlh);
2784 
2785 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2786 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2787 	if (!skb) {
2788 		struct sock *sk;
2789 
2790 		sk = netlink_lookup(sock_net(in_skb->sk),
2791 				    in_skb->sk->sk_protocol,
2792 				    NETLINK_CB(in_skb).portid);
2793 		if (sk) {
2794 			sk->sk_err = ENOBUFS;
2795 			sk->sk_error_report(sk);
2796 			sock_put(sk);
2797 		}
2798 		return;
2799 	}
2800 
2801 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2802 			  NLMSG_ERROR, payload, 0);
2803 	errmsg = nlmsg_data(rep);
2804 	errmsg->error = err;
2805 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2806 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2807 }
2808 EXPORT_SYMBOL(netlink_ack);
2809 
2810 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2811 						     struct nlmsghdr *))
2812 {
2813 	struct nlmsghdr *nlh;
2814 	int err;
2815 
2816 	while (skb->len >= nlmsg_total_size(0)) {
2817 		int msglen;
2818 
2819 		nlh = nlmsg_hdr(skb);
2820 		err = 0;
2821 
2822 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2823 			return 0;
2824 
2825 		/* Only requests are handled by the kernel */
2826 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2827 			goto ack;
2828 
2829 		/* Skip control messages */
2830 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2831 			goto ack;
2832 
2833 		err = cb(skb, nlh);
2834 		if (err == -EINTR)
2835 			goto skip;
2836 
2837 ack:
2838 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2839 			netlink_ack(skb, nlh, err);
2840 
2841 skip:
2842 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2843 		if (msglen > skb->len)
2844 			msglen = skb->len;
2845 		skb_pull(skb, msglen);
2846 	}
2847 
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL(netlink_rcv_skb);
2851 
2852 /**
2853  * nlmsg_notify - send a notification netlink message
2854  * @sk: netlink socket to use
2855  * @skb: notification message
2856  * @portid: destination netlink portid for reports or 0
2857  * @group: destination multicast group or 0
2858  * @report: 1 to report back, 0 to disable
2859  * @flags: allocation flags
2860  */
2861 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2862 		 unsigned int group, int report, gfp_t flags)
2863 {
2864 	int err = 0;
2865 
2866 	if (group) {
2867 		int exclude_portid = 0;
2868 
2869 		if (report) {
2870 			atomic_inc(&skb->users);
2871 			exclude_portid = portid;
2872 		}
2873 
2874 		/* errors reported via destination sk->sk_err, but propagate
2875 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2876 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2877 	}
2878 
2879 	if (report) {
2880 		int err2;
2881 
2882 		err2 = nlmsg_unicast(sk, skb, portid);
2883 		if (!err || err == -ESRCH)
2884 			err = err2;
2885 	}
2886 
2887 	return err;
2888 }
2889 EXPORT_SYMBOL(nlmsg_notify);
2890 
2891 #ifdef CONFIG_PROC_FS
2892 struct nl_seq_iter {
2893 	struct seq_net_private p;
2894 	struct rhashtable_iter hti;
2895 	int link;
2896 };
2897 
2898 static int netlink_walk_start(struct nl_seq_iter *iter)
2899 {
2900 	int err;
2901 
2902 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2903 	if (err) {
2904 		iter->link = MAX_LINKS;
2905 		return err;
2906 	}
2907 
2908 	err = rhashtable_walk_start(&iter->hti);
2909 	return err == -EAGAIN ? 0 : err;
2910 }
2911 
2912 static void netlink_walk_stop(struct nl_seq_iter *iter)
2913 {
2914 	rhashtable_walk_stop(&iter->hti);
2915 	rhashtable_walk_exit(&iter->hti);
2916 }
2917 
2918 static void *__netlink_seq_next(struct seq_file *seq)
2919 {
2920 	struct nl_seq_iter *iter = seq->private;
2921 	struct netlink_sock *nlk;
2922 
2923 	do {
2924 		for (;;) {
2925 			int err;
2926 
2927 			nlk = rhashtable_walk_next(&iter->hti);
2928 
2929 			if (IS_ERR(nlk)) {
2930 				if (PTR_ERR(nlk) == -EAGAIN)
2931 					continue;
2932 
2933 				return nlk;
2934 			}
2935 
2936 			if (nlk)
2937 				break;
2938 
2939 			netlink_walk_stop(iter);
2940 			if (++iter->link >= MAX_LINKS)
2941 				return NULL;
2942 
2943 			err = netlink_walk_start(iter);
2944 			if (err)
2945 				return ERR_PTR(err);
2946 		}
2947 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
2948 
2949 	return nlk;
2950 }
2951 
2952 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
2953 {
2954 	struct nl_seq_iter *iter = seq->private;
2955 	void *obj = SEQ_START_TOKEN;
2956 	loff_t pos;
2957 	int err;
2958 
2959 	iter->link = 0;
2960 
2961 	err = netlink_walk_start(iter);
2962 	if (err)
2963 		return ERR_PTR(err);
2964 
2965 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
2966 		obj = __netlink_seq_next(seq);
2967 
2968 	return obj;
2969 }
2970 
2971 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2972 {
2973 	++*pos;
2974 	return __netlink_seq_next(seq);
2975 }
2976 
2977 static void netlink_seq_stop(struct seq_file *seq, void *v)
2978 {
2979 	struct nl_seq_iter *iter = seq->private;
2980 
2981 	if (iter->link >= MAX_LINKS)
2982 		return;
2983 
2984 	netlink_walk_stop(iter);
2985 }
2986 
2987 
2988 static int netlink_seq_show(struct seq_file *seq, void *v)
2989 {
2990 	if (v == SEQ_START_TOKEN) {
2991 		seq_puts(seq,
2992 			 "sk       Eth Pid    Groups   "
2993 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
2994 	} else {
2995 		struct sock *s = v;
2996 		struct netlink_sock *nlk = nlk_sk(s);
2997 
2998 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
2999 			   s,
3000 			   s->sk_protocol,
3001 			   nlk->portid,
3002 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3003 			   sk_rmem_alloc_get(s),
3004 			   sk_wmem_alloc_get(s),
3005 			   nlk->cb_running,
3006 			   atomic_read(&s->sk_refcnt),
3007 			   atomic_read(&s->sk_drops),
3008 			   sock_i_ino(s)
3009 			);
3010 
3011 	}
3012 	return 0;
3013 }
3014 
3015 static const struct seq_operations netlink_seq_ops = {
3016 	.start  = netlink_seq_start,
3017 	.next   = netlink_seq_next,
3018 	.stop   = netlink_seq_stop,
3019 	.show   = netlink_seq_show,
3020 };
3021 
3022 
3023 static int netlink_seq_open(struct inode *inode, struct file *file)
3024 {
3025 	return seq_open_net(inode, file, &netlink_seq_ops,
3026 				sizeof(struct nl_seq_iter));
3027 }
3028 
3029 static const struct file_operations netlink_seq_fops = {
3030 	.owner		= THIS_MODULE,
3031 	.open		= netlink_seq_open,
3032 	.read		= seq_read,
3033 	.llseek		= seq_lseek,
3034 	.release	= seq_release_net,
3035 };
3036 
3037 #endif
3038 
3039 int netlink_register_notifier(struct notifier_block *nb)
3040 {
3041 	return atomic_notifier_chain_register(&netlink_chain, nb);
3042 }
3043 EXPORT_SYMBOL(netlink_register_notifier);
3044 
3045 int netlink_unregister_notifier(struct notifier_block *nb)
3046 {
3047 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3048 }
3049 EXPORT_SYMBOL(netlink_unregister_notifier);
3050 
3051 static const struct proto_ops netlink_ops = {
3052 	.family =	PF_NETLINK,
3053 	.owner =	THIS_MODULE,
3054 	.release =	netlink_release,
3055 	.bind =		netlink_bind,
3056 	.connect =	netlink_connect,
3057 	.socketpair =	sock_no_socketpair,
3058 	.accept =	sock_no_accept,
3059 	.getname =	netlink_getname,
3060 	.poll =		netlink_poll,
3061 	.ioctl =	sock_no_ioctl,
3062 	.listen =	sock_no_listen,
3063 	.shutdown =	sock_no_shutdown,
3064 	.setsockopt =	netlink_setsockopt,
3065 	.getsockopt =	netlink_getsockopt,
3066 	.sendmsg =	netlink_sendmsg,
3067 	.recvmsg =	netlink_recvmsg,
3068 	.mmap =		netlink_mmap,
3069 	.sendpage =	sock_no_sendpage,
3070 };
3071 
3072 static const struct net_proto_family netlink_family_ops = {
3073 	.family = PF_NETLINK,
3074 	.create = netlink_create,
3075 	.owner	= THIS_MODULE,	/* for consistency 8) */
3076 };
3077 
3078 static int __net_init netlink_net_init(struct net *net)
3079 {
3080 #ifdef CONFIG_PROC_FS
3081 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3082 		return -ENOMEM;
3083 #endif
3084 	return 0;
3085 }
3086 
3087 static void __net_exit netlink_net_exit(struct net *net)
3088 {
3089 #ifdef CONFIG_PROC_FS
3090 	remove_proc_entry("netlink", net->proc_net);
3091 #endif
3092 }
3093 
3094 static void __init netlink_add_usersock_entry(void)
3095 {
3096 	struct listeners *listeners;
3097 	int groups = 32;
3098 
3099 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3100 	if (!listeners)
3101 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3102 
3103 	netlink_table_grab();
3104 
3105 	nl_table[NETLINK_USERSOCK].groups = groups;
3106 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3107 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3108 	nl_table[NETLINK_USERSOCK].registered = 1;
3109 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3110 
3111 	netlink_table_ungrab();
3112 }
3113 
3114 static struct pernet_operations __net_initdata netlink_net_ops = {
3115 	.init = netlink_net_init,
3116 	.exit = netlink_net_exit,
3117 };
3118 
3119 static int __init netlink_proto_init(void)
3120 {
3121 	int i;
3122 	int err = proto_register(&netlink_proto, 0);
3123 	struct rhashtable_params ht_params = {
3124 		.head_offset = offsetof(struct netlink_sock, node),
3125 		.key_offset = offsetof(struct netlink_sock, portid),
3126 		.key_len = sizeof(u32), /* portid */
3127 		.hashfn = jhash,
3128 		.max_shift = 16, /* 64K */
3129 		.grow_decision = rht_grow_above_75,
3130 		.shrink_decision = rht_shrink_below_30,
3131 	};
3132 
3133 	if (err != 0)
3134 		goto out;
3135 
3136 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3137 
3138 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3139 	if (!nl_table)
3140 		goto panic;
3141 
3142 	for (i = 0; i < MAX_LINKS; i++) {
3143 		if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3144 			while (--i > 0)
3145 				rhashtable_destroy(&nl_table[i].hash);
3146 			kfree(nl_table);
3147 			goto panic;
3148 		}
3149 	}
3150 
3151 	INIT_LIST_HEAD(&netlink_tap_all);
3152 
3153 	netlink_add_usersock_entry();
3154 
3155 	sock_register(&netlink_family_ops);
3156 	register_pernet_subsys(&netlink_net_ops);
3157 	/* The netlink device handler may be needed early. */
3158 	rtnetlink_init();
3159 out:
3160 	return err;
3161 panic:
3162 	panic("netlink_init: Cannot allocate nl_table\n");
3163 }
3164 
3165 core_initcall(netlink_proto_init);
3166