1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 #define NETLINK_F_CAP_ACK 0x20 88 89 static inline int netlink_is_kernel(struct sock *sk) 90 { 91 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 92 } 93 94 struct netlink_table *nl_table __read_mostly; 95 EXPORT_SYMBOL_GPL(nl_table); 96 97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 98 99 static int netlink_dump(struct sock *sk); 100 static void netlink_skb_destructor(struct sk_buff *skb); 101 102 /* nl_table locking explained: 103 * Lookup and traversal are protected with an RCU read-side lock. Insertion 104 * and removal are protected with per bucket lock while using RCU list 105 * modification primitives and may run in parallel to RCU protected lookups. 106 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 107 * been acquired * either during or after the socket has been removed from 108 * the list and after an RCU grace period. 109 */ 110 DEFINE_RWLOCK(nl_table_lock); 111 EXPORT_SYMBOL_GPL(nl_table_lock); 112 static atomic_t nl_table_users = ATOMIC_INIT(0); 113 114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 115 116 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 117 118 static DEFINE_SPINLOCK(netlink_tap_lock); 119 static struct list_head netlink_tap_all __read_mostly; 120 121 static const struct rhashtable_params netlink_rhashtable_params; 122 123 static inline u32 netlink_group_mask(u32 group) 124 { 125 return group ? 1 << (group - 1) : 0; 126 } 127 128 int netlink_add_tap(struct netlink_tap *nt) 129 { 130 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 131 return -EINVAL; 132 133 spin_lock(&netlink_tap_lock); 134 list_add_rcu(&nt->list, &netlink_tap_all); 135 spin_unlock(&netlink_tap_lock); 136 137 __module_get(nt->module); 138 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(netlink_add_tap); 142 143 static int __netlink_remove_tap(struct netlink_tap *nt) 144 { 145 bool found = false; 146 struct netlink_tap *tmp; 147 148 spin_lock(&netlink_tap_lock); 149 150 list_for_each_entry(tmp, &netlink_tap_all, list) { 151 if (nt == tmp) { 152 list_del_rcu(&nt->list); 153 found = true; 154 goto out; 155 } 156 } 157 158 pr_warn("__netlink_remove_tap: %p not found\n", nt); 159 out: 160 spin_unlock(&netlink_tap_lock); 161 162 if (found) 163 module_put(nt->module); 164 165 return found ? 0 : -ENODEV; 166 } 167 168 int netlink_remove_tap(struct netlink_tap *nt) 169 { 170 int ret; 171 172 ret = __netlink_remove_tap(nt); 173 synchronize_net(); 174 175 return ret; 176 } 177 EXPORT_SYMBOL_GPL(netlink_remove_tap); 178 179 static bool netlink_filter_tap(const struct sk_buff *skb) 180 { 181 struct sock *sk = skb->sk; 182 183 /* We take the more conservative approach and 184 * whitelist socket protocols that may pass. 185 */ 186 switch (sk->sk_protocol) { 187 case NETLINK_ROUTE: 188 case NETLINK_USERSOCK: 189 case NETLINK_SOCK_DIAG: 190 case NETLINK_NFLOG: 191 case NETLINK_XFRM: 192 case NETLINK_FIB_LOOKUP: 193 case NETLINK_NETFILTER: 194 case NETLINK_GENERIC: 195 return true; 196 } 197 198 return false; 199 } 200 201 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 202 struct net_device *dev) 203 { 204 struct sk_buff *nskb; 205 struct sock *sk = skb->sk; 206 int ret = -ENOMEM; 207 208 dev_hold(dev); 209 nskb = skb_clone(skb, GFP_ATOMIC); 210 if (nskb) { 211 nskb->dev = dev; 212 nskb->protocol = htons((u16) sk->sk_protocol); 213 nskb->pkt_type = netlink_is_kernel(sk) ? 214 PACKET_KERNEL : PACKET_USER; 215 skb_reset_network_header(nskb); 216 ret = dev_queue_xmit(nskb); 217 if (unlikely(ret > 0)) 218 ret = net_xmit_errno(ret); 219 } 220 221 dev_put(dev); 222 return ret; 223 } 224 225 static void __netlink_deliver_tap(struct sk_buff *skb) 226 { 227 int ret; 228 struct netlink_tap *tmp; 229 230 if (!netlink_filter_tap(skb)) 231 return; 232 233 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 234 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 235 if (unlikely(ret)) 236 break; 237 } 238 } 239 240 static void netlink_deliver_tap(struct sk_buff *skb) 241 { 242 rcu_read_lock(); 243 244 if (unlikely(!list_empty(&netlink_tap_all))) 245 __netlink_deliver_tap(skb); 246 247 rcu_read_unlock(); 248 } 249 250 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 251 struct sk_buff *skb) 252 { 253 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 254 netlink_deliver_tap(skb); 255 } 256 257 static void netlink_overrun(struct sock *sk) 258 { 259 struct netlink_sock *nlk = nlk_sk(sk); 260 261 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 262 if (!test_and_set_bit(NETLINK_S_CONGESTED, 263 &nlk_sk(sk)->state)) { 264 sk->sk_err = ENOBUFS; 265 sk->sk_error_report(sk); 266 } 267 } 268 atomic_inc(&sk->sk_drops); 269 } 270 271 static void netlink_rcv_wake(struct sock *sk) 272 { 273 struct netlink_sock *nlk = nlk_sk(sk); 274 275 if (skb_queue_empty(&sk->sk_receive_queue)) 276 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 277 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 278 wake_up_interruptible(&nlk->wait); 279 } 280 281 #ifdef CONFIG_NETLINK_MMAP 282 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 283 { 284 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 285 } 286 287 static bool netlink_rx_is_mmaped(struct sock *sk) 288 { 289 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 290 } 291 292 static bool netlink_tx_is_mmaped(struct sock *sk) 293 { 294 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 295 } 296 297 static __pure struct page *pgvec_to_page(const void *addr) 298 { 299 if (is_vmalloc_addr(addr)) 300 return vmalloc_to_page(addr); 301 else 302 return virt_to_page(addr); 303 } 304 305 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 306 { 307 unsigned int i; 308 309 for (i = 0; i < len; i++) { 310 if (pg_vec[i] != NULL) { 311 if (is_vmalloc_addr(pg_vec[i])) 312 vfree(pg_vec[i]); 313 else 314 free_pages((unsigned long)pg_vec[i], order); 315 } 316 } 317 kfree(pg_vec); 318 } 319 320 static void *alloc_one_pg_vec_page(unsigned long order) 321 { 322 void *buffer; 323 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 324 __GFP_NOWARN | __GFP_NORETRY; 325 326 buffer = (void *)__get_free_pages(gfp_flags, order); 327 if (buffer != NULL) 328 return buffer; 329 330 buffer = vzalloc((1 << order) * PAGE_SIZE); 331 if (buffer != NULL) 332 return buffer; 333 334 gfp_flags &= ~__GFP_NORETRY; 335 return (void *)__get_free_pages(gfp_flags, order); 336 } 337 338 static void **alloc_pg_vec(struct netlink_sock *nlk, 339 struct nl_mmap_req *req, unsigned int order) 340 { 341 unsigned int block_nr = req->nm_block_nr; 342 unsigned int i; 343 void **pg_vec; 344 345 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 346 if (pg_vec == NULL) 347 return NULL; 348 349 for (i = 0; i < block_nr; i++) { 350 pg_vec[i] = alloc_one_pg_vec_page(order); 351 if (pg_vec[i] == NULL) 352 goto err1; 353 } 354 355 return pg_vec; 356 err1: 357 free_pg_vec(pg_vec, order, block_nr); 358 return NULL; 359 } 360 361 362 static void 363 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec, 364 unsigned int order) 365 { 366 struct netlink_sock *nlk = nlk_sk(sk); 367 struct sk_buff_head *queue; 368 struct netlink_ring *ring; 369 370 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 371 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 372 373 spin_lock_bh(&queue->lock); 374 375 ring->frame_max = req->nm_frame_nr - 1; 376 ring->head = 0; 377 ring->frame_size = req->nm_frame_size; 378 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 379 380 swap(ring->pg_vec_len, req->nm_block_nr); 381 swap(ring->pg_vec_order, order); 382 swap(ring->pg_vec, pg_vec); 383 384 __skb_queue_purge(queue); 385 spin_unlock_bh(&queue->lock); 386 387 WARN_ON(atomic_read(&nlk->mapped)); 388 389 if (pg_vec) 390 free_pg_vec(pg_vec, order, req->nm_block_nr); 391 } 392 393 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 394 bool tx_ring) 395 { 396 struct netlink_sock *nlk = nlk_sk(sk); 397 struct netlink_ring *ring; 398 void **pg_vec = NULL; 399 unsigned int order = 0; 400 401 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 402 403 if (atomic_read(&nlk->mapped)) 404 return -EBUSY; 405 if (atomic_read(&ring->pending)) 406 return -EBUSY; 407 408 if (req->nm_block_nr) { 409 if (ring->pg_vec != NULL) 410 return -EBUSY; 411 412 if ((int)req->nm_block_size <= 0) 413 return -EINVAL; 414 if (!PAGE_ALIGNED(req->nm_block_size)) 415 return -EINVAL; 416 if (req->nm_frame_size < NL_MMAP_HDRLEN) 417 return -EINVAL; 418 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 419 return -EINVAL; 420 421 ring->frames_per_block = req->nm_block_size / 422 req->nm_frame_size; 423 if (ring->frames_per_block == 0) 424 return -EINVAL; 425 if (ring->frames_per_block * req->nm_block_nr != 426 req->nm_frame_nr) 427 return -EINVAL; 428 429 order = get_order(req->nm_block_size); 430 pg_vec = alloc_pg_vec(nlk, req, order); 431 if (pg_vec == NULL) 432 return -ENOMEM; 433 } else { 434 if (req->nm_frame_nr) 435 return -EINVAL; 436 } 437 438 mutex_lock(&nlk->pg_vec_lock); 439 if (atomic_read(&nlk->mapped) == 0) { 440 __netlink_set_ring(sk, req, tx_ring, pg_vec, order); 441 mutex_unlock(&nlk->pg_vec_lock); 442 return 0; 443 } 444 445 mutex_unlock(&nlk->pg_vec_lock); 446 447 if (pg_vec) 448 free_pg_vec(pg_vec, order, req->nm_block_nr); 449 450 return -EBUSY; 451 } 452 453 static void netlink_mm_open(struct vm_area_struct *vma) 454 { 455 struct file *file = vma->vm_file; 456 struct socket *sock = file->private_data; 457 struct sock *sk = sock->sk; 458 459 if (sk) 460 atomic_inc(&nlk_sk(sk)->mapped); 461 } 462 463 static void netlink_mm_close(struct vm_area_struct *vma) 464 { 465 struct file *file = vma->vm_file; 466 struct socket *sock = file->private_data; 467 struct sock *sk = sock->sk; 468 469 if (sk) 470 atomic_dec(&nlk_sk(sk)->mapped); 471 } 472 473 static const struct vm_operations_struct netlink_mmap_ops = { 474 .open = netlink_mm_open, 475 .close = netlink_mm_close, 476 }; 477 478 static int netlink_mmap(struct file *file, struct socket *sock, 479 struct vm_area_struct *vma) 480 { 481 struct sock *sk = sock->sk; 482 struct netlink_sock *nlk = nlk_sk(sk); 483 struct netlink_ring *ring; 484 unsigned long start, size, expected; 485 unsigned int i; 486 int err = -EINVAL; 487 488 if (vma->vm_pgoff) 489 return -EINVAL; 490 491 mutex_lock(&nlk->pg_vec_lock); 492 493 expected = 0; 494 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 495 if (ring->pg_vec == NULL) 496 continue; 497 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 498 } 499 500 if (expected == 0) 501 goto out; 502 503 size = vma->vm_end - vma->vm_start; 504 if (size != expected) 505 goto out; 506 507 start = vma->vm_start; 508 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 509 if (ring->pg_vec == NULL) 510 continue; 511 512 for (i = 0; i < ring->pg_vec_len; i++) { 513 struct page *page; 514 void *kaddr = ring->pg_vec[i]; 515 unsigned int pg_num; 516 517 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 518 page = pgvec_to_page(kaddr); 519 err = vm_insert_page(vma, start, page); 520 if (err < 0) 521 goto out; 522 start += PAGE_SIZE; 523 kaddr += PAGE_SIZE; 524 } 525 } 526 } 527 528 atomic_inc(&nlk->mapped); 529 vma->vm_ops = &netlink_mmap_ops; 530 err = 0; 531 out: 532 mutex_unlock(&nlk->pg_vec_lock); 533 return err; 534 } 535 536 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 537 { 538 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 539 struct page *p_start, *p_end; 540 541 /* First page is flushed through netlink_{get,set}_status */ 542 p_start = pgvec_to_page(hdr + PAGE_SIZE); 543 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 544 while (p_start <= p_end) { 545 flush_dcache_page(p_start); 546 p_start++; 547 } 548 #endif 549 } 550 551 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 552 { 553 smp_rmb(); 554 flush_dcache_page(pgvec_to_page(hdr)); 555 return hdr->nm_status; 556 } 557 558 static void netlink_set_status(struct nl_mmap_hdr *hdr, 559 enum nl_mmap_status status) 560 { 561 smp_mb(); 562 hdr->nm_status = status; 563 flush_dcache_page(pgvec_to_page(hdr)); 564 } 565 566 static struct nl_mmap_hdr * 567 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 568 { 569 unsigned int pg_vec_pos, frame_off; 570 571 pg_vec_pos = pos / ring->frames_per_block; 572 frame_off = pos % ring->frames_per_block; 573 574 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 575 } 576 577 static struct nl_mmap_hdr * 578 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 579 enum nl_mmap_status status) 580 { 581 struct nl_mmap_hdr *hdr; 582 583 hdr = __netlink_lookup_frame(ring, pos); 584 if (netlink_get_status(hdr) != status) 585 return NULL; 586 587 return hdr; 588 } 589 590 static struct nl_mmap_hdr * 591 netlink_current_frame(const struct netlink_ring *ring, 592 enum nl_mmap_status status) 593 { 594 return netlink_lookup_frame(ring, ring->head, status); 595 } 596 597 static void netlink_increment_head(struct netlink_ring *ring) 598 { 599 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 600 } 601 602 static void netlink_forward_ring(struct netlink_ring *ring) 603 { 604 unsigned int head = ring->head; 605 const struct nl_mmap_hdr *hdr; 606 607 do { 608 hdr = __netlink_lookup_frame(ring, ring->head); 609 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 610 break; 611 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 612 break; 613 netlink_increment_head(ring); 614 } while (ring->head != head); 615 } 616 617 static bool netlink_has_valid_frame(struct netlink_ring *ring) 618 { 619 unsigned int head = ring->head, pos = head; 620 const struct nl_mmap_hdr *hdr; 621 622 do { 623 hdr = __netlink_lookup_frame(ring, pos); 624 if (hdr->nm_status == NL_MMAP_STATUS_VALID) 625 return true; 626 pos = pos != 0 ? pos - 1 : ring->frame_max; 627 } while (pos != head); 628 629 return false; 630 } 631 632 static bool netlink_dump_space(struct netlink_sock *nlk) 633 { 634 struct netlink_ring *ring = &nlk->rx_ring; 635 struct nl_mmap_hdr *hdr; 636 unsigned int n; 637 638 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 639 if (hdr == NULL) 640 return false; 641 642 n = ring->head + ring->frame_max / 2; 643 if (n > ring->frame_max) 644 n -= ring->frame_max; 645 646 hdr = __netlink_lookup_frame(ring, n); 647 648 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 649 } 650 651 static unsigned int netlink_poll(struct file *file, struct socket *sock, 652 poll_table *wait) 653 { 654 struct sock *sk = sock->sk; 655 struct netlink_sock *nlk = nlk_sk(sk); 656 unsigned int mask; 657 int err; 658 659 if (nlk->rx_ring.pg_vec != NULL) { 660 /* Memory mapped sockets don't call recvmsg(), so flow control 661 * for dumps is performed here. A dump is allowed to continue 662 * if at least half the ring is unused. 663 */ 664 while (nlk->cb_running && netlink_dump_space(nlk)) { 665 err = netlink_dump(sk); 666 if (err < 0) { 667 sk->sk_err = -err; 668 sk->sk_error_report(sk); 669 break; 670 } 671 } 672 netlink_rcv_wake(sk); 673 } 674 675 mask = datagram_poll(file, sock, wait); 676 677 spin_lock_bh(&sk->sk_receive_queue.lock); 678 if (nlk->rx_ring.pg_vec) { 679 if (netlink_has_valid_frame(&nlk->rx_ring)) 680 mask |= POLLIN | POLLRDNORM; 681 } 682 spin_unlock_bh(&sk->sk_receive_queue.lock); 683 684 spin_lock_bh(&sk->sk_write_queue.lock); 685 if (nlk->tx_ring.pg_vec) { 686 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 687 mask |= POLLOUT | POLLWRNORM; 688 } 689 spin_unlock_bh(&sk->sk_write_queue.lock); 690 691 return mask; 692 } 693 694 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 695 { 696 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 697 } 698 699 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 700 struct netlink_ring *ring, 701 struct nl_mmap_hdr *hdr) 702 { 703 unsigned int size; 704 void *data; 705 706 size = ring->frame_size - NL_MMAP_HDRLEN; 707 data = (void *)hdr + NL_MMAP_HDRLEN; 708 709 skb->head = data; 710 skb->data = data; 711 skb_reset_tail_pointer(skb); 712 skb->end = skb->tail + size; 713 skb->len = 0; 714 715 skb->destructor = netlink_skb_destructor; 716 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 717 NETLINK_CB(skb).sk = sk; 718 } 719 720 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 721 u32 dst_portid, u32 dst_group, 722 struct scm_cookie *scm) 723 { 724 struct netlink_sock *nlk = nlk_sk(sk); 725 struct netlink_ring *ring; 726 struct nl_mmap_hdr *hdr; 727 struct sk_buff *skb; 728 unsigned int maxlen; 729 int err = 0, len = 0; 730 731 mutex_lock(&nlk->pg_vec_lock); 732 733 ring = &nlk->tx_ring; 734 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 735 736 do { 737 unsigned int nm_len; 738 739 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 740 if (hdr == NULL) { 741 if (!(msg->msg_flags & MSG_DONTWAIT) && 742 atomic_read(&nlk->tx_ring.pending)) 743 schedule(); 744 continue; 745 } 746 747 nm_len = ACCESS_ONCE(hdr->nm_len); 748 if (nm_len > maxlen) { 749 err = -EINVAL; 750 goto out; 751 } 752 753 netlink_frame_flush_dcache(hdr, nm_len); 754 755 skb = alloc_skb(nm_len, GFP_KERNEL); 756 if (skb == NULL) { 757 err = -ENOBUFS; 758 goto out; 759 } 760 __skb_put(skb, nm_len); 761 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 762 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 763 764 netlink_increment_head(ring); 765 766 NETLINK_CB(skb).portid = nlk->portid; 767 NETLINK_CB(skb).dst_group = dst_group; 768 NETLINK_CB(skb).creds = scm->creds; 769 770 err = security_netlink_send(sk, skb); 771 if (err) { 772 kfree_skb(skb); 773 goto out; 774 } 775 776 if (unlikely(dst_group)) { 777 atomic_inc(&skb->users); 778 netlink_broadcast(sk, skb, dst_portid, dst_group, 779 GFP_KERNEL); 780 } 781 err = netlink_unicast(sk, skb, dst_portid, 782 msg->msg_flags & MSG_DONTWAIT); 783 if (err < 0) 784 goto out; 785 len += err; 786 787 } while (hdr != NULL || 788 (!(msg->msg_flags & MSG_DONTWAIT) && 789 atomic_read(&nlk->tx_ring.pending))); 790 791 if (len > 0) 792 err = len; 793 out: 794 mutex_unlock(&nlk->pg_vec_lock); 795 return err; 796 } 797 798 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 799 { 800 struct nl_mmap_hdr *hdr; 801 802 hdr = netlink_mmap_hdr(skb); 803 hdr->nm_len = skb->len; 804 hdr->nm_group = NETLINK_CB(skb).dst_group; 805 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 806 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 807 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 808 netlink_frame_flush_dcache(hdr, hdr->nm_len); 809 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 810 811 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 812 kfree_skb(skb); 813 } 814 815 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 816 { 817 struct netlink_sock *nlk = nlk_sk(sk); 818 struct netlink_ring *ring = &nlk->rx_ring; 819 struct nl_mmap_hdr *hdr; 820 821 spin_lock_bh(&sk->sk_receive_queue.lock); 822 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 823 if (hdr == NULL) { 824 spin_unlock_bh(&sk->sk_receive_queue.lock); 825 kfree_skb(skb); 826 netlink_overrun(sk); 827 return; 828 } 829 netlink_increment_head(ring); 830 __skb_queue_tail(&sk->sk_receive_queue, skb); 831 spin_unlock_bh(&sk->sk_receive_queue.lock); 832 833 hdr->nm_len = skb->len; 834 hdr->nm_group = NETLINK_CB(skb).dst_group; 835 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 836 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 837 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 838 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 839 } 840 841 #else /* CONFIG_NETLINK_MMAP */ 842 #define netlink_skb_is_mmaped(skb) false 843 #define netlink_rx_is_mmaped(sk) false 844 #define netlink_tx_is_mmaped(sk) false 845 #define netlink_mmap sock_no_mmap 846 #define netlink_poll datagram_poll 847 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 848 #endif /* CONFIG_NETLINK_MMAP */ 849 850 static void netlink_skb_destructor(struct sk_buff *skb) 851 { 852 #ifdef CONFIG_NETLINK_MMAP 853 struct nl_mmap_hdr *hdr; 854 struct netlink_ring *ring; 855 struct sock *sk; 856 857 /* If a packet from the kernel to userspace was freed because of an 858 * error without being delivered to userspace, the kernel must reset 859 * the status. In the direction userspace to kernel, the status is 860 * always reset here after the packet was processed and freed. 861 */ 862 if (netlink_skb_is_mmaped(skb)) { 863 hdr = netlink_mmap_hdr(skb); 864 sk = NETLINK_CB(skb).sk; 865 866 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 867 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 868 ring = &nlk_sk(sk)->tx_ring; 869 } else { 870 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 871 hdr->nm_len = 0; 872 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 873 } 874 ring = &nlk_sk(sk)->rx_ring; 875 } 876 877 WARN_ON(atomic_read(&ring->pending) == 0); 878 atomic_dec(&ring->pending); 879 sock_put(sk); 880 881 skb->head = NULL; 882 } 883 #endif 884 if (is_vmalloc_addr(skb->head)) { 885 if (!skb->cloned || 886 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 887 vfree(skb->head); 888 889 skb->head = NULL; 890 } 891 if (skb->sk != NULL) 892 sock_rfree(skb); 893 } 894 895 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 896 { 897 WARN_ON(skb->sk != NULL); 898 skb->sk = sk; 899 skb->destructor = netlink_skb_destructor; 900 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 901 sk_mem_charge(sk, skb->truesize); 902 } 903 904 static void netlink_sock_destruct(struct sock *sk) 905 { 906 struct netlink_sock *nlk = nlk_sk(sk); 907 908 if (nlk->cb_running) { 909 if (nlk->cb.done) 910 nlk->cb.done(&nlk->cb); 911 912 module_put(nlk->cb.module); 913 kfree_skb(nlk->cb.skb); 914 } 915 916 skb_queue_purge(&sk->sk_receive_queue); 917 #ifdef CONFIG_NETLINK_MMAP 918 if (1) { 919 struct nl_mmap_req req; 920 921 memset(&req, 0, sizeof(req)); 922 if (nlk->rx_ring.pg_vec) 923 __netlink_set_ring(sk, &req, false, NULL, 0); 924 memset(&req, 0, sizeof(req)); 925 if (nlk->tx_ring.pg_vec) 926 __netlink_set_ring(sk, &req, true, NULL, 0); 927 } 928 #endif /* CONFIG_NETLINK_MMAP */ 929 930 if (!sock_flag(sk, SOCK_DEAD)) { 931 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 932 return; 933 } 934 935 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 936 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 937 WARN_ON(nlk_sk(sk)->groups); 938 } 939 940 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 941 * SMP. Look, when several writers sleep and reader wakes them up, all but one 942 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 943 * this, _but_ remember, it adds useless work on UP machines. 944 */ 945 946 void netlink_table_grab(void) 947 __acquires(nl_table_lock) 948 { 949 might_sleep(); 950 951 write_lock_irq(&nl_table_lock); 952 953 if (atomic_read(&nl_table_users)) { 954 DECLARE_WAITQUEUE(wait, current); 955 956 add_wait_queue_exclusive(&nl_table_wait, &wait); 957 for (;;) { 958 set_current_state(TASK_UNINTERRUPTIBLE); 959 if (atomic_read(&nl_table_users) == 0) 960 break; 961 write_unlock_irq(&nl_table_lock); 962 schedule(); 963 write_lock_irq(&nl_table_lock); 964 } 965 966 __set_current_state(TASK_RUNNING); 967 remove_wait_queue(&nl_table_wait, &wait); 968 } 969 } 970 971 void netlink_table_ungrab(void) 972 __releases(nl_table_lock) 973 { 974 write_unlock_irq(&nl_table_lock); 975 wake_up(&nl_table_wait); 976 } 977 978 static inline void 979 netlink_lock_table(void) 980 { 981 /* read_lock() synchronizes us to netlink_table_grab */ 982 983 read_lock(&nl_table_lock); 984 atomic_inc(&nl_table_users); 985 read_unlock(&nl_table_lock); 986 } 987 988 static inline void 989 netlink_unlock_table(void) 990 { 991 if (atomic_dec_and_test(&nl_table_users)) 992 wake_up(&nl_table_wait); 993 } 994 995 struct netlink_compare_arg 996 { 997 possible_net_t pnet; 998 u32 portid; 999 }; 1000 1001 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 1002 #define netlink_compare_arg_len \ 1003 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 1004 1005 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 1006 const void *ptr) 1007 { 1008 const struct netlink_compare_arg *x = arg->key; 1009 const struct netlink_sock *nlk = ptr; 1010 1011 return nlk->portid != x->portid || 1012 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 1013 } 1014 1015 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 1016 struct net *net, u32 portid) 1017 { 1018 memset(arg, 0, sizeof(*arg)); 1019 write_pnet(&arg->pnet, net); 1020 arg->portid = portid; 1021 } 1022 1023 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1024 struct net *net) 1025 { 1026 struct netlink_compare_arg arg; 1027 1028 netlink_compare_arg_init(&arg, net, portid); 1029 return rhashtable_lookup_fast(&table->hash, &arg, 1030 netlink_rhashtable_params); 1031 } 1032 1033 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 1034 { 1035 struct netlink_compare_arg arg; 1036 1037 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 1038 return rhashtable_lookup_insert_key(&table->hash, &arg, 1039 &nlk_sk(sk)->node, 1040 netlink_rhashtable_params); 1041 } 1042 1043 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1044 { 1045 struct netlink_table *table = &nl_table[protocol]; 1046 struct sock *sk; 1047 1048 rcu_read_lock(); 1049 sk = __netlink_lookup(table, portid, net); 1050 if (sk) 1051 sock_hold(sk); 1052 rcu_read_unlock(); 1053 1054 return sk; 1055 } 1056 1057 static const struct proto_ops netlink_ops; 1058 1059 static void 1060 netlink_update_listeners(struct sock *sk) 1061 { 1062 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1063 unsigned long mask; 1064 unsigned int i; 1065 struct listeners *listeners; 1066 1067 listeners = nl_deref_protected(tbl->listeners); 1068 if (!listeners) 1069 return; 1070 1071 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1072 mask = 0; 1073 sk_for_each_bound(sk, &tbl->mc_list) { 1074 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1075 mask |= nlk_sk(sk)->groups[i]; 1076 } 1077 listeners->masks[i] = mask; 1078 } 1079 /* this function is only called with the netlink table "grabbed", which 1080 * makes sure updates are visible before bind or setsockopt return. */ 1081 } 1082 1083 static int netlink_insert(struct sock *sk, u32 portid) 1084 { 1085 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1086 int err; 1087 1088 lock_sock(sk); 1089 1090 err = -EBUSY; 1091 if (nlk_sk(sk)->portid) 1092 goto err; 1093 1094 err = -ENOMEM; 1095 if (BITS_PER_LONG > 32 && 1096 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1097 goto err; 1098 1099 nlk_sk(sk)->portid = portid; 1100 sock_hold(sk); 1101 1102 err = __netlink_insert(table, sk); 1103 if (err) { 1104 /* In case the hashtable backend returns with -EBUSY 1105 * from here, it must not escape to the caller. 1106 */ 1107 if (unlikely(err == -EBUSY)) 1108 err = -EOVERFLOW; 1109 if (err == -EEXIST) 1110 err = -EADDRINUSE; 1111 nlk_sk(sk)->portid = 0; 1112 sock_put(sk); 1113 } 1114 1115 err: 1116 release_sock(sk); 1117 return err; 1118 } 1119 1120 static void netlink_remove(struct sock *sk) 1121 { 1122 struct netlink_table *table; 1123 1124 table = &nl_table[sk->sk_protocol]; 1125 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 1126 netlink_rhashtable_params)) { 1127 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1128 __sock_put(sk); 1129 } 1130 1131 netlink_table_grab(); 1132 if (nlk_sk(sk)->subscriptions) { 1133 __sk_del_bind_node(sk); 1134 netlink_update_listeners(sk); 1135 } 1136 if (sk->sk_protocol == NETLINK_GENERIC) 1137 atomic_inc(&genl_sk_destructing_cnt); 1138 netlink_table_ungrab(); 1139 } 1140 1141 static struct proto netlink_proto = { 1142 .name = "NETLINK", 1143 .owner = THIS_MODULE, 1144 .obj_size = sizeof(struct netlink_sock), 1145 }; 1146 1147 static int __netlink_create(struct net *net, struct socket *sock, 1148 struct mutex *cb_mutex, int protocol, 1149 int kern) 1150 { 1151 struct sock *sk; 1152 struct netlink_sock *nlk; 1153 1154 sock->ops = &netlink_ops; 1155 1156 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 1157 if (!sk) 1158 return -ENOMEM; 1159 1160 sock_init_data(sock, sk); 1161 1162 nlk = nlk_sk(sk); 1163 if (cb_mutex) { 1164 nlk->cb_mutex = cb_mutex; 1165 } else { 1166 nlk->cb_mutex = &nlk->cb_def_mutex; 1167 mutex_init(nlk->cb_mutex); 1168 } 1169 init_waitqueue_head(&nlk->wait); 1170 #ifdef CONFIG_NETLINK_MMAP 1171 mutex_init(&nlk->pg_vec_lock); 1172 #endif 1173 1174 sk->sk_destruct = netlink_sock_destruct; 1175 sk->sk_protocol = protocol; 1176 return 0; 1177 } 1178 1179 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1180 int kern) 1181 { 1182 struct module *module = NULL; 1183 struct mutex *cb_mutex; 1184 struct netlink_sock *nlk; 1185 int (*bind)(struct net *net, int group); 1186 void (*unbind)(struct net *net, int group); 1187 int err = 0; 1188 1189 sock->state = SS_UNCONNECTED; 1190 1191 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1192 return -ESOCKTNOSUPPORT; 1193 1194 if (protocol < 0 || protocol >= MAX_LINKS) 1195 return -EPROTONOSUPPORT; 1196 1197 netlink_lock_table(); 1198 #ifdef CONFIG_MODULES 1199 if (!nl_table[protocol].registered) { 1200 netlink_unlock_table(); 1201 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1202 netlink_lock_table(); 1203 } 1204 #endif 1205 if (nl_table[protocol].registered && 1206 try_module_get(nl_table[protocol].module)) 1207 module = nl_table[protocol].module; 1208 else 1209 err = -EPROTONOSUPPORT; 1210 cb_mutex = nl_table[protocol].cb_mutex; 1211 bind = nl_table[protocol].bind; 1212 unbind = nl_table[protocol].unbind; 1213 netlink_unlock_table(); 1214 1215 if (err < 0) 1216 goto out; 1217 1218 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 1219 if (err < 0) 1220 goto out_module; 1221 1222 local_bh_disable(); 1223 sock_prot_inuse_add(net, &netlink_proto, 1); 1224 local_bh_enable(); 1225 1226 nlk = nlk_sk(sock->sk); 1227 nlk->module = module; 1228 nlk->netlink_bind = bind; 1229 nlk->netlink_unbind = unbind; 1230 out: 1231 return err; 1232 1233 out_module: 1234 module_put(module); 1235 goto out; 1236 } 1237 1238 static void deferred_put_nlk_sk(struct rcu_head *head) 1239 { 1240 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1241 1242 sock_put(&nlk->sk); 1243 } 1244 1245 static int netlink_release(struct socket *sock) 1246 { 1247 struct sock *sk = sock->sk; 1248 struct netlink_sock *nlk; 1249 1250 if (!sk) 1251 return 0; 1252 1253 netlink_remove(sk); 1254 sock_orphan(sk); 1255 nlk = nlk_sk(sk); 1256 1257 /* 1258 * OK. Socket is unlinked, any packets that arrive now 1259 * will be purged. 1260 */ 1261 1262 /* must not acquire netlink_table_lock in any way again before unbind 1263 * and notifying genetlink is done as otherwise it might deadlock 1264 */ 1265 if (nlk->netlink_unbind) { 1266 int i; 1267 1268 for (i = 0; i < nlk->ngroups; i++) 1269 if (test_bit(i, nlk->groups)) 1270 nlk->netlink_unbind(sock_net(sk), i + 1); 1271 } 1272 if (sk->sk_protocol == NETLINK_GENERIC && 1273 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1274 wake_up(&genl_sk_destructing_waitq); 1275 1276 sock->sk = NULL; 1277 wake_up_interruptible_all(&nlk->wait); 1278 1279 skb_queue_purge(&sk->sk_write_queue); 1280 1281 if (nlk->portid) { 1282 struct netlink_notify n = { 1283 .net = sock_net(sk), 1284 .protocol = sk->sk_protocol, 1285 .portid = nlk->portid, 1286 }; 1287 atomic_notifier_call_chain(&netlink_chain, 1288 NETLINK_URELEASE, &n); 1289 } 1290 1291 module_put(nlk->module); 1292 1293 if (netlink_is_kernel(sk)) { 1294 netlink_table_grab(); 1295 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1296 if (--nl_table[sk->sk_protocol].registered == 0) { 1297 struct listeners *old; 1298 1299 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1300 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1301 kfree_rcu(old, rcu); 1302 nl_table[sk->sk_protocol].module = NULL; 1303 nl_table[sk->sk_protocol].bind = NULL; 1304 nl_table[sk->sk_protocol].unbind = NULL; 1305 nl_table[sk->sk_protocol].flags = 0; 1306 nl_table[sk->sk_protocol].registered = 0; 1307 } 1308 netlink_table_ungrab(); 1309 } 1310 1311 kfree(nlk->groups); 1312 nlk->groups = NULL; 1313 1314 local_bh_disable(); 1315 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1316 local_bh_enable(); 1317 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1318 return 0; 1319 } 1320 1321 static int netlink_autobind(struct socket *sock) 1322 { 1323 struct sock *sk = sock->sk; 1324 struct net *net = sock_net(sk); 1325 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1326 s32 portid = task_tgid_vnr(current); 1327 int err; 1328 s32 rover = -4096; 1329 bool ok; 1330 1331 retry: 1332 cond_resched(); 1333 rcu_read_lock(); 1334 ok = !__netlink_lookup(table, portid, net); 1335 rcu_read_unlock(); 1336 if (!ok) { 1337 /* Bind collision, search negative portid values. */ 1338 if (rover == -4096) 1339 /* rover will be in range [S32_MIN, -4097] */ 1340 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 1341 else if (rover >= -4096) 1342 rover = -4097; 1343 portid = rover--; 1344 goto retry; 1345 } 1346 1347 err = netlink_insert(sk, portid); 1348 if (err == -EADDRINUSE) 1349 goto retry; 1350 1351 /* If 2 threads race to autobind, that is fine. */ 1352 if (err == -EBUSY) 1353 err = 0; 1354 1355 return err; 1356 } 1357 1358 /** 1359 * __netlink_ns_capable - General netlink message capability test 1360 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1361 * @user_ns: The user namespace of the capability to use 1362 * @cap: The capability to use 1363 * 1364 * Test to see if the opener of the socket we received the message 1365 * from had when the netlink socket was created and the sender of the 1366 * message has has the capability @cap in the user namespace @user_ns. 1367 */ 1368 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1369 struct user_namespace *user_ns, int cap) 1370 { 1371 return ((nsp->flags & NETLINK_SKB_DST) || 1372 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1373 ns_capable(user_ns, cap); 1374 } 1375 EXPORT_SYMBOL(__netlink_ns_capable); 1376 1377 /** 1378 * netlink_ns_capable - General netlink message capability test 1379 * @skb: socket buffer holding a netlink command from userspace 1380 * @user_ns: The user namespace of the capability to use 1381 * @cap: The capability to use 1382 * 1383 * Test to see if the opener of the socket we received the message 1384 * from had when the netlink socket was created and the sender of the 1385 * message has has the capability @cap in the user namespace @user_ns. 1386 */ 1387 bool netlink_ns_capable(const struct sk_buff *skb, 1388 struct user_namespace *user_ns, int cap) 1389 { 1390 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1391 } 1392 EXPORT_SYMBOL(netlink_ns_capable); 1393 1394 /** 1395 * netlink_capable - Netlink global message capability test 1396 * @skb: socket buffer holding a netlink command from userspace 1397 * @cap: The capability to use 1398 * 1399 * Test to see if the opener of the socket we received the message 1400 * from had when the netlink socket was created and the sender of the 1401 * message has has the capability @cap in all user namespaces. 1402 */ 1403 bool netlink_capable(const struct sk_buff *skb, int cap) 1404 { 1405 return netlink_ns_capable(skb, &init_user_ns, cap); 1406 } 1407 EXPORT_SYMBOL(netlink_capable); 1408 1409 /** 1410 * netlink_net_capable - Netlink network namespace message capability test 1411 * @skb: socket buffer holding a netlink command from userspace 1412 * @cap: The capability to use 1413 * 1414 * Test to see if the opener of the socket we received the message 1415 * from had when the netlink socket was created and the sender of the 1416 * message has has the capability @cap over the network namespace of 1417 * the socket we received the message from. 1418 */ 1419 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1420 { 1421 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1422 } 1423 EXPORT_SYMBOL(netlink_net_capable); 1424 1425 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1426 { 1427 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1428 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1429 } 1430 1431 static void 1432 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1433 { 1434 struct netlink_sock *nlk = nlk_sk(sk); 1435 1436 if (nlk->subscriptions && !subscriptions) 1437 __sk_del_bind_node(sk); 1438 else if (!nlk->subscriptions && subscriptions) 1439 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1440 nlk->subscriptions = subscriptions; 1441 } 1442 1443 static int netlink_realloc_groups(struct sock *sk) 1444 { 1445 struct netlink_sock *nlk = nlk_sk(sk); 1446 unsigned int groups; 1447 unsigned long *new_groups; 1448 int err = 0; 1449 1450 netlink_table_grab(); 1451 1452 groups = nl_table[sk->sk_protocol].groups; 1453 if (!nl_table[sk->sk_protocol].registered) { 1454 err = -ENOENT; 1455 goto out_unlock; 1456 } 1457 1458 if (nlk->ngroups >= groups) 1459 goto out_unlock; 1460 1461 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1462 if (new_groups == NULL) { 1463 err = -ENOMEM; 1464 goto out_unlock; 1465 } 1466 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1467 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1468 1469 nlk->groups = new_groups; 1470 nlk->ngroups = groups; 1471 out_unlock: 1472 netlink_table_ungrab(); 1473 return err; 1474 } 1475 1476 static void netlink_undo_bind(int group, long unsigned int groups, 1477 struct sock *sk) 1478 { 1479 struct netlink_sock *nlk = nlk_sk(sk); 1480 int undo; 1481 1482 if (!nlk->netlink_unbind) 1483 return; 1484 1485 for (undo = 0; undo < group; undo++) 1486 if (test_bit(undo, &groups)) 1487 nlk->netlink_unbind(sock_net(sk), undo + 1); 1488 } 1489 1490 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1491 int addr_len) 1492 { 1493 struct sock *sk = sock->sk; 1494 struct net *net = sock_net(sk); 1495 struct netlink_sock *nlk = nlk_sk(sk); 1496 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1497 int err; 1498 long unsigned int groups = nladdr->nl_groups; 1499 1500 if (addr_len < sizeof(struct sockaddr_nl)) 1501 return -EINVAL; 1502 1503 if (nladdr->nl_family != AF_NETLINK) 1504 return -EINVAL; 1505 1506 /* Only superuser is allowed to listen multicasts */ 1507 if (groups) { 1508 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1509 return -EPERM; 1510 err = netlink_realloc_groups(sk); 1511 if (err) 1512 return err; 1513 } 1514 1515 if (nlk->portid) 1516 if (nladdr->nl_pid != nlk->portid) 1517 return -EINVAL; 1518 1519 if (nlk->netlink_bind && groups) { 1520 int group; 1521 1522 for (group = 0; group < nlk->ngroups; group++) { 1523 if (!test_bit(group, &groups)) 1524 continue; 1525 err = nlk->netlink_bind(net, group + 1); 1526 if (!err) 1527 continue; 1528 netlink_undo_bind(group, groups, sk); 1529 return err; 1530 } 1531 } 1532 1533 if (!nlk->portid) { 1534 err = nladdr->nl_pid ? 1535 netlink_insert(sk, nladdr->nl_pid) : 1536 netlink_autobind(sock); 1537 if (err) { 1538 netlink_undo_bind(nlk->ngroups, groups, sk); 1539 return err; 1540 } 1541 } 1542 1543 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1544 return 0; 1545 1546 netlink_table_grab(); 1547 netlink_update_subscriptions(sk, nlk->subscriptions + 1548 hweight32(groups) - 1549 hweight32(nlk->groups[0])); 1550 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1551 netlink_update_listeners(sk); 1552 netlink_table_ungrab(); 1553 1554 return 0; 1555 } 1556 1557 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1558 int alen, int flags) 1559 { 1560 int err = 0; 1561 struct sock *sk = sock->sk; 1562 struct netlink_sock *nlk = nlk_sk(sk); 1563 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1564 1565 if (alen < sizeof(addr->sa_family)) 1566 return -EINVAL; 1567 1568 if (addr->sa_family == AF_UNSPEC) { 1569 sk->sk_state = NETLINK_UNCONNECTED; 1570 nlk->dst_portid = 0; 1571 nlk->dst_group = 0; 1572 return 0; 1573 } 1574 if (addr->sa_family != AF_NETLINK) 1575 return -EINVAL; 1576 1577 if ((nladdr->nl_groups || nladdr->nl_pid) && 1578 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1579 return -EPERM; 1580 1581 if (!nlk->portid) 1582 err = netlink_autobind(sock); 1583 1584 if (err == 0) { 1585 sk->sk_state = NETLINK_CONNECTED; 1586 nlk->dst_portid = nladdr->nl_pid; 1587 nlk->dst_group = ffs(nladdr->nl_groups); 1588 } 1589 1590 return err; 1591 } 1592 1593 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1594 int *addr_len, int peer) 1595 { 1596 struct sock *sk = sock->sk; 1597 struct netlink_sock *nlk = nlk_sk(sk); 1598 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1599 1600 nladdr->nl_family = AF_NETLINK; 1601 nladdr->nl_pad = 0; 1602 *addr_len = sizeof(*nladdr); 1603 1604 if (peer) { 1605 nladdr->nl_pid = nlk->dst_portid; 1606 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1607 } else { 1608 nladdr->nl_pid = nlk->portid; 1609 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1610 } 1611 return 0; 1612 } 1613 1614 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1615 { 1616 struct sock *sock; 1617 struct netlink_sock *nlk; 1618 1619 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1620 if (!sock) 1621 return ERR_PTR(-ECONNREFUSED); 1622 1623 /* Don't bother queuing skb if kernel socket has no input function */ 1624 nlk = nlk_sk(sock); 1625 if (sock->sk_state == NETLINK_CONNECTED && 1626 nlk->dst_portid != nlk_sk(ssk)->portid) { 1627 sock_put(sock); 1628 return ERR_PTR(-ECONNREFUSED); 1629 } 1630 return sock; 1631 } 1632 1633 struct sock *netlink_getsockbyfilp(struct file *filp) 1634 { 1635 struct inode *inode = file_inode(filp); 1636 struct sock *sock; 1637 1638 if (!S_ISSOCK(inode->i_mode)) 1639 return ERR_PTR(-ENOTSOCK); 1640 1641 sock = SOCKET_I(inode)->sk; 1642 if (sock->sk_family != AF_NETLINK) 1643 return ERR_PTR(-EINVAL); 1644 1645 sock_hold(sock); 1646 return sock; 1647 } 1648 1649 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1650 int broadcast) 1651 { 1652 struct sk_buff *skb; 1653 void *data; 1654 1655 if (size <= NLMSG_GOODSIZE || broadcast) 1656 return alloc_skb(size, GFP_KERNEL); 1657 1658 size = SKB_DATA_ALIGN(size) + 1659 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1660 1661 data = vmalloc(size); 1662 if (data == NULL) 1663 return NULL; 1664 1665 skb = __build_skb(data, size); 1666 if (skb == NULL) 1667 vfree(data); 1668 else 1669 skb->destructor = netlink_skb_destructor; 1670 1671 return skb; 1672 } 1673 1674 /* 1675 * Attach a skb to a netlink socket. 1676 * The caller must hold a reference to the destination socket. On error, the 1677 * reference is dropped. The skb is not send to the destination, just all 1678 * all error checks are performed and memory in the queue is reserved. 1679 * Return values: 1680 * < 0: error. skb freed, reference to sock dropped. 1681 * 0: continue 1682 * 1: repeat lookup - reference dropped while waiting for socket memory. 1683 */ 1684 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1685 long *timeo, struct sock *ssk) 1686 { 1687 struct netlink_sock *nlk; 1688 1689 nlk = nlk_sk(sk); 1690 1691 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1692 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1693 !netlink_skb_is_mmaped(skb)) { 1694 DECLARE_WAITQUEUE(wait, current); 1695 if (!*timeo) { 1696 if (!ssk || netlink_is_kernel(ssk)) 1697 netlink_overrun(sk); 1698 sock_put(sk); 1699 kfree_skb(skb); 1700 return -EAGAIN; 1701 } 1702 1703 __set_current_state(TASK_INTERRUPTIBLE); 1704 add_wait_queue(&nlk->wait, &wait); 1705 1706 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1707 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1708 !sock_flag(sk, SOCK_DEAD)) 1709 *timeo = schedule_timeout(*timeo); 1710 1711 __set_current_state(TASK_RUNNING); 1712 remove_wait_queue(&nlk->wait, &wait); 1713 sock_put(sk); 1714 1715 if (signal_pending(current)) { 1716 kfree_skb(skb); 1717 return sock_intr_errno(*timeo); 1718 } 1719 return 1; 1720 } 1721 netlink_skb_set_owner_r(skb, sk); 1722 return 0; 1723 } 1724 1725 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1726 { 1727 int len = skb->len; 1728 1729 netlink_deliver_tap(skb); 1730 1731 #ifdef CONFIG_NETLINK_MMAP 1732 if (netlink_skb_is_mmaped(skb)) 1733 netlink_queue_mmaped_skb(sk, skb); 1734 else if (netlink_rx_is_mmaped(sk)) 1735 netlink_ring_set_copied(sk, skb); 1736 else 1737 #endif /* CONFIG_NETLINK_MMAP */ 1738 skb_queue_tail(&sk->sk_receive_queue, skb); 1739 sk->sk_data_ready(sk); 1740 return len; 1741 } 1742 1743 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1744 { 1745 int len = __netlink_sendskb(sk, skb); 1746 1747 sock_put(sk); 1748 return len; 1749 } 1750 1751 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1752 { 1753 kfree_skb(skb); 1754 sock_put(sk); 1755 } 1756 1757 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1758 { 1759 int delta; 1760 1761 WARN_ON(skb->sk != NULL); 1762 if (netlink_skb_is_mmaped(skb)) 1763 return skb; 1764 1765 delta = skb->end - skb->tail; 1766 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1767 return skb; 1768 1769 if (skb_shared(skb)) { 1770 struct sk_buff *nskb = skb_clone(skb, allocation); 1771 if (!nskb) 1772 return skb; 1773 consume_skb(skb); 1774 skb = nskb; 1775 } 1776 1777 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1778 skb->truesize -= delta; 1779 1780 return skb; 1781 } 1782 1783 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1784 struct sock *ssk) 1785 { 1786 int ret; 1787 struct netlink_sock *nlk = nlk_sk(sk); 1788 1789 ret = -ECONNREFUSED; 1790 if (nlk->netlink_rcv != NULL) { 1791 ret = skb->len; 1792 netlink_skb_set_owner_r(skb, sk); 1793 NETLINK_CB(skb).sk = ssk; 1794 netlink_deliver_tap_kernel(sk, ssk, skb); 1795 nlk->netlink_rcv(skb); 1796 consume_skb(skb); 1797 } else { 1798 kfree_skb(skb); 1799 } 1800 sock_put(sk); 1801 return ret; 1802 } 1803 1804 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1805 u32 portid, int nonblock) 1806 { 1807 struct sock *sk; 1808 int err; 1809 long timeo; 1810 1811 skb = netlink_trim(skb, gfp_any()); 1812 1813 timeo = sock_sndtimeo(ssk, nonblock); 1814 retry: 1815 sk = netlink_getsockbyportid(ssk, portid); 1816 if (IS_ERR(sk)) { 1817 kfree_skb(skb); 1818 return PTR_ERR(sk); 1819 } 1820 if (netlink_is_kernel(sk)) 1821 return netlink_unicast_kernel(sk, skb, ssk); 1822 1823 if (sk_filter(sk, skb)) { 1824 err = skb->len; 1825 kfree_skb(skb); 1826 sock_put(sk); 1827 return err; 1828 } 1829 1830 err = netlink_attachskb(sk, skb, &timeo, ssk); 1831 if (err == 1) 1832 goto retry; 1833 if (err) 1834 return err; 1835 1836 return netlink_sendskb(sk, skb); 1837 } 1838 EXPORT_SYMBOL(netlink_unicast); 1839 1840 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1841 u32 dst_portid, gfp_t gfp_mask) 1842 { 1843 #ifdef CONFIG_NETLINK_MMAP 1844 struct sock *sk = NULL; 1845 struct sk_buff *skb; 1846 struct netlink_ring *ring; 1847 struct nl_mmap_hdr *hdr; 1848 unsigned int maxlen; 1849 1850 sk = netlink_getsockbyportid(ssk, dst_portid); 1851 if (IS_ERR(sk)) 1852 goto out; 1853 1854 ring = &nlk_sk(sk)->rx_ring; 1855 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1856 if (ring->pg_vec == NULL) 1857 goto out_put; 1858 1859 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1860 goto out_put; 1861 1862 skb = alloc_skb_head(gfp_mask); 1863 if (skb == NULL) 1864 goto err1; 1865 1866 spin_lock_bh(&sk->sk_receive_queue.lock); 1867 /* check again under lock */ 1868 if (ring->pg_vec == NULL) 1869 goto out_free; 1870 1871 /* check again under lock */ 1872 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1873 if (maxlen < size) 1874 goto out_free; 1875 1876 netlink_forward_ring(ring); 1877 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1878 if (hdr == NULL) 1879 goto err2; 1880 netlink_ring_setup_skb(skb, sk, ring, hdr); 1881 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1882 atomic_inc(&ring->pending); 1883 netlink_increment_head(ring); 1884 1885 spin_unlock_bh(&sk->sk_receive_queue.lock); 1886 return skb; 1887 1888 err2: 1889 kfree_skb(skb); 1890 spin_unlock_bh(&sk->sk_receive_queue.lock); 1891 netlink_overrun(sk); 1892 err1: 1893 sock_put(sk); 1894 return NULL; 1895 1896 out_free: 1897 kfree_skb(skb); 1898 spin_unlock_bh(&sk->sk_receive_queue.lock); 1899 out_put: 1900 sock_put(sk); 1901 out: 1902 #endif 1903 return alloc_skb(size, gfp_mask); 1904 } 1905 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1906 1907 int netlink_has_listeners(struct sock *sk, unsigned int group) 1908 { 1909 int res = 0; 1910 struct listeners *listeners; 1911 1912 BUG_ON(!netlink_is_kernel(sk)); 1913 1914 rcu_read_lock(); 1915 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1916 1917 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1918 res = test_bit(group - 1, listeners->masks); 1919 1920 rcu_read_unlock(); 1921 1922 return res; 1923 } 1924 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1925 1926 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1927 { 1928 struct netlink_sock *nlk = nlk_sk(sk); 1929 1930 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1931 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1932 netlink_skb_set_owner_r(skb, sk); 1933 __netlink_sendskb(sk, skb); 1934 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1935 } 1936 return -1; 1937 } 1938 1939 struct netlink_broadcast_data { 1940 struct sock *exclude_sk; 1941 struct net *net; 1942 u32 portid; 1943 u32 group; 1944 int failure; 1945 int delivery_failure; 1946 int congested; 1947 int delivered; 1948 gfp_t allocation; 1949 struct sk_buff *skb, *skb2; 1950 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1951 void *tx_data; 1952 }; 1953 1954 static void do_one_broadcast(struct sock *sk, 1955 struct netlink_broadcast_data *p) 1956 { 1957 struct netlink_sock *nlk = nlk_sk(sk); 1958 int val; 1959 1960 if (p->exclude_sk == sk) 1961 return; 1962 1963 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1964 !test_bit(p->group - 1, nlk->groups)) 1965 return; 1966 1967 if (!net_eq(sock_net(sk), p->net)) { 1968 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1969 return; 1970 1971 if (!peernet_has_id(sock_net(sk), p->net)) 1972 return; 1973 1974 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1975 CAP_NET_BROADCAST)) 1976 return; 1977 } 1978 1979 if (p->failure) { 1980 netlink_overrun(sk); 1981 return; 1982 } 1983 1984 sock_hold(sk); 1985 if (p->skb2 == NULL) { 1986 if (skb_shared(p->skb)) { 1987 p->skb2 = skb_clone(p->skb, p->allocation); 1988 } else { 1989 p->skb2 = skb_get(p->skb); 1990 /* 1991 * skb ownership may have been set when 1992 * delivered to a previous socket. 1993 */ 1994 skb_orphan(p->skb2); 1995 } 1996 } 1997 if (p->skb2 == NULL) { 1998 netlink_overrun(sk); 1999 /* Clone failed. Notify ALL listeners. */ 2000 p->failure = 1; 2001 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2002 p->delivery_failure = 1; 2003 goto out; 2004 } 2005 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 2006 kfree_skb(p->skb2); 2007 p->skb2 = NULL; 2008 goto out; 2009 } 2010 if (sk_filter(sk, p->skb2)) { 2011 kfree_skb(p->skb2); 2012 p->skb2 = NULL; 2013 goto out; 2014 } 2015 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 2016 NETLINK_CB(p->skb2).nsid_is_set = true; 2017 val = netlink_broadcast_deliver(sk, p->skb2); 2018 if (val < 0) { 2019 netlink_overrun(sk); 2020 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2021 p->delivery_failure = 1; 2022 } else { 2023 p->congested |= val; 2024 p->delivered = 1; 2025 p->skb2 = NULL; 2026 } 2027 out: 2028 sock_put(sk); 2029 } 2030 2031 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2032 u32 group, gfp_t allocation, 2033 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2034 void *filter_data) 2035 { 2036 struct net *net = sock_net(ssk); 2037 struct netlink_broadcast_data info; 2038 struct sock *sk; 2039 2040 skb = netlink_trim(skb, allocation); 2041 2042 info.exclude_sk = ssk; 2043 info.net = net; 2044 info.portid = portid; 2045 info.group = group; 2046 info.failure = 0; 2047 info.delivery_failure = 0; 2048 info.congested = 0; 2049 info.delivered = 0; 2050 info.allocation = allocation; 2051 info.skb = skb; 2052 info.skb2 = NULL; 2053 info.tx_filter = filter; 2054 info.tx_data = filter_data; 2055 2056 /* While we sleep in clone, do not allow to change socket list */ 2057 2058 netlink_lock_table(); 2059 2060 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2061 do_one_broadcast(sk, &info); 2062 2063 consume_skb(skb); 2064 2065 netlink_unlock_table(); 2066 2067 if (info.delivery_failure) { 2068 kfree_skb(info.skb2); 2069 return -ENOBUFS; 2070 } 2071 consume_skb(info.skb2); 2072 2073 if (info.delivered) { 2074 if (info.congested && (allocation & __GFP_WAIT)) 2075 yield(); 2076 return 0; 2077 } 2078 return -ESRCH; 2079 } 2080 EXPORT_SYMBOL(netlink_broadcast_filtered); 2081 2082 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2083 u32 group, gfp_t allocation) 2084 { 2085 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2086 NULL, NULL); 2087 } 2088 EXPORT_SYMBOL(netlink_broadcast); 2089 2090 struct netlink_set_err_data { 2091 struct sock *exclude_sk; 2092 u32 portid; 2093 u32 group; 2094 int code; 2095 }; 2096 2097 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2098 { 2099 struct netlink_sock *nlk = nlk_sk(sk); 2100 int ret = 0; 2101 2102 if (sk == p->exclude_sk) 2103 goto out; 2104 2105 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2106 goto out; 2107 2108 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2109 !test_bit(p->group - 1, nlk->groups)) 2110 goto out; 2111 2112 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 2113 ret = 1; 2114 goto out; 2115 } 2116 2117 sk->sk_err = p->code; 2118 sk->sk_error_report(sk); 2119 out: 2120 return ret; 2121 } 2122 2123 /** 2124 * netlink_set_err - report error to broadcast listeners 2125 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2126 * @portid: the PORTID of a process that we want to skip (if any) 2127 * @group: the broadcast group that will notice the error 2128 * @code: error code, must be negative (as usual in kernelspace) 2129 * 2130 * This function returns the number of broadcast listeners that have set the 2131 * NETLINK_NO_ENOBUFS socket option. 2132 */ 2133 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2134 { 2135 struct netlink_set_err_data info; 2136 struct sock *sk; 2137 int ret = 0; 2138 2139 info.exclude_sk = ssk; 2140 info.portid = portid; 2141 info.group = group; 2142 /* sk->sk_err wants a positive error value */ 2143 info.code = -code; 2144 2145 read_lock(&nl_table_lock); 2146 2147 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2148 ret += do_one_set_err(sk, &info); 2149 2150 read_unlock(&nl_table_lock); 2151 return ret; 2152 } 2153 EXPORT_SYMBOL(netlink_set_err); 2154 2155 /* must be called with netlink table grabbed */ 2156 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2157 unsigned int group, 2158 int is_new) 2159 { 2160 int old, new = !!is_new, subscriptions; 2161 2162 old = test_bit(group - 1, nlk->groups); 2163 subscriptions = nlk->subscriptions - old + new; 2164 if (new) 2165 __set_bit(group - 1, nlk->groups); 2166 else 2167 __clear_bit(group - 1, nlk->groups); 2168 netlink_update_subscriptions(&nlk->sk, subscriptions); 2169 netlink_update_listeners(&nlk->sk); 2170 } 2171 2172 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2173 char __user *optval, unsigned int optlen) 2174 { 2175 struct sock *sk = sock->sk; 2176 struct netlink_sock *nlk = nlk_sk(sk); 2177 unsigned int val = 0; 2178 int err; 2179 2180 if (level != SOL_NETLINK) 2181 return -ENOPROTOOPT; 2182 2183 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2184 optlen >= sizeof(int) && 2185 get_user(val, (unsigned int __user *)optval)) 2186 return -EFAULT; 2187 2188 switch (optname) { 2189 case NETLINK_PKTINFO: 2190 if (val) 2191 nlk->flags |= NETLINK_F_RECV_PKTINFO; 2192 else 2193 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 2194 err = 0; 2195 break; 2196 case NETLINK_ADD_MEMBERSHIP: 2197 case NETLINK_DROP_MEMBERSHIP: { 2198 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2199 return -EPERM; 2200 err = netlink_realloc_groups(sk); 2201 if (err) 2202 return err; 2203 if (!val || val - 1 >= nlk->ngroups) 2204 return -EINVAL; 2205 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2206 err = nlk->netlink_bind(sock_net(sk), val); 2207 if (err) 2208 return err; 2209 } 2210 netlink_table_grab(); 2211 netlink_update_socket_mc(nlk, val, 2212 optname == NETLINK_ADD_MEMBERSHIP); 2213 netlink_table_ungrab(); 2214 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2215 nlk->netlink_unbind(sock_net(sk), val); 2216 2217 err = 0; 2218 break; 2219 } 2220 case NETLINK_BROADCAST_ERROR: 2221 if (val) 2222 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 2223 else 2224 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 2225 err = 0; 2226 break; 2227 case NETLINK_NO_ENOBUFS: 2228 if (val) { 2229 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 2230 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 2231 wake_up_interruptible(&nlk->wait); 2232 } else { 2233 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 2234 } 2235 err = 0; 2236 break; 2237 #ifdef CONFIG_NETLINK_MMAP 2238 case NETLINK_RX_RING: 2239 case NETLINK_TX_RING: { 2240 struct nl_mmap_req req; 2241 2242 /* Rings might consume more memory than queue limits, require 2243 * CAP_NET_ADMIN. 2244 */ 2245 if (!capable(CAP_NET_ADMIN)) 2246 return -EPERM; 2247 if (optlen < sizeof(req)) 2248 return -EINVAL; 2249 if (copy_from_user(&req, optval, sizeof(req))) 2250 return -EFAULT; 2251 err = netlink_set_ring(sk, &req, 2252 optname == NETLINK_TX_RING); 2253 break; 2254 } 2255 #endif /* CONFIG_NETLINK_MMAP */ 2256 case NETLINK_LISTEN_ALL_NSID: 2257 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 2258 return -EPERM; 2259 2260 if (val) 2261 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 2262 else 2263 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 2264 err = 0; 2265 break; 2266 case NETLINK_CAP_ACK: 2267 if (val) 2268 nlk->flags |= NETLINK_F_CAP_ACK; 2269 else 2270 nlk->flags &= ~NETLINK_F_CAP_ACK; 2271 err = 0; 2272 break; 2273 default: 2274 err = -ENOPROTOOPT; 2275 } 2276 return err; 2277 } 2278 2279 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2280 char __user *optval, int __user *optlen) 2281 { 2282 struct sock *sk = sock->sk; 2283 struct netlink_sock *nlk = nlk_sk(sk); 2284 int len, val, err; 2285 2286 if (level != SOL_NETLINK) 2287 return -ENOPROTOOPT; 2288 2289 if (get_user(len, optlen)) 2290 return -EFAULT; 2291 if (len < 0) 2292 return -EINVAL; 2293 2294 switch (optname) { 2295 case NETLINK_PKTINFO: 2296 if (len < sizeof(int)) 2297 return -EINVAL; 2298 len = sizeof(int); 2299 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 2300 if (put_user(len, optlen) || 2301 put_user(val, optval)) 2302 return -EFAULT; 2303 err = 0; 2304 break; 2305 case NETLINK_BROADCAST_ERROR: 2306 if (len < sizeof(int)) 2307 return -EINVAL; 2308 len = sizeof(int); 2309 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 2310 if (put_user(len, optlen) || 2311 put_user(val, optval)) 2312 return -EFAULT; 2313 err = 0; 2314 break; 2315 case NETLINK_NO_ENOBUFS: 2316 if (len < sizeof(int)) 2317 return -EINVAL; 2318 len = sizeof(int); 2319 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 2320 if (put_user(len, optlen) || 2321 put_user(val, optval)) 2322 return -EFAULT; 2323 err = 0; 2324 break; 2325 case NETLINK_LIST_MEMBERSHIPS: { 2326 int pos, idx, shift; 2327 2328 err = 0; 2329 netlink_table_grab(); 2330 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 2331 if (len - pos < sizeof(u32)) 2332 break; 2333 2334 idx = pos / sizeof(unsigned long); 2335 shift = (pos % sizeof(unsigned long)) * 8; 2336 if (put_user((u32)(nlk->groups[idx] >> shift), 2337 (u32 __user *)(optval + pos))) { 2338 err = -EFAULT; 2339 break; 2340 } 2341 } 2342 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 2343 err = -EFAULT; 2344 netlink_table_ungrab(); 2345 break; 2346 } 2347 case NETLINK_CAP_ACK: 2348 if (len < sizeof(int)) 2349 return -EINVAL; 2350 len = sizeof(int); 2351 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 2352 if (put_user(len, optlen) || 2353 put_user(val, optval)) 2354 return -EFAULT; 2355 err = 0; 2356 break; 2357 default: 2358 err = -ENOPROTOOPT; 2359 } 2360 return err; 2361 } 2362 2363 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2364 { 2365 struct nl_pktinfo info; 2366 2367 info.group = NETLINK_CB(skb).dst_group; 2368 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2369 } 2370 2371 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 2372 struct sk_buff *skb) 2373 { 2374 if (!NETLINK_CB(skb).nsid_is_set) 2375 return; 2376 2377 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 2378 &NETLINK_CB(skb).nsid); 2379 } 2380 2381 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2382 { 2383 struct sock *sk = sock->sk; 2384 struct netlink_sock *nlk = nlk_sk(sk); 2385 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2386 u32 dst_portid; 2387 u32 dst_group; 2388 struct sk_buff *skb; 2389 int err; 2390 struct scm_cookie scm; 2391 u32 netlink_skb_flags = 0; 2392 2393 if (msg->msg_flags&MSG_OOB) 2394 return -EOPNOTSUPP; 2395 2396 err = scm_send(sock, msg, &scm, true); 2397 if (err < 0) 2398 return err; 2399 2400 if (msg->msg_namelen) { 2401 err = -EINVAL; 2402 if (addr->nl_family != AF_NETLINK) 2403 goto out; 2404 dst_portid = addr->nl_pid; 2405 dst_group = ffs(addr->nl_groups); 2406 err = -EPERM; 2407 if ((dst_group || dst_portid) && 2408 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2409 goto out; 2410 netlink_skb_flags |= NETLINK_SKB_DST; 2411 } else { 2412 dst_portid = nlk->dst_portid; 2413 dst_group = nlk->dst_group; 2414 } 2415 2416 if (!nlk->portid) { 2417 err = netlink_autobind(sock); 2418 if (err) 2419 goto out; 2420 } 2421 2422 /* It's a really convoluted way for userland to ask for mmaped 2423 * sendmsg(), but that's what we've got... 2424 */ 2425 if (netlink_tx_is_mmaped(sk) && 2426 iter_is_iovec(&msg->msg_iter) && 2427 msg->msg_iter.nr_segs == 1 && 2428 msg->msg_iter.iov->iov_base == NULL) { 2429 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2430 &scm); 2431 goto out; 2432 } 2433 2434 err = -EMSGSIZE; 2435 if (len > sk->sk_sndbuf - 32) 2436 goto out; 2437 err = -ENOBUFS; 2438 skb = netlink_alloc_large_skb(len, dst_group); 2439 if (skb == NULL) 2440 goto out; 2441 2442 NETLINK_CB(skb).portid = nlk->portid; 2443 NETLINK_CB(skb).dst_group = dst_group; 2444 NETLINK_CB(skb).creds = scm.creds; 2445 NETLINK_CB(skb).flags = netlink_skb_flags; 2446 2447 err = -EFAULT; 2448 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2449 kfree_skb(skb); 2450 goto out; 2451 } 2452 2453 err = security_netlink_send(sk, skb); 2454 if (err) { 2455 kfree_skb(skb); 2456 goto out; 2457 } 2458 2459 if (dst_group) { 2460 atomic_inc(&skb->users); 2461 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2462 } 2463 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2464 2465 out: 2466 scm_destroy(&scm); 2467 return err; 2468 } 2469 2470 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2471 int flags) 2472 { 2473 struct scm_cookie scm; 2474 struct sock *sk = sock->sk; 2475 struct netlink_sock *nlk = nlk_sk(sk); 2476 int noblock = flags&MSG_DONTWAIT; 2477 size_t copied; 2478 struct sk_buff *skb, *data_skb; 2479 int err, ret; 2480 2481 if (flags&MSG_OOB) 2482 return -EOPNOTSUPP; 2483 2484 copied = 0; 2485 2486 skb = skb_recv_datagram(sk, flags, noblock, &err); 2487 if (skb == NULL) 2488 goto out; 2489 2490 data_skb = skb; 2491 2492 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2493 if (unlikely(skb_shinfo(skb)->frag_list)) { 2494 /* 2495 * If this skb has a frag_list, then here that means that we 2496 * will have to use the frag_list skb's data for compat tasks 2497 * and the regular skb's data for normal (non-compat) tasks. 2498 * 2499 * If we need to send the compat skb, assign it to the 2500 * 'data_skb' variable so that it will be used below for data 2501 * copying. We keep 'skb' for everything else, including 2502 * freeing both later. 2503 */ 2504 if (flags & MSG_CMSG_COMPAT) 2505 data_skb = skb_shinfo(skb)->frag_list; 2506 } 2507 #endif 2508 2509 /* Record the max length of recvmsg() calls for future allocations */ 2510 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2511 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2512 16384); 2513 2514 copied = data_skb->len; 2515 if (len < copied) { 2516 msg->msg_flags |= MSG_TRUNC; 2517 copied = len; 2518 } 2519 2520 skb_reset_transport_header(data_skb); 2521 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2522 2523 if (msg->msg_name) { 2524 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2525 addr->nl_family = AF_NETLINK; 2526 addr->nl_pad = 0; 2527 addr->nl_pid = NETLINK_CB(skb).portid; 2528 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2529 msg->msg_namelen = sizeof(*addr); 2530 } 2531 2532 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 2533 netlink_cmsg_recv_pktinfo(msg, skb); 2534 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 2535 netlink_cmsg_listen_all_nsid(sk, msg, skb); 2536 2537 memset(&scm, 0, sizeof(scm)); 2538 scm.creds = *NETLINK_CREDS(skb); 2539 if (flags & MSG_TRUNC) 2540 copied = data_skb->len; 2541 2542 skb_free_datagram(sk, skb); 2543 2544 if (nlk->cb_running && 2545 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2546 ret = netlink_dump(sk); 2547 if (ret) { 2548 sk->sk_err = -ret; 2549 sk->sk_error_report(sk); 2550 } 2551 } 2552 2553 scm_recv(sock, msg, &scm, flags); 2554 out: 2555 netlink_rcv_wake(sk); 2556 return err ? : copied; 2557 } 2558 2559 static void netlink_data_ready(struct sock *sk) 2560 { 2561 BUG(); 2562 } 2563 2564 /* 2565 * We export these functions to other modules. They provide a 2566 * complete set of kernel non-blocking support for message 2567 * queueing. 2568 */ 2569 2570 struct sock * 2571 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2572 struct netlink_kernel_cfg *cfg) 2573 { 2574 struct socket *sock; 2575 struct sock *sk; 2576 struct netlink_sock *nlk; 2577 struct listeners *listeners = NULL; 2578 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2579 unsigned int groups; 2580 2581 BUG_ON(!nl_table); 2582 2583 if (unit < 0 || unit >= MAX_LINKS) 2584 return NULL; 2585 2586 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2587 return NULL; 2588 2589 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2590 goto out_sock_release_nosk; 2591 2592 sk = sock->sk; 2593 2594 if (!cfg || cfg->groups < 32) 2595 groups = 32; 2596 else 2597 groups = cfg->groups; 2598 2599 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2600 if (!listeners) 2601 goto out_sock_release; 2602 2603 sk->sk_data_ready = netlink_data_ready; 2604 if (cfg && cfg->input) 2605 nlk_sk(sk)->netlink_rcv = cfg->input; 2606 2607 if (netlink_insert(sk, 0)) 2608 goto out_sock_release; 2609 2610 nlk = nlk_sk(sk); 2611 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2612 2613 netlink_table_grab(); 2614 if (!nl_table[unit].registered) { 2615 nl_table[unit].groups = groups; 2616 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2617 nl_table[unit].cb_mutex = cb_mutex; 2618 nl_table[unit].module = module; 2619 if (cfg) { 2620 nl_table[unit].bind = cfg->bind; 2621 nl_table[unit].unbind = cfg->unbind; 2622 nl_table[unit].flags = cfg->flags; 2623 if (cfg->compare) 2624 nl_table[unit].compare = cfg->compare; 2625 } 2626 nl_table[unit].registered = 1; 2627 } else { 2628 kfree(listeners); 2629 nl_table[unit].registered++; 2630 } 2631 netlink_table_ungrab(); 2632 return sk; 2633 2634 out_sock_release: 2635 kfree(listeners); 2636 netlink_kernel_release(sk); 2637 return NULL; 2638 2639 out_sock_release_nosk: 2640 sock_release(sock); 2641 return NULL; 2642 } 2643 EXPORT_SYMBOL(__netlink_kernel_create); 2644 2645 void 2646 netlink_kernel_release(struct sock *sk) 2647 { 2648 if (sk == NULL || sk->sk_socket == NULL) 2649 return; 2650 2651 sock_release(sk->sk_socket); 2652 } 2653 EXPORT_SYMBOL(netlink_kernel_release); 2654 2655 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2656 { 2657 struct listeners *new, *old; 2658 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2659 2660 if (groups < 32) 2661 groups = 32; 2662 2663 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2664 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2665 if (!new) 2666 return -ENOMEM; 2667 old = nl_deref_protected(tbl->listeners); 2668 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2669 rcu_assign_pointer(tbl->listeners, new); 2670 2671 kfree_rcu(old, rcu); 2672 } 2673 tbl->groups = groups; 2674 2675 return 0; 2676 } 2677 2678 /** 2679 * netlink_change_ngroups - change number of multicast groups 2680 * 2681 * This changes the number of multicast groups that are available 2682 * on a certain netlink family. Note that it is not possible to 2683 * change the number of groups to below 32. Also note that it does 2684 * not implicitly call netlink_clear_multicast_users() when the 2685 * number of groups is reduced. 2686 * 2687 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2688 * @groups: The new number of groups. 2689 */ 2690 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2691 { 2692 int err; 2693 2694 netlink_table_grab(); 2695 err = __netlink_change_ngroups(sk, groups); 2696 netlink_table_ungrab(); 2697 2698 return err; 2699 } 2700 2701 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2702 { 2703 struct sock *sk; 2704 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2705 2706 sk_for_each_bound(sk, &tbl->mc_list) 2707 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2708 } 2709 2710 struct nlmsghdr * 2711 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2712 { 2713 struct nlmsghdr *nlh; 2714 int size = nlmsg_msg_size(len); 2715 2716 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2717 nlh->nlmsg_type = type; 2718 nlh->nlmsg_len = size; 2719 nlh->nlmsg_flags = flags; 2720 nlh->nlmsg_pid = portid; 2721 nlh->nlmsg_seq = seq; 2722 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2723 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2724 return nlh; 2725 } 2726 EXPORT_SYMBOL(__nlmsg_put); 2727 2728 /* 2729 * It looks a bit ugly. 2730 * It would be better to create kernel thread. 2731 */ 2732 2733 static int netlink_dump(struct sock *sk) 2734 { 2735 struct netlink_sock *nlk = nlk_sk(sk); 2736 struct netlink_callback *cb; 2737 struct sk_buff *skb = NULL; 2738 struct nlmsghdr *nlh; 2739 int len, err = -ENOBUFS; 2740 int alloc_size; 2741 2742 mutex_lock(nlk->cb_mutex); 2743 if (!nlk->cb_running) { 2744 err = -EINVAL; 2745 goto errout_skb; 2746 } 2747 2748 cb = &nlk->cb; 2749 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2750 2751 if (!netlink_rx_is_mmaped(sk) && 2752 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2753 goto errout_skb; 2754 2755 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2756 * required, but it makes sense to _attempt_ a 16K bytes allocation 2757 * to reduce number of system calls on dump operations, if user 2758 * ever provided a big enough buffer. 2759 */ 2760 if (alloc_size < nlk->max_recvmsg_len) { 2761 skb = netlink_alloc_skb(sk, 2762 nlk->max_recvmsg_len, 2763 nlk->portid, 2764 GFP_KERNEL | 2765 __GFP_NOWARN | 2766 __GFP_NORETRY); 2767 /* available room should be exact amount to avoid MSG_TRUNC */ 2768 if (skb) 2769 skb_reserve(skb, skb_tailroom(skb) - 2770 nlk->max_recvmsg_len); 2771 } 2772 if (!skb) 2773 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2774 GFP_KERNEL); 2775 if (!skb) 2776 goto errout_skb; 2777 netlink_skb_set_owner_r(skb, sk); 2778 2779 len = cb->dump(skb, cb); 2780 2781 if (len > 0) { 2782 mutex_unlock(nlk->cb_mutex); 2783 2784 if (sk_filter(sk, skb)) 2785 kfree_skb(skb); 2786 else 2787 __netlink_sendskb(sk, skb); 2788 return 0; 2789 } 2790 2791 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2792 if (!nlh) 2793 goto errout_skb; 2794 2795 nl_dump_check_consistent(cb, nlh); 2796 2797 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2798 2799 if (sk_filter(sk, skb)) 2800 kfree_skb(skb); 2801 else 2802 __netlink_sendskb(sk, skb); 2803 2804 if (cb->done) 2805 cb->done(cb); 2806 2807 nlk->cb_running = false; 2808 mutex_unlock(nlk->cb_mutex); 2809 module_put(cb->module); 2810 consume_skb(cb->skb); 2811 return 0; 2812 2813 errout_skb: 2814 mutex_unlock(nlk->cb_mutex); 2815 kfree_skb(skb); 2816 return err; 2817 } 2818 2819 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2820 const struct nlmsghdr *nlh, 2821 struct netlink_dump_control *control) 2822 { 2823 struct netlink_callback *cb; 2824 struct sock *sk; 2825 struct netlink_sock *nlk; 2826 int ret; 2827 2828 /* Memory mapped dump requests need to be copied to avoid looping 2829 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2830 * a reference to the skb. 2831 */ 2832 if (netlink_skb_is_mmaped(skb)) { 2833 skb = skb_copy(skb, GFP_KERNEL); 2834 if (skb == NULL) 2835 return -ENOBUFS; 2836 } else 2837 atomic_inc(&skb->users); 2838 2839 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2840 if (sk == NULL) { 2841 ret = -ECONNREFUSED; 2842 goto error_free; 2843 } 2844 2845 nlk = nlk_sk(sk); 2846 mutex_lock(nlk->cb_mutex); 2847 /* A dump is in progress... */ 2848 if (nlk->cb_running) { 2849 ret = -EBUSY; 2850 goto error_unlock; 2851 } 2852 /* add reference of module which cb->dump belongs to */ 2853 if (!try_module_get(control->module)) { 2854 ret = -EPROTONOSUPPORT; 2855 goto error_unlock; 2856 } 2857 2858 cb = &nlk->cb; 2859 memset(cb, 0, sizeof(*cb)); 2860 cb->dump = control->dump; 2861 cb->done = control->done; 2862 cb->nlh = nlh; 2863 cb->data = control->data; 2864 cb->module = control->module; 2865 cb->min_dump_alloc = control->min_dump_alloc; 2866 cb->skb = skb; 2867 2868 nlk->cb_running = true; 2869 2870 mutex_unlock(nlk->cb_mutex); 2871 2872 ret = netlink_dump(sk); 2873 sock_put(sk); 2874 2875 if (ret) 2876 return ret; 2877 2878 /* We successfully started a dump, by returning -EINTR we 2879 * signal not to send ACK even if it was requested. 2880 */ 2881 return -EINTR; 2882 2883 error_unlock: 2884 sock_put(sk); 2885 mutex_unlock(nlk->cb_mutex); 2886 error_free: 2887 kfree_skb(skb); 2888 return ret; 2889 } 2890 EXPORT_SYMBOL(__netlink_dump_start); 2891 2892 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2893 { 2894 struct sk_buff *skb; 2895 struct nlmsghdr *rep; 2896 struct nlmsgerr *errmsg; 2897 size_t payload = sizeof(*errmsg); 2898 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2899 2900 /* Error messages get the original request appened, unless the user 2901 * requests to cap the error message. 2902 */ 2903 if (!(nlk->flags & NETLINK_F_CAP_ACK) && err) 2904 payload += nlmsg_len(nlh); 2905 2906 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2907 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2908 if (!skb) { 2909 struct sock *sk; 2910 2911 sk = netlink_lookup(sock_net(in_skb->sk), 2912 in_skb->sk->sk_protocol, 2913 NETLINK_CB(in_skb).portid); 2914 if (sk) { 2915 sk->sk_err = ENOBUFS; 2916 sk->sk_error_report(sk); 2917 sock_put(sk); 2918 } 2919 return; 2920 } 2921 2922 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2923 NLMSG_ERROR, payload, 0); 2924 errmsg = nlmsg_data(rep); 2925 errmsg->error = err; 2926 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2927 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2928 } 2929 EXPORT_SYMBOL(netlink_ack); 2930 2931 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2932 struct nlmsghdr *)) 2933 { 2934 struct nlmsghdr *nlh; 2935 int err; 2936 2937 while (skb->len >= nlmsg_total_size(0)) { 2938 int msglen; 2939 2940 nlh = nlmsg_hdr(skb); 2941 err = 0; 2942 2943 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2944 return 0; 2945 2946 /* Only requests are handled by the kernel */ 2947 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2948 goto ack; 2949 2950 /* Skip control messages */ 2951 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2952 goto ack; 2953 2954 err = cb(skb, nlh); 2955 if (err == -EINTR) 2956 goto skip; 2957 2958 ack: 2959 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2960 netlink_ack(skb, nlh, err); 2961 2962 skip: 2963 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2964 if (msglen > skb->len) 2965 msglen = skb->len; 2966 skb_pull(skb, msglen); 2967 } 2968 2969 return 0; 2970 } 2971 EXPORT_SYMBOL(netlink_rcv_skb); 2972 2973 /** 2974 * nlmsg_notify - send a notification netlink message 2975 * @sk: netlink socket to use 2976 * @skb: notification message 2977 * @portid: destination netlink portid for reports or 0 2978 * @group: destination multicast group or 0 2979 * @report: 1 to report back, 0 to disable 2980 * @flags: allocation flags 2981 */ 2982 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2983 unsigned int group, int report, gfp_t flags) 2984 { 2985 int err = 0; 2986 2987 if (group) { 2988 int exclude_portid = 0; 2989 2990 if (report) { 2991 atomic_inc(&skb->users); 2992 exclude_portid = portid; 2993 } 2994 2995 /* errors reported via destination sk->sk_err, but propagate 2996 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2997 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2998 } 2999 3000 if (report) { 3001 int err2; 3002 3003 err2 = nlmsg_unicast(sk, skb, portid); 3004 if (!err || err == -ESRCH) 3005 err = err2; 3006 } 3007 3008 return err; 3009 } 3010 EXPORT_SYMBOL(nlmsg_notify); 3011 3012 #ifdef CONFIG_PROC_FS 3013 struct nl_seq_iter { 3014 struct seq_net_private p; 3015 struct rhashtable_iter hti; 3016 int link; 3017 }; 3018 3019 static int netlink_walk_start(struct nl_seq_iter *iter) 3020 { 3021 int err; 3022 3023 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 3024 if (err) { 3025 iter->link = MAX_LINKS; 3026 return err; 3027 } 3028 3029 err = rhashtable_walk_start(&iter->hti); 3030 return err == -EAGAIN ? 0 : err; 3031 } 3032 3033 static void netlink_walk_stop(struct nl_seq_iter *iter) 3034 { 3035 rhashtable_walk_stop(&iter->hti); 3036 rhashtable_walk_exit(&iter->hti); 3037 } 3038 3039 static void *__netlink_seq_next(struct seq_file *seq) 3040 { 3041 struct nl_seq_iter *iter = seq->private; 3042 struct netlink_sock *nlk; 3043 3044 do { 3045 for (;;) { 3046 int err; 3047 3048 nlk = rhashtable_walk_next(&iter->hti); 3049 3050 if (IS_ERR(nlk)) { 3051 if (PTR_ERR(nlk) == -EAGAIN) 3052 continue; 3053 3054 return nlk; 3055 } 3056 3057 if (nlk) 3058 break; 3059 3060 netlink_walk_stop(iter); 3061 if (++iter->link >= MAX_LINKS) 3062 return NULL; 3063 3064 err = netlink_walk_start(iter); 3065 if (err) 3066 return ERR_PTR(err); 3067 } 3068 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 3069 3070 return nlk; 3071 } 3072 3073 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 3074 { 3075 struct nl_seq_iter *iter = seq->private; 3076 void *obj = SEQ_START_TOKEN; 3077 loff_t pos; 3078 int err; 3079 3080 iter->link = 0; 3081 3082 err = netlink_walk_start(iter); 3083 if (err) 3084 return ERR_PTR(err); 3085 3086 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 3087 obj = __netlink_seq_next(seq); 3088 3089 return obj; 3090 } 3091 3092 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3093 { 3094 ++*pos; 3095 return __netlink_seq_next(seq); 3096 } 3097 3098 static void netlink_seq_stop(struct seq_file *seq, void *v) 3099 { 3100 struct nl_seq_iter *iter = seq->private; 3101 3102 if (iter->link >= MAX_LINKS) 3103 return; 3104 3105 netlink_walk_stop(iter); 3106 } 3107 3108 3109 static int netlink_seq_show(struct seq_file *seq, void *v) 3110 { 3111 if (v == SEQ_START_TOKEN) { 3112 seq_puts(seq, 3113 "sk Eth Pid Groups " 3114 "Rmem Wmem Dump Locks Drops Inode\n"); 3115 } else { 3116 struct sock *s = v; 3117 struct netlink_sock *nlk = nlk_sk(s); 3118 3119 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3120 s, 3121 s->sk_protocol, 3122 nlk->portid, 3123 nlk->groups ? (u32)nlk->groups[0] : 0, 3124 sk_rmem_alloc_get(s), 3125 sk_wmem_alloc_get(s), 3126 nlk->cb_running, 3127 atomic_read(&s->sk_refcnt), 3128 atomic_read(&s->sk_drops), 3129 sock_i_ino(s) 3130 ); 3131 3132 } 3133 return 0; 3134 } 3135 3136 static const struct seq_operations netlink_seq_ops = { 3137 .start = netlink_seq_start, 3138 .next = netlink_seq_next, 3139 .stop = netlink_seq_stop, 3140 .show = netlink_seq_show, 3141 }; 3142 3143 3144 static int netlink_seq_open(struct inode *inode, struct file *file) 3145 { 3146 return seq_open_net(inode, file, &netlink_seq_ops, 3147 sizeof(struct nl_seq_iter)); 3148 } 3149 3150 static const struct file_operations netlink_seq_fops = { 3151 .owner = THIS_MODULE, 3152 .open = netlink_seq_open, 3153 .read = seq_read, 3154 .llseek = seq_lseek, 3155 .release = seq_release_net, 3156 }; 3157 3158 #endif 3159 3160 int netlink_register_notifier(struct notifier_block *nb) 3161 { 3162 return atomic_notifier_chain_register(&netlink_chain, nb); 3163 } 3164 EXPORT_SYMBOL(netlink_register_notifier); 3165 3166 int netlink_unregister_notifier(struct notifier_block *nb) 3167 { 3168 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3169 } 3170 EXPORT_SYMBOL(netlink_unregister_notifier); 3171 3172 static const struct proto_ops netlink_ops = { 3173 .family = PF_NETLINK, 3174 .owner = THIS_MODULE, 3175 .release = netlink_release, 3176 .bind = netlink_bind, 3177 .connect = netlink_connect, 3178 .socketpair = sock_no_socketpair, 3179 .accept = sock_no_accept, 3180 .getname = netlink_getname, 3181 .poll = netlink_poll, 3182 .ioctl = sock_no_ioctl, 3183 .listen = sock_no_listen, 3184 .shutdown = sock_no_shutdown, 3185 .setsockopt = netlink_setsockopt, 3186 .getsockopt = netlink_getsockopt, 3187 .sendmsg = netlink_sendmsg, 3188 .recvmsg = netlink_recvmsg, 3189 .mmap = netlink_mmap, 3190 .sendpage = sock_no_sendpage, 3191 }; 3192 3193 static const struct net_proto_family netlink_family_ops = { 3194 .family = PF_NETLINK, 3195 .create = netlink_create, 3196 .owner = THIS_MODULE, /* for consistency 8) */ 3197 }; 3198 3199 static int __net_init netlink_net_init(struct net *net) 3200 { 3201 #ifdef CONFIG_PROC_FS 3202 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3203 return -ENOMEM; 3204 #endif 3205 return 0; 3206 } 3207 3208 static void __net_exit netlink_net_exit(struct net *net) 3209 { 3210 #ifdef CONFIG_PROC_FS 3211 remove_proc_entry("netlink", net->proc_net); 3212 #endif 3213 } 3214 3215 static void __init netlink_add_usersock_entry(void) 3216 { 3217 struct listeners *listeners; 3218 int groups = 32; 3219 3220 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3221 if (!listeners) 3222 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3223 3224 netlink_table_grab(); 3225 3226 nl_table[NETLINK_USERSOCK].groups = groups; 3227 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3228 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3229 nl_table[NETLINK_USERSOCK].registered = 1; 3230 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3231 3232 netlink_table_ungrab(); 3233 } 3234 3235 static struct pernet_operations __net_initdata netlink_net_ops = { 3236 .init = netlink_net_init, 3237 .exit = netlink_net_exit, 3238 }; 3239 3240 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 3241 { 3242 const struct netlink_sock *nlk = data; 3243 struct netlink_compare_arg arg; 3244 3245 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 3246 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 3247 } 3248 3249 static const struct rhashtable_params netlink_rhashtable_params = { 3250 .head_offset = offsetof(struct netlink_sock, node), 3251 .key_len = netlink_compare_arg_len, 3252 .obj_hashfn = netlink_hash, 3253 .obj_cmpfn = netlink_compare, 3254 .automatic_shrinking = true, 3255 }; 3256 3257 static int __init netlink_proto_init(void) 3258 { 3259 int i; 3260 int err = proto_register(&netlink_proto, 0); 3261 3262 if (err != 0) 3263 goto out; 3264 3265 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3266 3267 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3268 if (!nl_table) 3269 goto panic; 3270 3271 for (i = 0; i < MAX_LINKS; i++) { 3272 if (rhashtable_init(&nl_table[i].hash, 3273 &netlink_rhashtable_params) < 0) { 3274 while (--i > 0) 3275 rhashtable_destroy(&nl_table[i].hash); 3276 kfree(nl_table); 3277 goto panic; 3278 } 3279 } 3280 3281 INIT_LIST_HEAD(&netlink_tap_all); 3282 3283 netlink_add_usersock_entry(); 3284 3285 sock_register(&netlink_family_ops); 3286 register_pernet_subsys(&netlink_net_ops); 3287 /* The netlink device handler may be needed early. */ 3288 rtnetlink_init(); 3289 out: 3290 return err; 3291 panic: 3292 panic("netlink_init: Cannot allocate nl_table\n"); 3293 } 3294 3295 core_initcall(netlink_proto_init); 3296