xref: /openbmc/linux/net/netlink/af_netlink.c (revision 8b235f2f)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_S_CONGESTED		0x0
80 
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET		0x1
83 #define NETLINK_F_RECV_PKTINFO		0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR	0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS	0x8
86 #define NETLINK_F_LISTEN_ALL_NSID	0x10
87 #define NETLINK_F_CAP_ACK		0x20
88 
89 static inline int netlink_is_kernel(struct sock *sk)
90 {
91 	return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
92 }
93 
94 struct netlink_table *nl_table __read_mostly;
95 EXPORT_SYMBOL_GPL(nl_table);
96 
97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
98 
99 static int netlink_dump(struct sock *sk);
100 static void netlink_skb_destructor(struct sk_buff *skb);
101 
102 /* nl_table locking explained:
103  * Lookup and traversal are protected with an RCU read-side lock. Insertion
104  * and removal are protected with per bucket lock while using RCU list
105  * modification primitives and may run in parallel to RCU protected lookups.
106  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
107  * been acquired * either during or after the socket has been removed from
108  * the list and after an RCU grace period.
109  */
110 DEFINE_RWLOCK(nl_table_lock);
111 EXPORT_SYMBOL_GPL(nl_table_lock);
112 static atomic_t nl_table_users = ATOMIC_INIT(0);
113 
114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
115 
116 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
117 
118 static DEFINE_SPINLOCK(netlink_tap_lock);
119 static struct list_head netlink_tap_all __read_mostly;
120 
121 static const struct rhashtable_params netlink_rhashtable_params;
122 
123 static inline u32 netlink_group_mask(u32 group)
124 {
125 	return group ? 1 << (group - 1) : 0;
126 }
127 
128 int netlink_add_tap(struct netlink_tap *nt)
129 {
130 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
131 		return -EINVAL;
132 
133 	spin_lock(&netlink_tap_lock);
134 	list_add_rcu(&nt->list, &netlink_tap_all);
135 	spin_unlock(&netlink_tap_lock);
136 
137 	__module_get(nt->module);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(netlink_add_tap);
142 
143 static int __netlink_remove_tap(struct netlink_tap *nt)
144 {
145 	bool found = false;
146 	struct netlink_tap *tmp;
147 
148 	spin_lock(&netlink_tap_lock);
149 
150 	list_for_each_entry(tmp, &netlink_tap_all, list) {
151 		if (nt == tmp) {
152 			list_del_rcu(&nt->list);
153 			found = true;
154 			goto out;
155 		}
156 	}
157 
158 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
159 out:
160 	spin_unlock(&netlink_tap_lock);
161 
162 	if (found)
163 		module_put(nt->module);
164 
165 	return found ? 0 : -ENODEV;
166 }
167 
168 int netlink_remove_tap(struct netlink_tap *nt)
169 {
170 	int ret;
171 
172 	ret = __netlink_remove_tap(nt);
173 	synchronize_net();
174 
175 	return ret;
176 }
177 EXPORT_SYMBOL_GPL(netlink_remove_tap);
178 
179 static bool netlink_filter_tap(const struct sk_buff *skb)
180 {
181 	struct sock *sk = skb->sk;
182 
183 	/* We take the more conservative approach and
184 	 * whitelist socket protocols that may pass.
185 	 */
186 	switch (sk->sk_protocol) {
187 	case NETLINK_ROUTE:
188 	case NETLINK_USERSOCK:
189 	case NETLINK_SOCK_DIAG:
190 	case NETLINK_NFLOG:
191 	case NETLINK_XFRM:
192 	case NETLINK_FIB_LOOKUP:
193 	case NETLINK_NETFILTER:
194 	case NETLINK_GENERIC:
195 		return true;
196 	}
197 
198 	return false;
199 }
200 
201 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
202 				     struct net_device *dev)
203 {
204 	struct sk_buff *nskb;
205 	struct sock *sk = skb->sk;
206 	int ret = -ENOMEM;
207 
208 	dev_hold(dev);
209 	nskb = skb_clone(skb, GFP_ATOMIC);
210 	if (nskb) {
211 		nskb->dev = dev;
212 		nskb->protocol = htons((u16) sk->sk_protocol);
213 		nskb->pkt_type = netlink_is_kernel(sk) ?
214 				 PACKET_KERNEL : PACKET_USER;
215 		skb_reset_network_header(nskb);
216 		ret = dev_queue_xmit(nskb);
217 		if (unlikely(ret > 0))
218 			ret = net_xmit_errno(ret);
219 	}
220 
221 	dev_put(dev);
222 	return ret;
223 }
224 
225 static void __netlink_deliver_tap(struct sk_buff *skb)
226 {
227 	int ret;
228 	struct netlink_tap *tmp;
229 
230 	if (!netlink_filter_tap(skb))
231 		return;
232 
233 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
234 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
235 		if (unlikely(ret))
236 			break;
237 	}
238 }
239 
240 static void netlink_deliver_tap(struct sk_buff *skb)
241 {
242 	rcu_read_lock();
243 
244 	if (unlikely(!list_empty(&netlink_tap_all)))
245 		__netlink_deliver_tap(skb);
246 
247 	rcu_read_unlock();
248 }
249 
250 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
251 				       struct sk_buff *skb)
252 {
253 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
254 		netlink_deliver_tap(skb);
255 }
256 
257 static void netlink_overrun(struct sock *sk)
258 {
259 	struct netlink_sock *nlk = nlk_sk(sk);
260 
261 	if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
262 		if (!test_and_set_bit(NETLINK_S_CONGESTED,
263 				      &nlk_sk(sk)->state)) {
264 			sk->sk_err = ENOBUFS;
265 			sk->sk_error_report(sk);
266 		}
267 	}
268 	atomic_inc(&sk->sk_drops);
269 }
270 
271 static void netlink_rcv_wake(struct sock *sk)
272 {
273 	struct netlink_sock *nlk = nlk_sk(sk);
274 
275 	if (skb_queue_empty(&sk->sk_receive_queue))
276 		clear_bit(NETLINK_S_CONGESTED, &nlk->state);
277 	if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
278 		wake_up_interruptible(&nlk->wait);
279 }
280 
281 #ifdef CONFIG_NETLINK_MMAP
282 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
283 {
284 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
285 }
286 
287 static bool netlink_rx_is_mmaped(struct sock *sk)
288 {
289 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
290 }
291 
292 static bool netlink_tx_is_mmaped(struct sock *sk)
293 {
294 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
295 }
296 
297 static __pure struct page *pgvec_to_page(const void *addr)
298 {
299 	if (is_vmalloc_addr(addr))
300 		return vmalloc_to_page(addr);
301 	else
302 		return virt_to_page(addr);
303 }
304 
305 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
306 {
307 	unsigned int i;
308 
309 	for (i = 0; i < len; i++) {
310 		if (pg_vec[i] != NULL) {
311 			if (is_vmalloc_addr(pg_vec[i]))
312 				vfree(pg_vec[i]);
313 			else
314 				free_pages((unsigned long)pg_vec[i], order);
315 		}
316 	}
317 	kfree(pg_vec);
318 }
319 
320 static void *alloc_one_pg_vec_page(unsigned long order)
321 {
322 	void *buffer;
323 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
324 			  __GFP_NOWARN | __GFP_NORETRY;
325 
326 	buffer = (void *)__get_free_pages(gfp_flags, order);
327 	if (buffer != NULL)
328 		return buffer;
329 
330 	buffer = vzalloc((1 << order) * PAGE_SIZE);
331 	if (buffer != NULL)
332 		return buffer;
333 
334 	gfp_flags &= ~__GFP_NORETRY;
335 	return (void *)__get_free_pages(gfp_flags, order);
336 }
337 
338 static void **alloc_pg_vec(struct netlink_sock *nlk,
339 			   struct nl_mmap_req *req, unsigned int order)
340 {
341 	unsigned int block_nr = req->nm_block_nr;
342 	unsigned int i;
343 	void **pg_vec;
344 
345 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
346 	if (pg_vec == NULL)
347 		return NULL;
348 
349 	for (i = 0; i < block_nr; i++) {
350 		pg_vec[i] = alloc_one_pg_vec_page(order);
351 		if (pg_vec[i] == NULL)
352 			goto err1;
353 	}
354 
355 	return pg_vec;
356 err1:
357 	free_pg_vec(pg_vec, order, block_nr);
358 	return NULL;
359 }
360 
361 
362 static void
363 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
364 		   unsigned int order)
365 {
366 	struct netlink_sock *nlk = nlk_sk(sk);
367 	struct sk_buff_head *queue;
368 	struct netlink_ring *ring;
369 
370 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
371 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
372 
373 	spin_lock_bh(&queue->lock);
374 
375 	ring->frame_max		= req->nm_frame_nr - 1;
376 	ring->head		= 0;
377 	ring->frame_size	= req->nm_frame_size;
378 	ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
379 
380 	swap(ring->pg_vec_len, req->nm_block_nr);
381 	swap(ring->pg_vec_order, order);
382 	swap(ring->pg_vec, pg_vec);
383 
384 	__skb_queue_purge(queue);
385 	spin_unlock_bh(&queue->lock);
386 
387 	WARN_ON(atomic_read(&nlk->mapped));
388 
389 	if (pg_vec)
390 		free_pg_vec(pg_vec, order, req->nm_block_nr);
391 }
392 
393 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
394 			    bool tx_ring)
395 {
396 	struct netlink_sock *nlk = nlk_sk(sk);
397 	struct netlink_ring *ring;
398 	void **pg_vec = NULL;
399 	unsigned int order = 0;
400 
401 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
402 
403 	if (atomic_read(&nlk->mapped))
404 		return -EBUSY;
405 	if (atomic_read(&ring->pending))
406 		return -EBUSY;
407 
408 	if (req->nm_block_nr) {
409 		if (ring->pg_vec != NULL)
410 			return -EBUSY;
411 
412 		if ((int)req->nm_block_size <= 0)
413 			return -EINVAL;
414 		if (!PAGE_ALIGNED(req->nm_block_size))
415 			return -EINVAL;
416 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
417 			return -EINVAL;
418 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
419 			return -EINVAL;
420 
421 		ring->frames_per_block = req->nm_block_size /
422 					 req->nm_frame_size;
423 		if (ring->frames_per_block == 0)
424 			return -EINVAL;
425 		if (ring->frames_per_block * req->nm_block_nr !=
426 		    req->nm_frame_nr)
427 			return -EINVAL;
428 
429 		order = get_order(req->nm_block_size);
430 		pg_vec = alloc_pg_vec(nlk, req, order);
431 		if (pg_vec == NULL)
432 			return -ENOMEM;
433 	} else {
434 		if (req->nm_frame_nr)
435 			return -EINVAL;
436 	}
437 
438 	mutex_lock(&nlk->pg_vec_lock);
439 	if (atomic_read(&nlk->mapped) == 0) {
440 		__netlink_set_ring(sk, req, tx_ring, pg_vec, order);
441 		mutex_unlock(&nlk->pg_vec_lock);
442 		return 0;
443 	}
444 
445 	mutex_unlock(&nlk->pg_vec_lock);
446 
447 	if (pg_vec)
448 		free_pg_vec(pg_vec, order, req->nm_block_nr);
449 
450 	return -EBUSY;
451 }
452 
453 static void netlink_mm_open(struct vm_area_struct *vma)
454 {
455 	struct file *file = vma->vm_file;
456 	struct socket *sock = file->private_data;
457 	struct sock *sk = sock->sk;
458 
459 	if (sk)
460 		atomic_inc(&nlk_sk(sk)->mapped);
461 }
462 
463 static void netlink_mm_close(struct vm_area_struct *vma)
464 {
465 	struct file *file = vma->vm_file;
466 	struct socket *sock = file->private_data;
467 	struct sock *sk = sock->sk;
468 
469 	if (sk)
470 		atomic_dec(&nlk_sk(sk)->mapped);
471 }
472 
473 static const struct vm_operations_struct netlink_mmap_ops = {
474 	.open	= netlink_mm_open,
475 	.close	= netlink_mm_close,
476 };
477 
478 static int netlink_mmap(struct file *file, struct socket *sock,
479 			struct vm_area_struct *vma)
480 {
481 	struct sock *sk = sock->sk;
482 	struct netlink_sock *nlk = nlk_sk(sk);
483 	struct netlink_ring *ring;
484 	unsigned long start, size, expected;
485 	unsigned int i;
486 	int err = -EINVAL;
487 
488 	if (vma->vm_pgoff)
489 		return -EINVAL;
490 
491 	mutex_lock(&nlk->pg_vec_lock);
492 
493 	expected = 0;
494 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
495 		if (ring->pg_vec == NULL)
496 			continue;
497 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
498 	}
499 
500 	if (expected == 0)
501 		goto out;
502 
503 	size = vma->vm_end - vma->vm_start;
504 	if (size != expected)
505 		goto out;
506 
507 	start = vma->vm_start;
508 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
509 		if (ring->pg_vec == NULL)
510 			continue;
511 
512 		for (i = 0; i < ring->pg_vec_len; i++) {
513 			struct page *page;
514 			void *kaddr = ring->pg_vec[i];
515 			unsigned int pg_num;
516 
517 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
518 				page = pgvec_to_page(kaddr);
519 				err = vm_insert_page(vma, start, page);
520 				if (err < 0)
521 					goto out;
522 				start += PAGE_SIZE;
523 				kaddr += PAGE_SIZE;
524 			}
525 		}
526 	}
527 
528 	atomic_inc(&nlk->mapped);
529 	vma->vm_ops = &netlink_mmap_ops;
530 	err = 0;
531 out:
532 	mutex_unlock(&nlk->pg_vec_lock);
533 	return err;
534 }
535 
536 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
537 {
538 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
539 	struct page *p_start, *p_end;
540 
541 	/* First page is flushed through netlink_{get,set}_status */
542 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
543 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
544 	while (p_start <= p_end) {
545 		flush_dcache_page(p_start);
546 		p_start++;
547 	}
548 #endif
549 }
550 
551 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
552 {
553 	smp_rmb();
554 	flush_dcache_page(pgvec_to_page(hdr));
555 	return hdr->nm_status;
556 }
557 
558 static void netlink_set_status(struct nl_mmap_hdr *hdr,
559 			       enum nl_mmap_status status)
560 {
561 	smp_mb();
562 	hdr->nm_status = status;
563 	flush_dcache_page(pgvec_to_page(hdr));
564 }
565 
566 static struct nl_mmap_hdr *
567 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
568 {
569 	unsigned int pg_vec_pos, frame_off;
570 
571 	pg_vec_pos = pos / ring->frames_per_block;
572 	frame_off  = pos % ring->frames_per_block;
573 
574 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
575 }
576 
577 static struct nl_mmap_hdr *
578 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
579 		     enum nl_mmap_status status)
580 {
581 	struct nl_mmap_hdr *hdr;
582 
583 	hdr = __netlink_lookup_frame(ring, pos);
584 	if (netlink_get_status(hdr) != status)
585 		return NULL;
586 
587 	return hdr;
588 }
589 
590 static struct nl_mmap_hdr *
591 netlink_current_frame(const struct netlink_ring *ring,
592 		      enum nl_mmap_status status)
593 {
594 	return netlink_lookup_frame(ring, ring->head, status);
595 }
596 
597 static void netlink_increment_head(struct netlink_ring *ring)
598 {
599 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
600 }
601 
602 static void netlink_forward_ring(struct netlink_ring *ring)
603 {
604 	unsigned int head = ring->head;
605 	const struct nl_mmap_hdr *hdr;
606 
607 	do {
608 		hdr = __netlink_lookup_frame(ring, ring->head);
609 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
610 			break;
611 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
612 			break;
613 		netlink_increment_head(ring);
614 	} while (ring->head != head);
615 }
616 
617 static bool netlink_has_valid_frame(struct netlink_ring *ring)
618 {
619 	unsigned int head = ring->head, pos = head;
620 	const struct nl_mmap_hdr *hdr;
621 
622 	do {
623 		hdr = __netlink_lookup_frame(ring, pos);
624 		if (hdr->nm_status == NL_MMAP_STATUS_VALID)
625 			return true;
626 		pos = pos != 0 ? pos - 1 : ring->frame_max;
627 	} while (pos != head);
628 
629 	return false;
630 }
631 
632 static bool netlink_dump_space(struct netlink_sock *nlk)
633 {
634 	struct netlink_ring *ring = &nlk->rx_ring;
635 	struct nl_mmap_hdr *hdr;
636 	unsigned int n;
637 
638 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
639 	if (hdr == NULL)
640 		return false;
641 
642 	n = ring->head + ring->frame_max / 2;
643 	if (n > ring->frame_max)
644 		n -= ring->frame_max;
645 
646 	hdr = __netlink_lookup_frame(ring, n);
647 
648 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
649 }
650 
651 static unsigned int netlink_poll(struct file *file, struct socket *sock,
652 				 poll_table *wait)
653 {
654 	struct sock *sk = sock->sk;
655 	struct netlink_sock *nlk = nlk_sk(sk);
656 	unsigned int mask;
657 	int err;
658 
659 	if (nlk->rx_ring.pg_vec != NULL) {
660 		/* Memory mapped sockets don't call recvmsg(), so flow control
661 		 * for dumps is performed here. A dump is allowed to continue
662 		 * if at least half the ring is unused.
663 		 */
664 		while (nlk->cb_running && netlink_dump_space(nlk)) {
665 			err = netlink_dump(sk);
666 			if (err < 0) {
667 				sk->sk_err = -err;
668 				sk->sk_error_report(sk);
669 				break;
670 			}
671 		}
672 		netlink_rcv_wake(sk);
673 	}
674 
675 	mask = datagram_poll(file, sock, wait);
676 
677 	spin_lock_bh(&sk->sk_receive_queue.lock);
678 	if (nlk->rx_ring.pg_vec) {
679 		if (netlink_has_valid_frame(&nlk->rx_ring))
680 			mask |= POLLIN | POLLRDNORM;
681 	}
682 	spin_unlock_bh(&sk->sk_receive_queue.lock);
683 
684 	spin_lock_bh(&sk->sk_write_queue.lock);
685 	if (nlk->tx_ring.pg_vec) {
686 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
687 			mask |= POLLOUT | POLLWRNORM;
688 	}
689 	spin_unlock_bh(&sk->sk_write_queue.lock);
690 
691 	return mask;
692 }
693 
694 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
695 {
696 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
697 }
698 
699 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
700 				   struct netlink_ring *ring,
701 				   struct nl_mmap_hdr *hdr)
702 {
703 	unsigned int size;
704 	void *data;
705 
706 	size = ring->frame_size - NL_MMAP_HDRLEN;
707 	data = (void *)hdr + NL_MMAP_HDRLEN;
708 
709 	skb->head	= data;
710 	skb->data	= data;
711 	skb_reset_tail_pointer(skb);
712 	skb->end	= skb->tail + size;
713 	skb->len	= 0;
714 
715 	skb->destructor	= netlink_skb_destructor;
716 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
717 	NETLINK_CB(skb).sk = sk;
718 }
719 
720 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
721 				u32 dst_portid, u32 dst_group,
722 				struct scm_cookie *scm)
723 {
724 	struct netlink_sock *nlk = nlk_sk(sk);
725 	struct netlink_ring *ring;
726 	struct nl_mmap_hdr *hdr;
727 	struct sk_buff *skb;
728 	unsigned int maxlen;
729 	int err = 0, len = 0;
730 
731 	mutex_lock(&nlk->pg_vec_lock);
732 
733 	ring   = &nlk->tx_ring;
734 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
735 
736 	do {
737 		unsigned int nm_len;
738 
739 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
740 		if (hdr == NULL) {
741 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
742 			    atomic_read(&nlk->tx_ring.pending))
743 				schedule();
744 			continue;
745 		}
746 
747 		nm_len = ACCESS_ONCE(hdr->nm_len);
748 		if (nm_len > maxlen) {
749 			err = -EINVAL;
750 			goto out;
751 		}
752 
753 		netlink_frame_flush_dcache(hdr, nm_len);
754 
755 		skb = alloc_skb(nm_len, GFP_KERNEL);
756 		if (skb == NULL) {
757 			err = -ENOBUFS;
758 			goto out;
759 		}
760 		__skb_put(skb, nm_len);
761 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
762 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
763 
764 		netlink_increment_head(ring);
765 
766 		NETLINK_CB(skb).portid	  = nlk->portid;
767 		NETLINK_CB(skb).dst_group = dst_group;
768 		NETLINK_CB(skb).creds	  = scm->creds;
769 
770 		err = security_netlink_send(sk, skb);
771 		if (err) {
772 			kfree_skb(skb);
773 			goto out;
774 		}
775 
776 		if (unlikely(dst_group)) {
777 			atomic_inc(&skb->users);
778 			netlink_broadcast(sk, skb, dst_portid, dst_group,
779 					  GFP_KERNEL);
780 		}
781 		err = netlink_unicast(sk, skb, dst_portid,
782 				      msg->msg_flags & MSG_DONTWAIT);
783 		if (err < 0)
784 			goto out;
785 		len += err;
786 
787 	} while (hdr != NULL ||
788 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
789 		  atomic_read(&nlk->tx_ring.pending)));
790 
791 	if (len > 0)
792 		err = len;
793 out:
794 	mutex_unlock(&nlk->pg_vec_lock);
795 	return err;
796 }
797 
798 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
799 {
800 	struct nl_mmap_hdr *hdr;
801 
802 	hdr = netlink_mmap_hdr(skb);
803 	hdr->nm_len	= skb->len;
804 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
805 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
806 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
807 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
808 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
809 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
810 
811 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
812 	kfree_skb(skb);
813 }
814 
815 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
816 {
817 	struct netlink_sock *nlk = nlk_sk(sk);
818 	struct netlink_ring *ring = &nlk->rx_ring;
819 	struct nl_mmap_hdr *hdr;
820 
821 	spin_lock_bh(&sk->sk_receive_queue.lock);
822 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
823 	if (hdr == NULL) {
824 		spin_unlock_bh(&sk->sk_receive_queue.lock);
825 		kfree_skb(skb);
826 		netlink_overrun(sk);
827 		return;
828 	}
829 	netlink_increment_head(ring);
830 	__skb_queue_tail(&sk->sk_receive_queue, skb);
831 	spin_unlock_bh(&sk->sk_receive_queue.lock);
832 
833 	hdr->nm_len	= skb->len;
834 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
835 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
836 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
837 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
838 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
839 }
840 
841 #else /* CONFIG_NETLINK_MMAP */
842 #define netlink_skb_is_mmaped(skb)	false
843 #define netlink_rx_is_mmaped(sk)	false
844 #define netlink_tx_is_mmaped(sk)	false
845 #define netlink_mmap			sock_no_mmap
846 #define netlink_poll			datagram_poll
847 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm)	0
848 #endif /* CONFIG_NETLINK_MMAP */
849 
850 static void netlink_skb_destructor(struct sk_buff *skb)
851 {
852 #ifdef CONFIG_NETLINK_MMAP
853 	struct nl_mmap_hdr *hdr;
854 	struct netlink_ring *ring;
855 	struct sock *sk;
856 
857 	/* If a packet from the kernel to userspace was freed because of an
858 	 * error without being delivered to userspace, the kernel must reset
859 	 * the status. In the direction userspace to kernel, the status is
860 	 * always reset here after the packet was processed and freed.
861 	 */
862 	if (netlink_skb_is_mmaped(skb)) {
863 		hdr = netlink_mmap_hdr(skb);
864 		sk = NETLINK_CB(skb).sk;
865 
866 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
867 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
868 			ring = &nlk_sk(sk)->tx_ring;
869 		} else {
870 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
871 				hdr->nm_len = 0;
872 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
873 			}
874 			ring = &nlk_sk(sk)->rx_ring;
875 		}
876 
877 		WARN_ON(atomic_read(&ring->pending) == 0);
878 		atomic_dec(&ring->pending);
879 		sock_put(sk);
880 
881 		skb->head = NULL;
882 	}
883 #endif
884 	if (is_vmalloc_addr(skb->head)) {
885 		if (!skb->cloned ||
886 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
887 			vfree(skb->head);
888 
889 		skb->head = NULL;
890 	}
891 	if (skb->sk != NULL)
892 		sock_rfree(skb);
893 }
894 
895 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
896 {
897 	WARN_ON(skb->sk != NULL);
898 	skb->sk = sk;
899 	skb->destructor = netlink_skb_destructor;
900 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
901 	sk_mem_charge(sk, skb->truesize);
902 }
903 
904 static void netlink_sock_destruct(struct sock *sk)
905 {
906 	struct netlink_sock *nlk = nlk_sk(sk);
907 
908 	if (nlk->cb_running) {
909 		if (nlk->cb.done)
910 			nlk->cb.done(&nlk->cb);
911 
912 		module_put(nlk->cb.module);
913 		kfree_skb(nlk->cb.skb);
914 	}
915 
916 	skb_queue_purge(&sk->sk_receive_queue);
917 #ifdef CONFIG_NETLINK_MMAP
918 	if (1) {
919 		struct nl_mmap_req req;
920 
921 		memset(&req, 0, sizeof(req));
922 		if (nlk->rx_ring.pg_vec)
923 			__netlink_set_ring(sk, &req, false, NULL, 0);
924 		memset(&req, 0, sizeof(req));
925 		if (nlk->tx_ring.pg_vec)
926 			__netlink_set_ring(sk, &req, true, NULL, 0);
927 	}
928 #endif /* CONFIG_NETLINK_MMAP */
929 
930 	if (!sock_flag(sk, SOCK_DEAD)) {
931 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
932 		return;
933 	}
934 
935 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
936 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
937 	WARN_ON(nlk_sk(sk)->groups);
938 }
939 
940 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
941  * SMP. Look, when several writers sleep and reader wakes them up, all but one
942  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
943  * this, _but_ remember, it adds useless work on UP machines.
944  */
945 
946 void netlink_table_grab(void)
947 	__acquires(nl_table_lock)
948 {
949 	might_sleep();
950 
951 	write_lock_irq(&nl_table_lock);
952 
953 	if (atomic_read(&nl_table_users)) {
954 		DECLARE_WAITQUEUE(wait, current);
955 
956 		add_wait_queue_exclusive(&nl_table_wait, &wait);
957 		for (;;) {
958 			set_current_state(TASK_UNINTERRUPTIBLE);
959 			if (atomic_read(&nl_table_users) == 0)
960 				break;
961 			write_unlock_irq(&nl_table_lock);
962 			schedule();
963 			write_lock_irq(&nl_table_lock);
964 		}
965 
966 		__set_current_state(TASK_RUNNING);
967 		remove_wait_queue(&nl_table_wait, &wait);
968 	}
969 }
970 
971 void netlink_table_ungrab(void)
972 	__releases(nl_table_lock)
973 {
974 	write_unlock_irq(&nl_table_lock);
975 	wake_up(&nl_table_wait);
976 }
977 
978 static inline void
979 netlink_lock_table(void)
980 {
981 	/* read_lock() synchronizes us to netlink_table_grab */
982 
983 	read_lock(&nl_table_lock);
984 	atomic_inc(&nl_table_users);
985 	read_unlock(&nl_table_lock);
986 }
987 
988 static inline void
989 netlink_unlock_table(void)
990 {
991 	if (atomic_dec_and_test(&nl_table_users))
992 		wake_up(&nl_table_wait);
993 }
994 
995 struct netlink_compare_arg
996 {
997 	possible_net_t pnet;
998 	u32 portid;
999 };
1000 
1001 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
1002 #define netlink_compare_arg_len \
1003 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
1004 
1005 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1006 				  const void *ptr)
1007 {
1008 	const struct netlink_compare_arg *x = arg->key;
1009 	const struct netlink_sock *nlk = ptr;
1010 
1011 	return nlk->portid != x->portid ||
1012 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1013 }
1014 
1015 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1016 				     struct net *net, u32 portid)
1017 {
1018 	memset(arg, 0, sizeof(*arg));
1019 	write_pnet(&arg->pnet, net);
1020 	arg->portid = portid;
1021 }
1022 
1023 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1024 				     struct net *net)
1025 {
1026 	struct netlink_compare_arg arg;
1027 
1028 	netlink_compare_arg_init(&arg, net, portid);
1029 	return rhashtable_lookup_fast(&table->hash, &arg,
1030 				      netlink_rhashtable_params);
1031 }
1032 
1033 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1034 {
1035 	struct netlink_compare_arg arg;
1036 
1037 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1038 	return rhashtable_lookup_insert_key(&table->hash, &arg,
1039 					    &nlk_sk(sk)->node,
1040 					    netlink_rhashtable_params);
1041 }
1042 
1043 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1044 {
1045 	struct netlink_table *table = &nl_table[protocol];
1046 	struct sock *sk;
1047 
1048 	rcu_read_lock();
1049 	sk = __netlink_lookup(table, portid, net);
1050 	if (sk)
1051 		sock_hold(sk);
1052 	rcu_read_unlock();
1053 
1054 	return sk;
1055 }
1056 
1057 static const struct proto_ops netlink_ops;
1058 
1059 static void
1060 netlink_update_listeners(struct sock *sk)
1061 {
1062 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1063 	unsigned long mask;
1064 	unsigned int i;
1065 	struct listeners *listeners;
1066 
1067 	listeners = nl_deref_protected(tbl->listeners);
1068 	if (!listeners)
1069 		return;
1070 
1071 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1072 		mask = 0;
1073 		sk_for_each_bound(sk, &tbl->mc_list) {
1074 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1075 				mask |= nlk_sk(sk)->groups[i];
1076 		}
1077 		listeners->masks[i] = mask;
1078 	}
1079 	/* this function is only called with the netlink table "grabbed", which
1080 	 * makes sure updates are visible before bind or setsockopt return. */
1081 }
1082 
1083 static int netlink_insert(struct sock *sk, u32 portid)
1084 {
1085 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1086 	int err;
1087 
1088 	lock_sock(sk);
1089 
1090 	err = -EBUSY;
1091 	if (nlk_sk(sk)->portid)
1092 		goto err;
1093 
1094 	err = -ENOMEM;
1095 	if (BITS_PER_LONG > 32 &&
1096 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1097 		goto err;
1098 
1099 	nlk_sk(sk)->portid = portid;
1100 	sock_hold(sk);
1101 
1102 	err = __netlink_insert(table, sk);
1103 	if (err) {
1104 		/* In case the hashtable backend returns with -EBUSY
1105 		 * from here, it must not escape to the caller.
1106 		 */
1107 		if (unlikely(err == -EBUSY))
1108 			err = -EOVERFLOW;
1109 		if (err == -EEXIST)
1110 			err = -EADDRINUSE;
1111 		nlk_sk(sk)->portid = 0;
1112 		sock_put(sk);
1113 	}
1114 
1115 err:
1116 	release_sock(sk);
1117 	return err;
1118 }
1119 
1120 static void netlink_remove(struct sock *sk)
1121 {
1122 	struct netlink_table *table;
1123 
1124 	table = &nl_table[sk->sk_protocol];
1125 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1126 				    netlink_rhashtable_params)) {
1127 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1128 		__sock_put(sk);
1129 	}
1130 
1131 	netlink_table_grab();
1132 	if (nlk_sk(sk)->subscriptions) {
1133 		__sk_del_bind_node(sk);
1134 		netlink_update_listeners(sk);
1135 	}
1136 	if (sk->sk_protocol == NETLINK_GENERIC)
1137 		atomic_inc(&genl_sk_destructing_cnt);
1138 	netlink_table_ungrab();
1139 }
1140 
1141 static struct proto netlink_proto = {
1142 	.name	  = "NETLINK",
1143 	.owner	  = THIS_MODULE,
1144 	.obj_size = sizeof(struct netlink_sock),
1145 };
1146 
1147 static int __netlink_create(struct net *net, struct socket *sock,
1148 			    struct mutex *cb_mutex, int protocol,
1149 			    int kern)
1150 {
1151 	struct sock *sk;
1152 	struct netlink_sock *nlk;
1153 
1154 	sock->ops = &netlink_ops;
1155 
1156 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1157 	if (!sk)
1158 		return -ENOMEM;
1159 
1160 	sock_init_data(sock, sk);
1161 
1162 	nlk = nlk_sk(sk);
1163 	if (cb_mutex) {
1164 		nlk->cb_mutex = cb_mutex;
1165 	} else {
1166 		nlk->cb_mutex = &nlk->cb_def_mutex;
1167 		mutex_init(nlk->cb_mutex);
1168 	}
1169 	init_waitqueue_head(&nlk->wait);
1170 #ifdef CONFIG_NETLINK_MMAP
1171 	mutex_init(&nlk->pg_vec_lock);
1172 #endif
1173 
1174 	sk->sk_destruct = netlink_sock_destruct;
1175 	sk->sk_protocol = protocol;
1176 	return 0;
1177 }
1178 
1179 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1180 			  int kern)
1181 {
1182 	struct module *module = NULL;
1183 	struct mutex *cb_mutex;
1184 	struct netlink_sock *nlk;
1185 	int (*bind)(struct net *net, int group);
1186 	void (*unbind)(struct net *net, int group);
1187 	int err = 0;
1188 
1189 	sock->state = SS_UNCONNECTED;
1190 
1191 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1192 		return -ESOCKTNOSUPPORT;
1193 
1194 	if (protocol < 0 || protocol >= MAX_LINKS)
1195 		return -EPROTONOSUPPORT;
1196 
1197 	netlink_lock_table();
1198 #ifdef CONFIG_MODULES
1199 	if (!nl_table[protocol].registered) {
1200 		netlink_unlock_table();
1201 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1202 		netlink_lock_table();
1203 	}
1204 #endif
1205 	if (nl_table[protocol].registered &&
1206 	    try_module_get(nl_table[protocol].module))
1207 		module = nl_table[protocol].module;
1208 	else
1209 		err = -EPROTONOSUPPORT;
1210 	cb_mutex = nl_table[protocol].cb_mutex;
1211 	bind = nl_table[protocol].bind;
1212 	unbind = nl_table[protocol].unbind;
1213 	netlink_unlock_table();
1214 
1215 	if (err < 0)
1216 		goto out;
1217 
1218 	err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1219 	if (err < 0)
1220 		goto out_module;
1221 
1222 	local_bh_disable();
1223 	sock_prot_inuse_add(net, &netlink_proto, 1);
1224 	local_bh_enable();
1225 
1226 	nlk = nlk_sk(sock->sk);
1227 	nlk->module = module;
1228 	nlk->netlink_bind = bind;
1229 	nlk->netlink_unbind = unbind;
1230 out:
1231 	return err;
1232 
1233 out_module:
1234 	module_put(module);
1235 	goto out;
1236 }
1237 
1238 static void deferred_put_nlk_sk(struct rcu_head *head)
1239 {
1240 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1241 
1242 	sock_put(&nlk->sk);
1243 }
1244 
1245 static int netlink_release(struct socket *sock)
1246 {
1247 	struct sock *sk = sock->sk;
1248 	struct netlink_sock *nlk;
1249 
1250 	if (!sk)
1251 		return 0;
1252 
1253 	netlink_remove(sk);
1254 	sock_orphan(sk);
1255 	nlk = nlk_sk(sk);
1256 
1257 	/*
1258 	 * OK. Socket is unlinked, any packets that arrive now
1259 	 * will be purged.
1260 	 */
1261 
1262 	/* must not acquire netlink_table_lock in any way again before unbind
1263 	 * and notifying genetlink is done as otherwise it might deadlock
1264 	 */
1265 	if (nlk->netlink_unbind) {
1266 		int i;
1267 
1268 		for (i = 0; i < nlk->ngroups; i++)
1269 			if (test_bit(i, nlk->groups))
1270 				nlk->netlink_unbind(sock_net(sk), i + 1);
1271 	}
1272 	if (sk->sk_protocol == NETLINK_GENERIC &&
1273 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1274 		wake_up(&genl_sk_destructing_waitq);
1275 
1276 	sock->sk = NULL;
1277 	wake_up_interruptible_all(&nlk->wait);
1278 
1279 	skb_queue_purge(&sk->sk_write_queue);
1280 
1281 	if (nlk->portid) {
1282 		struct netlink_notify n = {
1283 						.net = sock_net(sk),
1284 						.protocol = sk->sk_protocol,
1285 						.portid = nlk->portid,
1286 					  };
1287 		atomic_notifier_call_chain(&netlink_chain,
1288 				NETLINK_URELEASE, &n);
1289 	}
1290 
1291 	module_put(nlk->module);
1292 
1293 	if (netlink_is_kernel(sk)) {
1294 		netlink_table_grab();
1295 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1296 		if (--nl_table[sk->sk_protocol].registered == 0) {
1297 			struct listeners *old;
1298 
1299 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1300 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1301 			kfree_rcu(old, rcu);
1302 			nl_table[sk->sk_protocol].module = NULL;
1303 			nl_table[sk->sk_protocol].bind = NULL;
1304 			nl_table[sk->sk_protocol].unbind = NULL;
1305 			nl_table[sk->sk_protocol].flags = 0;
1306 			nl_table[sk->sk_protocol].registered = 0;
1307 		}
1308 		netlink_table_ungrab();
1309 	}
1310 
1311 	kfree(nlk->groups);
1312 	nlk->groups = NULL;
1313 
1314 	local_bh_disable();
1315 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1316 	local_bh_enable();
1317 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1318 	return 0;
1319 }
1320 
1321 static int netlink_autobind(struct socket *sock)
1322 {
1323 	struct sock *sk = sock->sk;
1324 	struct net *net = sock_net(sk);
1325 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1326 	s32 portid = task_tgid_vnr(current);
1327 	int err;
1328 	s32 rover = -4096;
1329 	bool ok;
1330 
1331 retry:
1332 	cond_resched();
1333 	rcu_read_lock();
1334 	ok = !__netlink_lookup(table, portid, net);
1335 	rcu_read_unlock();
1336 	if (!ok) {
1337 		/* Bind collision, search negative portid values. */
1338 		if (rover == -4096)
1339 			/* rover will be in range [S32_MIN, -4097] */
1340 			rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1341 		else if (rover >= -4096)
1342 			rover = -4097;
1343 		portid = rover--;
1344 		goto retry;
1345 	}
1346 
1347 	err = netlink_insert(sk, portid);
1348 	if (err == -EADDRINUSE)
1349 		goto retry;
1350 
1351 	/* If 2 threads race to autobind, that is fine.  */
1352 	if (err == -EBUSY)
1353 		err = 0;
1354 
1355 	return err;
1356 }
1357 
1358 /**
1359  * __netlink_ns_capable - General netlink message capability test
1360  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1361  * @user_ns: The user namespace of the capability to use
1362  * @cap: The capability to use
1363  *
1364  * Test to see if the opener of the socket we received the message
1365  * from had when the netlink socket was created and the sender of the
1366  * message has has the capability @cap in the user namespace @user_ns.
1367  */
1368 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1369 			struct user_namespace *user_ns, int cap)
1370 {
1371 	return ((nsp->flags & NETLINK_SKB_DST) ||
1372 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1373 		ns_capable(user_ns, cap);
1374 }
1375 EXPORT_SYMBOL(__netlink_ns_capable);
1376 
1377 /**
1378  * netlink_ns_capable - General netlink message capability test
1379  * @skb: socket buffer holding a netlink command from userspace
1380  * @user_ns: The user namespace of the capability to use
1381  * @cap: The capability to use
1382  *
1383  * Test to see if the opener of the socket we received the message
1384  * from had when the netlink socket was created and the sender of the
1385  * message has has the capability @cap in the user namespace @user_ns.
1386  */
1387 bool netlink_ns_capable(const struct sk_buff *skb,
1388 			struct user_namespace *user_ns, int cap)
1389 {
1390 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1391 }
1392 EXPORT_SYMBOL(netlink_ns_capable);
1393 
1394 /**
1395  * netlink_capable - Netlink global message capability test
1396  * @skb: socket buffer holding a netlink command from userspace
1397  * @cap: The capability to use
1398  *
1399  * Test to see if the opener of the socket we received the message
1400  * from had when the netlink socket was created and the sender of the
1401  * message has has the capability @cap in all user namespaces.
1402  */
1403 bool netlink_capable(const struct sk_buff *skb, int cap)
1404 {
1405 	return netlink_ns_capable(skb, &init_user_ns, cap);
1406 }
1407 EXPORT_SYMBOL(netlink_capable);
1408 
1409 /**
1410  * netlink_net_capable - Netlink network namespace message capability test
1411  * @skb: socket buffer holding a netlink command from userspace
1412  * @cap: The capability to use
1413  *
1414  * Test to see if the opener of the socket we received the message
1415  * from had when the netlink socket was created and the sender of the
1416  * message has has the capability @cap over the network namespace of
1417  * the socket we received the message from.
1418  */
1419 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1420 {
1421 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1422 }
1423 EXPORT_SYMBOL(netlink_net_capable);
1424 
1425 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1426 {
1427 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1428 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1429 }
1430 
1431 static void
1432 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1433 {
1434 	struct netlink_sock *nlk = nlk_sk(sk);
1435 
1436 	if (nlk->subscriptions && !subscriptions)
1437 		__sk_del_bind_node(sk);
1438 	else if (!nlk->subscriptions && subscriptions)
1439 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1440 	nlk->subscriptions = subscriptions;
1441 }
1442 
1443 static int netlink_realloc_groups(struct sock *sk)
1444 {
1445 	struct netlink_sock *nlk = nlk_sk(sk);
1446 	unsigned int groups;
1447 	unsigned long *new_groups;
1448 	int err = 0;
1449 
1450 	netlink_table_grab();
1451 
1452 	groups = nl_table[sk->sk_protocol].groups;
1453 	if (!nl_table[sk->sk_protocol].registered) {
1454 		err = -ENOENT;
1455 		goto out_unlock;
1456 	}
1457 
1458 	if (nlk->ngroups >= groups)
1459 		goto out_unlock;
1460 
1461 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1462 	if (new_groups == NULL) {
1463 		err = -ENOMEM;
1464 		goto out_unlock;
1465 	}
1466 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1467 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1468 
1469 	nlk->groups = new_groups;
1470 	nlk->ngroups = groups;
1471  out_unlock:
1472 	netlink_table_ungrab();
1473 	return err;
1474 }
1475 
1476 static void netlink_undo_bind(int group, long unsigned int groups,
1477 			      struct sock *sk)
1478 {
1479 	struct netlink_sock *nlk = nlk_sk(sk);
1480 	int undo;
1481 
1482 	if (!nlk->netlink_unbind)
1483 		return;
1484 
1485 	for (undo = 0; undo < group; undo++)
1486 		if (test_bit(undo, &groups))
1487 			nlk->netlink_unbind(sock_net(sk), undo + 1);
1488 }
1489 
1490 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1491 			int addr_len)
1492 {
1493 	struct sock *sk = sock->sk;
1494 	struct net *net = sock_net(sk);
1495 	struct netlink_sock *nlk = nlk_sk(sk);
1496 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1497 	int err;
1498 	long unsigned int groups = nladdr->nl_groups;
1499 
1500 	if (addr_len < sizeof(struct sockaddr_nl))
1501 		return -EINVAL;
1502 
1503 	if (nladdr->nl_family != AF_NETLINK)
1504 		return -EINVAL;
1505 
1506 	/* Only superuser is allowed to listen multicasts */
1507 	if (groups) {
1508 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1509 			return -EPERM;
1510 		err = netlink_realloc_groups(sk);
1511 		if (err)
1512 			return err;
1513 	}
1514 
1515 	if (nlk->portid)
1516 		if (nladdr->nl_pid != nlk->portid)
1517 			return -EINVAL;
1518 
1519 	if (nlk->netlink_bind && groups) {
1520 		int group;
1521 
1522 		for (group = 0; group < nlk->ngroups; group++) {
1523 			if (!test_bit(group, &groups))
1524 				continue;
1525 			err = nlk->netlink_bind(net, group + 1);
1526 			if (!err)
1527 				continue;
1528 			netlink_undo_bind(group, groups, sk);
1529 			return err;
1530 		}
1531 	}
1532 
1533 	if (!nlk->portid) {
1534 		err = nladdr->nl_pid ?
1535 			netlink_insert(sk, nladdr->nl_pid) :
1536 			netlink_autobind(sock);
1537 		if (err) {
1538 			netlink_undo_bind(nlk->ngroups, groups, sk);
1539 			return err;
1540 		}
1541 	}
1542 
1543 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1544 		return 0;
1545 
1546 	netlink_table_grab();
1547 	netlink_update_subscriptions(sk, nlk->subscriptions +
1548 					 hweight32(groups) -
1549 					 hweight32(nlk->groups[0]));
1550 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1551 	netlink_update_listeners(sk);
1552 	netlink_table_ungrab();
1553 
1554 	return 0;
1555 }
1556 
1557 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1558 			   int alen, int flags)
1559 {
1560 	int err = 0;
1561 	struct sock *sk = sock->sk;
1562 	struct netlink_sock *nlk = nlk_sk(sk);
1563 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1564 
1565 	if (alen < sizeof(addr->sa_family))
1566 		return -EINVAL;
1567 
1568 	if (addr->sa_family == AF_UNSPEC) {
1569 		sk->sk_state	= NETLINK_UNCONNECTED;
1570 		nlk->dst_portid	= 0;
1571 		nlk->dst_group  = 0;
1572 		return 0;
1573 	}
1574 	if (addr->sa_family != AF_NETLINK)
1575 		return -EINVAL;
1576 
1577 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1578 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1579 		return -EPERM;
1580 
1581 	if (!nlk->portid)
1582 		err = netlink_autobind(sock);
1583 
1584 	if (err == 0) {
1585 		sk->sk_state	= NETLINK_CONNECTED;
1586 		nlk->dst_portid = nladdr->nl_pid;
1587 		nlk->dst_group  = ffs(nladdr->nl_groups);
1588 	}
1589 
1590 	return err;
1591 }
1592 
1593 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1594 			   int *addr_len, int peer)
1595 {
1596 	struct sock *sk = sock->sk;
1597 	struct netlink_sock *nlk = nlk_sk(sk);
1598 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1599 
1600 	nladdr->nl_family = AF_NETLINK;
1601 	nladdr->nl_pad = 0;
1602 	*addr_len = sizeof(*nladdr);
1603 
1604 	if (peer) {
1605 		nladdr->nl_pid = nlk->dst_portid;
1606 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1607 	} else {
1608 		nladdr->nl_pid = nlk->portid;
1609 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1610 	}
1611 	return 0;
1612 }
1613 
1614 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1615 {
1616 	struct sock *sock;
1617 	struct netlink_sock *nlk;
1618 
1619 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1620 	if (!sock)
1621 		return ERR_PTR(-ECONNREFUSED);
1622 
1623 	/* Don't bother queuing skb if kernel socket has no input function */
1624 	nlk = nlk_sk(sock);
1625 	if (sock->sk_state == NETLINK_CONNECTED &&
1626 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1627 		sock_put(sock);
1628 		return ERR_PTR(-ECONNREFUSED);
1629 	}
1630 	return sock;
1631 }
1632 
1633 struct sock *netlink_getsockbyfilp(struct file *filp)
1634 {
1635 	struct inode *inode = file_inode(filp);
1636 	struct sock *sock;
1637 
1638 	if (!S_ISSOCK(inode->i_mode))
1639 		return ERR_PTR(-ENOTSOCK);
1640 
1641 	sock = SOCKET_I(inode)->sk;
1642 	if (sock->sk_family != AF_NETLINK)
1643 		return ERR_PTR(-EINVAL);
1644 
1645 	sock_hold(sock);
1646 	return sock;
1647 }
1648 
1649 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1650 					       int broadcast)
1651 {
1652 	struct sk_buff *skb;
1653 	void *data;
1654 
1655 	if (size <= NLMSG_GOODSIZE || broadcast)
1656 		return alloc_skb(size, GFP_KERNEL);
1657 
1658 	size = SKB_DATA_ALIGN(size) +
1659 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1660 
1661 	data = vmalloc(size);
1662 	if (data == NULL)
1663 		return NULL;
1664 
1665 	skb = __build_skb(data, size);
1666 	if (skb == NULL)
1667 		vfree(data);
1668 	else
1669 		skb->destructor = netlink_skb_destructor;
1670 
1671 	return skb;
1672 }
1673 
1674 /*
1675  * Attach a skb to a netlink socket.
1676  * The caller must hold a reference to the destination socket. On error, the
1677  * reference is dropped. The skb is not send to the destination, just all
1678  * all error checks are performed and memory in the queue is reserved.
1679  * Return values:
1680  * < 0: error. skb freed, reference to sock dropped.
1681  * 0: continue
1682  * 1: repeat lookup - reference dropped while waiting for socket memory.
1683  */
1684 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1685 		      long *timeo, struct sock *ssk)
1686 {
1687 	struct netlink_sock *nlk;
1688 
1689 	nlk = nlk_sk(sk);
1690 
1691 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1692 	     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1693 	    !netlink_skb_is_mmaped(skb)) {
1694 		DECLARE_WAITQUEUE(wait, current);
1695 		if (!*timeo) {
1696 			if (!ssk || netlink_is_kernel(ssk))
1697 				netlink_overrun(sk);
1698 			sock_put(sk);
1699 			kfree_skb(skb);
1700 			return -EAGAIN;
1701 		}
1702 
1703 		__set_current_state(TASK_INTERRUPTIBLE);
1704 		add_wait_queue(&nlk->wait, &wait);
1705 
1706 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1707 		     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1708 		    !sock_flag(sk, SOCK_DEAD))
1709 			*timeo = schedule_timeout(*timeo);
1710 
1711 		__set_current_state(TASK_RUNNING);
1712 		remove_wait_queue(&nlk->wait, &wait);
1713 		sock_put(sk);
1714 
1715 		if (signal_pending(current)) {
1716 			kfree_skb(skb);
1717 			return sock_intr_errno(*timeo);
1718 		}
1719 		return 1;
1720 	}
1721 	netlink_skb_set_owner_r(skb, sk);
1722 	return 0;
1723 }
1724 
1725 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1726 {
1727 	int len = skb->len;
1728 
1729 	netlink_deliver_tap(skb);
1730 
1731 #ifdef CONFIG_NETLINK_MMAP
1732 	if (netlink_skb_is_mmaped(skb))
1733 		netlink_queue_mmaped_skb(sk, skb);
1734 	else if (netlink_rx_is_mmaped(sk))
1735 		netlink_ring_set_copied(sk, skb);
1736 	else
1737 #endif /* CONFIG_NETLINK_MMAP */
1738 		skb_queue_tail(&sk->sk_receive_queue, skb);
1739 	sk->sk_data_ready(sk);
1740 	return len;
1741 }
1742 
1743 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1744 {
1745 	int len = __netlink_sendskb(sk, skb);
1746 
1747 	sock_put(sk);
1748 	return len;
1749 }
1750 
1751 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1752 {
1753 	kfree_skb(skb);
1754 	sock_put(sk);
1755 }
1756 
1757 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1758 {
1759 	int delta;
1760 
1761 	WARN_ON(skb->sk != NULL);
1762 	if (netlink_skb_is_mmaped(skb))
1763 		return skb;
1764 
1765 	delta = skb->end - skb->tail;
1766 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1767 		return skb;
1768 
1769 	if (skb_shared(skb)) {
1770 		struct sk_buff *nskb = skb_clone(skb, allocation);
1771 		if (!nskb)
1772 			return skb;
1773 		consume_skb(skb);
1774 		skb = nskb;
1775 	}
1776 
1777 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1778 		skb->truesize -= delta;
1779 
1780 	return skb;
1781 }
1782 
1783 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1784 				  struct sock *ssk)
1785 {
1786 	int ret;
1787 	struct netlink_sock *nlk = nlk_sk(sk);
1788 
1789 	ret = -ECONNREFUSED;
1790 	if (nlk->netlink_rcv != NULL) {
1791 		ret = skb->len;
1792 		netlink_skb_set_owner_r(skb, sk);
1793 		NETLINK_CB(skb).sk = ssk;
1794 		netlink_deliver_tap_kernel(sk, ssk, skb);
1795 		nlk->netlink_rcv(skb);
1796 		consume_skb(skb);
1797 	} else {
1798 		kfree_skb(skb);
1799 	}
1800 	sock_put(sk);
1801 	return ret;
1802 }
1803 
1804 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1805 		    u32 portid, int nonblock)
1806 {
1807 	struct sock *sk;
1808 	int err;
1809 	long timeo;
1810 
1811 	skb = netlink_trim(skb, gfp_any());
1812 
1813 	timeo = sock_sndtimeo(ssk, nonblock);
1814 retry:
1815 	sk = netlink_getsockbyportid(ssk, portid);
1816 	if (IS_ERR(sk)) {
1817 		kfree_skb(skb);
1818 		return PTR_ERR(sk);
1819 	}
1820 	if (netlink_is_kernel(sk))
1821 		return netlink_unicast_kernel(sk, skb, ssk);
1822 
1823 	if (sk_filter(sk, skb)) {
1824 		err = skb->len;
1825 		kfree_skb(skb);
1826 		sock_put(sk);
1827 		return err;
1828 	}
1829 
1830 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1831 	if (err == 1)
1832 		goto retry;
1833 	if (err)
1834 		return err;
1835 
1836 	return netlink_sendskb(sk, skb);
1837 }
1838 EXPORT_SYMBOL(netlink_unicast);
1839 
1840 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1841 				  u32 dst_portid, gfp_t gfp_mask)
1842 {
1843 #ifdef CONFIG_NETLINK_MMAP
1844 	struct sock *sk = NULL;
1845 	struct sk_buff *skb;
1846 	struct netlink_ring *ring;
1847 	struct nl_mmap_hdr *hdr;
1848 	unsigned int maxlen;
1849 
1850 	sk = netlink_getsockbyportid(ssk, dst_portid);
1851 	if (IS_ERR(sk))
1852 		goto out;
1853 
1854 	ring = &nlk_sk(sk)->rx_ring;
1855 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1856 	if (ring->pg_vec == NULL)
1857 		goto out_put;
1858 
1859 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1860 		goto out_put;
1861 
1862 	skb = alloc_skb_head(gfp_mask);
1863 	if (skb == NULL)
1864 		goto err1;
1865 
1866 	spin_lock_bh(&sk->sk_receive_queue.lock);
1867 	/* check again under lock */
1868 	if (ring->pg_vec == NULL)
1869 		goto out_free;
1870 
1871 	/* check again under lock */
1872 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1873 	if (maxlen < size)
1874 		goto out_free;
1875 
1876 	netlink_forward_ring(ring);
1877 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1878 	if (hdr == NULL)
1879 		goto err2;
1880 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1881 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1882 	atomic_inc(&ring->pending);
1883 	netlink_increment_head(ring);
1884 
1885 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1886 	return skb;
1887 
1888 err2:
1889 	kfree_skb(skb);
1890 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1891 	netlink_overrun(sk);
1892 err1:
1893 	sock_put(sk);
1894 	return NULL;
1895 
1896 out_free:
1897 	kfree_skb(skb);
1898 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1899 out_put:
1900 	sock_put(sk);
1901 out:
1902 #endif
1903 	return alloc_skb(size, gfp_mask);
1904 }
1905 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1906 
1907 int netlink_has_listeners(struct sock *sk, unsigned int group)
1908 {
1909 	int res = 0;
1910 	struct listeners *listeners;
1911 
1912 	BUG_ON(!netlink_is_kernel(sk));
1913 
1914 	rcu_read_lock();
1915 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1916 
1917 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1918 		res = test_bit(group - 1, listeners->masks);
1919 
1920 	rcu_read_unlock();
1921 
1922 	return res;
1923 }
1924 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1925 
1926 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1927 {
1928 	struct netlink_sock *nlk = nlk_sk(sk);
1929 
1930 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1931 	    !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1932 		netlink_skb_set_owner_r(skb, sk);
1933 		__netlink_sendskb(sk, skb);
1934 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1935 	}
1936 	return -1;
1937 }
1938 
1939 struct netlink_broadcast_data {
1940 	struct sock *exclude_sk;
1941 	struct net *net;
1942 	u32 portid;
1943 	u32 group;
1944 	int failure;
1945 	int delivery_failure;
1946 	int congested;
1947 	int delivered;
1948 	gfp_t allocation;
1949 	struct sk_buff *skb, *skb2;
1950 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1951 	void *tx_data;
1952 };
1953 
1954 static void do_one_broadcast(struct sock *sk,
1955 				    struct netlink_broadcast_data *p)
1956 {
1957 	struct netlink_sock *nlk = nlk_sk(sk);
1958 	int val;
1959 
1960 	if (p->exclude_sk == sk)
1961 		return;
1962 
1963 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1964 	    !test_bit(p->group - 1, nlk->groups))
1965 		return;
1966 
1967 	if (!net_eq(sock_net(sk), p->net)) {
1968 		if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1969 			return;
1970 
1971 		if (!peernet_has_id(sock_net(sk), p->net))
1972 			return;
1973 
1974 		if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1975 				     CAP_NET_BROADCAST))
1976 			return;
1977 	}
1978 
1979 	if (p->failure) {
1980 		netlink_overrun(sk);
1981 		return;
1982 	}
1983 
1984 	sock_hold(sk);
1985 	if (p->skb2 == NULL) {
1986 		if (skb_shared(p->skb)) {
1987 			p->skb2 = skb_clone(p->skb, p->allocation);
1988 		} else {
1989 			p->skb2 = skb_get(p->skb);
1990 			/*
1991 			 * skb ownership may have been set when
1992 			 * delivered to a previous socket.
1993 			 */
1994 			skb_orphan(p->skb2);
1995 		}
1996 	}
1997 	if (p->skb2 == NULL) {
1998 		netlink_overrun(sk);
1999 		/* Clone failed. Notify ALL listeners. */
2000 		p->failure = 1;
2001 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2002 			p->delivery_failure = 1;
2003 		goto out;
2004 	}
2005 	if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2006 		kfree_skb(p->skb2);
2007 		p->skb2 = NULL;
2008 		goto out;
2009 	}
2010 	if (sk_filter(sk, p->skb2)) {
2011 		kfree_skb(p->skb2);
2012 		p->skb2 = NULL;
2013 		goto out;
2014 	}
2015 	NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
2016 	NETLINK_CB(p->skb2).nsid_is_set = true;
2017 	val = netlink_broadcast_deliver(sk, p->skb2);
2018 	if (val < 0) {
2019 		netlink_overrun(sk);
2020 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2021 			p->delivery_failure = 1;
2022 	} else {
2023 		p->congested |= val;
2024 		p->delivered = 1;
2025 		p->skb2 = NULL;
2026 	}
2027 out:
2028 	sock_put(sk);
2029 }
2030 
2031 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2032 	u32 group, gfp_t allocation,
2033 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2034 	void *filter_data)
2035 {
2036 	struct net *net = sock_net(ssk);
2037 	struct netlink_broadcast_data info;
2038 	struct sock *sk;
2039 
2040 	skb = netlink_trim(skb, allocation);
2041 
2042 	info.exclude_sk = ssk;
2043 	info.net = net;
2044 	info.portid = portid;
2045 	info.group = group;
2046 	info.failure = 0;
2047 	info.delivery_failure = 0;
2048 	info.congested = 0;
2049 	info.delivered = 0;
2050 	info.allocation = allocation;
2051 	info.skb = skb;
2052 	info.skb2 = NULL;
2053 	info.tx_filter = filter;
2054 	info.tx_data = filter_data;
2055 
2056 	/* While we sleep in clone, do not allow to change socket list */
2057 
2058 	netlink_lock_table();
2059 
2060 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2061 		do_one_broadcast(sk, &info);
2062 
2063 	consume_skb(skb);
2064 
2065 	netlink_unlock_table();
2066 
2067 	if (info.delivery_failure) {
2068 		kfree_skb(info.skb2);
2069 		return -ENOBUFS;
2070 	}
2071 	consume_skb(info.skb2);
2072 
2073 	if (info.delivered) {
2074 		if (info.congested && (allocation & __GFP_WAIT))
2075 			yield();
2076 		return 0;
2077 	}
2078 	return -ESRCH;
2079 }
2080 EXPORT_SYMBOL(netlink_broadcast_filtered);
2081 
2082 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2083 		      u32 group, gfp_t allocation)
2084 {
2085 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2086 		NULL, NULL);
2087 }
2088 EXPORT_SYMBOL(netlink_broadcast);
2089 
2090 struct netlink_set_err_data {
2091 	struct sock *exclude_sk;
2092 	u32 portid;
2093 	u32 group;
2094 	int code;
2095 };
2096 
2097 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2098 {
2099 	struct netlink_sock *nlk = nlk_sk(sk);
2100 	int ret = 0;
2101 
2102 	if (sk == p->exclude_sk)
2103 		goto out;
2104 
2105 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2106 		goto out;
2107 
2108 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2109 	    !test_bit(p->group - 1, nlk->groups))
2110 		goto out;
2111 
2112 	if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2113 		ret = 1;
2114 		goto out;
2115 	}
2116 
2117 	sk->sk_err = p->code;
2118 	sk->sk_error_report(sk);
2119 out:
2120 	return ret;
2121 }
2122 
2123 /**
2124  * netlink_set_err - report error to broadcast listeners
2125  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2126  * @portid: the PORTID of a process that we want to skip (if any)
2127  * @group: the broadcast group that will notice the error
2128  * @code: error code, must be negative (as usual in kernelspace)
2129  *
2130  * This function returns the number of broadcast listeners that have set the
2131  * NETLINK_NO_ENOBUFS socket option.
2132  */
2133 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2134 {
2135 	struct netlink_set_err_data info;
2136 	struct sock *sk;
2137 	int ret = 0;
2138 
2139 	info.exclude_sk = ssk;
2140 	info.portid = portid;
2141 	info.group = group;
2142 	/* sk->sk_err wants a positive error value */
2143 	info.code = -code;
2144 
2145 	read_lock(&nl_table_lock);
2146 
2147 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2148 		ret += do_one_set_err(sk, &info);
2149 
2150 	read_unlock(&nl_table_lock);
2151 	return ret;
2152 }
2153 EXPORT_SYMBOL(netlink_set_err);
2154 
2155 /* must be called with netlink table grabbed */
2156 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2157 				     unsigned int group,
2158 				     int is_new)
2159 {
2160 	int old, new = !!is_new, subscriptions;
2161 
2162 	old = test_bit(group - 1, nlk->groups);
2163 	subscriptions = nlk->subscriptions - old + new;
2164 	if (new)
2165 		__set_bit(group - 1, nlk->groups);
2166 	else
2167 		__clear_bit(group - 1, nlk->groups);
2168 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2169 	netlink_update_listeners(&nlk->sk);
2170 }
2171 
2172 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2173 			      char __user *optval, unsigned int optlen)
2174 {
2175 	struct sock *sk = sock->sk;
2176 	struct netlink_sock *nlk = nlk_sk(sk);
2177 	unsigned int val = 0;
2178 	int err;
2179 
2180 	if (level != SOL_NETLINK)
2181 		return -ENOPROTOOPT;
2182 
2183 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2184 	    optlen >= sizeof(int) &&
2185 	    get_user(val, (unsigned int __user *)optval))
2186 		return -EFAULT;
2187 
2188 	switch (optname) {
2189 	case NETLINK_PKTINFO:
2190 		if (val)
2191 			nlk->flags |= NETLINK_F_RECV_PKTINFO;
2192 		else
2193 			nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2194 		err = 0;
2195 		break;
2196 	case NETLINK_ADD_MEMBERSHIP:
2197 	case NETLINK_DROP_MEMBERSHIP: {
2198 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2199 			return -EPERM;
2200 		err = netlink_realloc_groups(sk);
2201 		if (err)
2202 			return err;
2203 		if (!val || val - 1 >= nlk->ngroups)
2204 			return -EINVAL;
2205 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2206 			err = nlk->netlink_bind(sock_net(sk), val);
2207 			if (err)
2208 				return err;
2209 		}
2210 		netlink_table_grab();
2211 		netlink_update_socket_mc(nlk, val,
2212 					 optname == NETLINK_ADD_MEMBERSHIP);
2213 		netlink_table_ungrab();
2214 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2215 			nlk->netlink_unbind(sock_net(sk), val);
2216 
2217 		err = 0;
2218 		break;
2219 	}
2220 	case NETLINK_BROADCAST_ERROR:
2221 		if (val)
2222 			nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2223 		else
2224 			nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2225 		err = 0;
2226 		break;
2227 	case NETLINK_NO_ENOBUFS:
2228 		if (val) {
2229 			nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2230 			clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2231 			wake_up_interruptible(&nlk->wait);
2232 		} else {
2233 			nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2234 		}
2235 		err = 0;
2236 		break;
2237 #ifdef CONFIG_NETLINK_MMAP
2238 	case NETLINK_RX_RING:
2239 	case NETLINK_TX_RING: {
2240 		struct nl_mmap_req req;
2241 
2242 		/* Rings might consume more memory than queue limits, require
2243 		 * CAP_NET_ADMIN.
2244 		 */
2245 		if (!capable(CAP_NET_ADMIN))
2246 			return -EPERM;
2247 		if (optlen < sizeof(req))
2248 			return -EINVAL;
2249 		if (copy_from_user(&req, optval, sizeof(req)))
2250 			return -EFAULT;
2251 		err = netlink_set_ring(sk, &req,
2252 				       optname == NETLINK_TX_RING);
2253 		break;
2254 	}
2255 #endif /* CONFIG_NETLINK_MMAP */
2256 	case NETLINK_LISTEN_ALL_NSID:
2257 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2258 			return -EPERM;
2259 
2260 		if (val)
2261 			nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2262 		else
2263 			nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2264 		err = 0;
2265 		break;
2266 	case NETLINK_CAP_ACK:
2267 		if (val)
2268 			nlk->flags |= NETLINK_F_CAP_ACK;
2269 		else
2270 			nlk->flags &= ~NETLINK_F_CAP_ACK;
2271 		err = 0;
2272 		break;
2273 	default:
2274 		err = -ENOPROTOOPT;
2275 	}
2276 	return err;
2277 }
2278 
2279 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2280 			      char __user *optval, int __user *optlen)
2281 {
2282 	struct sock *sk = sock->sk;
2283 	struct netlink_sock *nlk = nlk_sk(sk);
2284 	int len, val, err;
2285 
2286 	if (level != SOL_NETLINK)
2287 		return -ENOPROTOOPT;
2288 
2289 	if (get_user(len, optlen))
2290 		return -EFAULT;
2291 	if (len < 0)
2292 		return -EINVAL;
2293 
2294 	switch (optname) {
2295 	case NETLINK_PKTINFO:
2296 		if (len < sizeof(int))
2297 			return -EINVAL;
2298 		len = sizeof(int);
2299 		val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2300 		if (put_user(len, optlen) ||
2301 		    put_user(val, optval))
2302 			return -EFAULT;
2303 		err = 0;
2304 		break;
2305 	case NETLINK_BROADCAST_ERROR:
2306 		if (len < sizeof(int))
2307 			return -EINVAL;
2308 		len = sizeof(int);
2309 		val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2310 		if (put_user(len, optlen) ||
2311 		    put_user(val, optval))
2312 			return -EFAULT;
2313 		err = 0;
2314 		break;
2315 	case NETLINK_NO_ENOBUFS:
2316 		if (len < sizeof(int))
2317 			return -EINVAL;
2318 		len = sizeof(int);
2319 		val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2320 		if (put_user(len, optlen) ||
2321 		    put_user(val, optval))
2322 			return -EFAULT;
2323 		err = 0;
2324 		break;
2325 	case NETLINK_LIST_MEMBERSHIPS: {
2326 		int pos, idx, shift;
2327 
2328 		err = 0;
2329 		netlink_table_grab();
2330 		for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2331 			if (len - pos < sizeof(u32))
2332 				break;
2333 
2334 			idx = pos / sizeof(unsigned long);
2335 			shift = (pos % sizeof(unsigned long)) * 8;
2336 			if (put_user((u32)(nlk->groups[idx] >> shift),
2337 				     (u32 __user *)(optval + pos))) {
2338 				err = -EFAULT;
2339 				break;
2340 			}
2341 		}
2342 		if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2343 			err = -EFAULT;
2344 		netlink_table_ungrab();
2345 		break;
2346 	}
2347 	case NETLINK_CAP_ACK:
2348 		if (len < sizeof(int))
2349 			return -EINVAL;
2350 		len = sizeof(int);
2351 		val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
2352 		if (put_user(len, optlen) ||
2353 		    put_user(val, optval))
2354 			return -EFAULT;
2355 		err = 0;
2356 		break;
2357 	default:
2358 		err = -ENOPROTOOPT;
2359 	}
2360 	return err;
2361 }
2362 
2363 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2364 {
2365 	struct nl_pktinfo info;
2366 
2367 	info.group = NETLINK_CB(skb).dst_group;
2368 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2369 }
2370 
2371 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2372 					 struct sk_buff *skb)
2373 {
2374 	if (!NETLINK_CB(skb).nsid_is_set)
2375 		return;
2376 
2377 	put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2378 		 &NETLINK_CB(skb).nsid);
2379 }
2380 
2381 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2382 {
2383 	struct sock *sk = sock->sk;
2384 	struct netlink_sock *nlk = nlk_sk(sk);
2385 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2386 	u32 dst_portid;
2387 	u32 dst_group;
2388 	struct sk_buff *skb;
2389 	int err;
2390 	struct scm_cookie scm;
2391 	u32 netlink_skb_flags = 0;
2392 
2393 	if (msg->msg_flags&MSG_OOB)
2394 		return -EOPNOTSUPP;
2395 
2396 	err = scm_send(sock, msg, &scm, true);
2397 	if (err < 0)
2398 		return err;
2399 
2400 	if (msg->msg_namelen) {
2401 		err = -EINVAL;
2402 		if (addr->nl_family != AF_NETLINK)
2403 			goto out;
2404 		dst_portid = addr->nl_pid;
2405 		dst_group = ffs(addr->nl_groups);
2406 		err =  -EPERM;
2407 		if ((dst_group || dst_portid) &&
2408 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2409 			goto out;
2410 		netlink_skb_flags |= NETLINK_SKB_DST;
2411 	} else {
2412 		dst_portid = nlk->dst_portid;
2413 		dst_group = nlk->dst_group;
2414 	}
2415 
2416 	if (!nlk->portid) {
2417 		err = netlink_autobind(sock);
2418 		if (err)
2419 			goto out;
2420 	}
2421 
2422 	/* It's a really convoluted way for userland to ask for mmaped
2423 	 * sendmsg(), but that's what we've got...
2424 	 */
2425 	if (netlink_tx_is_mmaped(sk) &&
2426 	    iter_is_iovec(&msg->msg_iter) &&
2427 	    msg->msg_iter.nr_segs == 1 &&
2428 	    msg->msg_iter.iov->iov_base == NULL) {
2429 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2430 					   &scm);
2431 		goto out;
2432 	}
2433 
2434 	err = -EMSGSIZE;
2435 	if (len > sk->sk_sndbuf - 32)
2436 		goto out;
2437 	err = -ENOBUFS;
2438 	skb = netlink_alloc_large_skb(len, dst_group);
2439 	if (skb == NULL)
2440 		goto out;
2441 
2442 	NETLINK_CB(skb).portid	= nlk->portid;
2443 	NETLINK_CB(skb).dst_group = dst_group;
2444 	NETLINK_CB(skb).creds	= scm.creds;
2445 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2446 
2447 	err = -EFAULT;
2448 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2449 		kfree_skb(skb);
2450 		goto out;
2451 	}
2452 
2453 	err = security_netlink_send(sk, skb);
2454 	if (err) {
2455 		kfree_skb(skb);
2456 		goto out;
2457 	}
2458 
2459 	if (dst_group) {
2460 		atomic_inc(&skb->users);
2461 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2462 	}
2463 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2464 
2465 out:
2466 	scm_destroy(&scm);
2467 	return err;
2468 }
2469 
2470 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2471 			   int flags)
2472 {
2473 	struct scm_cookie scm;
2474 	struct sock *sk = sock->sk;
2475 	struct netlink_sock *nlk = nlk_sk(sk);
2476 	int noblock = flags&MSG_DONTWAIT;
2477 	size_t copied;
2478 	struct sk_buff *skb, *data_skb;
2479 	int err, ret;
2480 
2481 	if (flags&MSG_OOB)
2482 		return -EOPNOTSUPP;
2483 
2484 	copied = 0;
2485 
2486 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2487 	if (skb == NULL)
2488 		goto out;
2489 
2490 	data_skb = skb;
2491 
2492 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2493 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2494 		/*
2495 		 * If this skb has a frag_list, then here that means that we
2496 		 * will have to use the frag_list skb's data for compat tasks
2497 		 * and the regular skb's data for normal (non-compat) tasks.
2498 		 *
2499 		 * If we need to send the compat skb, assign it to the
2500 		 * 'data_skb' variable so that it will be used below for data
2501 		 * copying. We keep 'skb' for everything else, including
2502 		 * freeing both later.
2503 		 */
2504 		if (flags & MSG_CMSG_COMPAT)
2505 			data_skb = skb_shinfo(skb)->frag_list;
2506 	}
2507 #endif
2508 
2509 	/* Record the max length of recvmsg() calls for future allocations */
2510 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2511 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2512 				     16384);
2513 
2514 	copied = data_skb->len;
2515 	if (len < copied) {
2516 		msg->msg_flags |= MSG_TRUNC;
2517 		copied = len;
2518 	}
2519 
2520 	skb_reset_transport_header(data_skb);
2521 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2522 
2523 	if (msg->msg_name) {
2524 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2525 		addr->nl_family = AF_NETLINK;
2526 		addr->nl_pad    = 0;
2527 		addr->nl_pid	= NETLINK_CB(skb).portid;
2528 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2529 		msg->msg_namelen = sizeof(*addr);
2530 	}
2531 
2532 	if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2533 		netlink_cmsg_recv_pktinfo(msg, skb);
2534 	if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2535 		netlink_cmsg_listen_all_nsid(sk, msg, skb);
2536 
2537 	memset(&scm, 0, sizeof(scm));
2538 	scm.creds = *NETLINK_CREDS(skb);
2539 	if (flags & MSG_TRUNC)
2540 		copied = data_skb->len;
2541 
2542 	skb_free_datagram(sk, skb);
2543 
2544 	if (nlk->cb_running &&
2545 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2546 		ret = netlink_dump(sk);
2547 		if (ret) {
2548 			sk->sk_err = -ret;
2549 			sk->sk_error_report(sk);
2550 		}
2551 	}
2552 
2553 	scm_recv(sock, msg, &scm, flags);
2554 out:
2555 	netlink_rcv_wake(sk);
2556 	return err ? : copied;
2557 }
2558 
2559 static void netlink_data_ready(struct sock *sk)
2560 {
2561 	BUG();
2562 }
2563 
2564 /*
2565  *	We export these functions to other modules. They provide a
2566  *	complete set of kernel non-blocking support for message
2567  *	queueing.
2568  */
2569 
2570 struct sock *
2571 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2572 			struct netlink_kernel_cfg *cfg)
2573 {
2574 	struct socket *sock;
2575 	struct sock *sk;
2576 	struct netlink_sock *nlk;
2577 	struct listeners *listeners = NULL;
2578 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2579 	unsigned int groups;
2580 
2581 	BUG_ON(!nl_table);
2582 
2583 	if (unit < 0 || unit >= MAX_LINKS)
2584 		return NULL;
2585 
2586 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2587 		return NULL;
2588 
2589 	if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2590 		goto out_sock_release_nosk;
2591 
2592 	sk = sock->sk;
2593 
2594 	if (!cfg || cfg->groups < 32)
2595 		groups = 32;
2596 	else
2597 		groups = cfg->groups;
2598 
2599 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2600 	if (!listeners)
2601 		goto out_sock_release;
2602 
2603 	sk->sk_data_ready = netlink_data_ready;
2604 	if (cfg && cfg->input)
2605 		nlk_sk(sk)->netlink_rcv = cfg->input;
2606 
2607 	if (netlink_insert(sk, 0))
2608 		goto out_sock_release;
2609 
2610 	nlk = nlk_sk(sk);
2611 	nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2612 
2613 	netlink_table_grab();
2614 	if (!nl_table[unit].registered) {
2615 		nl_table[unit].groups = groups;
2616 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2617 		nl_table[unit].cb_mutex = cb_mutex;
2618 		nl_table[unit].module = module;
2619 		if (cfg) {
2620 			nl_table[unit].bind = cfg->bind;
2621 			nl_table[unit].unbind = cfg->unbind;
2622 			nl_table[unit].flags = cfg->flags;
2623 			if (cfg->compare)
2624 				nl_table[unit].compare = cfg->compare;
2625 		}
2626 		nl_table[unit].registered = 1;
2627 	} else {
2628 		kfree(listeners);
2629 		nl_table[unit].registered++;
2630 	}
2631 	netlink_table_ungrab();
2632 	return sk;
2633 
2634 out_sock_release:
2635 	kfree(listeners);
2636 	netlink_kernel_release(sk);
2637 	return NULL;
2638 
2639 out_sock_release_nosk:
2640 	sock_release(sock);
2641 	return NULL;
2642 }
2643 EXPORT_SYMBOL(__netlink_kernel_create);
2644 
2645 void
2646 netlink_kernel_release(struct sock *sk)
2647 {
2648 	if (sk == NULL || sk->sk_socket == NULL)
2649 		return;
2650 
2651 	sock_release(sk->sk_socket);
2652 }
2653 EXPORT_SYMBOL(netlink_kernel_release);
2654 
2655 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2656 {
2657 	struct listeners *new, *old;
2658 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2659 
2660 	if (groups < 32)
2661 		groups = 32;
2662 
2663 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2664 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2665 		if (!new)
2666 			return -ENOMEM;
2667 		old = nl_deref_protected(tbl->listeners);
2668 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2669 		rcu_assign_pointer(tbl->listeners, new);
2670 
2671 		kfree_rcu(old, rcu);
2672 	}
2673 	tbl->groups = groups;
2674 
2675 	return 0;
2676 }
2677 
2678 /**
2679  * netlink_change_ngroups - change number of multicast groups
2680  *
2681  * This changes the number of multicast groups that are available
2682  * on a certain netlink family. Note that it is not possible to
2683  * change the number of groups to below 32. Also note that it does
2684  * not implicitly call netlink_clear_multicast_users() when the
2685  * number of groups is reduced.
2686  *
2687  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2688  * @groups: The new number of groups.
2689  */
2690 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2691 {
2692 	int err;
2693 
2694 	netlink_table_grab();
2695 	err = __netlink_change_ngroups(sk, groups);
2696 	netlink_table_ungrab();
2697 
2698 	return err;
2699 }
2700 
2701 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2702 {
2703 	struct sock *sk;
2704 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2705 
2706 	sk_for_each_bound(sk, &tbl->mc_list)
2707 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2708 }
2709 
2710 struct nlmsghdr *
2711 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2712 {
2713 	struct nlmsghdr *nlh;
2714 	int size = nlmsg_msg_size(len);
2715 
2716 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2717 	nlh->nlmsg_type = type;
2718 	nlh->nlmsg_len = size;
2719 	nlh->nlmsg_flags = flags;
2720 	nlh->nlmsg_pid = portid;
2721 	nlh->nlmsg_seq = seq;
2722 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2723 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2724 	return nlh;
2725 }
2726 EXPORT_SYMBOL(__nlmsg_put);
2727 
2728 /*
2729  * It looks a bit ugly.
2730  * It would be better to create kernel thread.
2731  */
2732 
2733 static int netlink_dump(struct sock *sk)
2734 {
2735 	struct netlink_sock *nlk = nlk_sk(sk);
2736 	struct netlink_callback *cb;
2737 	struct sk_buff *skb = NULL;
2738 	struct nlmsghdr *nlh;
2739 	int len, err = -ENOBUFS;
2740 	int alloc_size;
2741 
2742 	mutex_lock(nlk->cb_mutex);
2743 	if (!nlk->cb_running) {
2744 		err = -EINVAL;
2745 		goto errout_skb;
2746 	}
2747 
2748 	cb = &nlk->cb;
2749 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2750 
2751 	if (!netlink_rx_is_mmaped(sk) &&
2752 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2753 		goto errout_skb;
2754 
2755 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2756 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2757 	 * to reduce number of system calls on dump operations, if user
2758 	 * ever provided a big enough buffer.
2759 	 */
2760 	if (alloc_size < nlk->max_recvmsg_len) {
2761 		skb = netlink_alloc_skb(sk,
2762 					nlk->max_recvmsg_len,
2763 					nlk->portid,
2764 					GFP_KERNEL |
2765 					__GFP_NOWARN |
2766 					__GFP_NORETRY);
2767 		/* available room should be exact amount to avoid MSG_TRUNC */
2768 		if (skb)
2769 			skb_reserve(skb, skb_tailroom(skb) -
2770 					 nlk->max_recvmsg_len);
2771 	}
2772 	if (!skb)
2773 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2774 					GFP_KERNEL);
2775 	if (!skb)
2776 		goto errout_skb;
2777 	netlink_skb_set_owner_r(skb, sk);
2778 
2779 	len = cb->dump(skb, cb);
2780 
2781 	if (len > 0) {
2782 		mutex_unlock(nlk->cb_mutex);
2783 
2784 		if (sk_filter(sk, skb))
2785 			kfree_skb(skb);
2786 		else
2787 			__netlink_sendskb(sk, skb);
2788 		return 0;
2789 	}
2790 
2791 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2792 	if (!nlh)
2793 		goto errout_skb;
2794 
2795 	nl_dump_check_consistent(cb, nlh);
2796 
2797 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2798 
2799 	if (sk_filter(sk, skb))
2800 		kfree_skb(skb);
2801 	else
2802 		__netlink_sendskb(sk, skb);
2803 
2804 	if (cb->done)
2805 		cb->done(cb);
2806 
2807 	nlk->cb_running = false;
2808 	mutex_unlock(nlk->cb_mutex);
2809 	module_put(cb->module);
2810 	consume_skb(cb->skb);
2811 	return 0;
2812 
2813 errout_skb:
2814 	mutex_unlock(nlk->cb_mutex);
2815 	kfree_skb(skb);
2816 	return err;
2817 }
2818 
2819 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2820 			 const struct nlmsghdr *nlh,
2821 			 struct netlink_dump_control *control)
2822 {
2823 	struct netlink_callback *cb;
2824 	struct sock *sk;
2825 	struct netlink_sock *nlk;
2826 	int ret;
2827 
2828 	/* Memory mapped dump requests need to be copied to avoid looping
2829 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2830 	 * a reference to the skb.
2831 	 */
2832 	if (netlink_skb_is_mmaped(skb)) {
2833 		skb = skb_copy(skb, GFP_KERNEL);
2834 		if (skb == NULL)
2835 			return -ENOBUFS;
2836 	} else
2837 		atomic_inc(&skb->users);
2838 
2839 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2840 	if (sk == NULL) {
2841 		ret = -ECONNREFUSED;
2842 		goto error_free;
2843 	}
2844 
2845 	nlk = nlk_sk(sk);
2846 	mutex_lock(nlk->cb_mutex);
2847 	/* A dump is in progress... */
2848 	if (nlk->cb_running) {
2849 		ret = -EBUSY;
2850 		goto error_unlock;
2851 	}
2852 	/* add reference of module which cb->dump belongs to */
2853 	if (!try_module_get(control->module)) {
2854 		ret = -EPROTONOSUPPORT;
2855 		goto error_unlock;
2856 	}
2857 
2858 	cb = &nlk->cb;
2859 	memset(cb, 0, sizeof(*cb));
2860 	cb->dump = control->dump;
2861 	cb->done = control->done;
2862 	cb->nlh = nlh;
2863 	cb->data = control->data;
2864 	cb->module = control->module;
2865 	cb->min_dump_alloc = control->min_dump_alloc;
2866 	cb->skb = skb;
2867 
2868 	nlk->cb_running = true;
2869 
2870 	mutex_unlock(nlk->cb_mutex);
2871 
2872 	ret = netlink_dump(sk);
2873 	sock_put(sk);
2874 
2875 	if (ret)
2876 		return ret;
2877 
2878 	/* We successfully started a dump, by returning -EINTR we
2879 	 * signal not to send ACK even if it was requested.
2880 	 */
2881 	return -EINTR;
2882 
2883 error_unlock:
2884 	sock_put(sk);
2885 	mutex_unlock(nlk->cb_mutex);
2886 error_free:
2887 	kfree_skb(skb);
2888 	return ret;
2889 }
2890 EXPORT_SYMBOL(__netlink_dump_start);
2891 
2892 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2893 {
2894 	struct sk_buff *skb;
2895 	struct nlmsghdr *rep;
2896 	struct nlmsgerr *errmsg;
2897 	size_t payload = sizeof(*errmsg);
2898 	struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
2899 
2900 	/* Error messages get the original request appened, unless the user
2901 	 * requests to cap the error message.
2902 	 */
2903 	if (!(nlk->flags & NETLINK_F_CAP_ACK) && err)
2904 		payload += nlmsg_len(nlh);
2905 
2906 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2907 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2908 	if (!skb) {
2909 		struct sock *sk;
2910 
2911 		sk = netlink_lookup(sock_net(in_skb->sk),
2912 				    in_skb->sk->sk_protocol,
2913 				    NETLINK_CB(in_skb).portid);
2914 		if (sk) {
2915 			sk->sk_err = ENOBUFS;
2916 			sk->sk_error_report(sk);
2917 			sock_put(sk);
2918 		}
2919 		return;
2920 	}
2921 
2922 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2923 			  NLMSG_ERROR, payload, 0);
2924 	errmsg = nlmsg_data(rep);
2925 	errmsg->error = err;
2926 	memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
2927 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2928 }
2929 EXPORT_SYMBOL(netlink_ack);
2930 
2931 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2932 						     struct nlmsghdr *))
2933 {
2934 	struct nlmsghdr *nlh;
2935 	int err;
2936 
2937 	while (skb->len >= nlmsg_total_size(0)) {
2938 		int msglen;
2939 
2940 		nlh = nlmsg_hdr(skb);
2941 		err = 0;
2942 
2943 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2944 			return 0;
2945 
2946 		/* Only requests are handled by the kernel */
2947 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2948 			goto ack;
2949 
2950 		/* Skip control messages */
2951 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2952 			goto ack;
2953 
2954 		err = cb(skb, nlh);
2955 		if (err == -EINTR)
2956 			goto skip;
2957 
2958 ack:
2959 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2960 			netlink_ack(skb, nlh, err);
2961 
2962 skip:
2963 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2964 		if (msglen > skb->len)
2965 			msglen = skb->len;
2966 		skb_pull(skb, msglen);
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netlink_rcv_skb);
2972 
2973 /**
2974  * nlmsg_notify - send a notification netlink message
2975  * @sk: netlink socket to use
2976  * @skb: notification message
2977  * @portid: destination netlink portid for reports or 0
2978  * @group: destination multicast group or 0
2979  * @report: 1 to report back, 0 to disable
2980  * @flags: allocation flags
2981  */
2982 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2983 		 unsigned int group, int report, gfp_t flags)
2984 {
2985 	int err = 0;
2986 
2987 	if (group) {
2988 		int exclude_portid = 0;
2989 
2990 		if (report) {
2991 			atomic_inc(&skb->users);
2992 			exclude_portid = portid;
2993 		}
2994 
2995 		/* errors reported via destination sk->sk_err, but propagate
2996 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2997 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2998 	}
2999 
3000 	if (report) {
3001 		int err2;
3002 
3003 		err2 = nlmsg_unicast(sk, skb, portid);
3004 		if (!err || err == -ESRCH)
3005 			err = err2;
3006 	}
3007 
3008 	return err;
3009 }
3010 EXPORT_SYMBOL(nlmsg_notify);
3011 
3012 #ifdef CONFIG_PROC_FS
3013 struct nl_seq_iter {
3014 	struct seq_net_private p;
3015 	struct rhashtable_iter hti;
3016 	int link;
3017 };
3018 
3019 static int netlink_walk_start(struct nl_seq_iter *iter)
3020 {
3021 	int err;
3022 
3023 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
3024 	if (err) {
3025 		iter->link = MAX_LINKS;
3026 		return err;
3027 	}
3028 
3029 	err = rhashtable_walk_start(&iter->hti);
3030 	return err == -EAGAIN ? 0 : err;
3031 }
3032 
3033 static void netlink_walk_stop(struct nl_seq_iter *iter)
3034 {
3035 	rhashtable_walk_stop(&iter->hti);
3036 	rhashtable_walk_exit(&iter->hti);
3037 }
3038 
3039 static void *__netlink_seq_next(struct seq_file *seq)
3040 {
3041 	struct nl_seq_iter *iter = seq->private;
3042 	struct netlink_sock *nlk;
3043 
3044 	do {
3045 		for (;;) {
3046 			int err;
3047 
3048 			nlk = rhashtable_walk_next(&iter->hti);
3049 
3050 			if (IS_ERR(nlk)) {
3051 				if (PTR_ERR(nlk) == -EAGAIN)
3052 					continue;
3053 
3054 				return nlk;
3055 			}
3056 
3057 			if (nlk)
3058 				break;
3059 
3060 			netlink_walk_stop(iter);
3061 			if (++iter->link >= MAX_LINKS)
3062 				return NULL;
3063 
3064 			err = netlink_walk_start(iter);
3065 			if (err)
3066 				return ERR_PTR(err);
3067 		}
3068 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
3069 
3070 	return nlk;
3071 }
3072 
3073 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3074 {
3075 	struct nl_seq_iter *iter = seq->private;
3076 	void *obj = SEQ_START_TOKEN;
3077 	loff_t pos;
3078 	int err;
3079 
3080 	iter->link = 0;
3081 
3082 	err = netlink_walk_start(iter);
3083 	if (err)
3084 		return ERR_PTR(err);
3085 
3086 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3087 		obj = __netlink_seq_next(seq);
3088 
3089 	return obj;
3090 }
3091 
3092 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3093 {
3094 	++*pos;
3095 	return __netlink_seq_next(seq);
3096 }
3097 
3098 static void netlink_seq_stop(struct seq_file *seq, void *v)
3099 {
3100 	struct nl_seq_iter *iter = seq->private;
3101 
3102 	if (iter->link >= MAX_LINKS)
3103 		return;
3104 
3105 	netlink_walk_stop(iter);
3106 }
3107 
3108 
3109 static int netlink_seq_show(struct seq_file *seq, void *v)
3110 {
3111 	if (v == SEQ_START_TOKEN) {
3112 		seq_puts(seq,
3113 			 "sk       Eth Pid    Groups   "
3114 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
3115 	} else {
3116 		struct sock *s = v;
3117 		struct netlink_sock *nlk = nlk_sk(s);
3118 
3119 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3120 			   s,
3121 			   s->sk_protocol,
3122 			   nlk->portid,
3123 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3124 			   sk_rmem_alloc_get(s),
3125 			   sk_wmem_alloc_get(s),
3126 			   nlk->cb_running,
3127 			   atomic_read(&s->sk_refcnt),
3128 			   atomic_read(&s->sk_drops),
3129 			   sock_i_ino(s)
3130 			);
3131 
3132 	}
3133 	return 0;
3134 }
3135 
3136 static const struct seq_operations netlink_seq_ops = {
3137 	.start  = netlink_seq_start,
3138 	.next   = netlink_seq_next,
3139 	.stop   = netlink_seq_stop,
3140 	.show   = netlink_seq_show,
3141 };
3142 
3143 
3144 static int netlink_seq_open(struct inode *inode, struct file *file)
3145 {
3146 	return seq_open_net(inode, file, &netlink_seq_ops,
3147 				sizeof(struct nl_seq_iter));
3148 }
3149 
3150 static const struct file_operations netlink_seq_fops = {
3151 	.owner		= THIS_MODULE,
3152 	.open		= netlink_seq_open,
3153 	.read		= seq_read,
3154 	.llseek		= seq_lseek,
3155 	.release	= seq_release_net,
3156 };
3157 
3158 #endif
3159 
3160 int netlink_register_notifier(struct notifier_block *nb)
3161 {
3162 	return atomic_notifier_chain_register(&netlink_chain, nb);
3163 }
3164 EXPORT_SYMBOL(netlink_register_notifier);
3165 
3166 int netlink_unregister_notifier(struct notifier_block *nb)
3167 {
3168 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3169 }
3170 EXPORT_SYMBOL(netlink_unregister_notifier);
3171 
3172 static const struct proto_ops netlink_ops = {
3173 	.family =	PF_NETLINK,
3174 	.owner =	THIS_MODULE,
3175 	.release =	netlink_release,
3176 	.bind =		netlink_bind,
3177 	.connect =	netlink_connect,
3178 	.socketpair =	sock_no_socketpair,
3179 	.accept =	sock_no_accept,
3180 	.getname =	netlink_getname,
3181 	.poll =		netlink_poll,
3182 	.ioctl =	sock_no_ioctl,
3183 	.listen =	sock_no_listen,
3184 	.shutdown =	sock_no_shutdown,
3185 	.setsockopt =	netlink_setsockopt,
3186 	.getsockopt =	netlink_getsockopt,
3187 	.sendmsg =	netlink_sendmsg,
3188 	.recvmsg =	netlink_recvmsg,
3189 	.mmap =		netlink_mmap,
3190 	.sendpage =	sock_no_sendpage,
3191 };
3192 
3193 static const struct net_proto_family netlink_family_ops = {
3194 	.family = PF_NETLINK,
3195 	.create = netlink_create,
3196 	.owner	= THIS_MODULE,	/* for consistency 8) */
3197 };
3198 
3199 static int __net_init netlink_net_init(struct net *net)
3200 {
3201 #ifdef CONFIG_PROC_FS
3202 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3203 		return -ENOMEM;
3204 #endif
3205 	return 0;
3206 }
3207 
3208 static void __net_exit netlink_net_exit(struct net *net)
3209 {
3210 #ifdef CONFIG_PROC_FS
3211 	remove_proc_entry("netlink", net->proc_net);
3212 #endif
3213 }
3214 
3215 static void __init netlink_add_usersock_entry(void)
3216 {
3217 	struct listeners *listeners;
3218 	int groups = 32;
3219 
3220 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3221 	if (!listeners)
3222 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3223 
3224 	netlink_table_grab();
3225 
3226 	nl_table[NETLINK_USERSOCK].groups = groups;
3227 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3228 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3229 	nl_table[NETLINK_USERSOCK].registered = 1;
3230 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3231 
3232 	netlink_table_ungrab();
3233 }
3234 
3235 static struct pernet_operations __net_initdata netlink_net_ops = {
3236 	.init = netlink_net_init,
3237 	.exit = netlink_net_exit,
3238 };
3239 
3240 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3241 {
3242 	const struct netlink_sock *nlk = data;
3243 	struct netlink_compare_arg arg;
3244 
3245 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3246 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3247 }
3248 
3249 static const struct rhashtable_params netlink_rhashtable_params = {
3250 	.head_offset = offsetof(struct netlink_sock, node),
3251 	.key_len = netlink_compare_arg_len,
3252 	.obj_hashfn = netlink_hash,
3253 	.obj_cmpfn = netlink_compare,
3254 	.automatic_shrinking = true,
3255 };
3256 
3257 static int __init netlink_proto_init(void)
3258 {
3259 	int i;
3260 	int err = proto_register(&netlink_proto, 0);
3261 
3262 	if (err != 0)
3263 		goto out;
3264 
3265 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3266 
3267 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3268 	if (!nl_table)
3269 		goto panic;
3270 
3271 	for (i = 0; i < MAX_LINKS; i++) {
3272 		if (rhashtable_init(&nl_table[i].hash,
3273 				    &netlink_rhashtable_params) < 0) {
3274 			while (--i > 0)
3275 				rhashtable_destroy(&nl_table[i].hash);
3276 			kfree(nl_table);
3277 			goto panic;
3278 		}
3279 	}
3280 
3281 	INIT_LIST_HEAD(&netlink_tap_all);
3282 
3283 	netlink_add_usersock_entry();
3284 
3285 	sock_register(&netlink_family_ops);
3286 	register_pernet_subsys(&netlink_net_ops);
3287 	/* The netlink device handler may be needed early. */
3288 	rtnetlink_init();
3289 out:
3290 	return err;
3291 panic:
3292 	panic("netlink_init: Cannot allocate nl_table\n");
3293 }
3294 
3295 core_initcall(netlink_proto_init);
3296