1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <asm/cacheflush.h> 62 63 #include <net/net_namespace.h> 64 #include <net/sock.h> 65 #include <net/scm.h> 66 #include <net/netlink.h> 67 68 #include "af_netlink.h" 69 70 struct listeners { 71 struct rcu_head rcu; 72 unsigned long masks[0]; 73 }; 74 75 /* state bits */ 76 #define NETLINK_CONGESTED 0x0 77 78 /* flags */ 79 #define NETLINK_KERNEL_SOCKET 0x1 80 #define NETLINK_RECV_PKTINFO 0x2 81 #define NETLINK_BROADCAST_SEND_ERROR 0x4 82 #define NETLINK_RECV_NO_ENOBUFS 0x8 83 84 static inline int netlink_is_kernel(struct sock *sk) 85 { 86 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 87 } 88 89 struct netlink_table *nl_table; 90 EXPORT_SYMBOL_GPL(nl_table); 91 92 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 93 94 static int netlink_dump(struct sock *sk); 95 static void netlink_skb_destructor(struct sk_buff *skb); 96 97 DEFINE_RWLOCK(nl_table_lock); 98 EXPORT_SYMBOL_GPL(nl_table_lock); 99 static atomic_t nl_table_users = ATOMIC_INIT(0); 100 101 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 102 103 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 104 105 static DEFINE_SPINLOCK(netlink_tap_lock); 106 static struct list_head netlink_tap_all __read_mostly; 107 108 static inline u32 netlink_group_mask(u32 group) 109 { 110 return group ? 1 << (group - 1) : 0; 111 } 112 113 static inline struct hlist_head *nl_portid_hashfn(struct nl_portid_hash *hash, u32 portid) 114 { 115 return &hash->table[jhash_1word(portid, hash->rnd) & hash->mask]; 116 } 117 118 int netlink_add_tap(struct netlink_tap *nt) 119 { 120 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 121 return -EINVAL; 122 123 spin_lock(&netlink_tap_lock); 124 list_add_rcu(&nt->list, &netlink_tap_all); 125 spin_unlock(&netlink_tap_lock); 126 127 if (nt->module) 128 __module_get(nt->module); 129 130 return 0; 131 } 132 EXPORT_SYMBOL_GPL(netlink_add_tap); 133 134 static int __netlink_remove_tap(struct netlink_tap *nt) 135 { 136 bool found = false; 137 struct netlink_tap *tmp; 138 139 spin_lock(&netlink_tap_lock); 140 141 list_for_each_entry(tmp, &netlink_tap_all, list) { 142 if (nt == tmp) { 143 list_del_rcu(&nt->list); 144 found = true; 145 goto out; 146 } 147 } 148 149 pr_warn("__netlink_remove_tap: %p not found\n", nt); 150 out: 151 spin_unlock(&netlink_tap_lock); 152 153 if (found && nt->module) 154 module_put(nt->module); 155 156 return found ? 0 : -ENODEV; 157 } 158 159 int netlink_remove_tap(struct netlink_tap *nt) 160 { 161 int ret; 162 163 ret = __netlink_remove_tap(nt); 164 synchronize_net(); 165 166 return ret; 167 } 168 EXPORT_SYMBOL_GPL(netlink_remove_tap); 169 170 static bool netlink_filter_tap(const struct sk_buff *skb) 171 { 172 struct sock *sk = skb->sk; 173 bool pass = false; 174 175 /* We take the more conservative approach and 176 * whitelist socket protocols that may pass. 177 */ 178 switch (sk->sk_protocol) { 179 case NETLINK_ROUTE: 180 case NETLINK_USERSOCK: 181 case NETLINK_SOCK_DIAG: 182 case NETLINK_NFLOG: 183 case NETLINK_XFRM: 184 case NETLINK_FIB_LOOKUP: 185 case NETLINK_NETFILTER: 186 case NETLINK_GENERIC: 187 pass = true; 188 break; 189 } 190 191 return pass; 192 } 193 194 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 195 struct net_device *dev) 196 { 197 struct sk_buff *nskb; 198 struct sock *sk = skb->sk; 199 int ret = -ENOMEM; 200 201 dev_hold(dev); 202 nskb = skb_clone(skb, GFP_ATOMIC); 203 if (nskb) { 204 nskb->dev = dev; 205 nskb->protocol = htons((u16) sk->sk_protocol); 206 nskb->pkt_type = netlink_is_kernel(sk) ? 207 PACKET_KERNEL : PACKET_USER; 208 209 ret = dev_queue_xmit(nskb); 210 if (unlikely(ret > 0)) 211 ret = net_xmit_errno(ret); 212 } 213 214 dev_put(dev); 215 return ret; 216 } 217 218 static void __netlink_deliver_tap(struct sk_buff *skb) 219 { 220 int ret; 221 struct netlink_tap *tmp; 222 223 if (!netlink_filter_tap(skb)) 224 return; 225 226 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 227 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 228 if (unlikely(ret)) 229 break; 230 } 231 } 232 233 static void netlink_deliver_tap(struct sk_buff *skb) 234 { 235 rcu_read_lock(); 236 237 if (unlikely(!list_empty(&netlink_tap_all))) 238 __netlink_deliver_tap(skb); 239 240 rcu_read_unlock(); 241 } 242 243 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 244 struct sk_buff *skb) 245 { 246 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 247 netlink_deliver_tap(skb); 248 } 249 250 static void netlink_overrun(struct sock *sk) 251 { 252 struct netlink_sock *nlk = nlk_sk(sk); 253 254 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 255 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 256 sk->sk_err = ENOBUFS; 257 sk->sk_error_report(sk); 258 } 259 } 260 atomic_inc(&sk->sk_drops); 261 } 262 263 static void netlink_rcv_wake(struct sock *sk) 264 { 265 struct netlink_sock *nlk = nlk_sk(sk); 266 267 if (skb_queue_empty(&sk->sk_receive_queue)) 268 clear_bit(NETLINK_CONGESTED, &nlk->state); 269 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 270 wake_up_interruptible(&nlk->wait); 271 } 272 273 #ifdef CONFIG_NETLINK_MMAP 274 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 275 { 276 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 277 } 278 279 static bool netlink_rx_is_mmaped(struct sock *sk) 280 { 281 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 282 } 283 284 static bool netlink_tx_is_mmaped(struct sock *sk) 285 { 286 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 287 } 288 289 static __pure struct page *pgvec_to_page(const void *addr) 290 { 291 if (is_vmalloc_addr(addr)) 292 return vmalloc_to_page(addr); 293 else 294 return virt_to_page(addr); 295 } 296 297 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 298 { 299 unsigned int i; 300 301 for (i = 0; i < len; i++) { 302 if (pg_vec[i] != NULL) { 303 if (is_vmalloc_addr(pg_vec[i])) 304 vfree(pg_vec[i]); 305 else 306 free_pages((unsigned long)pg_vec[i], order); 307 } 308 } 309 kfree(pg_vec); 310 } 311 312 static void *alloc_one_pg_vec_page(unsigned long order) 313 { 314 void *buffer; 315 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 316 __GFP_NOWARN | __GFP_NORETRY; 317 318 buffer = (void *)__get_free_pages(gfp_flags, order); 319 if (buffer != NULL) 320 return buffer; 321 322 buffer = vzalloc((1 << order) * PAGE_SIZE); 323 if (buffer != NULL) 324 return buffer; 325 326 gfp_flags &= ~__GFP_NORETRY; 327 return (void *)__get_free_pages(gfp_flags, order); 328 } 329 330 static void **alloc_pg_vec(struct netlink_sock *nlk, 331 struct nl_mmap_req *req, unsigned int order) 332 { 333 unsigned int block_nr = req->nm_block_nr; 334 unsigned int i; 335 void **pg_vec; 336 337 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 338 if (pg_vec == NULL) 339 return NULL; 340 341 for (i = 0; i < block_nr; i++) { 342 pg_vec[i] = alloc_one_pg_vec_page(order); 343 if (pg_vec[i] == NULL) 344 goto err1; 345 } 346 347 return pg_vec; 348 err1: 349 free_pg_vec(pg_vec, order, block_nr); 350 return NULL; 351 } 352 353 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 354 bool closing, bool tx_ring) 355 { 356 struct netlink_sock *nlk = nlk_sk(sk); 357 struct netlink_ring *ring; 358 struct sk_buff_head *queue; 359 void **pg_vec = NULL; 360 unsigned int order = 0; 361 int err; 362 363 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 364 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 365 366 if (!closing) { 367 if (atomic_read(&nlk->mapped)) 368 return -EBUSY; 369 if (atomic_read(&ring->pending)) 370 return -EBUSY; 371 } 372 373 if (req->nm_block_nr) { 374 if (ring->pg_vec != NULL) 375 return -EBUSY; 376 377 if ((int)req->nm_block_size <= 0) 378 return -EINVAL; 379 if (!IS_ALIGNED(req->nm_block_size, PAGE_SIZE)) 380 return -EINVAL; 381 if (req->nm_frame_size < NL_MMAP_HDRLEN) 382 return -EINVAL; 383 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 384 return -EINVAL; 385 386 ring->frames_per_block = req->nm_block_size / 387 req->nm_frame_size; 388 if (ring->frames_per_block == 0) 389 return -EINVAL; 390 if (ring->frames_per_block * req->nm_block_nr != 391 req->nm_frame_nr) 392 return -EINVAL; 393 394 order = get_order(req->nm_block_size); 395 pg_vec = alloc_pg_vec(nlk, req, order); 396 if (pg_vec == NULL) 397 return -ENOMEM; 398 } else { 399 if (req->nm_frame_nr) 400 return -EINVAL; 401 } 402 403 err = -EBUSY; 404 mutex_lock(&nlk->pg_vec_lock); 405 if (closing || atomic_read(&nlk->mapped) == 0) { 406 err = 0; 407 spin_lock_bh(&queue->lock); 408 409 ring->frame_max = req->nm_frame_nr - 1; 410 ring->head = 0; 411 ring->frame_size = req->nm_frame_size; 412 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 413 414 swap(ring->pg_vec_len, req->nm_block_nr); 415 swap(ring->pg_vec_order, order); 416 swap(ring->pg_vec, pg_vec); 417 418 __skb_queue_purge(queue); 419 spin_unlock_bh(&queue->lock); 420 421 WARN_ON(atomic_read(&nlk->mapped)); 422 } 423 mutex_unlock(&nlk->pg_vec_lock); 424 425 if (pg_vec) 426 free_pg_vec(pg_vec, order, req->nm_block_nr); 427 return err; 428 } 429 430 static void netlink_mm_open(struct vm_area_struct *vma) 431 { 432 struct file *file = vma->vm_file; 433 struct socket *sock = file->private_data; 434 struct sock *sk = sock->sk; 435 436 if (sk) 437 atomic_inc(&nlk_sk(sk)->mapped); 438 } 439 440 static void netlink_mm_close(struct vm_area_struct *vma) 441 { 442 struct file *file = vma->vm_file; 443 struct socket *sock = file->private_data; 444 struct sock *sk = sock->sk; 445 446 if (sk) 447 atomic_dec(&nlk_sk(sk)->mapped); 448 } 449 450 static const struct vm_operations_struct netlink_mmap_ops = { 451 .open = netlink_mm_open, 452 .close = netlink_mm_close, 453 }; 454 455 static int netlink_mmap(struct file *file, struct socket *sock, 456 struct vm_area_struct *vma) 457 { 458 struct sock *sk = sock->sk; 459 struct netlink_sock *nlk = nlk_sk(sk); 460 struct netlink_ring *ring; 461 unsigned long start, size, expected; 462 unsigned int i; 463 int err = -EINVAL; 464 465 if (vma->vm_pgoff) 466 return -EINVAL; 467 468 mutex_lock(&nlk->pg_vec_lock); 469 470 expected = 0; 471 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 472 if (ring->pg_vec == NULL) 473 continue; 474 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 475 } 476 477 if (expected == 0) 478 goto out; 479 480 size = vma->vm_end - vma->vm_start; 481 if (size != expected) 482 goto out; 483 484 start = vma->vm_start; 485 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 486 if (ring->pg_vec == NULL) 487 continue; 488 489 for (i = 0; i < ring->pg_vec_len; i++) { 490 struct page *page; 491 void *kaddr = ring->pg_vec[i]; 492 unsigned int pg_num; 493 494 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 495 page = pgvec_to_page(kaddr); 496 err = vm_insert_page(vma, start, page); 497 if (err < 0) 498 goto out; 499 start += PAGE_SIZE; 500 kaddr += PAGE_SIZE; 501 } 502 } 503 } 504 505 atomic_inc(&nlk->mapped); 506 vma->vm_ops = &netlink_mmap_ops; 507 err = 0; 508 out: 509 mutex_unlock(&nlk->pg_vec_lock); 510 return err; 511 } 512 513 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr) 514 { 515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 516 struct page *p_start, *p_end; 517 518 /* First page is flushed through netlink_{get,set}_status */ 519 p_start = pgvec_to_page(hdr + PAGE_SIZE); 520 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1); 521 while (p_start <= p_end) { 522 flush_dcache_page(p_start); 523 p_start++; 524 } 525 #endif 526 } 527 528 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 529 { 530 smp_rmb(); 531 flush_dcache_page(pgvec_to_page(hdr)); 532 return hdr->nm_status; 533 } 534 535 static void netlink_set_status(struct nl_mmap_hdr *hdr, 536 enum nl_mmap_status status) 537 { 538 hdr->nm_status = status; 539 flush_dcache_page(pgvec_to_page(hdr)); 540 smp_wmb(); 541 } 542 543 static struct nl_mmap_hdr * 544 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 545 { 546 unsigned int pg_vec_pos, frame_off; 547 548 pg_vec_pos = pos / ring->frames_per_block; 549 frame_off = pos % ring->frames_per_block; 550 551 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 552 } 553 554 static struct nl_mmap_hdr * 555 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 556 enum nl_mmap_status status) 557 { 558 struct nl_mmap_hdr *hdr; 559 560 hdr = __netlink_lookup_frame(ring, pos); 561 if (netlink_get_status(hdr) != status) 562 return NULL; 563 564 return hdr; 565 } 566 567 static struct nl_mmap_hdr * 568 netlink_current_frame(const struct netlink_ring *ring, 569 enum nl_mmap_status status) 570 { 571 return netlink_lookup_frame(ring, ring->head, status); 572 } 573 574 static struct nl_mmap_hdr * 575 netlink_previous_frame(const struct netlink_ring *ring, 576 enum nl_mmap_status status) 577 { 578 unsigned int prev; 579 580 prev = ring->head ? ring->head - 1 : ring->frame_max; 581 return netlink_lookup_frame(ring, prev, status); 582 } 583 584 static void netlink_increment_head(struct netlink_ring *ring) 585 { 586 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 587 } 588 589 static void netlink_forward_ring(struct netlink_ring *ring) 590 { 591 unsigned int head = ring->head, pos = head; 592 const struct nl_mmap_hdr *hdr; 593 594 do { 595 hdr = __netlink_lookup_frame(ring, pos); 596 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 597 break; 598 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 599 break; 600 netlink_increment_head(ring); 601 } while (ring->head != head); 602 } 603 604 static bool netlink_dump_space(struct netlink_sock *nlk) 605 { 606 struct netlink_ring *ring = &nlk->rx_ring; 607 struct nl_mmap_hdr *hdr; 608 unsigned int n; 609 610 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 611 if (hdr == NULL) 612 return false; 613 614 n = ring->head + ring->frame_max / 2; 615 if (n > ring->frame_max) 616 n -= ring->frame_max; 617 618 hdr = __netlink_lookup_frame(ring, n); 619 620 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 621 } 622 623 static unsigned int netlink_poll(struct file *file, struct socket *sock, 624 poll_table *wait) 625 { 626 struct sock *sk = sock->sk; 627 struct netlink_sock *nlk = nlk_sk(sk); 628 unsigned int mask; 629 int err; 630 631 if (nlk->rx_ring.pg_vec != NULL) { 632 /* Memory mapped sockets don't call recvmsg(), so flow control 633 * for dumps is performed here. A dump is allowed to continue 634 * if at least half the ring is unused. 635 */ 636 while (nlk->cb_running && netlink_dump_space(nlk)) { 637 err = netlink_dump(sk); 638 if (err < 0) { 639 sk->sk_err = err; 640 sk->sk_error_report(sk); 641 break; 642 } 643 } 644 netlink_rcv_wake(sk); 645 } 646 647 mask = datagram_poll(file, sock, wait); 648 649 spin_lock_bh(&sk->sk_receive_queue.lock); 650 if (nlk->rx_ring.pg_vec) { 651 netlink_forward_ring(&nlk->rx_ring); 652 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 653 mask |= POLLIN | POLLRDNORM; 654 } 655 spin_unlock_bh(&sk->sk_receive_queue.lock); 656 657 spin_lock_bh(&sk->sk_write_queue.lock); 658 if (nlk->tx_ring.pg_vec) { 659 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 660 mask |= POLLOUT | POLLWRNORM; 661 } 662 spin_unlock_bh(&sk->sk_write_queue.lock); 663 664 return mask; 665 } 666 667 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 668 { 669 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 670 } 671 672 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 673 struct netlink_ring *ring, 674 struct nl_mmap_hdr *hdr) 675 { 676 unsigned int size; 677 void *data; 678 679 size = ring->frame_size - NL_MMAP_HDRLEN; 680 data = (void *)hdr + NL_MMAP_HDRLEN; 681 682 skb->head = data; 683 skb->data = data; 684 skb_reset_tail_pointer(skb); 685 skb->end = skb->tail + size; 686 skb->len = 0; 687 688 skb->destructor = netlink_skb_destructor; 689 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 690 NETLINK_CB(skb).sk = sk; 691 } 692 693 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 694 u32 dst_portid, u32 dst_group, 695 struct sock_iocb *siocb) 696 { 697 struct netlink_sock *nlk = nlk_sk(sk); 698 struct netlink_ring *ring; 699 struct nl_mmap_hdr *hdr; 700 struct sk_buff *skb; 701 unsigned int maxlen; 702 bool excl = true; 703 int err = 0, len = 0; 704 705 /* Netlink messages are validated by the receiver before processing. 706 * In order to avoid userspace changing the contents of the message 707 * after validation, the socket and the ring may only be used by a 708 * single process, otherwise we fall back to copying. 709 */ 710 if (atomic_long_read(&sk->sk_socket->file->f_count) > 2 || 711 atomic_read(&nlk->mapped) > 1) 712 excl = false; 713 714 mutex_lock(&nlk->pg_vec_lock); 715 716 ring = &nlk->tx_ring; 717 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 718 719 do { 720 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 721 if (hdr == NULL) { 722 if (!(msg->msg_flags & MSG_DONTWAIT) && 723 atomic_read(&nlk->tx_ring.pending)) 724 schedule(); 725 continue; 726 } 727 if (hdr->nm_len > maxlen) { 728 err = -EINVAL; 729 goto out; 730 } 731 732 netlink_frame_flush_dcache(hdr); 733 734 if (likely(dst_portid == 0 && dst_group == 0 && excl)) { 735 skb = alloc_skb_head(GFP_KERNEL); 736 if (skb == NULL) { 737 err = -ENOBUFS; 738 goto out; 739 } 740 sock_hold(sk); 741 netlink_ring_setup_skb(skb, sk, ring, hdr); 742 NETLINK_CB(skb).flags |= NETLINK_SKB_TX; 743 __skb_put(skb, hdr->nm_len); 744 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 745 atomic_inc(&ring->pending); 746 } else { 747 skb = alloc_skb(hdr->nm_len, GFP_KERNEL); 748 if (skb == NULL) { 749 err = -ENOBUFS; 750 goto out; 751 } 752 __skb_put(skb, hdr->nm_len); 753 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len); 754 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 755 } 756 757 netlink_increment_head(ring); 758 759 NETLINK_CB(skb).portid = nlk->portid; 760 NETLINK_CB(skb).dst_group = dst_group; 761 NETLINK_CB(skb).creds = siocb->scm->creds; 762 763 err = security_netlink_send(sk, skb); 764 if (err) { 765 kfree_skb(skb); 766 goto out; 767 } 768 769 if (unlikely(dst_group)) { 770 atomic_inc(&skb->users); 771 netlink_broadcast(sk, skb, dst_portid, dst_group, 772 GFP_KERNEL); 773 } 774 err = netlink_unicast(sk, skb, dst_portid, 775 msg->msg_flags & MSG_DONTWAIT); 776 if (err < 0) 777 goto out; 778 len += err; 779 780 } while (hdr != NULL || 781 (!(msg->msg_flags & MSG_DONTWAIT) && 782 atomic_read(&nlk->tx_ring.pending))); 783 784 if (len > 0) 785 err = len; 786 out: 787 mutex_unlock(&nlk->pg_vec_lock); 788 return err; 789 } 790 791 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 792 { 793 struct nl_mmap_hdr *hdr; 794 795 hdr = netlink_mmap_hdr(skb); 796 hdr->nm_len = skb->len; 797 hdr->nm_group = NETLINK_CB(skb).dst_group; 798 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 799 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 800 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 801 netlink_frame_flush_dcache(hdr); 802 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 803 804 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 805 kfree_skb(skb); 806 } 807 808 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 809 { 810 struct netlink_sock *nlk = nlk_sk(sk); 811 struct netlink_ring *ring = &nlk->rx_ring; 812 struct nl_mmap_hdr *hdr; 813 814 spin_lock_bh(&sk->sk_receive_queue.lock); 815 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 816 if (hdr == NULL) { 817 spin_unlock_bh(&sk->sk_receive_queue.lock); 818 kfree_skb(skb); 819 netlink_overrun(sk); 820 return; 821 } 822 netlink_increment_head(ring); 823 __skb_queue_tail(&sk->sk_receive_queue, skb); 824 spin_unlock_bh(&sk->sk_receive_queue.lock); 825 826 hdr->nm_len = skb->len; 827 hdr->nm_group = NETLINK_CB(skb).dst_group; 828 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 829 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 830 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 831 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 832 } 833 834 #else /* CONFIG_NETLINK_MMAP */ 835 #define netlink_skb_is_mmaped(skb) false 836 #define netlink_rx_is_mmaped(sk) false 837 #define netlink_tx_is_mmaped(sk) false 838 #define netlink_mmap sock_no_mmap 839 #define netlink_poll datagram_poll 840 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 841 #endif /* CONFIG_NETLINK_MMAP */ 842 843 static void netlink_skb_destructor(struct sk_buff *skb) 844 { 845 #ifdef CONFIG_NETLINK_MMAP 846 struct nl_mmap_hdr *hdr; 847 struct netlink_ring *ring; 848 struct sock *sk; 849 850 /* If a packet from the kernel to userspace was freed because of an 851 * error without being delivered to userspace, the kernel must reset 852 * the status. In the direction userspace to kernel, the status is 853 * always reset here after the packet was processed and freed. 854 */ 855 if (netlink_skb_is_mmaped(skb)) { 856 hdr = netlink_mmap_hdr(skb); 857 sk = NETLINK_CB(skb).sk; 858 859 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 860 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 861 ring = &nlk_sk(sk)->tx_ring; 862 } else { 863 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 864 hdr->nm_len = 0; 865 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 866 } 867 ring = &nlk_sk(sk)->rx_ring; 868 } 869 870 WARN_ON(atomic_read(&ring->pending) == 0); 871 atomic_dec(&ring->pending); 872 sock_put(sk); 873 874 skb->head = NULL; 875 } 876 #endif 877 if (is_vmalloc_addr(skb->head)) { 878 if (!skb->cloned || 879 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 880 vfree(skb->head); 881 882 skb->head = NULL; 883 } 884 if (skb->sk != NULL) 885 sock_rfree(skb); 886 } 887 888 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 889 { 890 WARN_ON(skb->sk != NULL); 891 skb->sk = sk; 892 skb->destructor = netlink_skb_destructor; 893 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 894 sk_mem_charge(sk, skb->truesize); 895 } 896 897 static void netlink_sock_destruct(struct sock *sk) 898 { 899 struct netlink_sock *nlk = nlk_sk(sk); 900 901 if (nlk->cb_running) { 902 if (nlk->cb.done) 903 nlk->cb.done(&nlk->cb); 904 905 module_put(nlk->cb.module); 906 kfree_skb(nlk->cb.skb); 907 } 908 909 skb_queue_purge(&sk->sk_receive_queue); 910 #ifdef CONFIG_NETLINK_MMAP 911 if (1) { 912 struct nl_mmap_req req; 913 914 memset(&req, 0, sizeof(req)); 915 if (nlk->rx_ring.pg_vec) 916 netlink_set_ring(sk, &req, true, false); 917 memset(&req, 0, sizeof(req)); 918 if (nlk->tx_ring.pg_vec) 919 netlink_set_ring(sk, &req, true, true); 920 } 921 #endif /* CONFIG_NETLINK_MMAP */ 922 923 if (!sock_flag(sk, SOCK_DEAD)) { 924 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 925 return; 926 } 927 928 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 929 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 930 WARN_ON(nlk_sk(sk)->groups); 931 } 932 933 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 934 * SMP. Look, when several writers sleep and reader wakes them up, all but one 935 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 936 * this, _but_ remember, it adds useless work on UP machines. 937 */ 938 939 void netlink_table_grab(void) 940 __acquires(nl_table_lock) 941 { 942 might_sleep(); 943 944 write_lock_irq(&nl_table_lock); 945 946 if (atomic_read(&nl_table_users)) { 947 DECLARE_WAITQUEUE(wait, current); 948 949 add_wait_queue_exclusive(&nl_table_wait, &wait); 950 for (;;) { 951 set_current_state(TASK_UNINTERRUPTIBLE); 952 if (atomic_read(&nl_table_users) == 0) 953 break; 954 write_unlock_irq(&nl_table_lock); 955 schedule(); 956 write_lock_irq(&nl_table_lock); 957 } 958 959 __set_current_state(TASK_RUNNING); 960 remove_wait_queue(&nl_table_wait, &wait); 961 } 962 } 963 964 void netlink_table_ungrab(void) 965 __releases(nl_table_lock) 966 { 967 write_unlock_irq(&nl_table_lock); 968 wake_up(&nl_table_wait); 969 } 970 971 static inline void 972 netlink_lock_table(void) 973 { 974 /* read_lock() synchronizes us to netlink_table_grab */ 975 976 read_lock(&nl_table_lock); 977 atomic_inc(&nl_table_users); 978 read_unlock(&nl_table_lock); 979 } 980 981 static inline void 982 netlink_unlock_table(void) 983 { 984 if (atomic_dec_and_test(&nl_table_users)) 985 wake_up(&nl_table_wait); 986 } 987 988 static bool netlink_compare(struct net *net, struct sock *sk) 989 { 990 return net_eq(sock_net(sk), net); 991 } 992 993 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 994 { 995 struct netlink_table *table = &nl_table[protocol]; 996 struct nl_portid_hash *hash = &table->hash; 997 struct hlist_head *head; 998 struct sock *sk; 999 1000 read_lock(&nl_table_lock); 1001 head = nl_portid_hashfn(hash, portid); 1002 sk_for_each(sk, head) { 1003 if (table->compare(net, sk) && 1004 (nlk_sk(sk)->portid == portid)) { 1005 sock_hold(sk); 1006 goto found; 1007 } 1008 } 1009 sk = NULL; 1010 found: 1011 read_unlock(&nl_table_lock); 1012 return sk; 1013 } 1014 1015 static struct hlist_head *nl_portid_hash_zalloc(size_t size) 1016 { 1017 if (size <= PAGE_SIZE) 1018 return kzalloc(size, GFP_ATOMIC); 1019 else 1020 return (struct hlist_head *) 1021 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 1022 get_order(size)); 1023 } 1024 1025 static void nl_portid_hash_free(struct hlist_head *table, size_t size) 1026 { 1027 if (size <= PAGE_SIZE) 1028 kfree(table); 1029 else 1030 free_pages((unsigned long)table, get_order(size)); 1031 } 1032 1033 static int nl_portid_hash_rehash(struct nl_portid_hash *hash, int grow) 1034 { 1035 unsigned int omask, mask, shift; 1036 size_t osize, size; 1037 struct hlist_head *otable, *table; 1038 int i; 1039 1040 omask = mask = hash->mask; 1041 osize = size = (mask + 1) * sizeof(*table); 1042 shift = hash->shift; 1043 1044 if (grow) { 1045 if (++shift > hash->max_shift) 1046 return 0; 1047 mask = mask * 2 + 1; 1048 size *= 2; 1049 } 1050 1051 table = nl_portid_hash_zalloc(size); 1052 if (!table) 1053 return 0; 1054 1055 otable = hash->table; 1056 hash->table = table; 1057 hash->mask = mask; 1058 hash->shift = shift; 1059 get_random_bytes(&hash->rnd, sizeof(hash->rnd)); 1060 1061 for (i = 0; i <= omask; i++) { 1062 struct sock *sk; 1063 struct hlist_node *tmp; 1064 1065 sk_for_each_safe(sk, tmp, &otable[i]) 1066 __sk_add_node(sk, nl_portid_hashfn(hash, nlk_sk(sk)->portid)); 1067 } 1068 1069 nl_portid_hash_free(otable, osize); 1070 hash->rehash_time = jiffies + 10 * 60 * HZ; 1071 return 1; 1072 } 1073 1074 static inline int nl_portid_hash_dilute(struct nl_portid_hash *hash, int len) 1075 { 1076 int avg = hash->entries >> hash->shift; 1077 1078 if (unlikely(avg > 1) && nl_portid_hash_rehash(hash, 1)) 1079 return 1; 1080 1081 if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) { 1082 nl_portid_hash_rehash(hash, 0); 1083 return 1; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static const struct proto_ops netlink_ops; 1090 1091 static void 1092 netlink_update_listeners(struct sock *sk) 1093 { 1094 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1095 unsigned long mask; 1096 unsigned int i; 1097 struct listeners *listeners; 1098 1099 listeners = nl_deref_protected(tbl->listeners); 1100 if (!listeners) 1101 return; 1102 1103 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1104 mask = 0; 1105 sk_for_each_bound(sk, &tbl->mc_list) { 1106 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1107 mask |= nlk_sk(sk)->groups[i]; 1108 } 1109 listeners->masks[i] = mask; 1110 } 1111 /* this function is only called with the netlink table "grabbed", which 1112 * makes sure updates are visible before bind or setsockopt return. */ 1113 } 1114 1115 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1116 { 1117 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1118 struct nl_portid_hash *hash = &table->hash; 1119 struct hlist_head *head; 1120 int err = -EADDRINUSE; 1121 struct sock *osk; 1122 int len; 1123 1124 netlink_table_grab(); 1125 head = nl_portid_hashfn(hash, portid); 1126 len = 0; 1127 sk_for_each(osk, head) { 1128 if (table->compare(net, osk) && 1129 (nlk_sk(osk)->portid == portid)) 1130 break; 1131 len++; 1132 } 1133 if (osk) 1134 goto err; 1135 1136 err = -EBUSY; 1137 if (nlk_sk(sk)->portid) 1138 goto err; 1139 1140 err = -ENOMEM; 1141 if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX)) 1142 goto err; 1143 1144 if (len && nl_portid_hash_dilute(hash, len)) 1145 head = nl_portid_hashfn(hash, portid); 1146 hash->entries++; 1147 nlk_sk(sk)->portid = portid; 1148 sk_add_node(sk, head); 1149 err = 0; 1150 1151 err: 1152 netlink_table_ungrab(); 1153 return err; 1154 } 1155 1156 static void netlink_remove(struct sock *sk) 1157 { 1158 netlink_table_grab(); 1159 if (sk_del_node_init(sk)) 1160 nl_table[sk->sk_protocol].hash.entries--; 1161 if (nlk_sk(sk)->subscriptions) 1162 __sk_del_bind_node(sk); 1163 netlink_table_ungrab(); 1164 } 1165 1166 static struct proto netlink_proto = { 1167 .name = "NETLINK", 1168 .owner = THIS_MODULE, 1169 .obj_size = sizeof(struct netlink_sock), 1170 }; 1171 1172 static int __netlink_create(struct net *net, struct socket *sock, 1173 struct mutex *cb_mutex, int protocol) 1174 { 1175 struct sock *sk; 1176 struct netlink_sock *nlk; 1177 1178 sock->ops = &netlink_ops; 1179 1180 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1181 if (!sk) 1182 return -ENOMEM; 1183 1184 sock_init_data(sock, sk); 1185 1186 nlk = nlk_sk(sk); 1187 if (cb_mutex) { 1188 nlk->cb_mutex = cb_mutex; 1189 } else { 1190 nlk->cb_mutex = &nlk->cb_def_mutex; 1191 mutex_init(nlk->cb_mutex); 1192 } 1193 init_waitqueue_head(&nlk->wait); 1194 #ifdef CONFIG_NETLINK_MMAP 1195 mutex_init(&nlk->pg_vec_lock); 1196 #endif 1197 1198 sk->sk_destruct = netlink_sock_destruct; 1199 sk->sk_protocol = protocol; 1200 return 0; 1201 } 1202 1203 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1204 int kern) 1205 { 1206 struct module *module = NULL; 1207 struct mutex *cb_mutex; 1208 struct netlink_sock *nlk; 1209 void (*bind)(int group); 1210 int err = 0; 1211 1212 sock->state = SS_UNCONNECTED; 1213 1214 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1215 return -ESOCKTNOSUPPORT; 1216 1217 if (protocol < 0 || protocol >= MAX_LINKS) 1218 return -EPROTONOSUPPORT; 1219 1220 netlink_lock_table(); 1221 #ifdef CONFIG_MODULES 1222 if (!nl_table[protocol].registered) { 1223 netlink_unlock_table(); 1224 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1225 netlink_lock_table(); 1226 } 1227 #endif 1228 if (nl_table[protocol].registered && 1229 try_module_get(nl_table[protocol].module)) 1230 module = nl_table[protocol].module; 1231 else 1232 err = -EPROTONOSUPPORT; 1233 cb_mutex = nl_table[protocol].cb_mutex; 1234 bind = nl_table[protocol].bind; 1235 netlink_unlock_table(); 1236 1237 if (err < 0) 1238 goto out; 1239 1240 err = __netlink_create(net, sock, cb_mutex, protocol); 1241 if (err < 0) 1242 goto out_module; 1243 1244 local_bh_disable(); 1245 sock_prot_inuse_add(net, &netlink_proto, 1); 1246 local_bh_enable(); 1247 1248 nlk = nlk_sk(sock->sk); 1249 nlk->module = module; 1250 nlk->netlink_bind = bind; 1251 out: 1252 return err; 1253 1254 out_module: 1255 module_put(module); 1256 goto out; 1257 } 1258 1259 static int netlink_release(struct socket *sock) 1260 { 1261 struct sock *sk = sock->sk; 1262 struct netlink_sock *nlk; 1263 1264 if (!sk) 1265 return 0; 1266 1267 netlink_remove(sk); 1268 sock_orphan(sk); 1269 nlk = nlk_sk(sk); 1270 1271 /* 1272 * OK. Socket is unlinked, any packets that arrive now 1273 * will be purged. 1274 */ 1275 1276 sock->sk = NULL; 1277 wake_up_interruptible_all(&nlk->wait); 1278 1279 skb_queue_purge(&sk->sk_write_queue); 1280 1281 if (nlk->portid) { 1282 struct netlink_notify n = { 1283 .net = sock_net(sk), 1284 .protocol = sk->sk_protocol, 1285 .portid = nlk->portid, 1286 }; 1287 atomic_notifier_call_chain(&netlink_chain, 1288 NETLINK_URELEASE, &n); 1289 } 1290 1291 module_put(nlk->module); 1292 1293 netlink_table_grab(); 1294 if (netlink_is_kernel(sk)) { 1295 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1296 if (--nl_table[sk->sk_protocol].registered == 0) { 1297 struct listeners *old; 1298 1299 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1300 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1301 kfree_rcu(old, rcu); 1302 nl_table[sk->sk_protocol].module = NULL; 1303 nl_table[sk->sk_protocol].bind = NULL; 1304 nl_table[sk->sk_protocol].flags = 0; 1305 nl_table[sk->sk_protocol].registered = 0; 1306 } 1307 } else if (nlk->subscriptions) { 1308 netlink_update_listeners(sk); 1309 } 1310 netlink_table_ungrab(); 1311 1312 kfree(nlk->groups); 1313 nlk->groups = NULL; 1314 1315 local_bh_disable(); 1316 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1317 local_bh_enable(); 1318 sock_put(sk); 1319 return 0; 1320 } 1321 1322 static int netlink_autobind(struct socket *sock) 1323 { 1324 struct sock *sk = sock->sk; 1325 struct net *net = sock_net(sk); 1326 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1327 struct nl_portid_hash *hash = &table->hash; 1328 struct hlist_head *head; 1329 struct sock *osk; 1330 s32 portid = task_tgid_vnr(current); 1331 int err; 1332 static s32 rover = -4097; 1333 1334 retry: 1335 cond_resched(); 1336 netlink_table_grab(); 1337 head = nl_portid_hashfn(hash, portid); 1338 sk_for_each(osk, head) { 1339 if (!table->compare(net, osk)) 1340 continue; 1341 if (nlk_sk(osk)->portid == portid) { 1342 /* Bind collision, search negative portid values. */ 1343 portid = rover--; 1344 if (rover > -4097) 1345 rover = -4097; 1346 netlink_table_ungrab(); 1347 goto retry; 1348 } 1349 } 1350 netlink_table_ungrab(); 1351 1352 err = netlink_insert(sk, net, portid); 1353 if (err == -EADDRINUSE) 1354 goto retry; 1355 1356 /* If 2 threads race to autobind, that is fine. */ 1357 if (err == -EBUSY) 1358 err = 0; 1359 1360 return err; 1361 } 1362 1363 static inline int netlink_capable(const struct socket *sock, unsigned int flag) 1364 { 1365 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1366 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1367 } 1368 1369 static void 1370 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1371 { 1372 struct netlink_sock *nlk = nlk_sk(sk); 1373 1374 if (nlk->subscriptions && !subscriptions) 1375 __sk_del_bind_node(sk); 1376 else if (!nlk->subscriptions && subscriptions) 1377 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1378 nlk->subscriptions = subscriptions; 1379 } 1380 1381 static int netlink_realloc_groups(struct sock *sk) 1382 { 1383 struct netlink_sock *nlk = nlk_sk(sk); 1384 unsigned int groups; 1385 unsigned long *new_groups; 1386 int err = 0; 1387 1388 netlink_table_grab(); 1389 1390 groups = nl_table[sk->sk_protocol].groups; 1391 if (!nl_table[sk->sk_protocol].registered) { 1392 err = -ENOENT; 1393 goto out_unlock; 1394 } 1395 1396 if (nlk->ngroups >= groups) 1397 goto out_unlock; 1398 1399 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1400 if (new_groups == NULL) { 1401 err = -ENOMEM; 1402 goto out_unlock; 1403 } 1404 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1405 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1406 1407 nlk->groups = new_groups; 1408 nlk->ngroups = groups; 1409 out_unlock: 1410 netlink_table_ungrab(); 1411 return err; 1412 } 1413 1414 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1415 int addr_len) 1416 { 1417 struct sock *sk = sock->sk; 1418 struct net *net = sock_net(sk); 1419 struct netlink_sock *nlk = nlk_sk(sk); 1420 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1421 int err; 1422 1423 if (addr_len < sizeof(struct sockaddr_nl)) 1424 return -EINVAL; 1425 1426 if (nladdr->nl_family != AF_NETLINK) 1427 return -EINVAL; 1428 1429 /* Only superuser is allowed to listen multicasts */ 1430 if (nladdr->nl_groups) { 1431 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV)) 1432 return -EPERM; 1433 err = netlink_realloc_groups(sk); 1434 if (err) 1435 return err; 1436 } 1437 1438 if (nlk->portid) { 1439 if (nladdr->nl_pid != nlk->portid) 1440 return -EINVAL; 1441 } else { 1442 err = nladdr->nl_pid ? 1443 netlink_insert(sk, net, nladdr->nl_pid) : 1444 netlink_autobind(sock); 1445 if (err) 1446 return err; 1447 } 1448 1449 if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1450 return 0; 1451 1452 netlink_table_grab(); 1453 netlink_update_subscriptions(sk, nlk->subscriptions + 1454 hweight32(nladdr->nl_groups) - 1455 hweight32(nlk->groups[0])); 1456 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups; 1457 netlink_update_listeners(sk); 1458 netlink_table_ungrab(); 1459 1460 if (nlk->netlink_bind && nlk->groups[0]) { 1461 int i; 1462 1463 for (i=0; i<nlk->ngroups; i++) { 1464 if (test_bit(i, nlk->groups)) 1465 nlk->netlink_bind(i); 1466 } 1467 } 1468 1469 return 0; 1470 } 1471 1472 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1473 int alen, int flags) 1474 { 1475 int err = 0; 1476 struct sock *sk = sock->sk; 1477 struct netlink_sock *nlk = nlk_sk(sk); 1478 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1479 1480 if (alen < sizeof(addr->sa_family)) 1481 return -EINVAL; 1482 1483 if (addr->sa_family == AF_UNSPEC) { 1484 sk->sk_state = NETLINK_UNCONNECTED; 1485 nlk->dst_portid = 0; 1486 nlk->dst_group = 0; 1487 return 0; 1488 } 1489 if (addr->sa_family != AF_NETLINK) 1490 return -EINVAL; 1491 1492 /* Only superuser is allowed to send multicasts */ 1493 if (nladdr->nl_groups && !netlink_capable(sock, NL_CFG_F_NONROOT_SEND)) 1494 return -EPERM; 1495 1496 if (!nlk->portid) 1497 err = netlink_autobind(sock); 1498 1499 if (err == 0) { 1500 sk->sk_state = NETLINK_CONNECTED; 1501 nlk->dst_portid = nladdr->nl_pid; 1502 nlk->dst_group = ffs(nladdr->nl_groups); 1503 } 1504 1505 return err; 1506 } 1507 1508 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1509 int *addr_len, int peer) 1510 { 1511 struct sock *sk = sock->sk; 1512 struct netlink_sock *nlk = nlk_sk(sk); 1513 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1514 1515 nladdr->nl_family = AF_NETLINK; 1516 nladdr->nl_pad = 0; 1517 *addr_len = sizeof(*nladdr); 1518 1519 if (peer) { 1520 nladdr->nl_pid = nlk->dst_portid; 1521 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1522 } else { 1523 nladdr->nl_pid = nlk->portid; 1524 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1525 } 1526 return 0; 1527 } 1528 1529 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1530 { 1531 struct sock *sock; 1532 struct netlink_sock *nlk; 1533 1534 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1535 if (!sock) 1536 return ERR_PTR(-ECONNREFUSED); 1537 1538 /* Don't bother queuing skb if kernel socket has no input function */ 1539 nlk = nlk_sk(sock); 1540 if (sock->sk_state == NETLINK_CONNECTED && 1541 nlk->dst_portid != nlk_sk(ssk)->portid) { 1542 sock_put(sock); 1543 return ERR_PTR(-ECONNREFUSED); 1544 } 1545 return sock; 1546 } 1547 1548 struct sock *netlink_getsockbyfilp(struct file *filp) 1549 { 1550 struct inode *inode = file_inode(filp); 1551 struct sock *sock; 1552 1553 if (!S_ISSOCK(inode->i_mode)) 1554 return ERR_PTR(-ENOTSOCK); 1555 1556 sock = SOCKET_I(inode)->sk; 1557 if (sock->sk_family != AF_NETLINK) 1558 return ERR_PTR(-EINVAL); 1559 1560 sock_hold(sock); 1561 return sock; 1562 } 1563 1564 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1565 int broadcast) 1566 { 1567 struct sk_buff *skb; 1568 void *data; 1569 1570 if (size <= NLMSG_GOODSIZE || broadcast) 1571 return alloc_skb(size, GFP_KERNEL); 1572 1573 size = SKB_DATA_ALIGN(size) + 1574 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1575 1576 data = vmalloc(size); 1577 if (data == NULL) 1578 return NULL; 1579 1580 skb = build_skb(data, size); 1581 if (skb == NULL) 1582 vfree(data); 1583 else { 1584 skb->head_frag = 0; 1585 skb->destructor = netlink_skb_destructor; 1586 } 1587 1588 return skb; 1589 } 1590 1591 /* 1592 * Attach a skb to a netlink socket. 1593 * The caller must hold a reference to the destination socket. On error, the 1594 * reference is dropped. The skb is not send to the destination, just all 1595 * all error checks are performed and memory in the queue is reserved. 1596 * Return values: 1597 * < 0: error. skb freed, reference to sock dropped. 1598 * 0: continue 1599 * 1: repeat lookup - reference dropped while waiting for socket memory. 1600 */ 1601 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1602 long *timeo, struct sock *ssk) 1603 { 1604 struct netlink_sock *nlk; 1605 1606 nlk = nlk_sk(sk); 1607 1608 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1609 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1610 !netlink_skb_is_mmaped(skb)) { 1611 DECLARE_WAITQUEUE(wait, current); 1612 if (!*timeo) { 1613 if (!ssk || netlink_is_kernel(ssk)) 1614 netlink_overrun(sk); 1615 sock_put(sk); 1616 kfree_skb(skb); 1617 return -EAGAIN; 1618 } 1619 1620 __set_current_state(TASK_INTERRUPTIBLE); 1621 add_wait_queue(&nlk->wait, &wait); 1622 1623 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1624 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1625 !sock_flag(sk, SOCK_DEAD)) 1626 *timeo = schedule_timeout(*timeo); 1627 1628 __set_current_state(TASK_RUNNING); 1629 remove_wait_queue(&nlk->wait, &wait); 1630 sock_put(sk); 1631 1632 if (signal_pending(current)) { 1633 kfree_skb(skb); 1634 return sock_intr_errno(*timeo); 1635 } 1636 return 1; 1637 } 1638 netlink_skb_set_owner_r(skb, sk); 1639 return 0; 1640 } 1641 1642 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1643 { 1644 int len = skb->len; 1645 1646 netlink_deliver_tap(skb); 1647 1648 #ifdef CONFIG_NETLINK_MMAP 1649 if (netlink_skb_is_mmaped(skb)) 1650 netlink_queue_mmaped_skb(sk, skb); 1651 else if (netlink_rx_is_mmaped(sk)) 1652 netlink_ring_set_copied(sk, skb); 1653 else 1654 #endif /* CONFIG_NETLINK_MMAP */ 1655 skb_queue_tail(&sk->sk_receive_queue, skb); 1656 sk->sk_data_ready(sk, len); 1657 return len; 1658 } 1659 1660 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1661 { 1662 int len = __netlink_sendskb(sk, skb); 1663 1664 sock_put(sk); 1665 return len; 1666 } 1667 1668 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1669 { 1670 kfree_skb(skb); 1671 sock_put(sk); 1672 } 1673 1674 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1675 { 1676 int delta; 1677 1678 WARN_ON(skb->sk != NULL); 1679 if (netlink_skb_is_mmaped(skb)) 1680 return skb; 1681 1682 delta = skb->end - skb->tail; 1683 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1684 return skb; 1685 1686 if (skb_shared(skb)) { 1687 struct sk_buff *nskb = skb_clone(skb, allocation); 1688 if (!nskb) 1689 return skb; 1690 consume_skb(skb); 1691 skb = nskb; 1692 } 1693 1694 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1695 skb->truesize -= delta; 1696 1697 return skb; 1698 } 1699 1700 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1701 struct sock *ssk) 1702 { 1703 int ret; 1704 struct netlink_sock *nlk = nlk_sk(sk); 1705 1706 ret = -ECONNREFUSED; 1707 if (nlk->netlink_rcv != NULL) { 1708 ret = skb->len; 1709 netlink_skb_set_owner_r(skb, sk); 1710 NETLINK_CB(skb).sk = ssk; 1711 netlink_deliver_tap_kernel(sk, ssk, skb); 1712 nlk->netlink_rcv(skb); 1713 consume_skb(skb); 1714 } else { 1715 kfree_skb(skb); 1716 } 1717 sock_put(sk); 1718 return ret; 1719 } 1720 1721 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1722 u32 portid, int nonblock) 1723 { 1724 struct sock *sk; 1725 int err; 1726 long timeo; 1727 1728 skb = netlink_trim(skb, gfp_any()); 1729 1730 timeo = sock_sndtimeo(ssk, nonblock); 1731 retry: 1732 sk = netlink_getsockbyportid(ssk, portid); 1733 if (IS_ERR(sk)) { 1734 kfree_skb(skb); 1735 return PTR_ERR(sk); 1736 } 1737 if (netlink_is_kernel(sk)) 1738 return netlink_unicast_kernel(sk, skb, ssk); 1739 1740 if (sk_filter(sk, skb)) { 1741 err = skb->len; 1742 kfree_skb(skb); 1743 sock_put(sk); 1744 return err; 1745 } 1746 1747 err = netlink_attachskb(sk, skb, &timeo, ssk); 1748 if (err == 1) 1749 goto retry; 1750 if (err) 1751 return err; 1752 1753 return netlink_sendskb(sk, skb); 1754 } 1755 EXPORT_SYMBOL(netlink_unicast); 1756 1757 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1758 u32 dst_portid, gfp_t gfp_mask) 1759 { 1760 #ifdef CONFIG_NETLINK_MMAP 1761 struct sock *sk = NULL; 1762 struct sk_buff *skb; 1763 struct netlink_ring *ring; 1764 struct nl_mmap_hdr *hdr; 1765 unsigned int maxlen; 1766 1767 sk = netlink_getsockbyportid(ssk, dst_portid); 1768 if (IS_ERR(sk)) 1769 goto out; 1770 1771 ring = &nlk_sk(sk)->rx_ring; 1772 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1773 if (ring->pg_vec == NULL) 1774 goto out_put; 1775 1776 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1777 goto out_put; 1778 1779 skb = alloc_skb_head(gfp_mask); 1780 if (skb == NULL) 1781 goto err1; 1782 1783 spin_lock_bh(&sk->sk_receive_queue.lock); 1784 /* check again under lock */ 1785 if (ring->pg_vec == NULL) 1786 goto out_free; 1787 1788 /* check again under lock */ 1789 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1790 if (maxlen < size) 1791 goto out_free; 1792 1793 netlink_forward_ring(ring); 1794 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1795 if (hdr == NULL) 1796 goto err2; 1797 netlink_ring_setup_skb(skb, sk, ring, hdr); 1798 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1799 atomic_inc(&ring->pending); 1800 netlink_increment_head(ring); 1801 1802 spin_unlock_bh(&sk->sk_receive_queue.lock); 1803 return skb; 1804 1805 err2: 1806 kfree_skb(skb); 1807 spin_unlock_bh(&sk->sk_receive_queue.lock); 1808 netlink_overrun(sk); 1809 err1: 1810 sock_put(sk); 1811 return NULL; 1812 1813 out_free: 1814 kfree_skb(skb); 1815 spin_unlock_bh(&sk->sk_receive_queue.lock); 1816 out_put: 1817 sock_put(sk); 1818 out: 1819 #endif 1820 return alloc_skb(size, gfp_mask); 1821 } 1822 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1823 1824 int netlink_has_listeners(struct sock *sk, unsigned int group) 1825 { 1826 int res = 0; 1827 struct listeners *listeners; 1828 1829 BUG_ON(!netlink_is_kernel(sk)); 1830 1831 rcu_read_lock(); 1832 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1833 1834 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1835 res = test_bit(group - 1, listeners->masks); 1836 1837 rcu_read_unlock(); 1838 1839 return res; 1840 } 1841 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1842 1843 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1844 { 1845 struct netlink_sock *nlk = nlk_sk(sk); 1846 1847 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1848 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1849 netlink_skb_set_owner_r(skb, sk); 1850 __netlink_sendskb(sk, skb); 1851 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1852 } 1853 return -1; 1854 } 1855 1856 struct netlink_broadcast_data { 1857 struct sock *exclude_sk; 1858 struct net *net; 1859 u32 portid; 1860 u32 group; 1861 int failure; 1862 int delivery_failure; 1863 int congested; 1864 int delivered; 1865 gfp_t allocation; 1866 struct sk_buff *skb, *skb2; 1867 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1868 void *tx_data; 1869 }; 1870 1871 static int do_one_broadcast(struct sock *sk, 1872 struct netlink_broadcast_data *p) 1873 { 1874 struct netlink_sock *nlk = nlk_sk(sk); 1875 int val; 1876 1877 if (p->exclude_sk == sk) 1878 goto out; 1879 1880 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1881 !test_bit(p->group - 1, nlk->groups)) 1882 goto out; 1883 1884 if (!net_eq(sock_net(sk), p->net)) 1885 goto out; 1886 1887 if (p->failure) { 1888 netlink_overrun(sk); 1889 goto out; 1890 } 1891 1892 sock_hold(sk); 1893 if (p->skb2 == NULL) { 1894 if (skb_shared(p->skb)) { 1895 p->skb2 = skb_clone(p->skb, p->allocation); 1896 } else { 1897 p->skb2 = skb_get(p->skb); 1898 /* 1899 * skb ownership may have been set when 1900 * delivered to a previous socket. 1901 */ 1902 skb_orphan(p->skb2); 1903 } 1904 } 1905 if (p->skb2 == NULL) { 1906 netlink_overrun(sk); 1907 /* Clone failed. Notify ALL listeners. */ 1908 p->failure = 1; 1909 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1910 p->delivery_failure = 1; 1911 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1912 kfree_skb(p->skb2); 1913 p->skb2 = NULL; 1914 } else if (sk_filter(sk, p->skb2)) { 1915 kfree_skb(p->skb2); 1916 p->skb2 = NULL; 1917 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1918 netlink_overrun(sk); 1919 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1920 p->delivery_failure = 1; 1921 } else { 1922 p->congested |= val; 1923 p->delivered = 1; 1924 p->skb2 = NULL; 1925 } 1926 sock_put(sk); 1927 1928 out: 1929 return 0; 1930 } 1931 1932 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1933 u32 group, gfp_t allocation, 1934 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1935 void *filter_data) 1936 { 1937 struct net *net = sock_net(ssk); 1938 struct netlink_broadcast_data info; 1939 struct sock *sk; 1940 1941 skb = netlink_trim(skb, allocation); 1942 1943 info.exclude_sk = ssk; 1944 info.net = net; 1945 info.portid = portid; 1946 info.group = group; 1947 info.failure = 0; 1948 info.delivery_failure = 0; 1949 info.congested = 0; 1950 info.delivered = 0; 1951 info.allocation = allocation; 1952 info.skb = skb; 1953 info.skb2 = NULL; 1954 info.tx_filter = filter; 1955 info.tx_data = filter_data; 1956 1957 /* While we sleep in clone, do not allow to change socket list */ 1958 1959 netlink_lock_table(); 1960 1961 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1962 do_one_broadcast(sk, &info); 1963 1964 consume_skb(skb); 1965 1966 netlink_unlock_table(); 1967 1968 if (info.delivery_failure) { 1969 kfree_skb(info.skb2); 1970 return -ENOBUFS; 1971 } 1972 consume_skb(info.skb2); 1973 1974 if (info.delivered) { 1975 if (info.congested && (allocation & __GFP_WAIT)) 1976 yield(); 1977 return 0; 1978 } 1979 return -ESRCH; 1980 } 1981 EXPORT_SYMBOL(netlink_broadcast_filtered); 1982 1983 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1984 u32 group, gfp_t allocation) 1985 { 1986 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1987 NULL, NULL); 1988 } 1989 EXPORT_SYMBOL(netlink_broadcast); 1990 1991 struct netlink_set_err_data { 1992 struct sock *exclude_sk; 1993 u32 portid; 1994 u32 group; 1995 int code; 1996 }; 1997 1998 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1999 { 2000 struct netlink_sock *nlk = nlk_sk(sk); 2001 int ret = 0; 2002 2003 if (sk == p->exclude_sk) 2004 goto out; 2005 2006 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2007 goto out; 2008 2009 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2010 !test_bit(p->group - 1, nlk->groups)) 2011 goto out; 2012 2013 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2014 ret = 1; 2015 goto out; 2016 } 2017 2018 sk->sk_err = p->code; 2019 sk->sk_error_report(sk); 2020 out: 2021 return ret; 2022 } 2023 2024 /** 2025 * netlink_set_err - report error to broadcast listeners 2026 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2027 * @portid: the PORTID of a process that we want to skip (if any) 2028 * @group: the broadcast group that will notice the error 2029 * @code: error code, must be negative (as usual in kernelspace) 2030 * 2031 * This function returns the number of broadcast listeners that have set the 2032 * NETLINK_RECV_NO_ENOBUFS socket option. 2033 */ 2034 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2035 { 2036 struct netlink_set_err_data info; 2037 struct sock *sk; 2038 int ret = 0; 2039 2040 info.exclude_sk = ssk; 2041 info.portid = portid; 2042 info.group = group; 2043 /* sk->sk_err wants a positive error value */ 2044 info.code = -code; 2045 2046 read_lock(&nl_table_lock); 2047 2048 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2049 ret += do_one_set_err(sk, &info); 2050 2051 read_unlock(&nl_table_lock); 2052 return ret; 2053 } 2054 EXPORT_SYMBOL(netlink_set_err); 2055 2056 /* must be called with netlink table grabbed */ 2057 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2058 unsigned int group, 2059 int is_new) 2060 { 2061 int old, new = !!is_new, subscriptions; 2062 2063 old = test_bit(group - 1, nlk->groups); 2064 subscriptions = nlk->subscriptions - old + new; 2065 if (new) 2066 __set_bit(group - 1, nlk->groups); 2067 else 2068 __clear_bit(group - 1, nlk->groups); 2069 netlink_update_subscriptions(&nlk->sk, subscriptions); 2070 netlink_update_listeners(&nlk->sk); 2071 } 2072 2073 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2074 char __user *optval, unsigned int optlen) 2075 { 2076 struct sock *sk = sock->sk; 2077 struct netlink_sock *nlk = nlk_sk(sk); 2078 unsigned int val = 0; 2079 int err; 2080 2081 if (level != SOL_NETLINK) 2082 return -ENOPROTOOPT; 2083 2084 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2085 optlen >= sizeof(int) && 2086 get_user(val, (unsigned int __user *)optval)) 2087 return -EFAULT; 2088 2089 switch (optname) { 2090 case NETLINK_PKTINFO: 2091 if (val) 2092 nlk->flags |= NETLINK_RECV_PKTINFO; 2093 else 2094 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2095 err = 0; 2096 break; 2097 case NETLINK_ADD_MEMBERSHIP: 2098 case NETLINK_DROP_MEMBERSHIP: { 2099 if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV)) 2100 return -EPERM; 2101 err = netlink_realloc_groups(sk); 2102 if (err) 2103 return err; 2104 if (!val || val - 1 >= nlk->ngroups) 2105 return -EINVAL; 2106 netlink_table_grab(); 2107 netlink_update_socket_mc(nlk, val, 2108 optname == NETLINK_ADD_MEMBERSHIP); 2109 netlink_table_ungrab(); 2110 2111 if (nlk->netlink_bind) 2112 nlk->netlink_bind(val); 2113 2114 err = 0; 2115 break; 2116 } 2117 case NETLINK_BROADCAST_ERROR: 2118 if (val) 2119 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2120 else 2121 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2122 err = 0; 2123 break; 2124 case NETLINK_NO_ENOBUFS: 2125 if (val) { 2126 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2127 clear_bit(NETLINK_CONGESTED, &nlk->state); 2128 wake_up_interruptible(&nlk->wait); 2129 } else { 2130 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2131 } 2132 err = 0; 2133 break; 2134 #ifdef CONFIG_NETLINK_MMAP 2135 case NETLINK_RX_RING: 2136 case NETLINK_TX_RING: { 2137 struct nl_mmap_req req; 2138 2139 /* Rings might consume more memory than queue limits, require 2140 * CAP_NET_ADMIN. 2141 */ 2142 if (!capable(CAP_NET_ADMIN)) 2143 return -EPERM; 2144 if (optlen < sizeof(req)) 2145 return -EINVAL; 2146 if (copy_from_user(&req, optval, sizeof(req))) 2147 return -EFAULT; 2148 err = netlink_set_ring(sk, &req, false, 2149 optname == NETLINK_TX_RING); 2150 break; 2151 } 2152 #endif /* CONFIG_NETLINK_MMAP */ 2153 default: 2154 err = -ENOPROTOOPT; 2155 } 2156 return err; 2157 } 2158 2159 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2160 char __user *optval, int __user *optlen) 2161 { 2162 struct sock *sk = sock->sk; 2163 struct netlink_sock *nlk = nlk_sk(sk); 2164 int len, val, err; 2165 2166 if (level != SOL_NETLINK) 2167 return -ENOPROTOOPT; 2168 2169 if (get_user(len, optlen)) 2170 return -EFAULT; 2171 if (len < 0) 2172 return -EINVAL; 2173 2174 switch (optname) { 2175 case NETLINK_PKTINFO: 2176 if (len < sizeof(int)) 2177 return -EINVAL; 2178 len = sizeof(int); 2179 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2180 if (put_user(len, optlen) || 2181 put_user(val, optval)) 2182 return -EFAULT; 2183 err = 0; 2184 break; 2185 case NETLINK_BROADCAST_ERROR: 2186 if (len < sizeof(int)) 2187 return -EINVAL; 2188 len = sizeof(int); 2189 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2190 if (put_user(len, optlen) || 2191 put_user(val, optval)) 2192 return -EFAULT; 2193 err = 0; 2194 break; 2195 case NETLINK_NO_ENOBUFS: 2196 if (len < sizeof(int)) 2197 return -EINVAL; 2198 len = sizeof(int); 2199 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2200 if (put_user(len, optlen) || 2201 put_user(val, optval)) 2202 return -EFAULT; 2203 err = 0; 2204 break; 2205 default: 2206 err = -ENOPROTOOPT; 2207 } 2208 return err; 2209 } 2210 2211 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2212 { 2213 struct nl_pktinfo info; 2214 2215 info.group = NETLINK_CB(skb).dst_group; 2216 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2217 } 2218 2219 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2220 struct msghdr *msg, size_t len) 2221 { 2222 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2223 struct sock *sk = sock->sk; 2224 struct netlink_sock *nlk = nlk_sk(sk); 2225 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2226 u32 dst_portid; 2227 u32 dst_group; 2228 struct sk_buff *skb; 2229 int err; 2230 struct scm_cookie scm; 2231 2232 if (msg->msg_flags&MSG_OOB) 2233 return -EOPNOTSUPP; 2234 2235 if (NULL == siocb->scm) 2236 siocb->scm = &scm; 2237 2238 err = scm_send(sock, msg, siocb->scm, true); 2239 if (err < 0) 2240 return err; 2241 2242 if (msg->msg_namelen) { 2243 err = -EINVAL; 2244 if (addr->nl_family != AF_NETLINK) 2245 goto out; 2246 dst_portid = addr->nl_pid; 2247 dst_group = ffs(addr->nl_groups); 2248 err = -EPERM; 2249 if ((dst_group || dst_portid) && 2250 !netlink_capable(sock, NL_CFG_F_NONROOT_SEND)) 2251 goto out; 2252 } else { 2253 dst_portid = nlk->dst_portid; 2254 dst_group = nlk->dst_group; 2255 } 2256 2257 if (!nlk->portid) { 2258 err = netlink_autobind(sock); 2259 if (err) 2260 goto out; 2261 } 2262 2263 if (netlink_tx_is_mmaped(sk) && 2264 msg->msg_iov->iov_base == NULL) { 2265 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2266 siocb); 2267 goto out; 2268 } 2269 2270 err = -EMSGSIZE; 2271 if (len > sk->sk_sndbuf - 32) 2272 goto out; 2273 err = -ENOBUFS; 2274 skb = netlink_alloc_large_skb(len, dst_group); 2275 if (skb == NULL) 2276 goto out; 2277 2278 NETLINK_CB(skb).portid = nlk->portid; 2279 NETLINK_CB(skb).dst_group = dst_group; 2280 NETLINK_CB(skb).creds = siocb->scm->creds; 2281 2282 err = -EFAULT; 2283 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) { 2284 kfree_skb(skb); 2285 goto out; 2286 } 2287 2288 err = security_netlink_send(sk, skb); 2289 if (err) { 2290 kfree_skb(skb); 2291 goto out; 2292 } 2293 2294 if (dst_group) { 2295 atomic_inc(&skb->users); 2296 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2297 } 2298 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2299 2300 out: 2301 scm_destroy(siocb->scm); 2302 return err; 2303 } 2304 2305 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2306 struct msghdr *msg, size_t len, 2307 int flags) 2308 { 2309 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2310 struct scm_cookie scm; 2311 struct sock *sk = sock->sk; 2312 struct netlink_sock *nlk = nlk_sk(sk); 2313 int noblock = flags&MSG_DONTWAIT; 2314 size_t copied; 2315 struct sk_buff *skb, *data_skb; 2316 int err, ret; 2317 2318 if (flags&MSG_OOB) 2319 return -EOPNOTSUPP; 2320 2321 copied = 0; 2322 2323 skb = skb_recv_datagram(sk, flags, noblock, &err); 2324 if (skb == NULL) 2325 goto out; 2326 2327 data_skb = skb; 2328 2329 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2330 if (unlikely(skb_shinfo(skb)->frag_list)) { 2331 /* 2332 * If this skb has a frag_list, then here that means that we 2333 * will have to use the frag_list skb's data for compat tasks 2334 * and the regular skb's data for normal (non-compat) tasks. 2335 * 2336 * If we need to send the compat skb, assign it to the 2337 * 'data_skb' variable so that it will be used below for data 2338 * copying. We keep 'skb' for everything else, including 2339 * freeing both later. 2340 */ 2341 if (flags & MSG_CMSG_COMPAT) 2342 data_skb = skb_shinfo(skb)->frag_list; 2343 } 2344 #endif 2345 2346 copied = data_skb->len; 2347 if (len < copied) { 2348 msg->msg_flags |= MSG_TRUNC; 2349 copied = len; 2350 } 2351 2352 skb_reset_transport_header(data_skb); 2353 err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied); 2354 2355 if (msg->msg_name) { 2356 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2357 addr->nl_family = AF_NETLINK; 2358 addr->nl_pad = 0; 2359 addr->nl_pid = NETLINK_CB(skb).portid; 2360 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2361 msg->msg_namelen = sizeof(*addr); 2362 } 2363 2364 if (nlk->flags & NETLINK_RECV_PKTINFO) 2365 netlink_cmsg_recv_pktinfo(msg, skb); 2366 2367 if (NULL == siocb->scm) { 2368 memset(&scm, 0, sizeof(scm)); 2369 siocb->scm = &scm; 2370 } 2371 siocb->scm->creds = *NETLINK_CREDS(skb); 2372 if (flags & MSG_TRUNC) 2373 copied = data_skb->len; 2374 2375 skb_free_datagram(sk, skb); 2376 2377 if (nlk->cb_running && 2378 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2379 ret = netlink_dump(sk); 2380 if (ret) { 2381 sk->sk_err = ret; 2382 sk->sk_error_report(sk); 2383 } 2384 } 2385 2386 scm_recv(sock, msg, siocb->scm, flags); 2387 out: 2388 netlink_rcv_wake(sk); 2389 return err ? : copied; 2390 } 2391 2392 static void netlink_data_ready(struct sock *sk, int len) 2393 { 2394 BUG(); 2395 } 2396 2397 /* 2398 * We export these functions to other modules. They provide a 2399 * complete set of kernel non-blocking support for message 2400 * queueing. 2401 */ 2402 2403 struct sock * 2404 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2405 struct netlink_kernel_cfg *cfg) 2406 { 2407 struct socket *sock; 2408 struct sock *sk; 2409 struct netlink_sock *nlk; 2410 struct listeners *listeners = NULL; 2411 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2412 unsigned int groups; 2413 2414 BUG_ON(!nl_table); 2415 2416 if (unit < 0 || unit >= MAX_LINKS) 2417 return NULL; 2418 2419 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2420 return NULL; 2421 2422 /* 2423 * We have to just have a reference on the net from sk, but don't 2424 * get_net it. Besides, we cannot get and then put the net here. 2425 * So we create one inside init_net and the move it to net. 2426 */ 2427 2428 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2429 goto out_sock_release_nosk; 2430 2431 sk = sock->sk; 2432 sk_change_net(sk, net); 2433 2434 if (!cfg || cfg->groups < 32) 2435 groups = 32; 2436 else 2437 groups = cfg->groups; 2438 2439 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2440 if (!listeners) 2441 goto out_sock_release; 2442 2443 sk->sk_data_ready = netlink_data_ready; 2444 if (cfg && cfg->input) 2445 nlk_sk(sk)->netlink_rcv = cfg->input; 2446 2447 if (netlink_insert(sk, net, 0)) 2448 goto out_sock_release; 2449 2450 nlk = nlk_sk(sk); 2451 nlk->flags |= NETLINK_KERNEL_SOCKET; 2452 2453 netlink_table_grab(); 2454 if (!nl_table[unit].registered) { 2455 nl_table[unit].groups = groups; 2456 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2457 nl_table[unit].cb_mutex = cb_mutex; 2458 nl_table[unit].module = module; 2459 if (cfg) { 2460 nl_table[unit].bind = cfg->bind; 2461 nl_table[unit].flags = cfg->flags; 2462 if (cfg->compare) 2463 nl_table[unit].compare = cfg->compare; 2464 } 2465 nl_table[unit].registered = 1; 2466 } else { 2467 kfree(listeners); 2468 nl_table[unit].registered++; 2469 } 2470 netlink_table_ungrab(); 2471 return sk; 2472 2473 out_sock_release: 2474 kfree(listeners); 2475 netlink_kernel_release(sk); 2476 return NULL; 2477 2478 out_sock_release_nosk: 2479 sock_release(sock); 2480 return NULL; 2481 } 2482 EXPORT_SYMBOL(__netlink_kernel_create); 2483 2484 void 2485 netlink_kernel_release(struct sock *sk) 2486 { 2487 sk_release_kernel(sk); 2488 } 2489 EXPORT_SYMBOL(netlink_kernel_release); 2490 2491 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2492 { 2493 struct listeners *new, *old; 2494 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2495 2496 if (groups < 32) 2497 groups = 32; 2498 2499 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2500 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2501 if (!new) 2502 return -ENOMEM; 2503 old = nl_deref_protected(tbl->listeners); 2504 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2505 rcu_assign_pointer(tbl->listeners, new); 2506 2507 kfree_rcu(old, rcu); 2508 } 2509 tbl->groups = groups; 2510 2511 return 0; 2512 } 2513 2514 /** 2515 * netlink_change_ngroups - change number of multicast groups 2516 * 2517 * This changes the number of multicast groups that are available 2518 * on a certain netlink family. Note that it is not possible to 2519 * change the number of groups to below 32. Also note that it does 2520 * not implicitly call netlink_clear_multicast_users() when the 2521 * number of groups is reduced. 2522 * 2523 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2524 * @groups: The new number of groups. 2525 */ 2526 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2527 { 2528 int err; 2529 2530 netlink_table_grab(); 2531 err = __netlink_change_ngroups(sk, groups); 2532 netlink_table_ungrab(); 2533 2534 return err; 2535 } 2536 2537 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2538 { 2539 struct sock *sk; 2540 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2541 2542 sk_for_each_bound(sk, &tbl->mc_list) 2543 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2544 } 2545 2546 struct nlmsghdr * 2547 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2548 { 2549 struct nlmsghdr *nlh; 2550 int size = nlmsg_msg_size(len); 2551 2552 nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size)); 2553 nlh->nlmsg_type = type; 2554 nlh->nlmsg_len = size; 2555 nlh->nlmsg_flags = flags; 2556 nlh->nlmsg_pid = portid; 2557 nlh->nlmsg_seq = seq; 2558 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2559 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2560 return nlh; 2561 } 2562 EXPORT_SYMBOL(__nlmsg_put); 2563 2564 /* 2565 * It looks a bit ugly. 2566 * It would be better to create kernel thread. 2567 */ 2568 2569 static int netlink_dump(struct sock *sk) 2570 { 2571 struct netlink_sock *nlk = nlk_sk(sk); 2572 struct netlink_callback *cb; 2573 struct sk_buff *skb = NULL; 2574 struct nlmsghdr *nlh; 2575 int len, err = -ENOBUFS; 2576 int alloc_size; 2577 2578 mutex_lock(nlk->cb_mutex); 2579 if (!nlk->cb_running) { 2580 err = -EINVAL; 2581 goto errout_skb; 2582 } 2583 2584 cb = &nlk->cb; 2585 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2586 2587 if (!netlink_rx_is_mmaped(sk) && 2588 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2589 goto errout_skb; 2590 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, GFP_KERNEL); 2591 if (!skb) 2592 goto errout_skb; 2593 netlink_skb_set_owner_r(skb, sk); 2594 2595 len = cb->dump(skb, cb); 2596 2597 if (len > 0) { 2598 mutex_unlock(nlk->cb_mutex); 2599 2600 if (sk_filter(sk, skb)) 2601 kfree_skb(skb); 2602 else 2603 __netlink_sendskb(sk, skb); 2604 return 0; 2605 } 2606 2607 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2608 if (!nlh) 2609 goto errout_skb; 2610 2611 nl_dump_check_consistent(cb, nlh); 2612 2613 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2614 2615 if (sk_filter(sk, skb)) 2616 kfree_skb(skb); 2617 else 2618 __netlink_sendskb(sk, skb); 2619 2620 if (cb->done) 2621 cb->done(cb); 2622 2623 nlk->cb_running = false; 2624 mutex_unlock(nlk->cb_mutex); 2625 module_put(cb->module); 2626 consume_skb(cb->skb); 2627 return 0; 2628 2629 errout_skb: 2630 mutex_unlock(nlk->cb_mutex); 2631 kfree_skb(skb); 2632 return err; 2633 } 2634 2635 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2636 const struct nlmsghdr *nlh, 2637 struct netlink_dump_control *control) 2638 { 2639 struct netlink_callback *cb; 2640 struct sock *sk; 2641 struct netlink_sock *nlk; 2642 int ret; 2643 2644 /* Memory mapped dump requests need to be copied to avoid looping 2645 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2646 * a reference to the skb. 2647 */ 2648 if (netlink_skb_is_mmaped(skb)) { 2649 skb = skb_copy(skb, GFP_KERNEL); 2650 if (skb == NULL) 2651 return -ENOBUFS; 2652 } else 2653 atomic_inc(&skb->users); 2654 2655 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2656 if (sk == NULL) { 2657 ret = -ECONNREFUSED; 2658 goto error_free; 2659 } 2660 2661 nlk = nlk_sk(sk); 2662 mutex_lock(nlk->cb_mutex); 2663 /* A dump is in progress... */ 2664 if (nlk->cb_running) { 2665 ret = -EBUSY; 2666 goto error_unlock; 2667 } 2668 /* add reference of module which cb->dump belongs to */ 2669 if (!try_module_get(control->module)) { 2670 ret = -EPROTONOSUPPORT; 2671 goto error_unlock; 2672 } 2673 2674 cb = &nlk->cb; 2675 memset(cb, 0, sizeof(*cb)); 2676 cb->dump = control->dump; 2677 cb->done = control->done; 2678 cb->nlh = nlh; 2679 cb->data = control->data; 2680 cb->module = control->module; 2681 cb->min_dump_alloc = control->min_dump_alloc; 2682 cb->skb = skb; 2683 2684 nlk->cb_running = true; 2685 2686 mutex_unlock(nlk->cb_mutex); 2687 2688 ret = netlink_dump(sk); 2689 sock_put(sk); 2690 2691 if (ret) 2692 return ret; 2693 2694 /* We successfully started a dump, by returning -EINTR we 2695 * signal not to send ACK even if it was requested. 2696 */ 2697 return -EINTR; 2698 2699 error_unlock: 2700 sock_put(sk); 2701 mutex_unlock(nlk->cb_mutex); 2702 error_free: 2703 kfree_skb(skb); 2704 return ret; 2705 } 2706 EXPORT_SYMBOL(__netlink_dump_start); 2707 2708 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2709 { 2710 struct sk_buff *skb; 2711 struct nlmsghdr *rep; 2712 struct nlmsgerr *errmsg; 2713 size_t payload = sizeof(*errmsg); 2714 2715 /* error messages get the original request appened */ 2716 if (err) 2717 payload += nlmsg_len(nlh); 2718 2719 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2720 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2721 if (!skb) { 2722 struct sock *sk; 2723 2724 sk = netlink_lookup(sock_net(in_skb->sk), 2725 in_skb->sk->sk_protocol, 2726 NETLINK_CB(in_skb).portid); 2727 if (sk) { 2728 sk->sk_err = ENOBUFS; 2729 sk->sk_error_report(sk); 2730 sock_put(sk); 2731 } 2732 return; 2733 } 2734 2735 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2736 NLMSG_ERROR, payload, 0); 2737 errmsg = nlmsg_data(rep); 2738 errmsg->error = err; 2739 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2740 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2741 } 2742 EXPORT_SYMBOL(netlink_ack); 2743 2744 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2745 struct nlmsghdr *)) 2746 { 2747 struct nlmsghdr *nlh; 2748 int err; 2749 2750 while (skb->len >= nlmsg_total_size(0)) { 2751 int msglen; 2752 2753 nlh = nlmsg_hdr(skb); 2754 err = 0; 2755 2756 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2757 return 0; 2758 2759 /* Only requests are handled by the kernel */ 2760 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2761 goto ack; 2762 2763 /* Skip control messages */ 2764 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2765 goto ack; 2766 2767 err = cb(skb, nlh); 2768 if (err == -EINTR) 2769 goto skip; 2770 2771 ack: 2772 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2773 netlink_ack(skb, nlh, err); 2774 2775 skip: 2776 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2777 if (msglen > skb->len) 2778 msglen = skb->len; 2779 skb_pull(skb, msglen); 2780 } 2781 2782 return 0; 2783 } 2784 EXPORT_SYMBOL(netlink_rcv_skb); 2785 2786 /** 2787 * nlmsg_notify - send a notification netlink message 2788 * @sk: netlink socket to use 2789 * @skb: notification message 2790 * @portid: destination netlink portid for reports or 0 2791 * @group: destination multicast group or 0 2792 * @report: 1 to report back, 0 to disable 2793 * @flags: allocation flags 2794 */ 2795 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2796 unsigned int group, int report, gfp_t flags) 2797 { 2798 int err = 0; 2799 2800 if (group) { 2801 int exclude_portid = 0; 2802 2803 if (report) { 2804 atomic_inc(&skb->users); 2805 exclude_portid = portid; 2806 } 2807 2808 /* errors reported via destination sk->sk_err, but propagate 2809 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2810 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2811 } 2812 2813 if (report) { 2814 int err2; 2815 2816 err2 = nlmsg_unicast(sk, skb, portid); 2817 if (!err || err == -ESRCH) 2818 err = err2; 2819 } 2820 2821 return err; 2822 } 2823 EXPORT_SYMBOL(nlmsg_notify); 2824 2825 #ifdef CONFIG_PROC_FS 2826 struct nl_seq_iter { 2827 struct seq_net_private p; 2828 int link; 2829 int hash_idx; 2830 }; 2831 2832 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2833 { 2834 struct nl_seq_iter *iter = seq->private; 2835 int i, j; 2836 struct sock *s; 2837 loff_t off = 0; 2838 2839 for (i = 0; i < MAX_LINKS; i++) { 2840 struct nl_portid_hash *hash = &nl_table[i].hash; 2841 2842 for (j = 0; j <= hash->mask; j++) { 2843 sk_for_each(s, &hash->table[j]) { 2844 if (sock_net(s) != seq_file_net(seq)) 2845 continue; 2846 if (off == pos) { 2847 iter->link = i; 2848 iter->hash_idx = j; 2849 return s; 2850 } 2851 ++off; 2852 } 2853 } 2854 } 2855 return NULL; 2856 } 2857 2858 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2859 __acquires(nl_table_lock) 2860 { 2861 read_lock(&nl_table_lock); 2862 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2863 } 2864 2865 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2866 { 2867 struct sock *s; 2868 struct nl_seq_iter *iter; 2869 struct net *net; 2870 int i, j; 2871 2872 ++*pos; 2873 2874 if (v == SEQ_START_TOKEN) 2875 return netlink_seq_socket_idx(seq, 0); 2876 2877 net = seq_file_net(seq); 2878 iter = seq->private; 2879 s = v; 2880 do { 2881 s = sk_next(s); 2882 } while (s && !nl_table[s->sk_protocol].compare(net, s)); 2883 if (s) 2884 return s; 2885 2886 i = iter->link; 2887 j = iter->hash_idx + 1; 2888 2889 do { 2890 struct nl_portid_hash *hash = &nl_table[i].hash; 2891 2892 for (; j <= hash->mask; j++) { 2893 s = sk_head(&hash->table[j]); 2894 2895 while (s && !nl_table[s->sk_protocol].compare(net, s)) 2896 s = sk_next(s); 2897 if (s) { 2898 iter->link = i; 2899 iter->hash_idx = j; 2900 return s; 2901 } 2902 } 2903 2904 j = 0; 2905 } while (++i < MAX_LINKS); 2906 2907 return NULL; 2908 } 2909 2910 static void netlink_seq_stop(struct seq_file *seq, void *v) 2911 __releases(nl_table_lock) 2912 { 2913 read_unlock(&nl_table_lock); 2914 } 2915 2916 2917 static int netlink_seq_show(struct seq_file *seq, void *v) 2918 { 2919 if (v == SEQ_START_TOKEN) { 2920 seq_puts(seq, 2921 "sk Eth Pid Groups " 2922 "Rmem Wmem Dump Locks Drops Inode\n"); 2923 } else { 2924 struct sock *s = v; 2925 struct netlink_sock *nlk = nlk_sk(s); 2926 2927 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 2928 s, 2929 s->sk_protocol, 2930 nlk->portid, 2931 nlk->groups ? (u32)nlk->groups[0] : 0, 2932 sk_rmem_alloc_get(s), 2933 sk_wmem_alloc_get(s), 2934 nlk->cb_running, 2935 atomic_read(&s->sk_refcnt), 2936 atomic_read(&s->sk_drops), 2937 sock_i_ino(s) 2938 ); 2939 2940 } 2941 return 0; 2942 } 2943 2944 static const struct seq_operations netlink_seq_ops = { 2945 .start = netlink_seq_start, 2946 .next = netlink_seq_next, 2947 .stop = netlink_seq_stop, 2948 .show = netlink_seq_show, 2949 }; 2950 2951 2952 static int netlink_seq_open(struct inode *inode, struct file *file) 2953 { 2954 return seq_open_net(inode, file, &netlink_seq_ops, 2955 sizeof(struct nl_seq_iter)); 2956 } 2957 2958 static const struct file_operations netlink_seq_fops = { 2959 .owner = THIS_MODULE, 2960 .open = netlink_seq_open, 2961 .read = seq_read, 2962 .llseek = seq_lseek, 2963 .release = seq_release_net, 2964 }; 2965 2966 #endif 2967 2968 int netlink_register_notifier(struct notifier_block *nb) 2969 { 2970 return atomic_notifier_chain_register(&netlink_chain, nb); 2971 } 2972 EXPORT_SYMBOL(netlink_register_notifier); 2973 2974 int netlink_unregister_notifier(struct notifier_block *nb) 2975 { 2976 return atomic_notifier_chain_unregister(&netlink_chain, nb); 2977 } 2978 EXPORT_SYMBOL(netlink_unregister_notifier); 2979 2980 static const struct proto_ops netlink_ops = { 2981 .family = PF_NETLINK, 2982 .owner = THIS_MODULE, 2983 .release = netlink_release, 2984 .bind = netlink_bind, 2985 .connect = netlink_connect, 2986 .socketpair = sock_no_socketpair, 2987 .accept = sock_no_accept, 2988 .getname = netlink_getname, 2989 .poll = netlink_poll, 2990 .ioctl = sock_no_ioctl, 2991 .listen = sock_no_listen, 2992 .shutdown = sock_no_shutdown, 2993 .setsockopt = netlink_setsockopt, 2994 .getsockopt = netlink_getsockopt, 2995 .sendmsg = netlink_sendmsg, 2996 .recvmsg = netlink_recvmsg, 2997 .mmap = netlink_mmap, 2998 .sendpage = sock_no_sendpage, 2999 }; 3000 3001 static const struct net_proto_family netlink_family_ops = { 3002 .family = PF_NETLINK, 3003 .create = netlink_create, 3004 .owner = THIS_MODULE, /* for consistency 8) */ 3005 }; 3006 3007 static int __net_init netlink_net_init(struct net *net) 3008 { 3009 #ifdef CONFIG_PROC_FS 3010 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3011 return -ENOMEM; 3012 #endif 3013 return 0; 3014 } 3015 3016 static void __net_exit netlink_net_exit(struct net *net) 3017 { 3018 #ifdef CONFIG_PROC_FS 3019 remove_proc_entry("netlink", net->proc_net); 3020 #endif 3021 } 3022 3023 static void __init netlink_add_usersock_entry(void) 3024 { 3025 struct listeners *listeners; 3026 int groups = 32; 3027 3028 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3029 if (!listeners) 3030 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3031 3032 netlink_table_grab(); 3033 3034 nl_table[NETLINK_USERSOCK].groups = groups; 3035 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3036 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3037 nl_table[NETLINK_USERSOCK].registered = 1; 3038 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3039 3040 netlink_table_ungrab(); 3041 } 3042 3043 static struct pernet_operations __net_initdata netlink_net_ops = { 3044 .init = netlink_net_init, 3045 .exit = netlink_net_exit, 3046 }; 3047 3048 static int __init netlink_proto_init(void) 3049 { 3050 int i; 3051 unsigned long limit; 3052 unsigned int order; 3053 int err = proto_register(&netlink_proto, 0); 3054 3055 if (err != 0) 3056 goto out; 3057 3058 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3059 3060 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3061 if (!nl_table) 3062 goto panic; 3063 3064 if (totalram_pages >= (128 * 1024)) 3065 limit = totalram_pages >> (21 - PAGE_SHIFT); 3066 else 3067 limit = totalram_pages >> (23 - PAGE_SHIFT); 3068 3069 order = get_bitmask_order(limit) - 1 + PAGE_SHIFT; 3070 limit = (1UL << order) / sizeof(struct hlist_head); 3071 order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1; 3072 3073 for (i = 0; i < MAX_LINKS; i++) { 3074 struct nl_portid_hash *hash = &nl_table[i].hash; 3075 3076 hash->table = nl_portid_hash_zalloc(1 * sizeof(*hash->table)); 3077 if (!hash->table) { 3078 while (i-- > 0) 3079 nl_portid_hash_free(nl_table[i].hash.table, 3080 1 * sizeof(*hash->table)); 3081 kfree(nl_table); 3082 goto panic; 3083 } 3084 hash->max_shift = order; 3085 hash->shift = 0; 3086 hash->mask = 0; 3087 hash->rehash_time = jiffies; 3088 3089 nl_table[i].compare = netlink_compare; 3090 } 3091 3092 INIT_LIST_HEAD(&netlink_tap_all); 3093 3094 netlink_add_usersock_entry(); 3095 3096 sock_register(&netlink_family_ops); 3097 register_pernet_subsys(&netlink_net_ops); 3098 /* The netlink device handler may be needed early. */ 3099 rtnetlink_init(); 3100 out: 3101 return err; 3102 panic: 3103 panic("netlink_init: Cannot allocate nl_table\n"); 3104 } 3105 3106 core_initcall(netlink_proto_init); 3107