1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 65 #include <net/net_namespace.h> 66 #include <net/sock.h> 67 #include <net/scm.h> 68 #include <net/netlink.h> 69 70 #include "af_netlink.h" 71 72 struct listeners { 73 struct rcu_head rcu; 74 unsigned long masks[0]; 75 }; 76 77 /* state bits */ 78 #define NETLINK_CONGESTED 0x0 79 80 /* flags */ 81 #define NETLINK_KERNEL_SOCKET 0x1 82 #define NETLINK_RECV_PKTINFO 0x2 83 #define NETLINK_BROADCAST_SEND_ERROR 0x4 84 #define NETLINK_RECV_NO_ENOBUFS 0x8 85 86 static inline int netlink_is_kernel(struct sock *sk) 87 { 88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 89 } 90 91 struct netlink_table *nl_table; 92 EXPORT_SYMBOL_GPL(nl_table); 93 94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 95 96 static int netlink_dump(struct sock *sk); 97 static void netlink_skb_destructor(struct sk_buff *skb); 98 99 /* nl_table locking explained: 100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock 101 * combined with an RCU read-side lock. Insertion and removal are protected 102 * with nl_sk_hash_lock while using RCU list modification primitives and may 103 * run in parallel to nl_table_lock protected lookups. Destruction of the 104 * Netlink socket may only occur *after* nl_table_lock has been acquired 105 * either during or after the socket has been removed from the list. 106 */ 107 DEFINE_RWLOCK(nl_table_lock); 108 EXPORT_SYMBOL_GPL(nl_table_lock); 109 static atomic_t nl_table_users = ATOMIC_INIT(0); 110 111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 112 113 /* Protects netlink socket hash table mutations */ 114 DEFINE_MUTEX(nl_sk_hash_lock); 115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock); 116 117 #ifdef CONFIG_PROVE_LOCKING 118 static int lockdep_nl_sk_hash_is_held(void *parent) 119 { 120 if (debug_locks) 121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock); 122 return 1; 123 } 124 #endif 125 126 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 127 128 static DEFINE_SPINLOCK(netlink_tap_lock); 129 static struct list_head netlink_tap_all __read_mostly; 130 131 static inline u32 netlink_group_mask(u32 group) 132 { 133 return group ? 1 << (group - 1) : 0; 134 } 135 136 int netlink_add_tap(struct netlink_tap *nt) 137 { 138 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 139 return -EINVAL; 140 141 spin_lock(&netlink_tap_lock); 142 list_add_rcu(&nt->list, &netlink_tap_all); 143 spin_unlock(&netlink_tap_lock); 144 145 __module_get(nt->module); 146 147 return 0; 148 } 149 EXPORT_SYMBOL_GPL(netlink_add_tap); 150 151 static int __netlink_remove_tap(struct netlink_tap *nt) 152 { 153 bool found = false; 154 struct netlink_tap *tmp; 155 156 spin_lock(&netlink_tap_lock); 157 158 list_for_each_entry(tmp, &netlink_tap_all, list) { 159 if (nt == tmp) { 160 list_del_rcu(&nt->list); 161 found = true; 162 goto out; 163 } 164 } 165 166 pr_warn("__netlink_remove_tap: %p not found\n", nt); 167 out: 168 spin_unlock(&netlink_tap_lock); 169 170 if (found && nt->module) 171 module_put(nt->module); 172 173 return found ? 0 : -ENODEV; 174 } 175 176 int netlink_remove_tap(struct netlink_tap *nt) 177 { 178 int ret; 179 180 ret = __netlink_remove_tap(nt); 181 synchronize_net(); 182 183 return ret; 184 } 185 EXPORT_SYMBOL_GPL(netlink_remove_tap); 186 187 static bool netlink_filter_tap(const struct sk_buff *skb) 188 { 189 struct sock *sk = skb->sk; 190 191 /* We take the more conservative approach and 192 * whitelist socket protocols that may pass. 193 */ 194 switch (sk->sk_protocol) { 195 case NETLINK_ROUTE: 196 case NETLINK_USERSOCK: 197 case NETLINK_SOCK_DIAG: 198 case NETLINK_NFLOG: 199 case NETLINK_XFRM: 200 case NETLINK_FIB_LOOKUP: 201 case NETLINK_NETFILTER: 202 case NETLINK_GENERIC: 203 return true; 204 } 205 206 return false; 207 } 208 209 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 210 struct net_device *dev) 211 { 212 struct sk_buff *nskb; 213 struct sock *sk = skb->sk; 214 int ret = -ENOMEM; 215 216 dev_hold(dev); 217 nskb = skb_clone(skb, GFP_ATOMIC); 218 if (nskb) { 219 nskb->dev = dev; 220 nskb->protocol = htons((u16) sk->sk_protocol); 221 nskb->pkt_type = netlink_is_kernel(sk) ? 222 PACKET_KERNEL : PACKET_USER; 223 skb_reset_network_header(nskb); 224 ret = dev_queue_xmit(nskb); 225 if (unlikely(ret > 0)) 226 ret = net_xmit_errno(ret); 227 } 228 229 dev_put(dev); 230 return ret; 231 } 232 233 static void __netlink_deliver_tap(struct sk_buff *skb) 234 { 235 int ret; 236 struct netlink_tap *tmp; 237 238 if (!netlink_filter_tap(skb)) 239 return; 240 241 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 242 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 243 if (unlikely(ret)) 244 break; 245 } 246 } 247 248 static void netlink_deliver_tap(struct sk_buff *skb) 249 { 250 rcu_read_lock(); 251 252 if (unlikely(!list_empty(&netlink_tap_all))) 253 __netlink_deliver_tap(skb); 254 255 rcu_read_unlock(); 256 } 257 258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 259 struct sk_buff *skb) 260 { 261 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 262 netlink_deliver_tap(skb); 263 } 264 265 static void netlink_overrun(struct sock *sk) 266 { 267 struct netlink_sock *nlk = nlk_sk(sk); 268 269 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 270 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 271 sk->sk_err = ENOBUFS; 272 sk->sk_error_report(sk); 273 } 274 } 275 atomic_inc(&sk->sk_drops); 276 } 277 278 static void netlink_rcv_wake(struct sock *sk) 279 { 280 struct netlink_sock *nlk = nlk_sk(sk); 281 282 if (skb_queue_empty(&sk->sk_receive_queue)) 283 clear_bit(NETLINK_CONGESTED, &nlk->state); 284 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 285 wake_up_interruptible(&nlk->wait); 286 } 287 288 #ifdef CONFIG_NETLINK_MMAP 289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 290 { 291 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 292 } 293 294 static bool netlink_rx_is_mmaped(struct sock *sk) 295 { 296 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 297 } 298 299 static bool netlink_tx_is_mmaped(struct sock *sk) 300 { 301 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 302 } 303 304 static __pure struct page *pgvec_to_page(const void *addr) 305 { 306 if (is_vmalloc_addr(addr)) 307 return vmalloc_to_page(addr); 308 else 309 return virt_to_page(addr); 310 } 311 312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 313 { 314 unsigned int i; 315 316 for (i = 0; i < len; i++) { 317 if (pg_vec[i] != NULL) { 318 if (is_vmalloc_addr(pg_vec[i])) 319 vfree(pg_vec[i]); 320 else 321 free_pages((unsigned long)pg_vec[i], order); 322 } 323 } 324 kfree(pg_vec); 325 } 326 327 static void *alloc_one_pg_vec_page(unsigned long order) 328 { 329 void *buffer; 330 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 331 __GFP_NOWARN | __GFP_NORETRY; 332 333 buffer = (void *)__get_free_pages(gfp_flags, order); 334 if (buffer != NULL) 335 return buffer; 336 337 buffer = vzalloc((1 << order) * PAGE_SIZE); 338 if (buffer != NULL) 339 return buffer; 340 341 gfp_flags &= ~__GFP_NORETRY; 342 return (void *)__get_free_pages(gfp_flags, order); 343 } 344 345 static void **alloc_pg_vec(struct netlink_sock *nlk, 346 struct nl_mmap_req *req, unsigned int order) 347 { 348 unsigned int block_nr = req->nm_block_nr; 349 unsigned int i; 350 void **pg_vec; 351 352 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 353 if (pg_vec == NULL) 354 return NULL; 355 356 for (i = 0; i < block_nr; i++) { 357 pg_vec[i] = alloc_one_pg_vec_page(order); 358 if (pg_vec[i] == NULL) 359 goto err1; 360 } 361 362 return pg_vec; 363 err1: 364 free_pg_vec(pg_vec, order, block_nr); 365 return NULL; 366 } 367 368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 369 bool closing, bool tx_ring) 370 { 371 struct netlink_sock *nlk = nlk_sk(sk); 372 struct netlink_ring *ring; 373 struct sk_buff_head *queue; 374 void **pg_vec = NULL; 375 unsigned int order = 0; 376 int err; 377 378 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 379 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 380 381 if (!closing) { 382 if (atomic_read(&nlk->mapped)) 383 return -EBUSY; 384 if (atomic_read(&ring->pending)) 385 return -EBUSY; 386 } 387 388 if (req->nm_block_nr) { 389 if (ring->pg_vec != NULL) 390 return -EBUSY; 391 392 if ((int)req->nm_block_size <= 0) 393 return -EINVAL; 394 if (!PAGE_ALIGNED(req->nm_block_size)) 395 return -EINVAL; 396 if (req->nm_frame_size < NL_MMAP_HDRLEN) 397 return -EINVAL; 398 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 399 return -EINVAL; 400 401 ring->frames_per_block = req->nm_block_size / 402 req->nm_frame_size; 403 if (ring->frames_per_block == 0) 404 return -EINVAL; 405 if (ring->frames_per_block * req->nm_block_nr != 406 req->nm_frame_nr) 407 return -EINVAL; 408 409 order = get_order(req->nm_block_size); 410 pg_vec = alloc_pg_vec(nlk, req, order); 411 if (pg_vec == NULL) 412 return -ENOMEM; 413 } else { 414 if (req->nm_frame_nr) 415 return -EINVAL; 416 } 417 418 err = -EBUSY; 419 mutex_lock(&nlk->pg_vec_lock); 420 if (closing || atomic_read(&nlk->mapped) == 0) { 421 err = 0; 422 spin_lock_bh(&queue->lock); 423 424 ring->frame_max = req->nm_frame_nr - 1; 425 ring->head = 0; 426 ring->frame_size = req->nm_frame_size; 427 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 428 429 swap(ring->pg_vec_len, req->nm_block_nr); 430 swap(ring->pg_vec_order, order); 431 swap(ring->pg_vec, pg_vec); 432 433 __skb_queue_purge(queue); 434 spin_unlock_bh(&queue->lock); 435 436 WARN_ON(atomic_read(&nlk->mapped)); 437 } 438 mutex_unlock(&nlk->pg_vec_lock); 439 440 if (pg_vec) 441 free_pg_vec(pg_vec, order, req->nm_block_nr); 442 return err; 443 } 444 445 static void netlink_mm_open(struct vm_area_struct *vma) 446 { 447 struct file *file = vma->vm_file; 448 struct socket *sock = file->private_data; 449 struct sock *sk = sock->sk; 450 451 if (sk) 452 atomic_inc(&nlk_sk(sk)->mapped); 453 } 454 455 static void netlink_mm_close(struct vm_area_struct *vma) 456 { 457 struct file *file = vma->vm_file; 458 struct socket *sock = file->private_data; 459 struct sock *sk = sock->sk; 460 461 if (sk) 462 atomic_dec(&nlk_sk(sk)->mapped); 463 } 464 465 static const struct vm_operations_struct netlink_mmap_ops = { 466 .open = netlink_mm_open, 467 .close = netlink_mm_close, 468 }; 469 470 static int netlink_mmap(struct file *file, struct socket *sock, 471 struct vm_area_struct *vma) 472 { 473 struct sock *sk = sock->sk; 474 struct netlink_sock *nlk = nlk_sk(sk); 475 struct netlink_ring *ring; 476 unsigned long start, size, expected; 477 unsigned int i; 478 int err = -EINVAL; 479 480 if (vma->vm_pgoff) 481 return -EINVAL; 482 483 mutex_lock(&nlk->pg_vec_lock); 484 485 expected = 0; 486 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 487 if (ring->pg_vec == NULL) 488 continue; 489 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 490 } 491 492 if (expected == 0) 493 goto out; 494 495 size = vma->vm_end - vma->vm_start; 496 if (size != expected) 497 goto out; 498 499 start = vma->vm_start; 500 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 501 if (ring->pg_vec == NULL) 502 continue; 503 504 for (i = 0; i < ring->pg_vec_len; i++) { 505 struct page *page; 506 void *kaddr = ring->pg_vec[i]; 507 unsigned int pg_num; 508 509 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 510 page = pgvec_to_page(kaddr); 511 err = vm_insert_page(vma, start, page); 512 if (err < 0) 513 goto out; 514 start += PAGE_SIZE; 515 kaddr += PAGE_SIZE; 516 } 517 } 518 } 519 520 atomic_inc(&nlk->mapped); 521 vma->vm_ops = &netlink_mmap_ops; 522 err = 0; 523 out: 524 mutex_unlock(&nlk->pg_vec_lock); 525 return err; 526 } 527 528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 529 { 530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 531 struct page *p_start, *p_end; 532 533 /* First page is flushed through netlink_{get,set}_status */ 534 p_start = pgvec_to_page(hdr + PAGE_SIZE); 535 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 536 while (p_start <= p_end) { 537 flush_dcache_page(p_start); 538 p_start++; 539 } 540 #endif 541 } 542 543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 544 { 545 smp_rmb(); 546 flush_dcache_page(pgvec_to_page(hdr)); 547 return hdr->nm_status; 548 } 549 550 static void netlink_set_status(struct nl_mmap_hdr *hdr, 551 enum nl_mmap_status status) 552 { 553 smp_mb(); 554 hdr->nm_status = status; 555 flush_dcache_page(pgvec_to_page(hdr)); 556 } 557 558 static struct nl_mmap_hdr * 559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 560 { 561 unsigned int pg_vec_pos, frame_off; 562 563 pg_vec_pos = pos / ring->frames_per_block; 564 frame_off = pos % ring->frames_per_block; 565 566 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 567 } 568 569 static struct nl_mmap_hdr * 570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 571 enum nl_mmap_status status) 572 { 573 struct nl_mmap_hdr *hdr; 574 575 hdr = __netlink_lookup_frame(ring, pos); 576 if (netlink_get_status(hdr) != status) 577 return NULL; 578 579 return hdr; 580 } 581 582 static struct nl_mmap_hdr * 583 netlink_current_frame(const struct netlink_ring *ring, 584 enum nl_mmap_status status) 585 { 586 return netlink_lookup_frame(ring, ring->head, status); 587 } 588 589 static struct nl_mmap_hdr * 590 netlink_previous_frame(const struct netlink_ring *ring, 591 enum nl_mmap_status status) 592 { 593 unsigned int prev; 594 595 prev = ring->head ? ring->head - 1 : ring->frame_max; 596 return netlink_lookup_frame(ring, prev, status); 597 } 598 599 static void netlink_increment_head(struct netlink_ring *ring) 600 { 601 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 602 } 603 604 static void netlink_forward_ring(struct netlink_ring *ring) 605 { 606 unsigned int head = ring->head, pos = head; 607 const struct nl_mmap_hdr *hdr; 608 609 do { 610 hdr = __netlink_lookup_frame(ring, pos); 611 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 612 break; 613 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 614 break; 615 netlink_increment_head(ring); 616 } while (ring->head != head); 617 } 618 619 static bool netlink_dump_space(struct netlink_sock *nlk) 620 { 621 struct netlink_ring *ring = &nlk->rx_ring; 622 struct nl_mmap_hdr *hdr; 623 unsigned int n; 624 625 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 626 if (hdr == NULL) 627 return false; 628 629 n = ring->head + ring->frame_max / 2; 630 if (n > ring->frame_max) 631 n -= ring->frame_max; 632 633 hdr = __netlink_lookup_frame(ring, n); 634 635 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 636 } 637 638 static unsigned int netlink_poll(struct file *file, struct socket *sock, 639 poll_table *wait) 640 { 641 struct sock *sk = sock->sk; 642 struct netlink_sock *nlk = nlk_sk(sk); 643 unsigned int mask; 644 int err; 645 646 if (nlk->rx_ring.pg_vec != NULL) { 647 /* Memory mapped sockets don't call recvmsg(), so flow control 648 * for dumps is performed here. A dump is allowed to continue 649 * if at least half the ring is unused. 650 */ 651 while (nlk->cb_running && netlink_dump_space(nlk)) { 652 err = netlink_dump(sk); 653 if (err < 0) { 654 sk->sk_err = -err; 655 sk->sk_error_report(sk); 656 break; 657 } 658 } 659 netlink_rcv_wake(sk); 660 } 661 662 mask = datagram_poll(file, sock, wait); 663 664 spin_lock_bh(&sk->sk_receive_queue.lock); 665 if (nlk->rx_ring.pg_vec) { 666 netlink_forward_ring(&nlk->rx_ring); 667 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 668 mask |= POLLIN | POLLRDNORM; 669 } 670 spin_unlock_bh(&sk->sk_receive_queue.lock); 671 672 spin_lock_bh(&sk->sk_write_queue.lock); 673 if (nlk->tx_ring.pg_vec) { 674 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 675 mask |= POLLOUT | POLLWRNORM; 676 } 677 spin_unlock_bh(&sk->sk_write_queue.lock); 678 679 return mask; 680 } 681 682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 683 { 684 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 685 } 686 687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 688 struct netlink_ring *ring, 689 struct nl_mmap_hdr *hdr) 690 { 691 unsigned int size; 692 void *data; 693 694 size = ring->frame_size - NL_MMAP_HDRLEN; 695 data = (void *)hdr + NL_MMAP_HDRLEN; 696 697 skb->head = data; 698 skb->data = data; 699 skb_reset_tail_pointer(skb); 700 skb->end = skb->tail + size; 701 skb->len = 0; 702 703 skb->destructor = netlink_skb_destructor; 704 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 705 NETLINK_CB(skb).sk = sk; 706 } 707 708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 709 u32 dst_portid, u32 dst_group, 710 struct sock_iocb *siocb) 711 { 712 struct netlink_sock *nlk = nlk_sk(sk); 713 struct netlink_ring *ring; 714 struct nl_mmap_hdr *hdr; 715 struct sk_buff *skb; 716 unsigned int maxlen; 717 int err = 0, len = 0; 718 719 mutex_lock(&nlk->pg_vec_lock); 720 721 ring = &nlk->tx_ring; 722 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 723 724 do { 725 unsigned int nm_len; 726 727 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 728 if (hdr == NULL) { 729 if (!(msg->msg_flags & MSG_DONTWAIT) && 730 atomic_read(&nlk->tx_ring.pending)) 731 schedule(); 732 continue; 733 } 734 735 nm_len = ACCESS_ONCE(hdr->nm_len); 736 if (nm_len > maxlen) { 737 err = -EINVAL; 738 goto out; 739 } 740 741 netlink_frame_flush_dcache(hdr, nm_len); 742 743 skb = alloc_skb(nm_len, GFP_KERNEL); 744 if (skb == NULL) { 745 err = -ENOBUFS; 746 goto out; 747 } 748 __skb_put(skb, nm_len); 749 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 750 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 751 752 netlink_increment_head(ring); 753 754 NETLINK_CB(skb).portid = nlk->portid; 755 NETLINK_CB(skb).dst_group = dst_group; 756 NETLINK_CB(skb).creds = siocb->scm->creds; 757 758 err = security_netlink_send(sk, skb); 759 if (err) { 760 kfree_skb(skb); 761 goto out; 762 } 763 764 if (unlikely(dst_group)) { 765 atomic_inc(&skb->users); 766 netlink_broadcast(sk, skb, dst_portid, dst_group, 767 GFP_KERNEL); 768 } 769 err = netlink_unicast(sk, skb, dst_portid, 770 msg->msg_flags & MSG_DONTWAIT); 771 if (err < 0) 772 goto out; 773 len += err; 774 775 } while (hdr != NULL || 776 (!(msg->msg_flags & MSG_DONTWAIT) && 777 atomic_read(&nlk->tx_ring.pending))); 778 779 if (len > 0) 780 err = len; 781 out: 782 mutex_unlock(&nlk->pg_vec_lock); 783 return err; 784 } 785 786 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 787 { 788 struct nl_mmap_hdr *hdr; 789 790 hdr = netlink_mmap_hdr(skb); 791 hdr->nm_len = skb->len; 792 hdr->nm_group = NETLINK_CB(skb).dst_group; 793 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 794 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 795 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 796 netlink_frame_flush_dcache(hdr, hdr->nm_len); 797 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 798 799 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 800 kfree_skb(skb); 801 } 802 803 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 804 { 805 struct netlink_sock *nlk = nlk_sk(sk); 806 struct netlink_ring *ring = &nlk->rx_ring; 807 struct nl_mmap_hdr *hdr; 808 809 spin_lock_bh(&sk->sk_receive_queue.lock); 810 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 811 if (hdr == NULL) { 812 spin_unlock_bh(&sk->sk_receive_queue.lock); 813 kfree_skb(skb); 814 netlink_overrun(sk); 815 return; 816 } 817 netlink_increment_head(ring); 818 __skb_queue_tail(&sk->sk_receive_queue, skb); 819 spin_unlock_bh(&sk->sk_receive_queue.lock); 820 821 hdr->nm_len = skb->len; 822 hdr->nm_group = NETLINK_CB(skb).dst_group; 823 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 824 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 825 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 826 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 827 } 828 829 #else /* CONFIG_NETLINK_MMAP */ 830 #define netlink_skb_is_mmaped(skb) false 831 #define netlink_rx_is_mmaped(sk) false 832 #define netlink_tx_is_mmaped(sk) false 833 #define netlink_mmap sock_no_mmap 834 #define netlink_poll datagram_poll 835 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 836 #endif /* CONFIG_NETLINK_MMAP */ 837 838 static void netlink_skb_destructor(struct sk_buff *skb) 839 { 840 #ifdef CONFIG_NETLINK_MMAP 841 struct nl_mmap_hdr *hdr; 842 struct netlink_ring *ring; 843 struct sock *sk; 844 845 /* If a packet from the kernel to userspace was freed because of an 846 * error without being delivered to userspace, the kernel must reset 847 * the status. In the direction userspace to kernel, the status is 848 * always reset here after the packet was processed and freed. 849 */ 850 if (netlink_skb_is_mmaped(skb)) { 851 hdr = netlink_mmap_hdr(skb); 852 sk = NETLINK_CB(skb).sk; 853 854 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 855 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 856 ring = &nlk_sk(sk)->tx_ring; 857 } else { 858 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 859 hdr->nm_len = 0; 860 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 861 } 862 ring = &nlk_sk(sk)->rx_ring; 863 } 864 865 WARN_ON(atomic_read(&ring->pending) == 0); 866 atomic_dec(&ring->pending); 867 sock_put(sk); 868 869 skb->head = NULL; 870 } 871 #endif 872 if (is_vmalloc_addr(skb->head)) { 873 if (!skb->cloned || 874 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 875 vfree(skb->head); 876 877 skb->head = NULL; 878 } 879 if (skb->sk != NULL) 880 sock_rfree(skb); 881 } 882 883 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 884 { 885 WARN_ON(skb->sk != NULL); 886 skb->sk = sk; 887 skb->destructor = netlink_skb_destructor; 888 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 889 sk_mem_charge(sk, skb->truesize); 890 } 891 892 static void netlink_sock_destruct(struct sock *sk) 893 { 894 struct netlink_sock *nlk = nlk_sk(sk); 895 896 if (nlk->cb_running) { 897 if (nlk->cb.done) 898 nlk->cb.done(&nlk->cb); 899 900 module_put(nlk->cb.module); 901 kfree_skb(nlk->cb.skb); 902 } 903 904 skb_queue_purge(&sk->sk_receive_queue); 905 #ifdef CONFIG_NETLINK_MMAP 906 if (1) { 907 struct nl_mmap_req req; 908 909 memset(&req, 0, sizeof(req)); 910 if (nlk->rx_ring.pg_vec) 911 netlink_set_ring(sk, &req, true, false); 912 memset(&req, 0, sizeof(req)); 913 if (nlk->tx_ring.pg_vec) 914 netlink_set_ring(sk, &req, true, true); 915 } 916 #endif /* CONFIG_NETLINK_MMAP */ 917 918 if (!sock_flag(sk, SOCK_DEAD)) { 919 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 920 return; 921 } 922 923 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 924 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 925 WARN_ON(nlk_sk(sk)->groups); 926 } 927 928 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 929 * SMP. Look, when several writers sleep and reader wakes them up, all but one 930 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 931 * this, _but_ remember, it adds useless work on UP machines. 932 */ 933 934 void netlink_table_grab(void) 935 __acquires(nl_table_lock) 936 { 937 might_sleep(); 938 939 write_lock_irq(&nl_table_lock); 940 941 if (atomic_read(&nl_table_users)) { 942 DECLARE_WAITQUEUE(wait, current); 943 944 add_wait_queue_exclusive(&nl_table_wait, &wait); 945 for (;;) { 946 set_current_state(TASK_UNINTERRUPTIBLE); 947 if (atomic_read(&nl_table_users) == 0) 948 break; 949 write_unlock_irq(&nl_table_lock); 950 schedule(); 951 write_lock_irq(&nl_table_lock); 952 } 953 954 __set_current_state(TASK_RUNNING); 955 remove_wait_queue(&nl_table_wait, &wait); 956 } 957 } 958 959 void netlink_table_ungrab(void) 960 __releases(nl_table_lock) 961 { 962 write_unlock_irq(&nl_table_lock); 963 wake_up(&nl_table_wait); 964 } 965 966 static inline void 967 netlink_lock_table(void) 968 { 969 /* read_lock() synchronizes us to netlink_table_grab */ 970 971 read_lock(&nl_table_lock); 972 atomic_inc(&nl_table_users); 973 read_unlock(&nl_table_lock); 974 } 975 976 static inline void 977 netlink_unlock_table(void) 978 { 979 if (atomic_dec_and_test(&nl_table_users)) 980 wake_up(&nl_table_wait); 981 } 982 983 struct netlink_compare_arg 984 { 985 struct net *net; 986 u32 portid; 987 }; 988 989 static bool netlink_compare(void *ptr, void *arg) 990 { 991 struct netlink_compare_arg *x = arg; 992 struct sock *sk = ptr; 993 994 return nlk_sk(sk)->portid == x->portid && 995 net_eq(sock_net(sk), x->net); 996 } 997 998 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 999 struct net *net) 1000 { 1001 struct netlink_compare_arg arg = { 1002 .net = net, 1003 .portid = portid, 1004 }; 1005 u32 hash; 1006 1007 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid)); 1008 1009 return rhashtable_lookup_compare(&table->hash, hash, 1010 &netlink_compare, &arg); 1011 } 1012 1013 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1014 { 1015 struct netlink_table *table = &nl_table[protocol]; 1016 struct sock *sk; 1017 1018 read_lock(&nl_table_lock); 1019 rcu_read_lock(); 1020 sk = __netlink_lookup(table, portid, net); 1021 if (sk) 1022 sock_hold(sk); 1023 rcu_read_unlock(); 1024 read_unlock(&nl_table_lock); 1025 1026 return sk; 1027 } 1028 1029 static const struct proto_ops netlink_ops; 1030 1031 static void 1032 netlink_update_listeners(struct sock *sk) 1033 { 1034 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1035 unsigned long mask; 1036 unsigned int i; 1037 struct listeners *listeners; 1038 1039 listeners = nl_deref_protected(tbl->listeners); 1040 if (!listeners) 1041 return; 1042 1043 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1044 mask = 0; 1045 sk_for_each_bound(sk, &tbl->mc_list) { 1046 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1047 mask |= nlk_sk(sk)->groups[i]; 1048 } 1049 listeners->masks[i] = mask; 1050 } 1051 /* this function is only called with the netlink table "grabbed", which 1052 * makes sure updates are visible before bind or setsockopt return. */ 1053 } 1054 1055 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1056 { 1057 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1058 int err = -EADDRINUSE; 1059 1060 mutex_lock(&nl_sk_hash_lock); 1061 if (__netlink_lookup(table, portid, net)) 1062 goto err; 1063 1064 err = -EBUSY; 1065 if (nlk_sk(sk)->portid) 1066 goto err; 1067 1068 err = -ENOMEM; 1069 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX)) 1070 goto err; 1071 1072 nlk_sk(sk)->portid = portid; 1073 sock_hold(sk); 1074 rhashtable_insert(&table->hash, &nlk_sk(sk)->node); 1075 err = 0; 1076 err: 1077 mutex_unlock(&nl_sk_hash_lock); 1078 return err; 1079 } 1080 1081 static void netlink_remove(struct sock *sk) 1082 { 1083 struct netlink_table *table; 1084 1085 mutex_lock(&nl_sk_hash_lock); 1086 table = &nl_table[sk->sk_protocol]; 1087 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) { 1088 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1089 __sock_put(sk); 1090 } 1091 mutex_unlock(&nl_sk_hash_lock); 1092 1093 netlink_table_grab(); 1094 if (nlk_sk(sk)->subscriptions) 1095 __sk_del_bind_node(sk); 1096 netlink_table_ungrab(); 1097 } 1098 1099 static struct proto netlink_proto = { 1100 .name = "NETLINK", 1101 .owner = THIS_MODULE, 1102 .obj_size = sizeof(struct netlink_sock), 1103 }; 1104 1105 static int __netlink_create(struct net *net, struct socket *sock, 1106 struct mutex *cb_mutex, int protocol) 1107 { 1108 struct sock *sk; 1109 struct netlink_sock *nlk; 1110 1111 sock->ops = &netlink_ops; 1112 1113 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1114 if (!sk) 1115 return -ENOMEM; 1116 1117 sock_init_data(sock, sk); 1118 1119 nlk = nlk_sk(sk); 1120 if (cb_mutex) { 1121 nlk->cb_mutex = cb_mutex; 1122 } else { 1123 nlk->cb_mutex = &nlk->cb_def_mutex; 1124 mutex_init(nlk->cb_mutex); 1125 } 1126 init_waitqueue_head(&nlk->wait); 1127 #ifdef CONFIG_NETLINK_MMAP 1128 mutex_init(&nlk->pg_vec_lock); 1129 #endif 1130 1131 sk->sk_destruct = netlink_sock_destruct; 1132 sk->sk_protocol = protocol; 1133 return 0; 1134 } 1135 1136 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1137 int kern) 1138 { 1139 struct module *module = NULL; 1140 struct mutex *cb_mutex; 1141 struct netlink_sock *nlk; 1142 int (*bind)(int group); 1143 void (*unbind)(int group); 1144 int err = 0; 1145 1146 sock->state = SS_UNCONNECTED; 1147 1148 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1149 return -ESOCKTNOSUPPORT; 1150 1151 if (protocol < 0 || protocol >= MAX_LINKS) 1152 return -EPROTONOSUPPORT; 1153 1154 netlink_lock_table(); 1155 #ifdef CONFIG_MODULES 1156 if (!nl_table[protocol].registered) { 1157 netlink_unlock_table(); 1158 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1159 netlink_lock_table(); 1160 } 1161 #endif 1162 if (nl_table[protocol].registered && 1163 try_module_get(nl_table[protocol].module)) 1164 module = nl_table[protocol].module; 1165 else 1166 err = -EPROTONOSUPPORT; 1167 cb_mutex = nl_table[protocol].cb_mutex; 1168 bind = nl_table[protocol].bind; 1169 unbind = nl_table[protocol].unbind; 1170 netlink_unlock_table(); 1171 1172 if (err < 0) 1173 goto out; 1174 1175 err = __netlink_create(net, sock, cb_mutex, protocol); 1176 if (err < 0) 1177 goto out_module; 1178 1179 local_bh_disable(); 1180 sock_prot_inuse_add(net, &netlink_proto, 1); 1181 local_bh_enable(); 1182 1183 nlk = nlk_sk(sock->sk); 1184 nlk->module = module; 1185 nlk->netlink_bind = bind; 1186 nlk->netlink_unbind = unbind; 1187 out: 1188 return err; 1189 1190 out_module: 1191 module_put(module); 1192 goto out; 1193 } 1194 1195 static int netlink_release(struct socket *sock) 1196 { 1197 struct sock *sk = sock->sk; 1198 struct netlink_sock *nlk; 1199 1200 if (!sk) 1201 return 0; 1202 1203 netlink_remove(sk); 1204 sock_orphan(sk); 1205 nlk = nlk_sk(sk); 1206 1207 /* 1208 * OK. Socket is unlinked, any packets that arrive now 1209 * will be purged. 1210 */ 1211 1212 sock->sk = NULL; 1213 wake_up_interruptible_all(&nlk->wait); 1214 1215 skb_queue_purge(&sk->sk_write_queue); 1216 1217 if (nlk->portid) { 1218 struct netlink_notify n = { 1219 .net = sock_net(sk), 1220 .protocol = sk->sk_protocol, 1221 .portid = nlk->portid, 1222 }; 1223 atomic_notifier_call_chain(&netlink_chain, 1224 NETLINK_URELEASE, &n); 1225 } 1226 1227 module_put(nlk->module); 1228 1229 netlink_table_grab(); 1230 if (netlink_is_kernel(sk)) { 1231 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1232 if (--nl_table[sk->sk_protocol].registered == 0) { 1233 struct listeners *old; 1234 1235 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1236 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1237 kfree_rcu(old, rcu); 1238 nl_table[sk->sk_protocol].module = NULL; 1239 nl_table[sk->sk_protocol].bind = NULL; 1240 nl_table[sk->sk_protocol].unbind = NULL; 1241 nl_table[sk->sk_protocol].flags = 0; 1242 nl_table[sk->sk_protocol].registered = 0; 1243 } 1244 } else if (nlk->subscriptions) { 1245 netlink_update_listeners(sk); 1246 } 1247 netlink_table_ungrab(); 1248 1249 kfree(nlk->groups); 1250 nlk->groups = NULL; 1251 1252 local_bh_disable(); 1253 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1254 local_bh_enable(); 1255 sock_put(sk); 1256 return 0; 1257 } 1258 1259 static int netlink_autobind(struct socket *sock) 1260 { 1261 struct sock *sk = sock->sk; 1262 struct net *net = sock_net(sk); 1263 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1264 s32 portid = task_tgid_vnr(current); 1265 int err; 1266 static s32 rover = -4097; 1267 1268 retry: 1269 cond_resched(); 1270 netlink_table_grab(); 1271 rcu_read_lock(); 1272 if (__netlink_lookup(table, portid, net)) { 1273 /* Bind collision, search negative portid values. */ 1274 portid = rover--; 1275 if (rover > -4097) 1276 rover = -4097; 1277 rcu_read_unlock(); 1278 netlink_table_ungrab(); 1279 goto retry; 1280 } 1281 rcu_read_unlock(); 1282 netlink_table_ungrab(); 1283 1284 err = netlink_insert(sk, net, portid); 1285 if (err == -EADDRINUSE) 1286 goto retry; 1287 1288 /* If 2 threads race to autobind, that is fine. */ 1289 if (err == -EBUSY) 1290 err = 0; 1291 1292 return err; 1293 } 1294 1295 /** 1296 * __netlink_ns_capable - General netlink message capability test 1297 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1298 * @user_ns: The user namespace of the capability to use 1299 * @cap: The capability to use 1300 * 1301 * Test to see if the opener of the socket we received the message 1302 * from had when the netlink socket was created and the sender of the 1303 * message has has the capability @cap in the user namespace @user_ns. 1304 */ 1305 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1306 struct user_namespace *user_ns, int cap) 1307 { 1308 return ((nsp->flags & NETLINK_SKB_DST) || 1309 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1310 ns_capable(user_ns, cap); 1311 } 1312 EXPORT_SYMBOL(__netlink_ns_capable); 1313 1314 /** 1315 * netlink_ns_capable - General netlink message capability test 1316 * @skb: socket buffer holding a netlink command from userspace 1317 * @user_ns: The user namespace of the capability to use 1318 * @cap: The capability to use 1319 * 1320 * Test to see if the opener of the socket we received the message 1321 * from had when the netlink socket was created and the sender of the 1322 * message has has the capability @cap in the user namespace @user_ns. 1323 */ 1324 bool netlink_ns_capable(const struct sk_buff *skb, 1325 struct user_namespace *user_ns, int cap) 1326 { 1327 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1328 } 1329 EXPORT_SYMBOL(netlink_ns_capable); 1330 1331 /** 1332 * netlink_capable - Netlink global message capability test 1333 * @skb: socket buffer holding a netlink command from userspace 1334 * @cap: The capability to use 1335 * 1336 * Test to see if the opener of the socket we received the message 1337 * from had when the netlink socket was created and the sender of the 1338 * message has has the capability @cap in all user namespaces. 1339 */ 1340 bool netlink_capable(const struct sk_buff *skb, int cap) 1341 { 1342 return netlink_ns_capable(skb, &init_user_ns, cap); 1343 } 1344 EXPORT_SYMBOL(netlink_capable); 1345 1346 /** 1347 * netlink_net_capable - Netlink network namespace message capability test 1348 * @skb: socket buffer holding a netlink command from userspace 1349 * @cap: The capability to use 1350 * 1351 * Test to see if the opener of the socket we received the message 1352 * from had when the netlink socket was created and the sender of the 1353 * message has has the capability @cap over the network namespace of 1354 * the socket we received the message from. 1355 */ 1356 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1357 { 1358 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1359 } 1360 EXPORT_SYMBOL(netlink_net_capable); 1361 1362 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1363 { 1364 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1365 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1366 } 1367 1368 static void 1369 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1370 { 1371 struct netlink_sock *nlk = nlk_sk(sk); 1372 1373 if (nlk->subscriptions && !subscriptions) 1374 __sk_del_bind_node(sk); 1375 else if (!nlk->subscriptions && subscriptions) 1376 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1377 nlk->subscriptions = subscriptions; 1378 } 1379 1380 static int netlink_realloc_groups(struct sock *sk) 1381 { 1382 struct netlink_sock *nlk = nlk_sk(sk); 1383 unsigned int groups; 1384 unsigned long *new_groups; 1385 int err = 0; 1386 1387 netlink_table_grab(); 1388 1389 groups = nl_table[sk->sk_protocol].groups; 1390 if (!nl_table[sk->sk_protocol].registered) { 1391 err = -ENOENT; 1392 goto out_unlock; 1393 } 1394 1395 if (nlk->ngroups >= groups) 1396 goto out_unlock; 1397 1398 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1399 if (new_groups == NULL) { 1400 err = -ENOMEM; 1401 goto out_unlock; 1402 } 1403 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1404 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1405 1406 nlk->groups = new_groups; 1407 nlk->ngroups = groups; 1408 out_unlock: 1409 netlink_table_ungrab(); 1410 return err; 1411 } 1412 1413 static void netlink_unbind(int group, long unsigned int groups, 1414 struct netlink_sock *nlk) 1415 { 1416 int undo; 1417 1418 if (!nlk->netlink_unbind) 1419 return; 1420 1421 for (undo = 0; undo < group; undo++) 1422 if (test_bit(undo, &groups)) 1423 nlk->netlink_unbind(undo); 1424 } 1425 1426 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1427 int addr_len) 1428 { 1429 struct sock *sk = sock->sk; 1430 struct net *net = sock_net(sk); 1431 struct netlink_sock *nlk = nlk_sk(sk); 1432 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1433 int err; 1434 long unsigned int groups = nladdr->nl_groups; 1435 1436 if (addr_len < sizeof(struct sockaddr_nl)) 1437 return -EINVAL; 1438 1439 if (nladdr->nl_family != AF_NETLINK) 1440 return -EINVAL; 1441 1442 /* Only superuser is allowed to listen multicasts */ 1443 if (groups) { 1444 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1445 return -EPERM; 1446 err = netlink_realloc_groups(sk); 1447 if (err) 1448 return err; 1449 } 1450 1451 if (nlk->portid) 1452 if (nladdr->nl_pid != nlk->portid) 1453 return -EINVAL; 1454 1455 if (nlk->netlink_bind && groups) { 1456 int group; 1457 1458 for (group = 0; group < nlk->ngroups; group++) { 1459 if (!test_bit(group, &groups)) 1460 continue; 1461 err = nlk->netlink_bind(group); 1462 if (!err) 1463 continue; 1464 netlink_unbind(group, groups, nlk); 1465 return err; 1466 } 1467 } 1468 1469 if (!nlk->portid) { 1470 err = nladdr->nl_pid ? 1471 netlink_insert(sk, net, nladdr->nl_pid) : 1472 netlink_autobind(sock); 1473 if (err) { 1474 netlink_unbind(nlk->ngroups, groups, nlk); 1475 return err; 1476 } 1477 } 1478 1479 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1480 return 0; 1481 1482 netlink_table_grab(); 1483 netlink_update_subscriptions(sk, nlk->subscriptions + 1484 hweight32(groups) - 1485 hweight32(nlk->groups[0])); 1486 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1487 netlink_update_listeners(sk); 1488 netlink_table_ungrab(); 1489 1490 return 0; 1491 } 1492 1493 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1494 int alen, int flags) 1495 { 1496 int err = 0; 1497 struct sock *sk = sock->sk; 1498 struct netlink_sock *nlk = nlk_sk(sk); 1499 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1500 1501 if (alen < sizeof(addr->sa_family)) 1502 return -EINVAL; 1503 1504 if (addr->sa_family == AF_UNSPEC) { 1505 sk->sk_state = NETLINK_UNCONNECTED; 1506 nlk->dst_portid = 0; 1507 nlk->dst_group = 0; 1508 return 0; 1509 } 1510 if (addr->sa_family != AF_NETLINK) 1511 return -EINVAL; 1512 1513 if ((nladdr->nl_groups || nladdr->nl_pid) && 1514 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1515 return -EPERM; 1516 1517 if (!nlk->portid) 1518 err = netlink_autobind(sock); 1519 1520 if (err == 0) { 1521 sk->sk_state = NETLINK_CONNECTED; 1522 nlk->dst_portid = nladdr->nl_pid; 1523 nlk->dst_group = ffs(nladdr->nl_groups); 1524 } 1525 1526 return err; 1527 } 1528 1529 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1530 int *addr_len, int peer) 1531 { 1532 struct sock *sk = sock->sk; 1533 struct netlink_sock *nlk = nlk_sk(sk); 1534 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1535 1536 nladdr->nl_family = AF_NETLINK; 1537 nladdr->nl_pad = 0; 1538 *addr_len = sizeof(*nladdr); 1539 1540 if (peer) { 1541 nladdr->nl_pid = nlk->dst_portid; 1542 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1543 } else { 1544 nladdr->nl_pid = nlk->portid; 1545 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1546 } 1547 return 0; 1548 } 1549 1550 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1551 { 1552 struct sock *sock; 1553 struct netlink_sock *nlk; 1554 1555 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1556 if (!sock) 1557 return ERR_PTR(-ECONNREFUSED); 1558 1559 /* Don't bother queuing skb if kernel socket has no input function */ 1560 nlk = nlk_sk(sock); 1561 if (sock->sk_state == NETLINK_CONNECTED && 1562 nlk->dst_portid != nlk_sk(ssk)->portid) { 1563 sock_put(sock); 1564 return ERR_PTR(-ECONNREFUSED); 1565 } 1566 return sock; 1567 } 1568 1569 struct sock *netlink_getsockbyfilp(struct file *filp) 1570 { 1571 struct inode *inode = file_inode(filp); 1572 struct sock *sock; 1573 1574 if (!S_ISSOCK(inode->i_mode)) 1575 return ERR_PTR(-ENOTSOCK); 1576 1577 sock = SOCKET_I(inode)->sk; 1578 if (sock->sk_family != AF_NETLINK) 1579 return ERR_PTR(-EINVAL); 1580 1581 sock_hold(sock); 1582 return sock; 1583 } 1584 1585 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1586 int broadcast) 1587 { 1588 struct sk_buff *skb; 1589 void *data; 1590 1591 if (size <= NLMSG_GOODSIZE || broadcast) 1592 return alloc_skb(size, GFP_KERNEL); 1593 1594 size = SKB_DATA_ALIGN(size) + 1595 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1596 1597 data = vmalloc(size); 1598 if (data == NULL) 1599 return NULL; 1600 1601 skb = build_skb(data, size); 1602 if (skb == NULL) 1603 vfree(data); 1604 else { 1605 skb->head_frag = 0; 1606 skb->destructor = netlink_skb_destructor; 1607 } 1608 1609 return skb; 1610 } 1611 1612 /* 1613 * Attach a skb to a netlink socket. 1614 * The caller must hold a reference to the destination socket. On error, the 1615 * reference is dropped. The skb is not send to the destination, just all 1616 * all error checks are performed and memory in the queue is reserved. 1617 * Return values: 1618 * < 0: error. skb freed, reference to sock dropped. 1619 * 0: continue 1620 * 1: repeat lookup - reference dropped while waiting for socket memory. 1621 */ 1622 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1623 long *timeo, struct sock *ssk) 1624 { 1625 struct netlink_sock *nlk; 1626 1627 nlk = nlk_sk(sk); 1628 1629 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1630 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1631 !netlink_skb_is_mmaped(skb)) { 1632 DECLARE_WAITQUEUE(wait, current); 1633 if (!*timeo) { 1634 if (!ssk || netlink_is_kernel(ssk)) 1635 netlink_overrun(sk); 1636 sock_put(sk); 1637 kfree_skb(skb); 1638 return -EAGAIN; 1639 } 1640 1641 __set_current_state(TASK_INTERRUPTIBLE); 1642 add_wait_queue(&nlk->wait, &wait); 1643 1644 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1645 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1646 !sock_flag(sk, SOCK_DEAD)) 1647 *timeo = schedule_timeout(*timeo); 1648 1649 __set_current_state(TASK_RUNNING); 1650 remove_wait_queue(&nlk->wait, &wait); 1651 sock_put(sk); 1652 1653 if (signal_pending(current)) { 1654 kfree_skb(skb); 1655 return sock_intr_errno(*timeo); 1656 } 1657 return 1; 1658 } 1659 netlink_skb_set_owner_r(skb, sk); 1660 return 0; 1661 } 1662 1663 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1664 { 1665 int len = skb->len; 1666 1667 netlink_deliver_tap(skb); 1668 1669 #ifdef CONFIG_NETLINK_MMAP 1670 if (netlink_skb_is_mmaped(skb)) 1671 netlink_queue_mmaped_skb(sk, skb); 1672 else if (netlink_rx_is_mmaped(sk)) 1673 netlink_ring_set_copied(sk, skb); 1674 else 1675 #endif /* CONFIG_NETLINK_MMAP */ 1676 skb_queue_tail(&sk->sk_receive_queue, skb); 1677 sk->sk_data_ready(sk); 1678 return len; 1679 } 1680 1681 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1682 { 1683 int len = __netlink_sendskb(sk, skb); 1684 1685 sock_put(sk); 1686 return len; 1687 } 1688 1689 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1690 { 1691 kfree_skb(skb); 1692 sock_put(sk); 1693 } 1694 1695 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1696 { 1697 int delta; 1698 1699 WARN_ON(skb->sk != NULL); 1700 if (netlink_skb_is_mmaped(skb)) 1701 return skb; 1702 1703 delta = skb->end - skb->tail; 1704 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1705 return skb; 1706 1707 if (skb_shared(skb)) { 1708 struct sk_buff *nskb = skb_clone(skb, allocation); 1709 if (!nskb) 1710 return skb; 1711 consume_skb(skb); 1712 skb = nskb; 1713 } 1714 1715 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1716 skb->truesize -= delta; 1717 1718 return skb; 1719 } 1720 1721 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1722 struct sock *ssk) 1723 { 1724 int ret; 1725 struct netlink_sock *nlk = nlk_sk(sk); 1726 1727 ret = -ECONNREFUSED; 1728 if (nlk->netlink_rcv != NULL) { 1729 ret = skb->len; 1730 netlink_skb_set_owner_r(skb, sk); 1731 NETLINK_CB(skb).sk = ssk; 1732 netlink_deliver_tap_kernel(sk, ssk, skb); 1733 nlk->netlink_rcv(skb); 1734 consume_skb(skb); 1735 } else { 1736 kfree_skb(skb); 1737 } 1738 sock_put(sk); 1739 return ret; 1740 } 1741 1742 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1743 u32 portid, int nonblock) 1744 { 1745 struct sock *sk; 1746 int err; 1747 long timeo; 1748 1749 skb = netlink_trim(skb, gfp_any()); 1750 1751 timeo = sock_sndtimeo(ssk, nonblock); 1752 retry: 1753 sk = netlink_getsockbyportid(ssk, portid); 1754 if (IS_ERR(sk)) { 1755 kfree_skb(skb); 1756 return PTR_ERR(sk); 1757 } 1758 if (netlink_is_kernel(sk)) 1759 return netlink_unicast_kernel(sk, skb, ssk); 1760 1761 if (sk_filter(sk, skb)) { 1762 err = skb->len; 1763 kfree_skb(skb); 1764 sock_put(sk); 1765 return err; 1766 } 1767 1768 err = netlink_attachskb(sk, skb, &timeo, ssk); 1769 if (err == 1) 1770 goto retry; 1771 if (err) 1772 return err; 1773 1774 return netlink_sendskb(sk, skb); 1775 } 1776 EXPORT_SYMBOL(netlink_unicast); 1777 1778 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1779 u32 dst_portid, gfp_t gfp_mask) 1780 { 1781 #ifdef CONFIG_NETLINK_MMAP 1782 struct sock *sk = NULL; 1783 struct sk_buff *skb; 1784 struct netlink_ring *ring; 1785 struct nl_mmap_hdr *hdr; 1786 unsigned int maxlen; 1787 1788 sk = netlink_getsockbyportid(ssk, dst_portid); 1789 if (IS_ERR(sk)) 1790 goto out; 1791 1792 ring = &nlk_sk(sk)->rx_ring; 1793 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1794 if (ring->pg_vec == NULL) 1795 goto out_put; 1796 1797 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1798 goto out_put; 1799 1800 skb = alloc_skb_head(gfp_mask); 1801 if (skb == NULL) 1802 goto err1; 1803 1804 spin_lock_bh(&sk->sk_receive_queue.lock); 1805 /* check again under lock */ 1806 if (ring->pg_vec == NULL) 1807 goto out_free; 1808 1809 /* check again under lock */ 1810 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1811 if (maxlen < size) 1812 goto out_free; 1813 1814 netlink_forward_ring(ring); 1815 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1816 if (hdr == NULL) 1817 goto err2; 1818 netlink_ring_setup_skb(skb, sk, ring, hdr); 1819 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1820 atomic_inc(&ring->pending); 1821 netlink_increment_head(ring); 1822 1823 spin_unlock_bh(&sk->sk_receive_queue.lock); 1824 return skb; 1825 1826 err2: 1827 kfree_skb(skb); 1828 spin_unlock_bh(&sk->sk_receive_queue.lock); 1829 netlink_overrun(sk); 1830 err1: 1831 sock_put(sk); 1832 return NULL; 1833 1834 out_free: 1835 kfree_skb(skb); 1836 spin_unlock_bh(&sk->sk_receive_queue.lock); 1837 out_put: 1838 sock_put(sk); 1839 out: 1840 #endif 1841 return alloc_skb(size, gfp_mask); 1842 } 1843 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1844 1845 int netlink_has_listeners(struct sock *sk, unsigned int group) 1846 { 1847 int res = 0; 1848 struct listeners *listeners; 1849 1850 BUG_ON(!netlink_is_kernel(sk)); 1851 1852 rcu_read_lock(); 1853 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1854 1855 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1856 res = test_bit(group - 1, listeners->masks); 1857 1858 rcu_read_unlock(); 1859 1860 return res; 1861 } 1862 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1863 1864 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1865 { 1866 struct netlink_sock *nlk = nlk_sk(sk); 1867 1868 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1869 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1870 netlink_skb_set_owner_r(skb, sk); 1871 __netlink_sendskb(sk, skb); 1872 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1873 } 1874 return -1; 1875 } 1876 1877 struct netlink_broadcast_data { 1878 struct sock *exclude_sk; 1879 struct net *net; 1880 u32 portid; 1881 u32 group; 1882 int failure; 1883 int delivery_failure; 1884 int congested; 1885 int delivered; 1886 gfp_t allocation; 1887 struct sk_buff *skb, *skb2; 1888 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1889 void *tx_data; 1890 }; 1891 1892 static void do_one_broadcast(struct sock *sk, 1893 struct netlink_broadcast_data *p) 1894 { 1895 struct netlink_sock *nlk = nlk_sk(sk); 1896 int val; 1897 1898 if (p->exclude_sk == sk) 1899 return; 1900 1901 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1902 !test_bit(p->group - 1, nlk->groups)) 1903 return; 1904 1905 if (!net_eq(sock_net(sk), p->net)) 1906 return; 1907 1908 if (p->failure) { 1909 netlink_overrun(sk); 1910 return; 1911 } 1912 1913 sock_hold(sk); 1914 if (p->skb2 == NULL) { 1915 if (skb_shared(p->skb)) { 1916 p->skb2 = skb_clone(p->skb, p->allocation); 1917 } else { 1918 p->skb2 = skb_get(p->skb); 1919 /* 1920 * skb ownership may have been set when 1921 * delivered to a previous socket. 1922 */ 1923 skb_orphan(p->skb2); 1924 } 1925 } 1926 if (p->skb2 == NULL) { 1927 netlink_overrun(sk); 1928 /* Clone failed. Notify ALL listeners. */ 1929 p->failure = 1; 1930 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1931 p->delivery_failure = 1; 1932 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1933 kfree_skb(p->skb2); 1934 p->skb2 = NULL; 1935 } else if (sk_filter(sk, p->skb2)) { 1936 kfree_skb(p->skb2); 1937 p->skb2 = NULL; 1938 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1939 netlink_overrun(sk); 1940 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1941 p->delivery_failure = 1; 1942 } else { 1943 p->congested |= val; 1944 p->delivered = 1; 1945 p->skb2 = NULL; 1946 } 1947 sock_put(sk); 1948 } 1949 1950 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1951 u32 group, gfp_t allocation, 1952 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1953 void *filter_data) 1954 { 1955 struct net *net = sock_net(ssk); 1956 struct netlink_broadcast_data info; 1957 struct sock *sk; 1958 1959 skb = netlink_trim(skb, allocation); 1960 1961 info.exclude_sk = ssk; 1962 info.net = net; 1963 info.portid = portid; 1964 info.group = group; 1965 info.failure = 0; 1966 info.delivery_failure = 0; 1967 info.congested = 0; 1968 info.delivered = 0; 1969 info.allocation = allocation; 1970 info.skb = skb; 1971 info.skb2 = NULL; 1972 info.tx_filter = filter; 1973 info.tx_data = filter_data; 1974 1975 /* While we sleep in clone, do not allow to change socket list */ 1976 1977 netlink_lock_table(); 1978 1979 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1980 do_one_broadcast(sk, &info); 1981 1982 consume_skb(skb); 1983 1984 netlink_unlock_table(); 1985 1986 if (info.delivery_failure) { 1987 kfree_skb(info.skb2); 1988 return -ENOBUFS; 1989 } 1990 consume_skb(info.skb2); 1991 1992 if (info.delivered) { 1993 if (info.congested && (allocation & __GFP_WAIT)) 1994 yield(); 1995 return 0; 1996 } 1997 return -ESRCH; 1998 } 1999 EXPORT_SYMBOL(netlink_broadcast_filtered); 2000 2001 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2002 u32 group, gfp_t allocation) 2003 { 2004 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2005 NULL, NULL); 2006 } 2007 EXPORT_SYMBOL(netlink_broadcast); 2008 2009 struct netlink_set_err_data { 2010 struct sock *exclude_sk; 2011 u32 portid; 2012 u32 group; 2013 int code; 2014 }; 2015 2016 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2017 { 2018 struct netlink_sock *nlk = nlk_sk(sk); 2019 int ret = 0; 2020 2021 if (sk == p->exclude_sk) 2022 goto out; 2023 2024 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2025 goto out; 2026 2027 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2028 !test_bit(p->group - 1, nlk->groups)) 2029 goto out; 2030 2031 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2032 ret = 1; 2033 goto out; 2034 } 2035 2036 sk->sk_err = p->code; 2037 sk->sk_error_report(sk); 2038 out: 2039 return ret; 2040 } 2041 2042 /** 2043 * netlink_set_err - report error to broadcast listeners 2044 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2045 * @portid: the PORTID of a process that we want to skip (if any) 2046 * @group: the broadcast group that will notice the error 2047 * @code: error code, must be negative (as usual in kernelspace) 2048 * 2049 * This function returns the number of broadcast listeners that have set the 2050 * NETLINK_RECV_NO_ENOBUFS socket option. 2051 */ 2052 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2053 { 2054 struct netlink_set_err_data info; 2055 struct sock *sk; 2056 int ret = 0; 2057 2058 info.exclude_sk = ssk; 2059 info.portid = portid; 2060 info.group = group; 2061 /* sk->sk_err wants a positive error value */ 2062 info.code = -code; 2063 2064 read_lock(&nl_table_lock); 2065 2066 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2067 ret += do_one_set_err(sk, &info); 2068 2069 read_unlock(&nl_table_lock); 2070 return ret; 2071 } 2072 EXPORT_SYMBOL(netlink_set_err); 2073 2074 /* must be called with netlink table grabbed */ 2075 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2076 unsigned int group, 2077 int is_new) 2078 { 2079 int old, new = !!is_new, subscriptions; 2080 2081 old = test_bit(group - 1, nlk->groups); 2082 subscriptions = nlk->subscriptions - old + new; 2083 if (new) 2084 __set_bit(group - 1, nlk->groups); 2085 else 2086 __clear_bit(group - 1, nlk->groups); 2087 netlink_update_subscriptions(&nlk->sk, subscriptions); 2088 netlink_update_listeners(&nlk->sk); 2089 } 2090 2091 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2092 char __user *optval, unsigned int optlen) 2093 { 2094 struct sock *sk = sock->sk; 2095 struct netlink_sock *nlk = nlk_sk(sk); 2096 unsigned int val = 0; 2097 int err; 2098 2099 if (level != SOL_NETLINK) 2100 return -ENOPROTOOPT; 2101 2102 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2103 optlen >= sizeof(int) && 2104 get_user(val, (unsigned int __user *)optval)) 2105 return -EFAULT; 2106 2107 switch (optname) { 2108 case NETLINK_PKTINFO: 2109 if (val) 2110 nlk->flags |= NETLINK_RECV_PKTINFO; 2111 else 2112 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2113 err = 0; 2114 break; 2115 case NETLINK_ADD_MEMBERSHIP: 2116 case NETLINK_DROP_MEMBERSHIP: { 2117 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2118 return -EPERM; 2119 err = netlink_realloc_groups(sk); 2120 if (err) 2121 return err; 2122 if (!val || val - 1 >= nlk->ngroups) 2123 return -EINVAL; 2124 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2125 err = nlk->netlink_bind(val); 2126 if (err) 2127 return err; 2128 } 2129 netlink_table_grab(); 2130 netlink_update_socket_mc(nlk, val, 2131 optname == NETLINK_ADD_MEMBERSHIP); 2132 netlink_table_ungrab(); 2133 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2134 nlk->netlink_unbind(val); 2135 2136 err = 0; 2137 break; 2138 } 2139 case NETLINK_BROADCAST_ERROR: 2140 if (val) 2141 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2142 else 2143 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2144 err = 0; 2145 break; 2146 case NETLINK_NO_ENOBUFS: 2147 if (val) { 2148 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2149 clear_bit(NETLINK_CONGESTED, &nlk->state); 2150 wake_up_interruptible(&nlk->wait); 2151 } else { 2152 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2153 } 2154 err = 0; 2155 break; 2156 #ifdef CONFIG_NETLINK_MMAP 2157 case NETLINK_RX_RING: 2158 case NETLINK_TX_RING: { 2159 struct nl_mmap_req req; 2160 2161 /* Rings might consume more memory than queue limits, require 2162 * CAP_NET_ADMIN. 2163 */ 2164 if (!capable(CAP_NET_ADMIN)) 2165 return -EPERM; 2166 if (optlen < sizeof(req)) 2167 return -EINVAL; 2168 if (copy_from_user(&req, optval, sizeof(req))) 2169 return -EFAULT; 2170 err = netlink_set_ring(sk, &req, false, 2171 optname == NETLINK_TX_RING); 2172 break; 2173 } 2174 #endif /* CONFIG_NETLINK_MMAP */ 2175 default: 2176 err = -ENOPROTOOPT; 2177 } 2178 return err; 2179 } 2180 2181 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2182 char __user *optval, int __user *optlen) 2183 { 2184 struct sock *sk = sock->sk; 2185 struct netlink_sock *nlk = nlk_sk(sk); 2186 int len, val, err; 2187 2188 if (level != SOL_NETLINK) 2189 return -ENOPROTOOPT; 2190 2191 if (get_user(len, optlen)) 2192 return -EFAULT; 2193 if (len < 0) 2194 return -EINVAL; 2195 2196 switch (optname) { 2197 case NETLINK_PKTINFO: 2198 if (len < sizeof(int)) 2199 return -EINVAL; 2200 len = sizeof(int); 2201 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2202 if (put_user(len, optlen) || 2203 put_user(val, optval)) 2204 return -EFAULT; 2205 err = 0; 2206 break; 2207 case NETLINK_BROADCAST_ERROR: 2208 if (len < sizeof(int)) 2209 return -EINVAL; 2210 len = sizeof(int); 2211 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2212 if (put_user(len, optlen) || 2213 put_user(val, optval)) 2214 return -EFAULT; 2215 err = 0; 2216 break; 2217 case NETLINK_NO_ENOBUFS: 2218 if (len < sizeof(int)) 2219 return -EINVAL; 2220 len = sizeof(int); 2221 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2222 if (put_user(len, optlen) || 2223 put_user(val, optval)) 2224 return -EFAULT; 2225 err = 0; 2226 break; 2227 default: 2228 err = -ENOPROTOOPT; 2229 } 2230 return err; 2231 } 2232 2233 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2234 { 2235 struct nl_pktinfo info; 2236 2237 info.group = NETLINK_CB(skb).dst_group; 2238 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2239 } 2240 2241 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2242 struct msghdr *msg, size_t len) 2243 { 2244 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2245 struct sock *sk = sock->sk; 2246 struct netlink_sock *nlk = nlk_sk(sk); 2247 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2248 u32 dst_portid; 2249 u32 dst_group; 2250 struct sk_buff *skb; 2251 int err; 2252 struct scm_cookie scm; 2253 u32 netlink_skb_flags = 0; 2254 2255 if (msg->msg_flags&MSG_OOB) 2256 return -EOPNOTSUPP; 2257 2258 if (NULL == siocb->scm) 2259 siocb->scm = &scm; 2260 2261 err = scm_send(sock, msg, siocb->scm, true); 2262 if (err < 0) 2263 return err; 2264 2265 if (msg->msg_namelen) { 2266 err = -EINVAL; 2267 if (addr->nl_family != AF_NETLINK) 2268 goto out; 2269 dst_portid = addr->nl_pid; 2270 dst_group = ffs(addr->nl_groups); 2271 err = -EPERM; 2272 if ((dst_group || dst_portid) && 2273 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2274 goto out; 2275 netlink_skb_flags |= NETLINK_SKB_DST; 2276 } else { 2277 dst_portid = nlk->dst_portid; 2278 dst_group = nlk->dst_group; 2279 } 2280 2281 if (!nlk->portid) { 2282 err = netlink_autobind(sock); 2283 if (err) 2284 goto out; 2285 } 2286 2287 if (netlink_tx_is_mmaped(sk) && 2288 msg->msg_iter.iov->iov_base == NULL) { 2289 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2290 siocb); 2291 goto out; 2292 } 2293 2294 err = -EMSGSIZE; 2295 if (len > sk->sk_sndbuf - 32) 2296 goto out; 2297 err = -ENOBUFS; 2298 skb = netlink_alloc_large_skb(len, dst_group); 2299 if (skb == NULL) 2300 goto out; 2301 2302 NETLINK_CB(skb).portid = nlk->portid; 2303 NETLINK_CB(skb).dst_group = dst_group; 2304 NETLINK_CB(skb).creds = siocb->scm->creds; 2305 NETLINK_CB(skb).flags = netlink_skb_flags; 2306 2307 err = -EFAULT; 2308 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2309 kfree_skb(skb); 2310 goto out; 2311 } 2312 2313 err = security_netlink_send(sk, skb); 2314 if (err) { 2315 kfree_skb(skb); 2316 goto out; 2317 } 2318 2319 if (dst_group) { 2320 atomic_inc(&skb->users); 2321 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2322 } 2323 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2324 2325 out: 2326 scm_destroy(siocb->scm); 2327 return err; 2328 } 2329 2330 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2331 struct msghdr *msg, size_t len, 2332 int flags) 2333 { 2334 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2335 struct scm_cookie scm; 2336 struct sock *sk = sock->sk; 2337 struct netlink_sock *nlk = nlk_sk(sk); 2338 int noblock = flags&MSG_DONTWAIT; 2339 size_t copied; 2340 struct sk_buff *skb, *data_skb; 2341 int err, ret; 2342 2343 if (flags&MSG_OOB) 2344 return -EOPNOTSUPP; 2345 2346 copied = 0; 2347 2348 skb = skb_recv_datagram(sk, flags, noblock, &err); 2349 if (skb == NULL) 2350 goto out; 2351 2352 data_skb = skb; 2353 2354 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2355 if (unlikely(skb_shinfo(skb)->frag_list)) { 2356 /* 2357 * If this skb has a frag_list, then here that means that we 2358 * will have to use the frag_list skb's data for compat tasks 2359 * and the regular skb's data for normal (non-compat) tasks. 2360 * 2361 * If we need to send the compat skb, assign it to the 2362 * 'data_skb' variable so that it will be used below for data 2363 * copying. We keep 'skb' for everything else, including 2364 * freeing both later. 2365 */ 2366 if (flags & MSG_CMSG_COMPAT) 2367 data_skb = skb_shinfo(skb)->frag_list; 2368 } 2369 #endif 2370 2371 /* Record the max length of recvmsg() calls for future allocations */ 2372 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2373 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2374 16384); 2375 2376 copied = data_skb->len; 2377 if (len < copied) { 2378 msg->msg_flags |= MSG_TRUNC; 2379 copied = len; 2380 } 2381 2382 skb_reset_transport_header(data_skb); 2383 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2384 2385 if (msg->msg_name) { 2386 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2387 addr->nl_family = AF_NETLINK; 2388 addr->nl_pad = 0; 2389 addr->nl_pid = NETLINK_CB(skb).portid; 2390 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2391 msg->msg_namelen = sizeof(*addr); 2392 } 2393 2394 if (nlk->flags & NETLINK_RECV_PKTINFO) 2395 netlink_cmsg_recv_pktinfo(msg, skb); 2396 2397 if (NULL == siocb->scm) { 2398 memset(&scm, 0, sizeof(scm)); 2399 siocb->scm = &scm; 2400 } 2401 siocb->scm->creds = *NETLINK_CREDS(skb); 2402 if (flags & MSG_TRUNC) 2403 copied = data_skb->len; 2404 2405 skb_free_datagram(sk, skb); 2406 2407 if (nlk->cb_running && 2408 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2409 ret = netlink_dump(sk); 2410 if (ret) { 2411 sk->sk_err = -ret; 2412 sk->sk_error_report(sk); 2413 } 2414 } 2415 2416 scm_recv(sock, msg, siocb->scm, flags); 2417 out: 2418 netlink_rcv_wake(sk); 2419 return err ? : copied; 2420 } 2421 2422 static void netlink_data_ready(struct sock *sk) 2423 { 2424 BUG(); 2425 } 2426 2427 /* 2428 * We export these functions to other modules. They provide a 2429 * complete set of kernel non-blocking support for message 2430 * queueing. 2431 */ 2432 2433 struct sock * 2434 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2435 struct netlink_kernel_cfg *cfg) 2436 { 2437 struct socket *sock; 2438 struct sock *sk; 2439 struct netlink_sock *nlk; 2440 struct listeners *listeners = NULL; 2441 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2442 unsigned int groups; 2443 2444 BUG_ON(!nl_table); 2445 2446 if (unit < 0 || unit >= MAX_LINKS) 2447 return NULL; 2448 2449 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2450 return NULL; 2451 2452 /* 2453 * We have to just have a reference on the net from sk, but don't 2454 * get_net it. Besides, we cannot get and then put the net here. 2455 * So we create one inside init_net and the move it to net. 2456 */ 2457 2458 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2459 goto out_sock_release_nosk; 2460 2461 sk = sock->sk; 2462 sk_change_net(sk, net); 2463 2464 if (!cfg || cfg->groups < 32) 2465 groups = 32; 2466 else 2467 groups = cfg->groups; 2468 2469 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2470 if (!listeners) 2471 goto out_sock_release; 2472 2473 sk->sk_data_ready = netlink_data_ready; 2474 if (cfg && cfg->input) 2475 nlk_sk(sk)->netlink_rcv = cfg->input; 2476 2477 if (netlink_insert(sk, net, 0)) 2478 goto out_sock_release; 2479 2480 nlk = nlk_sk(sk); 2481 nlk->flags |= NETLINK_KERNEL_SOCKET; 2482 2483 netlink_table_grab(); 2484 if (!nl_table[unit].registered) { 2485 nl_table[unit].groups = groups; 2486 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2487 nl_table[unit].cb_mutex = cb_mutex; 2488 nl_table[unit].module = module; 2489 if (cfg) { 2490 nl_table[unit].bind = cfg->bind; 2491 nl_table[unit].unbind = cfg->unbind; 2492 nl_table[unit].flags = cfg->flags; 2493 if (cfg->compare) 2494 nl_table[unit].compare = cfg->compare; 2495 } 2496 nl_table[unit].registered = 1; 2497 } else { 2498 kfree(listeners); 2499 nl_table[unit].registered++; 2500 } 2501 netlink_table_ungrab(); 2502 return sk; 2503 2504 out_sock_release: 2505 kfree(listeners); 2506 netlink_kernel_release(sk); 2507 return NULL; 2508 2509 out_sock_release_nosk: 2510 sock_release(sock); 2511 return NULL; 2512 } 2513 EXPORT_SYMBOL(__netlink_kernel_create); 2514 2515 void 2516 netlink_kernel_release(struct sock *sk) 2517 { 2518 sk_release_kernel(sk); 2519 } 2520 EXPORT_SYMBOL(netlink_kernel_release); 2521 2522 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2523 { 2524 struct listeners *new, *old; 2525 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2526 2527 if (groups < 32) 2528 groups = 32; 2529 2530 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2531 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2532 if (!new) 2533 return -ENOMEM; 2534 old = nl_deref_protected(tbl->listeners); 2535 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2536 rcu_assign_pointer(tbl->listeners, new); 2537 2538 kfree_rcu(old, rcu); 2539 } 2540 tbl->groups = groups; 2541 2542 return 0; 2543 } 2544 2545 /** 2546 * netlink_change_ngroups - change number of multicast groups 2547 * 2548 * This changes the number of multicast groups that are available 2549 * on a certain netlink family. Note that it is not possible to 2550 * change the number of groups to below 32. Also note that it does 2551 * not implicitly call netlink_clear_multicast_users() when the 2552 * number of groups is reduced. 2553 * 2554 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2555 * @groups: The new number of groups. 2556 */ 2557 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2558 { 2559 int err; 2560 2561 netlink_table_grab(); 2562 err = __netlink_change_ngroups(sk, groups); 2563 netlink_table_ungrab(); 2564 2565 return err; 2566 } 2567 2568 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2569 { 2570 struct sock *sk; 2571 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2572 2573 sk_for_each_bound(sk, &tbl->mc_list) 2574 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2575 } 2576 2577 struct nlmsghdr * 2578 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2579 { 2580 struct nlmsghdr *nlh; 2581 int size = nlmsg_msg_size(len); 2582 2583 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2584 nlh->nlmsg_type = type; 2585 nlh->nlmsg_len = size; 2586 nlh->nlmsg_flags = flags; 2587 nlh->nlmsg_pid = portid; 2588 nlh->nlmsg_seq = seq; 2589 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2590 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2591 return nlh; 2592 } 2593 EXPORT_SYMBOL(__nlmsg_put); 2594 2595 /* 2596 * It looks a bit ugly. 2597 * It would be better to create kernel thread. 2598 */ 2599 2600 static int netlink_dump(struct sock *sk) 2601 { 2602 struct netlink_sock *nlk = nlk_sk(sk); 2603 struct netlink_callback *cb; 2604 struct sk_buff *skb = NULL; 2605 struct nlmsghdr *nlh; 2606 int len, err = -ENOBUFS; 2607 int alloc_size; 2608 2609 mutex_lock(nlk->cb_mutex); 2610 if (!nlk->cb_running) { 2611 err = -EINVAL; 2612 goto errout_skb; 2613 } 2614 2615 cb = &nlk->cb; 2616 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2617 2618 if (!netlink_rx_is_mmaped(sk) && 2619 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2620 goto errout_skb; 2621 2622 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2623 * required, but it makes sense to _attempt_ a 16K bytes allocation 2624 * to reduce number of system calls on dump operations, if user 2625 * ever provided a big enough buffer. 2626 */ 2627 if (alloc_size < nlk->max_recvmsg_len) { 2628 skb = netlink_alloc_skb(sk, 2629 nlk->max_recvmsg_len, 2630 nlk->portid, 2631 GFP_KERNEL | 2632 __GFP_NOWARN | 2633 __GFP_NORETRY); 2634 /* available room should be exact amount to avoid MSG_TRUNC */ 2635 if (skb) 2636 skb_reserve(skb, skb_tailroom(skb) - 2637 nlk->max_recvmsg_len); 2638 } 2639 if (!skb) 2640 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2641 GFP_KERNEL); 2642 if (!skb) 2643 goto errout_skb; 2644 netlink_skb_set_owner_r(skb, sk); 2645 2646 len = cb->dump(skb, cb); 2647 2648 if (len > 0) { 2649 mutex_unlock(nlk->cb_mutex); 2650 2651 if (sk_filter(sk, skb)) 2652 kfree_skb(skb); 2653 else 2654 __netlink_sendskb(sk, skb); 2655 return 0; 2656 } 2657 2658 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2659 if (!nlh) 2660 goto errout_skb; 2661 2662 nl_dump_check_consistent(cb, nlh); 2663 2664 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2665 2666 if (sk_filter(sk, skb)) 2667 kfree_skb(skb); 2668 else 2669 __netlink_sendskb(sk, skb); 2670 2671 if (cb->done) 2672 cb->done(cb); 2673 2674 nlk->cb_running = false; 2675 mutex_unlock(nlk->cb_mutex); 2676 module_put(cb->module); 2677 consume_skb(cb->skb); 2678 return 0; 2679 2680 errout_skb: 2681 mutex_unlock(nlk->cb_mutex); 2682 kfree_skb(skb); 2683 return err; 2684 } 2685 2686 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2687 const struct nlmsghdr *nlh, 2688 struct netlink_dump_control *control) 2689 { 2690 struct netlink_callback *cb; 2691 struct sock *sk; 2692 struct netlink_sock *nlk; 2693 int ret; 2694 2695 /* Memory mapped dump requests need to be copied to avoid looping 2696 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2697 * a reference to the skb. 2698 */ 2699 if (netlink_skb_is_mmaped(skb)) { 2700 skb = skb_copy(skb, GFP_KERNEL); 2701 if (skb == NULL) 2702 return -ENOBUFS; 2703 } else 2704 atomic_inc(&skb->users); 2705 2706 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2707 if (sk == NULL) { 2708 ret = -ECONNREFUSED; 2709 goto error_free; 2710 } 2711 2712 nlk = nlk_sk(sk); 2713 mutex_lock(nlk->cb_mutex); 2714 /* A dump is in progress... */ 2715 if (nlk->cb_running) { 2716 ret = -EBUSY; 2717 goto error_unlock; 2718 } 2719 /* add reference of module which cb->dump belongs to */ 2720 if (!try_module_get(control->module)) { 2721 ret = -EPROTONOSUPPORT; 2722 goto error_unlock; 2723 } 2724 2725 cb = &nlk->cb; 2726 memset(cb, 0, sizeof(*cb)); 2727 cb->dump = control->dump; 2728 cb->done = control->done; 2729 cb->nlh = nlh; 2730 cb->data = control->data; 2731 cb->module = control->module; 2732 cb->min_dump_alloc = control->min_dump_alloc; 2733 cb->skb = skb; 2734 2735 nlk->cb_running = true; 2736 2737 mutex_unlock(nlk->cb_mutex); 2738 2739 ret = netlink_dump(sk); 2740 sock_put(sk); 2741 2742 if (ret) 2743 return ret; 2744 2745 /* We successfully started a dump, by returning -EINTR we 2746 * signal not to send ACK even if it was requested. 2747 */ 2748 return -EINTR; 2749 2750 error_unlock: 2751 sock_put(sk); 2752 mutex_unlock(nlk->cb_mutex); 2753 error_free: 2754 kfree_skb(skb); 2755 return ret; 2756 } 2757 EXPORT_SYMBOL(__netlink_dump_start); 2758 2759 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2760 { 2761 struct sk_buff *skb; 2762 struct nlmsghdr *rep; 2763 struct nlmsgerr *errmsg; 2764 size_t payload = sizeof(*errmsg); 2765 2766 /* error messages get the original request appened */ 2767 if (err) 2768 payload += nlmsg_len(nlh); 2769 2770 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2771 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2772 if (!skb) { 2773 struct sock *sk; 2774 2775 sk = netlink_lookup(sock_net(in_skb->sk), 2776 in_skb->sk->sk_protocol, 2777 NETLINK_CB(in_skb).portid); 2778 if (sk) { 2779 sk->sk_err = ENOBUFS; 2780 sk->sk_error_report(sk); 2781 sock_put(sk); 2782 } 2783 return; 2784 } 2785 2786 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2787 NLMSG_ERROR, payload, 0); 2788 errmsg = nlmsg_data(rep); 2789 errmsg->error = err; 2790 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2791 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2792 } 2793 EXPORT_SYMBOL(netlink_ack); 2794 2795 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2796 struct nlmsghdr *)) 2797 { 2798 struct nlmsghdr *nlh; 2799 int err; 2800 2801 while (skb->len >= nlmsg_total_size(0)) { 2802 int msglen; 2803 2804 nlh = nlmsg_hdr(skb); 2805 err = 0; 2806 2807 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2808 return 0; 2809 2810 /* Only requests are handled by the kernel */ 2811 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2812 goto ack; 2813 2814 /* Skip control messages */ 2815 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2816 goto ack; 2817 2818 err = cb(skb, nlh); 2819 if (err == -EINTR) 2820 goto skip; 2821 2822 ack: 2823 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2824 netlink_ack(skb, nlh, err); 2825 2826 skip: 2827 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2828 if (msglen > skb->len) 2829 msglen = skb->len; 2830 skb_pull(skb, msglen); 2831 } 2832 2833 return 0; 2834 } 2835 EXPORT_SYMBOL(netlink_rcv_skb); 2836 2837 /** 2838 * nlmsg_notify - send a notification netlink message 2839 * @sk: netlink socket to use 2840 * @skb: notification message 2841 * @portid: destination netlink portid for reports or 0 2842 * @group: destination multicast group or 0 2843 * @report: 1 to report back, 0 to disable 2844 * @flags: allocation flags 2845 */ 2846 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2847 unsigned int group, int report, gfp_t flags) 2848 { 2849 int err = 0; 2850 2851 if (group) { 2852 int exclude_portid = 0; 2853 2854 if (report) { 2855 atomic_inc(&skb->users); 2856 exclude_portid = portid; 2857 } 2858 2859 /* errors reported via destination sk->sk_err, but propagate 2860 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2861 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2862 } 2863 2864 if (report) { 2865 int err2; 2866 2867 err2 = nlmsg_unicast(sk, skb, portid); 2868 if (!err || err == -ESRCH) 2869 err = err2; 2870 } 2871 2872 return err; 2873 } 2874 EXPORT_SYMBOL(nlmsg_notify); 2875 2876 #ifdef CONFIG_PROC_FS 2877 struct nl_seq_iter { 2878 struct seq_net_private p; 2879 int link; 2880 int hash_idx; 2881 }; 2882 2883 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2884 { 2885 struct nl_seq_iter *iter = seq->private; 2886 int i, j; 2887 struct netlink_sock *nlk; 2888 struct sock *s; 2889 loff_t off = 0; 2890 2891 for (i = 0; i < MAX_LINKS; i++) { 2892 struct rhashtable *ht = &nl_table[i].hash; 2893 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2894 2895 for (j = 0; j < tbl->size; j++) { 2896 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) { 2897 s = (struct sock *)nlk; 2898 2899 if (sock_net(s) != seq_file_net(seq)) 2900 continue; 2901 if (off == pos) { 2902 iter->link = i; 2903 iter->hash_idx = j; 2904 return s; 2905 } 2906 ++off; 2907 } 2908 } 2909 } 2910 return NULL; 2911 } 2912 2913 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2914 __acquires(nl_table_lock) __acquires(RCU) 2915 { 2916 read_lock(&nl_table_lock); 2917 rcu_read_lock(); 2918 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2919 } 2920 2921 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2922 { 2923 struct rhashtable *ht; 2924 struct netlink_sock *nlk; 2925 struct nl_seq_iter *iter; 2926 struct net *net; 2927 int i, j; 2928 2929 ++*pos; 2930 2931 if (v == SEQ_START_TOKEN) 2932 return netlink_seq_socket_idx(seq, 0); 2933 2934 net = seq_file_net(seq); 2935 iter = seq->private; 2936 nlk = v; 2937 2938 i = iter->link; 2939 ht = &nl_table[i].hash; 2940 rht_for_each_entry(nlk, nlk->node.next, ht, node) 2941 if (net_eq(sock_net((struct sock *)nlk), net)) 2942 return nlk; 2943 2944 j = iter->hash_idx + 1; 2945 2946 do { 2947 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2948 2949 for (; j < tbl->size; j++) { 2950 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) { 2951 if (net_eq(sock_net((struct sock *)nlk), net)) { 2952 iter->link = i; 2953 iter->hash_idx = j; 2954 return nlk; 2955 } 2956 } 2957 } 2958 2959 j = 0; 2960 } while (++i < MAX_LINKS); 2961 2962 return NULL; 2963 } 2964 2965 static void netlink_seq_stop(struct seq_file *seq, void *v) 2966 __releases(RCU) __releases(nl_table_lock) 2967 { 2968 rcu_read_unlock(); 2969 read_unlock(&nl_table_lock); 2970 } 2971 2972 2973 static int netlink_seq_show(struct seq_file *seq, void *v) 2974 { 2975 if (v == SEQ_START_TOKEN) { 2976 seq_puts(seq, 2977 "sk Eth Pid Groups " 2978 "Rmem Wmem Dump Locks Drops Inode\n"); 2979 } else { 2980 struct sock *s = v; 2981 struct netlink_sock *nlk = nlk_sk(s); 2982 2983 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 2984 s, 2985 s->sk_protocol, 2986 nlk->portid, 2987 nlk->groups ? (u32)nlk->groups[0] : 0, 2988 sk_rmem_alloc_get(s), 2989 sk_wmem_alloc_get(s), 2990 nlk->cb_running, 2991 atomic_read(&s->sk_refcnt), 2992 atomic_read(&s->sk_drops), 2993 sock_i_ino(s) 2994 ); 2995 2996 } 2997 return 0; 2998 } 2999 3000 static const struct seq_operations netlink_seq_ops = { 3001 .start = netlink_seq_start, 3002 .next = netlink_seq_next, 3003 .stop = netlink_seq_stop, 3004 .show = netlink_seq_show, 3005 }; 3006 3007 3008 static int netlink_seq_open(struct inode *inode, struct file *file) 3009 { 3010 return seq_open_net(inode, file, &netlink_seq_ops, 3011 sizeof(struct nl_seq_iter)); 3012 } 3013 3014 static const struct file_operations netlink_seq_fops = { 3015 .owner = THIS_MODULE, 3016 .open = netlink_seq_open, 3017 .read = seq_read, 3018 .llseek = seq_lseek, 3019 .release = seq_release_net, 3020 }; 3021 3022 #endif 3023 3024 int netlink_register_notifier(struct notifier_block *nb) 3025 { 3026 return atomic_notifier_chain_register(&netlink_chain, nb); 3027 } 3028 EXPORT_SYMBOL(netlink_register_notifier); 3029 3030 int netlink_unregister_notifier(struct notifier_block *nb) 3031 { 3032 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3033 } 3034 EXPORT_SYMBOL(netlink_unregister_notifier); 3035 3036 static const struct proto_ops netlink_ops = { 3037 .family = PF_NETLINK, 3038 .owner = THIS_MODULE, 3039 .release = netlink_release, 3040 .bind = netlink_bind, 3041 .connect = netlink_connect, 3042 .socketpair = sock_no_socketpair, 3043 .accept = sock_no_accept, 3044 .getname = netlink_getname, 3045 .poll = netlink_poll, 3046 .ioctl = sock_no_ioctl, 3047 .listen = sock_no_listen, 3048 .shutdown = sock_no_shutdown, 3049 .setsockopt = netlink_setsockopt, 3050 .getsockopt = netlink_getsockopt, 3051 .sendmsg = netlink_sendmsg, 3052 .recvmsg = netlink_recvmsg, 3053 .mmap = netlink_mmap, 3054 .sendpage = sock_no_sendpage, 3055 }; 3056 3057 static const struct net_proto_family netlink_family_ops = { 3058 .family = PF_NETLINK, 3059 .create = netlink_create, 3060 .owner = THIS_MODULE, /* for consistency 8) */ 3061 }; 3062 3063 static int __net_init netlink_net_init(struct net *net) 3064 { 3065 #ifdef CONFIG_PROC_FS 3066 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3067 return -ENOMEM; 3068 #endif 3069 return 0; 3070 } 3071 3072 static void __net_exit netlink_net_exit(struct net *net) 3073 { 3074 #ifdef CONFIG_PROC_FS 3075 remove_proc_entry("netlink", net->proc_net); 3076 #endif 3077 } 3078 3079 static void __init netlink_add_usersock_entry(void) 3080 { 3081 struct listeners *listeners; 3082 int groups = 32; 3083 3084 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3085 if (!listeners) 3086 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3087 3088 netlink_table_grab(); 3089 3090 nl_table[NETLINK_USERSOCK].groups = groups; 3091 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3092 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3093 nl_table[NETLINK_USERSOCK].registered = 1; 3094 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3095 3096 netlink_table_ungrab(); 3097 } 3098 3099 static struct pernet_operations __net_initdata netlink_net_ops = { 3100 .init = netlink_net_init, 3101 .exit = netlink_net_exit, 3102 }; 3103 3104 static int __init netlink_proto_init(void) 3105 { 3106 int i; 3107 int err = proto_register(&netlink_proto, 0); 3108 struct rhashtable_params ht_params = { 3109 .head_offset = offsetof(struct netlink_sock, node), 3110 .key_offset = offsetof(struct netlink_sock, portid), 3111 .key_len = sizeof(u32), /* portid */ 3112 .hashfn = jhash, 3113 .max_shift = 16, /* 64K */ 3114 .grow_decision = rht_grow_above_75, 3115 .shrink_decision = rht_shrink_below_30, 3116 #ifdef CONFIG_PROVE_LOCKING 3117 .mutex_is_held = lockdep_nl_sk_hash_is_held, 3118 #endif 3119 }; 3120 3121 if (err != 0) 3122 goto out; 3123 3124 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3125 3126 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3127 if (!nl_table) 3128 goto panic; 3129 3130 for (i = 0; i < MAX_LINKS; i++) { 3131 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) { 3132 while (--i > 0) 3133 rhashtable_destroy(&nl_table[i].hash); 3134 kfree(nl_table); 3135 goto panic; 3136 } 3137 } 3138 3139 INIT_LIST_HEAD(&netlink_tap_all); 3140 3141 netlink_add_usersock_entry(); 3142 3143 sock_register(&netlink_family_ops); 3144 register_pernet_subsys(&netlink_net_ops); 3145 /* The netlink device handler may be needed early. */ 3146 rtnetlink_init(); 3147 out: 3148 return err; 3149 panic: 3150 panic("netlink_init: Cannot allocate nl_table\n"); 3151 } 3152 3153 core_initcall(netlink_proto_init); 3154