xref: /openbmc/linux/net/netlink/af_netlink.c (revision 8684014d)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 
65 #include <net/net_namespace.h>
66 #include <net/sock.h>
67 #include <net/scm.h>
68 #include <net/netlink.h>
69 
70 #include "af_netlink.h"
71 
72 struct listeners {
73 	struct rcu_head		rcu;
74 	unsigned long		masks[0];
75 };
76 
77 /* state bits */
78 #define NETLINK_CONGESTED	0x0
79 
80 /* flags */
81 #define NETLINK_KERNEL_SOCKET	0x1
82 #define NETLINK_RECV_PKTINFO	0x2
83 #define NETLINK_BROADCAST_SEND_ERROR	0x4
84 #define NETLINK_RECV_NO_ENOBUFS	0x8
85 
86 static inline int netlink_is_kernel(struct sock *sk)
87 {
88 	return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
89 }
90 
91 struct netlink_table *nl_table;
92 EXPORT_SYMBOL_GPL(nl_table);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
95 
96 static int netlink_dump(struct sock *sk);
97 static void netlink_skb_destructor(struct sk_buff *skb);
98 
99 /* nl_table locking explained:
100  * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock
101  * combined with an RCU read-side lock. Insertion and removal are protected
102  * with nl_sk_hash_lock while using RCU list modification primitives and may
103  * run in parallel to nl_table_lock protected lookups. Destruction of the
104  * Netlink socket may only occur *after* nl_table_lock has been acquired
105  * either during or after the socket has been removed from the list.
106  */
107 DEFINE_RWLOCK(nl_table_lock);
108 EXPORT_SYMBOL_GPL(nl_table_lock);
109 static atomic_t nl_table_users = ATOMIC_INIT(0);
110 
111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
112 
113 /* Protects netlink socket hash table mutations */
114 DEFINE_MUTEX(nl_sk_hash_lock);
115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
116 
117 #ifdef CONFIG_PROVE_LOCKING
118 static int lockdep_nl_sk_hash_is_held(void *parent)
119 {
120 	if (debug_locks)
121 		return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock);
122 	return 1;
123 }
124 #endif
125 
126 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
127 
128 static DEFINE_SPINLOCK(netlink_tap_lock);
129 static struct list_head netlink_tap_all __read_mostly;
130 
131 static inline u32 netlink_group_mask(u32 group)
132 {
133 	return group ? 1 << (group - 1) : 0;
134 }
135 
136 int netlink_add_tap(struct netlink_tap *nt)
137 {
138 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
139 		return -EINVAL;
140 
141 	spin_lock(&netlink_tap_lock);
142 	list_add_rcu(&nt->list, &netlink_tap_all);
143 	spin_unlock(&netlink_tap_lock);
144 
145 	__module_get(nt->module);
146 
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(netlink_add_tap);
150 
151 static int __netlink_remove_tap(struct netlink_tap *nt)
152 {
153 	bool found = false;
154 	struct netlink_tap *tmp;
155 
156 	spin_lock(&netlink_tap_lock);
157 
158 	list_for_each_entry(tmp, &netlink_tap_all, list) {
159 		if (nt == tmp) {
160 			list_del_rcu(&nt->list);
161 			found = true;
162 			goto out;
163 		}
164 	}
165 
166 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
167 out:
168 	spin_unlock(&netlink_tap_lock);
169 
170 	if (found && nt->module)
171 		module_put(nt->module);
172 
173 	return found ? 0 : -ENODEV;
174 }
175 
176 int netlink_remove_tap(struct netlink_tap *nt)
177 {
178 	int ret;
179 
180 	ret = __netlink_remove_tap(nt);
181 	synchronize_net();
182 
183 	return ret;
184 }
185 EXPORT_SYMBOL_GPL(netlink_remove_tap);
186 
187 static bool netlink_filter_tap(const struct sk_buff *skb)
188 {
189 	struct sock *sk = skb->sk;
190 
191 	/* We take the more conservative approach and
192 	 * whitelist socket protocols that may pass.
193 	 */
194 	switch (sk->sk_protocol) {
195 	case NETLINK_ROUTE:
196 	case NETLINK_USERSOCK:
197 	case NETLINK_SOCK_DIAG:
198 	case NETLINK_NFLOG:
199 	case NETLINK_XFRM:
200 	case NETLINK_FIB_LOOKUP:
201 	case NETLINK_NETFILTER:
202 	case NETLINK_GENERIC:
203 		return true;
204 	}
205 
206 	return false;
207 }
208 
209 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
210 				     struct net_device *dev)
211 {
212 	struct sk_buff *nskb;
213 	struct sock *sk = skb->sk;
214 	int ret = -ENOMEM;
215 
216 	dev_hold(dev);
217 	nskb = skb_clone(skb, GFP_ATOMIC);
218 	if (nskb) {
219 		nskb->dev = dev;
220 		nskb->protocol = htons((u16) sk->sk_protocol);
221 		nskb->pkt_type = netlink_is_kernel(sk) ?
222 				 PACKET_KERNEL : PACKET_USER;
223 		skb_reset_network_header(nskb);
224 		ret = dev_queue_xmit(nskb);
225 		if (unlikely(ret > 0))
226 			ret = net_xmit_errno(ret);
227 	}
228 
229 	dev_put(dev);
230 	return ret;
231 }
232 
233 static void __netlink_deliver_tap(struct sk_buff *skb)
234 {
235 	int ret;
236 	struct netlink_tap *tmp;
237 
238 	if (!netlink_filter_tap(skb))
239 		return;
240 
241 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
242 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
243 		if (unlikely(ret))
244 			break;
245 	}
246 }
247 
248 static void netlink_deliver_tap(struct sk_buff *skb)
249 {
250 	rcu_read_lock();
251 
252 	if (unlikely(!list_empty(&netlink_tap_all)))
253 		__netlink_deliver_tap(skb);
254 
255 	rcu_read_unlock();
256 }
257 
258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
259 				       struct sk_buff *skb)
260 {
261 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
262 		netlink_deliver_tap(skb);
263 }
264 
265 static void netlink_overrun(struct sock *sk)
266 {
267 	struct netlink_sock *nlk = nlk_sk(sk);
268 
269 	if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
270 		if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
271 			sk->sk_err = ENOBUFS;
272 			sk->sk_error_report(sk);
273 		}
274 	}
275 	atomic_inc(&sk->sk_drops);
276 }
277 
278 static void netlink_rcv_wake(struct sock *sk)
279 {
280 	struct netlink_sock *nlk = nlk_sk(sk);
281 
282 	if (skb_queue_empty(&sk->sk_receive_queue))
283 		clear_bit(NETLINK_CONGESTED, &nlk->state);
284 	if (!test_bit(NETLINK_CONGESTED, &nlk->state))
285 		wake_up_interruptible(&nlk->wait);
286 }
287 
288 #ifdef CONFIG_NETLINK_MMAP
289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
290 {
291 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
292 }
293 
294 static bool netlink_rx_is_mmaped(struct sock *sk)
295 {
296 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
297 }
298 
299 static bool netlink_tx_is_mmaped(struct sock *sk)
300 {
301 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
302 }
303 
304 static __pure struct page *pgvec_to_page(const void *addr)
305 {
306 	if (is_vmalloc_addr(addr))
307 		return vmalloc_to_page(addr);
308 	else
309 		return virt_to_page(addr);
310 }
311 
312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
313 {
314 	unsigned int i;
315 
316 	for (i = 0; i < len; i++) {
317 		if (pg_vec[i] != NULL) {
318 			if (is_vmalloc_addr(pg_vec[i]))
319 				vfree(pg_vec[i]);
320 			else
321 				free_pages((unsigned long)pg_vec[i], order);
322 		}
323 	}
324 	kfree(pg_vec);
325 }
326 
327 static void *alloc_one_pg_vec_page(unsigned long order)
328 {
329 	void *buffer;
330 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
331 			  __GFP_NOWARN | __GFP_NORETRY;
332 
333 	buffer = (void *)__get_free_pages(gfp_flags, order);
334 	if (buffer != NULL)
335 		return buffer;
336 
337 	buffer = vzalloc((1 << order) * PAGE_SIZE);
338 	if (buffer != NULL)
339 		return buffer;
340 
341 	gfp_flags &= ~__GFP_NORETRY;
342 	return (void *)__get_free_pages(gfp_flags, order);
343 }
344 
345 static void **alloc_pg_vec(struct netlink_sock *nlk,
346 			   struct nl_mmap_req *req, unsigned int order)
347 {
348 	unsigned int block_nr = req->nm_block_nr;
349 	unsigned int i;
350 	void **pg_vec;
351 
352 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
353 	if (pg_vec == NULL)
354 		return NULL;
355 
356 	for (i = 0; i < block_nr; i++) {
357 		pg_vec[i] = alloc_one_pg_vec_page(order);
358 		if (pg_vec[i] == NULL)
359 			goto err1;
360 	}
361 
362 	return pg_vec;
363 err1:
364 	free_pg_vec(pg_vec, order, block_nr);
365 	return NULL;
366 }
367 
368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
369 			    bool closing, bool tx_ring)
370 {
371 	struct netlink_sock *nlk = nlk_sk(sk);
372 	struct netlink_ring *ring;
373 	struct sk_buff_head *queue;
374 	void **pg_vec = NULL;
375 	unsigned int order = 0;
376 	int err;
377 
378 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
379 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
380 
381 	if (!closing) {
382 		if (atomic_read(&nlk->mapped))
383 			return -EBUSY;
384 		if (atomic_read(&ring->pending))
385 			return -EBUSY;
386 	}
387 
388 	if (req->nm_block_nr) {
389 		if (ring->pg_vec != NULL)
390 			return -EBUSY;
391 
392 		if ((int)req->nm_block_size <= 0)
393 			return -EINVAL;
394 		if (!PAGE_ALIGNED(req->nm_block_size))
395 			return -EINVAL;
396 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
397 			return -EINVAL;
398 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
399 			return -EINVAL;
400 
401 		ring->frames_per_block = req->nm_block_size /
402 					 req->nm_frame_size;
403 		if (ring->frames_per_block == 0)
404 			return -EINVAL;
405 		if (ring->frames_per_block * req->nm_block_nr !=
406 		    req->nm_frame_nr)
407 			return -EINVAL;
408 
409 		order = get_order(req->nm_block_size);
410 		pg_vec = alloc_pg_vec(nlk, req, order);
411 		if (pg_vec == NULL)
412 			return -ENOMEM;
413 	} else {
414 		if (req->nm_frame_nr)
415 			return -EINVAL;
416 	}
417 
418 	err = -EBUSY;
419 	mutex_lock(&nlk->pg_vec_lock);
420 	if (closing || atomic_read(&nlk->mapped) == 0) {
421 		err = 0;
422 		spin_lock_bh(&queue->lock);
423 
424 		ring->frame_max		= req->nm_frame_nr - 1;
425 		ring->head		= 0;
426 		ring->frame_size	= req->nm_frame_size;
427 		ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
428 
429 		swap(ring->pg_vec_len, req->nm_block_nr);
430 		swap(ring->pg_vec_order, order);
431 		swap(ring->pg_vec, pg_vec);
432 
433 		__skb_queue_purge(queue);
434 		spin_unlock_bh(&queue->lock);
435 
436 		WARN_ON(atomic_read(&nlk->mapped));
437 	}
438 	mutex_unlock(&nlk->pg_vec_lock);
439 
440 	if (pg_vec)
441 		free_pg_vec(pg_vec, order, req->nm_block_nr);
442 	return err;
443 }
444 
445 static void netlink_mm_open(struct vm_area_struct *vma)
446 {
447 	struct file *file = vma->vm_file;
448 	struct socket *sock = file->private_data;
449 	struct sock *sk = sock->sk;
450 
451 	if (sk)
452 		atomic_inc(&nlk_sk(sk)->mapped);
453 }
454 
455 static void netlink_mm_close(struct vm_area_struct *vma)
456 {
457 	struct file *file = vma->vm_file;
458 	struct socket *sock = file->private_data;
459 	struct sock *sk = sock->sk;
460 
461 	if (sk)
462 		atomic_dec(&nlk_sk(sk)->mapped);
463 }
464 
465 static const struct vm_operations_struct netlink_mmap_ops = {
466 	.open	= netlink_mm_open,
467 	.close	= netlink_mm_close,
468 };
469 
470 static int netlink_mmap(struct file *file, struct socket *sock,
471 			struct vm_area_struct *vma)
472 {
473 	struct sock *sk = sock->sk;
474 	struct netlink_sock *nlk = nlk_sk(sk);
475 	struct netlink_ring *ring;
476 	unsigned long start, size, expected;
477 	unsigned int i;
478 	int err = -EINVAL;
479 
480 	if (vma->vm_pgoff)
481 		return -EINVAL;
482 
483 	mutex_lock(&nlk->pg_vec_lock);
484 
485 	expected = 0;
486 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
487 		if (ring->pg_vec == NULL)
488 			continue;
489 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
490 	}
491 
492 	if (expected == 0)
493 		goto out;
494 
495 	size = vma->vm_end - vma->vm_start;
496 	if (size != expected)
497 		goto out;
498 
499 	start = vma->vm_start;
500 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
501 		if (ring->pg_vec == NULL)
502 			continue;
503 
504 		for (i = 0; i < ring->pg_vec_len; i++) {
505 			struct page *page;
506 			void *kaddr = ring->pg_vec[i];
507 			unsigned int pg_num;
508 
509 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
510 				page = pgvec_to_page(kaddr);
511 				err = vm_insert_page(vma, start, page);
512 				if (err < 0)
513 					goto out;
514 				start += PAGE_SIZE;
515 				kaddr += PAGE_SIZE;
516 			}
517 		}
518 	}
519 
520 	atomic_inc(&nlk->mapped);
521 	vma->vm_ops = &netlink_mmap_ops;
522 	err = 0;
523 out:
524 	mutex_unlock(&nlk->pg_vec_lock);
525 	return err;
526 }
527 
528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
529 {
530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
531 	struct page *p_start, *p_end;
532 
533 	/* First page is flushed through netlink_{get,set}_status */
534 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
535 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
536 	while (p_start <= p_end) {
537 		flush_dcache_page(p_start);
538 		p_start++;
539 	}
540 #endif
541 }
542 
543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
544 {
545 	smp_rmb();
546 	flush_dcache_page(pgvec_to_page(hdr));
547 	return hdr->nm_status;
548 }
549 
550 static void netlink_set_status(struct nl_mmap_hdr *hdr,
551 			       enum nl_mmap_status status)
552 {
553 	smp_mb();
554 	hdr->nm_status = status;
555 	flush_dcache_page(pgvec_to_page(hdr));
556 }
557 
558 static struct nl_mmap_hdr *
559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
560 {
561 	unsigned int pg_vec_pos, frame_off;
562 
563 	pg_vec_pos = pos / ring->frames_per_block;
564 	frame_off  = pos % ring->frames_per_block;
565 
566 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
567 }
568 
569 static struct nl_mmap_hdr *
570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
571 		     enum nl_mmap_status status)
572 {
573 	struct nl_mmap_hdr *hdr;
574 
575 	hdr = __netlink_lookup_frame(ring, pos);
576 	if (netlink_get_status(hdr) != status)
577 		return NULL;
578 
579 	return hdr;
580 }
581 
582 static struct nl_mmap_hdr *
583 netlink_current_frame(const struct netlink_ring *ring,
584 		      enum nl_mmap_status status)
585 {
586 	return netlink_lookup_frame(ring, ring->head, status);
587 }
588 
589 static struct nl_mmap_hdr *
590 netlink_previous_frame(const struct netlink_ring *ring,
591 		       enum nl_mmap_status status)
592 {
593 	unsigned int prev;
594 
595 	prev = ring->head ? ring->head - 1 : ring->frame_max;
596 	return netlink_lookup_frame(ring, prev, status);
597 }
598 
599 static void netlink_increment_head(struct netlink_ring *ring)
600 {
601 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
602 }
603 
604 static void netlink_forward_ring(struct netlink_ring *ring)
605 {
606 	unsigned int head = ring->head, pos = head;
607 	const struct nl_mmap_hdr *hdr;
608 
609 	do {
610 		hdr = __netlink_lookup_frame(ring, pos);
611 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
612 			break;
613 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
614 			break;
615 		netlink_increment_head(ring);
616 	} while (ring->head != head);
617 }
618 
619 static bool netlink_dump_space(struct netlink_sock *nlk)
620 {
621 	struct netlink_ring *ring = &nlk->rx_ring;
622 	struct nl_mmap_hdr *hdr;
623 	unsigned int n;
624 
625 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
626 	if (hdr == NULL)
627 		return false;
628 
629 	n = ring->head + ring->frame_max / 2;
630 	if (n > ring->frame_max)
631 		n -= ring->frame_max;
632 
633 	hdr = __netlink_lookup_frame(ring, n);
634 
635 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
636 }
637 
638 static unsigned int netlink_poll(struct file *file, struct socket *sock,
639 				 poll_table *wait)
640 {
641 	struct sock *sk = sock->sk;
642 	struct netlink_sock *nlk = nlk_sk(sk);
643 	unsigned int mask;
644 	int err;
645 
646 	if (nlk->rx_ring.pg_vec != NULL) {
647 		/* Memory mapped sockets don't call recvmsg(), so flow control
648 		 * for dumps is performed here. A dump is allowed to continue
649 		 * if at least half the ring is unused.
650 		 */
651 		while (nlk->cb_running && netlink_dump_space(nlk)) {
652 			err = netlink_dump(sk);
653 			if (err < 0) {
654 				sk->sk_err = -err;
655 				sk->sk_error_report(sk);
656 				break;
657 			}
658 		}
659 		netlink_rcv_wake(sk);
660 	}
661 
662 	mask = datagram_poll(file, sock, wait);
663 
664 	spin_lock_bh(&sk->sk_receive_queue.lock);
665 	if (nlk->rx_ring.pg_vec) {
666 		netlink_forward_ring(&nlk->rx_ring);
667 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
668 			mask |= POLLIN | POLLRDNORM;
669 	}
670 	spin_unlock_bh(&sk->sk_receive_queue.lock);
671 
672 	spin_lock_bh(&sk->sk_write_queue.lock);
673 	if (nlk->tx_ring.pg_vec) {
674 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
675 			mask |= POLLOUT | POLLWRNORM;
676 	}
677 	spin_unlock_bh(&sk->sk_write_queue.lock);
678 
679 	return mask;
680 }
681 
682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
683 {
684 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
685 }
686 
687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
688 				   struct netlink_ring *ring,
689 				   struct nl_mmap_hdr *hdr)
690 {
691 	unsigned int size;
692 	void *data;
693 
694 	size = ring->frame_size - NL_MMAP_HDRLEN;
695 	data = (void *)hdr + NL_MMAP_HDRLEN;
696 
697 	skb->head	= data;
698 	skb->data	= data;
699 	skb_reset_tail_pointer(skb);
700 	skb->end	= skb->tail + size;
701 	skb->len	= 0;
702 
703 	skb->destructor	= netlink_skb_destructor;
704 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
705 	NETLINK_CB(skb).sk = sk;
706 }
707 
708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
709 				u32 dst_portid, u32 dst_group,
710 				struct sock_iocb *siocb)
711 {
712 	struct netlink_sock *nlk = nlk_sk(sk);
713 	struct netlink_ring *ring;
714 	struct nl_mmap_hdr *hdr;
715 	struct sk_buff *skb;
716 	unsigned int maxlen;
717 	int err = 0, len = 0;
718 
719 	mutex_lock(&nlk->pg_vec_lock);
720 
721 	ring   = &nlk->tx_ring;
722 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
723 
724 	do {
725 		unsigned int nm_len;
726 
727 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
728 		if (hdr == NULL) {
729 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
730 			    atomic_read(&nlk->tx_ring.pending))
731 				schedule();
732 			continue;
733 		}
734 
735 		nm_len = ACCESS_ONCE(hdr->nm_len);
736 		if (nm_len > maxlen) {
737 			err = -EINVAL;
738 			goto out;
739 		}
740 
741 		netlink_frame_flush_dcache(hdr, nm_len);
742 
743 		skb = alloc_skb(nm_len, GFP_KERNEL);
744 		if (skb == NULL) {
745 			err = -ENOBUFS;
746 			goto out;
747 		}
748 		__skb_put(skb, nm_len);
749 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
750 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
751 
752 		netlink_increment_head(ring);
753 
754 		NETLINK_CB(skb).portid	  = nlk->portid;
755 		NETLINK_CB(skb).dst_group = dst_group;
756 		NETLINK_CB(skb).creds	  = siocb->scm->creds;
757 
758 		err = security_netlink_send(sk, skb);
759 		if (err) {
760 			kfree_skb(skb);
761 			goto out;
762 		}
763 
764 		if (unlikely(dst_group)) {
765 			atomic_inc(&skb->users);
766 			netlink_broadcast(sk, skb, dst_portid, dst_group,
767 					  GFP_KERNEL);
768 		}
769 		err = netlink_unicast(sk, skb, dst_portid,
770 				      msg->msg_flags & MSG_DONTWAIT);
771 		if (err < 0)
772 			goto out;
773 		len += err;
774 
775 	} while (hdr != NULL ||
776 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
777 		  atomic_read(&nlk->tx_ring.pending)));
778 
779 	if (len > 0)
780 		err = len;
781 out:
782 	mutex_unlock(&nlk->pg_vec_lock);
783 	return err;
784 }
785 
786 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
787 {
788 	struct nl_mmap_hdr *hdr;
789 
790 	hdr = netlink_mmap_hdr(skb);
791 	hdr->nm_len	= skb->len;
792 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
793 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
794 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
795 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
796 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
797 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
798 
799 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
800 	kfree_skb(skb);
801 }
802 
803 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
804 {
805 	struct netlink_sock *nlk = nlk_sk(sk);
806 	struct netlink_ring *ring = &nlk->rx_ring;
807 	struct nl_mmap_hdr *hdr;
808 
809 	spin_lock_bh(&sk->sk_receive_queue.lock);
810 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
811 	if (hdr == NULL) {
812 		spin_unlock_bh(&sk->sk_receive_queue.lock);
813 		kfree_skb(skb);
814 		netlink_overrun(sk);
815 		return;
816 	}
817 	netlink_increment_head(ring);
818 	__skb_queue_tail(&sk->sk_receive_queue, skb);
819 	spin_unlock_bh(&sk->sk_receive_queue.lock);
820 
821 	hdr->nm_len	= skb->len;
822 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
823 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
824 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
825 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
826 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
827 }
828 
829 #else /* CONFIG_NETLINK_MMAP */
830 #define netlink_skb_is_mmaped(skb)	false
831 #define netlink_rx_is_mmaped(sk)	false
832 #define netlink_tx_is_mmaped(sk)	false
833 #define netlink_mmap			sock_no_mmap
834 #define netlink_poll			datagram_poll
835 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb)	0
836 #endif /* CONFIG_NETLINK_MMAP */
837 
838 static void netlink_skb_destructor(struct sk_buff *skb)
839 {
840 #ifdef CONFIG_NETLINK_MMAP
841 	struct nl_mmap_hdr *hdr;
842 	struct netlink_ring *ring;
843 	struct sock *sk;
844 
845 	/* If a packet from the kernel to userspace was freed because of an
846 	 * error without being delivered to userspace, the kernel must reset
847 	 * the status. In the direction userspace to kernel, the status is
848 	 * always reset here after the packet was processed and freed.
849 	 */
850 	if (netlink_skb_is_mmaped(skb)) {
851 		hdr = netlink_mmap_hdr(skb);
852 		sk = NETLINK_CB(skb).sk;
853 
854 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
855 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
856 			ring = &nlk_sk(sk)->tx_ring;
857 		} else {
858 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
859 				hdr->nm_len = 0;
860 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
861 			}
862 			ring = &nlk_sk(sk)->rx_ring;
863 		}
864 
865 		WARN_ON(atomic_read(&ring->pending) == 0);
866 		atomic_dec(&ring->pending);
867 		sock_put(sk);
868 
869 		skb->head = NULL;
870 	}
871 #endif
872 	if (is_vmalloc_addr(skb->head)) {
873 		if (!skb->cloned ||
874 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
875 			vfree(skb->head);
876 
877 		skb->head = NULL;
878 	}
879 	if (skb->sk != NULL)
880 		sock_rfree(skb);
881 }
882 
883 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
884 {
885 	WARN_ON(skb->sk != NULL);
886 	skb->sk = sk;
887 	skb->destructor = netlink_skb_destructor;
888 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
889 	sk_mem_charge(sk, skb->truesize);
890 }
891 
892 static void netlink_sock_destruct(struct sock *sk)
893 {
894 	struct netlink_sock *nlk = nlk_sk(sk);
895 
896 	if (nlk->cb_running) {
897 		if (nlk->cb.done)
898 			nlk->cb.done(&nlk->cb);
899 
900 		module_put(nlk->cb.module);
901 		kfree_skb(nlk->cb.skb);
902 	}
903 
904 	skb_queue_purge(&sk->sk_receive_queue);
905 #ifdef CONFIG_NETLINK_MMAP
906 	if (1) {
907 		struct nl_mmap_req req;
908 
909 		memset(&req, 0, sizeof(req));
910 		if (nlk->rx_ring.pg_vec)
911 			netlink_set_ring(sk, &req, true, false);
912 		memset(&req, 0, sizeof(req));
913 		if (nlk->tx_ring.pg_vec)
914 			netlink_set_ring(sk, &req, true, true);
915 	}
916 #endif /* CONFIG_NETLINK_MMAP */
917 
918 	if (!sock_flag(sk, SOCK_DEAD)) {
919 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
920 		return;
921 	}
922 
923 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
924 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
925 	WARN_ON(nlk_sk(sk)->groups);
926 }
927 
928 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
929  * SMP. Look, when several writers sleep and reader wakes them up, all but one
930  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
931  * this, _but_ remember, it adds useless work on UP machines.
932  */
933 
934 void netlink_table_grab(void)
935 	__acquires(nl_table_lock)
936 {
937 	might_sleep();
938 
939 	write_lock_irq(&nl_table_lock);
940 
941 	if (atomic_read(&nl_table_users)) {
942 		DECLARE_WAITQUEUE(wait, current);
943 
944 		add_wait_queue_exclusive(&nl_table_wait, &wait);
945 		for (;;) {
946 			set_current_state(TASK_UNINTERRUPTIBLE);
947 			if (atomic_read(&nl_table_users) == 0)
948 				break;
949 			write_unlock_irq(&nl_table_lock);
950 			schedule();
951 			write_lock_irq(&nl_table_lock);
952 		}
953 
954 		__set_current_state(TASK_RUNNING);
955 		remove_wait_queue(&nl_table_wait, &wait);
956 	}
957 }
958 
959 void netlink_table_ungrab(void)
960 	__releases(nl_table_lock)
961 {
962 	write_unlock_irq(&nl_table_lock);
963 	wake_up(&nl_table_wait);
964 }
965 
966 static inline void
967 netlink_lock_table(void)
968 {
969 	/* read_lock() synchronizes us to netlink_table_grab */
970 
971 	read_lock(&nl_table_lock);
972 	atomic_inc(&nl_table_users);
973 	read_unlock(&nl_table_lock);
974 }
975 
976 static inline void
977 netlink_unlock_table(void)
978 {
979 	if (atomic_dec_and_test(&nl_table_users))
980 		wake_up(&nl_table_wait);
981 }
982 
983 struct netlink_compare_arg
984 {
985 	struct net *net;
986 	u32 portid;
987 };
988 
989 static bool netlink_compare(void *ptr, void *arg)
990 {
991 	struct netlink_compare_arg *x = arg;
992 	struct sock *sk = ptr;
993 
994 	return nlk_sk(sk)->portid == x->portid &&
995 	       net_eq(sock_net(sk), x->net);
996 }
997 
998 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
999 				     struct net *net)
1000 {
1001 	struct netlink_compare_arg arg = {
1002 		.net = net,
1003 		.portid = portid,
1004 	};
1005 	u32 hash;
1006 
1007 	hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid));
1008 
1009 	return rhashtable_lookup_compare(&table->hash, hash,
1010 					 &netlink_compare, &arg);
1011 }
1012 
1013 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1014 {
1015 	struct netlink_table *table = &nl_table[protocol];
1016 	struct sock *sk;
1017 
1018 	read_lock(&nl_table_lock);
1019 	rcu_read_lock();
1020 	sk = __netlink_lookup(table, portid, net);
1021 	if (sk)
1022 		sock_hold(sk);
1023 	rcu_read_unlock();
1024 	read_unlock(&nl_table_lock);
1025 
1026 	return sk;
1027 }
1028 
1029 static const struct proto_ops netlink_ops;
1030 
1031 static void
1032 netlink_update_listeners(struct sock *sk)
1033 {
1034 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1035 	unsigned long mask;
1036 	unsigned int i;
1037 	struct listeners *listeners;
1038 
1039 	listeners = nl_deref_protected(tbl->listeners);
1040 	if (!listeners)
1041 		return;
1042 
1043 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1044 		mask = 0;
1045 		sk_for_each_bound(sk, &tbl->mc_list) {
1046 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1047 				mask |= nlk_sk(sk)->groups[i];
1048 		}
1049 		listeners->masks[i] = mask;
1050 	}
1051 	/* this function is only called with the netlink table "grabbed", which
1052 	 * makes sure updates are visible before bind or setsockopt return. */
1053 }
1054 
1055 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1056 {
1057 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1058 	int err = -EADDRINUSE;
1059 
1060 	mutex_lock(&nl_sk_hash_lock);
1061 	if (__netlink_lookup(table, portid, net))
1062 		goto err;
1063 
1064 	err = -EBUSY;
1065 	if (nlk_sk(sk)->portid)
1066 		goto err;
1067 
1068 	err = -ENOMEM;
1069 	if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1070 		goto err;
1071 
1072 	nlk_sk(sk)->portid = portid;
1073 	sock_hold(sk);
1074 	rhashtable_insert(&table->hash, &nlk_sk(sk)->node);
1075 	err = 0;
1076 err:
1077 	mutex_unlock(&nl_sk_hash_lock);
1078 	return err;
1079 }
1080 
1081 static void netlink_remove(struct sock *sk)
1082 {
1083 	struct netlink_table *table;
1084 
1085 	mutex_lock(&nl_sk_hash_lock);
1086 	table = &nl_table[sk->sk_protocol];
1087 	if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) {
1088 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1089 		__sock_put(sk);
1090 	}
1091 	mutex_unlock(&nl_sk_hash_lock);
1092 
1093 	netlink_table_grab();
1094 	if (nlk_sk(sk)->subscriptions)
1095 		__sk_del_bind_node(sk);
1096 	netlink_table_ungrab();
1097 }
1098 
1099 static struct proto netlink_proto = {
1100 	.name	  = "NETLINK",
1101 	.owner	  = THIS_MODULE,
1102 	.obj_size = sizeof(struct netlink_sock),
1103 };
1104 
1105 static int __netlink_create(struct net *net, struct socket *sock,
1106 			    struct mutex *cb_mutex, int protocol)
1107 {
1108 	struct sock *sk;
1109 	struct netlink_sock *nlk;
1110 
1111 	sock->ops = &netlink_ops;
1112 
1113 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1114 	if (!sk)
1115 		return -ENOMEM;
1116 
1117 	sock_init_data(sock, sk);
1118 
1119 	nlk = nlk_sk(sk);
1120 	if (cb_mutex) {
1121 		nlk->cb_mutex = cb_mutex;
1122 	} else {
1123 		nlk->cb_mutex = &nlk->cb_def_mutex;
1124 		mutex_init(nlk->cb_mutex);
1125 	}
1126 	init_waitqueue_head(&nlk->wait);
1127 #ifdef CONFIG_NETLINK_MMAP
1128 	mutex_init(&nlk->pg_vec_lock);
1129 #endif
1130 
1131 	sk->sk_destruct = netlink_sock_destruct;
1132 	sk->sk_protocol = protocol;
1133 	return 0;
1134 }
1135 
1136 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1137 			  int kern)
1138 {
1139 	struct module *module = NULL;
1140 	struct mutex *cb_mutex;
1141 	struct netlink_sock *nlk;
1142 	int (*bind)(int group);
1143 	void (*unbind)(int group);
1144 	int err = 0;
1145 
1146 	sock->state = SS_UNCONNECTED;
1147 
1148 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1149 		return -ESOCKTNOSUPPORT;
1150 
1151 	if (protocol < 0 || protocol >= MAX_LINKS)
1152 		return -EPROTONOSUPPORT;
1153 
1154 	netlink_lock_table();
1155 #ifdef CONFIG_MODULES
1156 	if (!nl_table[protocol].registered) {
1157 		netlink_unlock_table();
1158 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1159 		netlink_lock_table();
1160 	}
1161 #endif
1162 	if (nl_table[protocol].registered &&
1163 	    try_module_get(nl_table[protocol].module))
1164 		module = nl_table[protocol].module;
1165 	else
1166 		err = -EPROTONOSUPPORT;
1167 	cb_mutex = nl_table[protocol].cb_mutex;
1168 	bind = nl_table[protocol].bind;
1169 	unbind = nl_table[protocol].unbind;
1170 	netlink_unlock_table();
1171 
1172 	if (err < 0)
1173 		goto out;
1174 
1175 	err = __netlink_create(net, sock, cb_mutex, protocol);
1176 	if (err < 0)
1177 		goto out_module;
1178 
1179 	local_bh_disable();
1180 	sock_prot_inuse_add(net, &netlink_proto, 1);
1181 	local_bh_enable();
1182 
1183 	nlk = nlk_sk(sock->sk);
1184 	nlk->module = module;
1185 	nlk->netlink_bind = bind;
1186 	nlk->netlink_unbind = unbind;
1187 out:
1188 	return err;
1189 
1190 out_module:
1191 	module_put(module);
1192 	goto out;
1193 }
1194 
1195 static int netlink_release(struct socket *sock)
1196 {
1197 	struct sock *sk = sock->sk;
1198 	struct netlink_sock *nlk;
1199 
1200 	if (!sk)
1201 		return 0;
1202 
1203 	netlink_remove(sk);
1204 	sock_orphan(sk);
1205 	nlk = nlk_sk(sk);
1206 
1207 	/*
1208 	 * OK. Socket is unlinked, any packets that arrive now
1209 	 * will be purged.
1210 	 */
1211 
1212 	sock->sk = NULL;
1213 	wake_up_interruptible_all(&nlk->wait);
1214 
1215 	skb_queue_purge(&sk->sk_write_queue);
1216 
1217 	if (nlk->portid) {
1218 		struct netlink_notify n = {
1219 						.net = sock_net(sk),
1220 						.protocol = sk->sk_protocol,
1221 						.portid = nlk->portid,
1222 					  };
1223 		atomic_notifier_call_chain(&netlink_chain,
1224 				NETLINK_URELEASE, &n);
1225 	}
1226 
1227 	module_put(nlk->module);
1228 
1229 	netlink_table_grab();
1230 	if (netlink_is_kernel(sk)) {
1231 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1232 		if (--nl_table[sk->sk_protocol].registered == 0) {
1233 			struct listeners *old;
1234 
1235 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1236 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1237 			kfree_rcu(old, rcu);
1238 			nl_table[sk->sk_protocol].module = NULL;
1239 			nl_table[sk->sk_protocol].bind = NULL;
1240 			nl_table[sk->sk_protocol].unbind = NULL;
1241 			nl_table[sk->sk_protocol].flags = 0;
1242 			nl_table[sk->sk_protocol].registered = 0;
1243 		}
1244 	} else if (nlk->subscriptions) {
1245 		netlink_update_listeners(sk);
1246 	}
1247 	netlink_table_ungrab();
1248 
1249 	kfree(nlk->groups);
1250 	nlk->groups = NULL;
1251 
1252 	local_bh_disable();
1253 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1254 	local_bh_enable();
1255 	sock_put(sk);
1256 	return 0;
1257 }
1258 
1259 static int netlink_autobind(struct socket *sock)
1260 {
1261 	struct sock *sk = sock->sk;
1262 	struct net *net = sock_net(sk);
1263 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1264 	s32 portid = task_tgid_vnr(current);
1265 	int err;
1266 	static s32 rover = -4097;
1267 
1268 retry:
1269 	cond_resched();
1270 	netlink_table_grab();
1271 	rcu_read_lock();
1272 	if (__netlink_lookup(table, portid, net)) {
1273 		/* Bind collision, search negative portid values. */
1274 		portid = rover--;
1275 		if (rover > -4097)
1276 			rover = -4097;
1277 		rcu_read_unlock();
1278 		netlink_table_ungrab();
1279 		goto retry;
1280 	}
1281 	rcu_read_unlock();
1282 	netlink_table_ungrab();
1283 
1284 	err = netlink_insert(sk, net, portid);
1285 	if (err == -EADDRINUSE)
1286 		goto retry;
1287 
1288 	/* If 2 threads race to autobind, that is fine.  */
1289 	if (err == -EBUSY)
1290 		err = 0;
1291 
1292 	return err;
1293 }
1294 
1295 /**
1296  * __netlink_ns_capable - General netlink message capability test
1297  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1298  * @user_ns: The user namespace of the capability to use
1299  * @cap: The capability to use
1300  *
1301  * Test to see if the opener of the socket we received the message
1302  * from had when the netlink socket was created and the sender of the
1303  * message has has the capability @cap in the user namespace @user_ns.
1304  */
1305 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1306 			struct user_namespace *user_ns, int cap)
1307 {
1308 	return ((nsp->flags & NETLINK_SKB_DST) ||
1309 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1310 		ns_capable(user_ns, cap);
1311 }
1312 EXPORT_SYMBOL(__netlink_ns_capable);
1313 
1314 /**
1315  * netlink_ns_capable - General netlink message capability test
1316  * @skb: socket buffer holding a netlink command from userspace
1317  * @user_ns: The user namespace of the capability to use
1318  * @cap: The capability to use
1319  *
1320  * Test to see if the opener of the socket we received the message
1321  * from had when the netlink socket was created and the sender of the
1322  * message has has the capability @cap in the user namespace @user_ns.
1323  */
1324 bool netlink_ns_capable(const struct sk_buff *skb,
1325 			struct user_namespace *user_ns, int cap)
1326 {
1327 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1328 }
1329 EXPORT_SYMBOL(netlink_ns_capable);
1330 
1331 /**
1332  * netlink_capable - Netlink global message capability test
1333  * @skb: socket buffer holding a netlink command from userspace
1334  * @cap: The capability to use
1335  *
1336  * Test to see if the opener of the socket we received the message
1337  * from had when the netlink socket was created and the sender of the
1338  * message has has the capability @cap in all user namespaces.
1339  */
1340 bool netlink_capable(const struct sk_buff *skb, int cap)
1341 {
1342 	return netlink_ns_capable(skb, &init_user_ns, cap);
1343 }
1344 EXPORT_SYMBOL(netlink_capable);
1345 
1346 /**
1347  * netlink_net_capable - Netlink network namespace message capability test
1348  * @skb: socket buffer holding a netlink command from userspace
1349  * @cap: The capability to use
1350  *
1351  * Test to see if the opener of the socket we received the message
1352  * from had when the netlink socket was created and the sender of the
1353  * message has has the capability @cap over the network namespace of
1354  * the socket we received the message from.
1355  */
1356 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1357 {
1358 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1359 }
1360 EXPORT_SYMBOL(netlink_net_capable);
1361 
1362 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1363 {
1364 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1365 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1366 }
1367 
1368 static void
1369 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1370 {
1371 	struct netlink_sock *nlk = nlk_sk(sk);
1372 
1373 	if (nlk->subscriptions && !subscriptions)
1374 		__sk_del_bind_node(sk);
1375 	else if (!nlk->subscriptions && subscriptions)
1376 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1377 	nlk->subscriptions = subscriptions;
1378 }
1379 
1380 static int netlink_realloc_groups(struct sock *sk)
1381 {
1382 	struct netlink_sock *nlk = nlk_sk(sk);
1383 	unsigned int groups;
1384 	unsigned long *new_groups;
1385 	int err = 0;
1386 
1387 	netlink_table_grab();
1388 
1389 	groups = nl_table[sk->sk_protocol].groups;
1390 	if (!nl_table[sk->sk_protocol].registered) {
1391 		err = -ENOENT;
1392 		goto out_unlock;
1393 	}
1394 
1395 	if (nlk->ngroups >= groups)
1396 		goto out_unlock;
1397 
1398 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1399 	if (new_groups == NULL) {
1400 		err = -ENOMEM;
1401 		goto out_unlock;
1402 	}
1403 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1404 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1405 
1406 	nlk->groups = new_groups;
1407 	nlk->ngroups = groups;
1408  out_unlock:
1409 	netlink_table_ungrab();
1410 	return err;
1411 }
1412 
1413 static void netlink_unbind(int group, long unsigned int groups,
1414 			   struct netlink_sock *nlk)
1415 {
1416 	int undo;
1417 
1418 	if (!nlk->netlink_unbind)
1419 		return;
1420 
1421 	for (undo = 0; undo < group; undo++)
1422 		if (test_bit(undo, &groups))
1423 			nlk->netlink_unbind(undo);
1424 }
1425 
1426 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1427 			int addr_len)
1428 {
1429 	struct sock *sk = sock->sk;
1430 	struct net *net = sock_net(sk);
1431 	struct netlink_sock *nlk = nlk_sk(sk);
1432 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1433 	int err;
1434 	long unsigned int groups = nladdr->nl_groups;
1435 
1436 	if (addr_len < sizeof(struct sockaddr_nl))
1437 		return -EINVAL;
1438 
1439 	if (nladdr->nl_family != AF_NETLINK)
1440 		return -EINVAL;
1441 
1442 	/* Only superuser is allowed to listen multicasts */
1443 	if (groups) {
1444 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1445 			return -EPERM;
1446 		err = netlink_realloc_groups(sk);
1447 		if (err)
1448 			return err;
1449 	}
1450 
1451 	if (nlk->portid)
1452 		if (nladdr->nl_pid != nlk->portid)
1453 			return -EINVAL;
1454 
1455 	if (nlk->netlink_bind && groups) {
1456 		int group;
1457 
1458 		for (group = 0; group < nlk->ngroups; group++) {
1459 			if (!test_bit(group, &groups))
1460 				continue;
1461 			err = nlk->netlink_bind(group);
1462 			if (!err)
1463 				continue;
1464 			netlink_unbind(group, groups, nlk);
1465 			return err;
1466 		}
1467 	}
1468 
1469 	if (!nlk->portid) {
1470 		err = nladdr->nl_pid ?
1471 			netlink_insert(sk, net, nladdr->nl_pid) :
1472 			netlink_autobind(sock);
1473 		if (err) {
1474 			netlink_unbind(nlk->ngroups, groups, nlk);
1475 			return err;
1476 		}
1477 	}
1478 
1479 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1480 		return 0;
1481 
1482 	netlink_table_grab();
1483 	netlink_update_subscriptions(sk, nlk->subscriptions +
1484 					 hweight32(groups) -
1485 					 hweight32(nlk->groups[0]));
1486 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1487 	netlink_update_listeners(sk);
1488 	netlink_table_ungrab();
1489 
1490 	return 0;
1491 }
1492 
1493 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1494 			   int alen, int flags)
1495 {
1496 	int err = 0;
1497 	struct sock *sk = sock->sk;
1498 	struct netlink_sock *nlk = nlk_sk(sk);
1499 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1500 
1501 	if (alen < sizeof(addr->sa_family))
1502 		return -EINVAL;
1503 
1504 	if (addr->sa_family == AF_UNSPEC) {
1505 		sk->sk_state	= NETLINK_UNCONNECTED;
1506 		nlk->dst_portid	= 0;
1507 		nlk->dst_group  = 0;
1508 		return 0;
1509 	}
1510 	if (addr->sa_family != AF_NETLINK)
1511 		return -EINVAL;
1512 
1513 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1514 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1515 		return -EPERM;
1516 
1517 	if (!nlk->portid)
1518 		err = netlink_autobind(sock);
1519 
1520 	if (err == 0) {
1521 		sk->sk_state	= NETLINK_CONNECTED;
1522 		nlk->dst_portid = nladdr->nl_pid;
1523 		nlk->dst_group  = ffs(nladdr->nl_groups);
1524 	}
1525 
1526 	return err;
1527 }
1528 
1529 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1530 			   int *addr_len, int peer)
1531 {
1532 	struct sock *sk = sock->sk;
1533 	struct netlink_sock *nlk = nlk_sk(sk);
1534 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1535 
1536 	nladdr->nl_family = AF_NETLINK;
1537 	nladdr->nl_pad = 0;
1538 	*addr_len = sizeof(*nladdr);
1539 
1540 	if (peer) {
1541 		nladdr->nl_pid = nlk->dst_portid;
1542 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1543 	} else {
1544 		nladdr->nl_pid = nlk->portid;
1545 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1546 	}
1547 	return 0;
1548 }
1549 
1550 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1551 {
1552 	struct sock *sock;
1553 	struct netlink_sock *nlk;
1554 
1555 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1556 	if (!sock)
1557 		return ERR_PTR(-ECONNREFUSED);
1558 
1559 	/* Don't bother queuing skb if kernel socket has no input function */
1560 	nlk = nlk_sk(sock);
1561 	if (sock->sk_state == NETLINK_CONNECTED &&
1562 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1563 		sock_put(sock);
1564 		return ERR_PTR(-ECONNREFUSED);
1565 	}
1566 	return sock;
1567 }
1568 
1569 struct sock *netlink_getsockbyfilp(struct file *filp)
1570 {
1571 	struct inode *inode = file_inode(filp);
1572 	struct sock *sock;
1573 
1574 	if (!S_ISSOCK(inode->i_mode))
1575 		return ERR_PTR(-ENOTSOCK);
1576 
1577 	sock = SOCKET_I(inode)->sk;
1578 	if (sock->sk_family != AF_NETLINK)
1579 		return ERR_PTR(-EINVAL);
1580 
1581 	sock_hold(sock);
1582 	return sock;
1583 }
1584 
1585 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1586 					       int broadcast)
1587 {
1588 	struct sk_buff *skb;
1589 	void *data;
1590 
1591 	if (size <= NLMSG_GOODSIZE || broadcast)
1592 		return alloc_skb(size, GFP_KERNEL);
1593 
1594 	size = SKB_DATA_ALIGN(size) +
1595 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1596 
1597 	data = vmalloc(size);
1598 	if (data == NULL)
1599 		return NULL;
1600 
1601 	skb = build_skb(data, size);
1602 	if (skb == NULL)
1603 		vfree(data);
1604 	else {
1605 		skb->head_frag = 0;
1606 		skb->destructor = netlink_skb_destructor;
1607 	}
1608 
1609 	return skb;
1610 }
1611 
1612 /*
1613  * Attach a skb to a netlink socket.
1614  * The caller must hold a reference to the destination socket. On error, the
1615  * reference is dropped. The skb is not send to the destination, just all
1616  * all error checks are performed and memory in the queue is reserved.
1617  * Return values:
1618  * < 0: error. skb freed, reference to sock dropped.
1619  * 0: continue
1620  * 1: repeat lookup - reference dropped while waiting for socket memory.
1621  */
1622 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1623 		      long *timeo, struct sock *ssk)
1624 {
1625 	struct netlink_sock *nlk;
1626 
1627 	nlk = nlk_sk(sk);
1628 
1629 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1630 	     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1631 	    !netlink_skb_is_mmaped(skb)) {
1632 		DECLARE_WAITQUEUE(wait, current);
1633 		if (!*timeo) {
1634 			if (!ssk || netlink_is_kernel(ssk))
1635 				netlink_overrun(sk);
1636 			sock_put(sk);
1637 			kfree_skb(skb);
1638 			return -EAGAIN;
1639 		}
1640 
1641 		__set_current_state(TASK_INTERRUPTIBLE);
1642 		add_wait_queue(&nlk->wait, &wait);
1643 
1644 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1645 		     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1646 		    !sock_flag(sk, SOCK_DEAD))
1647 			*timeo = schedule_timeout(*timeo);
1648 
1649 		__set_current_state(TASK_RUNNING);
1650 		remove_wait_queue(&nlk->wait, &wait);
1651 		sock_put(sk);
1652 
1653 		if (signal_pending(current)) {
1654 			kfree_skb(skb);
1655 			return sock_intr_errno(*timeo);
1656 		}
1657 		return 1;
1658 	}
1659 	netlink_skb_set_owner_r(skb, sk);
1660 	return 0;
1661 }
1662 
1663 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1664 {
1665 	int len = skb->len;
1666 
1667 	netlink_deliver_tap(skb);
1668 
1669 #ifdef CONFIG_NETLINK_MMAP
1670 	if (netlink_skb_is_mmaped(skb))
1671 		netlink_queue_mmaped_skb(sk, skb);
1672 	else if (netlink_rx_is_mmaped(sk))
1673 		netlink_ring_set_copied(sk, skb);
1674 	else
1675 #endif /* CONFIG_NETLINK_MMAP */
1676 		skb_queue_tail(&sk->sk_receive_queue, skb);
1677 	sk->sk_data_ready(sk);
1678 	return len;
1679 }
1680 
1681 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1682 {
1683 	int len = __netlink_sendskb(sk, skb);
1684 
1685 	sock_put(sk);
1686 	return len;
1687 }
1688 
1689 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1690 {
1691 	kfree_skb(skb);
1692 	sock_put(sk);
1693 }
1694 
1695 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1696 {
1697 	int delta;
1698 
1699 	WARN_ON(skb->sk != NULL);
1700 	if (netlink_skb_is_mmaped(skb))
1701 		return skb;
1702 
1703 	delta = skb->end - skb->tail;
1704 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1705 		return skb;
1706 
1707 	if (skb_shared(skb)) {
1708 		struct sk_buff *nskb = skb_clone(skb, allocation);
1709 		if (!nskb)
1710 			return skb;
1711 		consume_skb(skb);
1712 		skb = nskb;
1713 	}
1714 
1715 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1716 		skb->truesize -= delta;
1717 
1718 	return skb;
1719 }
1720 
1721 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1722 				  struct sock *ssk)
1723 {
1724 	int ret;
1725 	struct netlink_sock *nlk = nlk_sk(sk);
1726 
1727 	ret = -ECONNREFUSED;
1728 	if (nlk->netlink_rcv != NULL) {
1729 		ret = skb->len;
1730 		netlink_skb_set_owner_r(skb, sk);
1731 		NETLINK_CB(skb).sk = ssk;
1732 		netlink_deliver_tap_kernel(sk, ssk, skb);
1733 		nlk->netlink_rcv(skb);
1734 		consume_skb(skb);
1735 	} else {
1736 		kfree_skb(skb);
1737 	}
1738 	sock_put(sk);
1739 	return ret;
1740 }
1741 
1742 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1743 		    u32 portid, int nonblock)
1744 {
1745 	struct sock *sk;
1746 	int err;
1747 	long timeo;
1748 
1749 	skb = netlink_trim(skb, gfp_any());
1750 
1751 	timeo = sock_sndtimeo(ssk, nonblock);
1752 retry:
1753 	sk = netlink_getsockbyportid(ssk, portid);
1754 	if (IS_ERR(sk)) {
1755 		kfree_skb(skb);
1756 		return PTR_ERR(sk);
1757 	}
1758 	if (netlink_is_kernel(sk))
1759 		return netlink_unicast_kernel(sk, skb, ssk);
1760 
1761 	if (sk_filter(sk, skb)) {
1762 		err = skb->len;
1763 		kfree_skb(skb);
1764 		sock_put(sk);
1765 		return err;
1766 	}
1767 
1768 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1769 	if (err == 1)
1770 		goto retry;
1771 	if (err)
1772 		return err;
1773 
1774 	return netlink_sendskb(sk, skb);
1775 }
1776 EXPORT_SYMBOL(netlink_unicast);
1777 
1778 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1779 				  u32 dst_portid, gfp_t gfp_mask)
1780 {
1781 #ifdef CONFIG_NETLINK_MMAP
1782 	struct sock *sk = NULL;
1783 	struct sk_buff *skb;
1784 	struct netlink_ring *ring;
1785 	struct nl_mmap_hdr *hdr;
1786 	unsigned int maxlen;
1787 
1788 	sk = netlink_getsockbyportid(ssk, dst_portid);
1789 	if (IS_ERR(sk))
1790 		goto out;
1791 
1792 	ring = &nlk_sk(sk)->rx_ring;
1793 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1794 	if (ring->pg_vec == NULL)
1795 		goto out_put;
1796 
1797 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1798 		goto out_put;
1799 
1800 	skb = alloc_skb_head(gfp_mask);
1801 	if (skb == NULL)
1802 		goto err1;
1803 
1804 	spin_lock_bh(&sk->sk_receive_queue.lock);
1805 	/* check again under lock */
1806 	if (ring->pg_vec == NULL)
1807 		goto out_free;
1808 
1809 	/* check again under lock */
1810 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1811 	if (maxlen < size)
1812 		goto out_free;
1813 
1814 	netlink_forward_ring(ring);
1815 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1816 	if (hdr == NULL)
1817 		goto err2;
1818 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1819 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1820 	atomic_inc(&ring->pending);
1821 	netlink_increment_head(ring);
1822 
1823 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1824 	return skb;
1825 
1826 err2:
1827 	kfree_skb(skb);
1828 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1829 	netlink_overrun(sk);
1830 err1:
1831 	sock_put(sk);
1832 	return NULL;
1833 
1834 out_free:
1835 	kfree_skb(skb);
1836 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1837 out_put:
1838 	sock_put(sk);
1839 out:
1840 #endif
1841 	return alloc_skb(size, gfp_mask);
1842 }
1843 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1844 
1845 int netlink_has_listeners(struct sock *sk, unsigned int group)
1846 {
1847 	int res = 0;
1848 	struct listeners *listeners;
1849 
1850 	BUG_ON(!netlink_is_kernel(sk));
1851 
1852 	rcu_read_lock();
1853 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1854 
1855 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1856 		res = test_bit(group - 1, listeners->masks);
1857 
1858 	rcu_read_unlock();
1859 
1860 	return res;
1861 }
1862 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1863 
1864 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1865 {
1866 	struct netlink_sock *nlk = nlk_sk(sk);
1867 
1868 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1869 	    !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1870 		netlink_skb_set_owner_r(skb, sk);
1871 		__netlink_sendskb(sk, skb);
1872 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1873 	}
1874 	return -1;
1875 }
1876 
1877 struct netlink_broadcast_data {
1878 	struct sock *exclude_sk;
1879 	struct net *net;
1880 	u32 portid;
1881 	u32 group;
1882 	int failure;
1883 	int delivery_failure;
1884 	int congested;
1885 	int delivered;
1886 	gfp_t allocation;
1887 	struct sk_buff *skb, *skb2;
1888 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1889 	void *tx_data;
1890 };
1891 
1892 static void do_one_broadcast(struct sock *sk,
1893 				    struct netlink_broadcast_data *p)
1894 {
1895 	struct netlink_sock *nlk = nlk_sk(sk);
1896 	int val;
1897 
1898 	if (p->exclude_sk == sk)
1899 		return;
1900 
1901 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1902 	    !test_bit(p->group - 1, nlk->groups))
1903 		return;
1904 
1905 	if (!net_eq(sock_net(sk), p->net))
1906 		return;
1907 
1908 	if (p->failure) {
1909 		netlink_overrun(sk);
1910 		return;
1911 	}
1912 
1913 	sock_hold(sk);
1914 	if (p->skb2 == NULL) {
1915 		if (skb_shared(p->skb)) {
1916 			p->skb2 = skb_clone(p->skb, p->allocation);
1917 		} else {
1918 			p->skb2 = skb_get(p->skb);
1919 			/*
1920 			 * skb ownership may have been set when
1921 			 * delivered to a previous socket.
1922 			 */
1923 			skb_orphan(p->skb2);
1924 		}
1925 	}
1926 	if (p->skb2 == NULL) {
1927 		netlink_overrun(sk);
1928 		/* Clone failed. Notify ALL listeners. */
1929 		p->failure = 1;
1930 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1931 			p->delivery_failure = 1;
1932 	} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1933 		kfree_skb(p->skb2);
1934 		p->skb2 = NULL;
1935 	} else if (sk_filter(sk, p->skb2)) {
1936 		kfree_skb(p->skb2);
1937 		p->skb2 = NULL;
1938 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1939 		netlink_overrun(sk);
1940 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1941 			p->delivery_failure = 1;
1942 	} else {
1943 		p->congested |= val;
1944 		p->delivered = 1;
1945 		p->skb2 = NULL;
1946 	}
1947 	sock_put(sk);
1948 }
1949 
1950 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1951 	u32 group, gfp_t allocation,
1952 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1953 	void *filter_data)
1954 {
1955 	struct net *net = sock_net(ssk);
1956 	struct netlink_broadcast_data info;
1957 	struct sock *sk;
1958 
1959 	skb = netlink_trim(skb, allocation);
1960 
1961 	info.exclude_sk = ssk;
1962 	info.net = net;
1963 	info.portid = portid;
1964 	info.group = group;
1965 	info.failure = 0;
1966 	info.delivery_failure = 0;
1967 	info.congested = 0;
1968 	info.delivered = 0;
1969 	info.allocation = allocation;
1970 	info.skb = skb;
1971 	info.skb2 = NULL;
1972 	info.tx_filter = filter;
1973 	info.tx_data = filter_data;
1974 
1975 	/* While we sleep in clone, do not allow to change socket list */
1976 
1977 	netlink_lock_table();
1978 
1979 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1980 		do_one_broadcast(sk, &info);
1981 
1982 	consume_skb(skb);
1983 
1984 	netlink_unlock_table();
1985 
1986 	if (info.delivery_failure) {
1987 		kfree_skb(info.skb2);
1988 		return -ENOBUFS;
1989 	}
1990 	consume_skb(info.skb2);
1991 
1992 	if (info.delivered) {
1993 		if (info.congested && (allocation & __GFP_WAIT))
1994 			yield();
1995 		return 0;
1996 	}
1997 	return -ESRCH;
1998 }
1999 EXPORT_SYMBOL(netlink_broadcast_filtered);
2000 
2001 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2002 		      u32 group, gfp_t allocation)
2003 {
2004 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2005 		NULL, NULL);
2006 }
2007 EXPORT_SYMBOL(netlink_broadcast);
2008 
2009 struct netlink_set_err_data {
2010 	struct sock *exclude_sk;
2011 	u32 portid;
2012 	u32 group;
2013 	int code;
2014 };
2015 
2016 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2017 {
2018 	struct netlink_sock *nlk = nlk_sk(sk);
2019 	int ret = 0;
2020 
2021 	if (sk == p->exclude_sk)
2022 		goto out;
2023 
2024 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2025 		goto out;
2026 
2027 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2028 	    !test_bit(p->group - 1, nlk->groups))
2029 		goto out;
2030 
2031 	if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2032 		ret = 1;
2033 		goto out;
2034 	}
2035 
2036 	sk->sk_err = p->code;
2037 	sk->sk_error_report(sk);
2038 out:
2039 	return ret;
2040 }
2041 
2042 /**
2043  * netlink_set_err - report error to broadcast listeners
2044  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2045  * @portid: the PORTID of a process that we want to skip (if any)
2046  * @group: the broadcast group that will notice the error
2047  * @code: error code, must be negative (as usual in kernelspace)
2048  *
2049  * This function returns the number of broadcast listeners that have set the
2050  * NETLINK_RECV_NO_ENOBUFS socket option.
2051  */
2052 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2053 {
2054 	struct netlink_set_err_data info;
2055 	struct sock *sk;
2056 	int ret = 0;
2057 
2058 	info.exclude_sk = ssk;
2059 	info.portid = portid;
2060 	info.group = group;
2061 	/* sk->sk_err wants a positive error value */
2062 	info.code = -code;
2063 
2064 	read_lock(&nl_table_lock);
2065 
2066 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2067 		ret += do_one_set_err(sk, &info);
2068 
2069 	read_unlock(&nl_table_lock);
2070 	return ret;
2071 }
2072 EXPORT_SYMBOL(netlink_set_err);
2073 
2074 /* must be called with netlink table grabbed */
2075 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2076 				     unsigned int group,
2077 				     int is_new)
2078 {
2079 	int old, new = !!is_new, subscriptions;
2080 
2081 	old = test_bit(group - 1, nlk->groups);
2082 	subscriptions = nlk->subscriptions - old + new;
2083 	if (new)
2084 		__set_bit(group - 1, nlk->groups);
2085 	else
2086 		__clear_bit(group - 1, nlk->groups);
2087 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2088 	netlink_update_listeners(&nlk->sk);
2089 }
2090 
2091 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2092 			      char __user *optval, unsigned int optlen)
2093 {
2094 	struct sock *sk = sock->sk;
2095 	struct netlink_sock *nlk = nlk_sk(sk);
2096 	unsigned int val = 0;
2097 	int err;
2098 
2099 	if (level != SOL_NETLINK)
2100 		return -ENOPROTOOPT;
2101 
2102 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2103 	    optlen >= sizeof(int) &&
2104 	    get_user(val, (unsigned int __user *)optval))
2105 		return -EFAULT;
2106 
2107 	switch (optname) {
2108 	case NETLINK_PKTINFO:
2109 		if (val)
2110 			nlk->flags |= NETLINK_RECV_PKTINFO;
2111 		else
2112 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
2113 		err = 0;
2114 		break;
2115 	case NETLINK_ADD_MEMBERSHIP:
2116 	case NETLINK_DROP_MEMBERSHIP: {
2117 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2118 			return -EPERM;
2119 		err = netlink_realloc_groups(sk);
2120 		if (err)
2121 			return err;
2122 		if (!val || val - 1 >= nlk->ngroups)
2123 			return -EINVAL;
2124 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2125 			err = nlk->netlink_bind(val);
2126 			if (err)
2127 				return err;
2128 		}
2129 		netlink_table_grab();
2130 		netlink_update_socket_mc(nlk, val,
2131 					 optname == NETLINK_ADD_MEMBERSHIP);
2132 		netlink_table_ungrab();
2133 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2134 			nlk->netlink_unbind(val);
2135 
2136 		err = 0;
2137 		break;
2138 	}
2139 	case NETLINK_BROADCAST_ERROR:
2140 		if (val)
2141 			nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2142 		else
2143 			nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2144 		err = 0;
2145 		break;
2146 	case NETLINK_NO_ENOBUFS:
2147 		if (val) {
2148 			nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2149 			clear_bit(NETLINK_CONGESTED, &nlk->state);
2150 			wake_up_interruptible(&nlk->wait);
2151 		} else {
2152 			nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2153 		}
2154 		err = 0;
2155 		break;
2156 #ifdef CONFIG_NETLINK_MMAP
2157 	case NETLINK_RX_RING:
2158 	case NETLINK_TX_RING: {
2159 		struct nl_mmap_req req;
2160 
2161 		/* Rings might consume more memory than queue limits, require
2162 		 * CAP_NET_ADMIN.
2163 		 */
2164 		if (!capable(CAP_NET_ADMIN))
2165 			return -EPERM;
2166 		if (optlen < sizeof(req))
2167 			return -EINVAL;
2168 		if (copy_from_user(&req, optval, sizeof(req)))
2169 			return -EFAULT;
2170 		err = netlink_set_ring(sk, &req, false,
2171 				       optname == NETLINK_TX_RING);
2172 		break;
2173 	}
2174 #endif /* CONFIG_NETLINK_MMAP */
2175 	default:
2176 		err = -ENOPROTOOPT;
2177 	}
2178 	return err;
2179 }
2180 
2181 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2182 			      char __user *optval, int __user *optlen)
2183 {
2184 	struct sock *sk = sock->sk;
2185 	struct netlink_sock *nlk = nlk_sk(sk);
2186 	int len, val, err;
2187 
2188 	if (level != SOL_NETLINK)
2189 		return -ENOPROTOOPT;
2190 
2191 	if (get_user(len, optlen))
2192 		return -EFAULT;
2193 	if (len < 0)
2194 		return -EINVAL;
2195 
2196 	switch (optname) {
2197 	case NETLINK_PKTINFO:
2198 		if (len < sizeof(int))
2199 			return -EINVAL;
2200 		len = sizeof(int);
2201 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2202 		if (put_user(len, optlen) ||
2203 		    put_user(val, optval))
2204 			return -EFAULT;
2205 		err = 0;
2206 		break;
2207 	case NETLINK_BROADCAST_ERROR:
2208 		if (len < sizeof(int))
2209 			return -EINVAL;
2210 		len = sizeof(int);
2211 		val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2212 		if (put_user(len, optlen) ||
2213 		    put_user(val, optval))
2214 			return -EFAULT;
2215 		err = 0;
2216 		break;
2217 	case NETLINK_NO_ENOBUFS:
2218 		if (len < sizeof(int))
2219 			return -EINVAL;
2220 		len = sizeof(int);
2221 		val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2222 		if (put_user(len, optlen) ||
2223 		    put_user(val, optval))
2224 			return -EFAULT;
2225 		err = 0;
2226 		break;
2227 	default:
2228 		err = -ENOPROTOOPT;
2229 	}
2230 	return err;
2231 }
2232 
2233 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2234 {
2235 	struct nl_pktinfo info;
2236 
2237 	info.group = NETLINK_CB(skb).dst_group;
2238 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2239 }
2240 
2241 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2242 			   struct msghdr *msg, size_t len)
2243 {
2244 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2245 	struct sock *sk = sock->sk;
2246 	struct netlink_sock *nlk = nlk_sk(sk);
2247 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2248 	u32 dst_portid;
2249 	u32 dst_group;
2250 	struct sk_buff *skb;
2251 	int err;
2252 	struct scm_cookie scm;
2253 	u32 netlink_skb_flags = 0;
2254 
2255 	if (msg->msg_flags&MSG_OOB)
2256 		return -EOPNOTSUPP;
2257 
2258 	if (NULL == siocb->scm)
2259 		siocb->scm = &scm;
2260 
2261 	err = scm_send(sock, msg, siocb->scm, true);
2262 	if (err < 0)
2263 		return err;
2264 
2265 	if (msg->msg_namelen) {
2266 		err = -EINVAL;
2267 		if (addr->nl_family != AF_NETLINK)
2268 			goto out;
2269 		dst_portid = addr->nl_pid;
2270 		dst_group = ffs(addr->nl_groups);
2271 		err =  -EPERM;
2272 		if ((dst_group || dst_portid) &&
2273 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2274 			goto out;
2275 		netlink_skb_flags |= NETLINK_SKB_DST;
2276 	} else {
2277 		dst_portid = nlk->dst_portid;
2278 		dst_group = nlk->dst_group;
2279 	}
2280 
2281 	if (!nlk->portid) {
2282 		err = netlink_autobind(sock);
2283 		if (err)
2284 			goto out;
2285 	}
2286 
2287 	if (netlink_tx_is_mmaped(sk) &&
2288 	    msg->msg_iter.iov->iov_base == NULL) {
2289 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2290 					   siocb);
2291 		goto out;
2292 	}
2293 
2294 	err = -EMSGSIZE;
2295 	if (len > sk->sk_sndbuf - 32)
2296 		goto out;
2297 	err = -ENOBUFS;
2298 	skb = netlink_alloc_large_skb(len, dst_group);
2299 	if (skb == NULL)
2300 		goto out;
2301 
2302 	NETLINK_CB(skb).portid	= nlk->portid;
2303 	NETLINK_CB(skb).dst_group = dst_group;
2304 	NETLINK_CB(skb).creds	= siocb->scm->creds;
2305 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2306 
2307 	err = -EFAULT;
2308 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2309 		kfree_skb(skb);
2310 		goto out;
2311 	}
2312 
2313 	err = security_netlink_send(sk, skb);
2314 	if (err) {
2315 		kfree_skb(skb);
2316 		goto out;
2317 	}
2318 
2319 	if (dst_group) {
2320 		atomic_inc(&skb->users);
2321 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2322 	}
2323 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2324 
2325 out:
2326 	scm_destroy(siocb->scm);
2327 	return err;
2328 }
2329 
2330 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2331 			   struct msghdr *msg, size_t len,
2332 			   int flags)
2333 {
2334 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2335 	struct scm_cookie scm;
2336 	struct sock *sk = sock->sk;
2337 	struct netlink_sock *nlk = nlk_sk(sk);
2338 	int noblock = flags&MSG_DONTWAIT;
2339 	size_t copied;
2340 	struct sk_buff *skb, *data_skb;
2341 	int err, ret;
2342 
2343 	if (flags&MSG_OOB)
2344 		return -EOPNOTSUPP;
2345 
2346 	copied = 0;
2347 
2348 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2349 	if (skb == NULL)
2350 		goto out;
2351 
2352 	data_skb = skb;
2353 
2354 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2355 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2356 		/*
2357 		 * If this skb has a frag_list, then here that means that we
2358 		 * will have to use the frag_list skb's data for compat tasks
2359 		 * and the regular skb's data for normal (non-compat) tasks.
2360 		 *
2361 		 * If we need to send the compat skb, assign it to the
2362 		 * 'data_skb' variable so that it will be used below for data
2363 		 * copying. We keep 'skb' for everything else, including
2364 		 * freeing both later.
2365 		 */
2366 		if (flags & MSG_CMSG_COMPAT)
2367 			data_skb = skb_shinfo(skb)->frag_list;
2368 	}
2369 #endif
2370 
2371 	/* Record the max length of recvmsg() calls for future allocations */
2372 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2373 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2374 				     16384);
2375 
2376 	copied = data_skb->len;
2377 	if (len < copied) {
2378 		msg->msg_flags |= MSG_TRUNC;
2379 		copied = len;
2380 	}
2381 
2382 	skb_reset_transport_header(data_skb);
2383 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2384 
2385 	if (msg->msg_name) {
2386 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2387 		addr->nl_family = AF_NETLINK;
2388 		addr->nl_pad    = 0;
2389 		addr->nl_pid	= NETLINK_CB(skb).portid;
2390 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2391 		msg->msg_namelen = sizeof(*addr);
2392 	}
2393 
2394 	if (nlk->flags & NETLINK_RECV_PKTINFO)
2395 		netlink_cmsg_recv_pktinfo(msg, skb);
2396 
2397 	if (NULL == siocb->scm) {
2398 		memset(&scm, 0, sizeof(scm));
2399 		siocb->scm = &scm;
2400 	}
2401 	siocb->scm->creds = *NETLINK_CREDS(skb);
2402 	if (flags & MSG_TRUNC)
2403 		copied = data_skb->len;
2404 
2405 	skb_free_datagram(sk, skb);
2406 
2407 	if (nlk->cb_running &&
2408 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2409 		ret = netlink_dump(sk);
2410 		if (ret) {
2411 			sk->sk_err = -ret;
2412 			sk->sk_error_report(sk);
2413 		}
2414 	}
2415 
2416 	scm_recv(sock, msg, siocb->scm, flags);
2417 out:
2418 	netlink_rcv_wake(sk);
2419 	return err ? : copied;
2420 }
2421 
2422 static void netlink_data_ready(struct sock *sk)
2423 {
2424 	BUG();
2425 }
2426 
2427 /*
2428  *	We export these functions to other modules. They provide a
2429  *	complete set of kernel non-blocking support for message
2430  *	queueing.
2431  */
2432 
2433 struct sock *
2434 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2435 			struct netlink_kernel_cfg *cfg)
2436 {
2437 	struct socket *sock;
2438 	struct sock *sk;
2439 	struct netlink_sock *nlk;
2440 	struct listeners *listeners = NULL;
2441 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2442 	unsigned int groups;
2443 
2444 	BUG_ON(!nl_table);
2445 
2446 	if (unit < 0 || unit >= MAX_LINKS)
2447 		return NULL;
2448 
2449 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2450 		return NULL;
2451 
2452 	/*
2453 	 * We have to just have a reference on the net from sk, but don't
2454 	 * get_net it. Besides, we cannot get and then put the net here.
2455 	 * So we create one inside init_net and the move it to net.
2456 	 */
2457 
2458 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2459 		goto out_sock_release_nosk;
2460 
2461 	sk = sock->sk;
2462 	sk_change_net(sk, net);
2463 
2464 	if (!cfg || cfg->groups < 32)
2465 		groups = 32;
2466 	else
2467 		groups = cfg->groups;
2468 
2469 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2470 	if (!listeners)
2471 		goto out_sock_release;
2472 
2473 	sk->sk_data_ready = netlink_data_ready;
2474 	if (cfg && cfg->input)
2475 		nlk_sk(sk)->netlink_rcv = cfg->input;
2476 
2477 	if (netlink_insert(sk, net, 0))
2478 		goto out_sock_release;
2479 
2480 	nlk = nlk_sk(sk);
2481 	nlk->flags |= NETLINK_KERNEL_SOCKET;
2482 
2483 	netlink_table_grab();
2484 	if (!nl_table[unit].registered) {
2485 		nl_table[unit].groups = groups;
2486 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2487 		nl_table[unit].cb_mutex = cb_mutex;
2488 		nl_table[unit].module = module;
2489 		if (cfg) {
2490 			nl_table[unit].bind = cfg->bind;
2491 			nl_table[unit].unbind = cfg->unbind;
2492 			nl_table[unit].flags = cfg->flags;
2493 			if (cfg->compare)
2494 				nl_table[unit].compare = cfg->compare;
2495 		}
2496 		nl_table[unit].registered = 1;
2497 	} else {
2498 		kfree(listeners);
2499 		nl_table[unit].registered++;
2500 	}
2501 	netlink_table_ungrab();
2502 	return sk;
2503 
2504 out_sock_release:
2505 	kfree(listeners);
2506 	netlink_kernel_release(sk);
2507 	return NULL;
2508 
2509 out_sock_release_nosk:
2510 	sock_release(sock);
2511 	return NULL;
2512 }
2513 EXPORT_SYMBOL(__netlink_kernel_create);
2514 
2515 void
2516 netlink_kernel_release(struct sock *sk)
2517 {
2518 	sk_release_kernel(sk);
2519 }
2520 EXPORT_SYMBOL(netlink_kernel_release);
2521 
2522 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2523 {
2524 	struct listeners *new, *old;
2525 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2526 
2527 	if (groups < 32)
2528 		groups = 32;
2529 
2530 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2531 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2532 		if (!new)
2533 			return -ENOMEM;
2534 		old = nl_deref_protected(tbl->listeners);
2535 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2536 		rcu_assign_pointer(tbl->listeners, new);
2537 
2538 		kfree_rcu(old, rcu);
2539 	}
2540 	tbl->groups = groups;
2541 
2542 	return 0;
2543 }
2544 
2545 /**
2546  * netlink_change_ngroups - change number of multicast groups
2547  *
2548  * This changes the number of multicast groups that are available
2549  * on a certain netlink family. Note that it is not possible to
2550  * change the number of groups to below 32. Also note that it does
2551  * not implicitly call netlink_clear_multicast_users() when the
2552  * number of groups is reduced.
2553  *
2554  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2555  * @groups: The new number of groups.
2556  */
2557 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2558 {
2559 	int err;
2560 
2561 	netlink_table_grab();
2562 	err = __netlink_change_ngroups(sk, groups);
2563 	netlink_table_ungrab();
2564 
2565 	return err;
2566 }
2567 
2568 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2569 {
2570 	struct sock *sk;
2571 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2572 
2573 	sk_for_each_bound(sk, &tbl->mc_list)
2574 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2575 }
2576 
2577 struct nlmsghdr *
2578 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2579 {
2580 	struct nlmsghdr *nlh;
2581 	int size = nlmsg_msg_size(len);
2582 
2583 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2584 	nlh->nlmsg_type = type;
2585 	nlh->nlmsg_len = size;
2586 	nlh->nlmsg_flags = flags;
2587 	nlh->nlmsg_pid = portid;
2588 	nlh->nlmsg_seq = seq;
2589 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2590 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2591 	return nlh;
2592 }
2593 EXPORT_SYMBOL(__nlmsg_put);
2594 
2595 /*
2596  * It looks a bit ugly.
2597  * It would be better to create kernel thread.
2598  */
2599 
2600 static int netlink_dump(struct sock *sk)
2601 {
2602 	struct netlink_sock *nlk = nlk_sk(sk);
2603 	struct netlink_callback *cb;
2604 	struct sk_buff *skb = NULL;
2605 	struct nlmsghdr *nlh;
2606 	int len, err = -ENOBUFS;
2607 	int alloc_size;
2608 
2609 	mutex_lock(nlk->cb_mutex);
2610 	if (!nlk->cb_running) {
2611 		err = -EINVAL;
2612 		goto errout_skb;
2613 	}
2614 
2615 	cb = &nlk->cb;
2616 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2617 
2618 	if (!netlink_rx_is_mmaped(sk) &&
2619 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2620 		goto errout_skb;
2621 
2622 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2623 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2624 	 * to reduce number of system calls on dump operations, if user
2625 	 * ever provided a big enough buffer.
2626 	 */
2627 	if (alloc_size < nlk->max_recvmsg_len) {
2628 		skb = netlink_alloc_skb(sk,
2629 					nlk->max_recvmsg_len,
2630 					nlk->portid,
2631 					GFP_KERNEL |
2632 					__GFP_NOWARN |
2633 					__GFP_NORETRY);
2634 		/* available room should be exact amount to avoid MSG_TRUNC */
2635 		if (skb)
2636 			skb_reserve(skb, skb_tailroom(skb) -
2637 					 nlk->max_recvmsg_len);
2638 	}
2639 	if (!skb)
2640 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2641 					GFP_KERNEL);
2642 	if (!skb)
2643 		goto errout_skb;
2644 	netlink_skb_set_owner_r(skb, sk);
2645 
2646 	len = cb->dump(skb, cb);
2647 
2648 	if (len > 0) {
2649 		mutex_unlock(nlk->cb_mutex);
2650 
2651 		if (sk_filter(sk, skb))
2652 			kfree_skb(skb);
2653 		else
2654 			__netlink_sendskb(sk, skb);
2655 		return 0;
2656 	}
2657 
2658 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2659 	if (!nlh)
2660 		goto errout_skb;
2661 
2662 	nl_dump_check_consistent(cb, nlh);
2663 
2664 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2665 
2666 	if (sk_filter(sk, skb))
2667 		kfree_skb(skb);
2668 	else
2669 		__netlink_sendskb(sk, skb);
2670 
2671 	if (cb->done)
2672 		cb->done(cb);
2673 
2674 	nlk->cb_running = false;
2675 	mutex_unlock(nlk->cb_mutex);
2676 	module_put(cb->module);
2677 	consume_skb(cb->skb);
2678 	return 0;
2679 
2680 errout_skb:
2681 	mutex_unlock(nlk->cb_mutex);
2682 	kfree_skb(skb);
2683 	return err;
2684 }
2685 
2686 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2687 			 const struct nlmsghdr *nlh,
2688 			 struct netlink_dump_control *control)
2689 {
2690 	struct netlink_callback *cb;
2691 	struct sock *sk;
2692 	struct netlink_sock *nlk;
2693 	int ret;
2694 
2695 	/* Memory mapped dump requests need to be copied to avoid looping
2696 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2697 	 * a reference to the skb.
2698 	 */
2699 	if (netlink_skb_is_mmaped(skb)) {
2700 		skb = skb_copy(skb, GFP_KERNEL);
2701 		if (skb == NULL)
2702 			return -ENOBUFS;
2703 	} else
2704 		atomic_inc(&skb->users);
2705 
2706 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2707 	if (sk == NULL) {
2708 		ret = -ECONNREFUSED;
2709 		goto error_free;
2710 	}
2711 
2712 	nlk = nlk_sk(sk);
2713 	mutex_lock(nlk->cb_mutex);
2714 	/* A dump is in progress... */
2715 	if (nlk->cb_running) {
2716 		ret = -EBUSY;
2717 		goto error_unlock;
2718 	}
2719 	/* add reference of module which cb->dump belongs to */
2720 	if (!try_module_get(control->module)) {
2721 		ret = -EPROTONOSUPPORT;
2722 		goto error_unlock;
2723 	}
2724 
2725 	cb = &nlk->cb;
2726 	memset(cb, 0, sizeof(*cb));
2727 	cb->dump = control->dump;
2728 	cb->done = control->done;
2729 	cb->nlh = nlh;
2730 	cb->data = control->data;
2731 	cb->module = control->module;
2732 	cb->min_dump_alloc = control->min_dump_alloc;
2733 	cb->skb = skb;
2734 
2735 	nlk->cb_running = true;
2736 
2737 	mutex_unlock(nlk->cb_mutex);
2738 
2739 	ret = netlink_dump(sk);
2740 	sock_put(sk);
2741 
2742 	if (ret)
2743 		return ret;
2744 
2745 	/* We successfully started a dump, by returning -EINTR we
2746 	 * signal not to send ACK even if it was requested.
2747 	 */
2748 	return -EINTR;
2749 
2750 error_unlock:
2751 	sock_put(sk);
2752 	mutex_unlock(nlk->cb_mutex);
2753 error_free:
2754 	kfree_skb(skb);
2755 	return ret;
2756 }
2757 EXPORT_SYMBOL(__netlink_dump_start);
2758 
2759 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2760 {
2761 	struct sk_buff *skb;
2762 	struct nlmsghdr *rep;
2763 	struct nlmsgerr *errmsg;
2764 	size_t payload = sizeof(*errmsg);
2765 
2766 	/* error messages get the original request appened */
2767 	if (err)
2768 		payload += nlmsg_len(nlh);
2769 
2770 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2771 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2772 	if (!skb) {
2773 		struct sock *sk;
2774 
2775 		sk = netlink_lookup(sock_net(in_skb->sk),
2776 				    in_skb->sk->sk_protocol,
2777 				    NETLINK_CB(in_skb).portid);
2778 		if (sk) {
2779 			sk->sk_err = ENOBUFS;
2780 			sk->sk_error_report(sk);
2781 			sock_put(sk);
2782 		}
2783 		return;
2784 	}
2785 
2786 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2787 			  NLMSG_ERROR, payload, 0);
2788 	errmsg = nlmsg_data(rep);
2789 	errmsg->error = err;
2790 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2791 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2792 }
2793 EXPORT_SYMBOL(netlink_ack);
2794 
2795 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2796 						     struct nlmsghdr *))
2797 {
2798 	struct nlmsghdr *nlh;
2799 	int err;
2800 
2801 	while (skb->len >= nlmsg_total_size(0)) {
2802 		int msglen;
2803 
2804 		nlh = nlmsg_hdr(skb);
2805 		err = 0;
2806 
2807 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2808 			return 0;
2809 
2810 		/* Only requests are handled by the kernel */
2811 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2812 			goto ack;
2813 
2814 		/* Skip control messages */
2815 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2816 			goto ack;
2817 
2818 		err = cb(skb, nlh);
2819 		if (err == -EINTR)
2820 			goto skip;
2821 
2822 ack:
2823 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2824 			netlink_ack(skb, nlh, err);
2825 
2826 skip:
2827 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2828 		if (msglen > skb->len)
2829 			msglen = skb->len;
2830 		skb_pull(skb, msglen);
2831 	}
2832 
2833 	return 0;
2834 }
2835 EXPORT_SYMBOL(netlink_rcv_skb);
2836 
2837 /**
2838  * nlmsg_notify - send a notification netlink message
2839  * @sk: netlink socket to use
2840  * @skb: notification message
2841  * @portid: destination netlink portid for reports or 0
2842  * @group: destination multicast group or 0
2843  * @report: 1 to report back, 0 to disable
2844  * @flags: allocation flags
2845  */
2846 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2847 		 unsigned int group, int report, gfp_t flags)
2848 {
2849 	int err = 0;
2850 
2851 	if (group) {
2852 		int exclude_portid = 0;
2853 
2854 		if (report) {
2855 			atomic_inc(&skb->users);
2856 			exclude_portid = portid;
2857 		}
2858 
2859 		/* errors reported via destination sk->sk_err, but propagate
2860 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2861 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2862 	}
2863 
2864 	if (report) {
2865 		int err2;
2866 
2867 		err2 = nlmsg_unicast(sk, skb, portid);
2868 		if (!err || err == -ESRCH)
2869 			err = err2;
2870 	}
2871 
2872 	return err;
2873 }
2874 EXPORT_SYMBOL(nlmsg_notify);
2875 
2876 #ifdef CONFIG_PROC_FS
2877 struct nl_seq_iter {
2878 	struct seq_net_private p;
2879 	int link;
2880 	int hash_idx;
2881 };
2882 
2883 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2884 {
2885 	struct nl_seq_iter *iter = seq->private;
2886 	int i, j;
2887 	struct netlink_sock *nlk;
2888 	struct sock *s;
2889 	loff_t off = 0;
2890 
2891 	for (i = 0; i < MAX_LINKS; i++) {
2892 		struct rhashtable *ht = &nl_table[i].hash;
2893 		const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2894 
2895 		for (j = 0; j < tbl->size; j++) {
2896 			rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2897 				s = (struct sock *)nlk;
2898 
2899 				if (sock_net(s) != seq_file_net(seq))
2900 					continue;
2901 				if (off == pos) {
2902 					iter->link = i;
2903 					iter->hash_idx = j;
2904 					return s;
2905 				}
2906 				++off;
2907 			}
2908 		}
2909 	}
2910 	return NULL;
2911 }
2912 
2913 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2914 	__acquires(nl_table_lock) __acquires(RCU)
2915 {
2916 	read_lock(&nl_table_lock);
2917 	rcu_read_lock();
2918 	return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2919 }
2920 
2921 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2922 {
2923 	struct rhashtable *ht;
2924 	struct netlink_sock *nlk;
2925 	struct nl_seq_iter *iter;
2926 	struct net *net;
2927 	int i, j;
2928 
2929 	++*pos;
2930 
2931 	if (v == SEQ_START_TOKEN)
2932 		return netlink_seq_socket_idx(seq, 0);
2933 
2934 	net = seq_file_net(seq);
2935 	iter = seq->private;
2936 	nlk = v;
2937 
2938 	i = iter->link;
2939 	ht = &nl_table[i].hash;
2940 	rht_for_each_entry(nlk, nlk->node.next, ht, node)
2941 		if (net_eq(sock_net((struct sock *)nlk), net))
2942 			return nlk;
2943 
2944 	j = iter->hash_idx + 1;
2945 
2946 	do {
2947 		const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2948 
2949 		for (; j < tbl->size; j++) {
2950 			rht_for_each_entry(nlk, tbl->buckets[j], ht, node) {
2951 				if (net_eq(sock_net((struct sock *)nlk), net)) {
2952 					iter->link = i;
2953 					iter->hash_idx = j;
2954 					return nlk;
2955 				}
2956 			}
2957 		}
2958 
2959 		j = 0;
2960 	} while (++i < MAX_LINKS);
2961 
2962 	return NULL;
2963 }
2964 
2965 static void netlink_seq_stop(struct seq_file *seq, void *v)
2966 	__releases(RCU) __releases(nl_table_lock)
2967 {
2968 	rcu_read_unlock();
2969 	read_unlock(&nl_table_lock);
2970 }
2971 
2972 
2973 static int netlink_seq_show(struct seq_file *seq, void *v)
2974 {
2975 	if (v == SEQ_START_TOKEN) {
2976 		seq_puts(seq,
2977 			 "sk       Eth Pid    Groups   "
2978 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
2979 	} else {
2980 		struct sock *s = v;
2981 		struct netlink_sock *nlk = nlk_sk(s);
2982 
2983 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
2984 			   s,
2985 			   s->sk_protocol,
2986 			   nlk->portid,
2987 			   nlk->groups ? (u32)nlk->groups[0] : 0,
2988 			   sk_rmem_alloc_get(s),
2989 			   sk_wmem_alloc_get(s),
2990 			   nlk->cb_running,
2991 			   atomic_read(&s->sk_refcnt),
2992 			   atomic_read(&s->sk_drops),
2993 			   sock_i_ino(s)
2994 			);
2995 
2996 	}
2997 	return 0;
2998 }
2999 
3000 static const struct seq_operations netlink_seq_ops = {
3001 	.start  = netlink_seq_start,
3002 	.next   = netlink_seq_next,
3003 	.stop   = netlink_seq_stop,
3004 	.show   = netlink_seq_show,
3005 };
3006 
3007 
3008 static int netlink_seq_open(struct inode *inode, struct file *file)
3009 {
3010 	return seq_open_net(inode, file, &netlink_seq_ops,
3011 				sizeof(struct nl_seq_iter));
3012 }
3013 
3014 static const struct file_operations netlink_seq_fops = {
3015 	.owner		= THIS_MODULE,
3016 	.open		= netlink_seq_open,
3017 	.read		= seq_read,
3018 	.llseek		= seq_lseek,
3019 	.release	= seq_release_net,
3020 };
3021 
3022 #endif
3023 
3024 int netlink_register_notifier(struct notifier_block *nb)
3025 {
3026 	return atomic_notifier_chain_register(&netlink_chain, nb);
3027 }
3028 EXPORT_SYMBOL(netlink_register_notifier);
3029 
3030 int netlink_unregister_notifier(struct notifier_block *nb)
3031 {
3032 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3033 }
3034 EXPORT_SYMBOL(netlink_unregister_notifier);
3035 
3036 static const struct proto_ops netlink_ops = {
3037 	.family =	PF_NETLINK,
3038 	.owner =	THIS_MODULE,
3039 	.release =	netlink_release,
3040 	.bind =		netlink_bind,
3041 	.connect =	netlink_connect,
3042 	.socketpair =	sock_no_socketpair,
3043 	.accept =	sock_no_accept,
3044 	.getname =	netlink_getname,
3045 	.poll =		netlink_poll,
3046 	.ioctl =	sock_no_ioctl,
3047 	.listen =	sock_no_listen,
3048 	.shutdown =	sock_no_shutdown,
3049 	.setsockopt =	netlink_setsockopt,
3050 	.getsockopt =	netlink_getsockopt,
3051 	.sendmsg =	netlink_sendmsg,
3052 	.recvmsg =	netlink_recvmsg,
3053 	.mmap =		netlink_mmap,
3054 	.sendpage =	sock_no_sendpage,
3055 };
3056 
3057 static const struct net_proto_family netlink_family_ops = {
3058 	.family = PF_NETLINK,
3059 	.create = netlink_create,
3060 	.owner	= THIS_MODULE,	/* for consistency 8) */
3061 };
3062 
3063 static int __net_init netlink_net_init(struct net *net)
3064 {
3065 #ifdef CONFIG_PROC_FS
3066 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3067 		return -ENOMEM;
3068 #endif
3069 	return 0;
3070 }
3071 
3072 static void __net_exit netlink_net_exit(struct net *net)
3073 {
3074 #ifdef CONFIG_PROC_FS
3075 	remove_proc_entry("netlink", net->proc_net);
3076 #endif
3077 }
3078 
3079 static void __init netlink_add_usersock_entry(void)
3080 {
3081 	struct listeners *listeners;
3082 	int groups = 32;
3083 
3084 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3085 	if (!listeners)
3086 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3087 
3088 	netlink_table_grab();
3089 
3090 	nl_table[NETLINK_USERSOCK].groups = groups;
3091 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3092 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3093 	nl_table[NETLINK_USERSOCK].registered = 1;
3094 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3095 
3096 	netlink_table_ungrab();
3097 }
3098 
3099 static struct pernet_operations __net_initdata netlink_net_ops = {
3100 	.init = netlink_net_init,
3101 	.exit = netlink_net_exit,
3102 };
3103 
3104 static int __init netlink_proto_init(void)
3105 {
3106 	int i;
3107 	int err = proto_register(&netlink_proto, 0);
3108 	struct rhashtable_params ht_params = {
3109 		.head_offset = offsetof(struct netlink_sock, node),
3110 		.key_offset = offsetof(struct netlink_sock, portid),
3111 		.key_len = sizeof(u32), /* portid */
3112 		.hashfn = jhash,
3113 		.max_shift = 16, /* 64K */
3114 		.grow_decision = rht_grow_above_75,
3115 		.shrink_decision = rht_shrink_below_30,
3116 #ifdef CONFIG_PROVE_LOCKING
3117 		.mutex_is_held = lockdep_nl_sk_hash_is_held,
3118 #endif
3119 	};
3120 
3121 	if (err != 0)
3122 		goto out;
3123 
3124 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3125 
3126 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3127 	if (!nl_table)
3128 		goto panic;
3129 
3130 	for (i = 0; i < MAX_LINKS; i++) {
3131 		if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3132 			while (--i > 0)
3133 				rhashtable_destroy(&nl_table[i].hash);
3134 			kfree(nl_table);
3135 			goto panic;
3136 		}
3137 	}
3138 
3139 	INIT_LIST_HEAD(&netlink_tap_all);
3140 
3141 	netlink_add_usersock_entry();
3142 
3143 	sock_register(&netlink_family_ops);
3144 	register_pernet_subsys(&netlink_net_ops);
3145 	/* The netlink device handler may be needed early. */
3146 	rtnetlink_init();
3147 out:
3148 	return err;
3149 panic:
3150 	panic("netlink_init: Cannot allocate nl_table\n");
3151 }
3152 
3153 core_initcall(netlink_proto_init);
3154