1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 65 #include <net/net_namespace.h> 66 #include <net/sock.h> 67 #include <net/scm.h> 68 #include <net/netlink.h> 69 70 #include "af_netlink.h" 71 72 struct listeners { 73 struct rcu_head rcu; 74 unsigned long masks[0]; 75 }; 76 77 /* state bits */ 78 #define NETLINK_CONGESTED 0x0 79 80 /* flags */ 81 #define NETLINK_KERNEL_SOCKET 0x1 82 #define NETLINK_RECV_PKTINFO 0x2 83 #define NETLINK_BROADCAST_SEND_ERROR 0x4 84 #define NETLINK_RECV_NO_ENOBUFS 0x8 85 86 static inline int netlink_is_kernel(struct sock *sk) 87 { 88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 89 } 90 91 struct netlink_table *nl_table; 92 EXPORT_SYMBOL_GPL(nl_table); 93 94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 95 96 static int netlink_dump(struct sock *sk); 97 static void netlink_skb_destructor(struct sk_buff *skb); 98 99 /* nl_table locking explained: 100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock 101 * combined with an RCU read-side lock. Insertion and removal are protected 102 * with nl_sk_hash_lock while using RCU list modification primitives and may 103 * run in parallel to nl_table_lock protected lookups. Destruction of the 104 * Netlink socket may only occur *after* nl_table_lock has been acquired 105 * either during or after the socket has been removed from the list. 106 */ 107 DEFINE_RWLOCK(nl_table_lock); 108 EXPORT_SYMBOL_GPL(nl_table_lock); 109 static atomic_t nl_table_users = ATOMIC_INIT(0); 110 111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 112 113 /* Protects netlink socket hash table mutations */ 114 DEFINE_MUTEX(nl_sk_hash_lock); 115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock); 116 117 #ifdef CONFIG_PROVE_LOCKING 118 static int lockdep_nl_sk_hash_is_held(void *parent) 119 { 120 if (debug_locks) 121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock); 122 return 1; 123 } 124 #endif 125 126 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 127 128 static DEFINE_SPINLOCK(netlink_tap_lock); 129 static struct list_head netlink_tap_all __read_mostly; 130 131 static inline u32 netlink_group_mask(u32 group) 132 { 133 return group ? 1 << (group - 1) : 0; 134 } 135 136 int netlink_add_tap(struct netlink_tap *nt) 137 { 138 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 139 return -EINVAL; 140 141 spin_lock(&netlink_tap_lock); 142 list_add_rcu(&nt->list, &netlink_tap_all); 143 spin_unlock(&netlink_tap_lock); 144 145 __module_get(nt->module); 146 147 return 0; 148 } 149 EXPORT_SYMBOL_GPL(netlink_add_tap); 150 151 static int __netlink_remove_tap(struct netlink_tap *nt) 152 { 153 bool found = false; 154 struct netlink_tap *tmp; 155 156 spin_lock(&netlink_tap_lock); 157 158 list_for_each_entry(tmp, &netlink_tap_all, list) { 159 if (nt == tmp) { 160 list_del_rcu(&nt->list); 161 found = true; 162 goto out; 163 } 164 } 165 166 pr_warn("__netlink_remove_tap: %p not found\n", nt); 167 out: 168 spin_unlock(&netlink_tap_lock); 169 170 if (found && nt->module) 171 module_put(nt->module); 172 173 return found ? 0 : -ENODEV; 174 } 175 176 int netlink_remove_tap(struct netlink_tap *nt) 177 { 178 int ret; 179 180 ret = __netlink_remove_tap(nt); 181 synchronize_net(); 182 183 return ret; 184 } 185 EXPORT_SYMBOL_GPL(netlink_remove_tap); 186 187 static bool netlink_filter_tap(const struct sk_buff *skb) 188 { 189 struct sock *sk = skb->sk; 190 191 /* We take the more conservative approach and 192 * whitelist socket protocols that may pass. 193 */ 194 switch (sk->sk_protocol) { 195 case NETLINK_ROUTE: 196 case NETLINK_USERSOCK: 197 case NETLINK_SOCK_DIAG: 198 case NETLINK_NFLOG: 199 case NETLINK_XFRM: 200 case NETLINK_FIB_LOOKUP: 201 case NETLINK_NETFILTER: 202 case NETLINK_GENERIC: 203 return true; 204 } 205 206 return false; 207 } 208 209 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 210 struct net_device *dev) 211 { 212 struct sk_buff *nskb; 213 struct sock *sk = skb->sk; 214 int ret = -ENOMEM; 215 216 dev_hold(dev); 217 nskb = skb_clone(skb, GFP_ATOMIC); 218 if (nskb) { 219 nskb->dev = dev; 220 nskb->protocol = htons((u16) sk->sk_protocol); 221 nskb->pkt_type = netlink_is_kernel(sk) ? 222 PACKET_KERNEL : PACKET_USER; 223 skb_reset_network_header(nskb); 224 ret = dev_queue_xmit(nskb); 225 if (unlikely(ret > 0)) 226 ret = net_xmit_errno(ret); 227 } 228 229 dev_put(dev); 230 return ret; 231 } 232 233 static void __netlink_deliver_tap(struct sk_buff *skb) 234 { 235 int ret; 236 struct netlink_tap *tmp; 237 238 if (!netlink_filter_tap(skb)) 239 return; 240 241 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 242 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 243 if (unlikely(ret)) 244 break; 245 } 246 } 247 248 static void netlink_deliver_tap(struct sk_buff *skb) 249 { 250 rcu_read_lock(); 251 252 if (unlikely(!list_empty(&netlink_tap_all))) 253 __netlink_deliver_tap(skb); 254 255 rcu_read_unlock(); 256 } 257 258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 259 struct sk_buff *skb) 260 { 261 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 262 netlink_deliver_tap(skb); 263 } 264 265 static void netlink_overrun(struct sock *sk) 266 { 267 struct netlink_sock *nlk = nlk_sk(sk); 268 269 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 270 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 271 sk->sk_err = ENOBUFS; 272 sk->sk_error_report(sk); 273 } 274 } 275 atomic_inc(&sk->sk_drops); 276 } 277 278 static void netlink_rcv_wake(struct sock *sk) 279 { 280 struct netlink_sock *nlk = nlk_sk(sk); 281 282 if (skb_queue_empty(&sk->sk_receive_queue)) 283 clear_bit(NETLINK_CONGESTED, &nlk->state); 284 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 285 wake_up_interruptible(&nlk->wait); 286 } 287 288 #ifdef CONFIG_NETLINK_MMAP 289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 290 { 291 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 292 } 293 294 static bool netlink_rx_is_mmaped(struct sock *sk) 295 { 296 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 297 } 298 299 static bool netlink_tx_is_mmaped(struct sock *sk) 300 { 301 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 302 } 303 304 static __pure struct page *pgvec_to_page(const void *addr) 305 { 306 if (is_vmalloc_addr(addr)) 307 return vmalloc_to_page(addr); 308 else 309 return virt_to_page(addr); 310 } 311 312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 313 { 314 unsigned int i; 315 316 for (i = 0; i < len; i++) { 317 if (pg_vec[i] != NULL) { 318 if (is_vmalloc_addr(pg_vec[i])) 319 vfree(pg_vec[i]); 320 else 321 free_pages((unsigned long)pg_vec[i], order); 322 } 323 } 324 kfree(pg_vec); 325 } 326 327 static void *alloc_one_pg_vec_page(unsigned long order) 328 { 329 void *buffer; 330 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 331 __GFP_NOWARN | __GFP_NORETRY; 332 333 buffer = (void *)__get_free_pages(gfp_flags, order); 334 if (buffer != NULL) 335 return buffer; 336 337 buffer = vzalloc((1 << order) * PAGE_SIZE); 338 if (buffer != NULL) 339 return buffer; 340 341 gfp_flags &= ~__GFP_NORETRY; 342 return (void *)__get_free_pages(gfp_flags, order); 343 } 344 345 static void **alloc_pg_vec(struct netlink_sock *nlk, 346 struct nl_mmap_req *req, unsigned int order) 347 { 348 unsigned int block_nr = req->nm_block_nr; 349 unsigned int i; 350 void **pg_vec; 351 352 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 353 if (pg_vec == NULL) 354 return NULL; 355 356 for (i = 0; i < block_nr; i++) { 357 pg_vec[i] = alloc_one_pg_vec_page(order); 358 if (pg_vec[i] == NULL) 359 goto err1; 360 } 361 362 return pg_vec; 363 err1: 364 free_pg_vec(pg_vec, order, block_nr); 365 return NULL; 366 } 367 368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 369 bool closing, bool tx_ring) 370 { 371 struct netlink_sock *nlk = nlk_sk(sk); 372 struct netlink_ring *ring; 373 struct sk_buff_head *queue; 374 void **pg_vec = NULL; 375 unsigned int order = 0; 376 int err; 377 378 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 379 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 380 381 if (!closing) { 382 if (atomic_read(&nlk->mapped)) 383 return -EBUSY; 384 if (atomic_read(&ring->pending)) 385 return -EBUSY; 386 } 387 388 if (req->nm_block_nr) { 389 if (ring->pg_vec != NULL) 390 return -EBUSY; 391 392 if ((int)req->nm_block_size <= 0) 393 return -EINVAL; 394 if (!PAGE_ALIGNED(req->nm_block_size)) 395 return -EINVAL; 396 if (req->nm_frame_size < NL_MMAP_HDRLEN) 397 return -EINVAL; 398 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 399 return -EINVAL; 400 401 ring->frames_per_block = req->nm_block_size / 402 req->nm_frame_size; 403 if (ring->frames_per_block == 0) 404 return -EINVAL; 405 if (ring->frames_per_block * req->nm_block_nr != 406 req->nm_frame_nr) 407 return -EINVAL; 408 409 order = get_order(req->nm_block_size); 410 pg_vec = alloc_pg_vec(nlk, req, order); 411 if (pg_vec == NULL) 412 return -ENOMEM; 413 } else { 414 if (req->nm_frame_nr) 415 return -EINVAL; 416 } 417 418 err = -EBUSY; 419 mutex_lock(&nlk->pg_vec_lock); 420 if (closing || atomic_read(&nlk->mapped) == 0) { 421 err = 0; 422 spin_lock_bh(&queue->lock); 423 424 ring->frame_max = req->nm_frame_nr - 1; 425 ring->head = 0; 426 ring->frame_size = req->nm_frame_size; 427 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 428 429 swap(ring->pg_vec_len, req->nm_block_nr); 430 swap(ring->pg_vec_order, order); 431 swap(ring->pg_vec, pg_vec); 432 433 __skb_queue_purge(queue); 434 spin_unlock_bh(&queue->lock); 435 436 WARN_ON(atomic_read(&nlk->mapped)); 437 } 438 mutex_unlock(&nlk->pg_vec_lock); 439 440 if (pg_vec) 441 free_pg_vec(pg_vec, order, req->nm_block_nr); 442 return err; 443 } 444 445 static void netlink_mm_open(struct vm_area_struct *vma) 446 { 447 struct file *file = vma->vm_file; 448 struct socket *sock = file->private_data; 449 struct sock *sk = sock->sk; 450 451 if (sk) 452 atomic_inc(&nlk_sk(sk)->mapped); 453 } 454 455 static void netlink_mm_close(struct vm_area_struct *vma) 456 { 457 struct file *file = vma->vm_file; 458 struct socket *sock = file->private_data; 459 struct sock *sk = sock->sk; 460 461 if (sk) 462 atomic_dec(&nlk_sk(sk)->mapped); 463 } 464 465 static const struct vm_operations_struct netlink_mmap_ops = { 466 .open = netlink_mm_open, 467 .close = netlink_mm_close, 468 }; 469 470 static int netlink_mmap(struct file *file, struct socket *sock, 471 struct vm_area_struct *vma) 472 { 473 struct sock *sk = sock->sk; 474 struct netlink_sock *nlk = nlk_sk(sk); 475 struct netlink_ring *ring; 476 unsigned long start, size, expected; 477 unsigned int i; 478 int err = -EINVAL; 479 480 if (vma->vm_pgoff) 481 return -EINVAL; 482 483 mutex_lock(&nlk->pg_vec_lock); 484 485 expected = 0; 486 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 487 if (ring->pg_vec == NULL) 488 continue; 489 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 490 } 491 492 if (expected == 0) 493 goto out; 494 495 size = vma->vm_end - vma->vm_start; 496 if (size != expected) 497 goto out; 498 499 start = vma->vm_start; 500 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 501 if (ring->pg_vec == NULL) 502 continue; 503 504 for (i = 0; i < ring->pg_vec_len; i++) { 505 struct page *page; 506 void *kaddr = ring->pg_vec[i]; 507 unsigned int pg_num; 508 509 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 510 page = pgvec_to_page(kaddr); 511 err = vm_insert_page(vma, start, page); 512 if (err < 0) 513 goto out; 514 start += PAGE_SIZE; 515 kaddr += PAGE_SIZE; 516 } 517 } 518 } 519 520 atomic_inc(&nlk->mapped); 521 vma->vm_ops = &netlink_mmap_ops; 522 err = 0; 523 out: 524 mutex_unlock(&nlk->pg_vec_lock); 525 return err; 526 } 527 528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 529 { 530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 531 struct page *p_start, *p_end; 532 533 /* First page is flushed through netlink_{get,set}_status */ 534 p_start = pgvec_to_page(hdr + PAGE_SIZE); 535 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 536 while (p_start <= p_end) { 537 flush_dcache_page(p_start); 538 p_start++; 539 } 540 #endif 541 } 542 543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 544 { 545 smp_rmb(); 546 flush_dcache_page(pgvec_to_page(hdr)); 547 return hdr->nm_status; 548 } 549 550 static void netlink_set_status(struct nl_mmap_hdr *hdr, 551 enum nl_mmap_status status) 552 { 553 smp_mb(); 554 hdr->nm_status = status; 555 flush_dcache_page(pgvec_to_page(hdr)); 556 } 557 558 static struct nl_mmap_hdr * 559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 560 { 561 unsigned int pg_vec_pos, frame_off; 562 563 pg_vec_pos = pos / ring->frames_per_block; 564 frame_off = pos % ring->frames_per_block; 565 566 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 567 } 568 569 static struct nl_mmap_hdr * 570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 571 enum nl_mmap_status status) 572 { 573 struct nl_mmap_hdr *hdr; 574 575 hdr = __netlink_lookup_frame(ring, pos); 576 if (netlink_get_status(hdr) != status) 577 return NULL; 578 579 return hdr; 580 } 581 582 static struct nl_mmap_hdr * 583 netlink_current_frame(const struct netlink_ring *ring, 584 enum nl_mmap_status status) 585 { 586 return netlink_lookup_frame(ring, ring->head, status); 587 } 588 589 static struct nl_mmap_hdr * 590 netlink_previous_frame(const struct netlink_ring *ring, 591 enum nl_mmap_status status) 592 { 593 unsigned int prev; 594 595 prev = ring->head ? ring->head - 1 : ring->frame_max; 596 return netlink_lookup_frame(ring, prev, status); 597 } 598 599 static void netlink_increment_head(struct netlink_ring *ring) 600 { 601 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 602 } 603 604 static void netlink_forward_ring(struct netlink_ring *ring) 605 { 606 unsigned int head = ring->head, pos = head; 607 const struct nl_mmap_hdr *hdr; 608 609 do { 610 hdr = __netlink_lookup_frame(ring, pos); 611 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 612 break; 613 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 614 break; 615 netlink_increment_head(ring); 616 } while (ring->head != head); 617 } 618 619 static bool netlink_dump_space(struct netlink_sock *nlk) 620 { 621 struct netlink_ring *ring = &nlk->rx_ring; 622 struct nl_mmap_hdr *hdr; 623 unsigned int n; 624 625 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 626 if (hdr == NULL) 627 return false; 628 629 n = ring->head + ring->frame_max / 2; 630 if (n > ring->frame_max) 631 n -= ring->frame_max; 632 633 hdr = __netlink_lookup_frame(ring, n); 634 635 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 636 } 637 638 static unsigned int netlink_poll(struct file *file, struct socket *sock, 639 poll_table *wait) 640 { 641 struct sock *sk = sock->sk; 642 struct netlink_sock *nlk = nlk_sk(sk); 643 unsigned int mask; 644 int err; 645 646 if (nlk->rx_ring.pg_vec != NULL) { 647 /* Memory mapped sockets don't call recvmsg(), so flow control 648 * for dumps is performed here. A dump is allowed to continue 649 * if at least half the ring is unused. 650 */ 651 while (nlk->cb_running && netlink_dump_space(nlk)) { 652 err = netlink_dump(sk); 653 if (err < 0) { 654 sk->sk_err = -err; 655 sk->sk_error_report(sk); 656 break; 657 } 658 } 659 netlink_rcv_wake(sk); 660 } 661 662 mask = datagram_poll(file, sock, wait); 663 664 spin_lock_bh(&sk->sk_receive_queue.lock); 665 if (nlk->rx_ring.pg_vec) { 666 netlink_forward_ring(&nlk->rx_ring); 667 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 668 mask |= POLLIN | POLLRDNORM; 669 } 670 spin_unlock_bh(&sk->sk_receive_queue.lock); 671 672 spin_lock_bh(&sk->sk_write_queue.lock); 673 if (nlk->tx_ring.pg_vec) { 674 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 675 mask |= POLLOUT | POLLWRNORM; 676 } 677 spin_unlock_bh(&sk->sk_write_queue.lock); 678 679 return mask; 680 } 681 682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 683 { 684 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 685 } 686 687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 688 struct netlink_ring *ring, 689 struct nl_mmap_hdr *hdr) 690 { 691 unsigned int size; 692 void *data; 693 694 size = ring->frame_size - NL_MMAP_HDRLEN; 695 data = (void *)hdr + NL_MMAP_HDRLEN; 696 697 skb->head = data; 698 skb->data = data; 699 skb_reset_tail_pointer(skb); 700 skb->end = skb->tail + size; 701 skb->len = 0; 702 703 skb->destructor = netlink_skb_destructor; 704 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 705 NETLINK_CB(skb).sk = sk; 706 } 707 708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 709 u32 dst_portid, u32 dst_group, 710 struct sock_iocb *siocb) 711 { 712 struct netlink_sock *nlk = nlk_sk(sk); 713 struct netlink_ring *ring; 714 struct nl_mmap_hdr *hdr; 715 struct sk_buff *skb; 716 unsigned int maxlen; 717 int err = 0, len = 0; 718 719 mutex_lock(&nlk->pg_vec_lock); 720 721 ring = &nlk->tx_ring; 722 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 723 724 do { 725 unsigned int nm_len; 726 727 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 728 if (hdr == NULL) { 729 if (!(msg->msg_flags & MSG_DONTWAIT) && 730 atomic_read(&nlk->tx_ring.pending)) 731 schedule(); 732 continue; 733 } 734 735 nm_len = ACCESS_ONCE(hdr->nm_len); 736 if (nm_len > maxlen) { 737 err = -EINVAL; 738 goto out; 739 } 740 741 netlink_frame_flush_dcache(hdr, nm_len); 742 743 skb = alloc_skb(nm_len, GFP_KERNEL); 744 if (skb == NULL) { 745 err = -ENOBUFS; 746 goto out; 747 } 748 __skb_put(skb, nm_len); 749 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 750 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 751 752 netlink_increment_head(ring); 753 754 NETLINK_CB(skb).portid = nlk->portid; 755 NETLINK_CB(skb).dst_group = dst_group; 756 NETLINK_CB(skb).creds = siocb->scm->creds; 757 758 err = security_netlink_send(sk, skb); 759 if (err) { 760 kfree_skb(skb); 761 goto out; 762 } 763 764 if (unlikely(dst_group)) { 765 atomic_inc(&skb->users); 766 netlink_broadcast(sk, skb, dst_portid, dst_group, 767 GFP_KERNEL); 768 } 769 err = netlink_unicast(sk, skb, dst_portid, 770 msg->msg_flags & MSG_DONTWAIT); 771 if (err < 0) 772 goto out; 773 len += err; 774 775 } while (hdr != NULL || 776 (!(msg->msg_flags & MSG_DONTWAIT) && 777 atomic_read(&nlk->tx_ring.pending))); 778 779 if (len > 0) 780 err = len; 781 out: 782 mutex_unlock(&nlk->pg_vec_lock); 783 return err; 784 } 785 786 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 787 { 788 struct nl_mmap_hdr *hdr; 789 790 hdr = netlink_mmap_hdr(skb); 791 hdr->nm_len = skb->len; 792 hdr->nm_group = NETLINK_CB(skb).dst_group; 793 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 794 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 795 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 796 netlink_frame_flush_dcache(hdr, hdr->nm_len); 797 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 798 799 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 800 kfree_skb(skb); 801 } 802 803 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 804 { 805 struct netlink_sock *nlk = nlk_sk(sk); 806 struct netlink_ring *ring = &nlk->rx_ring; 807 struct nl_mmap_hdr *hdr; 808 809 spin_lock_bh(&sk->sk_receive_queue.lock); 810 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 811 if (hdr == NULL) { 812 spin_unlock_bh(&sk->sk_receive_queue.lock); 813 kfree_skb(skb); 814 netlink_overrun(sk); 815 return; 816 } 817 netlink_increment_head(ring); 818 __skb_queue_tail(&sk->sk_receive_queue, skb); 819 spin_unlock_bh(&sk->sk_receive_queue.lock); 820 821 hdr->nm_len = skb->len; 822 hdr->nm_group = NETLINK_CB(skb).dst_group; 823 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 824 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 825 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 826 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 827 } 828 829 #else /* CONFIG_NETLINK_MMAP */ 830 #define netlink_skb_is_mmaped(skb) false 831 #define netlink_rx_is_mmaped(sk) false 832 #define netlink_tx_is_mmaped(sk) false 833 #define netlink_mmap sock_no_mmap 834 #define netlink_poll datagram_poll 835 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 836 #endif /* CONFIG_NETLINK_MMAP */ 837 838 static void netlink_skb_destructor(struct sk_buff *skb) 839 { 840 #ifdef CONFIG_NETLINK_MMAP 841 struct nl_mmap_hdr *hdr; 842 struct netlink_ring *ring; 843 struct sock *sk; 844 845 /* If a packet from the kernel to userspace was freed because of an 846 * error without being delivered to userspace, the kernel must reset 847 * the status. In the direction userspace to kernel, the status is 848 * always reset here after the packet was processed and freed. 849 */ 850 if (netlink_skb_is_mmaped(skb)) { 851 hdr = netlink_mmap_hdr(skb); 852 sk = NETLINK_CB(skb).sk; 853 854 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 855 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 856 ring = &nlk_sk(sk)->tx_ring; 857 } else { 858 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 859 hdr->nm_len = 0; 860 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 861 } 862 ring = &nlk_sk(sk)->rx_ring; 863 } 864 865 WARN_ON(atomic_read(&ring->pending) == 0); 866 atomic_dec(&ring->pending); 867 sock_put(sk); 868 869 skb->head = NULL; 870 } 871 #endif 872 if (is_vmalloc_addr(skb->head)) { 873 if (!skb->cloned || 874 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 875 vfree(skb->head); 876 877 skb->head = NULL; 878 } 879 if (skb->sk != NULL) 880 sock_rfree(skb); 881 } 882 883 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 884 { 885 WARN_ON(skb->sk != NULL); 886 skb->sk = sk; 887 skb->destructor = netlink_skb_destructor; 888 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 889 sk_mem_charge(sk, skb->truesize); 890 } 891 892 static void netlink_sock_destruct(struct sock *sk) 893 { 894 struct netlink_sock *nlk = nlk_sk(sk); 895 896 if (nlk->cb_running) { 897 if (nlk->cb.done) 898 nlk->cb.done(&nlk->cb); 899 900 module_put(nlk->cb.module); 901 kfree_skb(nlk->cb.skb); 902 } 903 904 skb_queue_purge(&sk->sk_receive_queue); 905 #ifdef CONFIG_NETLINK_MMAP 906 if (1) { 907 struct nl_mmap_req req; 908 909 memset(&req, 0, sizeof(req)); 910 if (nlk->rx_ring.pg_vec) 911 netlink_set_ring(sk, &req, true, false); 912 memset(&req, 0, sizeof(req)); 913 if (nlk->tx_ring.pg_vec) 914 netlink_set_ring(sk, &req, true, true); 915 } 916 #endif /* CONFIG_NETLINK_MMAP */ 917 918 if (!sock_flag(sk, SOCK_DEAD)) { 919 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 920 return; 921 } 922 923 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 924 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 925 WARN_ON(nlk_sk(sk)->groups); 926 } 927 928 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 929 * SMP. Look, when several writers sleep and reader wakes them up, all but one 930 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 931 * this, _but_ remember, it adds useless work on UP machines. 932 */ 933 934 void netlink_table_grab(void) 935 __acquires(nl_table_lock) 936 { 937 might_sleep(); 938 939 write_lock_irq(&nl_table_lock); 940 941 if (atomic_read(&nl_table_users)) { 942 DECLARE_WAITQUEUE(wait, current); 943 944 add_wait_queue_exclusive(&nl_table_wait, &wait); 945 for (;;) { 946 set_current_state(TASK_UNINTERRUPTIBLE); 947 if (atomic_read(&nl_table_users) == 0) 948 break; 949 write_unlock_irq(&nl_table_lock); 950 schedule(); 951 write_lock_irq(&nl_table_lock); 952 } 953 954 __set_current_state(TASK_RUNNING); 955 remove_wait_queue(&nl_table_wait, &wait); 956 } 957 } 958 959 void netlink_table_ungrab(void) 960 __releases(nl_table_lock) 961 { 962 write_unlock_irq(&nl_table_lock); 963 wake_up(&nl_table_wait); 964 } 965 966 static inline void 967 netlink_lock_table(void) 968 { 969 /* read_lock() synchronizes us to netlink_table_grab */ 970 971 read_lock(&nl_table_lock); 972 atomic_inc(&nl_table_users); 973 read_unlock(&nl_table_lock); 974 } 975 976 static inline void 977 netlink_unlock_table(void) 978 { 979 if (atomic_dec_and_test(&nl_table_users)) 980 wake_up(&nl_table_wait); 981 } 982 983 struct netlink_compare_arg 984 { 985 struct net *net; 986 u32 portid; 987 }; 988 989 static bool netlink_compare(void *ptr, void *arg) 990 { 991 struct netlink_compare_arg *x = arg; 992 struct sock *sk = ptr; 993 994 return nlk_sk(sk)->portid == x->portid && 995 net_eq(sock_net(sk), x->net); 996 } 997 998 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 999 struct net *net) 1000 { 1001 struct netlink_compare_arg arg = { 1002 .net = net, 1003 .portid = portid, 1004 }; 1005 u32 hash; 1006 1007 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid)); 1008 1009 return rhashtable_lookup_compare(&table->hash, hash, 1010 &netlink_compare, &arg); 1011 } 1012 1013 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1014 { 1015 struct netlink_table *table = &nl_table[protocol]; 1016 struct sock *sk; 1017 1018 read_lock(&nl_table_lock); 1019 rcu_read_lock(); 1020 sk = __netlink_lookup(table, portid, net); 1021 if (sk) 1022 sock_hold(sk); 1023 rcu_read_unlock(); 1024 read_unlock(&nl_table_lock); 1025 1026 return sk; 1027 } 1028 1029 static const struct proto_ops netlink_ops; 1030 1031 static void 1032 netlink_update_listeners(struct sock *sk) 1033 { 1034 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1035 unsigned long mask; 1036 unsigned int i; 1037 struct listeners *listeners; 1038 1039 listeners = nl_deref_protected(tbl->listeners); 1040 if (!listeners) 1041 return; 1042 1043 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1044 mask = 0; 1045 sk_for_each_bound(sk, &tbl->mc_list) { 1046 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1047 mask |= nlk_sk(sk)->groups[i]; 1048 } 1049 listeners->masks[i] = mask; 1050 } 1051 /* this function is only called with the netlink table "grabbed", which 1052 * makes sure updates are visible before bind or setsockopt return. */ 1053 } 1054 1055 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1056 { 1057 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1058 int err = -EADDRINUSE; 1059 1060 mutex_lock(&nl_sk_hash_lock); 1061 if (__netlink_lookup(table, portid, net)) 1062 goto err; 1063 1064 err = -EBUSY; 1065 if (nlk_sk(sk)->portid) 1066 goto err; 1067 1068 err = -ENOMEM; 1069 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX)) 1070 goto err; 1071 1072 nlk_sk(sk)->portid = portid; 1073 sock_hold(sk); 1074 rhashtable_insert(&table->hash, &nlk_sk(sk)->node); 1075 err = 0; 1076 err: 1077 mutex_unlock(&nl_sk_hash_lock); 1078 return err; 1079 } 1080 1081 static void netlink_remove(struct sock *sk) 1082 { 1083 struct netlink_table *table; 1084 1085 mutex_lock(&nl_sk_hash_lock); 1086 table = &nl_table[sk->sk_protocol]; 1087 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) { 1088 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1089 __sock_put(sk); 1090 } 1091 mutex_unlock(&nl_sk_hash_lock); 1092 1093 netlink_table_grab(); 1094 if (nlk_sk(sk)->subscriptions) { 1095 __sk_del_bind_node(sk); 1096 netlink_update_listeners(sk); 1097 } 1098 netlink_table_ungrab(); 1099 } 1100 1101 static struct proto netlink_proto = { 1102 .name = "NETLINK", 1103 .owner = THIS_MODULE, 1104 .obj_size = sizeof(struct netlink_sock), 1105 }; 1106 1107 static int __netlink_create(struct net *net, struct socket *sock, 1108 struct mutex *cb_mutex, int protocol) 1109 { 1110 struct sock *sk; 1111 struct netlink_sock *nlk; 1112 1113 sock->ops = &netlink_ops; 1114 1115 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1116 if (!sk) 1117 return -ENOMEM; 1118 1119 sock_init_data(sock, sk); 1120 1121 nlk = nlk_sk(sk); 1122 if (cb_mutex) { 1123 nlk->cb_mutex = cb_mutex; 1124 } else { 1125 nlk->cb_mutex = &nlk->cb_def_mutex; 1126 mutex_init(nlk->cb_mutex); 1127 } 1128 init_waitqueue_head(&nlk->wait); 1129 #ifdef CONFIG_NETLINK_MMAP 1130 mutex_init(&nlk->pg_vec_lock); 1131 #endif 1132 1133 sk->sk_destruct = netlink_sock_destruct; 1134 sk->sk_protocol = protocol; 1135 return 0; 1136 } 1137 1138 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1139 int kern) 1140 { 1141 struct module *module = NULL; 1142 struct mutex *cb_mutex; 1143 struct netlink_sock *nlk; 1144 int (*bind)(struct net *net, int group); 1145 void (*unbind)(struct net *net, int group); 1146 int err = 0; 1147 1148 sock->state = SS_UNCONNECTED; 1149 1150 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1151 return -ESOCKTNOSUPPORT; 1152 1153 if (protocol < 0 || protocol >= MAX_LINKS) 1154 return -EPROTONOSUPPORT; 1155 1156 netlink_lock_table(); 1157 #ifdef CONFIG_MODULES 1158 if (!nl_table[protocol].registered) { 1159 netlink_unlock_table(); 1160 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1161 netlink_lock_table(); 1162 } 1163 #endif 1164 if (nl_table[protocol].registered && 1165 try_module_get(nl_table[protocol].module)) 1166 module = nl_table[protocol].module; 1167 else 1168 err = -EPROTONOSUPPORT; 1169 cb_mutex = nl_table[protocol].cb_mutex; 1170 bind = nl_table[protocol].bind; 1171 unbind = nl_table[protocol].unbind; 1172 netlink_unlock_table(); 1173 1174 if (err < 0) 1175 goto out; 1176 1177 err = __netlink_create(net, sock, cb_mutex, protocol); 1178 if (err < 0) 1179 goto out_module; 1180 1181 local_bh_disable(); 1182 sock_prot_inuse_add(net, &netlink_proto, 1); 1183 local_bh_enable(); 1184 1185 nlk = nlk_sk(sock->sk); 1186 nlk->module = module; 1187 nlk->netlink_bind = bind; 1188 nlk->netlink_unbind = unbind; 1189 out: 1190 return err; 1191 1192 out_module: 1193 module_put(module); 1194 goto out; 1195 } 1196 1197 static int netlink_release(struct socket *sock) 1198 { 1199 struct sock *sk = sock->sk; 1200 struct netlink_sock *nlk; 1201 1202 if (!sk) 1203 return 0; 1204 1205 netlink_remove(sk); 1206 sock_orphan(sk); 1207 nlk = nlk_sk(sk); 1208 1209 /* 1210 * OK. Socket is unlinked, any packets that arrive now 1211 * will be purged. 1212 */ 1213 1214 sock->sk = NULL; 1215 wake_up_interruptible_all(&nlk->wait); 1216 1217 skb_queue_purge(&sk->sk_write_queue); 1218 1219 if (nlk->portid) { 1220 struct netlink_notify n = { 1221 .net = sock_net(sk), 1222 .protocol = sk->sk_protocol, 1223 .portid = nlk->portid, 1224 }; 1225 atomic_notifier_call_chain(&netlink_chain, 1226 NETLINK_URELEASE, &n); 1227 } 1228 1229 module_put(nlk->module); 1230 1231 if (netlink_is_kernel(sk)) { 1232 netlink_table_grab(); 1233 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1234 if (--nl_table[sk->sk_protocol].registered == 0) { 1235 struct listeners *old; 1236 1237 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1238 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1239 kfree_rcu(old, rcu); 1240 nl_table[sk->sk_protocol].module = NULL; 1241 nl_table[sk->sk_protocol].bind = NULL; 1242 nl_table[sk->sk_protocol].unbind = NULL; 1243 nl_table[sk->sk_protocol].flags = 0; 1244 nl_table[sk->sk_protocol].registered = 0; 1245 } 1246 netlink_table_ungrab(); 1247 } 1248 1249 if (nlk->netlink_unbind) { 1250 int i; 1251 1252 for (i = 0; i < nlk->ngroups; i++) 1253 if (test_bit(i, nlk->groups)) 1254 nlk->netlink_unbind(sock_net(sk), i + 1); 1255 } 1256 kfree(nlk->groups); 1257 nlk->groups = NULL; 1258 1259 local_bh_disable(); 1260 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1261 local_bh_enable(); 1262 sock_put(sk); 1263 return 0; 1264 } 1265 1266 static int netlink_autobind(struct socket *sock) 1267 { 1268 struct sock *sk = sock->sk; 1269 struct net *net = sock_net(sk); 1270 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1271 s32 portid = task_tgid_vnr(current); 1272 int err; 1273 static s32 rover = -4097; 1274 1275 retry: 1276 cond_resched(); 1277 netlink_table_grab(); 1278 rcu_read_lock(); 1279 if (__netlink_lookup(table, portid, net)) { 1280 /* Bind collision, search negative portid values. */ 1281 portid = rover--; 1282 if (rover > -4097) 1283 rover = -4097; 1284 rcu_read_unlock(); 1285 netlink_table_ungrab(); 1286 goto retry; 1287 } 1288 rcu_read_unlock(); 1289 netlink_table_ungrab(); 1290 1291 err = netlink_insert(sk, net, portid); 1292 if (err == -EADDRINUSE) 1293 goto retry; 1294 1295 /* If 2 threads race to autobind, that is fine. */ 1296 if (err == -EBUSY) 1297 err = 0; 1298 1299 return err; 1300 } 1301 1302 /** 1303 * __netlink_ns_capable - General netlink message capability test 1304 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1305 * @user_ns: The user namespace of the capability to use 1306 * @cap: The capability to use 1307 * 1308 * Test to see if the opener of the socket we received the message 1309 * from had when the netlink socket was created and the sender of the 1310 * message has has the capability @cap in the user namespace @user_ns. 1311 */ 1312 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1313 struct user_namespace *user_ns, int cap) 1314 { 1315 return ((nsp->flags & NETLINK_SKB_DST) || 1316 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1317 ns_capable(user_ns, cap); 1318 } 1319 EXPORT_SYMBOL(__netlink_ns_capable); 1320 1321 /** 1322 * netlink_ns_capable - General netlink message capability test 1323 * @skb: socket buffer holding a netlink command from userspace 1324 * @user_ns: The user namespace of the capability to use 1325 * @cap: The capability to use 1326 * 1327 * Test to see if the opener of the socket we received the message 1328 * from had when the netlink socket was created and the sender of the 1329 * message has has the capability @cap in the user namespace @user_ns. 1330 */ 1331 bool netlink_ns_capable(const struct sk_buff *skb, 1332 struct user_namespace *user_ns, int cap) 1333 { 1334 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1335 } 1336 EXPORT_SYMBOL(netlink_ns_capable); 1337 1338 /** 1339 * netlink_capable - Netlink global message capability test 1340 * @skb: socket buffer holding a netlink command from userspace 1341 * @cap: The capability to use 1342 * 1343 * Test to see if the opener of the socket we received the message 1344 * from had when the netlink socket was created and the sender of the 1345 * message has has the capability @cap in all user namespaces. 1346 */ 1347 bool netlink_capable(const struct sk_buff *skb, int cap) 1348 { 1349 return netlink_ns_capable(skb, &init_user_ns, cap); 1350 } 1351 EXPORT_SYMBOL(netlink_capable); 1352 1353 /** 1354 * netlink_net_capable - Netlink network namespace message capability test 1355 * @skb: socket buffer holding a netlink command from userspace 1356 * @cap: The capability to use 1357 * 1358 * Test to see if the opener of the socket we received the message 1359 * from had when the netlink socket was created and the sender of the 1360 * message has has the capability @cap over the network namespace of 1361 * the socket we received the message from. 1362 */ 1363 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1364 { 1365 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1366 } 1367 EXPORT_SYMBOL(netlink_net_capable); 1368 1369 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1370 { 1371 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1372 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1373 } 1374 1375 static void 1376 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1377 { 1378 struct netlink_sock *nlk = nlk_sk(sk); 1379 1380 if (nlk->subscriptions && !subscriptions) 1381 __sk_del_bind_node(sk); 1382 else if (!nlk->subscriptions && subscriptions) 1383 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1384 nlk->subscriptions = subscriptions; 1385 } 1386 1387 static int netlink_realloc_groups(struct sock *sk) 1388 { 1389 struct netlink_sock *nlk = nlk_sk(sk); 1390 unsigned int groups; 1391 unsigned long *new_groups; 1392 int err = 0; 1393 1394 netlink_table_grab(); 1395 1396 groups = nl_table[sk->sk_protocol].groups; 1397 if (!nl_table[sk->sk_protocol].registered) { 1398 err = -ENOENT; 1399 goto out_unlock; 1400 } 1401 1402 if (nlk->ngroups >= groups) 1403 goto out_unlock; 1404 1405 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1406 if (new_groups == NULL) { 1407 err = -ENOMEM; 1408 goto out_unlock; 1409 } 1410 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1411 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1412 1413 nlk->groups = new_groups; 1414 nlk->ngroups = groups; 1415 out_unlock: 1416 netlink_table_ungrab(); 1417 return err; 1418 } 1419 1420 static void netlink_undo_bind(int group, long unsigned int groups, 1421 struct sock *sk) 1422 { 1423 struct netlink_sock *nlk = nlk_sk(sk); 1424 int undo; 1425 1426 if (!nlk->netlink_unbind) 1427 return; 1428 1429 for (undo = 0; undo < group; undo++) 1430 if (test_bit(undo, &groups)) 1431 nlk->netlink_unbind(sock_net(sk), undo); 1432 } 1433 1434 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1435 int addr_len) 1436 { 1437 struct sock *sk = sock->sk; 1438 struct net *net = sock_net(sk); 1439 struct netlink_sock *nlk = nlk_sk(sk); 1440 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1441 int err; 1442 long unsigned int groups = nladdr->nl_groups; 1443 1444 if (addr_len < sizeof(struct sockaddr_nl)) 1445 return -EINVAL; 1446 1447 if (nladdr->nl_family != AF_NETLINK) 1448 return -EINVAL; 1449 1450 /* Only superuser is allowed to listen multicasts */ 1451 if (groups) { 1452 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1453 return -EPERM; 1454 err = netlink_realloc_groups(sk); 1455 if (err) 1456 return err; 1457 } 1458 1459 if (nlk->portid) 1460 if (nladdr->nl_pid != nlk->portid) 1461 return -EINVAL; 1462 1463 if (nlk->netlink_bind && groups) { 1464 int group; 1465 1466 for (group = 0; group < nlk->ngroups; group++) { 1467 if (!test_bit(group, &groups)) 1468 continue; 1469 err = nlk->netlink_bind(net, group); 1470 if (!err) 1471 continue; 1472 netlink_undo_bind(group, groups, sk); 1473 return err; 1474 } 1475 } 1476 1477 if (!nlk->portid) { 1478 err = nladdr->nl_pid ? 1479 netlink_insert(sk, net, nladdr->nl_pid) : 1480 netlink_autobind(sock); 1481 if (err) { 1482 netlink_undo_bind(nlk->ngroups, groups, sk); 1483 return err; 1484 } 1485 } 1486 1487 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1488 return 0; 1489 1490 netlink_table_grab(); 1491 netlink_update_subscriptions(sk, nlk->subscriptions + 1492 hweight32(groups) - 1493 hweight32(nlk->groups[0])); 1494 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1495 netlink_update_listeners(sk); 1496 netlink_table_ungrab(); 1497 1498 return 0; 1499 } 1500 1501 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1502 int alen, int flags) 1503 { 1504 int err = 0; 1505 struct sock *sk = sock->sk; 1506 struct netlink_sock *nlk = nlk_sk(sk); 1507 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1508 1509 if (alen < sizeof(addr->sa_family)) 1510 return -EINVAL; 1511 1512 if (addr->sa_family == AF_UNSPEC) { 1513 sk->sk_state = NETLINK_UNCONNECTED; 1514 nlk->dst_portid = 0; 1515 nlk->dst_group = 0; 1516 return 0; 1517 } 1518 if (addr->sa_family != AF_NETLINK) 1519 return -EINVAL; 1520 1521 if ((nladdr->nl_groups || nladdr->nl_pid) && 1522 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1523 return -EPERM; 1524 1525 if (!nlk->portid) 1526 err = netlink_autobind(sock); 1527 1528 if (err == 0) { 1529 sk->sk_state = NETLINK_CONNECTED; 1530 nlk->dst_portid = nladdr->nl_pid; 1531 nlk->dst_group = ffs(nladdr->nl_groups); 1532 } 1533 1534 return err; 1535 } 1536 1537 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1538 int *addr_len, int peer) 1539 { 1540 struct sock *sk = sock->sk; 1541 struct netlink_sock *nlk = nlk_sk(sk); 1542 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1543 1544 nladdr->nl_family = AF_NETLINK; 1545 nladdr->nl_pad = 0; 1546 *addr_len = sizeof(*nladdr); 1547 1548 if (peer) { 1549 nladdr->nl_pid = nlk->dst_portid; 1550 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1551 } else { 1552 nladdr->nl_pid = nlk->portid; 1553 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1554 } 1555 return 0; 1556 } 1557 1558 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1559 { 1560 struct sock *sock; 1561 struct netlink_sock *nlk; 1562 1563 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1564 if (!sock) 1565 return ERR_PTR(-ECONNREFUSED); 1566 1567 /* Don't bother queuing skb if kernel socket has no input function */ 1568 nlk = nlk_sk(sock); 1569 if (sock->sk_state == NETLINK_CONNECTED && 1570 nlk->dst_portid != nlk_sk(ssk)->portid) { 1571 sock_put(sock); 1572 return ERR_PTR(-ECONNREFUSED); 1573 } 1574 return sock; 1575 } 1576 1577 struct sock *netlink_getsockbyfilp(struct file *filp) 1578 { 1579 struct inode *inode = file_inode(filp); 1580 struct sock *sock; 1581 1582 if (!S_ISSOCK(inode->i_mode)) 1583 return ERR_PTR(-ENOTSOCK); 1584 1585 sock = SOCKET_I(inode)->sk; 1586 if (sock->sk_family != AF_NETLINK) 1587 return ERR_PTR(-EINVAL); 1588 1589 sock_hold(sock); 1590 return sock; 1591 } 1592 1593 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1594 int broadcast) 1595 { 1596 struct sk_buff *skb; 1597 void *data; 1598 1599 if (size <= NLMSG_GOODSIZE || broadcast) 1600 return alloc_skb(size, GFP_KERNEL); 1601 1602 size = SKB_DATA_ALIGN(size) + 1603 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1604 1605 data = vmalloc(size); 1606 if (data == NULL) 1607 return NULL; 1608 1609 skb = build_skb(data, size); 1610 if (skb == NULL) 1611 vfree(data); 1612 else { 1613 skb->head_frag = 0; 1614 skb->destructor = netlink_skb_destructor; 1615 } 1616 1617 return skb; 1618 } 1619 1620 /* 1621 * Attach a skb to a netlink socket. 1622 * The caller must hold a reference to the destination socket. On error, the 1623 * reference is dropped. The skb is not send to the destination, just all 1624 * all error checks are performed and memory in the queue is reserved. 1625 * Return values: 1626 * < 0: error. skb freed, reference to sock dropped. 1627 * 0: continue 1628 * 1: repeat lookup - reference dropped while waiting for socket memory. 1629 */ 1630 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1631 long *timeo, struct sock *ssk) 1632 { 1633 struct netlink_sock *nlk; 1634 1635 nlk = nlk_sk(sk); 1636 1637 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1638 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1639 !netlink_skb_is_mmaped(skb)) { 1640 DECLARE_WAITQUEUE(wait, current); 1641 if (!*timeo) { 1642 if (!ssk || netlink_is_kernel(ssk)) 1643 netlink_overrun(sk); 1644 sock_put(sk); 1645 kfree_skb(skb); 1646 return -EAGAIN; 1647 } 1648 1649 __set_current_state(TASK_INTERRUPTIBLE); 1650 add_wait_queue(&nlk->wait, &wait); 1651 1652 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1653 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1654 !sock_flag(sk, SOCK_DEAD)) 1655 *timeo = schedule_timeout(*timeo); 1656 1657 __set_current_state(TASK_RUNNING); 1658 remove_wait_queue(&nlk->wait, &wait); 1659 sock_put(sk); 1660 1661 if (signal_pending(current)) { 1662 kfree_skb(skb); 1663 return sock_intr_errno(*timeo); 1664 } 1665 return 1; 1666 } 1667 netlink_skb_set_owner_r(skb, sk); 1668 return 0; 1669 } 1670 1671 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1672 { 1673 int len = skb->len; 1674 1675 netlink_deliver_tap(skb); 1676 1677 #ifdef CONFIG_NETLINK_MMAP 1678 if (netlink_skb_is_mmaped(skb)) 1679 netlink_queue_mmaped_skb(sk, skb); 1680 else if (netlink_rx_is_mmaped(sk)) 1681 netlink_ring_set_copied(sk, skb); 1682 else 1683 #endif /* CONFIG_NETLINK_MMAP */ 1684 skb_queue_tail(&sk->sk_receive_queue, skb); 1685 sk->sk_data_ready(sk); 1686 return len; 1687 } 1688 1689 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1690 { 1691 int len = __netlink_sendskb(sk, skb); 1692 1693 sock_put(sk); 1694 return len; 1695 } 1696 1697 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1698 { 1699 kfree_skb(skb); 1700 sock_put(sk); 1701 } 1702 1703 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1704 { 1705 int delta; 1706 1707 WARN_ON(skb->sk != NULL); 1708 if (netlink_skb_is_mmaped(skb)) 1709 return skb; 1710 1711 delta = skb->end - skb->tail; 1712 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1713 return skb; 1714 1715 if (skb_shared(skb)) { 1716 struct sk_buff *nskb = skb_clone(skb, allocation); 1717 if (!nskb) 1718 return skb; 1719 consume_skb(skb); 1720 skb = nskb; 1721 } 1722 1723 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1724 skb->truesize -= delta; 1725 1726 return skb; 1727 } 1728 1729 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1730 struct sock *ssk) 1731 { 1732 int ret; 1733 struct netlink_sock *nlk = nlk_sk(sk); 1734 1735 ret = -ECONNREFUSED; 1736 if (nlk->netlink_rcv != NULL) { 1737 ret = skb->len; 1738 netlink_skb_set_owner_r(skb, sk); 1739 NETLINK_CB(skb).sk = ssk; 1740 netlink_deliver_tap_kernel(sk, ssk, skb); 1741 nlk->netlink_rcv(skb); 1742 consume_skb(skb); 1743 } else { 1744 kfree_skb(skb); 1745 } 1746 sock_put(sk); 1747 return ret; 1748 } 1749 1750 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1751 u32 portid, int nonblock) 1752 { 1753 struct sock *sk; 1754 int err; 1755 long timeo; 1756 1757 skb = netlink_trim(skb, gfp_any()); 1758 1759 timeo = sock_sndtimeo(ssk, nonblock); 1760 retry: 1761 sk = netlink_getsockbyportid(ssk, portid); 1762 if (IS_ERR(sk)) { 1763 kfree_skb(skb); 1764 return PTR_ERR(sk); 1765 } 1766 if (netlink_is_kernel(sk)) 1767 return netlink_unicast_kernel(sk, skb, ssk); 1768 1769 if (sk_filter(sk, skb)) { 1770 err = skb->len; 1771 kfree_skb(skb); 1772 sock_put(sk); 1773 return err; 1774 } 1775 1776 err = netlink_attachskb(sk, skb, &timeo, ssk); 1777 if (err == 1) 1778 goto retry; 1779 if (err) 1780 return err; 1781 1782 return netlink_sendskb(sk, skb); 1783 } 1784 EXPORT_SYMBOL(netlink_unicast); 1785 1786 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1787 u32 dst_portid, gfp_t gfp_mask) 1788 { 1789 #ifdef CONFIG_NETLINK_MMAP 1790 struct sock *sk = NULL; 1791 struct sk_buff *skb; 1792 struct netlink_ring *ring; 1793 struct nl_mmap_hdr *hdr; 1794 unsigned int maxlen; 1795 1796 sk = netlink_getsockbyportid(ssk, dst_portid); 1797 if (IS_ERR(sk)) 1798 goto out; 1799 1800 ring = &nlk_sk(sk)->rx_ring; 1801 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1802 if (ring->pg_vec == NULL) 1803 goto out_put; 1804 1805 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1806 goto out_put; 1807 1808 skb = alloc_skb_head(gfp_mask); 1809 if (skb == NULL) 1810 goto err1; 1811 1812 spin_lock_bh(&sk->sk_receive_queue.lock); 1813 /* check again under lock */ 1814 if (ring->pg_vec == NULL) 1815 goto out_free; 1816 1817 /* check again under lock */ 1818 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1819 if (maxlen < size) 1820 goto out_free; 1821 1822 netlink_forward_ring(ring); 1823 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1824 if (hdr == NULL) 1825 goto err2; 1826 netlink_ring_setup_skb(skb, sk, ring, hdr); 1827 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1828 atomic_inc(&ring->pending); 1829 netlink_increment_head(ring); 1830 1831 spin_unlock_bh(&sk->sk_receive_queue.lock); 1832 return skb; 1833 1834 err2: 1835 kfree_skb(skb); 1836 spin_unlock_bh(&sk->sk_receive_queue.lock); 1837 netlink_overrun(sk); 1838 err1: 1839 sock_put(sk); 1840 return NULL; 1841 1842 out_free: 1843 kfree_skb(skb); 1844 spin_unlock_bh(&sk->sk_receive_queue.lock); 1845 out_put: 1846 sock_put(sk); 1847 out: 1848 #endif 1849 return alloc_skb(size, gfp_mask); 1850 } 1851 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1852 1853 int netlink_has_listeners(struct sock *sk, unsigned int group) 1854 { 1855 int res = 0; 1856 struct listeners *listeners; 1857 1858 BUG_ON(!netlink_is_kernel(sk)); 1859 1860 rcu_read_lock(); 1861 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1862 1863 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1864 res = test_bit(group - 1, listeners->masks); 1865 1866 rcu_read_unlock(); 1867 1868 return res; 1869 } 1870 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1871 1872 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1873 { 1874 struct netlink_sock *nlk = nlk_sk(sk); 1875 1876 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1877 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1878 netlink_skb_set_owner_r(skb, sk); 1879 __netlink_sendskb(sk, skb); 1880 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1881 } 1882 return -1; 1883 } 1884 1885 struct netlink_broadcast_data { 1886 struct sock *exclude_sk; 1887 struct net *net; 1888 u32 portid; 1889 u32 group; 1890 int failure; 1891 int delivery_failure; 1892 int congested; 1893 int delivered; 1894 gfp_t allocation; 1895 struct sk_buff *skb, *skb2; 1896 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1897 void *tx_data; 1898 }; 1899 1900 static void do_one_broadcast(struct sock *sk, 1901 struct netlink_broadcast_data *p) 1902 { 1903 struct netlink_sock *nlk = nlk_sk(sk); 1904 int val; 1905 1906 if (p->exclude_sk == sk) 1907 return; 1908 1909 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1910 !test_bit(p->group - 1, nlk->groups)) 1911 return; 1912 1913 if (!net_eq(sock_net(sk), p->net)) 1914 return; 1915 1916 if (p->failure) { 1917 netlink_overrun(sk); 1918 return; 1919 } 1920 1921 sock_hold(sk); 1922 if (p->skb2 == NULL) { 1923 if (skb_shared(p->skb)) { 1924 p->skb2 = skb_clone(p->skb, p->allocation); 1925 } else { 1926 p->skb2 = skb_get(p->skb); 1927 /* 1928 * skb ownership may have been set when 1929 * delivered to a previous socket. 1930 */ 1931 skb_orphan(p->skb2); 1932 } 1933 } 1934 if (p->skb2 == NULL) { 1935 netlink_overrun(sk); 1936 /* Clone failed. Notify ALL listeners. */ 1937 p->failure = 1; 1938 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1939 p->delivery_failure = 1; 1940 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1941 kfree_skb(p->skb2); 1942 p->skb2 = NULL; 1943 } else if (sk_filter(sk, p->skb2)) { 1944 kfree_skb(p->skb2); 1945 p->skb2 = NULL; 1946 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1947 netlink_overrun(sk); 1948 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1949 p->delivery_failure = 1; 1950 } else { 1951 p->congested |= val; 1952 p->delivered = 1; 1953 p->skb2 = NULL; 1954 } 1955 sock_put(sk); 1956 } 1957 1958 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1959 u32 group, gfp_t allocation, 1960 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1961 void *filter_data) 1962 { 1963 struct net *net = sock_net(ssk); 1964 struct netlink_broadcast_data info; 1965 struct sock *sk; 1966 1967 skb = netlink_trim(skb, allocation); 1968 1969 info.exclude_sk = ssk; 1970 info.net = net; 1971 info.portid = portid; 1972 info.group = group; 1973 info.failure = 0; 1974 info.delivery_failure = 0; 1975 info.congested = 0; 1976 info.delivered = 0; 1977 info.allocation = allocation; 1978 info.skb = skb; 1979 info.skb2 = NULL; 1980 info.tx_filter = filter; 1981 info.tx_data = filter_data; 1982 1983 /* While we sleep in clone, do not allow to change socket list */ 1984 1985 netlink_lock_table(); 1986 1987 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1988 do_one_broadcast(sk, &info); 1989 1990 consume_skb(skb); 1991 1992 netlink_unlock_table(); 1993 1994 if (info.delivery_failure) { 1995 kfree_skb(info.skb2); 1996 return -ENOBUFS; 1997 } 1998 consume_skb(info.skb2); 1999 2000 if (info.delivered) { 2001 if (info.congested && (allocation & __GFP_WAIT)) 2002 yield(); 2003 return 0; 2004 } 2005 return -ESRCH; 2006 } 2007 EXPORT_SYMBOL(netlink_broadcast_filtered); 2008 2009 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2010 u32 group, gfp_t allocation) 2011 { 2012 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2013 NULL, NULL); 2014 } 2015 EXPORT_SYMBOL(netlink_broadcast); 2016 2017 struct netlink_set_err_data { 2018 struct sock *exclude_sk; 2019 u32 portid; 2020 u32 group; 2021 int code; 2022 }; 2023 2024 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2025 { 2026 struct netlink_sock *nlk = nlk_sk(sk); 2027 int ret = 0; 2028 2029 if (sk == p->exclude_sk) 2030 goto out; 2031 2032 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2033 goto out; 2034 2035 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2036 !test_bit(p->group - 1, nlk->groups)) 2037 goto out; 2038 2039 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2040 ret = 1; 2041 goto out; 2042 } 2043 2044 sk->sk_err = p->code; 2045 sk->sk_error_report(sk); 2046 out: 2047 return ret; 2048 } 2049 2050 /** 2051 * netlink_set_err - report error to broadcast listeners 2052 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2053 * @portid: the PORTID of a process that we want to skip (if any) 2054 * @group: the broadcast group that will notice the error 2055 * @code: error code, must be negative (as usual in kernelspace) 2056 * 2057 * This function returns the number of broadcast listeners that have set the 2058 * NETLINK_RECV_NO_ENOBUFS socket option. 2059 */ 2060 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2061 { 2062 struct netlink_set_err_data info; 2063 struct sock *sk; 2064 int ret = 0; 2065 2066 info.exclude_sk = ssk; 2067 info.portid = portid; 2068 info.group = group; 2069 /* sk->sk_err wants a positive error value */ 2070 info.code = -code; 2071 2072 read_lock(&nl_table_lock); 2073 2074 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2075 ret += do_one_set_err(sk, &info); 2076 2077 read_unlock(&nl_table_lock); 2078 return ret; 2079 } 2080 EXPORT_SYMBOL(netlink_set_err); 2081 2082 /* must be called with netlink table grabbed */ 2083 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2084 unsigned int group, 2085 int is_new) 2086 { 2087 int old, new = !!is_new, subscriptions; 2088 2089 old = test_bit(group - 1, nlk->groups); 2090 subscriptions = nlk->subscriptions - old + new; 2091 if (new) 2092 __set_bit(group - 1, nlk->groups); 2093 else 2094 __clear_bit(group - 1, nlk->groups); 2095 netlink_update_subscriptions(&nlk->sk, subscriptions); 2096 netlink_update_listeners(&nlk->sk); 2097 } 2098 2099 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2100 char __user *optval, unsigned int optlen) 2101 { 2102 struct sock *sk = sock->sk; 2103 struct netlink_sock *nlk = nlk_sk(sk); 2104 unsigned int val = 0; 2105 int err; 2106 2107 if (level != SOL_NETLINK) 2108 return -ENOPROTOOPT; 2109 2110 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2111 optlen >= sizeof(int) && 2112 get_user(val, (unsigned int __user *)optval)) 2113 return -EFAULT; 2114 2115 switch (optname) { 2116 case NETLINK_PKTINFO: 2117 if (val) 2118 nlk->flags |= NETLINK_RECV_PKTINFO; 2119 else 2120 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2121 err = 0; 2122 break; 2123 case NETLINK_ADD_MEMBERSHIP: 2124 case NETLINK_DROP_MEMBERSHIP: { 2125 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2126 return -EPERM; 2127 err = netlink_realloc_groups(sk); 2128 if (err) 2129 return err; 2130 if (!val || val - 1 >= nlk->ngroups) 2131 return -EINVAL; 2132 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2133 err = nlk->netlink_bind(sock_net(sk), val); 2134 if (err) 2135 return err; 2136 } 2137 netlink_table_grab(); 2138 netlink_update_socket_mc(nlk, val, 2139 optname == NETLINK_ADD_MEMBERSHIP); 2140 netlink_table_ungrab(); 2141 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2142 nlk->netlink_unbind(sock_net(sk), val); 2143 2144 err = 0; 2145 break; 2146 } 2147 case NETLINK_BROADCAST_ERROR: 2148 if (val) 2149 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2150 else 2151 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2152 err = 0; 2153 break; 2154 case NETLINK_NO_ENOBUFS: 2155 if (val) { 2156 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2157 clear_bit(NETLINK_CONGESTED, &nlk->state); 2158 wake_up_interruptible(&nlk->wait); 2159 } else { 2160 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2161 } 2162 err = 0; 2163 break; 2164 #ifdef CONFIG_NETLINK_MMAP 2165 case NETLINK_RX_RING: 2166 case NETLINK_TX_RING: { 2167 struct nl_mmap_req req; 2168 2169 /* Rings might consume more memory than queue limits, require 2170 * CAP_NET_ADMIN. 2171 */ 2172 if (!capable(CAP_NET_ADMIN)) 2173 return -EPERM; 2174 if (optlen < sizeof(req)) 2175 return -EINVAL; 2176 if (copy_from_user(&req, optval, sizeof(req))) 2177 return -EFAULT; 2178 err = netlink_set_ring(sk, &req, false, 2179 optname == NETLINK_TX_RING); 2180 break; 2181 } 2182 #endif /* CONFIG_NETLINK_MMAP */ 2183 default: 2184 err = -ENOPROTOOPT; 2185 } 2186 return err; 2187 } 2188 2189 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2190 char __user *optval, int __user *optlen) 2191 { 2192 struct sock *sk = sock->sk; 2193 struct netlink_sock *nlk = nlk_sk(sk); 2194 int len, val, err; 2195 2196 if (level != SOL_NETLINK) 2197 return -ENOPROTOOPT; 2198 2199 if (get_user(len, optlen)) 2200 return -EFAULT; 2201 if (len < 0) 2202 return -EINVAL; 2203 2204 switch (optname) { 2205 case NETLINK_PKTINFO: 2206 if (len < sizeof(int)) 2207 return -EINVAL; 2208 len = sizeof(int); 2209 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2210 if (put_user(len, optlen) || 2211 put_user(val, optval)) 2212 return -EFAULT; 2213 err = 0; 2214 break; 2215 case NETLINK_BROADCAST_ERROR: 2216 if (len < sizeof(int)) 2217 return -EINVAL; 2218 len = sizeof(int); 2219 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2220 if (put_user(len, optlen) || 2221 put_user(val, optval)) 2222 return -EFAULT; 2223 err = 0; 2224 break; 2225 case NETLINK_NO_ENOBUFS: 2226 if (len < sizeof(int)) 2227 return -EINVAL; 2228 len = sizeof(int); 2229 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2230 if (put_user(len, optlen) || 2231 put_user(val, optval)) 2232 return -EFAULT; 2233 err = 0; 2234 break; 2235 default: 2236 err = -ENOPROTOOPT; 2237 } 2238 return err; 2239 } 2240 2241 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2242 { 2243 struct nl_pktinfo info; 2244 2245 info.group = NETLINK_CB(skb).dst_group; 2246 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2247 } 2248 2249 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2250 struct msghdr *msg, size_t len) 2251 { 2252 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2253 struct sock *sk = sock->sk; 2254 struct netlink_sock *nlk = nlk_sk(sk); 2255 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2256 u32 dst_portid; 2257 u32 dst_group; 2258 struct sk_buff *skb; 2259 int err; 2260 struct scm_cookie scm; 2261 u32 netlink_skb_flags = 0; 2262 2263 if (msg->msg_flags&MSG_OOB) 2264 return -EOPNOTSUPP; 2265 2266 if (NULL == siocb->scm) 2267 siocb->scm = &scm; 2268 2269 err = scm_send(sock, msg, siocb->scm, true); 2270 if (err < 0) 2271 return err; 2272 2273 if (msg->msg_namelen) { 2274 err = -EINVAL; 2275 if (addr->nl_family != AF_NETLINK) 2276 goto out; 2277 dst_portid = addr->nl_pid; 2278 dst_group = ffs(addr->nl_groups); 2279 err = -EPERM; 2280 if ((dst_group || dst_portid) && 2281 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2282 goto out; 2283 netlink_skb_flags |= NETLINK_SKB_DST; 2284 } else { 2285 dst_portid = nlk->dst_portid; 2286 dst_group = nlk->dst_group; 2287 } 2288 2289 if (!nlk->portid) { 2290 err = netlink_autobind(sock); 2291 if (err) 2292 goto out; 2293 } 2294 2295 if (netlink_tx_is_mmaped(sk) && 2296 msg->msg_iter.iov->iov_base == NULL) { 2297 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2298 siocb); 2299 goto out; 2300 } 2301 2302 err = -EMSGSIZE; 2303 if (len > sk->sk_sndbuf - 32) 2304 goto out; 2305 err = -ENOBUFS; 2306 skb = netlink_alloc_large_skb(len, dst_group); 2307 if (skb == NULL) 2308 goto out; 2309 2310 NETLINK_CB(skb).portid = nlk->portid; 2311 NETLINK_CB(skb).dst_group = dst_group; 2312 NETLINK_CB(skb).creds = siocb->scm->creds; 2313 NETLINK_CB(skb).flags = netlink_skb_flags; 2314 2315 err = -EFAULT; 2316 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2317 kfree_skb(skb); 2318 goto out; 2319 } 2320 2321 err = security_netlink_send(sk, skb); 2322 if (err) { 2323 kfree_skb(skb); 2324 goto out; 2325 } 2326 2327 if (dst_group) { 2328 atomic_inc(&skb->users); 2329 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2330 } 2331 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2332 2333 out: 2334 scm_destroy(siocb->scm); 2335 return err; 2336 } 2337 2338 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2339 struct msghdr *msg, size_t len, 2340 int flags) 2341 { 2342 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2343 struct scm_cookie scm; 2344 struct sock *sk = sock->sk; 2345 struct netlink_sock *nlk = nlk_sk(sk); 2346 int noblock = flags&MSG_DONTWAIT; 2347 size_t copied; 2348 struct sk_buff *skb, *data_skb; 2349 int err, ret; 2350 2351 if (flags&MSG_OOB) 2352 return -EOPNOTSUPP; 2353 2354 copied = 0; 2355 2356 skb = skb_recv_datagram(sk, flags, noblock, &err); 2357 if (skb == NULL) 2358 goto out; 2359 2360 data_skb = skb; 2361 2362 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2363 if (unlikely(skb_shinfo(skb)->frag_list)) { 2364 /* 2365 * If this skb has a frag_list, then here that means that we 2366 * will have to use the frag_list skb's data for compat tasks 2367 * and the regular skb's data for normal (non-compat) tasks. 2368 * 2369 * If we need to send the compat skb, assign it to the 2370 * 'data_skb' variable so that it will be used below for data 2371 * copying. We keep 'skb' for everything else, including 2372 * freeing both later. 2373 */ 2374 if (flags & MSG_CMSG_COMPAT) 2375 data_skb = skb_shinfo(skb)->frag_list; 2376 } 2377 #endif 2378 2379 /* Record the max length of recvmsg() calls for future allocations */ 2380 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2381 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2382 16384); 2383 2384 copied = data_skb->len; 2385 if (len < copied) { 2386 msg->msg_flags |= MSG_TRUNC; 2387 copied = len; 2388 } 2389 2390 skb_reset_transport_header(data_skb); 2391 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2392 2393 if (msg->msg_name) { 2394 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2395 addr->nl_family = AF_NETLINK; 2396 addr->nl_pad = 0; 2397 addr->nl_pid = NETLINK_CB(skb).portid; 2398 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2399 msg->msg_namelen = sizeof(*addr); 2400 } 2401 2402 if (nlk->flags & NETLINK_RECV_PKTINFO) 2403 netlink_cmsg_recv_pktinfo(msg, skb); 2404 2405 if (NULL == siocb->scm) { 2406 memset(&scm, 0, sizeof(scm)); 2407 siocb->scm = &scm; 2408 } 2409 siocb->scm->creds = *NETLINK_CREDS(skb); 2410 if (flags & MSG_TRUNC) 2411 copied = data_skb->len; 2412 2413 skb_free_datagram(sk, skb); 2414 2415 if (nlk->cb_running && 2416 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2417 ret = netlink_dump(sk); 2418 if (ret) { 2419 sk->sk_err = -ret; 2420 sk->sk_error_report(sk); 2421 } 2422 } 2423 2424 scm_recv(sock, msg, siocb->scm, flags); 2425 out: 2426 netlink_rcv_wake(sk); 2427 return err ? : copied; 2428 } 2429 2430 static void netlink_data_ready(struct sock *sk) 2431 { 2432 BUG(); 2433 } 2434 2435 /* 2436 * We export these functions to other modules. They provide a 2437 * complete set of kernel non-blocking support for message 2438 * queueing. 2439 */ 2440 2441 struct sock * 2442 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2443 struct netlink_kernel_cfg *cfg) 2444 { 2445 struct socket *sock; 2446 struct sock *sk; 2447 struct netlink_sock *nlk; 2448 struct listeners *listeners = NULL; 2449 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2450 unsigned int groups; 2451 2452 BUG_ON(!nl_table); 2453 2454 if (unit < 0 || unit >= MAX_LINKS) 2455 return NULL; 2456 2457 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2458 return NULL; 2459 2460 /* 2461 * We have to just have a reference on the net from sk, but don't 2462 * get_net it. Besides, we cannot get and then put the net here. 2463 * So we create one inside init_net and the move it to net. 2464 */ 2465 2466 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2467 goto out_sock_release_nosk; 2468 2469 sk = sock->sk; 2470 sk_change_net(sk, net); 2471 2472 if (!cfg || cfg->groups < 32) 2473 groups = 32; 2474 else 2475 groups = cfg->groups; 2476 2477 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2478 if (!listeners) 2479 goto out_sock_release; 2480 2481 sk->sk_data_ready = netlink_data_ready; 2482 if (cfg && cfg->input) 2483 nlk_sk(sk)->netlink_rcv = cfg->input; 2484 2485 if (netlink_insert(sk, net, 0)) 2486 goto out_sock_release; 2487 2488 nlk = nlk_sk(sk); 2489 nlk->flags |= NETLINK_KERNEL_SOCKET; 2490 2491 netlink_table_grab(); 2492 if (!nl_table[unit].registered) { 2493 nl_table[unit].groups = groups; 2494 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2495 nl_table[unit].cb_mutex = cb_mutex; 2496 nl_table[unit].module = module; 2497 if (cfg) { 2498 nl_table[unit].bind = cfg->bind; 2499 nl_table[unit].unbind = cfg->unbind; 2500 nl_table[unit].flags = cfg->flags; 2501 if (cfg->compare) 2502 nl_table[unit].compare = cfg->compare; 2503 } 2504 nl_table[unit].registered = 1; 2505 } else { 2506 kfree(listeners); 2507 nl_table[unit].registered++; 2508 } 2509 netlink_table_ungrab(); 2510 return sk; 2511 2512 out_sock_release: 2513 kfree(listeners); 2514 netlink_kernel_release(sk); 2515 return NULL; 2516 2517 out_sock_release_nosk: 2518 sock_release(sock); 2519 return NULL; 2520 } 2521 EXPORT_SYMBOL(__netlink_kernel_create); 2522 2523 void 2524 netlink_kernel_release(struct sock *sk) 2525 { 2526 sk_release_kernel(sk); 2527 } 2528 EXPORT_SYMBOL(netlink_kernel_release); 2529 2530 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2531 { 2532 struct listeners *new, *old; 2533 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2534 2535 if (groups < 32) 2536 groups = 32; 2537 2538 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2539 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2540 if (!new) 2541 return -ENOMEM; 2542 old = nl_deref_protected(tbl->listeners); 2543 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2544 rcu_assign_pointer(tbl->listeners, new); 2545 2546 kfree_rcu(old, rcu); 2547 } 2548 tbl->groups = groups; 2549 2550 return 0; 2551 } 2552 2553 /** 2554 * netlink_change_ngroups - change number of multicast groups 2555 * 2556 * This changes the number of multicast groups that are available 2557 * on a certain netlink family. Note that it is not possible to 2558 * change the number of groups to below 32. Also note that it does 2559 * not implicitly call netlink_clear_multicast_users() when the 2560 * number of groups is reduced. 2561 * 2562 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2563 * @groups: The new number of groups. 2564 */ 2565 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2566 { 2567 int err; 2568 2569 netlink_table_grab(); 2570 err = __netlink_change_ngroups(sk, groups); 2571 netlink_table_ungrab(); 2572 2573 return err; 2574 } 2575 2576 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2577 { 2578 struct sock *sk; 2579 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2580 2581 sk_for_each_bound(sk, &tbl->mc_list) 2582 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2583 } 2584 2585 struct nlmsghdr * 2586 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2587 { 2588 struct nlmsghdr *nlh; 2589 int size = nlmsg_msg_size(len); 2590 2591 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2592 nlh->nlmsg_type = type; 2593 nlh->nlmsg_len = size; 2594 nlh->nlmsg_flags = flags; 2595 nlh->nlmsg_pid = portid; 2596 nlh->nlmsg_seq = seq; 2597 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2598 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2599 return nlh; 2600 } 2601 EXPORT_SYMBOL(__nlmsg_put); 2602 2603 /* 2604 * It looks a bit ugly. 2605 * It would be better to create kernel thread. 2606 */ 2607 2608 static int netlink_dump(struct sock *sk) 2609 { 2610 struct netlink_sock *nlk = nlk_sk(sk); 2611 struct netlink_callback *cb; 2612 struct sk_buff *skb = NULL; 2613 struct nlmsghdr *nlh; 2614 int len, err = -ENOBUFS; 2615 int alloc_size; 2616 2617 mutex_lock(nlk->cb_mutex); 2618 if (!nlk->cb_running) { 2619 err = -EINVAL; 2620 goto errout_skb; 2621 } 2622 2623 cb = &nlk->cb; 2624 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2625 2626 if (!netlink_rx_is_mmaped(sk) && 2627 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2628 goto errout_skb; 2629 2630 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2631 * required, but it makes sense to _attempt_ a 16K bytes allocation 2632 * to reduce number of system calls on dump operations, if user 2633 * ever provided a big enough buffer. 2634 */ 2635 if (alloc_size < nlk->max_recvmsg_len) { 2636 skb = netlink_alloc_skb(sk, 2637 nlk->max_recvmsg_len, 2638 nlk->portid, 2639 GFP_KERNEL | 2640 __GFP_NOWARN | 2641 __GFP_NORETRY); 2642 /* available room should be exact amount to avoid MSG_TRUNC */ 2643 if (skb) 2644 skb_reserve(skb, skb_tailroom(skb) - 2645 nlk->max_recvmsg_len); 2646 } 2647 if (!skb) 2648 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2649 GFP_KERNEL); 2650 if (!skb) 2651 goto errout_skb; 2652 netlink_skb_set_owner_r(skb, sk); 2653 2654 len = cb->dump(skb, cb); 2655 2656 if (len > 0) { 2657 mutex_unlock(nlk->cb_mutex); 2658 2659 if (sk_filter(sk, skb)) 2660 kfree_skb(skb); 2661 else 2662 __netlink_sendskb(sk, skb); 2663 return 0; 2664 } 2665 2666 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2667 if (!nlh) 2668 goto errout_skb; 2669 2670 nl_dump_check_consistent(cb, nlh); 2671 2672 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2673 2674 if (sk_filter(sk, skb)) 2675 kfree_skb(skb); 2676 else 2677 __netlink_sendskb(sk, skb); 2678 2679 if (cb->done) 2680 cb->done(cb); 2681 2682 nlk->cb_running = false; 2683 mutex_unlock(nlk->cb_mutex); 2684 module_put(cb->module); 2685 consume_skb(cb->skb); 2686 return 0; 2687 2688 errout_skb: 2689 mutex_unlock(nlk->cb_mutex); 2690 kfree_skb(skb); 2691 return err; 2692 } 2693 2694 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2695 const struct nlmsghdr *nlh, 2696 struct netlink_dump_control *control) 2697 { 2698 struct netlink_callback *cb; 2699 struct sock *sk; 2700 struct netlink_sock *nlk; 2701 int ret; 2702 2703 /* Memory mapped dump requests need to be copied to avoid looping 2704 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2705 * a reference to the skb. 2706 */ 2707 if (netlink_skb_is_mmaped(skb)) { 2708 skb = skb_copy(skb, GFP_KERNEL); 2709 if (skb == NULL) 2710 return -ENOBUFS; 2711 } else 2712 atomic_inc(&skb->users); 2713 2714 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2715 if (sk == NULL) { 2716 ret = -ECONNREFUSED; 2717 goto error_free; 2718 } 2719 2720 nlk = nlk_sk(sk); 2721 mutex_lock(nlk->cb_mutex); 2722 /* A dump is in progress... */ 2723 if (nlk->cb_running) { 2724 ret = -EBUSY; 2725 goto error_unlock; 2726 } 2727 /* add reference of module which cb->dump belongs to */ 2728 if (!try_module_get(control->module)) { 2729 ret = -EPROTONOSUPPORT; 2730 goto error_unlock; 2731 } 2732 2733 cb = &nlk->cb; 2734 memset(cb, 0, sizeof(*cb)); 2735 cb->dump = control->dump; 2736 cb->done = control->done; 2737 cb->nlh = nlh; 2738 cb->data = control->data; 2739 cb->module = control->module; 2740 cb->min_dump_alloc = control->min_dump_alloc; 2741 cb->skb = skb; 2742 2743 nlk->cb_running = true; 2744 2745 mutex_unlock(nlk->cb_mutex); 2746 2747 ret = netlink_dump(sk); 2748 sock_put(sk); 2749 2750 if (ret) 2751 return ret; 2752 2753 /* We successfully started a dump, by returning -EINTR we 2754 * signal not to send ACK even if it was requested. 2755 */ 2756 return -EINTR; 2757 2758 error_unlock: 2759 sock_put(sk); 2760 mutex_unlock(nlk->cb_mutex); 2761 error_free: 2762 kfree_skb(skb); 2763 return ret; 2764 } 2765 EXPORT_SYMBOL(__netlink_dump_start); 2766 2767 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2768 { 2769 struct sk_buff *skb; 2770 struct nlmsghdr *rep; 2771 struct nlmsgerr *errmsg; 2772 size_t payload = sizeof(*errmsg); 2773 2774 /* error messages get the original request appened */ 2775 if (err) 2776 payload += nlmsg_len(nlh); 2777 2778 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2779 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2780 if (!skb) { 2781 struct sock *sk; 2782 2783 sk = netlink_lookup(sock_net(in_skb->sk), 2784 in_skb->sk->sk_protocol, 2785 NETLINK_CB(in_skb).portid); 2786 if (sk) { 2787 sk->sk_err = ENOBUFS; 2788 sk->sk_error_report(sk); 2789 sock_put(sk); 2790 } 2791 return; 2792 } 2793 2794 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2795 NLMSG_ERROR, payload, 0); 2796 errmsg = nlmsg_data(rep); 2797 errmsg->error = err; 2798 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2799 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2800 } 2801 EXPORT_SYMBOL(netlink_ack); 2802 2803 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2804 struct nlmsghdr *)) 2805 { 2806 struct nlmsghdr *nlh; 2807 int err; 2808 2809 while (skb->len >= nlmsg_total_size(0)) { 2810 int msglen; 2811 2812 nlh = nlmsg_hdr(skb); 2813 err = 0; 2814 2815 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2816 return 0; 2817 2818 /* Only requests are handled by the kernel */ 2819 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2820 goto ack; 2821 2822 /* Skip control messages */ 2823 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2824 goto ack; 2825 2826 err = cb(skb, nlh); 2827 if (err == -EINTR) 2828 goto skip; 2829 2830 ack: 2831 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2832 netlink_ack(skb, nlh, err); 2833 2834 skip: 2835 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2836 if (msglen > skb->len) 2837 msglen = skb->len; 2838 skb_pull(skb, msglen); 2839 } 2840 2841 return 0; 2842 } 2843 EXPORT_SYMBOL(netlink_rcv_skb); 2844 2845 /** 2846 * nlmsg_notify - send a notification netlink message 2847 * @sk: netlink socket to use 2848 * @skb: notification message 2849 * @portid: destination netlink portid for reports or 0 2850 * @group: destination multicast group or 0 2851 * @report: 1 to report back, 0 to disable 2852 * @flags: allocation flags 2853 */ 2854 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2855 unsigned int group, int report, gfp_t flags) 2856 { 2857 int err = 0; 2858 2859 if (group) { 2860 int exclude_portid = 0; 2861 2862 if (report) { 2863 atomic_inc(&skb->users); 2864 exclude_portid = portid; 2865 } 2866 2867 /* errors reported via destination sk->sk_err, but propagate 2868 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2869 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2870 } 2871 2872 if (report) { 2873 int err2; 2874 2875 err2 = nlmsg_unicast(sk, skb, portid); 2876 if (!err || err == -ESRCH) 2877 err = err2; 2878 } 2879 2880 return err; 2881 } 2882 EXPORT_SYMBOL(nlmsg_notify); 2883 2884 #ifdef CONFIG_PROC_FS 2885 struct nl_seq_iter { 2886 struct seq_net_private p; 2887 int link; 2888 int hash_idx; 2889 }; 2890 2891 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2892 { 2893 struct nl_seq_iter *iter = seq->private; 2894 int i, j; 2895 struct netlink_sock *nlk; 2896 struct sock *s; 2897 loff_t off = 0; 2898 2899 for (i = 0; i < MAX_LINKS; i++) { 2900 struct rhashtable *ht = &nl_table[i].hash; 2901 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2902 2903 for (j = 0; j < tbl->size; j++) { 2904 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) { 2905 s = (struct sock *)nlk; 2906 2907 if (sock_net(s) != seq_file_net(seq)) 2908 continue; 2909 if (off == pos) { 2910 iter->link = i; 2911 iter->hash_idx = j; 2912 return s; 2913 } 2914 ++off; 2915 } 2916 } 2917 } 2918 return NULL; 2919 } 2920 2921 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2922 __acquires(nl_table_lock) __acquires(RCU) 2923 { 2924 read_lock(&nl_table_lock); 2925 rcu_read_lock(); 2926 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2927 } 2928 2929 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2930 { 2931 struct rhashtable *ht; 2932 struct netlink_sock *nlk; 2933 struct nl_seq_iter *iter; 2934 struct net *net; 2935 int i, j; 2936 2937 ++*pos; 2938 2939 if (v == SEQ_START_TOKEN) 2940 return netlink_seq_socket_idx(seq, 0); 2941 2942 net = seq_file_net(seq); 2943 iter = seq->private; 2944 nlk = v; 2945 2946 i = iter->link; 2947 ht = &nl_table[i].hash; 2948 rht_for_each_entry(nlk, nlk->node.next, ht, node) 2949 if (net_eq(sock_net((struct sock *)nlk), net)) 2950 return nlk; 2951 2952 j = iter->hash_idx + 1; 2953 2954 do { 2955 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2956 2957 for (; j < tbl->size; j++) { 2958 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) { 2959 if (net_eq(sock_net((struct sock *)nlk), net)) { 2960 iter->link = i; 2961 iter->hash_idx = j; 2962 return nlk; 2963 } 2964 } 2965 } 2966 2967 j = 0; 2968 } while (++i < MAX_LINKS); 2969 2970 return NULL; 2971 } 2972 2973 static void netlink_seq_stop(struct seq_file *seq, void *v) 2974 __releases(RCU) __releases(nl_table_lock) 2975 { 2976 rcu_read_unlock(); 2977 read_unlock(&nl_table_lock); 2978 } 2979 2980 2981 static int netlink_seq_show(struct seq_file *seq, void *v) 2982 { 2983 if (v == SEQ_START_TOKEN) { 2984 seq_puts(seq, 2985 "sk Eth Pid Groups " 2986 "Rmem Wmem Dump Locks Drops Inode\n"); 2987 } else { 2988 struct sock *s = v; 2989 struct netlink_sock *nlk = nlk_sk(s); 2990 2991 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 2992 s, 2993 s->sk_protocol, 2994 nlk->portid, 2995 nlk->groups ? (u32)nlk->groups[0] : 0, 2996 sk_rmem_alloc_get(s), 2997 sk_wmem_alloc_get(s), 2998 nlk->cb_running, 2999 atomic_read(&s->sk_refcnt), 3000 atomic_read(&s->sk_drops), 3001 sock_i_ino(s) 3002 ); 3003 3004 } 3005 return 0; 3006 } 3007 3008 static const struct seq_operations netlink_seq_ops = { 3009 .start = netlink_seq_start, 3010 .next = netlink_seq_next, 3011 .stop = netlink_seq_stop, 3012 .show = netlink_seq_show, 3013 }; 3014 3015 3016 static int netlink_seq_open(struct inode *inode, struct file *file) 3017 { 3018 return seq_open_net(inode, file, &netlink_seq_ops, 3019 sizeof(struct nl_seq_iter)); 3020 } 3021 3022 static const struct file_operations netlink_seq_fops = { 3023 .owner = THIS_MODULE, 3024 .open = netlink_seq_open, 3025 .read = seq_read, 3026 .llseek = seq_lseek, 3027 .release = seq_release_net, 3028 }; 3029 3030 #endif 3031 3032 int netlink_register_notifier(struct notifier_block *nb) 3033 { 3034 return atomic_notifier_chain_register(&netlink_chain, nb); 3035 } 3036 EXPORT_SYMBOL(netlink_register_notifier); 3037 3038 int netlink_unregister_notifier(struct notifier_block *nb) 3039 { 3040 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3041 } 3042 EXPORT_SYMBOL(netlink_unregister_notifier); 3043 3044 static const struct proto_ops netlink_ops = { 3045 .family = PF_NETLINK, 3046 .owner = THIS_MODULE, 3047 .release = netlink_release, 3048 .bind = netlink_bind, 3049 .connect = netlink_connect, 3050 .socketpair = sock_no_socketpair, 3051 .accept = sock_no_accept, 3052 .getname = netlink_getname, 3053 .poll = netlink_poll, 3054 .ioctl = sock_no_ioctl, 3055 .listen = sock_no_listen, 3056 .shutdown = sock_no_shutdown, 3057 .setsockopt = netlink_setsockopt, 3058 .getsockopt = netlink_getsockopt, 3059 .sendmsg = netlink_sendmsg, 3060 .recvmsg = netlink_recvmsg, 3061 .mmap = netlink_mmap, 3062 .sendpage = sock_no_sendpage, 3063 }; 3064 3065 static const struct net_proto_family netlink_family_ops = { 3066 .family = PF_NETLINK, 3067 .create = netlink_create, 3068 .owner = THIS_MODULE, /* for consistency 8) */ 3069 }; 3070 3071 static int __net_init netlink_net_init(struct net *net) 3072 { 3073 #ifdef CONFIG_PROC_FS 3074 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3075 return -ENOMEM; 3076 #endif 3077 return 0; 3078 } 3079 3080 static void __net_exit netlink_net_exit(struct net *net) 3081 { 3082 #ifdef CONFIG_PROC_FS 3083 remove_proc_entry("netlink", net->proc_net); 3084 #endif 3085 } 3086 3087 static void __init netlink_add_usersock_entry(void) 3088 { 3089 struct listeners *listeners; 3090 int groups = 32; 3091 3092 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3093 if (!listeners) 3094 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3095 3096 netlink_table_grab(); 3097 3098 nl_table[NETLINK_USERSOCK].groups = groups; 3099 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3100 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3101 nl_table[NETLINK_USERSOCK].registered = 1; 3102 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3103 3104 netlink_table_ungrab(); 3105 } 3106 3107 static struct pernet_operations __net_initdata netlink_net_ops = { 3108 .init = netlink_net_init, 3109 .exit = netlink_net_exit, 3110 }; 3111 3112 static int __init netlink_proto_init(void) 3113 { 3114 int i; 3115 int err = proto_register(&netlink_proto, 0); 3116 struct rhashtable_params ht_params = { 3117 .head_offset = offsetof(struct netlink_sock, node), 3118 .key_offset = offsetof(struct netlink_sock, portid), 3119 .key_len = sizeof(u32), /* portid */ 3120 .hashfn = jhash, 3121 .max_shift = 16, /* 64K */ 3122 .grow_decision = rht_grow_above_75, 3123 .shrink_decision = rht_shrink_below_30, 3124 #ifdef CONFIG_PROVE_LOCKING 3125 .mutex_is_held = lockdep_nl_sk_hash_is_held, 3126 #endif 3127 }; 3128 3129 if (err != 0) 3130 goto out; 3131 3132 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3133 3134 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3135 if (!nl_table) 3136 goto panic; 3137 3138 for (i = 0; i < MAX_LINKS; i++) { 3139 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) { 3140 while (--i > 0) 3141 rhashtable_destroy(&nl_table[i].hash); 3142 kfree(nl_table); 3143 goto panic; 3144 } 3145 } 3146 3147 INIT_LIST_HEAD(&netlink_tap_all); 3148 3149 netlink_add_usersock_entry(); 3150 3151 sock_register(&netlink_family_ops); 3152 register_pernet_subsys(&netlink_net_ops); 3153 /* The netlink device handler may be needed early. */ 3154 rtnetlink_init(); 3155 out: 3156 return err; 3157 panic: 3158 panic("netlink_init: Cannot allocate nl_table\n"); 3159 } 3160 3161 core_initcall(netlink_proto_init); 3162