xref: /openbmc/linux/net/netlink/af_netlink.c (revision 867a0e05)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 
65 #include <net/net_namespace.h>
66 #include <net/sock.h>
67 #include <net/scm.h>
68 #include <net/netlink.h>
69 
70 #include "af_netlink.h"
71 
72 struct listeners {
73 	struct rcu_head		rcu;
74 	unsigned long		masks[0];
75 };
76 
77 /* state bits */
78 #define NETLINK_CONGESTED	0x0
79 
80 /* flags */
81 #define NETLINK_KERNEL_SOCKET	0x1
82 #define NETLINK_RECV_PKTINFO	0x2
83 #define NETLINK_BROADCAST_SEND_ERROR	0x4
84 #define NETLINK_RECV_NO_ENOBUFS	0x8
85 
86 static inline int netlink_is_kernel(struct sock *sk)
87 {
88 	return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
89 }
90 
91 struct netlink_table *nl_table;
92 EXPORT_SYMBOL_GPL(nl_table);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
95 
96 static int netlink_dump(struct sock *sk);
97 static void netlink_skb_destructor(struct sk_buff *skb);
98 
99 /* nl_table locking explained:
100  * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock
101  * combined with an RCU read-side lock. Insertion and removal are protected
102  * with nl_sk_hash_lock while using RCU list modification primitives and may
103  * run in parallel to nl_table_lock protected lookups. Destruction of the
104  * Netlink socket may only occur *after* nl_table_lock has been acquired
105  * either during or after the socket has been removed from the list.
106  */
107 DEFINE_RWLOCK(nl_table_lock);
108 EXPORT_SYMBOL_GPL(nl_table_lock);
109 static atomic_t nl_table_users = ATOMIC_INIT(0);
110 
111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
112 
113 /* Protects netlink socket hash table mutations */
114 DEFINE_MUTEX(nl_sk_hash_lock);
115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
116 
117 #ifdef CONFIG_PROVE_LOCKING
118 static int lockdep_nl_sk_hash_is_held(void *parent)
119 {
120 	if (debug_locks)
121 		return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock);
122 	return 1;
123 }
124 #endif
125 
126 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
127 
128 static DEFINE_SPINLOCK(netlink_tap_lock);
129 static struct list_head netlink_tap_all __read_mostly;
130 
131 static inline u32 netlink_group_mask(u32 group)
132 {
133 	return group ? 1 << (group - 1) : 0;
134 }
135 
136 int netlink_add_tap(struct netlink_tap *nt)
137 {
138 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
139 		return -EINVAL;
140 
141 	spin_lock(&netlink_tap_lock);
142 	list_add_rcu(&nt->list, &netlink_tap_all);
143 	spin_unlock(&netlink_tap_lock);
144 
145 	__module_get(nt->module);
146 
147 	return 0;
148 }
149 EXPORT_SYMBOL_GPL(netlink_add_tap);
150 
151 static int __netlink_remove_tap(struct netlink_tap *nt)
152 {
153 	bool found = false;
154 	struct netlink_tap *tmp;
155 
156 	spin_lock(&netlink_tap_lock);
157 
158 	list_for_each_entry(tmp, &netlink_tap_all, list) {
159 		if (nt == tmp) {
160 			list_del_rcu(&nt->list);
161 			found = true;
162 			goto out;
163 		}
164 	}
165 
166 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
167 out:
168 	spin_unlock(&netlink_tap_lock);
169 
170 	if (found && nt->module)
171 		module_put(nt->module);
172 
173 	return found ? 0 : -ENODEV;
174 }
175 
176 int netlink_remove_tap(struct netlink_tap *nt)
177 {
178 	int ret;
179 
180 	ret = __netlink_remove_tap(nt);
181 	synchronize_net();
182 
183 	return ret;
184 }
185 EXPORT_SYMBOL_GPL(netlink_remove_tap);
186 
187 static bool netlink_filter_tap(const struct sk_buff *skb)
188 {
189 	struct sock *sk = skb->sk;
190 
191 	/* We take the more conservative approach and
192 	 * whitelist socket protocols that may pass.
193 	 */
194 	switch (sk->sk_protocol) {
195 	case NETLINK_ROUTE:
196 	case NETLINK_USERSOCK:
197 	case NETLINK_SOCK_DIAG:
198 	case NETLINK_NFLOG:
199 	case NETLINK_XFRM:
200 	case NETLINK_FIB_LOOKUP:
201 	case NETLINK_NETFILTER:
202 	case NETLINK_GENERIC:
203 		return true;
204 	}
205 
206 	return false;
207 }
208 
209 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
210 				     struct net_device *dev)
211 {
212 	struct sk_buff *nskb;
213 	struct sock *sk = skb->sk;
214 	int ret = -ENOMEM;
215 
216 	dev_hold(dev);
217 	nskb = skb_clone(skb, GFP_ATOMIC);
218 	if (nskb) {
219 		nskb->dev = dev;
220 		nskb->protocol = htons((u16) sk->sk_protocol);
221 		nskb->pkt_type = netlink_is_kernel(sk) ?
222 				 PACKET_KERNEL : PACKET_USER;
223 		skb_reset_network_header(nskb);
224 		ret = dev_queue_xmit(nskb);
225 		if (unlikely(ret > 0))
226 			ret = net_xmit_errno(ret);
227 	}
228 
229 	dev_put(dev);
230 	return ret;
231 }
232 
233 static void __netlink_deliver_tap(struct sk_buff *skb)
234 {
235 	int ret;
236 	struct netlink_tap *tmp;
237 
238 	if (!netlink_filter_tap(skb))
239 		return;
240 
241 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
242 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
243 		if (unlikely(ret))
244 			break;
245 	}
246 }
247 
248 static void netlink_deliver_tap(struct sk_buff *skb)
249 {
250 	rcu_read_lock();
251 
252 	if (unlikely(!list_empty(&netlink_tap_all)))
253 		__netlink_deliver_tap(skb);
254 
255 	rcu_read_unlock();
256 }
257 
258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
259 				       struct sk_buff *skb)
260 {
261 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
262 		netlink_deliver_tap(skb);
263 }
264 
265 static void netlink_overrun(struct sock *sk)
266 {
267 	struct netlink_sock *nlk = nlk_sk(sk);
268 
269 	if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
270 		if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
271 			sk->sk_err = ENOBUFS;
272 			sk->sk_error_report(sk);
273 		}
274 	}
275 	atomic_inc(&sk->sk_drops);
276 }
277 
278 static void netlink_rcv_wake(struct sock *sk)
279 {
280 	struct netlink_sock *nlk = nlk_sk(sk);
281 
282 	if (skb_queue_empty(&sk->sk_receive_queue))
283 		clear_bit(NETLINK_CONGESTED, &nlk->state);
284 	if (!test_bit(NETLINK_CONGESTED, &nlk->state))
285 		wake_up_interruptible(&nlk->wait);
286 }
287 
288 #ifdef CONFIG_NETLINK_MMAP
289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
290 {
291 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
292 }
293 
294 static bool netlink_rx_is_mmaped(struct sock *sk)
295 {
296 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
297 }
298 
299 static bool netlink_tx_is_mmaped(struct sock *sk)
300 {
301 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
302 }
303 
304 static __pure struct page *pgvec_to_page(const void *addr)
305 {
306 	if (is_vmalloc_addr(addr))
307 		return vmalloc_to_page(addr);
308 	else
309 		return virt_to_page(addr);
310 }
311 
312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
313 {
314 	unsigned int i;
315 
316 	for (i = 0; i < len; i++) {
317 		if (pg_vec[i] != NULL) {
318 			if (is_vmalloc_addr(pg_vec[i]))
319 				vfree(pg_vec[i]);
320 			else
321 				free_pages((unsigned long)pg_vec[i], order);
322 		}
323 	}
324 	kfree(pg_vec);
325 }
326 
327 static void *alloc_one_pg_vec_page(unsigned long order)
328 {
329 	void *buffer;
330 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
331 			  __GFP_NOWARN | __GFP_NORETRY;
332 
333 	buffer = (void *)__get_free_pages(gfp_flags, order);
334 	if (buffer != NULL)
335 		return buffer;
336 
337 	buffer = vzalloc((1 << order) * PAGE_SIZE);
338 	if (buffer != NULL)
339 		return buffer;
340 
341 	gfp_flags &= ~__GFP_NORETRY;
342 	return (void *)__get_free_pages(gfp_flags, order);
343 }
344 
345 static void **alloc_pg_vec(struct netlink_sock *nlk,
346 			   struct nl_mmap_req *req, unsigned int order)
347 {
348 	unsigned int block_nr = req->nm_block_nr;
349 	unsigned int i;
350 	void **pg_vec;
351 
352 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
353 	if (pg_vec == NULL)
354 		return NULL;
355 
356 	for (i = 0; i < block_nr; i++) {
357 		pg_vec[i] = alloc_one_pg_vec_page(order);
358 		if (pg_vec[i] == NULL)
359 			goto err1;
360 	}
361 
362 	return pg_vec;
363 err1:
364 	free_pg_vec(pg_vec, order, block_nr);
365 	return NULL;
366 }
367 
368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
369 			    bool closing, bool tx_ring)
370 {
371 	struct netlink_sock *nlk = nlk_sk(sk);
372 	struct netlink_ring *ring;
373 	struct sk_buff_head *queue;
374 	void **pg_vec = NULL;
375 	unsigned int order = 0;
376 	int err;
377 
378 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
379 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
380 
381 	if (!closing) {
382 		if (atomic_read(&nlk->mapped))
383 			return -EBUSY;
384 		if (atomic_read(&ring->pending))
385 			return -EBUSY;
386 	}
387 
388 	if (req->nm_block_nr) {
389 		if (ring->pg_vec != NULL)
390 			return -EBUSY;
391 
392 		if ((int)req->nm_block_size <= 0)
393 			return -EINVAL;
394 		if (!PAGE_ALIGNED(req->nm_block_size))
395 			return -EINVAL;
396 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
397 			return -EINVAL;
398 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
399 			return -EINVAL;
400 
401 		ring->frames_per_block = req->nm_block_size /
402 					 req->nm_frame_size;
403 		if (ring->frames_per_block == 0)
404 			return -EINVAL;
405 		if (ring->frames_per_block * req->nm_block_nr !=
406 		    req->nm_frame_nr)
407 			return -EINVAL;
408 
409 		order = get_order(req->nm_block_size);
410 		pg_vec = alloc_pg_vec(nlk, req, order);
411 		if (pg_vec == NULL)
412 			return -ENOMEM;
413 	} else {
414 		if (req->nm_frame_nr)
415 			return -EINVAL;
416 	}
417 
418 	err = -EBUSY;
419 	mutex_lock(&nlk->pg_vec_lock);
420 	if (closing || atomic_read(&nlk->mapped) == 0) {
421 		err = 0;
422 		spin_lock_bh(&queue->lock);
423 
424 		ring->frame_max		= req->nm_frame_nr - 1;
425 		ring->head		= 0;
426 		ring->frame_size	= req->nm_frame_size;
427 		ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
428 
429 		swap(ring->pg_vec_len, req->nm_block_nr);
430 		swap(ring->pg_vec_order, order);
431 		swap(ring->pg_vec, pg_vec);
432 
433 		__skb_queue_purge(queue);
434 		spin_unlock_bh(&queue->lock);
435 
436 		WARN_ON(atomic_read(&nlk->mapped));
437 	}
438 	mutex_unlock(&nlk->pg_vec_lock);
439 
440 	if (pg_vec)
441 		free_pg_vec(pg_vec, order, req->nm_block_nr);
442 	return err;
443 }
444 
445 static void netlink_mm_open(struct vm_area_struct *vma)
446 {
447 	struct file *file = vma->vm_file;
448 	struct socket *sock = file->private_data;
449 	struct sock *sk = sock->sk;
450 
451 	if (sk)
452 		atomic_inc(&nlk_sk(sk)->mapped);
453 }
454 
455 static void netlink_mm_close(struct vm_area_struct *vma)
456 {
457 	struct file *file = vma->vm_file;
458 	struct socket *sock = file->private_data;
459 	struct sock *sk = sock->sk;
460 
461 	if (sk)
462 		atomic_dec(&nlk_sk(sk)->mapped);
463 }
464 
465 static const struct vm_operations_struct netlink_mmap_ops = {
466 	.open	= netlink_mm_open,
467 	.close	= netlink_mm_close,
468 };
469 
470 static int netlink_mmap(struct file *file, struct socket *sock,
471 			struct vm_area_struct *vma)
472 {
473 	struct sock *sk = sock->sk;
474 	struct netlink_sock *nlk = nlk_sk(sk);
475 	struct netlink_ring *ring;
476 	unsigned long start, size, expected;
477 	unsigned int i;
478 	int err = -EINVAL;
479 
480 	if (vma->vm_pgoff)
481 		return -EINVAL;
482 
483 	mutex_lock(&nlk->pg_vec_lock);
484 
485 	expected = 0;
486 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
487 		if (ring->pg_vec == NULL)
488 			continue;
489 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
490 	}
491 
492 	if (expected == 0)
493 		goto out;
494 
495 	size = vma->vm_end - vma->vm_start;
496 	if (size != expected)
497 		goto out;
498 
499 	start = vma->vm_start;
500 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
501 		if (ring->pg_vec == NULL)
502 			continue;
503 
504 		for (i = 0; i < ring->pg_vec_len; i++) {
505 			struct page *page;
506 			void *kaddr = ring->pg_vec[i];
507 			unsigned int pg_num;
508 
509 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
510 				page = pgvec_to_page(kaddr);
511 				err = vm_insert_page(vma, start, page);
512 				if (err < 0)
513 					goto out;
514 				start += PAGE_SIZE;
515 				kaddr += PAGE_SIZE;
516 			}
517 		}
518 	}
519 
520 	atomic_inc(&nlk->mapped);
521 	vma->vm_ops = &netlink_mmap_ops;
522 	err = 0;
523 out:
524 	mutex_unlock(&nlk->pg_vec_lock);
525 	return err;
526 }
527 
528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
529 {
530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
531 	struct page *p_start, *p_end;
532 
533 	/* First page is flushed through netlink_{get,set}_status */
534 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
535 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
536 	while (p_start <= p_end) {
537 		flush_dcache_page(p_start);
538 		p_start++;
539 	}
540 #endif
541 }
542 
543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
544 {
545 	smp_rmb();
546 	flush_dcache_page(pgvec_to_page(hdr));
547 	return hdr->nm_status;
548 }
549 
550 static void netlink_set_status(struct nl_mmap_hdr *hdr,
551 			       enum nl_mmap_status status)
552 {
553 	smp_mb();
554 	hdr->nm_status = status;
555 	flush_dcache_page(pgvec_to_page(hdr));
556 }
557 
558 static struct nl_mmap_hdr *
559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
560 {
561 	unsigned int pg_vec_pos, frame_off;
562 
563 	pg_vec_pos = pos / ring->frames_per_block;
564 	frame_off  = pos % ring->frames_per_block;
565 
566 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
567 }
568 
569 static struct nl_mmap_hdr *
570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
571 		     enum nl_mmap_status status)
572 {
573 	struct nl_mmap_hdr *hdr;
574 
575 	hdr = __netlink_lookup_frame(ring, pos);
576 	if (netlink_get_status(hdr) != status)
577 		return NULL;
578 
579 	return hdr;
580 }
581 
582 static struct nl_mmap_hdr *
583 netlink_current_frame(const struct netlink_ring *ring,
584 		      enum nl_mmap_status status)
585 {
586 	return netlink_lookup_frame(ring, ring->head, status);
587 }
588 
589 static struct nl_mmap_hdr *
590 netlink_previous_frame(const struct netlink_ring *ring,
591 		       enum nl_mmap_status status)
592 {
593 	unsigned int prev;
594 
595 	prev = ring->head ? ring->head - 1 : ring->frame_max;
596 	return netlink_lookup_frame(ring, prev, status);
597 }
598 
599 static void netlink_increment_head(struct netlink_ring *ring)
600 {
601 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
602 }
603 
604 static void netlink_forward_ring(struct netlink_ring *ring)
605 {
606 	unsigned int head = ring->head, pos = head;
607 	const struct nl_mmap_hdr *hdr;
608 
609 	do {
610 		hdr = __netlink_lookup_frame(ring, pos);
611 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
612 			break;
613 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
614 			break;
615 		netlink_increment_head(ring);
616 	} while (ring->head != head);
617 }
618 
619 static bool netlink_dump_space(struct netlink_sock *nlk)
620 {
621 	struct netlink_ring *ring = &nlk->rx_ring;
622 	struct nl_mmap_hdr *hdr;
623 	unsigned int n;
624 
625 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
626 	if (hdr == NULL)
627 		return false;
628 
629 	n = ring->head + ring->frame_max / 2;
630 	if (n > ring->frame_max)
631 		n -= ring->frame_max;
632 
633 	hdr = __netlink_lookup_frame(ring, n);
634 
635 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
636 }
637 
638 static unsigned int netlink_poll(struct file *file, struct socket *sock,
639 				 poll_table *wait)
640 {
641 	struct sock *sk = sock->sk;
642 	struct netlink_sock *nlk = nlk_sk(sk);
643 	unsigned int mask;
644 	int err;
645 
646 	if (nlk->rx_ring.pg_vec != NULL) {
647 		/* Memory mapped sockets don't call recvmsg(), so flow control
648 		 * for dumps is performed here. A dump is allowed to continue
649 		 * if at least half the ring is unused.
650 		 */
651 		while (nlk->cb_running && netlink_dump_space(nlk)) {
652 			err = netlink_dump(sk);
653 			if (err < 0) {
654 				sk->sk_err = -err;
655 				sk->sk_error_report(sk);
656 				break;
657 			}
658 		}
659 		netlink_rcv_wake(sk);
660 	}
661 
662 	mask = datagram_poll(file, sock, wait);
663 
664 	spin_lock_bh(&sk->sk_receive_queue.lock);
665 	if (nlk->rx_ring.pg_vec) {
666 		netlink_forward_ring(&nlk->rx_ring);
667 		if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
668 			mask |= POLLIN | POLLRDNORM;
669 	}
670 	spin_unlock_bh(&sk->sk_receive_queue.lock);
671 
672 	spin_lock_bh(&sk->sk_write_queue.lock);
673 	if (nlk->tx_ring.pg_vec) {
674 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
675 			mask |= POLLOUT | POLLWRNORM;
676 	}
677 	spin_unlock_bh(&sk->sk_write_queue.lock);
678 
679 	return mask;
680 }
681 
682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
683 {
684 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
685 }
686 
687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
688 				   struct netlink_ring *ring,
689 				   struct nl_mmap_hdr *hdr)
690 {
691 	unsigned int size;
692 	void *data;
693 
694 	size = ring->frame_size - NL_MMAP_HDRLEN;
695 	data = (void *)hdr + NL_MMAP_HDRLEN;
696 
697 	skb->head	= data;
698 	skb->data	= data;
699 	skb_reset_tail_pointer(skb);
700 	skb->end	= skb->tail + size;
701 	skb->len	= 0;
702 
703 	skb->destructor	= netlink_skb_destructor;
704 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
705 	NETLINK_CB(skb).sk = sk;
706 }
707 
708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
709 				u32 dst_portid, u32 dst_group,
710 				struct sock_iocb *siocb)
711 {
712 	struct netlink_sock *nlk = nlk_sk(sk);
713 	struct netlink_ring *ring;
714 	struct nl_mmap_hdr *hdr;
715 	struct sk_buff *skb;
716 	unsigned int maxlen;
717 	int err = 0, len = 0;
718 
719 	mutex_lock(&nlk->pg_vec_lock);
720 
721 	ring   = &nlk->tx_ring;
722 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
723 
724 	do {
725 		unsigned int nm_len;
726 
727 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
728 		if (hdr == NULL) {
729 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
730 			    atomic_read(&nlk->tx_ring.pending))
731 				schedule();
732 			continue;
733 		}
734 
735 		nm_len = ACCESS_ONCE(hdr->nm_len);
736 		if (nm_len > maxlen) {
737 			err = -EINVAL;
738 			goto out;
739 		}
740 
741 		netlink_frame_flush_dcache(hdr, nm_len);
742 
743 		skb = alloc_skb(nm_len, GFP_KERNEL);
744 		if (skb == NULL) {
745 			err = -ENOBUFS;
746 			goto out;
747 		}
748 		__skb_put(skb, nm_len);
749 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
750 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
751 
752 		netlink_increment_head(ring);
753 
754 		NETLINK_CB(skb).portid	  = nlk->portid;
755 		NETLINK_CB(skb).dst_group = dst_group;
756 		NETLINK_CB(skb).creds	  = siocb->scm->creds;
757 
758 		err = security_netlink_send(sk, skb);
759 		if (err) {
760 			kfree_skb(skb);
761 			goto out;
762 		}
763 
764 		if (unlikely(dst_group)) {
765 			atomic_inc(&skb->users);
766 			netlink_broadcast(sk, skb, dst_portid, dst_group,
767 					  GFP_KERNEL);
768 		}
769 		err = netlink_unicast(sk, skb, dst_portid,
770 				      msg->msg_flags & MSG_DONTWAIT);
771 		if (err < 0)
772 			goto out;
773 		len += err;
774 
775 	} while (hdr != NULL ||
776 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
777 		  atomic_read(&nlk->tx_ring.pending)));
778 
779 	if (len > 0)
780 		err = len;
781 out:
782 	mutex_unlock(&nlk->pg_vec_lock);
783 	return err;
784 }
785 
786 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
787 {
788 	struct nl_mmap_hdr *hdr;
789 
790 	hdr = netlink_mmap_hdr(skb);
791 	hdr->nm_len	= skb->len;
792 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
793 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
794 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
795 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
796 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
797 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
798 
799 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
800 	kfree_skb(skb);
801 }
802 
803 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
804 {
805 	struct netlink_sock *nlk = nlk_sk(sk);
806 	struct netlink_ring *ring = &nlk->rx_ring;
807 	struct nl_mmap_hdr *hdr;
808 
809 	spin_lock_bh(&sk->sk_receive_queue.lock);
810 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
811 	if (hdr == NULL) {
812 		spin_unlock_bh(&sk->sk_receive_queue.lock);
813 		kfree_skb(skb);
814 		netlink_overrun(sk);
815 		return;
816 	}
817 	netlink_increment_head(ring);
818 	__skb_queue_tail(&sk->sk_receive_queue, skb);
819 	spin_unlock_bh(&sk->sk_receive_queue.lock);
820 
821 	hdr->nm_len	= skb->len;
822 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
823 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
824 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
825 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
826 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
827 }
828 
829 #else /* CONFIG_NETLINK_MMAP */
830 #define netlink_skb_is_mmaped(skb)	false
831 #define netlink_rx_is_mmaped(sk)	false
832 #define netlink_tx_is_mmaped(sk)	false
833 #define netlink_mmap			sock_no_mmap
834 #define netlink_poll			datagram_poll
835 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb)	0
836 #endif /* CONFIG_NETLINK_MMAP */
837 
838 static void netlink_skb_destructor(struct sk_buff *skb)
839 {
840 #ifdef CONFIG_NETLINK_MMAP
841 	struct nl_mmap_hdr *hdr;
842 	struct netlink_ring *ring;
843 	struct sock *sk;
844 
845 	/* If a packet from the kernel to userspace was freed because of an
846 	 * error without being delivered to userspace, the kernel must reset
847 	 * the status. In the direction userspace to kernel, the status is
848 	 * always reset here after the packet was processed and freed.
849 	 */
850 	if (netlink_skb_is_mmaped(skb)) {
851 		hdr = netlink_mmap_hdr(skb);
852 		sk = NETLINK_CB(skb).sk;
853 
854 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
855 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
856 			ring = &nlk_sk(sk)->tx_ring;
857 		} else {
858 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
859 				hdr->nm_len = 0;
860 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
861 			}
862 			ring = &nlk_sk(sk)->rx_ring;
863 		}
864 
865 		WARN_ON(atomic_read(&ring->pending) == 0);
866 		atomic_dec(&ring->pending);
867 		sock_put(sk);
868 
869 		skb->head = NULL;
870 	}
871 #endif
872 	if (is_vmalloc_addr(skb->head)) {
873 		if (!skb->cloned ||
874 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
875 			vfree(skb->head);
876 
877 		skb->head = NULL;
878 	}
879 	if (skb->sk != NULL)
880 		sock_rfree(skb);
881 }
882 
883 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
884 {
885 	WARN_ON(skb->sk != NULL);
886 	skb->sk = sk;
887 	skb->destructor = netlink_skb_destructor;
888 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
889 	sk_mem_charge(sk, skb->truesize);
890 }
891 
892 static void netlink_sock_destruct(struct sock *sk)
893 {
894 	struct netlink_sock *nlk = nlk_sk(sk);
895 
896 	if (nlk->cb_running) {
897 		if (nlk->cb.done)
898 			nlk->cb.done(&nlk->cb);
899 
900 		module_put(nlk->cb.module);
901 		kfree_skb(nlk->cb.skb);
902 	}
903 
904 	skb_queue_purge(&sk->sk_receive_queue);
905 #ifdef CONFIG_NETLINK_MMAP
906 	if (1) {
907 		struct nl_mmap_req req;
908 
909 		memset(&req, 0, sizeof(req));
910 		if (nlk->rx_ring.pg_vec)
911 			netlink_set_ring(sk, &req, true, false);
912 		memset(&req, 0, sizeof(req));
913 		if (nlk->tx_ring.pg_vec)
914 			netlink_set_ring(sk, &req, true, true);
915 	}
916 #endif /* CONFIG_NETLINK_MMAP */
917 
918 	if (!sock_flag(sk, SOCK_DEAD)) {
919 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
920 		return;
921 	}
922 
923 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
924 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
925 	WARN_ON(nlk_sk(sk)->groups);
926 }
927 
928 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
929  * SMP. Look, when several writers sleep and reader wakes them up, all but one
930  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
931  * this, _but_ remember, it adds useless work on UP machines.
932  */
933 
934 void netlink_table_grab(void)
935 	__acquires(nl_table_lock)
936 {
937 	might_sleep();
938 
939 	write_lock_irq(&nl_table_lock);
940 
941 	if (atomic_read(&nl_table_users)) {
942 		DECLARE_WAITQUEUE(wait, current);
943 
944 		add_wait_queue_exclusive(&nl_table_wait, &wait);
945 		for (;;) {
946 			set_current_state(TASK_UNINTERRUPTIBLE);
947 			if (atomic_read(&nl_table_users) == 0)
948 				break;
949 			write_unlock_irq(&nl_table_lock);
950 			schedule();
951 			write_lock_irq(&nl_table_lock);
952 		}
953 
954 		__set_current_state(TASK_RUNNING);
955 		remove_wait_queue(&nl_table_wait, &wait);
956 	}
957 }
958 
959 void netlink_table_ungrab(void)
960 	__releases(nl_table_lock)
961 {
962 	write_unlock_irq(&nl_table_lock);
963 	wake_up(&nl_table_wait);
964 }
965 
966 static inline void
967 netlink_lock_table(void)
968 {
969 	/* read_lock() synchronizes us to netlink_table_grab */
970 
971 	read_lock(&nl_table_lock);
972 	atomic_inc(&nl_table_users);
973 	read_unlock(&nl_table_lock);
974 }
975 
976 static inline void
977 netlink_unlock_table(void)
978 {
979 	if (atomic_dec_and_test(&nl_table_users))
980 		wake_up(&nl_table_wait);
981 }
982 
983 struct netlink_compare_arg
984 {
985 	struct net *net;
986 	u32 portid;
987 };
988 
989 static bool netlink_compare(void *ptr, void *arg)
990 {
991 	struct netlink_compare_arg *x = arg;
992 	struct sock *sk = ptr;
993 
994 	return nlk_sk(sk)->portid == x->portid &&
995 	       net_eq(sock_net(sk), x->net);
996 }
997 
998 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
999 				     struct net *net)
1000 {
1001 	struct netlink_compare_arg arg = {
1002 		.net = net,
1003 		.portid = portid,
1004 	};
1005 	u32 hash;
1006 
1007 	hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid));
1008 
1009 	return rhashtable_lookup_compare(&table->hash, hash,
1010 					 &netlink_compare, &arg);
1011 }
1012 
1013 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1014 {
1015 	struct netlink_table *table = &nl_table[protocol];
1016 	struct sock *sk;
1017 
1018 	read_lock(&nl_table_lock);
1019 	rcu_read_lock();
1020 	sk = __netlink_lookup(table, portid, net);
1021 	if (sk)
1022 		sock_hold(sk);
1023 	rcu_read_unlock();
1024 	read_unlock(&nl_table_lock);
1025 
1026 	return sk;
1027 }
1028 
1029 static const struct proto_ops netlink_ops;
1030 
1031 static void
1032 netlink_update_listeners(struct sock *sk)
1033 {
1034 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1035 	unsigned long mask;
1036 	unsigned int i;
1037 	struct listeners *listeners;
1038 
1039 	listeners = nl_deref_protected(tbl->listeners);
1040 	if (!listeners)
1041 		return;
1042 
1043 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1044 		mask = 0;
1045 		sk_for_each_bound(sk, &tbl->mc_list) {
1046 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1047 				mask |= nlk_sk(sk)->groups[i];
1048 		}
1049 		listeners->masks[i] = mask;
1050 	}
1051 	/* this function is only called with the netlink table "grabbed", which
1052 	 * makes sure updates are visible before bind or setsockopt return. */
1053 }
1054 
1055 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1056 {
1057 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1058 	int err = -EADDRINUSE;
1059 
1060 	mutex_lock(&nl_sk_hash_lock);
1061 	if (__netlink_lookup(table, portid, net))
1062 		goto err;
1063 
1064 	err = -EBUSY;
1065 	if (nlk_sk(sk)->portid)
1066 		goto err;
1067 
1068 	err = -ENOMEM;
1069 	if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1070 		goto err;
1071 
1072 	nlk_sk(sk)->portid = portid;
1073 	sock_hold(sk);
1074 	rhashtable_insert(&table->hash, &nlk_sk(sk)->node);
1075 	err = 0;
1076 err:
1077 	mutex_unlock(&nl_sk_hash_lock);
1078 	return err;
1079 }
1080 
1081 static void netlink_remove(struct sock *sk)
1082 {
1083 	struct netlink_table *table;
1084 
1085 	mutex_lock(&nl_sk_hash_lock);
1086 	table = &nl_table[sk->sk_protocol];
1087 	if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) {
1088 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1089 		__sock_put(sk);
1090 	}
1091 	mutex_unlock(&nl_sk_hash_lock);
1092 
1093 	netlink_table_grab();
1094 	if (nlk_sk(sk)->subscriptions) {
1095 		__sk_del_bind_node(sk);
1096 		netlink_update_listeners(sk);
1097 	}
1098 	netlink_table_ungrab();
1099 }
1100 
1101 static struct proto netlink_proto = {
1102 	.name	  = "NETLINK",
1103 	.owner	  = THIS_MODULE,
1104 	.obj_size = sizeof(struct netlink_sock),
1105 };
1106 
1107 static int __netlink_create(struct net *net, struct socket *sock,
1108 			    struct mutex *cb_mutex, int protocol)
1109 {
1110 	struct sock *sk;
1111 	struct netlink_sock *nlk;
1112 
1113 	sock->ops = &netlink_ops;
1114 
1115 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1116 	if (!sk)
1117 		return -ENOMEM;
1118 
1119 	sock_init_data(sock, sk);
1120 
1121 	nlk = nlk_sk(sk);
1122 	if (cb_mutex) {
1123 		nlk->cb_mutex = cb_mutex;
1124 	} else {
1125 		nlk->cb_mutex = &nlk->cb_def_mutex;
1126 		mutex_init(nlk->cb_mutex);
1127 	}
1128 	init_waitqueue_head(&nlk->wait);
1129 #ifdef CONFIG_NETLINK_MMAP
1130 	mutex_init(&nlk->pg_vec_lock);
1131 #endif
1132 
1133 	sk->sk_destruct = netlink_sock_destruct;
1134 	sk->sk_protocol = protocol;
1135 	return 0;
1136 }
1137 
1138 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1139 			  int kern)
1140 {
1141 	struct module *module = NULL;
1142 	struct mutex *cb_mutex;
1143 	struct netlink_sock *nlk;
1144 	int (*bind)(struct net *net, int group);
1145 	void (*unbind)(struct net *net, int group);
1146 	int err = 0;
1147 
1148 	sock->state = SS_UNCONNECTED;
1149 
1150 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1151 		return -ESOCKTNOSUPPORT;
1152 
1153 	if (protocol < 0 || protocol >= MAX_LINKS)
1154 		return -EPROTONOSUPPORT;
1155 
1156 	netlink_lock_table();
1157 #ifdef CONFIG_MODULES
1158 	if (!nl_table[protocol].registered) {
1159 		netlink_unlock_table();
1160 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1161 		netlink_lock_table();
1162 	}
1163 #endif
1164 	if (nl_table[protocol].registered &&
1165 	    try_module_get(nl_table[protocol].module))
1166 		module = nl_table[protocol].module;
1167 	else
1168 		err = -EPROTONOSUPPORT;
1169 	cb_mutex = nl_table[protocol].cb_mutex;
1170 	bind = nl_table[protocol].bind;
1171 	unbind = nl_table[protocol].unbind;
1172 	netlink_unlock_table();
1173 
1174 	if (err < 0)
1175 		goto out;
1176 
1177 	err = __netlink_create(net, sock, cb_mutex, protocol);
1178 	if (err < 0)
1179 		goto out_module;
1180 
1181 	local_bh_disable();
1182 	sock_prot_inuse_add(net, &netlink_proto, 1);
1183 	local_bh_enable();
1184 
1185 	nlk = nlk_sk(sock->sk);
1186 	nlk->module = module;
1187 	nlk->netlink_bind = bind;
1188 	nlk->netlink_unbind = unbind;
1189 out:
1190 	return err;
1191 
1192 out_module:
1193 	module_put(module);
1194 	goto out;
1195 }
1196 
1197 static int netlink_release(struct socket *sock)
1198 {
1199 	struct sock *sk = sock->sk;
1200 	struct netlink_sock *nlk;
1201 
1202 	if (!sk)
1203 		return 0;
1204 
1205 	netlink_remove(sk);
1206 	sock_orphan(sk);
1207 	nlk = nlk_sk(sk);
1208 
1209 	/*
1210 	 * OK. Socket is unlinked, any packets that arrive now
1211 	 * will be purged.
1212 	 */
1213 
1214 	sock->sk = NULL;
1215 	wake_up_interruptible_all(&nlk->wait);
1216 
1217 	skb_queue_purge(&sk->sk_write_queue);
1218 
1219 	if (nlk->portid) {
1220 		struct netlink_notify n = {
1221 						.net = sock_net(sk),
1222 						.protocol = sk->sk_protocol,
1223 						.portid = nlk->portid,
1224 					  };
1225 		atomic_notifier_call_chain(&netlink_chain,
1226 				NETLINK_URELEASE, &n);
1227 	}
1228 
1229 	module_put(nlk->module);
1230 
1231 	if (netlink_is_kernel(sk)) {
1232 		netlink_table_grab();
1233 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1234 		if (--nl_table[sk->sk_protocol].registered == 0) {
1235 			struct listeners *old;
1236 
1237 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1238 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1239 			kfree_rcu(old, rcu);
1240 			nl_table[sk->sk_protocol].module = NULL;
1241 			nl_table[sk->sk_protocol].bind = NULL;
1242 			nl_table[sk->sk_protocol].unbind = NULL;
1243 			nl_table[sk->sk_protocol].flags = 0;
1244 			nl_table[sk->sk_protocol].registered = 0;
1245 		}
1246 		netlink_table_ungrab();
1247 	}
1248 
1249 	if (nlk->netlink_unbind) {
1250 		int i;
1251 
1252 		for (i = 0; i < nlk->ngroups; i++)
1253 			if (test_bit(i, nlk->groups))
1254 				nlk->netlink_unbind(sock_net(sk), i + 1);
1255 	}
1256 	kfree(nlk->groups);
1257 	nlk->groups = NULL;
1258 
1259 	local_bh_disable();
1260 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1261 	local_bh_enable();
1262 	sock_put(sk);
1263 	return 0;
1264 }
1265 
1266 static int netlink_autobind(struct socket *sock)
1267 {
1268 	struct sock *sk = sock->sk;
1269 	struct net *net = sock_net(sk);
1270 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1271 	s32 portid = task_tgid_vnr(current);
1272 	int err;
1273 	static s32 rover = -4097;
1274 
1275 retry:
1276 	cond_resched();
1277 	netlink_table_grab();
1278 	rcu_read_lock();
1279 	if (__netlink_lookup(table, portid, net)) {
1280 		/* Bind collision, search negative portid values. */
1281 		portid = rover--;
1282 		if (rover > -4097)
1283 			rover = -4097;
1284 		rcu_read_unlock();
1285 		netlink_table_ungrab();
1286 		goto retry;
1287 	}
1288 	rcu_read_unlock();
1289 	netlink_table_ungrab();
1290 
1291 	err = netlink_insert(sk, net, portid);
1292 	if (err == -EADDRINUSE)
1293 		goto retry;
1294 
1295 	/* If 2 threads race to autobind, that is fine.  */
1296 	if (err == -EBUSY)
1297 		err = 0;
1298 
1299 	return err;
1300 }
1301 
1302 /**
1303  * __netlink_ns_capable - General netlink message capability test
1304  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1305  * @user_ns: The user namespace of the capability to use
1306  * @cap: The capability to use
1307  *
1308  * Test to see if the opener of the socket we received the message
1309  * from had when the netlink socket was created and the sender of the
1310  * message has has the capability @cap in the user namespace @user_ns.
1311  */
1312 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1313 			struct user_namespace *user_ns, int cap)
1314 {
1315 	return ((nsp->flags & NETLINK_SKB_DST) ||
1316 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1317 		ns_capable(user_ns, cap);
1318 }
1319 EXPORT_SYMBOL(__netlink_ns_capable);
1320 
1321 /**
1322  * netlink_ns_capable - General netlink message capability test
1323  * @skb: socket buffer holding a netlink command from userspace
1324  * @user_ns: The user namespace of the capability to use
1325  * @cap: The capability to use
1326  *
1327  * Test to see if the opener of the socket we received the message
1328  * from had when the netlink socket was created and the sender of the
1329  * message has has the capability @cap in the user namespace @user_ns.
1330  */
1331 bool netlink_ns_capable(const struct sk_buff *skb,
1332 			struct user_namespace *user_ns, int cap)
1333 {
1334 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1335 }
1336 EXPORT_SYMBOL(netlink_ns_capable);
1337 
1338 /**
1339  * netlink_capable - Netlink global message capability test
1340  * @skb: socket buffer holding a netlink command from userspace
1341  * @cap: The capability to use
1342  *
1343  * Test to see if the opener of the socket we received the message
1344  * from had when the netlink socket was created and the sender of the
1345  * message has has the capability @cap in all user namespaces.
1346  */
1347 bool netlink_capable(const struct sk_buff *skb, int cap)
1348 {
1349 	return netlink_ns_capable(skb, &init_user_ns, cap);
1350 }
1351 EXPORT_SYMBOL(netlink_capable);
1352 
1353 /**
1354  * netlink_net_capable - Netlink network namespace message capability test
1355  * @skb: socket buffer holding a netlink command from userspace
1356  * @cap: The capability to use
1357  *
1358  * Test to see if the opener of the socket we received the message
1359  * from had when the netlink socket was created and the sender of the
1360  * message has has the capability @cap over the network namespace of
1361  * the socket we received the message from.
1362  */
1363 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1364 {
1365 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1366 }
1367 EXPORT_SYMBOL(netlink_net_capable);
1368 
1369 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1370 {
1371 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1372 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1373 }
1374 
1375 static void
1376 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1377 {
1378 	struct netlink_sock *nlk = nlk_sk(sk);
1379 
1380 	if (nlk->subscriptions && !subscriptions)
1381 		__sk_del_bind_node(sk);
1382 	else if (!nlk->subscriptions && subscriptions)
1383 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1384 	nlk->subscriptions = subscriptions;
1385 }
1386 
1387 static int netlink_realloc_groups(struct sock *sk)
1388 {
1389 	struct netlink_sock *nlk = nlk_sk(sk);
1390 	unsigned int groups;
1391 	unsigned long *new_groups;
1392 	int err = 0;
1393 
1394 	netlink_table_grab();
1395 
1396 	groups = nl_table[sk->sk_protocol].groups;
1397 	if (!nl_table[sk->sk_protocol].registered) {
1398 		err = -ENOENT;
1399 		goto out_unlock;
1400 	}
1401 
1402 	if (nlk->ngroups >= groups)
1403 		goto out_unlock;
1404 
1405 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1406 	if (new_groups == NULL) {
1407 		err = -ENOMEM;
1408 		goto out_unlock;
1409 	}
1410 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1411 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1412 
1413 	nlk->groups = new_groups;
1414 	nlk->ngroups = groups;
1415  out_unlock:
1416 	netlink_table_ungrab();
1417 	return err;
1418 }
1419 
1420 static void netlink_undo_bind(int group, long unsigned int groups,
1421 			      struct sock *sk)
1422 {
1423 	struct netlink_sock *nlk = nlk_sk(sk);
1424 	int undo;
1425 
1426 	if (!nlk->netlink_unbind)
1427 		return;
1428 
1429 	for (undo = 0; undo < group; undo++)
1430 		if (test_bit(undo, &groups))
1431 			nlk->netlink_unbind(sock_net(sk), undo);
1432 }
1433 
1434 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1435 			int addr_len)
1436 {
1437 	struct sock *sk = sock->sk;
1438 	struct net *net = sock_net(sk);
1439 	struct netlink_sock *nlk = nlk_sk(sk);
1440 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1441 	int err;
1442 	long unsigned int groups = nladdr->nl_groups;
1443 
1444 	if (addr_len < sizeof(struct sockaddr_nl))
1445 		return -EINVAL;
1446 
1447 	if (nladdr->nl_family != AF_NETLINK)
1448 		return -EINVAL;
1449 
1450 	/* Only superuser is allowed to listen multicasts */
1451 	if (groups) {
1452 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1453 			return -EPERM;
1454 		err = netlink_realloc_groups(sk);
1455 		if (err)
1456 			return err;
1457 	}
1458 
1459 	if (nlk->portid)
1460 		if (nladdr->nl_pid != nlk->portid)
1461 			return -EINVAL;
1462 
1463 	if (nlk->netlink_bind && groups) {
1464 		int group;
1465 
1466 		for (group = 0; group < nlk->ngroups; group++) {
1467 			if (!test_bit(group, &groups))
1468 				continue;
1469 			err = nlk->netlink_bind(net, group);
1470 			if (!err)
1471 				continue;
1472 			netlink_undo_bind(group, groups, sk);
1473 			return err;
1474 		}
1475 	}
1476 
1477 	if (!nlk->portid) {
1478 		err = nladdr->nl_pid ?
1479 			netlink_insert(sk, net, nladdr->nl_pid) :
1480 			netlink_autobind(sock);
1481 		if (err) {
1482 			netlink_undo_bind(nlk->ngroups, groups, sk);
1483 			return err;
1484 		}
1485 	}
1486 
1487 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1488 		return 0;
1489 
1490 	netlink_table_grab();
1491 	netlink_update_subscriptions(sk, nlk->subscriptions +
1492 					 hweight32(groups) -
1493 					 hweight32(nlk->groups[0]));
1494 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1495 	netlink_update_listeners(sk);
1496 	netlink_table_ungrab();
1497 
1498 	return 0;
1499 }
1500 
1501 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1502 			   int alen, int flags)
1503 {
1504 	int err = 0;
1505 	struct sock *sk = sock->sk;
1506 	struct netlink_sock *nlk = nlk_sk(sk);
1507 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1508 
1509 	if (alen < sizeof(addr->sa_family))
1510 		return -EINVAL;
1511 
1512 	if (addr->sa_family == AF_UNSPEC) {
1513 		sk->sk_state	= NETLINK_UNCONNECTED;
1514 		nlk->dst_portid	= 0;
1515 		nlk->dst_group  = 0;
1516 		return 0;
1517 	}
1518 	if (addr->sa_family != AF_NETLINK)
1519 		return -EINVAL;
1520 
1521 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1522 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1523 		return -EPERM;
1524 
1525 	if (!nlk->portid)
1526 		err = netlink_autobind(sock);
1527 
1528 	if (err == 0) {
1529 		sk->sk_state	= NETLINK_CONNECTED;
1530 		nlk->dst_portid = nladdr->nl_pid;
1531 		nlk->dst_group  = ffs(nladdr->nl_groups);
1532 	}
1533 
1534 	return err;
1535 }
1536 
1537 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1538 			   int *addr_len, int peer)
1539 {
1540 	struct sock *sk = sock->sk;
1541 	struct netlink_sock *nlk = nlk_sk(sk);
1542 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1543 
1544 	nladdr->nl_family = AF_NETLINK;
1545 	nladdr->nl_pad = 0;
1546 	*addr_len = sizeof(*nladdr);
1547 
1548 	if (peer) {
1549 		nladdr->nl_pid = nlk->dst_portid;
1550 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1551 	} else {
1552 		nladdr->nl_pid = nlk->portid;
1553 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1554 	}
1555 	return 0;
1556 }
1557 
1558 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1559 {
1560 	struct sock *sock;
1561 	struct netlink_sock *nlk;
1562 
1563 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1564 	if (!sock)
1565 		return ERR_PTR(-ECONNREFUSED);
1566 
1567 	/* Don't bother queuing skb if kernel socket has no input function */
1568 	nlk = nlk_sk(sock);
1569 	if (sock->sk_state == NETLINK_CONNECTED &&
1570 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1571 		sock_put(sock);
1572 		return ERR_PTR(-ECONNREFUSED);
1573 	}
1574 	return sock;
1575 }
1576 
1577 struct sock *netlink_getsockbyfilp(struct file *filp)
1578 {
1579 	struct inode *inode = file_inode(filp);
1580 	struct sock *sock;
1581 
1582 	if (!S_ISSOCK(inode->i_mode))
1583 		return ERR_PTR(-ENOTSOCK);
1584 
1585 	sock = SOCKET_I(inode)->sk;
1586 	if (sock->sk_family != AF_NETLINK)
1587 		return ERR_PTR(-EINVAL);
1588 
1589 	sock_hold(sock);
1590 	return sock;
1591 }
1592 
1593 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1594 					       int broadcast)
1595 {
1596 	struct sk_buff *skb;
1597 	void *data;
1598 
1599 	if (size <= NLMSG_GOODSIZE || broadcast)
1600 		return alloc_skb(size, GFP_KERNEL);
1601 
1602 	size = SKB_DATA_ALIGN(size) +
1603 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1604 
1605 	data = vmalloc(size);
1606 	if (data == NULL)
1607 		return NULL;
1608 
1609 	skb = build_skb(data, size);
1610 	if (skb == NULL)
1611 		vfree(data);
1612 	else {
1613 		skb->head_frag = 0;
1614 		skb->destructor = netlink_skb_destructor;
1615 	}
1616 
1617 	return skb;
1618 }
1619 
1620 /*
1621  * Attach a skb to a netlink socket.
1622  * The caller must hold a reference to the destination socket. On error, the
1623  * reference is dropped. The skb is not send to the destination, just all
1624  * all error checks are performed and memory in the queue is reserved.
1625  * Return values:
1626  * < 0: error. skb freed, reference to sock dropped.
1627  * 0: continue
1628  * 1: repeat lookup - reference dropped while waiting for socket memory.
1629  */
1630 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1631 		      long *timeo, struct sock *ssk)
1632 {
1633 	struct netlink_sock *nlk;
1634 
1635 	nlk = nlk_sk(sk);
1636 
1637 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1638 	     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1639 	    !netlink_skb_is_mmaped(skb)) {
1640 		DECLARE_WAITQUEUE(wait, current);
1641 		if (!*timeo) {
1642 			if (!ssk || netlink_is_kernel(ssk))
1643 				netlink_overrun(sk);
1644 			sock_put(sk);
1645 			kfree_skb(skb);
1646 			return -EAGAIN;
1647 		}
1648 
1649 		__set_current_state(TASK_INTERRUPTIBLE);
1650 		add_wait_queue(&nlk->wait, &wait);
1651 
1652 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1653 		     test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1654 		    !sock_flag(sk, SOCK_DEAD))
1655 			*timeo = schedule_timeout(*timeo);
1656 
1657 		__set_current_state(TASK_RUNNING);
1658 		remove_wait_queue(&nlk->wait, &wait);
1659 		sock_put(sk);
1660 
1661 		if (signal_pending(current)) {
1662 			kfree_skb(skb);
1663 			return sock_intr_errno(*timeo);
1664 		}
1665 		return 1;
1666 	}
1667 	netlink_skb_set_owner_r(skb, sk);
1668 	return 0;
1669 }
1670 
1671 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1672 {
1673 	int len = skb->len;
1674 
1675 	netlink_deliver_tap(skb);
1676 
1677 #ifdef CONFIG_NETLINK_MMAP
1678 	if (netlink_skb_is_mmaped(skb))
1679 		netlink_queue_mmaped_skb(sk, skb);
1680 	else if (netlink_rx_is_mmaped(sk))
1681 		netlink_ring_set_copied(sk, skb);
1682 	else
1683 #endif /* CONFIG_NETLINK_MMAP */
1684 		skb_queue_tail(&sk->sk_receive_queue, skb);
1685 	sk->sk_data_ready(sk);
1686 	return len;
1687 }
1688 
1689 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1690 {
1691 	int len = __netlink_sendskb(sk, skb);
1692 
1693 	sock_put(sk);
1694 	return len;
1695 }
1696 
1697 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1698 {
1699 	kfree_skb(skb);
1700 	sock_put(sk);
1701 }
1702 
1703 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1704 {
1705 	int delta;
1706 
1707 	WARN_ON(skb->sk != NULL);
1708 	if (netlink_skb_is_mmaped(skb))
1709 		return skb;
1710 
1711 	delta = skb->end - skb->tail;
1712 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1713 		return skb;
1714 
1715 	if (skb_shared(skb)) {
1716 		struct sk_buff *nskb = skb_clone(skb, allocation);
1717 		if (!nskb)
1718 			return skb;
1719 		consume_skb(skb);
1720 		skb = nskb;
1721 	}
1722 
1723 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1724 		skb->truesize -= delta;
1725 
1726 	return skb;
1727 }
1728 
1729 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1730 				  struct sock *ssk)
1731 {
1732 	int ret;
1733 	struct netlink_sock *nlk = nlk_sk(sk);
1734 
1735 	ret = -ECONNREFUSED;
1736 	if (nlk->netlink_rcv != NULL) {
1737 		ret = skb->len;
1738 		netlink_skb_set_owner_r(skb, sk);
1739 		NETLINK_CB(skb).sk = ssk;
1740 		netlink_deliver_tap_kernel(sk, ssk, skb);
1741 		nlk->netlink_rcv(skb);
1742 		consume_skb(skb);
1743 	} else {
1744 		kfree_skb(skb);
1745 	}
1746 	sock_put(sk);
1747 	return ret;
1748 }
1749 
1750 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1751 		    u32 portid, int nonblock)
1752 {
1753 	struct sock *sk;
1754 	int err;
1755 	long timeo;
1756 
1757 	skb = netlink_trim(skb, gfp_any());
1758 
1759 	timeo = sock_sndtimeo(ssk, nonblock);
1760 retry:
1761 	sk = netlink_getsockbyportid(ssk, portid);
1762 	if (IS_ERR(sk)) {
1763 		kfree_skb(skb);
1764 		return PTR_ERR(sk);
1765 	}
1766 	if (netlink_is_kernel(sk))
1767 		return netlink_unicast_kernel(sk, skb, ssk);
1768 
1769 	if (sk_filter(sk, skb)) {
1770 		err = skb->len;
1771 		kfree_skb(skb);
1772 		sock_put(sk);
1773 		return err;
1774 	}
1775 
1776 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1777 	if (err == 1)
1778 		goto retry;
1779 	if (err)
1780 		return err;
1781 
1782 	return netlink_sendskb(sk, skb);
1783 }
1784 EXPORT_SYMBOL(netlink_unicast);
1785 
1786 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1787 				  u32 dst_portid, gfp_t gfp_mask)
1788 {
1789 #ifdef CONFIG_NETLINK_MMAP
1790 	struct sock *sk = NULL;
1791 	struct sk_buff *skb;
1792 	struct netlink_ring *ring;
1793 	struct nl_mmap_hdr *hdr;
1794 	unsigned int maxlen;
1795 
1796 	sk = netlink_getsockbyportid(ssk, dst_portid);
1797 	if (IS_ERR(sk))
1798 		goto out;
1799 
1800 	ring = &nlk_sk(sk)->rx_ring;
1801 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1802 	if (ring->pg_vec == NULL)
1803 		goto out_put;
1804 
1805 	if (ring->frame_size - NL_MMAP_HDRLEN < size)
1806 		goto out_put;
1807 
1808 	skb = alloc_skb_head(gfp_mask);
1809 	if (skb == NULL)
1810 		goto err1;
1811 
1812 	spin_lock_bh(&sk->sk_receive_queue.lock);
1813 	/* check again under lock */
1814 	if (ring->pg_vec == NULL)
1815 		goto out_free;
1816 
1817 	/* check again under lock */
1818 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1819 	if (maxlen < size)
1820 		goto out_free;
1821 
1822 	netlink_forward_ring(ring);
1823 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1824 	if (hdr == NULL)
1825 		goto err2;
1826 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1827 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1828 	atomic_inc(&ring->pending);
1829 	netlink_increment_head(ring);
1830 
1831 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1832 	return skb;
1833 
1834 err2:
1835 	kfree_skb(skb);
1836 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1837 	netlink_overrun(sk);
1838 err1:
1839 	sock_put(sk);
1840 	return NULL;
1841 
1842 out_free:
1843 	kfree_skb(skb);
1844 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1845 out_put:
1846 	sock_put(sk);
1847 out:
1848 #endif
1849 	return alloc_skb(size, gfp_mask);
1850 }
1851 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1852 
1853 int netlink_has_listeners(struct sock *sk, unsigned int group)
1854 {
1855 	int res = 0;
1856 	struct listeners *listeners;
1857 
1858 	BUG_ON(!netlink_is_kernel(sk));
1859 
1860 	rcu_read_lock();
1861 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1862 
1863 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1864 		res = test_bit(group - 1, listeners->masks);
1865 
1866 	rcu_read_unlock();
1867 
1868 	return res;
1869 }
1870 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1871 
1872 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1873 {
1874 	struct netlink_sock *nlk = nlk_sk(sk);
1875 
1876 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1877 	    !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1878 		netlink_skb_set_owner_r(skb, sk);
1879 		__netlink_sendskb(sk, skb);
1880 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1881 	}
1882 	return -1;
1883 }
1884 
1885 struct netlink_broadcast_data {
1886 	struct sock *exclude_sk;
1887 	struct net *net;
1888 	u32 portid;
1889 	u32 group;
1890 	int failure;
1891 	int delivery_failure;
1892 	int congested;
1893 	int delivered;
1894 	gfp_t allocation;
1895 	struct sk_buff *skb, *skb2;
1896 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1897 	void *tx_data;
1898 };
1899 
1900 static void do_one_broadcast(struct sock *sk,
1901 				    struct netlink_broadcast_data *p)
1902 {
1903 	struct netlink_sock *nlk = nlk_sk(sk);
1904 	int val;
1905 
1906 	if (p->exclude_sk == sk)
1907 		return;
1908 
1909 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1910 	    !test_bit(p->group - 1, nlk->groups))
1911 		return;
1912 
1913 	if (!net_eq(sock_net(sk), p->net))
1914 		return;
1915 
1916 	if (p->failure) {
1917 		netlink_overrun(sk);
1918 		return;
1919 	}
1920 
1921 	sock_hold(sk);
1922 	if (p->skb2 == NULL) {
1923 		if (skb_shared(p->skb)) {
1924 			p->skb2 = skb_clone(p->skb, p->allocation);
1925 		} else {
1926 			p->skb2 = skb_get(p->skb);
1927 			/*
1928 			 * skb ownership may have been set when
1929 			 * delivered to a previous socket.
1930 			 */
1931 			skb_orphan(p->skb2);
1932 		}
1933 	}
1934 	if (p->skb2 == NULL) {
1935 		netlink_overrun(sk);
1936 		/* Clone failed. Notify ALL listeners. */
1937 		p->failure = 1;
1938 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1939 			p->delivery_failure = 1;
1940 	} else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1941 		kfree_skb(p->skb2);
1942 		p->skb2 = NULL;
1943 	} else if (sk_filter(sk, p->skb2)) {
1944 		kfree_skb(p->skb2);
1945 		p->skb2 = NULL;
1946 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1947 		netlink_overrun(sk);
1948 		if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1949 			p->delivery_failure = 1;
1950 	} else {
1951 		p->congested |= val;
1952 		p->delivered = 1;
1953 		p->skb2 = NULL;
1954 	}
1955 	sock_put(sk);
1956 }
1957 
1958 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1959 	u32 group, gfp_t allocation,
1960 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1961 	void *filter_data)
1962 {
1963 	struct net *net = sock_net(ssk);
1964 	struct netlink_broadcast_data info;
1965 	struct sock *sk;
1966 
1967 	skb = netlink_trim(skb, allocation);
1968 
1969 	info.exclude_sk = ssk;
1970 	info.net = net;
1971 	info.portid = portid;
1972 	info.group = group;
1973 	info.failure = 0;
1974 	info.delivery_failure = 0;
1975 	info.congested = 0;
1976 	info.delivered = 0;
1977 	info.allocation = allocation;
1978 	info.skb = skb;
1979 	info.skb2 = NULL;
1980 	info.tx_filter = filter;
1981 	info.tx_data = filter_data;
1982 
1983 	/* While we sleep in clone, do not allow to change socket list */
1984 
1985 	netlink_lock_table();
1986 
1987 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1988 		do_one_broadcast(sk, &info);
1989 
1990 	consume_skb(skb);
1991 
1992 	netlink_unlock_table();
1993 
1994 	if (info.delivery_failure) {
1995 		kfree_skb(info.skb2);
1996 		return -ENOBUFS;
1997 	}
1998 	consume_skb(info.skb2);
1999 
2000 	if (info.delivered) {
2001 		if (info.congested && (allocation & __GFP_WAIT))
2002 			yield();
2003 		return 0;
2004 	}
2005 	return -ESRCH;
2006 }
2007 EXPORT_SYMBOL(netlink_broadcast_filtered);
2008 
2009 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2010 		      u32 group, gfp_t allocation)
2011 {
2012 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2013 		NULL, NULL);
2014 }
2015 EXPORT_SYMBOL(netlink_broadcast);
2016 
2017 struct netlink_set_err_data {
2018 	struct sock *exclude_sk;
2019 	u32 portid;
2020 	u32 group;
2021 	int code;
2022 };
2023 
2024 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2025 {
2026 	struct netlink_sock *nlk = nlk_sk(sk);
2027 	int ret = 0;
2028 
2029 	if (sk == p->exclude_sk)
2030 		goto out;
2031 
2032 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2033 		goto out;
2034 
2035 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2036 	    !test_bit(p->group - 1, nlk->groups))
2037 		goto out;
2038 
2039 	if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2040 		ret = 1;
2041 		goto out;
2042 	}
2043 
2044 	sk->sk_err = p->code;
2045 	sk->sk_error_report(sk);
2046 out:
2047 	return ret;
2048 }
2049 
2050 /**
2051  * netlink_set_err - report error to broadcast listeners
2052  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2053  * @portid: the PORTID of a process that we want to skip (if any)
2054  * @group: the broadcast group that will notice the error
2055  * @code: error code, must be negative (as usual in kernelspace)
2056  *
2057  * This function returns the number of broadcast listeners that have set the
2058  * NETLINK_RECV_NO_ENOBUFS socket option.
2059  */
2060 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2061 {
2062 	struct netlink_set_err_data info;
2063 	struct sock *sk;
2064 	int ret = 0;
2065 
2066 	info.exclude_sk = ssk;
2067 	info.portid = portid;
2068 	info.group = group;
2069 	/* sk->sk_err wants a positive error value */
2070 	info.code = -code;
2071 
2072 	read_lock(&nl_table_lock);
2073 
2074 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2075 		ret += do_one_set_err(sk, &info);
2076 
2077 	read_unlock(&nl_table_lock);
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL(netlink_set_err);
2081 
2082 /* must be called with netlink table grabbed */
2083 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2084 				     unsigned int group,
2085 				     int is_new)
2086 {
2087 	int old, new = !!is_new, subscriptions;
2088 
2089 	old = test_bit(group - 1, nlk->groups);
2090 	subscriptions = nlk->subscriptions - old + new;
2091 	if (new)
2092 		__set_bit(group - 1, nlk->groups);
2093 	else
2094 		__clear_bit(group - 1, nlk->groups);
2095 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2096 	netlink_update_listeners(&nlk->sk);
2097 }
2098 
2099 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2100 			      char __user *optval, unsigned int optlen)
2101 {
2102 	struct sock *sk = sock->sk;
2103 	struct netlink_sock *nlk = nlk_sk(sk);
2104 	unsigned int val = 0;
2105 	int err;
2106 
2107 	if (level != SOL_NETLINK)
2108 		return -ENOPROTOOPT;
2109 
2110 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2111 	    optlen >= sizeof(int) &&
2112 	    get_user(val, (unsigned int __user *)optval))
2113 		return -EFAULT;
2114 
2115 	switch (optname) {
2116 	case NETLINK_PKTINFO:
2117 		if (val)
2118 			nlk->flags |= NETLINK_RECV_PKTINFO;
2119 		else
2120 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
2121 		err = 0;
2122 		break;
2123 	case NETLINK_ADD_MEMBERSHIP:
2124 	case NETLINK_DROP_MEMBERSHIP: {
2125 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2126 			return -EPERM;
2127 		err = netlink_realloc_groups(sk);
2128 		if (err)
2129 			return err;
2130 		if (!val || val - 1 >= nlk->ngroups)
2131 			return -EINVAL;
2132 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2133 			err = nlk->netlink_bind(sock_net(sk), val);
2134 			if (err)
2135 				return err;
2136 		}
2137 		netlink_table_grab();
2138 		netlink_update_socket_mc(nlk, val,
2139 					 optname == NETLINK_ADD_MEMBERSHIP);
2140 		netlink_table_ungrab();
2141 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2142 			nlk->netlink_unbind(sock_net(sk), val);
2143 
2144 		err = 0;
2145 		break;
2146 	}
2147 	case NETLINK_BROADCAST_ERROR:
2148 		if (val)
2149 			nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2150 		else
2151 			nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2152 		err = 0;
2153 		break;
2154 	case NETLINK_NO_ENOBUFS:
2155 		if (val) {
2156 			nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2157 			clear_bit(NETLINK_CONGESTED, &nlk->state);
2158 			wake_up_interruptible(&nlk->wait);
2159 		} else {
2160 			nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2161 		}
2162 		err = 0;
2163 		break;
2164 #ifdef CONFIG_NETLINK_MMAP
2165 	case NETLINK_RX_RING:
2166 	case NETLINK_TX_RING: {
2167 		struct nl_mmap_req req;
2168 
2169 		/* Rings might consume more memory than queue limits, require
2170 		 * CAP_NET_ADMIN.
2171 		 */
2172 		if (!capable(CAP_NET_ADMIN))
2173 			return -EPERM;
2174 		if (optlen < sizeof(req))
2175 			return -EINVAL;
2176 		if (copy_from_user(&req, optval, sizeof(req)))
2177 			return -EFAULT;
2178 		err = netlink_set_ring(sk, &req, false,
2179 				       optname == NETLINK_TX_RING);
2180 		break;
2181 	}
2182 #endif /* CONFIG_NETLINK_MMAP */
2183 	default:
2184 		err = -ENOPROTOOPT;
2185 	}
2186 	return err;
2187 }
2188 
2189 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2190 			      char __user *optval, int __user *optlen)
2191 {
2192 	struct sock *sk = sock->sk;
2193 	struct netlink_sock *nlk = nlk_sk(sk);
2194 	int len, val, err;
2195 
2196 	if (level != SOL_NETLINK)
2197 		return -ENOPROTOOPT;
2198 
2199 	if (get_user(len, optlen))
2200 		return -EFAULT;
2201 	if (len < 0)
2202 		return -EINVAL;
2203 
2204 	switch (optname) {
2205 	case NETLINK_PKTINFO:
2206 		if (len < sizeof(int))
2207 			return -EINVAL;
2208 		len = sizeof(int);
2209 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2210 		if (put_user(len, optlen) ||
2211 		    put_user(val, optval))
2212 			return -EFAULT;
2213 		err = 0;
2214 		break;
2215 	case NETLINK_BROADCAST_ERROR:
2216 		if (len < sizeof(int))
2217 			return -EINVAL;
2218 		len = sizeof(int);
2219 		val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2220 		if (put_user(len, optlen) ||
2221 		    put_user(val, optval))
2222 			return -EFAULT;
2223 		err = 0;
2224 		break;
2225 	case NETLINK_NO_ENOBUFS:
2226 		if (len < sizeof(int))
2227 			return -EINVAL;
2228 		len = sizeof(int);
2229 		val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2230 		if (put_user(len, optlen) ||
2231 		    put_user(val, optval))
2232 			return -EFAULT;
2233 		err = 0;
2234 		break;
2235 	default:
2236 		err = -ENOPROTOOPT;
2237 	}
2238 	return err;
2239 }
2240 
2241 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2242 {
2243 	struct nl_pktinfo info;
2244 
2245 	info.group = NETLINK_CB(skb).dst_group;
2246 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2247 }
2248 
2249 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2250 			   struct msghdr *msg, size_t len)
2251 {
2252 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2253 	struct sock *sk = sock->sk;
2254 	struct netlink_sock *nlk = nlk_sk(sk);
2255 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2256 	u32 dst_portid;
2257 	u32 dst_group;
2258 	struct sk_buff *skb;
2259 	int err;
2260 	struct scm_cookie scm;
2261 	u32 netlink_skb_flags = 0;
2262 
2263 	if (msg->msg_flags&MSG_OOB)
2264 		return -EOPNOTSUPP;
2265 
2266 	if (NULL == siocb->scm)
2267 		siocb->scm = &scm;
2268 
2269 	err = scm_send(sock, msg, siocb->scm, true);
2270 	if (err < 0)
2271 		return err;
2272 
2273 	if (msg->msg_namelen) {
2274 		err = -EINVAL;
2275 		if (addr->nl_family != AF_NETLINK)
2276 			goto out;
2277 		dst_portid = addr->nl_pid;
2278 		dst_group = ffs(addr->nl_groups);
2279 		err =  -EPERM;
2280 		if ((dst_group || dst_portid) &&
2281 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2282 			goto out;
2283 		netlink_skb_flags |= NETLINK_SKB_DST;
2284 	} else {
2285 		dst_portid = nlk->dst_portid;
2286 		dst_group = nlk->dst_group;
2287 	}
2288 
2289 	if (!nlk->portid) {
2290 		err = netlink_autobind(sock);
2291 		if (err)
2292 			goto out;
2293 	}
2294 
2295 	if (netlink_tx_is_mmaped(sk) &&
2296 	    msg->msg_iter.iov->iov_base == NULL) {
2297 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2298 					   siocb);
2299 		goto out;
2300 	}
2301 
2302 	err = -EMSGSIZE;
2303 	if (len > sk->sk_sndbuf - 32)
2304 		goto out;
2305 	err = -ENOBUFS;
2306 	skb = netlink_alloc_large_skb(len, dst_group);
2307 	if (skb == NULL)
2308 		goto out;
2309 
2310 	NETLINK_CB(skb).portid	= nlk->portid;
2311 	NETLINK_CB(skb).dst_group = dst_group;
2312 	NETLINK_CB(skb).creds	= siocb->scm->creds;
2313 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2314 
2315 	err = -EFAULT;
2316 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2317 		kfree_skb(skb);
2318 		goto out;
2319 	}
2320 
2321 	err = security_netlink_send(sk, skb);
2322 	if (err) {
2323 		kfree_skb(skb);
2324 		goto out;
2325 	}
2326 
2327 	if (dst_group) {
2328 		atomic_inc(&skb->users);
2329 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2330 	}
2331 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2332 
2333 out:
2334 	scm_destroy(siocb->scm);
2335 	return err;
2336 }
2337 
2338 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2339 			   struct msghdr *msg, size_t len,
2340 			   int flags)
2341 {
2342 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2343 	struct scm_cookie scm;
2344 	struct sock *sk = sock->sk;
2345 	struct netlink_sock *nlk = nlk_sk(sk);
2346 	int noblock = flags&MSG_DONTWAIT;
2347 	size_t copied;
2348 	struct sk_buff *skb, *data_skb;
2349 	int err, ret;
2350 
2351 	if (flags&MSG_OOB)
2352 		return -EOPNOTSUPP;
2353 
2354 	copied = 0;
2355 
2356 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2357 	if (skb == NULL)
2358 		goto out;
2359 
2360 	data_skb = skb;
2361 
2362 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2363 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2364 		/*
2365 		 * If this skb has a frag_list, then here that means that we
2366 		 * will have to use the frag_list skb's data for compat tasks
2367 		 * and the regular skb's data for normal (non-compat) tasks.
2368 		 *
2369 		 * If we need to send the compat skb, assign it to the
2370 		 * 'data_skb' variable so that it will be used below for data
2371 		 * copying. We keep 'skb' for everything else, including
2372 		 * freeing both later.
2373 		 */
2374 		if (flags & MSG_CMSG_COMPAT)
2375 			data_skb = skb_shinfo(skb)->frag_list;
2376 	}
2377 #endif
2378 
2379 	/* Record the max length of recvmsg() calls for future allocations */
2380 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2381 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2382 				     16384);
2383 
2384 	copied = data_skb->len;
2385 	if (len < copied) {
2386 		msg->msg_flags |= MSG_TRUNC;
2387 		copied = len;
2388 	}
2389 
2390 	skb_reset_transport_header(data_skb);
2391 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2392 
2393 	if (msg->msg_name) {
2394 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2395 		addr->nl_family = AF_NETLINK;
2396 		addr->nl_pad    = 0;
2397 		addr->nl_pid	= NETLINK_CB(skb).portid;
2398 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2399 		msg->msg_namelen = sizeof(*addr);
2400 	}
2401 
2402 	if (nlk->flags & NETLINK_RECV_PKTINFO)
2403 		netlink_cmsg_recv_pktinfo(msg, skb);
2404 
2405 	if (NULL == siocb->scm) {
2406 		memset(&scm, 0, sizeof(scm));
2407 		siocb->scm = &scm;
2408 	}
2409 	siocb->scm->creds = *NETLINK_CREDS(skb);
2410 	if (flags & MSG_TRUNC)
2411 		copied = data_skb->len;
2412 
2413 	skb_free_datagram(sk, skb);
2414 
2415 	if (nlk->cb_running &&
2416 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2417 		ret = netlink_dump(sk);
2418 		if (ret) {
2419 			sk->sk_err = -ret;
2420 			sk->sk_error_report(sk);
2421 		}
2422 	}
2423 
2424 	scm_recv(sock, msg, siocb->scm, flags);
2425 out:
2426 	netlink_rcv_wake(sk);
2427 	return err ? : copied;
2428 }
2429 
2430 static void netlink_data_ready(struct sock *sk)
2431 {
2432 	BUG();
2433 }
2434 
2435 /*
2436  *	We export these functions to other modules. They provide a
2437  *	complete set of kernel non-blocking support for message
2438  *	queueing.
2439  */
2440 
2441 struct sock *
2442 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2443 			struct netlink_kernel_cfg *cfg)
2444 {
2445 	struct socket *sock;
2446 	struct sock *sk;
2447 	struct netlink_sock *nlk;
2448 	struct listeners *listeners = NULL;
2449 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2450 	unsigned int groups;
2451 
2452 	BUG_ON(!nl_table);
2453 
2454 	if (unit < 0 || unit >= MAX_LINKS)
2455 		return NULL;
2456 
2457 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2458 		return NULL;
2459 
2460 	/*
2461 	 * We have to just have a reference on the net from sk, but don't
2462 	 * get_net it. Besides, we cannot get and then put the net here.
2463 	 * So we create one inside init_net and the move it to net.
2464 	 */
2465 
2466 	if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2467 		goto out_sock_release_nosk;
2468 
2469 	sk = sock->sk;
2470 	sk_change_net(sk, net);
2471 
2472 	if (!cfg || cfg->groups < 32)
2473 		groups = 32;
2474 	else
2475 		groups = cfg->groups;
2476 
2477 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2478 	if (!listeners)
2479 		goto out_sock_release;
2480 
2481 	sk->sk_data_ready = netlink_data_ready;
2482 	if (cfg && cfg->input)
2483 		nlk_sk(sk)->netlink_rcv = cfg->input;
2484 
2485 	if (netlink_insert(sk, net, 0))
2486 		goto out_sock_release;
2487 
2488 	nlk = nlk_sk(sk);
2489 	nlk->flags |= NETLINK_KERNEL_SOCKET;
2490 
2491 	netlink_table_grab();
2492 	if (!nl_table[unit].registered) {
2493 		nl_table[unit].groups = groups;
2494 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2495 		nl_table[unit].cb_mutex = cb_mutex;
2496 		nl_table[unit].module = module;
2497 		if (cfg) {
2498 			nl_table[unit].bind = cfg->bind;
2499 			nl_table[unit].unbind = cfg->unbind;
2500 			nl_table[unit].flags = cfg->flags;
2501 			if (cfg->compare)
2502 				nl_table[unit].compare = cfg->compare;
2503 		}
2504 		nl_table[unit].registered = 1;
2505 	} else {
2506 		kfree(listeners);
2507 		nl_table[unit].registered++;
2508 	}
2509 	netlink_table_ungrab();
2510 	return sk;
2511 
2512 out_sock_release:
2513 	kfree(listeners);
2514 	netlink_kernel_release(sk);
2515 	return NULL;
2516 
2517 out_sock_release_nosk:
2518 	sock_release(sock);
2519 	return NULL;
2520 }
2521 EXPORT_SYMBOL(__netlink_kernel_create);
2522 
2523 void
2524 netlink_kernel_release(struct sock *sk)
2525 {
2526 	sk_release_kernel(sk);
2527 }
2528 EXPORT_SYMBOL(netlink_kernel_release);
2529 
2530 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2531 {
2532 	struct listeners *new, *old;
2533 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2534 
2535 	if (groups < 32)
2536 		groups = 32;
2537 
2538 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2539 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2540 		if (!new)
2541 			return -ENOMEM;
2542 		old = nl_deref_protected(tbl->listeners);
2543 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2544 		rcu_assign_pointer(tbl->listeners, new);
2545 
2546 		kfree_rcu(old, rcu);
2547 	}
2548 	tbl->groups = groups;
2549 
2550 	return 0;
2551 }
2552 
2553 /**
2554  * netlink_change_ngroups - change number of multicast groups
2555  *
2556  * This changes the number of multicast groups that are available
2557  * on a certain netlink family. Note that it is not possible to
2558  * change the number of groups to below 32. Also note that it does
2559  * not implicitly call netlink_clear_multicast_users() when the
2560  * number of groups is reduced.
2561  *
2562  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2563  * @groups: The new number of groups.
2564  */
2565 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2566 {
2567 	int err;
2568 
2569 	netlink_table_grab();
2570 	err = __netlink_change_ngroups(sk, groups);
2571 	netlink_table_ungrab();
2572 
2573 	return err;
2574 }
2575 
2576 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2577 {
2578 	struct sock *sk;
2579 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2580 
2581 	sk_for_each_bound(sk, &tbl->mc_list)
2582 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2583 }
2584 
2585 struct nlmsghdr *
2586 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2587 {
2588 	struct nlmsghdr *nlh;
2589 	int size = nlmsg_msg_size(len);
2590 
2591 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2592 	nlh->nlmsg_type = type;
2593 	nlh->nlmsg_len = size;
2594 	nlh->nlmsg_flags = flags;
2595 	nlh->nlmsg_pid = portid;
2596 	nlh->nlmsg_seq = seq;
2597 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2598 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2599 	return nlh;
2600 }
2601 EXPORT_SYMBOL(__nlmsg_put);
2602 
2603 /*
2604  * It looks a bit ugly.
2605  * It would be better to create kernel thread.
2606  */
2607 
2608 static int netlink_dump(struct sock *sk)
2609 {
2610 	struct netlink_sock *nlk = nlk_sk(sk);
2611 	struct netlink_callback *cb;
2612 	struct sk_buff *skb = NULL;
2613 	struct nlmsghdr *nlh;
2614 	int len, err = -ENOBUFS;
2615 	int alloc_size;
2616 
2617 	mutex_lock(nlk->cb_mutex);
2618 	if (!nlk->cb_running) {
2619 		err = -EINVAL;
2620 		goto errout_skb;
2621 	}
2622 
2623 	cb = &nlk->cb;
2624 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2625 
2626 	if (!netlink_rx_is_mmaped(sk) &&
2627 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2628 		goto errout_skb;
2629 
2630 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2631 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2632 	 * to reduce number of system calls on dump operations, if user
2633 	 * ever provided a big enough buffer.
2634 	 */
2635 	if (alloc_size < nlk->max_recvmsg_len) {
2636 		skb = netlink_alloc_skb(sk,
2637 					nlk->max_recvmsg_len,
2638 					nlk->portid,
2639 					GFP_KERNEL |
2640 					__GFP_NOWARN |
2641 					__GFP_NORETRY);
2642 		/* available room should be exact amount to avoid MSG_TRUNC */
2643 		if (skb)
2644 			skb_reserve(skb, skb_tailroom(skb) -
2645 					 nlk->max_recvmsg_len);
2646 	}
2647 	if (!skb)
2648 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2649 					GFP_KERNEL);
2650 	if (!skb)
2651 		goto errout_skb;
2652 	netlink_skb_set_owner_r(skb, sk);
2653 
2654 	len = cb->dump(skb, cb);
2655 
2656 	if (len > 0) {
2657 		mutex_unlock(nlk->cb_mutex);
2658 
2659 		if (sk_filter(sk, skb))
2660 			kfree_skb(skb);
2661 		else
2662 			__netlink_sendskb(sk, skb);
2663 		return 0;
2664 	}
2665 
2666 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2667 	if (!nlh)
2668 		goto errout_skb;
2669 
2670 	nl_dump_check_consistent(cb, nlh);
2671 
2672 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2673 
2674 	if (sk_filter(sk, skb))
2675 		kfree_skb(skb);
2676 	else
2677 		__netlink_sendskb(sk, skb);
2678 
2679 	if (cb->done)
2680 		cb->done(cb);
2681 
2682 	nlk->cb_running = false;
2683 	mutex_unlock(nlk->cb_mutex);
2684 	module_put(cb->module);
2685 	consume_skb(cb->skb);
2686 	return 0;
2687 
2688 errout_skb:
2689 	mutex_unlock(nlk->cb_mutex);
2690 	kfree_skb(skb);
2691 	return err;
2692 }
2693 
2694 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2695 			 const struct nlmsghdr *nlh,
2696 			 struct netlink_dump_control *control)
2697 {
2698 	struct netlink_callback *cb;
2699 	struct sock *sk;
2700 	struct netlink_sock *nlk;
2701 	int ret;
2702 
2703 	/* Memory mapped dump requests need to be copied to avoid looping
2704 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2705 	 * a reference to the skb.
2706 	 */
2707 	if (netlink_skb_is_mmaped(skb)) {
2708 		skb = skb_copy(skb, GFP_KERNEL);
2709 		if (skb == NULL)
2710 			return -ENOBUFS;
2711 	} else
2712 		atomic_inc(&skb->users);
2713 
2714 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2715 	if (sk == NULL) {
2716 		ret = -ECONNREFUSED;
2717 		goto error_free;
2718 	}
2719 
2720 	nlk = nlk_sk(sk);
2721 	mutex_lock(nlk->cb_mutex);
2722 	/* A dump is in progress... */
2723 	if (nlk->cb_running) {
2724 		ret = -EBUSY;
2725 		goto error_unlock;
2726 	}
2727 	/* add reference of module which cb->dump belongs to */
2728 	if (!try_module_get(control->module)) {
2729 		ret = -EPROTONOSUPPORT;
2730 		goto error_unlock;
2731 	}
2732 
2733 	cb = &nlk->cb;
2734 	memset(cb, 0, sizeof(*cb));
2735 	cb->dump = control->dump;
2736 	cb->done = control->done;
2737 	cb->nlh = nlh;
2738 	cb->data = control->data;
2739 	cb->module = control->module;
2740 	cb->min_dump_alloc = control->min_dump_alloc;
2741 	cb->skb = skb;
2742 
2743 	nlk->cb_running = true;
2744 
2745 	mutex_unlock(nlk->cb_mutex);
2746 
2747 	ret = netlink_dump(sk);
2748 	sock_put(sk);
2749 
2750 	if (ret)
2751 		return ret;
2752 
2753 	/* We successfully started a dump, by returning -EINTR we
2754 	 * signal not to send ACK even if it was requested.
2755 	 */
2756 	return -EINTR;
2757 
2758 error_unlock:
2759 	sock_put(sk);
2760 	mutex_unlock(nlk->cb_mutex);
2761 error_free:
2762 	kfree_skb(skb);
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL(__netlink_dump_start);
2766 
2767 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2768 {
2769 	struct sk_buff *skb;
2770 	struct nlmsghdr *rep;
2771 	struct nlmsgerr *errmsg;
2772 	size_t payload = sizeof(*errmsg);
2773 
2774 	/* error messages get the original request appened */
2775 	if (err)
2776 		payload += nlmsg_len(nlh);
2777 
2778 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2779 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2780 	if (!skb) {
2781 		struct sock *sk;
2782 
2783 		sk = netlink_lookup(sock_net(in_skb->sk),
2784 				    in_skb->sk->sk_protocol,
2785 				    NETLINK_CB(in_skb).portid);
2786 		if (sk) {
2787 			sk->sk_err = ENOBUFS;
2788 			sk->sk_error_report(sk);
2789 			sock_put(sk);
2790 		}
2791 		return;
2792 	}
2793 
2794 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2795 			  NLMSG_ERROR, payload, 0);
2796 	errmsg = nlmsg_data(rep);
2797 	errmsg->error = err;
2798 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2799 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2800 }
2801 EXPORT_SYMBOL(netlink_ack);
2802 
2803 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2804 						     struct nlmsghdr *))
2805 {
2806 	struct nlmsghdr *nlh;
2807 	int err;
2808 
2809 	while (skb->len >= nlmsg_total_size(0)) {
2810 		int msglen;
2811 
2812 		nlh = nlmsg_hdr(skb);
2813 		err = 0;
2814 
2815 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2816 			return 0;
2817 
2818 		/* Only requests are handled by the kernel */
2819 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2820 			goto ack;
2821 
2822 		/* Skip control messages */
2823 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2824 			goto ack;
2825 
2826 		err = cb(skb, nlh);
2827 		if (err == -EINTR)
2828 			goto skip;
2829 
2830 ack:
2831 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2832 			netlink_ack(skb, nlh, err);
2833 
2834 skip:
2835 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2836 		if (msglen > skb->len)
2837 			msglen = skb->len;
2838 		skb_pull(skb, msglen);
2839 	}
2840 
2841 	return 0;
2842 }
2843 EXPORT_SYMBOL(netlink_rcv_skb);
2844 
2845 /**
2846  * nlmsg_notify - send a notification netlink message
2847  * @sk: netlink socket to use
2848  * @skb: notification message
2849  * @portid: destination netlink portid for reports or 0
2850  * @group: destination multicast group or 0
2851  * @report: 1 to report back, 0 to disable
2852  * @flags: allocation flags
2853  */
2854 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2855 		 unsigned int group, int report, gfp_t flags)
2856 {
2857 	int err = 0;
2858 
2859 	if (group) {
2860 		int exclude_portid = 0;
2861 
2862 		if (report) {
2863 			atomic_inc(&skb->users);
2864 			exclude_portid = portid;
2865 		}
2866 
2867 		/* errors reported via destination sk->sk_err, but propagate
2868 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2869 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2870 	}
2871 
2872 	if (report) {
2873 		int err2;
2874 
2875 		err2 = nlmsg_unicast(sk, skb, portid);
2876 		if (!err || err == -ESRCH)
2877 			err = err2;
2878 	}
2879 
2880 	return err;
2881 }
2882 EXPORT_SYMBOL(nlmsg_notify);
2883 
2884 #ifdef CONFIG_PROC_FS
2885 struct nl_seq_iter {
2886 	struct seq_net_private p;
2887 	int link;
2888 	int hash_idx;
2889 };
2890 
2891 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2892 {
2893 	struct nl_seq_iter *iter = seq->private;
2894 	int i, j;
2895 	struct netlink_sock *nlk;
2896 	struct sock *s;
2897 	loff_t off = 0;
2898 
2899 	for (i = 0; i < MAX_LINKS; i++) {
2900 		struct rhashtable *ht = &nl_table[i].hash;
2901 		const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2902 
2903 		for (j = 0; j < tbl->size; j++) {
2904 			rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2905 				s = (struct sock *)nlk;
2906 
2907 				if (sock_net(s) != seq_file_net(seq))
2908 					continue;
2909 				if (off == pos) {
2910 					iter->link = i;
2911 					iter->hash_idx = j;
2912 					return s;
2913 				}
2914 				++off;
2915 			}
2916 		}
2917 	}
2918 	return NULL;
2919 }
2920 
2921 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2922 	__acquires(nl_table_lock) __acquires(RCU)
2923 {
2924 	read_lock(&nl_table_lock);
2925 	rcu_read_lock();
2926 	return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2927 }
2928 
2929 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2930 {
2931 	struct rhashtable *ht;
2932 	struct netlink_sock *nlk;
2933 	struct nl_seq_iter *iter;
2934 	struct net *net;
2935 	int i, j;
2936 
2937 	++*pos;
2938 
2939 	if (v == SEQ_START_TOKEN)
2940 		return netlink_seq_socket_idx(seq, 0);
2941 
2942 	net = seq_file_net(seq);
2943 	iter = seq->private;
2944 	nlk = v;
2945 
2946 	i = iter->link;
2947 	ht = &nl_table[i].hash;
2948 	rht_for_each_entry(nlk, nlk->node.next, ht, node)
2949 		if (net_eq(sock_net((struct sock *)nlk), net))
2950 			return nlk;
2951 
2952 	j = iter->hash_idx + 1;
2953 
2954 	do {
2955 		const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2956 
2957 		for (; j < tbl->size; j++) {
2958 			rht_for_each_entry(nlk, tbl->buckets[j], ht, node) {
2959 				if (net_eq(sock_net((struct sock *)nlk), net)) {
2960 					iter->link = i;
2961 					iter->hash_idx = j;
2962 					return nlk;
2963 				}
2964 			}
2965 		}
2966 
2967 		j = 0;
2968 	} while (++i < MAX_LINKS);
2969 
2970 	return NULL;
2971 }
2972 
2973 static void netlink_seq_stop(struct seq_file *seq, void *v)
2974 	__releases(RCU) __releases(nl_table_lock)
2975 {
2976 	rcu_read_unlock();
2977 	read_unlock(&nl_table_lock);
2978 }
2979 
2980 
2981 static int netlink_seq_show(struct seq_file *seq, void *v)
2982 {
2983 	if (v == SEQ_START_TOKEN) {
2984 		seq_puts(seq,
2985 			 "sk       Eth Pid    Groups   "
2986 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
2987 	} else {
2988 		struct sock *s = v;
2989 		struct netlink_sock *nlk = nlk_sk(s);
2990 
2991 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
2992 			   s,
2993 			   s->sk_protocol,
2994 			   nlk->portid,
2995 			   nlk->groups ? (u32)nlk->groups[0] : 0,
2996 			   sk_rmem_alloc_get(s),
2997 			   sk_wmem_alloc_get(s),
2998 			   nlk->cb_running,
2999 			   atomic_read(&s->sk_refcnt),
3000 			   atomic_read(&s->sk_drops),
3001 			   sock_i_ino(s)
3002 			);
3003 
3004 	}
3005 	return 0;
3006 }
3007 
3008 static const struct seq_operations netlink_seq_ops = {
3009 	.start  = netlink_seq_start,
3010 	.next   = netlink_seq_next,
3011 	.stop   = netlink_seq_stop,
3012 	.show   = netlink_seq_show,
3013 };
3014 
3015 
3016 static int netlink_seq_open(struct inode *inode, struct file *file)
3017 {
3018 	return seq_open_net(inode, file, &netlink_seq_ops,
3019 				sizeof(struct nl_seq_iter));
3020 }
3021 
3022 static const struct file_operations netlink_seq_fops = {
3023 	.owner		= THIS_MODULE,
3024 	.open		= netlink_seq_open,
3025 	.read		= seq_read,
3026 	.llseek		= seq_lseek,
3027 	.release	= seq_release_net,
3028 };
3029 
3030 #endif
3031 
3032 int netlink_register_notifier(struct notifier_block *nb)
3033 {
3034 	return atomic_notifier_chain_register(&netlink_chain, nb);
3035 }
3036 EXPORT_SYMBOL(netlink_register_notifier);
3037 
3038 int netlink_unregister_notifier(struct notifier_block *nb)
3039 {
3040 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3041 }
3042 EXPORT_SYMBOL(netlink_unregister_notifier);
3043 
3044 static const struct proto_ops netlink_ops = {
3045 	.family =	PF_NETLINK,
3046 	.owner =	THIS_MODULE,
3047 	.release =	netlink_release,
3048 	.bind =		netlink_bind,
3049 	.connect =	netlink_connect,
3050 	.socketpair =	sock_no_socketpair,
3051 	.accept =	sock_no_accept,
3052 	.getname =	netlink_getname,
3053 	.poll =		netlink_poll,
3054 	.ioctl =	sock_no_ioctl,
3055 	.listen =	sock_no_listen,
3056 	.shutdown =	sock_no_shutdown,
3057 	.setsockopt =	netlink_setsockopt,
3058 	.getsockopt =	netlink_getsockopt,
3059 	.sendmsg =	netlink_sendmsg,
3060 	.recvmsg =	netlink_recvmsg,
3061 	.mmap =		netlink_mmap,
3062 	.sendpage =	sock_no_sendpage,
3063 };
3064 
3065 static const struct net_proto_family netlink_family_ops = {
3066 	.family = PF_NETLINK,
3067 	.create = netlink_create,
3068 	.owner	= THIS_MODULE,	/* for consistency 8) */
3069 };
3070 
3071 static int __net_init netlink_net_init(struct net *net)
3072 {
3073 #ifdef CONFIG_PROC_FS
3074 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3075 		return -ENOMEM;
3076 #endif
3077 	return 0;
3078 }
3079 
3080 static void __net_exit netlink_net_exit(struct net *net)
3081 {
3082 #ifdef CONFIG_PROC_FS
3083 	remove_proc_entry("netlink", net->proc_net);
3084 #endif
3085 }
3086 
3087 static void __init netlink_add_usersock_entry(void)
3088 {
3089 	struct listeners *listeners;
3090 	int groups = 32;
3091 
3092 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3093 	if (!listeners)
3094 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3095 
3096 	netlink_table_grab();
3097 
3098 	nl_table[NETLINK_USERSOCK].groups = groups;
3099 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3100 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3101 	nl_table[NETLINK_USERSOCK].registered = 1;
3102 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3103 
3104 	netlink_table_ungrab();
3105 }
3106 
3107 static struct pernet_operations __net_initdata netlink_net_ops = {
3108 	.init = netlink_net_init,
3109 	.exit = netlink_net_exit,
3110 };
3111 
3112 static int __init netlink_proto_init(void)
3113 {
3114 	int i;
3115 	int err = proto_register(&netlink_proto, 0);
3116 	struct rhashtable_params ht_params = {
3117 		.head_offset = offsetof(struct netlink_sock, node),
3118 		.key_offset = offsetof(struct netlink_sock, portid),
3119 		.key_len = sizeof(u32), /* portid */
3120 		.hashfn = jhash,
3121 		.max_shift = 16, /* 64K */
3122 		.grow_decision = rht_grow_above_75,
3123 		.shrink_decision = rht_shrink_below_30,
3124 #ifdef CONFIG_PROVE_LOCKING
3125 		.mutex_is_held = lockdep_nl_sk_hash_is_held,
3126 #endif
3127 	};
3128 
3129 	if (err != 0)
3130 		goto out;
3131 
3132 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3133 
3134 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3135 	if (!nl_table)
3136 		goto panic;
3137 
3138 	for (i = 0; i < MAX_LINKS; i++) {
3139 		if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3140 			while (--i > 0)
3141 				rhashtable_destroy(&nl_table[i].hash);
3142 			kfree(nl_table);
3143 			goto panic;
3144 		}
3145 	}
3146 
3147 	INIT_LIST_HEAD(&netlink_tap_all);
3148 
3149 	netlink_add_usersock_entry();
3150 
3151 	sock_register(&netlink_family_ops);
3152 	register_pernet_subsys(&netlink_net_ops);
3153 	/* The netlink device handler may be needed early. */
3154 	rtnetlink_init();
3155 out:
3156 	return err;
3157 panic:
3158 	panic("netlink_init: Cannot allocate nl_table\n");
3159 }
3160 
3161 core_initcall(netlink_proto_init);
3162