xref: /openbmc/linux/net/netlink/af_netlink.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <linux/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_S_CONGESTED		0x0
80 
81 static inline int netlink_is_kernel(struct sock *sk)
82 {
83 	return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
84 }
85 
86 struct netlink_table *nl_table __read_mostly;
87 EXPORT_SYMBOL_GPL(nl_table);
88 
89 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
90 
91 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS];
92 
93 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = {
94 	"nlk_cb_mutex-ROUTE",
95 	"nlk_cb_mutex-1",
96 	"nlk_cb_mutex-USERSOCK",
97 	"nlk_cb_mutex-FIREWALL",
98 	"nlk_cb_mutex-SOCK_DIAG",
99 	"nlk_cb_mutex-NFLOG",
100 	"nlk_cb_mutex-XFRM",
101 	"nlk_cb_mutex-SELINUX",
102 	"nlk_cb_mutex-ISCSI",
103 	"nlk_cb_mutex-AUDIT",
104 	"nlk_cb_mutex-FIB_LOOKUP",
105 	"nlk_cb_mutex-CONNECTOR",
106 	"nlk_cb_mutex-NETFILTER",
107 	"nlk_cb_mutex-IP6_FW",
108 	"nlk_cb_mutex-DNRTMSG",
109 	"nlk_cb_mutex-KOBJECT_UEVENT",
110 	"nlk_cb_mutex-GENERIC",
111 	"nlk_cb_mutex-17",
112 	"nlk_cb_mutex-SCSITRANSPORT",
113 	"nlk_cb_mutex-ECRYPTFS",
114 	"nlk_cb_mutex-RDMA",
115 	"nlk_cb_mutex-CRYPTO",
116 	"nlk_cb_mutex-SMC",
117 	"nlk_cb_mutex-23",
118 	"nlk_cb_mutex-24",
119 	"nlk_cb_mutex-25",
120 	"nlk_cb_mutex-26",
121 	"nlk_cb_mutex-27",
122 	"nlk_cb_mutex-28",
123 	"nlk_cb_mutex-29",
124 	"nlk_cb_mutex-30",
125 	"nlk_cb_mutex-31",
126 	"nlk_cb_mutex-MAX_LINKS"
127 };
128 
129 static int netlink_dump(struct sock *sk);
130 static void netlink_skb_destructor(struct sk_buff *skb);
131 
132 /* nl_table locking explained:
133  * Lookup and traversal are protected with an RCU read-side lock. Insertion
134  * and removal are protected with per bucket lock while using RCU list
135  * modification primitives and may run in parallel to RCU protected lookups.
136  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
137  * been acquired * either during or after the socket has been removed from
138  * the list and after an RCU grace period.
139  */
140 DEFINE_RWLOCK(nl_table_lock);
141 EXPORT_SYMBOL_GPL(nl_table_lock);
142 static atomic_t nl_table_users = ATOMIC_INIT(0);
143 
144 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
145 
146 static BLOCKING_NOTIFIER_HEAD(netlink_chain);
147 
148 static DEFINE_SPINLOCK(netlink_tap_lock);
149 static struct list_head netlink_tap_all __read_mostly;
150 
151 static const struct rhashtable_params netlink_rhashtable_params;
152 
153 static inline u32 netlink_group_mask(u32 group)
154 {
155 	return group ? 1 << (group - 1) : 0;
156 }
157 
158 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
159 					   gfp_t gfp_mask)
160 {
161 	unsigned int len = skb_end_offset(skb);
162 	struct sk_buff *new;
163 
164 	new = alloc_skb(len, gfp_mask);
165 	if (new == NULL)
166 		return NULL;
167 
168 	NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
169 	NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
170 	NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
171 
172 	memcpy(skb_put(new, len), skb->data, len);
173 	return new;
174 }
175 
176 int netlink_add_tap(struct netlink_tap *nt)
177 {
178 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
179 		return -EINVAL;
180 
181 	spin_lock(&netlink_tap_lock);
182 	list_add_rcu(&nt->list, &netlink_tap_all);
183 	spin_unlock(&netlink_tap_lock);
184 
185 	__module_get(nt->module);
186 
187 	return 0;
188 }
189 EXPORT_SYMBOL_GPL(netlink_add_tap);
190 
191 static int __netlink_remove_tap(struct netlink_tap *nt)
192 {
193 	bool found = false;
194 	struct netlink_tap *tmp;
195 
196 	spin_lock(&netlink_tap_lock);
197 
198 	list_for_each_entry(tmp, &netlink_tap_all, list) {
199 		if (nt == tmp) {
200 			list_del_rcu(&nt->list);
201 			found = true;
202 			goto out;
203 		}
204 	}
205 
206 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
207 out:
208 	spin_unlock(&netlink_tap_lock);
209 
210 	if (found)
211 		module_put(nt->module);
212 
213 	return found ? 0 : -ENODEV;
214 }
215 
216 int netlink_remove_tap(struct netlink_tap *nt)
217 {
218 	int ret;
219 
220 	ret = __netlink_remove_tap(nt);
221 	synchronize_net();
222 
223 	return ret;
224 }
225 EXPORT_SYMBOL_GPL(netlink_remove_tap);
226 
227 static bool netlink_filter_tap(const struct sk_buff *skb)
228 {
229 	struct sock *sk = skb->sk;
230 
231 	/* We take the more conservative approach and
232 	 * whitelist socket protocols that may pass.
233 	 */
234 	switch (sk->sk_protocol) {
235 	case NETLINK_ROUTE:
236 	case NETLINK_USERSOCK:
237 	case NETLINK_SOCK_DIAG:
238 	case NETLINK_NFLOG:
239 	case NETLINK_XFRM:
240 	case NETLINK_FIB_LOOKUP:
241 	case NETLINK_NETFILTER:
242 	case NETLINK_GENERIC:
243 		return true;
244 	}
245 
246 	return false;
247 }
248 
249 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
250 				     struct net_device *dev)
251 {
252 	struct sk_buff *nskb;
253 	struct sock *sk = skb->sk;
254 	int ret = -ENOMEM;
255 
256 	dev_hold(dev);
257 
258 	if (is_vmalloc_addr(skb->head))
259 		nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
260 	else
261 		nskb = skb_clone(skb, GFP_ATOMIC);
262 	if (nskb) {
263 		nskb->dev = dev;
264 		nskb->protocol = htons((u16) sk->sk_protocol);
265 		nskb->pkt_type = netlink_is_kernel(sk) ?
266 				 PACKET_KERNEL : PACKET_USER;
267 		skb_reset_network_header(nskb);
268 		ret = dev_queue_xmit(nskb);
269 		if (unlikely(ret > 0))
270 			ret = net_xmit_errno(ret);
271 	}
272 
273 	dev_put(dev);
274 	return ret;
275 }
276 
277 static void __netlink_deliver_tap(struct sk_buff *skb)
278 {
279 	int ret;
280 	struct netlink_tap *tmp;
281 
282 	if (!netlink_filter_tap(skb))
283 		return;
284 
285 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
286 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
287 		if (unlikely(ret))
288 			break;
289 	}
290 }
291 
292 static void netlink_deliver_tap(struct sk_buff *skb)
293 {
294 	rcu_read_lock();
295 
296 	if (unlikely(!list_empty(&netlink_tap_all)))
297 		__netlink_deliver_tap(skb);
298 
299 	rcu_read_unlock();
300 }
301 
302 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
303 				       struct sk_buff *skb)
304 {
305 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
306 		netlink_deliver_tap(skb);
307 }
308 
309 static void netlink_overrun(struct sock *sk)
310 {
311 	struct netlink_sock *nlk = nlk_sk(sk);
312 
313 	if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
314 		if (!test_and_set_bit(NETLINK_S_CONGESTED,
315 				      &nlk_sk(sk)->state)) {
316 			sk->sk_err = ENOBUFS;
317 			sk->sk_error_report(sk);
318 		}
319 	}
320 	atomic_inc(&sk->sk_drops);
321 }
322 
323 static void netlink_rcv_wake(struct sock *sk)
324 {
325 	struct netlink_sock *nlk = nlk_sk(sk);
326 
327 	if (skb_queue_empty(&sk->sk_receive_queue))
328 		clear_bit(NETLINK_S_CONGESTED, &nlk->state);
329 	if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
330 		wake_up_interruptible(&nlk->wait);
331 }
332 
333 static void netlink_skb_destructor(struct sk_buff *skb)
334 {
335 	if (is_vmalloc_addr(skb->head)) {
336 		if (!skb->cloned ||
337 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
338 			vfree(skb->head);
339 
340 		skb->head = NULL;
341 	}
342 	if (skb->sk != NULL)
343 		sock_rfree(skb);
344 }
345 
346 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
347 {
348 	WARN_ON(skb->sk != NULL);
349 	skb->sk = sk;
350 	skb->destructor = netlink_skb_destructor;
351 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
352 	sk_mem_charge(sk, skb->truesize);
353 }
354 
355 static void netlink_sock_destruct(struct sock *sk)
356 {
357 	struct netlink_sock *nlk = nlk_sk(sk);
358 
359 	if (nlk->cb_running) {
360 		if (nlk->cb.done)
361 			nlk->cb.done(&nlk->cb);
362 		module_put(nlk->cb.module);
363 		kfree_skb(nlk->cb.skb);
364 	}
365 
366 	skb_queue_purge(&sk->sk_receive_queue);
367 
368 	if (!sock_flag(sk, SOCK_DEAD)) {
369 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
370 		return;
371 	}
372 
373 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
374 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
375 	WARN_ON(nlk_sk(sk)->groups);
376 }
377 
378 static void netlink_sock_destruct_work(struct work_struct *work)
379 {
380 	struct netlink_sock *nlk = container_of(work, struct netlink_sock,
381 						work);
382 
383 	sk_free(&nlk->sk);
384 }
385 
386 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
387  * SMP. Look, when several writers sleep and reader wakes them up, all but one
388  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
389  * this, _but_ remember, it adds useless work on UP machines.
390  */
391 
392 void netlink_table_grab(void)
393 	__acquires(nl_table_lock)
394 {
395 	might_sleep();
396 
397 	write_lock_irq(&nl_table_lock);
398 
399 	if (atomic_read(&nl_table_users)) {
400 		DECLARE_WAITQUEUE(wait, current);
401 
402 		add_wait_queue_exclusive(&nl_table_wait, &wait);
403 		for (;;) {
404 			set_current_state(TASK_UNINTERRUPTIBLE);
405 			if (atomic_read(&nl_table_users) == 0)
406 				break;
407 			write_unlock_irq(&nl_table_lock);
408 			schedule();
409 			write_lock_irq(&nl_table_lock);
410 		}
411 
412 		__set_current_state(TASK_RUNNING);
413 		remove_wait_queue(&nl_table_wait, &wait);
414 	}
415 }
416 
417 void netlink_table_ungrab(void)
418 	__releases(nl_table_lock)
419 {
420 	write_unlock_irq(&nl_table_lock);
421 	wake_up(&nl_table_wait);
422 }
423 
424 static inline void
425 netlink_lock_table(void)
426 {
427 	/* read_lock() synchronizes us to netlink_table_grab */
428 
429 	read_lock(&nl_table_lock);
430 	atomic_inc(&nl_table_users);
431 	read_unlock(&nl_table_lock);
432 }
433 
434 static inline void
435 netlink_unlock_table(void)
436 {
437 	if (atomic_dec_and_test(&nl_table_users))
438 		wake_up(&nl_table_wait);
439 }
440 
441 struct netlink_compare_arg
442 {
443 	possible_net_t pnet;
444 	u32 portid;
445 };
446 
447 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
448 #define netlink_compare_arg_len \
449 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
450 
451 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
452 				  const void *ptr)
453 {
454 	const struct netlink_compare_arg *x = arg->key;
455 	const struct netlink_sock *nlk = ptr;
456 
457 	return nlk->portid != x->portid ||
458 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
459 }
460 
461 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
462 				     struct net *net, u32 portid)
463 {
464 	memset(arg, 0, sizeof(*arg));
465 	write_pnet(&arg->pnet, net);
466 	arg->portid = portid;
467 }
468 
469 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
470 				     struct net *net)
471 {
472 	struct netlink_compare_arg arg;
473 
474 	netlink_compare_arg_init(&arg, net, portid);
475 	return rhashtable_lookup_fast(&table->hash, &arg,
476 				      netlink_rhashtable_params);
477 }
478 
479 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
480 {
481 	struct netlink_compare_arg arg;
482 
483 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
484 	return rhashtable_lookup_insert_key(&table->hash, &arg,
485 					    &nlk_sk(sk)->node,
486 					    netlink_rhashtable_params);
487 }
488 
489 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
490 {
491 	struct netlink_table *table = &nl_table[protocol];
492 	struct sock *sk;
493 
494 	rcu_read_lock();
495 	sk = __netlink_lookup(table, portid, net);
496 	if (sk)
497 		sock_hold(sk);
498 	rcu_read_unlock();
499 
500 	return sk;
501 }
502 
503 static const struct proto_ops netlink_ops;
504 
505 static void
506 netlink_update_listeners(struct sock *sk)
507 {
508 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
509 	unsigned long mask;
510 	unsigned int i;
511 	struct listeners *listeners;
512 
513 	listeners = nl_deref_protected(tbl->listeners);
514 	if (!listeners)
515 		return;
516 
517 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
518 		mask = 0;
519 		sk_for_each_bound(sk, &tbl->mc_list) {
520 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
521 				mask |= nlk_sk(sk)->groups[i];
522 		}
523 		listeners->masks[i] = mask;
524 	}
525 	/* this function is only called with the netlink table "grabbed", which
526 	 * makes sure updates are visible before bind or setsockopt return. */
527 }
528 
529 static int netlink_insert(struct sock *sk, u32 portid)
530 {
531 	struct netlink_table *table = &nl_table[sk->sk_protocol];
532 	int err;
533 
534 	lock_sock(sk);
535 
536 	err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
537 	if (nlk_sk(sk)->bound)
538 		goto err;
539 
540 	err = -ENOMEM;
541 	if (BITS_PER_LONG > 32 &&
542 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
543 		goto err;
544 
545 	nlk_sk(sk)->portid = portid;
546 	sock_hold(sk);
547 
548 	err = __netlink_insert(table, sk);
549 	if (err) {
550 		/* In case the hashtable backend returns with -EBUSY
551 		 * from here, it must not escape to the caller.
552 		 */
553 		if (unlikely(err == -EBUSY))
554 			err = -EOVERFLOW;
555 		if (err == -EEXIST)
556 			err = -EADDRINUSE;
557 		sock_put(sk);
558 		goto err;
559 	}
560 
561 	/* We need to ensure that the socket is hashed and visible. */
562 	smp_wmb();
563 	nlk_sk(sk)->bound = portid;
564 
565 err:
566 	release_sock(sk);
567 	return err;
568 }
569 
570 static void netlink_remove(struct sock *sk)
571 {
572 	struct netlink_table *table;
573 
574 	table = &nl_table[sk->sk_protocol];
575 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
576 				    netlink_rhashtable_params)) {
577 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
578 		__sock_put(sk);
579 	}
580 
581 	netlink_table_grab();
582 	if (nlk_sk(sk)->subscriptions) {
583 		__sk_del_bind_node(sk);
584 		netlink_update_listeners(sk);
585 	}
586 	if (sk->sk_protocol == NETLINK_GENERIC)
587 		atomic_inc(&genl_sk_destructing_cnt);
588 	netlink_table_ungrab();
589 }
590 
591 static struct proto netlink_proto = {
592 	.name	  = "NETLINK",
593 	.owner	  = THIS_MODULE,
594 	.obj_size = sizeof(struct netlink_sock),
595 };
596 
597 static int __netlink_create(struct net *net, struct socket *sock,
598 			    struct mutex *cb_mutex, int protocol,
599 			    int kern)
600 {
601 	struct sock *sk;
602 	struct netlink_sock *nlk;
603 
604 	sock->ops = &netlink_ops;
605 
606 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
607 	if (!sk)
608 		return -ENOMEM;
609 
610 	sock_init_data(sock, sk);
611 
612 	nlk = nlk_sk(sk);
613 	if (cb_mutex) {
614 		nlk->cb_mutex = cb_mutex;
615 	} else {
616 		nlk->cb_mutex = &nlk->cb_def_mutex;
617 		mutex_init(nlk->cb_mutex);
618 		lockdep_set_class_and_name(nlk->cb_mutex,
619 					   nlk_cb_mutex_keys + protocol,
620 					   nlk_cb_mutex_key_strings[protocol]);
621 	}
622 	init_waitqueue_head(&nlk->wait);
623 
624 	sk->sk_destruct = netlink_sock_destruct;
625 	sk->sk_protocol = protocol;
626 	return 0;
627 }
628 
629 static int netlink_create(struct net *net, struct socket *sock, int protocol,
630 			  int kern)
631 {
632 	struct module *module = NULL;
633 	struct mutex *cb_mutex;
634 	struct netlink_sock *nlk;
635 	int (*bind)(struct net *net, int group);
636 	void (*unbind)(struct net *net, int group);
637 	int err = 0;
638 
639 	sock->state = SS_UNCONNECTED;
640 
641 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
642 		return -ESOCKTNOSUPPORT;
643 
644 	if (protocol < 0 || protocol >= MAX_LINKS)
645 		return -EPROTONOSUPPORT;
646 
647 	netlink_lock_table();
648 #ifdef CONFIG_MODULES
649 	if (!nl_table[protocol].registered) {
650 		netlink_unlock_table();
651 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
652 		netlink_lock_table();
653 	}
654 #endif
655 	if (nl_table[protocol].registered &&
656 	    try_module_get(nl_table[protocol].module))
657 		module = nl_table[protocol].module;
658 	else
659 		err = -EPROTONOSUPPORT;
660 	cb_mutex = nl_table[protocol].cb_mutex;
661 	bind = nl_table[protocol].bind;
662 	unbind = nl_table[protocol].unbind;
663 	netlink_unlock_table();
664 
665 	if (err < 0)
666 		goto out;
667 
668 	err = __netlink_create(net, sock, cb_mutex, protocol, kern);
669 	if (err < 0)
670 		goto out_module;
671 
672 	local_bh_disable();
673 	sock_prot_inuse_add(net, &netlink_proto, 1);
674 	local_bh_enable();
675 
676 	nlk = nlk_sk(sock->sk);
677 	nlk->module = module;
678 	nlk->netlink_bind = bind;
679 	nlk->netlink_unbind = unbind;
680 out:
681 	return err;
682 
683 out_module:
684 	module_put(module);
685 	goto out;
686 }
687 
688 static void deferred_put_nlk_sk(struct rcu_head *head)
689 {
690 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
691 	struct sock *sk = &nlk->sk;
692 
693 	if (!atomic_dec_and_test(&sk->sk_refcnt))
694 		return;
695 
696 	if (nlk->cb_running && nlk->cb.done) {
697 		INIT_WORK(&nlk->work, netlink_sock_destruct_work);
698 		schedule_work(&nlk->work);
699 		return;
700 	}
701 
702 	sk_free(sk);
703 }
704 
705 static int netlink_release(struct socket *sock)
706 {
707 	struct sock *sk = sock->sk;
708 	struct netlink_sock *nlk;
709 
710 	if (!sk)
711 		return 0;
712 
713 	netlink_remove(sk);
714 	sock_orphan(sk);
715 	nlk = nlk_sk(sk);
716 
717 	/*
718 	 * OK. Socket is unlinked, any packets that arrive now
719 	 * will be purged.
720 	 */
721 
722 	/* must not acquire netlink_table_lock in any way again before unbind
723 	 * and notifying genetlink is done as otherwise it might deadlock
724 	 */
725 	if (nlk->netlink_unbind) {
726 		int i;
727 
728 		for (i = 0; i < nlk->ngroups; i++)
729 			if (test_bit(i, nlk->groups))
730 				nlk->netlink_unbind(sock_net(sk), i + 1);
731 	}
732 	if (sk->sk_protocol == NETLINK_GENERIC &&
733 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
734 		wake_up(&genl_sk_destructing_waitq);
735 
736 	sock->sk = NULL;
737 	wake_up_interruptible_all(&nlk->wait);
738 
739 	skb_queue_purge(&sk->sk_write_queue);
740 
741 	if (nlk->portid && nlk->bound) {
742 		struct netlink_notify n = {
743 						.net = sock_net(sk),
744 						.protocol = sk->sk_protocol,
745 						.portid = nlk->portid,
746 					  };
747 		blocking_notifier_call_chain(&netlink_chain,
748 				NETLINK_URELEASE, &n);
749 	}
750 
751 	module_put(nlk->module);
752 
753 	if (netlink_is_kernel(sk)) {
754 		netlink_table_grab();
755 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
756 		if (--nl_table[sk->sk_protocol].registered == 0) {
757 			struct listeners *old;
758 
759 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
760 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
761 			kfree_rcu(old, rcu);
762 			nl_table[sk->sk_protocol].module = NULL;
763 			nl_table[sk->sk_protocol].bind = NULL;
764 			nl_table[sk->sk_protocol].unbind = NULL;
765 			nl_table[sk->sk_protocol].flags = 0;
766 			nl_table[sk->sk_protocol].registered = 0;
767 		}
768 		netlink_table_ungrab();
769 	}
770 
771 	kfree(nlk->groups);
772 	nlk->groups = NULL;
773 
774 	local_bh_disable();
775 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
776 	local_bh_enable();
777 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
778 	return 0;
779 }
780 
781 static int netlink_autobind(struct socket *sock)
782 {
783 	struct sock *sk = sock->sk;
784 	struct net *net = sock_net(sk);
785 	struct netlink_table *table = &nl_table[sk->sk_protocol];
786 	s32 portid = task_tgid_vnr(current);
787 	int err;
788 	s32 rover = -4096;
789 	bool ok;
790 
791 retry:
792 	cond_resched();
793 	rcu_read_lock();
794 	ok = !__netlink_lookup(table, portid, net);
795 	rcu_read_unlock();
796 	if (!ok) {
797 		/* Bind collision, search negative portid values. */
798 		if (rover == -4096)
799 			/* rover will be in range [S32_MIN, -4097] */
800 			rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
801 		else if (rover >= -4096)
802 			rover = -4097;
803 		portid = rover--;
804 		goto retry;
805 	}
806 
807 	err = netlink_insert(sk, portid);
808 	if (err == -EADDRINUSE)
809 		goto retry;
810 
811 	/* If 2 threads race to autobind, that is fine.  */
812 	if (err == -EBUSY)
813 		err = 0;
814 
815 	return err;
816 }
817 
818 /**
819  * __netlink_ns_capable - General netlink message capability test
820  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
821  * @user_ns: The user namespace of the capability to use
822  * @cap: The capability to use
823  *
824  * Test to see if the opener of the socket we received the message
825  * from had when the netlink socket was created and the sender of the
826  * message has has the capability @cap in the user namespace @user_ns.
827  */
828 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
829 			struct user_namespace *user_ns, int cap)
830 {
831 	return ((nsp->flags & NETLINK_SKB_DST) ||
832 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
833 		ns_capable(user_ns, cap);
834 }
835 EXPORT_SYMBOL(__netlink_ns_capable);
836 
837 /**
838  * netlink_ns_capable - General netlink message capability test
839  * @skb: socket buffer holding a netlink command from userspace
840  * @user_ns: The user namespace of the capability to use
841  * @cap: The capability to use
842  *
843  * Test to see if the opener of the socket we received the message
844  * from had when the netlink socket was created and the sender of the
845  * message has has the capability @cap in the user namespace @user_ns.
846  */
847 bool netlink_ns_capable(const struct sk_buff *skb,
848 			struct user_namespace *user_ns, int cap)
849 {
850 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
851 }
852 EXPORT_SYMBOL(netlink_ns_capable);
853 
854 /**
855  * netlink_capable - Netlink global message capability test
856  * @skb: socket buffer holding a netlink command from userspace
857  * @cap: The capability to use
858  *
859  * Test to see if the opener of the socket we received the message
860  * from had when the netlink socket was created and the sender of the
861  * message has has the capability @cap in all user namespaces.
862  */
863 bool netlink_capable(const struct sk_buff *skb, int cap)
864 {
865 	return netlink_ns_capable(skb, &init_user_ns, cap);
866 }
867 EXPORT_SYMBOL(netlink_capable);
868 
869 /**
870  * netlink_net_capable - Netlink network namespace message capability test
871  * @skb: socket buffer holding a netlink command from userspace
872  * @cap: The capability to use
873  *
874  * Test to see if the opener of the socket we received the message
875  * from had when the netlink socket was created and the sender of the
876  * message has has the capability @cap over the network namespace of
877  * the socket we received the message from.
878  */
879 bool netlink_net_capable(const struct sk_buff *skb, int cap)
880 {
881 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
882 }
883 EXPORT_SYMBOL(netlink_net_capable);
884 
885 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
886 {
887 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
888 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
889 }
890 
891 static void
892 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
893 {
894 	struct netlink_sock *nlk = nlk_sk(sk);
895 
896 	if (nlk->subscriptions && !subscriptions)
897 		__sk_del_bind_node(sk);
898 	else if (!nlk->subscriptions && subscriptions)
899 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
900 	nlk->subscriptions = subscriptions;
901 }
902 
903 static int netlink_realloc_groups(struct sock *sk)
904 {
905 	struct netlink_sock *nlk = nlk_sk(sk);
906 	unsigned int groups;
907 	unsigned long *new_groups;
908 	int err = 0;
909 
910 	netlink_table_grab();
911 
912 	groups = nl_table[sk->sk_protocol].groups;
913 	if (!nl_table[sk->sk_protocol].registered) {
914 		err = -ENOENT;
915 		goto out_unlock;
916 	}
917 
918 	if (nlk->ngroups >= groups)
919 		goto out_unlock;
920 
921 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
922 	if (new_groups == NULL) {
923 		err = -ENOMEM;
924 		goto out_unlock;
925 	}
926 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
927 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
928 
929 	nlk->groups = new_groups;
930 	nlk->ngroups = groups;
931  out_unlock:
932 	netlink_table_ungrab();
933 	return err;
934 }
935 
936 static void netlink_undo_bind(int group, long unsigned int groups,
937 			      struct sock *sk)
938 {
939 	struct netlink_sock *nlk = nlk_sk(sk);
940 	int undo;
941 
942 	if (!nlk->netlink_unbind)
943 		return;
944 
945 	for (undo = 0; undo < group; undo++)
946 		if (test_bit(undo, &groups))
947 			nlk->netlink_unbind(sock_net(sk), undo + 1);
948 }
949 
950 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
951 			int addr_len)
952 {
953 	struct sock *sk = sock->sk;
954 	struct net *net = sock_net(sk);
955 	struct netlink_sock *nlk = nlk_sk(sk);
956 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
957 	int err;
958 	long unsigned int groups = nladdr->nl_groups;
959 	bool bound;
960 
961 	if (addr_len < sizeof(struct sockaddr_nl))
962 		return -EINVAL;
963 
964 	if (nladdr->nl_family != AF_NETLINK)
965 		return -EINVAL;
966 
967 	/* Only superuser is allowed to listen multicasts */
968 	if (groups) {
969 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
970 			return -EPERM;
971 		err = netlink_realloc_groups(sk);
972 		if (err)
973 			return err;
974 	}
975 
976 	bound = nlk->bound;
977 	if (bound) {
978 		/* Ensure nlk->portid is up-to-date. */
979 		smp_rmb();
980 
981 		if (nladdr->nl_pid != nlk->portid)
982 			return -EINVAL;
983 	}
984 
985 	if (nlk->netlink_bind && groups) {
986 		int group;
987 
988 		for (group = 0; group < nlk->ngroups; group++) {
989 			if (!test_bit(group, &groups))
990 				continue;
991 			err = nlk->netlink_bind(net, group + 1);
992 			if (!err)
993 				continue;
994 			netlink_undo_bind(group, groups, sk);
995 			return err;
996 		}
997 	}
998 
999 	/* No need for barriers here as we return to user-space without
1000 	 * using any of the bound attributes.
1001 	 */
1002 	if (!bound) {
1003 		err = nladdr->nl_pid ?
1004 			netlink_insert(sk, nladdr->nl_pid) :
1005 			netlink_autobind(sock);
1006 		if (err) {
1007 			netlink_undo_bind(nlk->ngroups, groups, sk);
1008 			return err;
1009 		}
1010 	}
1011 
1012 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1013 		return 0;
1014 
1015 	netlink_table_grab();
1016 	netlink_update_subscriptions(sk, nlk->subscriptions +
1017 					 hweight32(groups) -
1018 					 hweight32(nlk->groups[0]));
1019 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1020 	netlink_update_listeners(sk);
1021 	netlink_table_ungrab();
1022 
1023 	return 0;
1024 }
1025 
1026 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1027 			   int alen, int flags)
1028 {
1029 	int err = 0;
1030 	struct sock *sk = sock->sk;
1031 	struct netlink_sock *nlk = nlk_sk(sk);
1032 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1033 
1034 	if (alen < sizeof(addr->sa_family))
1035 		return -EINVAL;
1036 
1037 	if (addr->sa_family == AF_UNSPEC) {
1038 		sk->sk_state	= NETLINK_UNCONNECTED;
1039 		nlk->dst_portid	= 0;
1040 		nlk->dst_group  = 0;
1041 		return 0;
1042 	}
1043 	if (addr->sa_family != AF_NETLINK)
1044 		return -EINVAL;
1045 
1046 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1047 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1048 		return -EPERM;
1049 
1050 	/* No need for barriers here as we return to user-space without
1051 	 * using any of the bound attributes.
1052 	 */
1053 	if (!nlk->bound)
1054 		err = netlink_autobind(sock);
1055 
1056 	if (err == 0) {
1057 		sk->sk_state	= NETLINK_CONNECTED;
1058 		nlk->dst_portid = nladdr->nl_pid;
1059 		nlk->dst_group  = ffs(nladdr->nl_groups);
1060 	}
1061 
1062 	return err;
1063 }
1064 
1065 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1066 			   int *addr_len, int peer)
1067 {
1068 	struct sock *sk = sock->sk;
1069 	struct netlink_sock *nlk = nlk_sk(sk);
1070 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1071 
1072 	nladdr->nl_family = AF_NETLINK;
1073 	nladdr->nl_pad = 0;
1074 	*addr_len = sizeof(*nladdr);
1075 
1076 	if (peer) {
1077 		nladdr->nl_pid = nlk->dst_portid;
1078 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1079 	} else {
1080 		nladdr->nl_pid = nlk->portid;
1081 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1082 	}
1083 	return 0;
1084 }
1085 
1086 static int netlink_ioctl(struct socket *sock, unsigned int cmd,
1087 			 unsigned long arg)
1088 {
1089 	/* try to hand this ioctl down to the NIC drivers.
1090 	 */
1091 	return -ENOIOCTLCMD;
1092 }
1093 
1094 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1095 {
1096 	struct sock *sock;
1097 	struct netlink_sock *nlk;
1098 
1099 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1100 	if (!sock)
1101 		return ERR_PTR(-ECONNREFUSED);
1102 
1103 	/* Don't bother queuing skb if kernel socket has no input function */
1104 	nlk = nlk_sk(sock);
1105 	if (sock->sk_state == NETLINK_CONNECTED &&
1106 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1107 		sock_put(sock);
1108 		return ERR_PTR(-ECONNREFUSED);
1109 	}
1110 	return sock;
1111 }
1112 
1113 struct sock *netlink_getsockbyfilp(struct file *filp)
1114 {
1115 	struct inode *inode = file_inode(filp);
1116 	struct sock *sock;
1117 
1118 	if (!S_ISSOCK(inode->i_mode))
1119 		return ERR_PTR(-ENOTSOCK);
1120 
1121 	sock = SOCKET_I(inode)->sk;
1122 	if (sock->sk_family != AF_NETLINK)
1123 		return ERR_PTR(-EINVAL);
1124 
1125 	sock_hold(sock);
1126 	return sock;
1127 }
1128 
1129 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1130 					       int broadcast)
1131 {
1132 	struct sk_buff *skb;
1133 	void *data;
1134 
1135 	if (size <= NLMSG_GOODSIZE || broadcast)
1136 		return alloc_skb(size, GFP_KERNEL);
1137 
1138 	size = SKB_DATA_ALIGN(size) +
1139 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1140 
1141 	data = vmalloc(size);
1142 	if (data == NULL)
1143 		return NULL;
1144 
1145 	skb = __build_skb(data, size);
1146 	if (skb == NULL)
1147 		vfree(data);
1148 	else
1149 		skb->destructor = netlink_skb_destructor;
1150 
1151 	return skb;
1152 }
1153 
1154 /*
1155  * Attach a skb to a netlink socket.
1156  * The caller must hold a reference to the destination socket. On error, the
1157  * reference is dropped. The skb is not send to the destination, just all
1158  * all error checks are performed and memory in the queue is reserved.
1159  * Return values:
1160  * < 0: error. skb freed, reference to sock dropped.
1161  * 0: continue
1162  * 1: repeat lookup - reference dropped while waiting for socket memory.
1163  */
1164 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1165 		      long *timeo, struct sock *ssk)
1166 {
1167 	struct netlink_sock *nlk;
1168 
1169 	nlk = nlk_sk(sk);
1170 
1171 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1172 	     test_bit(NETLINK_S_CONGESTED, &nlk->state))) {
1173 		DECLARE_WAITQUEUE(wait, current);
1174 		if (!*timeo) {
1175 			if (!ssk || netlink_is_kernel(ssk))
1176 				netlink_overrun(sk);
1177 			sock_put(sk);
1178 			kfree_skb(skb);
1179 			return -EAGAIN;
1180 		}
1181 
1182 		__set_current_state(TASK_INTERRUPTIBLE);
1183 		add_wait_queue(&nlk->wait, &wait);
1184 
1185 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1186 		     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1187 		    !sock_flag(sk, SOCK_DEAD))
1188 			*timeo = schedule_timeout(*timeo);
1189 
1190 		__set_current_state(TASK_RUNNING);
1191 		remove_wait_queue(&nlk->wait, &wait);
1192 		sock_put(sk);
1193 
1194 		if (signal_pending(current)) {
1195 			kfree_skb(skb);
1196 			return sock_intr_errno(*timeo);
1197 		}
1198 		return 1;
1199 	}
1200 	netlink_skb_set_owner_r(skb, sk);
1201 	return 0;
1202 }
1203 
1204 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1205 {
1206 	int len = skb->len;
1207 
1208 	netlink_deliver_tap(skb);
1209 
1210 	skb_queue_tail(&sk->sk_receive_queue, skb);
1211 	sk->sk_data_ready(sk);
1212 	return len;
1213 }
1214 
1215 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1216 {
1217 	int len = __netlink_sendskb(sk, skb);
1218 
1219 	sock_put(sk);
1220 	return len;
1221 }
1222 
1223 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1224 {
1225 	kfree_skb(skb);
1226 	sock_put(sk);
1227 }
1228 
1229 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1230 {
1231 	int delta;
1232 
1233 	WARN_ON(skb->sk != NULL);
1234 	delta = skb->end - skb->tail;
1235 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1236 		return skb;
1237 
1238 	if (skb_shared(skb)) {
1239 		struct sk_buff *nskb = skb_clone(skb, allocation);
1240 		if (!nskb)
1241 			return skb;
1242 		consume_skb(skb);
1243 		skb = nskb;
1244 	}
1245 
1246 	pskb_expand_head(skb, 0, -delta,
1247 			 (allocation & ~__GFP_DIRECT_RECLAIM) |
1248 			 __GFP_NOWARN | __GFP_NORETRY);
1249 	return skb;
1250 }
1251 
1252 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1253 				  struct sock *ssk)
1254 {
1255 	int ret;
1256 	struct netlink_sock *nlk = nlk_sk(sk);
1257 
1258 	ret = -ECONNREFUSED;
1259 	if (nlk->netlink_rcv != NULL) {
1260 		ret = skb->len;
1261 		netlink_skb_set_owner_r(skb, sk);
1262 		NETLINK_CB(skb).sk = ssk;
1263 		netlink_deliver_tap_kernel(sk, ssk, skb);
1264 		nlk->netlink_rcv(skb);
1265 		consume_skb(skb);
1266 	} else {
1267 		kfree_skb(skb);
1268 	}
1269 	sock_put(sk);
1270 	return ret;
1271 }
1272 
1273 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1274 		    u32 portid, int nonblock)
1275 {
1276 	struct sock *sk;
1277 	int err;
1278 	long timeo;
1279 
1280 	skb = netlink_trim(skb, gfp_any());
1281 
1282 	timeo = sock_sndtimeo(ssk, nonblock);
1283 retry:
1284 	sk = netlink_getsockbyportid(ssk, portid);
1285 	if (IS_ERR(sk)) {
1286 		kfree_skb(skb);
1287 		return PTR_ERR(sk);
1288 	}
1289 	if (netlink_is_kernel(sk))
1290 		return netlink_unicast_kernel(sk, skb, ssk);
1291 
1292 	if (sk_filter(sk, skb)) {
1293 		err = skb->len;
1294 		kfree_skb(skb);
1295 		sock_put(sk);
1296 		return err;
1297 	}
1298 
1299 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1300 	if (err == 1)
1301 		goto retry;
1302 	if (err)
1303 		return err;
1304 
1305 	return netlink_sendskb(sk, skb);
1306 }
1307 EXPORT_SYMBOL(netlink_unicast);
1308 
1309 int netlink_has_listeners(struct sock *sk, unsigned int group)
1310 {
1311 	int res = 0;
1312 	struct listeners *listeners;
1313 
1314 	BUG_ON(!netlink_is_kernel(sk));
1315 
1316 	rcu_read_lock();
1317 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1318 
1319 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1320 		res = test_bit(group - 1, listeners->masks);
1321 
1322 	rcu_read_unlock();
1323 
1324 	return res;
1325 }
1326 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1327 
1328 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1329 {
1330 	struct netlink_sock *nlk = nlk_sk(sk);
1331 
1332 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1333 	    !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1334 		netlink_skb_set_owner_r(skb, sk);
1335 		__netlink_sendskb(sk, skb);
1336 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1337 	}
1338 	return -1;
1339 }
1340 
1341 struct netlink_broadcast_data {
1342 	struct sock *exclude_sk;
1343 	struct net *net;
1344 	u32 portid;
1345 	u32 group;
1346 	int failure;
1347 	int delivery_failure;
1348 	int congested;
1349 	int delivered;
1350 	gfp_t allocation;
1351 	struct sk_buff *skb, *skb2;
1352 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1353 	void *tx_data;
1354 };
1355 
1356 static void do_one_broadcast(struct sock *sk,
1357 				    struct netlink_broadcast_data *p)
1358 {
1359 	struct netlink_sock *nlk = nlk_sk(sk);
1360 	int val;
1361 
1362 	if (p->exclude_sk == sk)
1363 		return;
1364 
1365 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1366 	    !test_bit(p->group - 1, nlk->groups))
1367 		return;
1368 
1369 	if (!net_eq(sock_net(sk), p->net)) {
1370 		if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1371 			return;
1372 
1373 		if (!peernet_has_id(sock_net(sk), p->net))
1374 			return;
1375 
1376 		if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1377 				     CAP_NET_BROADCAST))
1378 			return;
1379 	}
1380 
1381 	if (p->failure) {
1382 		netlink_overrun(sk);
1383 		return;
1384 	}
1385 
1386 	sock_hold(sk);
1387 	if (p->skb2 == NULL) {
1388 		if (skb_shared(p->skb)) {
1389 			p->skb2 = skb_clone(p->skb, p->allocation);
1390 		} else {
1391 			p->skb2 = skb_get(p->skb);
1392 			/*
1393 			 * skb ownership may have been set when
1394 			 * delivered to a previous socket.
1395 			 */
1396 			skb_orphan(p->skb2);
1397 		}
1398 	}
1399 	if (p->skb2 == NULL) {
1400 		netlink_overrun(sk);
1401 		/* Clone failed. Notify ALL listeners. */
1402 		p->failure = 1;
1403 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1404 			p->delivery_failure = 1;
1405 		goto out;
1406 	}
1407 	if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1408 		kfree_skb(p->skb2);
1409 		p->skb2 = NULL;
1410 		goto out;
1411 	}
1412 	if (sk_filter(sk, p->skb2)) {
1413 		kfree_skb(p->skb2);
1414 		p->skb2 = NULL;
1415 		goto out;
1416 	}
1417 	NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
1418 	NETLINK_CB(p->skb2).nsid_is_set = true;
1419 	val = netlink_broadcast_deliver(sk, p->skb2);
1420 	if (val < 0) {
1421 		netlink_overrun(sk);
1422 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1423 			p->delivery_failure = 1;
1424 	} else {
1425 		p->congested |= val;
1426 		p->delivered = 1;
1427 		p->skb2 = NULL;
1428 	}
1429 out:
1430 	sock_put(sk);
1431 }
1432 
1433 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1434 	u32 group, gfp_t allocation,
1435 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1436 	void *filter_data)
1437 {
1438 	struct net *net = sock_net(ssk);
1439 	struct netlink_broadcast_data info;
1440 	struct sock *sk;
1441 
1442 	skb = netlink_trim(skb, allocation);
1443 
1444 	info.exclude_sk = ssk;
1445 	info.net = net;
1446 	info.portid = portid;
1447 	info.group = group;
1448 	info.failure = 0;
1449 	info.delivery_failure = 0;
1450 	info.congested = 0;
1451 	info.delivered = 0;
1452 	info.allocation = allocation;
1453 	info.skb = skb;
1454 	info.skb2 = NULL;
1455 	info.tx_filter = filter;
1456 	info.tx_data = filter_data;
1457 
1458 	/* While we sleep in clone, do not allow to change socket list */
1459 
1460 	netlink_lock_table();
1461 
1462 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1463 		do_one_broadcast(sk, &info);
1464 
1465 	consume_skb(skb);
1466 
1467 	netlink_unlock_table();
1468 
1469 	if (info.delivery_failure) {
1470 		kfree_skb(info.skb2);
1471 		return -ENOBUFS;
1472 	}
1473 	consume_skb(info.skb2);
1474 
1475 	if (info.delivered) {
1476 		if (info.congested && gfpflags_allow_blocking(allocation))
1477 			yield();
1478 		return 0;
1479 	}
1480 	return -ESRCH;
1481 }
1482 EXPORT_SYMBOL(netlink_broadcast_filtered);
1483 
1484 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
1485 		      u32 group, gfp_t allocation)
1486 {
1487 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
1488 		NULL, NULL);
1489 }
1490 EXPORT_SYMBOL(netlink_broadcast);
1491 
1492 struct netlink_set_err_data {
1493 	struct sock *exclude_sk;
1494 	u32 portid;
1495 	u32 group;
1496 	int code;
1497 };
1498 
1499 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
1500 {
1501 	struct netlink_sock *nlk = nlk_sk(sk);
1502 	int ret = 0;
1503 
1504 	if (sk == p->exclude_sk)
1505 		goto out;
1506 
1507 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
1508 		goto out;
1509 
1510 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1511 	    !test_bit(p->group - 1, nlk->groups))
1512 		goto out;
1513 
1514 	if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
1515 		ret = 1;
1516 		goto out;
1517 	}
1518 
1519 	sk->sk_err = p->code;
1520 	sk->sk_error_report(sk);
1521 out:
1522 	return ret;
1523 }
1524 
1525 /**
1526  * netlink_set_err - report error to broadcast listeners
1527  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
1528  * @portid: the PORTID of a process that we want to skip (if any)
1529  * @group: the broadcast group that will notice the error
1530  * @code: error code, must be negative (as usual in kernelspace)
1531  *
1532  * This function returns the number of broadcast listeners that have set the
1533  * NETLINK_NO_ENOBUFS socket option.
1534  */
1535 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
1536 {
1537 	struct netlink_set_err_data info;
1538 	struct sock *sk;
1539 	int ret = 0;
1540 
1541 	info.exclude_sk = ssk;
1542 	info.portid = portid;
1543 	info.group = group;
1544 	/* sk->sk_err wants a positive error value */
1545 	info.code = -code;
1546 
1547 	read_lock(&nl_table_lock);
1548 
1549 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1550 		ret += do_one_set_err(sk, &info);
1551 
1552 	read_unlock(&nl_table_lock);
1553 	return ret;
1554 }
1555 EXPORT_SYMBOL(netlink_set_err);
1556 
1557 /* must be called with netlink table grabbed */
1558 static void netlink_update_socket_mc(struct netlink_sock *nlk,
1559 				     unsigned int group,
1560 				     int is_new)
1561 {
1562 	int old, new = !!is_new, subscriptions;
1563 
1564 	old = test_bit(group - 1, nlk->groups);
1565 	subscriptions = nlk->subscriptions - old + new;
1566 	if (new)
1567 		__set_bit(group - 1, nlk->groups);
1568 	else
1569 		__clear_bit(group - 1, nlk->groups);
1570 	netlink_update_subscriptions(&nlk->sk, subscriptions);
1571 	netlink_update_listeners(&nlk->sk);
1572 }
1573 
1574 static int netlink_setsockopt(struct socket *sock, int level, int optname,
1575 			      char __user *optval, unsigned int optlen)
1576 {
1577 	struct sock *sk = sock->sk;
1578 	struct netlink_sock *nlk = nlk_sk(sk);
1579 	unsigned int val = 0;
1580 	int err;
1581 
1582 	if (level != SOL_NETLINK)
1583 		return -ENOPROTOOPT;
1584 
1585 	if (optlen >= sizeof(int) &&
1586 	    get_user(val, (unsigned int __user *)optval))
1587 		return -EFAULT;
1588 
1589 	switch (optname) {
1590 	case NETLINK_PKTINFO:
1591 		if (val)
1592 			nlk->flags |= NETLINK_F_RECV_PKTINFO;
1593 		else
1594 			nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
1595 		err = 0;
1596 		break;
1597 	case NETLINK_ADD_MEMBERSHIP:
1598 	case NETLINK_DROP_MEMBERSHIP: {
1599 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1600 			return -EPERM;
1601 		err = netlink_realloc_groups(sk);
1602 		if (err)
1603 			return err;
1604 		if (!val || val - 1 >= nlk->ngroups)
1605 			return -EINVAL;
1606 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
1607 			err = nlk->netlink_bind(sock_net(sk), val);
1608 			if (err)
1609 				return err;
1610 		}
1611 		netlink_table_grab();
1612 		netlink_update_socket_mc(nlk, val,
1613 					 optname == NETLINK_ADD_MEMBERSHIP);
1614 		netlink_table_ungrab();
1615 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
1616 			nlk->netlink_unbind(sock_net(sk), val);
1617 
1618 		err = 0;
1619 		break;
1620 	}
1621 	case NETLINK_BROADCAST_ERROR:
1622 		if (val)
1623 			nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
1624 		else
1625 			nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
1626 		err = 0;
1627 		break;
1628 	case NETLINK_NO_ENOBUFS:
1629 		if (val) {
1630 			nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
1631 			clear_bit(NETLINK_S_CONGESTED, &nlk->state);
1632 			wake_up_interruptible(&nlk->wait);
1633 		} else {
1634 			nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
1635 		}
1636 		err = 0;
1637 		break;
1638 	case NETLINK_LISTEN_ALL_NSID:
1639 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
1640 			return -EPERM;
1641 
1642 		if (val)
1643 			nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
1644 		else
1645 			nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
1646 		err = 0;
1647 		break;
1648 	case NETLINK_CAP_ACK:
1649 		if (val)
1650 			nlk->flags |= NETLINK_F_CAP_ACK;
1651 		else
1652 			nlk->flags &= ~NETLINK_F_CAP_ACK;
1653 		err = 0;
1654 		break;
1655 	default:
1656 		err = -ENOPROTOOPT;
1657 	}
1658 	return err;
1659 }
1660 
1661 static int netlink_getsockopt(struct socket *sock, int level, int optname,
1662 			      char __user *optval, int __user *optlen)
1663 {
1664 	struct sock *sk = sock->sk;
1665 	struct netlink_sock *nlk = nlk_sk(sk);
1666 	int len, val, err;
1667 
1668 	if (level != SOL_NETLINK)
1669 		return -ENOPROTOOPT;
1670 
1671 	if (get_user(len, optlen))
1672 		return -EFAULT;
1673 	if (len < 0)
1674 		return -EINVAL;
1675 
1676 	switch (optname) {
1677 	case NETLINK_PKTINFO:
1678 		if (len < sizeof(int))
1679 			return -EINVAL;
1680 		len = sizeof(int);
1681 		val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
1682 		if (put_user(len, optlen) ||
1683 		    put_user(val, optval))
1684 			return -EFAULT;
1685 		err = 0;
1686 		break;
1687 	case NETLINK_BROADCAST_ERROR:
1688 		if (len < sizeof(int))
1689 			return -EINVAL;
1690 		len = sizeof(int);
1691 		val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
1692 		if (put_user(len, optlen) ||
1693 		    put_user(val, optval))
1694 			return -EFAULT;
1695 		err = 0;
1696 		break;
1697 	case NETLINK_NO_ENOBUFS:
1698 		if (len < sizeof(int))
1699 			return -EINVAL;
1700 		len = sizeof(int);
1701 		val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
1702 		if (put_user(len, optlen) ||
1703 		    put_user(val, optval))
1704 			return -EFAULT;
1705 		err = 0;
1706 		break;
1707 	case NETLINK_LIST_MEMBERSHIPS: {
1708 		int pos, idx, shift;
1709 
1710 		err = 0;
1711 		netlink_lock_table();
1712 		for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
1713 			if (len - pos < sizeof(u32))
1714 				break;
1715 
1716 			idx = pos / sizeof(unsigned long);
1717 			shift = (pos % sizeof(unsigned long)) * 8;
1718 			if (put_user((u32)(nlk->groups[idx] >> shift),
1719 				     (u32 __user *)(optval + pos))) {
1720 				err = -EFAULT;
1721 				break;
1722 			}
1723 		}
1724 		if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
1725 			err = -EFAULT;
1726 		netlink_unlock_table();
1727 		break;
1728 	}
1729 	case NETLINK_CAP_ACK:
1730 		if (len < sizeof(int))
1731 			return -EINVAL;
1732 		len = sizeof(int);
1733 		val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
1734 		if (put_user(len, optlen) ||
1735 		    put_user(val, optval))
1736 			return -EFAULT;
1737 		err = 0;
1738 		break;
1739 	default:
1740 		err = -ENOPROTOOPT;
1741 	}
1742 	return err;
1743 }
1744 
1745 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
1746 {
1747 	struct nl_pktinfo info;
1748 
1749 	info.group = NETLINK_CB(skb).dst_group;
1750 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
1751 }
1752 
1753 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
1754 					 struct sk_buff *skb)
1755 {
1756 	if (!NETLINK_CB(skb).nsid_is_set)
1757 		return;
1758 
1759 	put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
1760 		 &NETLINK_CB(skb).nsid);
1761 }
1762 
1763 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1764 {
1765 	struct sock *sk = sock->sk;
1766 	struct netlink_sock *nlk = nlk_sk(sk);
1767 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
1768 	u32 dst_portid;
1769 	u32 dst_group;
1770 	struct sk_buff *skb;
1771 	int err;
1772 	struct scm_cookie scm;
1773 	u32 netlink_skb_flags = 0;
1774 
1775 	if (msg->msg_flags&MSG_OOB)
1776 		return -EOPNOTSUPP;
1777 
1778 	err = scm_send(sock, msg, &scm, true);
1779 	if (err < 0)
1780 		return err;
1781 
1782 	if (msg->msg_namelen) {
1783 		err = -EINVAL;
1784 		if (addr->nl_family != AF_NETLINK)
1785 			goto out;
1786 		dst_portid = addr->nl_pid;
1787 		dst_group = ffs(addr->nl_groups);
1788 		err =  -EPERM;
1789 		if ((dst_group || dst_portid) &&
1790 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1791 			goto out;
1792 		netlink_skb_flags |= NETLINK_SKB_DST;
1793 	} else {
1794 		dst_portid = nlk->dst_portid;
1795 		dst_group = nlk->dst_group;
1796 	}
1797 
1798 	if (!nlk->bound) {
1799 		err = netlink_autobind(sock);
1800 		if (err)
1801 			goto out;
1802 	} else {
1803 		/* Ensure nlk is hashed and visible. */
1804 		smp_rmb();
1805 	}
1806 
1807 	err = -EMSGSIZE;
1808 	if (len > sk->sk_sndbuf - 32)
1809 		goto out;
1810 	err = -ENOBUFS;
1811 	skb = netlink_alloc_large_skb(len, dst_group);
1812 	if (skb == NULL)
1813 		goto out;
1814 
1815 	NETLINK_CB(skb).portid	= nlk->portid;
1816 	NETLINK_CB(skb).dst_group = dst_group;
1817 	NETLINK_CB(skb).creds	= scm.creds;
1818 	NETLINK_CB(skb).flags	= netlink_skb_flags;
1819 
1820 	err = -EFAULT;
1821 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1822 		kfree_skb(skb);
1823 		goto out;
1824 	}
1825 
1826 	err = security_netlink_send(sk, skb);
1827 	if (err) {
1828 		kfree_skb(skb);
1829 		goto out;
1830 	}
1831 
1832 	if (dst_group) {
1833 		atomic_inc(&skb->users);
1834 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
1835 	}
1836 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
1837 
1838 out:
1839 	scm_destroy(&scm);
1840 	return err;
1841 }
1842 
1843 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1844 			   int flags)
1845 {
1846 	struct scm_cookie scm;
1847 	struct sock *sk = sock->sk;
1848 	struct netlink_sock *nlk = nlk_sk(sk);
1849 	int noblock = flags&MSG_DONTWAIT;
1850 	size_t copied;
1851 	struct sk_buff *skb, *data_skb;
1852 	int err, ret;
1853 
1854 	if (flags&MSG_OOB)
1855 		return -EOPNOTSUPP;
1856 
1857 	copied = 0;
1858 
1859 	skb = skb_recv_datagram(sk, flags, noblock, &err);
1860 	if (skb == NULL)
1861 		goto out;
1862 
1863 	data_skb = skb;
1864 
1865 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
1866 	if (unlikely(skb_shinfo(skb)->frag_list)) {
1867 		/*
1868 		 * If this skb has a frag_list, then here that means that we
1869 		 * will have to use the frag_list skb's data for compat tasks
1870 		 * and the regular skb's data for normal (non-compat) tasks.
1871 		 *
1872 		 * If we need to send the compat skb, assign it to the
1873 		 * 'data_skb' variable so that it will be used below for data
1874 		 * copying. We keep 'skb' for everything else, including
1875 		 * freeing both later.
1876 		 */
1877 		if (flags & MSG_CMSG_COMPAT)
1878 			data_skb = skb_shinfo(skb)->frag_list;
1879 	}
1880 #endif
1881 
1882 	/* Record the max length of recvmsg() calls for future allocations */
1883 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
1884 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
1885 				     SKB_WITH_OVERHEAD(32768));
1886 
1887 	copied = data_skb->len;
1888 	if (len < copied) {
1889 		msg->msg_flags |= MSG_TRUNC;
1890 		copied = len;
1891 	}
1892 
1893 	skb_reset_transport_header(data_skb);
1894 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
1895 
1896 	if (msg->msg_name) {
1897 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
1898 		addr->nl_family = AF_NETLINK;
1899 		addr->nl_pad    = 0;
1900 		addr->nl_pid	= NETLINK_CB(skb).portid;
1901 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
1902 		msg->msg_namelen = sizeof(*addr);
1903 	}
1904 
1905 	if (nlk->flags & NETLINK_F_RECV_PKTINFO)
1906 		netlink_cmsg_recv_pktinfo(msg, skb);
1907 	if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
1908 		netlink_cmsg_listen_all_nsid(sk, msg, skb);
1909 
1910 	memset(&scm, 0, sizeof(scm));
1911 	scm.creds = *NETLINK_CREDS(skb);
1912 	if (flags & MSG_TRUNC)
1913 		copied = data_skb->len;
1914 
1915 	skb_free_datagram(sk, skb);
1916 
1917 	if (nlk->cb_running &&
1918 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
1919 		ret = netlink_dump(sk);
1920 		if (ret) {
1921 			sk->sk_err = -ret;
1922 			sk->sk_error_report(sk);
1923 		}
1924 	}
1925 
1926 	scm_recv(sock, msg, &scm, flags);
1927 out:
1928 	netlink_rcv_wake(sk);
1929 	return err ? : copied;
1930 }
1931 
1932 static void netlink_data_ready(struct sock *sk)
1933 {
1934 	BUG();
1935 }
1936 
1937 /*
1938  *	We export these functions to other modules. They provide a
1939  *	complete set of kernel non-blocking support for message
1940  *	queueing.
1941  */
1942 
1943 struct sock *
1944 __netlink_kernel_create(struct net *net, int unit, struct module *module,
1945 			struct netlink_kernel_cfg *cfg)
1946 {
1947 	struct socket *sock;
1948 	struct sock *sk;
1949 	struct netlink_sock *nlk;
1950 	struct listeners *listeners = NULL;
1951 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
1952 	unsigned int groups;
1953 
1954 	BUG_ON(!nl_table);
1955 
1956 	if (unit < 0 || unit >= MAX_LINKS)
1957 		return NULL;
1958 
1959 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
1960 		return NULL;
1961 
1962 	if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
1963 		goto out_sock_release_nosk;
1964 
1965 	sk = sock->sk;
1966 
1967 	if (!cfg || cfg->groups < 32)
1968 		groups = 32;
1969 	else
1970 		groups = cfg->groups;
1971 
1972 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
1973 	if (!listeners)
1974 		goto out_sock_release;
1975 
1976 	sk->sk_data_ready = netlink_data_ready;
1977 	if (cfg && cfg->input)
1978 		nlk_sk(sk)->netlink_rcv = cfg->input;
1979 
1980 	if (netlink_insert(sk, 0))
1981 		goto out_sock_release;
1982 
1983 	nlk = nlk_sk(sk);
1984 	nlk->flags |= NETLINK_F_KERNEL_SOCKET;
1985 
1986 	netlink_table_grab();
1987 	if (!nl_table[unit].registered) {
1988 		nl_table[unit].groups = groups;
1989 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
1990 		nl_table[unit].cb_mutex = cb_mutex;
1991 		nl_table[unit].module = module;
1992 		if (cfg) {
1993 			nl_table[unit].bind = cfg->bind;
1994 			nl_table[unit].unbind = cfg->unbind;
1995 			nl_table[unit].flags = cfg->flags;
1996 			if (cfg->compare)
1997 				nl_table[unit].compare = cfg->compare;
1998 		}
1999 		nl_table[unit].registered = 1;
2000 	} else {
2001 		kfree(listeners);
2002 		nl_table[unit].registered++;
2003 	}
2004 	netlink_table_ungrab();
2005 	return sk;
2006 
2007 out_sock_release:
2008 	kfree(listeners);
2009 	netlink_kernel_release(sk);
2010 	return NULL;
2011 
2012 out_sock_release_nosk:
2013 	sock_release(sock);
2014 	return NULL;
2015 }
2016 EXPORT_SYMBOL(__netlink_kernel_create);
2017 
2018 void
2019 netlink_kernel_release(struct sock *sk)
2020 {
2021 	if (sk == NULL || sk->sk_socket == NULL)
2022 		return;
2023 
2024 	sock_release(sk->sk_socket);
2025 }
2026 EXPORT_SYMBOL(netlink_kernel_release);
2027 
2028 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2029 {
2030 	struct listeners *new, *old;
2031 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2032 
2033 	if (groups < 32)
2034 		groups = 32;
2035 
2036 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2037 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2038 		if (!new)
2039 			return -ENOMEM;
2040 		old = nl_deref_protected(tbl->listeners);
2041 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2042 		rcu_assign_pointer(tbl->listeners, new);
2043 
2044 		kfree_rcu(old, rcu);
2045 	}
2046 	tbl->groups = groups;
2047 
2048 	return 0;
2049 }
2050 
2051 /**
2052  * netlink_change_ngroups - change number of multicast groups
2053  *
2054  * This changes the number of multicast groups that are available
2055  * on a certain netlink family. Note that it is not possible to
2056  * change the number of groups to below 32. Also note that it does
2057  * not implicitly call netlink_clear_multicast_users() when the
2058  * number of groups is reduced.
2059  *
2060  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2061  * @groups: The new number of groups.
2062  */
2063 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2064 {
2065 	int err;
2066 
2067 	netlink_table_grab();
2068 	err = __netlink_change_ngroups(sk, groups);
2069 	netlink_table_ungrab();
2070 
2071 	return err;
2072 }
2073 
2074 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2075 {
2076 	struct sock *sk;
2077 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2078 
2079 	sk_for_each_bound(sk, &tbl->mc_list)
2080 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2081 }
2082 
2083 struct nlmsghdr *
2084 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2085 {
2086 	struct nlmsghdr *nlh;
2087 	int size = nlmsg_msg_size(len);
2088 
2089 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2090 	nlh->nlmsg_type = type;
2091 	nlh->nlmsg_len = size;
2092 	nlh->nlmsg_flags = flags;
2093 	nlh->nlmsg_pid = portid;
2094 	nlh->nlmsg_seq = seq;
2095 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2096 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2097 	return nlh;
2098 }
2099 EXPORT_SYMBOL(__nlmsg_put);
2100 
2101 /*
2102  * It looks a bit ugly.
2103  * It would be better to create kernel thread.
2104  */
2105 
2106 static int netlink_dump(struct sock *sk)
2107 {
2108 	struct netlink_sock *nlk = nlk_sk(sk);
2109 	struct netlink_callback *cb;
2110 	struct sk_buff *skb = NULL;
2111 	struct nlmsghdr *nlh;
2112 	struct module *module;
2113 	int len, err = -ENOBUFS;
2114 	int alloc_min_size;
2115 	int alloc_size;
2116 
2117 	mutex_lock(nlk->cb_mutex);
2118 	if (!nlk->cb_running) {
2119 		err = -EINVAL;
2120 		goto errout_skb;
2121 	}
2122 
2123 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2124 		goto errout_skb;
2125 
2126 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2127 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2128 	 * to reduce number of system calls on dump operations, if user
2129 	 * ever provided a big enough buffer.
2130 	 */
2131 	cb = &nlk->cb;
2132 	alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2133 
2134 	if (alloc_min_size < nlk->max_recvmsg_len) {
2135 		alloc_size = nlk->max_recvmsg_len;
2136 		skb = alloc_skb(alloc_size,
2137 				(GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) |
2138 				__GFP_NOWARN | __GFP_NORETRY);
2139 	}
2140 	if (!skb) {
2141 		alloc_size = alloc_min_size;
2142 		skb = alloc_skb(alloc_size, GFP_KERNEL);
2143 	}
2144 	if (!skb)
2145 		goto errout_skb;
2146 
2147 	/* Trim skb to allocated size. User is expected to provide buffer as
2148 	 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
2149 	 * netlink_recvmsg())). dump will pack as many smaller messages as
2150 	 * could fit within the allocated skb. skb is typically allocated
2151 	 * with larger space than required (could be as much as near 2x the
2152 	 * requested size with align to next power of 2 approach). Allowing
2153 	 * dump to use the excess space makes it difficult for a user to have a
2154 	 * reasonable static buffer based on the expected largest dump of a
2155 	 * single netdev. The outcome is MSG_TRUNC error.
2156 	 */
2157 	skb_reserve(skb, skb_tailroom(skb) - alloc_size);
2158 	netlink_skb_set_owner_r(skb, sk);
2159 
2160 	len = cb->dump(skb, cb);
2161 
2162 	if (len > 0) {
2163 		mutex_unlock(nlk->cb_mutex);
2164 
2165 		if (sk_filter(sk, skb))
2166 			kfree_skb(skb);
2167 		else
2168 			__netlink_sendskb(sk, skb);
2169 		return 0;
2170 	}
2171 
2172 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2173 	if (!nlh)
2174 		goto errout_skb;
2175 
2176 	nl_dump_check_consistent(cb, nlh);
2177 
2178 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2179 
2180 	if (sk_filter(sk, skb))
2181 		kfree_skb(skb);
2182 	else
2183 		__netlink_sendskb(sk, skb);
2184 
2185 	if (cb->done)
2186 		cb->done(cb);
2187 
2188 	nlk->cb_running = false;
2189 	module = cb->module;
2190 	skb = cb->skb;
2191 	mutex_unlock(nlk->cb_mutex);
2192 	module_put(module);
2193 	consume_skb(skb);
2194 	return 0;
2195 
2196 errout_skb:
2197 	mutex_unlock(nlk->cb_mutex);
2198 	kfree_skb(skb);
2199 	return err;
2200 }
2201 
2202 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2203 			 const struct nlmsghdr *nlh,
2204 			 struct netlink_dump_control *control)
2205 {
2206 	struct netlink_callback *cb;
2207 	struct sock *sk;
2208 	struct netlink_sock *nlk;
2209 	int ret;
2210 
2211 	atomic_inc(&skb->users);
2212 
2213 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2214 	if (sk == NULL) {
2215 		ret = -ECONNREFUSED;
2216 		goto error_free;
2217 	}
2218 
2219 	nlk = nlk_sk(sk);
2220 	mutex_lock(nlk->cb_mutex);
2221 	/* A dump is in progress... */
2222 	if (nlk->cb_running) {
2223 		ret = -EBUSY;
2224 		goto error_unlock;
2225 	}
2226 	/* add reference of module which cb->dump belongs to */
2227 	if (!try_module_get(control->module)) {
2228 		ret = -EPROTONOSUPPORT;
2229 		goto error_unlock;
2230 	}
2231 
2232 	cb = &nlk->cb;
2233 	memset(cb, 0, sizeof(*cb));
2234 	cb->start = control->start;
2235 	cb->dump = control->dump;
2236 	cb->done = control->done;
2237 	cb->nlh = nlh;
2238 	cb->data = control->data;
2239 	cb->module = control->module;
2240 	cb->min_dump_alloc = control->min_dump_alloc;
2241 	cb->skb = skb;
2242 
2243 	nlk->cb_running = true;
2244 
2245 	mutex_unlock(nlk->cb_mutex);
2246 
2247 	if (cb->start)
2248 		cb->start(cb);
2249 
2250 	ret = netlink_dump(sk);
2251 	sock_put(sk);
2252 
2253 	if (ret)
2254 		return ret;
2255 
2256 	/* We successfully started a dump, by returning -EINTR we
2257 	 * signal not to send ACK even if it was requested.
2258 	 */
2259 	return -EINTR;
2260 
2261 error_unlock:
2262 	sock_put(sk);
2263 	mutex_unlock(nlk->cb_mutex);
2264 error_free:
2265 	kfree_skb(skb);
2266 	return ret;
2267 }
2268 EXPORT_SYMBOL(__netlink_dump_start);
2269 
2270 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2271 {
2272 	struct sk_buff *skb;
2273 	struct nlmsghdr *rep;
2274 	struct nlmsgerr *errmsg;
2275 	size_t payload = sizeof(*errmsg);
2276 	struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
2277 
2278 	/* Error messages get the original request appened, unless the user
2279 	 * requests to cap the error message.
2280 	 */
2281 	if (!(nlk->flags & NETLINK_F_CAP_ACK) && err)
2282 		payload += nlmsg_len(nlh);
2283 
2284 	skb = nlmsg_new(payload, GFP_KERNEL);
2285 	if (!skb) {
2286 		struct sock *sk;
2287 
2288 		sk = netlink_lookup(sock_net(in_skb->sk),
2289 				    in_skb->sk->sk_protocol,
2290 				    NETLINK_CB(in_skb).portid);
2291 		if (sk) {
2292 			sk->sk_err = ENOBUFS;
2293 			sk->sk_error_report(sk);
2294 			sock_put(sk);
2295 		}
2296 		return;
2297 	}
2298 
2299 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2300 			  NLMSG_ERROR, payload, 0);
2301 	errmsg = nlmsg_data(rep);
2302 	errmsg->error = err;
2303 	memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
2304 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2305 }
2306 EXPORT_SYMBOL(netlink_ack);
2307 
2308 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2309 						     struct nlmsghdr *))
2310 {
2311 	struct nlmsghdr *nlh;
2312 	int err;
2313 
2314 	while (skb->len >= nlmsg_total_size(0)) {
2315 		int msglen;
2316 
2317 		nlh = nlmsg_hdr(skb);
2318 		err = 0;
2319 
2320 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2321 			return 0;
2322 
2323 		/* Only requests are handled by the kernel */
2324 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2325 			goto ack;
2326 
2327 		/* Skip control messages */
2328 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2329 			goto ack;
2330 
2331 		err = cb(skb, nlh);
2332 		if (err == -EINTR)
2333 			goto skip;
2334 
2335 ack:
2336 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2337 			netlink_ack(skb, nlh, err);
2338 
2339 skip:
2340 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2341 		if (msglen > skb->len)
2342 			msglen = skb->len;
2343 		skb_pull(skb, msglen);
2344 	}
2345 
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL(netlink_rcv_skb);
2349 
2350 /**
2351  * nlmsg_notify - send a notification netlink message
2352  * @sk: netlink socket to use
2353  * @skb: notification message
2354  * @portid: destination netlink portid for reports or 0
2355  * @group: destination multicast group or 0
2356  * @report: 1 to report back, 0 to disable
2357  * @flags: allocation flags
2358  */
2359 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2360 		 unsigned int group, int report, gfp_t flags)
2361 {
2362 	int err = 0;
2363 
2364 	if (group) {
2365 		int exclude_portid = 0;
2366 
2367 		if (report) {
2368 			atomic_inc(&skb->users);
2369 			exclude_portid = portid;
2370 		}
2371 
2372 		/* errors reported via destination sk->sk_err, but propagate
2373 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2374 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2375 	}
2376 
2377 	if (report) {
2378 		int err2;
2379 
2380 		err2 = nlmsg_unicast(sk, skb, portid);
2381 		if (!err || err == -ESRCH)
2382 			err = err2;
2383 	}
2384 
2385 	return err;
2386 }
2387 EXPORT_SYMBOL(nlmsg_notify);
2388 
2389 #ifdef CONFIG_PROC_FS
2390 struct nl_seq_iter {
2391 	struct seq_net_private p;
2392 	struct rhashtable_iter hti;
2393 	int link;
2394 };
2395 
2396 static int netlink_walk_start(struct nl_seq_iter *iter)
2397 {
2398 	int err;
2399 
2400 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti,
2401 				   GFP_KERNEL);
2402 	if (err) {
2403 		iter->link = MAX_LINKS;
2404 		return err;
2405 	}
2406 
2407 	err = rhashtable_walk_start(&iter->hti);
2408 	return err == -EAGAIN ? 0 : err;
2409 }
2410 
2411 static void netlink_walk_stop(struct nl_seq_iter *iter)
2412 {
2413 	rhashtable_walk_stop(&iter->hti);
2414 	rhashtable_walk_exit(&iter->hti);
2415 }
2416 
2417 static void *__netlink_seq_next(struct seq_file *seq)
2418 {
2419 	struct nl_seq_iter *iter = seq->private;
2420 	struct netlink_sock *nlk;
2421 
2422 	do {
2423 		for (;;) {
2424 			int err;
2425 
2426 			nlk = rhashtable_walk_next(&iter->hti);
2427 
2428 			if (IS_ERR(nlk)) {
2429 				if (PTR_ERR(nlk) == -EAGAIN)
2430 					continue;
2431 
2432 				return nlk;
2433 			}
2434 
2435 			if (nlk)
2436 				break;
2437 
2438 			netlink_walk_stop(iter);
2439 			if (++iter->link >= MAX_LINKS)
2440 				return NULL;
2441 
2442 			err = netlink_walk_start(iter);
2443 			if (err)
2444 				return ERR_PTR(err);
2445 		}
2446 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
2447 
2448 	return nlk;
2449 }
2450 
2451 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
2452 {
2453 	struct nl_seq_iter *iter = seq->private;
2454 	void *obj = SEQ_START_TOKEN;
2455 	loff_t pos;
2456 	int err;
2457 
2458 	iter->link = 0;
2459 
2460 	err = netlink_walk_start(iter);
2461 	if (err)
2462 		return ERR_PTR(err);
2463 
2464 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
2465 		obj = __netlink_seq_next(seq);
2466 
2467 	return obj;
2468 }
2469 
2470 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2471 {
2472 	++*pos;
2473 	return __netlink_seq_next(seq);
2474 }
2475 
2476 static void netlink_seq_stop(struct seq_file *seq, void *v)
2477 {
2478 	struct nl_seq_iter *iter = seq->private;
2479 
2480 	if (iter->link >= MAX_LINKS)
2481 		return;
2482 
2483 	netlink_walk_stop(iter);
2484 }
2485 
2486 
2487 static int netlink_seq_show(struct seq_file *seq, void *v)
2488 {
2489 	if (v == SEQ_START_TOKEN) {
2490 		seq_puts(seq,
2491 			 "sk       Eth Pid    Groups   "
2492 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
2493 	} else {
2494 		struct sock *s = v;
2495 		struct netlink_sock *nlk = nlk_sk(s);
2496 
2497 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
2498 			   s,
2499 			   s->sk_protocol,
2500 			   nlk->portid,
2501 			   nlk->groups ? (u32)nlk->groups[0] : 0,
2502 			   sk_rmem_alloc_get(s),
2503 			   sk_wmem_alloc_get(s),
2504 			   nlk->cb_running,
2505 			   atomic_read(&s->sk_refcnt),
2506 			   atomic_read(&s->sk_drops),
2507 			   sock_i_ino(s)
2508 			);
2509 
2510 	}
2511 	return 0;
2512 }
2513 
2514 static const struct seq_operations netlink_seq_ops = {
2515 	.start  = netlink_seq_start,
2516 	.next   = netlink_seq_next,
2517 	.stop   = netlink_seq_stop,
2518 	.show   = netlink_seq_show,
2519 };
2520 
2521 
2522 static int netlink_seq_open(struct inode *inode, struct file *file)
2523 {
2524 	return seq_open_net(inode, file, &netlink_seq_ops,
2525 				sizeof(struct nl_seq_iter));
2526 }
2527 
2528 static const struct file_operations netlink_seq_fops = {
2529 	.owner		= THIS_MODULE,
2530 	.open		= netlink_seq_open,
2531 	.read		= seq_read,
2532 	.llseek		= seq_lseek,
2533 	.release	= seq_release_net,
2534 };
2535 
2536 #endif
2537 
2538 int netlink_register_notifier(struct notifier_block *nb)
2539 {
2540 	return blocking_notifier_chain_register(&netlink_chain, nb);
2541 }
2542 EXPORT_SYMBOL(netlink_register_notifier);
2543 
2544 int netlink_unregister_notifier(struct notifier_block *nb)
2545 {
2546 	return blocking_notifier_chain_unregister(&netlink_chain, nb);
2547 }
2548 EXPORT_SYMBOL(netlink_unregister_notifier);
2549 
2550 static const struct proto_ops netlink_ops = {
2551 	.family =	PF_NETLINK,
2552 	.owner =	THIS_MODULE,
2553 	.release =	netlink_release,
2554 	.bind =		netlink_bind,
2555 	.connect =	netlink_connect,
2556 	.socketpair =	sock_no_socketpair,
2557 	.accept =	sock_no_accept,
2558 	.getname =	netlink_getname,
2559 	.poll =		datagram_poll,
2560 	.ioctl =	netlink_ioctl,
2561 	.listen =	sock_no_listen,
2562 	.shutdown =	sock_no_shutdown,
2563 	.setsockopt =	netlink_setsockopt,
2564 	.getsockopt =	netlink_getsockopt,
2565 	.sendmsg =	netlink_sendmsg,
2566 	.recvmsg =	netlink_recvmsg,
2567 	.mmap =		sock_no_mmap,
2568 	.sendpage =	sock_no_sendpage,
2569 };
2570 
2571 static const struct net_proto_family netlink_family_ops = {
2572 	.family = PF_NETLINK,
2573 	.create = netlink_create,
2574 	.owner	= THIS_MODULE,	/* for consistency 8) */
2575 };
2576 
2577 static int __net_init netlink_net_init(struct net *net)
2578 {
2579 #ifdef CONFIG_PROC_FS
2580 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
2581 		return -ENOMEM;
2582 #endif
2583 	return 0;
2584 }
2585 
2586 static void __net_exit netlink_net_exit(struct net *net)
2587 {
2588 #ifdef CONFIG_PROC_FS
2589 	remove_proc_entry("netlink", net->proc_net);
2590 #endif
2591 }
2592 
2593 static void __init netlink_add_usersock_entry(void)
2594 {
2595 	struct listeners *listeners;
2596 	int groups = 32;
2597 
2598 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2599 	if (!listeners)
2600 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
2601 
2602 	netlink_table_grab();
2603 
2604 	nl_table[NETLINK_USERSOCK].groups = groups;
2605 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
2606 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
2607 	nl_table[NETLINK_USERSOCK].registered = 1;
2608 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
2609 
2610 	netlink_table_ungrab();
2611 }
2612 
2613 static struct pernet_operations __net_initdata netlink_net_ops = {
2614 	.init = netlink_net_init,
2615 	.exit = netlink_net_exit,
2616 };
2617 
2618 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
2619 {
2620 	const struct netlink_sock *nlk = data;
2621 	struct netlink_compare_arg arg;
2622 
2623 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
2624 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
2625 }
2626 
2627 static const struct rhashtable_params netlink_rhashtable_params = {
2628 	.head_offset = offsetof(struct netlink_sock, node),
2629 	.key_len = netlink_compare_arg_len,
2630 	.obj_hashfn = netlink_hash,
2631 	.obj_cmpfn = netlink_compare,
2632 	.automatic_shrinking = true,
2633 };
2634 
2635 static int __init netlink_proto_init(void)
2636 {
2637 	int i;
2638 	int err = proto_register(&netlink_proto, 0);
2639 
2640 	if (err != 0)
2641 		goto out;
2642 
2643 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
2644 
2645 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
2646 	if (!nl_table)
2647 		goto panic;
2648 
2649 	for (i = 0; i < MAX_LINKS; i++) {
2650 		if (rhashtable_init(&nl_table[i].hash,
2651 				    &netlink_rhashtable_params) < 0) {
2652 			while (--i > 0)
2653 				rhashtable_destroy(&nl_table[i].hash);
2654 			kfree(nl_table);
2655 			goto panic;
2656 		}
2657 	}
2658 
2659 	INIT_LIST_HEAD(&netlink_tap_all);
2660 
2661 	netlink_add_usersock_entry();
2662 
2663 	sock_register(&netlink_family_ops);
2664 	register_pernet_subsys(&netlink_net_ops);
2665 	/* The netlink device handler may be needed early. */
2666 	rtnetlink_init();
2667 out:
2668 	return err;
2669 panic:
2670 	panic("netlink_init: Cannot allocate nl_table\n");
2671 }
2672 
2673 core_initcall(netlink_proto_init);
2674