1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 88 static inline int netlink_is_kernel(struct sock *sk) 89 { 90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 91 } 92 93 struct netlink_table *nl_table __read_mostly; 94 EXPORT_SYMBOL_GPL(nl_table); 95 96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 97 98 static int netlink_dump(struct sock *sk); 99 static void netlink_skb_destructor(struct sk_buff *skb); 100 101 /* nl_table locking explained: 102 * Lookup and traversal are protected with an RCU read-side lock. Insertion 103 * and removal are protected with per bucket lock while using RCU list 104 * modification primitives and may run in parallel to RCU protected lookups. 105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 106 * been acquired * either during or after the socket has been removed from 107 * the list and after an RCU grace period. 108 */ 109 DEFINE_RWLOCK(nl_table_lock); 110 EXPORT_SYMBOL_GPL(nl_table_lock); 111 static atomic_t nl_table_users = ATOMIC_INIT(0); 112 113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 114 115 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 116 117 static DEFINE_SPINLOCK(netlink_tap_lock); 118 static struct list_head netlink_tap_all __read_mostly; 119 120 static const struct rhashtable_params netlink_rhashtable_params; 121 122 static inline u32 netlink_group_mask(u32 group) 123 { 124 return group ? 1 << (group - 1) : 0; 125 } 126 127 int netlink_add_tap(struct netlink_tap *nt) 128 { 129 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 130 return -EINVAL; 131 132 spin_lock(&netlink_tap_lock); 133 list_add_rcu(&nt->list, &netlink_tap_all); 134 spin_unlock(&netlink_tap_lock); 135 136 __module_get(nt->module); 137 138 return 0; 139 } 140 EXPORT_SYMBOL_GPL(netlink_add_tap); 141 142 static int __netlink_remove_tap(struct netlink_tap *nt) 143 { 144 bool found = false; 145 struct netlink_tap *tmp; 146 147 spin_lock(&netlink_tap_lock); 148 149 list_for_each_entry(tmp, &netlink_tap_all, list) { 150 if (nt == tmp) { 151 list_del_rcu(&nt->list); 152 found = true; 153 goto out; 154 } 155 } 156 157 pr_warn("__netlink_remove_tap: %p not found\n", nt); 158 out: 159 spin_unlock(&netlink_tap_lock); 160 161 if (found && nt->module) 162 module_put(nt->module); 163 164 return found ? 0 : -ENODEV; 165 } 166 167 int netlink_remove_tap(struct netlink_tap *nt) 168 { 169 int ret; 170 171 ret = __netlink_remove_tap(nt); 172 synchronize_net(); 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(netlink_remove_tap); 177 178 static bool netlink_filter_tap(const struct sk_buff *skb) 179 { 180 struct sock *sk = skb->sk; 181 182 /* We take the more conservative approach and 183 * whitelist socket protocols that may pass. 184 */ 185 switch (sk->sk_protocol) { 186 case NETLINK_ROUTE: 187 case NETLINK_USERSOCK: 188 case NETLINK_SOCK_DIAG: 189 case NETLINK_NFLOG: 190 case NETLINK_XFRM: 191 case NETLINK_FIB_LOOKUP: 192 case NETLINK_NETFILTER: 193 case NETLINK_GENERIC: 194 return true; 195 } 196 197 return false; 198 } 199 200 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 201 struct net_device *dev) 202 { 203 struct sk_buff *nskb; 204 struct sock *sk = skb->sk; 205 int ret = -ENOMEM; 206 207 dev_hold(dev); 208 nskb = skb_clone(skb, GFP_ATOMIC); 209 if (nskb) { 210 nskb->dev = dev; 211 nskb->protocol = htons((u16) sk->sk_protocol); 212 nskb->pkt_type = netlink_is_kernel(sk) ? 213 PACKET_KERNEL : PACKET_USER; 214 skb_reset_network_header(nskb); 215 ret = dev_queue_xmit(nskb); 216 if (unlikely(ret > 0)) 217 ret = net_xmit_errno(ret); 218 } 219 220 dev_put(dev); 221 return ret; 222 } 223 224 static void __netlink_deliver_tap(struct sk_buff *skb) 225 { 226 int ret; 227 struct netlink_tap *tmp; 228 229 if (!netlink_filter_tap(skb)) 230 return; 231 232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 233 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 234 if (unlikely(ret)) 235 break; 236 } 237 } 238 239 static void netlink_deliver_tap(struct sk_buff *skb) 240 { 241 rcu_read_lock(); 242 243 if (unlikely(!list_empty(&netlink_tap_all))) 244 __netlink_deliver_tap(skb); 245 246 rcu_read_unlock(); 247 } 248 249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 250 struct sk_buff *skb) 251 { 252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 253 netlink_deliver_tap(skb); 254 } 255 256 static void netlink_overrun(struct sock *sk) 257 { 258 struct netlink_sock *nlk = nlk_sk(sk); 259 260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 261 if (!test_and_set_bit(NETLINK_S_CONGESTED, 262 &nlk_sk(sk)->state)) { 263 sk->sk_err = ENOBUFS; 264 sk->sk_error_report(sk); 265 } 266 } 267 atomic_inc(&sk->sk_drops); 268 } 269 270 static void netlink_rcv_wake(struct sock *sk) 271 { 272 struct netlink_sock *nlk = nlk_sk(sk); 273 274 if (skb_queue_empty(&sk->sk_receive_queue)) 275 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 277 wake_up_interruptible(&nlk->wait); 278 } 279 280 #ifdef CONFIG_NETLINK_MMAP 281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 282 { 283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 284 } 285 286 static bool netlink_rx_is_mmaped(struct sock *sk) 287 { 288 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 289 } 290 291 static bool netlink_tx_is_mmaped(struct sock *sk) 292 { 293 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 294 } 295 296 static __pure struct page *pgvec_to_page(const void *addr) 297 { 298 if (is_vmalloc_addr(addr)) 299 return vmalloc_to_page(addr); 300 else 301 return virt_to_page(addr); 302 } 303 304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 305 { 306 unsigned int i; 307 308 for (i = 0; i < len; i++) { 309 if (pg_vec[i] != NULL) { 310 if (is_vmalloc_addr(pg_vec[i])) 311 vfree(pg_vec[i]); 312 else 313 free_pages((unsigned long)pg_vec[i], order); 314 } 315 } 316 kfree(pg_vec); 317 } 318 319 static void *alloc_one_pg_vec_page(unsigned long order) 320 { 321 void *buffer; 322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 323 __GFP_NOWARN | __GFP_NORETRY; 324 325 buffer = (void *)__get_free_pages(gfp_flags, order); 326 if (buffer != NULL) 327 return buffer; 328 329 buffer = vzalloc((1 << order) * PAGE_SIZE); 330 if (buffer != NULL) 331 return buffer; 332 333 gfp_flags &= ~__GFP_NORETRY; 334 return (void *)__get_free_pages(gfp_flags, order); 335 } 336 337 static void **alloc_pg_vec(struct netlink_sock *nlk, 338 struct nl_mmap_req *req, unsigned int order) 339 { 340 unsigned int block_nr = req->nm_block_nr; 341 unsigned int i; 342 void **pg_vec; 343 344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 345 if (pg_vec == NULL) 346 return NULL; 347 348 for (i = 0; i < block_nr; i++) { 349 pg_vec[i] = alloc_one_pg_vec_page(order); 350 if (pg_vec[i] == NULL) 351 goto err1; 352 } 353 354 return pg_vec; 355 err1: 356 free_pg_vec(pg_vec, order, block_nr); 357 return NULL; 358 } 359 360 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 361 bool closing, bool tx_ring) 362 { 363 struct netlink_sock *nlk = nlk_sk(sk); 364 struct netlink_ring *ring; 365 struct sk_buff_head *queue; 366 void **pg_vec = NULL; 367 unsigned int order = 0; 368 int err; 369 370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 371 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 372 373 if (!closing) { 374 if (atomic_read(&nlk->mapped)) 375 return -EBUSY; 376 if (atomic_read(&ring->pending)) 377 return -EBUSY; 378 } 379 380 if (req->nm_block_nr) { 381 if (ring->pg_vec != NULL) 382 return -EBUSY; 383 384 if ((int)req->nm_block_size <= 0) 385 return -EINVAL; 386 if (!PAGE_ALIGNED(req->nm_block_size)) 387 return -EINVAL; 388 if (req->nm_frame_size < NL_MMAP_HDRLEN) 389 return -EINVAL; 390 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 391 return -EINVAL; 392 393 ring->frames_per_block = req->nm_block_size / 394 req->nm_frame_size; 395 if (ring->frames_per_block == 0) 396 return -EINVAL; 397 if (ring->frames_per_block * req->nm_block_nr != 398 req->nm_frame_nr) 399 return -EINVAL; 400 401 order = get_order(req->nm_block_size); 402 pg_vec = alloc_pg_vec(nlk, req, order); 403 if (pg_vec == NULL) 404 return -ENOMEM; 405 } else { 406 if (req->nm_frame_nr) 407 return -EINVAL; 408 } 409 410 err = -EBUSY; 411 mutex_lock(&nlk->pg_vec_lock); 412 if (closing || atomic_read(&nlk->mapped) == 0) { 413 err = 0; 414 spin_lock_bh(&queue->lock); 415 416 ring->frame_max = req->nm_frame_nr - 1; 417 ring->head = 0; 418 ring->frame_size = req->nm_frame_size; 419 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 420 421 swap(ring->pg_vec_len, req->nm_block_nr); 422 swap(ring->pg_vec_order, order); 423 swap(ring->pg_vec, pg_vec); 424 425 __skb_queue_purge(queue); 426 spin_unlock_bh(&queue->lock); 427 428 WARN_ON(atomic_read(&nlk->mapped)); 429 } 430 mutex_unlock(&nlk->pg_vec_lock); 431 432 if (pg_vec) 433 free_pg_vec(pg_vec, order, req->nm_block_nr); 434 return err; 435 } 436 437 static void netlink_mm_open(struct vm_area_struct *vma) 438 { 439 struct file *file = vma->vm_file; 440 struct socket *sock = file->private_data; 441 struct sock *sk = sock->sk; 442 443 if (sk) 444 atomic_inc(&nlk_sk(sk)->mapped); 445 } 446 447 static void netlink_mm_close(struct vm_area_struct *vma) 448 { 449 struct file *file = vma->vm_file; 450 struct socket *sock = file->private_data; 451 struct sock *sk = sock->sk; 452 453 if (sk) 454 atomic_dec(&nlk_sk(sk)->mapped); 455 } 456 457 static const struct vm_operations_struct netlink_mmap_ops = { 458 .open = netlink_mm_open, 459 .close = netlink_mm_close, 460 }; 461 462 static int netlink_mmap(struct file *file, struct socket *sock, 463 struct vm_area_struct *vma) 464 { 465 struct sock *sk = sock->sk; 466 struct netlink_sock *nlk = nlk_sk(sk); 467 struct netlink_ring *ring; 468 unsigned long start, size, expected; 469 unsigned int i; 470 int err = -EINVAL; 471 472 if (vma->vm_pgoff) 473 return -EINVAL; 474 475 mutex_lock(&nlk->pg_vec_lock); 476 477 expected = 0; 478 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 479 if (ring->pg_vec == NULL) 480 continue; 481 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 482 } 483 484 if (expected == 0) 485 goto out; 486 487 size = vma->vm_end - vma->vm_start; 488 if (size != expected) 489 goto out; 490 491 start = vma->vm_start; 492 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 493 if (ring->pg_vec == NULL) 494 continue; 495 496 for (i = 0; i < ring->pg_vec_len; i++) { 497 struct page *page; 498 void *kaddr = ring->pg_vec[i]; 499 unsigned int pg_num; 500 501 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 502 page = pgvec_to_page(kaddr); 503 err = vm_insert_page(vma, start, page); 504 if (err < 0) 505 goto out; 506 start += PAGE_SIZE; 507 kaddr += PAGE_SIZE; 508 } 509 } 510 } 511 512 atomic_inc(&nlk->mapped); 513 vma->vm_ops = &netlink_mmap_ops; 514 err = 0; 515 out: 516 mutex_unlock(&nlk->pg_vec_lock); 517 return err; 518 } 519 520 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 521 { 522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 523 struct page *p_start, *p_end; 524 525 /* First page is flushed through netlink_{get,set}_status */ 526 p_start = pgvec_to_page(hdr + PAGE_SIZE); 527 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 528 while (p_start <= p_end) { 529 flush_dcache_page(p_start); 530 p_start++; 531 } 532 #endif 533 } 534 535 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 536 { 537 smp_rmb(); 538 flush_dcache_page(pgvec_to_page(hdr)); 539 return hdr->nm_status; 540 } 541 542 static void netlink_set_status(struct nl_mmap_hdr *hdr, 543 enum nl_mmap_status status) 544 { 545 smp_mb(); 546 hdr->nm_status = status; 547 flush_dcache_page(pgvec_to_page(hdr)); 548 } 549 550 static struct nl_mmap_hdr * 551 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 552 { 553 unsigned int pg_vec_pos, frame_off; 554 555 pg_vec_pos = pos / ring->frames_per_block; 556 frame_off = pos % ring->frames_per_block; 557 558 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 559 } 560 561 static struct nl_mmap_hdr * 562 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 563 enum nl_mmap_status status) 564 { 565 struct nl_mmap_hdr *hdr; 566 567 hdr = __netlink_lookup_frame(ring, pos); 568 if (netlink_get_status(hdr) != status) 569 return NULL; 570 571 return hdr; 572 } 573 574 static struct nl_mmap_hdr * 575 netlink_current_frame(const struct netlink_ring *ring, 576 enum nl_mmap_status status) 577 { 578 return netlink_lookup_frame(ring, ring->head, status); 579 } 580 581 static struct nl_mmap_hdr * 582 netlink_previous_frame(const struct netlink_ring *ring, 583 enum nl_mmap_status status) 584 { 585 unsigned int prev; 586 587 prev = ring->head ? ring->head - 1 : ring->frame_max; 588 return netlink_lookup_frame(ring, prev, status); 589 } 590 591 static void netlink_increment_head(struct netlink_ring *ring) 592 { 593 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 594 } 595 596 static void netlink_forward_ring(struct netlink_ring *ring) 597 { 598 unsigned int head = ring->head, pos = head; 599 const struct nl_mmap_hdr *hdr; 600 601 do { 602 hdr = __netlink_lookup_frame(ring, pos); 603 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 604 break; 605 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 606 break; 607 netlink_increment_head(ring); 608 } while (ring->head != head); 609 } 610 611 static bool netlink_dump_space(struct netlink_sock *nlk) 612 { 613 struct netlink_ring *ring = &nlk->rx_ring; 614 struct nl_mmap_hdr *hdr; 615 unsigned int n; 616 617 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 618 if (hdr == NULL) 619 return false; 620 621 n = ring->head + ring->frame_max / 2; 622 if (n > ring->frame_max) 623 n -= ring->frame_max; 624 625 hdr = __netlink_lookup_frame(ring, n); 626 627 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 628 } 629 630 static unsigned int netlink_poll(struct file *file, struct socket *sock, 631 poll_table *wait) 632 { 633 struct sock *sk = sock->sk; 634 struct netlink_sock *nlk = nlk_sk(sk); 635 unsigned int mask; 636 int err; 637 638 if (nlk->rx_ring.pg_vec != NULL) { 639 /* Memory mapped sockets don't call recvmsg(), so flow control 640 * for dumps is performed here. A dump is allowed to continue 641 * if at least half the ring is unused. 642 */ 643 while (nlk->cb_running && netlink_dump_space(nlk)) { 644 err = netlink_dump(sk); 645 if (err < 0) { 646 sk->sk_err = -err; 647 sk->sk_error_report(sk); 648 break; 649 } 650 } 651 netlink_rcv_wake(sk); 652 } 653 654 mask = datagram_poll(file, sock, wait); 655 656 spin_lock_bh(&sk->sk_receive_queue.lock); 657 if (nlk->rx_ring.pg_vec) { 658 netlink_forward_ring(&nlk->rx_ring); 659 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 660 mask |= POLLIN | POLLRDNORM; 661 } 662 spin_unlock_bh(&sk->sk_receive_queue.lock); 663 664 spin_lock_bh(&sk->sk_write_queue.lock); 665 if (nlk->tx_ring.pg_vec) { 666 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 667 mask |= POLLOUT | POLLWRNORM; 668 } 669 spin_unlock_bh(&sk->sk_write_queue.lock); 670 671 return mask; 672 } 673 674 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 675 { 676 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 677 } 678 679 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 680 struct netlink_ring *ring, 681 struct nl_mmap_hdr *hdr) 682 { 683 unsigned int size; 684 void *data; 685 686 size = ring->frame_size - NL_MMAP_HDRLEN; 687 data = (void *)hdr + NL_MMAP_HDRLEN; 688 689 skb->head = data; 690 skb->data = data; 691 skb_reset_tail_pointer(skb); 692 skb->end = skb->tail + size; 693 skb->len = 0; 694 695 skb->destructor = netlink_skb_destructor; 696 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 697 NETLINK_CB(skb).sk = sk; 698 } 699 700 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 701 u32 dst_portid, u32 dst_group, 702 struct scm_cookie *scm) 703 { 704 struct netlink_sock *nlk = nlk_sk(sk); 705 struct netlink_ring *ring; 706 struct nl_mmap_hdr *hdr; 707 struct sk_buff *skb; 708 unsigned int maxlen; 709 int err = 0, len = 0; 710 711 mutex_lock(&nlk->pg_vec_lock); 712 713 ring = &nlk->tx_ring; 714 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 715 716 do { 717 unsigned int nm_len; 718 719 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 720 if (hdr == NULL) { 721 if (!(msg->msg_flags & MSG_DONTWAIT) && 722 atomic_read(&nlk->tx_ring.pending)) 723 schedule(); 724 continue; 725 } 726 727 nm_len = ACCESS_ONCE(hdr->nm_len); 728 if (nm_len > maxlen) { 729 err = -EINVAL; 730 goto out; 731 } 732 733 netlink_frame_flush_dcache(hdr, nm_len); 734 735 skb = alloc_skb(nm_len, GFP_KERNEL); 736 if (skb == NULL) { 737 err = -ENOBUFS; 738 goto out; 739 } 740 __skb_put(skb, nm_len); 741 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 742 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 743 744 netlink_increment_head(ring); 745 746 NETLINK_CB(skb).portid = nlk->portid; 747 NETLINK_CB(skb).dst_group = dst_group; 748 NETLINK_CB(skb).creds = scm->creds; 749 750 err = security_netlink_send(sk, skb); 751 if (err) { 752 kfree_skb(skb); 753 goto out; 754 } 755 756 if (unlikely(dst_group)) { 757 atomic_inc(&skb->users); 758 netlink_broadcast(sk, skb, dst_portid, dst_group, 759 GFP_KERNEL); 760 } 761 err = netlink_unicast(sk, skb, dst_portid, 762 msg->msg_flags & MSG_DONTWAIT); 763 if (err < 0) 764 goto out; 765 len += err; 766 767 } while (hdr != NULL || 768 (!(msg->msg_flags & MSG_DONTWAIT) && 769 atomic_read(&nlk->tx_ring.pending))); 770 771 if (len > 0) 772 err = len; 773 out: 774 mutex_unlock(&nlk->pg_vec_lock); 775 return err; 776 } 777 778 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 779 { 780 struct nl_mmap_hdr *hdr; 781 782 hdr = netlink_mmap_hdr(skb); 783 hdr->nm_len = skb->len; 784 hdr->nm_group = NETLINK_CB(skb).dst_group; 785 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 786 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 787 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 788 netlink_frame_flush_dcache(hdr, hdr->nm_len); 789 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 790 791 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 792 kfree_skb(skb); 793 } 794 795 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 796 { 797 struct netlink_sock *nlk = nlk_sk(sk); 798 struct netlink_ring *ring = &nlk->rx_ring; 799 struct nl_mmap_hdr *hdr; 800 801 spin_lock_bh(&sk->sk_receive_queue.lock); 802 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 803 if (hdr == NULL) { 804 spin_unlock_bh(&sk->sk_receive_queue.lock); 805 kfree_skb(skb); 806 netlink_overrun(sk); 807 return; 808 } 809 netlink_increment_head(ring); 810 __skb_queue_tail(&sk->sk_receive_queue, skb); 811 spin_unlock_bh(&sk->sk_receive_queue.lock); 812 813 hdr->nm_len = skb->len; 814 hdr->nm_group = NETLINK_CB(skb).dst_group; 815 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 816 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 817 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 818 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 819 } 820 821 #else /* CONFIG_NETLINK_MMAP */ 822 #define netlink_skb_is_mmaped(skb) false 823 #define netlink_rx_is_mmaped(sk) false 824 #define netlink_tx_is_mmaped(sk) false 825 #define netlink_mmap sock_no_mmap 826 #define netlink_poll datagram_poll 827 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 828 #endif /* CONFIG_NETLINK_MMAP */ 829 830 static void netlink_skb_destructor(struct sk_buff *skb) 831 { 832 #ifdef CONFIG_NETLINK_MMAP 833 struct nl_mmap_hdr *hdr; 834 struct netlink_ring *ring; 835 struct sock *sk; 836 837 /* If a packet from the kernel to userspace was freed because of an 838 * error without being delivered to userspace, the kernel must reset 839 * the status. In the direction userspace to kernel, the status is 840 * always reset here after the packet was processed and freed. 841 */ 842 if (netlink_skb_is_mmaped(skb)) { 843 hdr = netlink_mmap_hdr(skb); 844 sk = NETLINK_CB(skb).sk; 845 846 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 847 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 848 ring = &nlk_sk(sk)->tx_ring; 849 } else { 850 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 851 hdr->nm_len = 0; 852 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 853 } 854 ring = &nlk_sk(sk)->rx_ring; 855 } 856 857 WARN_ON(atomic_read(&ring->pending) == 0); 858 atomic_dec(&ring->pending); 859 sock_put(sk); 860 861 skb->head = NULL; 862 } 863 #endif 864 if (is_vmalloc_addr(skb->head)) { 865 if (!skb->cloned || 866 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 867 vfree(skb->head); 868 869 skb->head = NULL; 870 } 871 if (skb->sk != NULL) 872 sock_rfree(skb); 873 } 874 875 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 876 { 877 WARN_ON(skb->sk != NULL); 878 skb->sk = sk; 879 skb->destructor = netlink_skb_destructor; 880 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 881 sk_mem_charge(sk, skb->truesize); 882 } 883 884 static void netlink_sock_destruct(struct sock *sk) 885 { 886 struct netlink_sock *nlk = nlk_sk(sk); 887 888 if (nlk->cb_running) { 889 if (nlk->cb.done) 890 nlk->cb.done(&nlk->cb); 891 892 module_put(nlk->cb.module); 893 kfree_skb(nlk->cb.skb); 894 } 895 896 skb_queue_purge(&sk->sk_receive_queue); 897 #ifdef CONFIG_NETLINK_MMAP 898 if (1) { 899 struct nl_mmap_req req; 900 901 memset(&req, 0, sizeof(req)); 902 if (nlk->rx_ring.pg_vec) 903 netlink_set_ring(sk, &req, true, false); 904 memset(&req, 0, sizeof(req)); 905 if (nlk->tx_ring.pg_vec) 906 netlink_set_ring(sk, &req, true, true); 907 } 908 #endif /* CONFIG_NETLINK_MMAP */ 909 910 if (!sock_flag(sk, SOCK_DEAD)) { 911 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 912 return; 913 } 914 915 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 916 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 917 WARN_ON(nlk_sk(sk)->groups); 918 } 919 920 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 921 * SMP. Look, when several writers sleep and reader wakes them up, all but one 922 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 923 * this, _but_ remember, it adds useless work on UP machines. 924 */ 925 926 void netlink_table_grab(void) 927 __acquires(nl_table_lock) 928 { 929 might_sleep(); 930 931 write_lock_irq(&nl_table_lock); 932 933 if (atomic_read(&nl_table_users)) { 934 DECLARE_WAITQUEUE(wait, current); 935 936 add_wait_queue_exclusive(&nl_table_wait, &wait); 937 for (;;) { 938 set_current_state(TASK_UNINTERRUPTIBLE); 939 if (atomic_read(&nl_table_users) == 0) 940 break; 941 write_unlock_irq(&nl_table_lock); 942 schedule(); 943 write_lock_irq(&nl_table_lock); 944 } 945 946 __set_current_state(TASK_RUNNING); 947 remove_wait_queue(&nl_table_wait, &wait); 948 } 949 } 950 951 void netlink_table_ungrab(void) 952 __releases(nl_table_lock) 953 { 954 write_unlock_irq(&nl_table_lock); 955 wake_up(&nl_table_wait); 956 } 957 958 static inline void 959 netlink_lock_table(void) 960 { 961 /* read_lock() synchronizes us to netlink_table_grab */ 962 963 read_lock(&nl_table_lock); 964 atomic_inc(&nl_table_users); 965 read_unlock(&nl_table_lock); 966 } 967 968 static inline void 969 netlink_unlock_table(void) 970 { 971 if (atomic_dec_and_test(&nl_table_users)) 972 wake_up(&nl_table_wait); 973 } 974 975 struct netlink_compare_arg 976 { 977 possible_net_t pnet; 978 u32 portid; 979 }; 980 981 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 982 #define netlink_compare_arg_len \ 983 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 984 985 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 986 const void *ptr) 987 { 988 const struct netlink_compare_arg *x = arg->key; 989 const struct netlink_sock *nlk = ptr; 990 991 return nlk->portid != x->portid || 992 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 993 } 994 995 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 996 struct net *net, u32 portid) 997 { 998 memset(arg, 0, sizeof(*arg)); 999 write_pnet(&arg->pnet, net); 1000 arg->portid = portid; 1001 } 1002 1003 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1004 struct net *net) 1005 { 1006 struct netlink_compare_arg arg; 1007 1008 netlink_compare_arg_init(&arg, net, portid); 1009 return rhashtable_lookup_fast(&table->hash, &arg, 1010 netlink_rhashtable_params); 1011 } 1012 1013 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 1014 { 1015 struct netlink_compare_arg arg; 1016 1017 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 1018 return rhashtable_lookup_insert_key(&table->hash, &arg, 1019 &nlk_sk(sk)->node, 1020 netlink_rhashtable_params); 1021 } 1022 1023 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1024 { 1025 struct netlink_table *table = &nl_table[protocol]; 1026 struct sock *sk; 1027 1028 rcu_read_lock(); 1029 sk = __netlink_lookup(table, portid, net); 1030 if (sk) 1031 sock_hold(sk); 1032 rcu_read_unlock(); 1033 1034 return sk; 1035 } 1036 1037 static const struct proto_ops netlink_ops; 1038 1039 static void 1040 netlink_update_listeners(struct sock *sk) 1041 { 1042 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1043 unsigned long mask; 1044 unsigned int i; 1045 struct listeners *listeners; 1046 1047 listeners = nl_deref_protected(tbl->listeners); 1048 if (!listeners) 1049 return; 1050 1051 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1052 mask = 0; 1053 sk_for_each_bound(sk, &tbl->mc_list) { 1054 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1055 mask |= nlk_sk(sk)->groups[i]; 1056 } 1057 listeners->masks[i] = mask; 1058 } 1059 /* this function is only called with the netlink table "grabbed", which 1060 * makes sure updates are visible before bind or setsockopt return. */ 1061 } 1062 1063 static int netlink_insert(struct sock *sk, u32 portid) 1064 { 1065 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1066 int err; 1067 1068 lock_sock(sk); 1069 1070 err = -EBUSY; 1071 if (nlk_sk(sk)->portid) 1072 goto err; 1073 1074 err = -ENOMEM; 1075 if (BITS_PER_LONG > 32 && 1076 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1077 goto err; 1078 1079 nlk_sk(sk)->portid = portid; 1080 sock_hold(sk); 1081 1082 err = __netlink_insert(table, sk); 1083 if (err) { 1084 if (err == -EEXIST) 1085 err = -EADDRINUSE; 1086 nlk_sk(sk)->portid = 0; 1087 sock_put(sk); 1088 } 1089 1090 err: 1091 release_sock(sk); 1092 return err; 1093 } 1094 1095 static void netlink_remove(struct sock *sk) 1096 { 1097 struct netlink_table *table; 1098 1099 table = &nl_table[sk->sk_protocol]; 1100 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 1101 netlink_rhashtable_params)) { 1102 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1103 __sock_put(sk); 1104 } 1105 1106 netlink_table_grab(); 1107 if (nlk_sk(sk)->subscriptions) { 1108 __sk_del_bind_node(sk); 1109 netlink_update_listeners(sk); 1110 } 1111 if (sk->sk_protocol == NETLINK_GENERIC) 1112 atomic_inc(&genl_sk_destructing_cnt); 1113 netlink_table_ungrab(); 1114 } 1115 1116 static struct proto netlink_proto = { 1117 .name = "NETLINK", 1118 .owner = THIS_MODULE, 1119 .obj_size = sizeof(struct netlink_sock), 1120 }; 1121 1122 static int __netlink_create(struct net *net, struct socket *sock, 1123 struct mutex *cb_mutex, int protocol, 1124 int kern) 1125 { 1126 struct sock *sk; 1127 struct netlink_sock *nlk; 1128 1129 sock->ops = &netlink_ops; 1130 1131 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 1132 if (!sk) 1133 return -ENOMEM; 1134 1135 sock_init_data(sock, sk); 1136 1137 nlk = nlk_sk(sk); 1138 if (cb_mutex) { 1139 nlk->cb_mutex = cb_mutex; 1140 } else { 1141 nlk->cb_mutex = &nlk->cb_def_mutex; 1142 mutex_init(nlk->cb_mutex); 1143 } 1144 init_waitqueue_head(&nlk->wait); 1145 #ifdef CONFIG_NETLINK_MMAP 1146 mutex_init(&nlk->pg_vec_lock); 1147 #endif 1148 1149 sk->sk_destruct = netlink_sock_destruct; 1150 sk->sk_protocol = protocol; 1151 return 0; 1152 } 1153 1154 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1155 int kern) 1156 { 1157 struct module *module = NULL; 1158 struct mutex *cb_mutex; 1159 struct netlink_sock *nlk; 1160 int (*bind)(struct net *net, int group); 1161 void (*unbind)(struct net *net, int group); 1162 int err = 0; 1163 1164 sock->state = SS_UNCONNECTED; 1165 1166 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1167 return -ESOCKTNOSUPPORT; 1168 1169 if (protocol < 0 || protocol >= MAX_LINKS) 1170 return -EPROTONOSUPPORT; 1171 1172 netlink_lock_table(); 1173 #ifdef CONFIG_MODULES 1174 if (!nl_table[protocol].registered) { 1175 netlink_unlock_table(); 1176 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1177 netlink_lock_table(); 1178 } 1179 #endif 1180 if (nl_table[protocol].registered && 1181 try_module_get(nl_table[protocol].module)) 1182 module = nl_table[protocol].module; 1183 else 1184 err = -EPROTONOSUPPORT; 1185 cb_mutex = nl_table[protocol].cb_mutex; 1186 bind = nl_table[protocol].bind; 1187 unbind = nl_table[protocol].unbind; 1188 netlink_unlock_table(); 1189 1190 if (err < 0) 1191 goto out; 1192 1193 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 1194 if (err < 0) 1195 goto out_module; 1196 1197 local_bh_disable(); 1198 sock_prot_inuse_add(net, &netlink_proto, 1); 1199 local_bh_enable(); 1200 1201 nlk = nlk_sk(sock->sk); 1202 nlk->module = module; 1203 nlk->netlink_bind = bind; 1204 nlk->netlink_unbind = unbind; 1205 out: 1206 return err; 1207 1208 out_module: 1209 module_put(module); 1210 goto out; 1211 } 1212 1213 static void deferred_put_nlk_sk(struct rcu_head *head) 1214 { 1215 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1216 1217 sock_put(&nlk->sk); 1218 } 1219 1220 static int netlink_release(struct socket *sock) 1221 { 1222 struct sock *sk = sock->sk; 1223 struct netlink_sock *nlk; 1224 1225 if (!sk) 1226 return 0; 1227 1228 netlink_remove(sk); 1229 sock_orphan(sk); 1230 nlk = nlk_sk(sk); 1231 1232 /* 1233 * OK. Socket is unlinked, any packets that arrive now 1234 * will be purged. 1235 */ 1236 1237 /* must not acquire netlink_table_lock in any way again before unbind 1238 * and notifying genetlink is done as otherwise it might deadlock 1239 */ 1240 if (nlk->netlink_unbind) { 1241 int i; 1242 1243 for (i = 0; i < nlk->ngroups; i++) 1244 if (test_bit(i, nlk->groups)) 1245 nlk->netlink_unbind(sock_net(sk), i + 1); 1246 } 1247 if (sk->sk_protocol == NETLINK_GENERIC && 1248 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1249 wake_up(&genl_sk_destructing_waitq); 1250 1251 sock->sk = NULL; 1252 wake_up_interruptible_all(&nlk->wait); 1253 1254 skb_queue_purge(&sk->sk_write_queue); 1255 1256 if (nlk->portid) { 1257 struct netlink_notify n = { 1258 .net = sock_net(sk), 1259 .protocol = sk->sk_protocol, 1260 .portid = nlk->portid, 1261 }; 1262 atomic_notifier_call_chain(&netlink_chain, 1263 NETLINK_URELEASE, &n); 1264 } 1265 1266 module_put(nlk->module); 1267 1268 if (netlink_is_kernel(sk)) { 1269 netlink_table_grab(); 1270 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1271 if (--nl_table[sk->sk_protocol].registered == 0) { 1272 struct listeners *old; 1273 1274 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1275 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1276 kfree_rcu(old, rcu); 1277 nl_table[sk->sk_protocol].module = NULL; 1278 nl_table[sk->sk_protocol].bind = NULL; 1279 nl_table[sk->sk_protocol].unbind = NULL; 1280 nl_table[sk->sk_protocol].flags = 0; 1281 nl_table[sk->sk_protocol].registered = 0; 1282 } 1283 netlink_table_ungrab(); 1284 } 1285 1286 kfree(nlk->groups); 1287 nlk->groups = NULL; 1288 1289 local_bh_disable(); 1290 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1291 local_bh_enable(); 1292 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1293 return 0; 1294 } 1295 1296 static int netlink_autobind(struct socket *sock) 1297 { 1298 struct sock *sk = sock->sk; 1299 struct net *net = sock_net(sk); 1300 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1301 s32 portid = task_tgid_vnr(current); 1302 int err; 1303 s32 rover = -4096; 1304 bool ok; 1305 1306 retry: 1307 cond_resched(); 1308 rcu_read_lock(); 1309 ok = !__netlink_lookup(table, portid, net); 1310 rcu_read_unlock(); 1311 if (!ok) { 1312 /* Bind collision, search negative portid values. */ 1313 if (rover == -4096) 1314 /* rover will be in range [S32_MIN, -4097] */ 1315 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 1316 else if (rover >= -4096) 1317 rover = -4097; 1318 portid = rover--; 1319 goto retry; 1320 } 1321 1322 err = netlink_insert(sk, portid); 1323 if (err == -EADDRINUSE) 1324 goto retry; 1325 1326 /* If 2 threads race to autobind, that is fine. */ 1327 if (err == -EBUSY) 1328 err = 0; 1329 1330 return err; 1331 } 1332 1333 /** 1334 * __netlink_ns_capable - General netlink message capability test 1335 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1336 * @user_ns: The user namespace of the capability to use 1337 * @cap: The capability to use 1338 * 1339 * Test to see if the opener of the socket we received the message 1340 * from had when the netlink socket was created and the sender of the 1341 * message has has the capability @cap in the user namespace @user_ns. 1342 */ 1343 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1344 struct user_namespace *user_ns, int cap) 1345 { 1346 return ((nsp->flags & NETLINK_SKB_DST) || 1347 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1348 ns_capable(user_ns, cap); 1349 } 1350 EXPORT_SYMBOL(__netlink_ns_capable); 1351 1352 /** 1353 * netlink_ns_capable - General netlink message capability test 1354 * @skb: socket buffer holding a netlink command from userspace 1355 * @user_ns: The user namespace of the capability to use 1356 * @cap: The capability to use 1357 * 1358 * Test to see if the opener of the socket we received the message 1359 * from had when the netlink socket was created and the sender of the 1360 * message has has the capability @cap in the user namespace @user_ns. 1361 */ 1362 bool netlink_ns_capable(const struct sk_buff *skb, 1363 struct user_namespace *user_ns, int cap) 1364 { 1365 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1366 } 1367 EXPORT_SYMBOL(netlink_ns_capable); 1368 1369 /** 1370 * netlink_capable - Netlink global message capability test 1371 * @skb: socket buffer holding a netlink command from userspace 1372 * @cap: The capability to use 1373 * 1374 * Test to see if the opener of the socket we received the message 1375 * from had when the netlink socket was created and the sender of the 1376 * message has has the capability @cap in all user namespaces. 1377 */ 1378 bool netlink_capable(const struct sk_buff *skb, int cap) 1379 { 1380 return netlink_ns_capable(skb, &init_user_ns, cap); 1381 } 1382 EXPORT_SYMBOL(netlink_capable); 1383 1384 /** 1385 * netlink_net_capable - Netlink network namespace message capability test 1386 * @skb: socket buffer holding a netlink command from userspace 1387 * @cap: The capability to use 1388 * 1389 * Test to see if the opener of the socket we received the message 1390 * from had when the netlink socket was created and the sender of the 1391 * message has has the capability @cap over the network namespace of 1392 * the socket we received the message from. 1393 */ 1394 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1395 { 1396 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1397 } 1398 EXPORT_SYMBOL(netlink_net_capable); 1399 1400 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1401 { 1402 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1403 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1404 } 1405 1406 static void 1407 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1408 { 1409 struct netlink_sock *nlk = nlk_sk(sk); 1410 1411 if (nlk->subscriptions && !subscriptions) 1412 __sk_del_bind_node(sk); 1413 else if (!nlk->subscriptions && subscriptions) 1414 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1415 nlk->subscriptions = subscriptions; 1416 } 1417 1418 static int netlink_realloc_groups(struct sock *sk) 1419 { 1420 struct netlink_sock *nlk = nlk_sk(sk); 1421 unsigned int groups; 1422 unsigned long *new_groups; 1423 int err = 0; 1424 1425 netlink_table_grab(); 1426 1427 groups = nl_table[sk->sk_protocol].groups; 1428 if (!nl_table[sk->sk_protocol].registered) { 1429 err = -ENOENT; 1430 goto out_unlock; 1431 } 1432 1433 if (nlk->ngroups >= groups) 1434 goto out_unlock; 1435 1436 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1437 if (new_groups == NULL) { 1438 err = -ENOMEM; 1439 goto out_unlock; 1440 } 1441 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1442 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1443 1444 nlk->groups = new_groups; 1445 nlk->ngroups = groups; 1446 out_unlock: 1447 netlink_table_ungrab(); 1448 return err; 1449 } 1450 1451 static void netlink_undo_bind(int group, long unsigned int groups, 1452 struct sock *sk) 1453 { 1454 struct netlink_sock *nlk = nlk_sk(sk); 1455 int undo; 1456 1457 if (!nlk->netlink_unbind) 1458 return; 1459 1460 for (undo = 0; undo < group; undo++) 1461 if (test_bit(undo, &groups)) 1462 nlk->netlink_unbind(sock_net(sk), undo + 1); 1463 } 1464 1465 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1466 int addr_len) 1467 { 1468 struct sock *sk = sock->sk; 1469 struct net *net = sock_net(sk); 1470 struct netlink_sock *nlk = nlk_sk(sk); 1471 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1472 int err; 1473 long unsigned int groups = nladdr->nl_groups; 1474 1475 if (addr_len < sizeof(struct sockaddr_nl)) 1476 return -EINVAL; 1477 1478 if (nladdr->nl_family != AF_NETLINK) 1479 return -EINVAL; 1480 1481 /* Only superuser is allowed to listen multicasts */ 1482 if (groups) { 1483 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1484 return -EPERM; 1485 err = netlink_realloc_groups(sk); 1486 if (err) 1487 return err; 1488 } 1489 1490 if (nlk->portid) 1491 if (nladdr->nl_pid != nlk->portid) 1492 return -EINVAL; 1493 1494 if (nlk->netlink_bind && groups) { 1495 int group; 1496 1497 for (group = 0; group < nlk->ngroups; group++) { 1498 if (!test_bit(group, &groups)) 1499 continue; 1500 err = nlk->netlink_bind(net, group + 1); 1501 if (!err) 1502 continue; 1503 netlink_undo_bind(group, groups, sk); 1504 return err; 1505 } 1506 } 1507 1508 if (!nlk->portid) { 1509 err = nladdr->nl_pid ? 1510 netlink_insert(sk, nladdr->nl_pid) : 1511 netlink_autobind(sock); 1512 if (err) { 1513 netlink_undo_bind(nlk->ngroups, groups, sk); 1514 return err; 1515 } 1516 } 1517 1518 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1519 return 0; 1520 1521 netlink_table_grab(); 1522 netlink_update_subscriptions(sk, nlk->subscriptions + 1523 hweight32(groups) - 1524 hweight32(nlk->groups[0])); 1525 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1526 netlink_update_listeners(sk); 1527 netlink_table_ungrab(); 1528 1529 return 0; 1530 } 1531 1532 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1533 int alen, int flags) 1534 { 1535 int err = 0; 1536 struct sock *sk = sock->sk; 1537 struct netlink_sock *nlk = nlk_sk(sk); 1538 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1539 1540 if (alen < sizeof(addr->sa_family)) 1541 return -EINVAL; 1542 1543 if (addr->sa_family == AF_UNSPEC) { 1544 sk->sk_state = NETLINK_UNCONNECTED; 1545 nlk->dst_portid = 0; 1546 nlk->dst_group = 0; 1547 return 0; 1548 } 1549 if (addr->sa_family != AF_NETLINK) 1550 return -EINVAL; 1551 1552 if ((nladdr->nl_groups || nladdr->nl_pid) && 1553 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1554 return -EPERM; 1555 1556 if (!nlk->portid) 1557 err = netlink_autobind(sock); 1558 1559 if (err == 0) { 1560 sk->sk_state = NETLINK_CONNECTED; 1561 nlk->dst_portid = nladdr->nl_pid; 1562 nlk->dst_group = ffs(nladdr->nl_groups); 1563 } 1564 1565 return err; 1566 } 1567 1568 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1569 int *addr_len, int peer) 1570 { 1571 struct sock *sk = sock->sk; 1572 struct netlink_sock *nlk = nlk_sk(sk); 1573 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1574 1575 nladdr->nl_family = AF_NETLINK; 1576 nladdr->nl_pad = 0; 1577 *addr_len = sizeof(*nladdr); 1578 1579 if (peer) { 1580 nladdr->nl_pid = nlk->dst_portid; 1581 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1582 } else { 1583 nladdr->nl_pid = nlk->portid; 1584 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1585 } 1586 return 0; 1587 } 1588 1589 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1590 { 1591 struct sock *sock; 1592 struct netlink_sock *nlk; 1593 1594 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1595 if (!sock) 1596 return ERR_PTR(-ECONNREFUSED); 1597 1598 /* Don't bother queuing skb if kernel socket has no input function */ 1599 nlk = nlk_sk(sock); 1600 if (sock->sk_state == NETLINK_CONNECTED && 1601 nlk->dst_portid != nlk_sk(ssk)->portid) { 1602 sock_put(sock); 1603 return ERR_PTR(-ECONNREFUSED); 1604 } 1605 return sock; 1606 } 1607 1608 struct sock *netlink_getsockbyfilp(struct file *filp) 1609 { 1610 struct inode *inode = file_inode(filp); 1611 struct sock *sock; 1612 1613 if (!S_ISSOCK(inode->i_mode)) 1614 return ERR_PTR(-ENOTSOCK); 1615 1616 sock = SOCKET_I(inode)->sk; 1617 if (sock->sk_family != AF_NETLINK) 1618 return ERR_PTR(-EINVAL); 1619 1620 sock_hold(sock); 1621 return sock; 1622 } 1623 1624 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1625 int broadcast) 1626 { 1627 struct sk_buff *skb; 1628 void *data; 1629 1630 if (size <= NLMSG_GOODSIZE || broadcast) 1631 return alloc_skb(size, GFP_KERNEL); 1632 1633 size = SKB_DATA_ALIGN(size) + 1634 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1635 1636 data = vmalloc(size); 1637 if (data == NULL) 1638 return NULL; 1639 1640 skb = __build_skb(data, size); 1641 if (skb == NULL) 1642 vfree(data); 1643 else 1644 skb->destructor = netlink_skb_destructor; 1645 1646 return skb; 1647 } 1648 1649 /* 1650 * Attach a skb to a netlink socket. 1651 * The caller must hold a reference to the destination socket. On error, the 1652 * reference is dropped. The skb is not send to the destination, just all 1653 * all error checks are performed and memory in the queue is reserved. 1654 * Return values: 1655 * < 0: error. skb freed, reference to sock dropped. 1656 * 0: continue 1657 * 1: repeat lookup - reference dropped while waiting for socket memory. 1658 */ 1659 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1660 long *timeo, struct sock *ssk) 1661 { 1662 struct netlink_sock *nlk; 1663 1664 nlk = nlk_sk(sk); 1665 1666 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1667 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1668 !netlink_skb_is_mmaped(skb)) { 1669 DECLARE_WAITQUEUE(wait, current); 1670 if (!*timeo) { 1671 if (!ssk || netlink_is_kernel(ssk)) 1672 netlink_overrun(sk); 1673 sock_put(sk); 1674 kfree_skb(skb); 1675 return -EAGAIN; 1676 } 1677 1678 __set_current_state(TASK_INTERRUPTIBLE); 1679 add_wait_queue(&nlk->wait, &wait); 1680 1681 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1682 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1683 !sock_flag(sk, SOCK_DEAD)) 1684 *timeo = schedule_timeout(*timeo); 1685 1686 __set_current_state(TASK_RUNNING); 1687 remove_wait_queue(&nlk->wait, &wait); 1688 sock_put(sk); 1689 1690 if (signal_pending(current)) { 1691 kfree_skb(skb); 1692 return sock_intr_errno(*timeo); 1693 } 1694 return 1; 1695 } 1696 netlink_skb_set_owner_r(skb, sk); 1697 return 0; 1698 } 1699 1700 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1701 { 1702 int len = skb->len; 1703 1704 netlink_deliver_tap(skb); 1705 1706 #ifdef CONFIG_NETLINK_MMAP 1707 if (netlink_skb_is_mmaped(skb)) 1708 netlink_queue_mmaped_skb(sk, skb); 1709 else if (netlink_rx_is_mmaped(sk)) 1710 netlink_ring_set_copied(sk, skb); 1711 else 1712 #endif /* CONFIG_NETLINK_MMAP */ 1713 skb_queue_tail(&sk->sk_receive_queue, skb); 1714 sk->sk_data_ready(sk); 1715 return len; 1716 } 1717 1718 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1719 { 1720 int len = __netlink_sendskb(sk, skb); 1721 1722 sock_put(sk); 1723 return len; 1724 } 1725 1726 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1727 { 1728 kfree_skb(skb); 1729 sock_put(sk); 1730 } 1731 1732 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1733 { 1734 int delta; 1735 1736 WARN_ON(skb->sk != NULL); 1737 if (netlink_skb_is_mmaped(skb)) 1738 return skb; 1739 1740 delta = skb->end - skb->tail; 1741 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1742 return skb; 1743 1744 if (skb_shared(skb)) { 1745 struct sk_buff *nskb = skb_clone(skb, allocation); 1746 if (!nskb) 1747 return skb; 1748 consume_skb(skb); 1749 skb = nskb; 1750 } 1751 1752 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1753 skb->truesize -= delta; 1754 1755 return skb; 1756 } 1757 1758 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1759 struct sock *ssk) 1760 { 1761 int ret; 1762 struct netlink_sock *nlk = nlk_sk(sk); 1763 1764 ret = -ECONNREFUSED; 1765 if (nlk->netlink_rcv != NULL) { 1766 ret = skb->len; 1767 netlink_skb_set_owner_r(skb, sk); 1768 NETLINK_CB(skb).sk = ssk; 1769 netlink_deliver_tap_kernel(sk, ssk, skb); 1770 nlk->netlink_rcv(skb); 1771 consume_skb(skb); 1772 } else { 1773 kfree_skb(skb); 1774 } 1775 sock_put(sk); 1776 return ret; 1777 } 1778 1779 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1780 u32 portid, int nonblock) 1781 { 1782 struct sock *sk; 1783 int err; 1784 long timeo; 1785 1786 skb = netlink_trim(skb, gfp_any()); 1787 1788 timeo = sock_sndtimeo(ssk, nonblock); 1789 retry: 1790 sk = netlink_getsockbyportid(ssk, portid); 1791 if (IS_ERR(sk)) { 1792 kfree_skb(skb); 1793 return PTR_ERR(sk); 1794 } 1795 if (netlink_is_kernel(sk)) 1796 return netlink_unicast_kernel(sk, skb, ssk); 1797 1798 if (sk_filter(sk, skb)) { 1799 err = skb->len; 1800 kfree_skb(skb); 1801 sock_put(sk); 1802 return err; 1803 } 1804 1805 err = netlink_attachskb(sk, skb, &timeo, ssk); 1806 if (err == 1) 1807 goto retry; 1808 if (err) 1809 return err; 1810 1811 return netlink_sendskb(sk, skb); 1812 } 1813 EXPORT_SYMBOL(netlink_unicast); 1814 1815 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1816 u32 dst_portid, gfp_t gfp_mask) 1817 { 1818 #ifdef CONFIG_NETLINK_MMAP 1819 struct sock *sk = NULL; 1820 struct sk_buff *skb; 1821 struct netlink_ring *ring; 1822 struct nl_mmap_hdr *hdr; 1823 unsigned int maxlen; 1824 1825 sk = netlink_getsockbyportid(ssk, dst_portid); 1826 if (IS_ERR(sk)) 1827 goto out; 1828 1829 ring = &nlk_sk(sk)->rx_ring; 1830 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1831 if (ring->pg_vec == NULL) 1832 goto out_put; 1833 1834 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1835 goto out_put; 1836 1837 skb = alloc_skb_head(gfp_mask); 1838 if (skb == NULL) 1839 goto err1; 1840 1841 spin_lock_bh(&sk->sk_receive_queue.lock); 1842 /* check again under lock */ 1843 if (ring->pg_vec == NULL) 1844 goto out_free; 1845 1846 /* check again under lock */ 1847 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1848 if (maxlen < size) 1849 goto out_free; 1850 1851 netlink_forward_ring(ring); 1852 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1853 if (hdr == NULL) 1854 goto err2; 1855 netlink_ring_setup_skb(skb, sk, ring, hdr); 1856 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1857 atomic_inc(&ring->pending); 1858 netlink_increment_head(ring); 1859 1860 spin_unlock_bh(&sk->sk_receive_queue.lock); 1861 return skb; 1862 1863 err2: 1864 kfree_skb(skb); 1865 spin_unlock_bh(&sk->sk_receive_queue.lock); 1866 netlink_overrun(sk); 1867 err1: 1868 sock_put(sk); 1869 return NULL; 1870 1871 out_free: 1872 kfree_skb(skb); 1873 spin_unlock_bh(&sk->sk_receive_queue.lock); 1874 out_put: 1875 sock_put(sk); 1876 out: 1877 #endif 1878 return alloc_skb(size, gfp_mask); 1879 } 1880 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1881 1882 int netlink_has_listeners(struct sock *sk, unsigned int group) 1883 { 1884 int res = 0; 1885 struct listeners *listeners; 1886 1887 BUG_ON(!netlink_is_kernel(sk)); 1888 1889 rcu_read_lock(); 1890 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1891 1892 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1893 res = test_bit(group - 1, listeners->masks); 1894 1895 rcu_read_unlock(); 1896 1897 return res; 1898 } 1899 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1900 1901 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1902 { 1903 struct netlink_sock *nlk = nlk_sk(sk); 1904 1905 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1906 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1907 netlink_skb_set_owner_r(skb, sk); 1908 __netlink_sendskb(sk, skb); 1909 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1910 } 1911 return -1; 1912 } 1913 1914 struct netlink_broadcast_data { 1915 struct sock *exclude_sk; 1916 struct net *net; 1917 u32 portid; 1918 u32 group; 1919 int failure; 1920 int delivery_failure; 1921 int congested; 1922 int delivered; 1923 gfp_t allocation; 1924 struct sk_buff *skb, *skb2; 1925 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1926 void *tx_data; 1927 }; 1928 1929 static void do_one_broadcast(struct sock *sk, 1930 struct netlink_broadcast_data *p) 1931 { 1932 struct netlink_sock *nlk = nlk_sk(sk); 1933 int val; 1934 1935 if (p->exclude_sk == sk) 1936 return; 1937 1938 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1939 !test_bit(p->group - 1, nlk->groups)) 1940 return; 1941 1942 if (!net_eq(sock_net(sk), p->net)) { 1943 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1944 return; 1945 1946 if (!peernet_has_id(sock_net(sk), p->net)) 1947 return; 1948 1949 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1950 CAP_NET_BROADCAST)) 1951 return; 1952 } 1953 1954 if (p->failure) { 1955 netlink_overrun(sk); 1956 return; 1957 } 1958 1959 sock_hold(sk); 1960 if (p->skb2 == NULL) { 1961 if (skb_shared(p->skb)) { 1962 p->skb2 = skb_clone(p->skb, p->allocation); 1963 } else { 1964 p->skb2 = skb_get(p->skb); 1965 /* 1966 * skb ownership may have been set when 1967 * delivered to a previous socket. 1968 */ 1969 skb_orphan(p->skb2); 1970 } 1971 } 1972 if (p->skb2 == NULL) { 1973 netlink_overrun(sk); 1974 /* Clone failed. Notify ALL listeners. */ 1975 p->failure = 1; 1976 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1977 p->delivery_failure = 1; 1978 goto out; 1979 } 1980 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1981 kfree_skb(p->skb2); 1982 p->skb2 = NULL; 1983 goto out; 1984 } 1985 if (sk_filter(sk, p->skb2)) { 1986 kfree_skb(p->skb2); 1987 p->skb2 = NULL; 1988 goto out; 1989 } 1990 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1991 NETLINK_CB(p->skb2).nsid_is_set = true; 1992 val = netlink_broadcast_deliver(sk, p->skb2); 1993 if (val < 0) { 1994 netlink_overrun(sk); 1995 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 1996 p->delivery_failure = 1; 1997 } else { 1998 p->congested |= val; 1999 p->delivered = 1; 2000 p->skb2 = NULL; 2001 } 2002 out: 2003 sock_put(sk); 2004 } 2005 2006 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2007 u32 group, gfp_t allocation, 2008 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2009 void *filter_data) 2010 { 2011 struct net *net = sock_net(ssk); 2012 struct netlink_broadcast_data info; 2013 struct sock *sk; 2014 2015 skb = netlink_trim(skb, allocation); 2016 2017 info.exclude_sk = ssk; 2018 info.net = net; 2019 info.portid = portid; 2020 info.group = group; 2021 info.failure = 0; 2022 info.delivery_failure = 0; 2023 info.congested = 0; 2024 info.delivered = 0; 2025 info.allocation = allocation; 2026 info.skb = skb; 2027 info.skb2 = NULL; 2028 info.tx_filter = filter; 2029 info.tx_data = filter_data; 2030 2031 /* While we sleep in clone, do not allow to change socket list */ 2032 2033 netlink_lock_table(); 2034 2035 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2036 do_one_broadcast(sk, &info); 2037 2038 consume_skb(skb); 2039 2040 netlink_unlock_table(); 2041 2042 if (info.delivery_failure) { 2043 kfree_skb(info.skb2); 2044 return -ENOBUFS; 2045 } 2046 consume_skb(info.skb2); 2047 2048 if (info.delivered) { 2049 if (info.congested && (allocation & __GFP_WAIT)) 2050 yield(); 2051 return 0; 2052 } 2053 return -ESRCH; 2054 } 2055 EXPORT_SYMBOL(netlink_broadcast_filtered); 2056 2057 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2058 u32 group, gfp_t allocation) 2059 { 2060 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2061 NULL, NULL); 2062 } 2063 EXPORT_SYMBOL(netlink_broadcast); 2064 2065 struct netlink_set_err_data { 2066 struct sock *exclude_sk; 2067 u32 portid; 2068 u32 group; 2069 int code; 2070 }; 2071 2072 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2073 { 2074 struct netlink_sock *nlk = nlk_sk(sk); 2075 int ret = 0; 2076 2077 if (sk == p->exclude_sk) 2078 goto out; 2079 2080 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2081 goto out; 2082 2083 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2084 !test_bit(p->group - 1, nlk->groups)) 2085 goto out; 2086 2087 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 2088 ret = 1; 2089 goto out; 2090 } 2091 2092 sk->sk_err = p->code; 2093 sk->sk_error_report(sk); 2094 out: 2095 return ret; 2096 } 2097 2098 /** 2099 * netlink_set_err - report error to broadcast listeners 2100 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2101 * @portid: the PORTID of a process that we want to skip (if any) 2102 * @group: the broadcast group that will notice the error 2103 * @code: error code, must be negative (as usual in kernelspace) 2104 * 2105 * This function returns the number of broadcast listeners that have set the 2106 * NETLINK_NO_ENOBUFS socket option. 2107 */ 2108 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2109 { 2110 struct netlink_set_err_data info; 2111 struct sock *sk; 2112 int ret = 0; 2113 2114 info.exclude_sk = ssk; 2115 info.portid = portid; 2116 info.group = group; 2117 /* sk->sk_err wants a positive error value */ 2118 info.code = -code; 2119 2120 read_lock(&nl_table_lock); 2121 2122 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2123 ret += do_one_set_err(sk, &info); 2124 2125 read_unlock(&nl_table_lock); 2126 return ret; 2127 } 2128 EXPORT_SYMBOL(netlink_set_err); 2129 2130 /* must be called with netlink table grabbed */ 2131 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2132 unsigned int group, 2133 int is_new) 2134 { 2135 int old, new = !!is_new, subscriptions; 2136 2137 old = test_bit(group - 1, nlk->groups); 2138 subscriptions = nlk->subscriptions - old + new; 2139 if (new) 2140 __set_bit(group - 1, nlk->groups); 2141 else 2142 __clear_bit(group - 1, nlk->groups); 2143 netlink_update_subscriptions(&nlk->sk, subscriptions); 2144 netlink_update_listeners(&nlk->sk); 2145 } 2146 2147 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2148 char __user *optval, unsigned int optlen) 2149 { 2150 struct sock *sk = sock->sk; 2151 struct netlink_sock *nlk = nlk_sk(sk); 2152 unsigned int val = 0; 2153 int err; 2154 2155 if (level != SOL_NETLINK) 2156 return -ENOPROTOOPT; 2157 2158 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2159 optlen >= sizeof(int) && 2160 get_user(val, (unsigned int __user *)optval)) 2161 return -EFAULT; 2162 2163 switch (optname) { 2164 case NETLINK_PKTINFO: 2165 if (val) 2166 nlk->flags |= NETLINK_F_RECV_PKTINFO; 2167 else 2168 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 2169 err = 0; 2170 break; 2171 case NETLINK_ADD_MEMBERSHIP: 2172 case NETLINK_DROP_MEMBERSHIP: { 2173 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2174 return -EPERM; 2175 err = netlink_realloc_groups(sk); 2176 if (err) 2177 return err; 2178 if (!val || val - 1 >= nlk->ngroups) 2179 return -EINVAL; 2180 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2181 err = nlk->netlink_bind(sock_net(sk), val); 2182 if (err) 2183 return err; 2184 } 2185 netlink_table_grab(); 2186 netlink_update_socket_mc(nlk, val, 2187 optname == NETLINK_ADD_MEMBERSHIP); 2188 netlink_table_ungrab(); 2189 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2190 nlk->netlink_unbind(sock_net(sk), val); 2191 2192 err = 0; 2193 break; 2194 } 2195 case NETLINK_BROADCAST_ERROR: 2196 if (val) 2197 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 2198 else 2199 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 2200 err = 0; 2201 break; 2202 case NETLINK_NO_ENOBUFS: 2203 if (val) { 2204 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 2205 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 2206 wake_up_interruptible(&nlk->wait); 2207 } else { 2208 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 2209 } 2210 err = 0; 2211 break; 2212 #ifdef CONFIG_NETLINK_MMAP 2213 case NETLINK_RX_RING: 2214 case NETLINK_TX_RING: { 2215 struct nl_mmap_req req; 2216 2217 /* Rings might consume more memory than queue limits, require 2218 * CAP_NET_ADMIN. 2219 */ 2220 if (!capable(CAP_NET_ADMIN)) 2221 return -EPERM; 2222 if (optlen < sizeof(req)) 2223 return -EINVAL; 2224 if (copy_from_user(&req, optval, sizeof(req))) 2225 return -EFAULT; 2226 err = netlink_set_ring(sk, &req, false, 2227 optname == NETLINK_TX_RING); 2228 break; 2229 } 2230 #endif /* CONFIG_NETLINK_MMAP */ 2231 case NETLINK_LISTEN_ALL_NSID: 2232 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 2233 return -EPERM; 2234 2235 if (val) 2236 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 2237 else 2238 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 2239 err = 0; 2240 break; 2241 default: 2242 err = -ENOPROTOOPT; 2243 } 2244 return err; 2245 } 2246 2247 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2248 char __user *optval, int __user *optlen) 2249 { 2250 struct sock *sk = sock->sk; 2251 struct netlink_sock *nlk = nlk_sk(sk); 2252 int len, val, err; 2253 2254 if (level != SOL_NETLINK) 2255 return -ENOPROTOOPT; 2256 2257 if (get_user(len, optlen)) 2258 return -EFAULT; 2259 if (len < 0) 2260 return -EINVAL; 2261 2262 switch (optname) { 2263 case NETLINK_PKTINFO: 2264 if (len < sizeof(int)) 2265 return -EINVAL; 2266 len = sizeof(int); 2267 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 2268 if (put_user(len, optlen) || 2269 put_user(val, optval)) 2270 return -EFAULT; 2271 err = 0; 2272 break; 2273 case NETLINK_BROADCAST_ERROR: 2274 if (len < sizeof(int)) 2275 return -EINVAL; 2276 len = sizeof(int); 2277 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 2278 if (put_user(len, optlen) || 2279 put_user(val, optval)) 2280 return -EFAULT; 2281 err = 0; 2282 break; 2283 case NETLINK_NO_ENOBUFS: 2284 if (len < sizeof(int)) 2285 return -EINVAL; 2286 len = sizeof(int); 2287 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 2288 if (put_user(len, optlen) || 2289 put_user(val, optval)) 2290 return -EFAULT; 2291 err = 0; 2292 break; 2293 case NETLINK_LIST_MEMBERSHIPS: { 2294 int pos, idx, shift; 2295 2296 err = 0; 2297 netlink_table_grab(); 2298 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 2299 if (len - pos < sizeof(u32)) 2300 break; 2301 2302 idx = pos / sizeof(unsigned long); 2303 shift = (pos % sizeof(unsigned long)) * 8; 2304 if (put_user((u32)(nlk->groups[idx] >> shift), 2305 (u32 __user *)(optval + pos))) { 2306 err = -EFAULT; 2307 break; 2308 } 2309 } 2310 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 2311 err = -EFAULT; 2312 netlink_table_ungrab(); 2313 break; 2314 } 2315 default: 2316 err = -ENOPROTOOPT; 2317 } 2318 return err; 2319 } 2320 2321 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2322 { 2323 struct nl_pktinfo info; 2324 2325 info.group = NETLINK_CB(skb).dst_group; 2326 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2327 } 2328 2329 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 2330 struct sk_buff *skb) 2331 { 2332 if (!NETLINK_CB(skb).nsid_is_set) 2333 return; 2334 2335 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 2336 &NETLINK_CB(skb).nsid); 2337 } 2338 2339 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2340 { 2341 struct sock *sk = sock->sk; 2342 struct netlink_sock *nlk = nlk_sk(sk); 2343 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2344 u32 dst_portid; 2345 u32 dst_group; 2346 struct sk_buff *skb; 2347 int err; 2348 struct scm_cookie scm; 2349 u32 netlink_skb_flags = 0; 2350 2351 if (msg->msg_flags&MSG_OOB) 2352 return -EOPNOTSUPP; 2353 2354 err = scm_send(sock, msg, &scm, true); 2355 if (err < 0) 2356 return err; 2357 2358 if (msg->msg_namelen) { 2359 err = -EINVAL; 2360 if (addr->nl_family != AF_NETLINK) 2361 goto out; 2362 dst_portid = addr->nl_pid; 2363 dst_group = ffs(addr->nl_groups); 2364 err = -EPERM; 2365 if ((dst_group || dst_portid) && 2366 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2367 goto out; 2368 netlink_skb_flags |= NETLINK_SKB_DST; 2369 } else { 2370 dst_portid = nlk->dst_portid; 2371 dst_group = nlk->dst_group; 2372 } 2373 2374 if (!nlk->portid) { 2375 err = netlink_autobind(sock); 2376 if (err) 2377 goto out; 2378 } 2379 2380 /* It's a really convoluted way for userland to ask for mmaped 2381 * sendmsg(), but that's what we've got... 2382 */ 2383 if (netlink_tx_is_mmaped(sk) && 2384 msg->msg_iter.type == ITER_IOVEC && 2385 msg->msg_iter.nr_segs == 1 && 2386 msg->msg_iter.iov->iov_base == NULL) { 2387 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2388 &scm); 2389 goto out; 2390 } 2391 2392 err = -EMSGSIZE; 2393 if (len > sk->sk_sndbuf - 32) 2394 goto out; 2395 err = -ENOBUFS; 2396 skb = netlink_alloc_large_skb(len, dst_group); 2397 if (skb == NULL) 2398 goto out; 2399 2400 NETLINK_CB(skb).portid = nlk->portid; 2401 NETLINK_CB(skb).dst_group = dst_group; 2402 NETLINK_CB(skb).creds = scm.creds; 2403 NETLINK_CB(skb).flags = netlink_skb_flags; 2404 2405 err = -EFAULT; 2406 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2407 kfree_skb(skb); 2408 goto out; 2409 } 2410 2411 err = security_netlink_send(sk, skb); 2412 if (err) { 2413 kfree_skb(skb); 2414 goto out; 2415 } 2416 2417 if (dst_group) { 2418 atomic_inc(&skb->users); 2419 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2420 } 2421 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2422 2423 out: 2424 scm_destroy(&scm); 2425 return err; 2426 } 2427 2428 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2429 int flags) 2430 { 2431 struct scm_cookie scm; 2432 struct sock *sk = sock->sk; 2433 struct netlink_sock *nlk = nlk_sk(sk); 2434 int noblock = flags&MSG_DONTWAIT; 2435 size_t copied; 2436 struct sk_buff *skb, *data_skb; 2437 int err, ret; 2438 2439 if (flags&MSG_OOB) 2440 return -EOPNOTSUPP; 2441 2442 copied = 0; 2443 2444 skb = skb_recv_datagram(sk, flags, noblock, &err); 2445 if (skb == NULL) 2446 goto out; 2447 2448 data_skb = skb; 2449 2450 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2451 if (unlikely(skb_shinfo(skb)->frag_list)) { 2452 /* 2453 * If this skb has a frag_list, then here that means that we 2454 * will have to use the frag_list skb's data for compat tasks 2455 * and the regular skb's data for normal (non-compat) tasks. 2456 * 2457 * If we need to send the compat skb, assign it to the 2458 * 'data_skb' variable so that it will be used below for data 2459 * copying. We keep 'skb' for everything else, including 2460 * freeing both later. 2461 */ 2462 if (flags & MSG_CMSG_COMPAT) 2463 data_skb = skb_shinfo(skb)->frag_list; 2464 } 2465 #endif 2466 2467 /* Record the max length of recvmsg() calls for future allocations */ 2468 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2469 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2470 16384); 2471 2472 copied = data_skb->len; 2473 if (len < copied) { 2474 msg->msg_flags |= MSG_TRUNC; 2475 copied = len; 2476 } 2477 2478 skb_reset_transport_header(data_skb); 2479 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2480 2481 if (msg->msg_name) { 2482 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2483 addr->nl_family = AF_NETLINK; 2484 addr->nl_pad = 0; 2485 addr->nl_pid = NETLINK_CB(skb).portid; 2486 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2487 msg->msg_namelen = sizeof(*addr); 2488 } 2489 2490 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 2491 netlink_cmsg_recv_pktinfo(msg, skb); 2492 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 2493 netlink_cmsg_listen_all_nsid(sk, msg, skb); 2494 2495 memset(&scm, 0, sizeof(scm)); 2496 scm.creds = *NETLINK_CREDS(skb); 2497 if (flags & MSG_TRUNC) 2498 copied = data_skb->len; 2499 2500 skb_free_datagram(sk, skb); 2501 2502 if (nlk->cb_running && 2503 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2504 ret = netlink_dump(sk); 2505 if (ret) { 2506 sk->sk_err = -ret; 2507 sk->sk_error_report(sk); 2508 } 2509 } 2510 2511 scm_recv(sock, msg, &scm, flags); 2512 out: 2513 netlink_rcv_wake(sk); 2514 return err ? : copied; 2515 } 2516 2517 static void netlink_data_ready(struct sock *sk) 2518 { 2519 BUG(); 2520 } 2521 2522 /* 2523 * We export these functions to other modules. They provide a 2524 * complete set of kernel non-blocking support for message 2525 * queueing. 2526 */ 2527 2528 struct sock * 2529 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2530 struct netlink_kernel_cfg *cfg) 2531 { 2532 struct socket *sock; 2533 struct sock *sk; 2534 struct netlink_sock *nlk; 2535 struct listeners *listeners = NULL; 2536 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2537 unsigned int groups; 2538 2539 BUG_ON(!nl_table); 2540 2541 if (unit < 0 || unit >= MAX_LINKS) 2542 return NULL; 2543 2544 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2545 return NULL; 2546 2547 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2548 goto out_sock_release_nosk; 2549 2550 sk = sock->sk; 2551 2552 if (!cfg || cfg->groups < 32) 2553 groups = 32; 2554 else 2555 groups = cfg->groups; 2556 2557 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2558 if (!listeners) 2559 goto out_sock_release; 2560 2561 sk->sk_data_ready = netlink_data_ready; 2562 if (cfg && cfg->input) 2563 nlk_sk(sk)->netlink_rcv = cfg->input; 2564 2565 if (netlink_insert(sk, 0)) 2566 goto out_sock_release; 2567 2568 nlk = nlk_sk(sk); 2569 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2570 2571 netlink_table_grab(); 2572 if (!nl_table[unit].registered) { 2573 nl_table[unit].groups = groups; 2574 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2575 nl_table[unit].cb_mutex = cb_mutex; 2576 nl_table[unit].module = module; 2577 if (cfg) { 2578 nl_table[unit].bind = cfg->bind; 2579 nl_table[unit].unbind = cfg->unbind; 2580 nl_table[unit].flags = cfg->flags; 2581 if (cfg->compare) 2582 nl_table[unit].compare = cfg->compare; 2583 } 2584 nl_table[unit].registered = 1; 2585 } else { 2586 kfree(listeners); 2587 nl_table[unit].registered++; 2588 } 2589 netlink_table_ungrab(); 2590 return sk; 2591 2592 out_sock_release: 2593 kfree(listeners); 2594 netlink_kernel_release(sk); 2595 return NULL; 2596 2597 out_sock_release_nosk: 2598 sock_release(sock); 2599 return NULL; 2600 } 2601 EXPORT_SYMBOL(__netlink_kernel_create); 2602 2603 void 2604 netlink_kernel_release(struct sock *sk) 2605 { 2606 if (sk == NULL || sk->sk_socket == NULL) 2607 return; 2608 2609 sock_release(sk->sk_socket); 2610 } 2611 EXPORT_SYMBOL(netlink_kernel_release); 2612 2613 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2614 { 2615 struct listeners *new, *old; 2616 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2617 2618 if (groups < 32) 2619 groups = 32; 2620 2621 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2622 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2623 if (!new) 2624 return -ENOMEM; 2625 old = nl_deref_protected(tbl->listeners); 2626 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2627 rcu_assign_pointer(tbl->listeners, new); 2628 2629 kfree_rcu(old, rcu); 2630 } 2631 tbl->groups = groups; 2632 2633 return 0; 2634 } 2635 2636 /** 2637 * netlink_change_ngroups - change number of multicast groups 2638 * 2639 * This changes the number of multicast groups that are available 2640 * on a certain netlink family. Note that it is not possible to 2641 * change the number of groups to below 32. Also note that it does 2642 * not implicitly call netlink_clear_multicast_users() when the 2643 * number of groups is reduced. 2644 * 2645 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2646 * @groups: The new number of groups. 2647 */ 2648 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2649 { 2650 int err; 2651 2652 netlink_table_grab(); 2653 err = __netlink_change_ngroups(sk, groups); 2654 netlink_table_ungrab(); 2655 2656 return err; 2657 } 2658 2659 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2660 { 2661 struct sock *sk; 2662 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2663 2664 sk_for_each_bound(sk, &tbl->mc_list) 2665 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2666 } 2667 2668 struct nlmsghdr * 2669 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2670 { 2671 struct nlmsghdr *nlh; 2672 int size = nlmsg_msg_size(len); 2673 2674 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2675 nlh->nlmsg_type = type; 2676 nlh->nlmsg_len = size; 2677 nlh->nlmsg_flags = flags; 2678 nlh->nlmsg_pid = portid; 2679 nlh->nlmsg_seq = seq; 2680 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2681 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2682 return nlh; 2683 } 2684 EXPORT_SYMBOL(__nlmsg_put); 2685 2686 /* 2687 * It looks a bit ugly. 2688 * It would be better to create kernel thread. 2689 */ 2690 2691 static int netlink_dump(struct sock *sk) 2692 { 2693 struct netlink_sock *nlk = nlk_sk(sk); 2694 struct netlink_callback *cb; 2695 struct sk_buff *skb = NULL; 2696 struct nlmsghdr *nlh; 2697 int len, err = -ENOBUFS; 2698 int alloc_size; 2699 2700 mutex_lock(nlk->cb_mutex); 2701 if (!nlk->cb_running) { 2702 err = -EINVAL; 2703 goto errout_skb; 2704 } 2705 2706 cb = &nlk->cb; 2707 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2708 2709 if (!netlink_rx_is_mmaped(sk) && 2710 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2711 goto errout_skb; 2712 2713 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2714 * required, but it makes sense to _attempt_ a 16K bytes allocation 2715 * to reduce number of system calls on dump operations, if user 2716 * ever provided a big enough buffer. 2717 */ 2718 if (alloc_size < nlk->max_recvmsg_len) { 2719 skb = netlink_alloc_skb(sk, 2720 nlk->max_recvmsg_len, 2721 nlk->portid, 2722 GFP_KERNEL | 2723 __GFP_NOWARN | 2724 __GFP_NORETRY); 2725 /* available room should be exact amount to avoid MSG_TRUNC */ 2726 if (skb) 2727 skb_reserve(skb, skb_tailroom(skb) - 2728 nlk->max_recvmsg_len); 2729 } 2730 if (!skb) 2731 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2732 GFP_KERNEL); 2733 if (!skb) 2734 goto errout_skb; 2735 netlink_skb_set_owner_r(skb, sk); 2736 2737 len = cb->dump(skb, cb); 2738 2739 if (len > 0) { 2740 mutex_unlock(nlk->cb_mutex); 2741 2742 if (sk_filter(sk, skb)) 2743 kfree_skb(skb); 2744 else 2745 __netlink_sendskb(sk, skb); 2746 return 0; 2747 } 2748 2749 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2750 if (!nlh) 2751 goto errout_skb; 2752 2753 nl_dump_check_consistent(cb, nlh); 2754 2755 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2756 2757 if (sk_filter(sk, skb)) 2758 kfree_skb(skb); 2759 else 2760 __netlink_sendskb(sk, skb); 2761 2762 if (cb->done) 2763 cb->done(cb); 2764 2765 nlk->cb_running = false; 2766 mutex_unlock(nlk->cb_mutex); 2767 module_put(cb->module); 2768 consume_skb(cb->skb); 2769 return 0; 2770 2771 errout_skb: 2772 mutex_unlock(nlk->cb_mutex); 2773 kfree_skb(skb); 2774 return err; 2775 } 2776 2777 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2778 const struct nlmsghdr *nlh, 2779 struct netlink_dump_control *control) 2780 { 2781 struct netlink_callback *cb; 2782 struct sock *sk; 2783 struct netlink_sock *nlk; 2784 int ret; 2785 2786 /* Memory mapped dump requests need to be copied to avoid looping 2787 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2788 * a reference to the skb. 2789 */ 2790 if (netlink_skb_is_mmaped(skb)) { 2791 skb = skb_copy(skb, GFP_KERNEL); 2792 if (skb == NULL) 2793 return -ENOBUFS; 2794 } else 2795 atomic_inc(&skb->users); 2796 2797 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2798 if (sk == NULL) { 2799 ret = -ECONNREFUSED; 2800 goto error_free; 2801 } 2802 2803 nlk = nlk_sk(sk); 2804 mutex_lock(nlk->cb_mutex); 2805 /* A dump is in progress... */ 2806 if (nlk->cb_running) { 2807 ret = -EBUSY; 2808 goto error_unlock; 2809 } 2810 /* add reference of module which cb->dump belongs to */ 2811 if (!try_module_get(control->module)) { 2812 ret = -EPROTONOSUPPORT; 2813 goto error_unlock; 2814 } 2815 2816 cb = &nlk->cb; 2817 memset(cb, 0, sizeof(*cb)); 2818 cb->dump = control->dump; 2819 cb->done = control->done; 2820 cb->nlh = nlh; 2821 cb->data = control->data; 2822 cb->module = control->module; 2823 cb->min_dump_alloc = control->min_dump_alloc; 2824 cb->skb = skb; 2825 2826 nlk->cb_running = true; 2827 2828 mutex_unlock(nlk->cb_mutex); 2829 2830 ret = netlink_dump(sk); 2831 sock_put(sk); 2832 2833 if (ret) 2834 return ret; 2835 2836 /* We successfully started a dump, by returning -EINTR we 2837 * signal not to send ACK even if it was requested. 2838 */ 2839 return -EINTR; 2840 2841 error_unlock: 2842 sock_put(sk); 2843 mutex_unlock(nlk->cb_mutex); 2844 error_free: 2845 kfree_skb(skb); 2846 return ret; 2847 } 2848 EXPORT_SYMBOL(__netlink_dump_start); 2849 2850 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2851 { 2852 struct sk_buff *skb; 2853 struct nlmsghdr *rep; 2854 struct nlmsgerr *errmsg; 2855 size_t payload = sizeof(*errmsg); 2856 2857 /* error messages get the original request appened */ 2858 if (err) 2859 payload += nlmsg_len(nlh); 2860 2861 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2862 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2863 if (!skb) { 2864 struct sock *sk; 2865 2866 sk = netlink_lookup(sock_net(in_skb->sk), 2867 in_skb->sk->sk_protocol, 2868 NETLINK_CB(in_skb).portid); 2869 if (sk) { 2870 sk->sk_err = ENOBUFS; 2871 sk->sk_error_report(sk); 2872 sock_put(sk); 2873 } 2874 return; 2875 } 2876 2877 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2878 NLMSG_ERROR, payload, 0); 2879 errmsg = nlmsg_data(rep); 2880 errmsg->error = err; 2881 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2882 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2883 } 2884 EXPORT_SYMBOL(netlink_ack); 2885 2886 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2887 struct nlmsghdr *)) 2888 { 2889 struct nlmsghdr *nlh; 2890 int err; 2891 2892 while (skb->len >= nlmsg_total_size(0)) { 2893 int msglen; 2894 2895 nlh = nlmsg_hdr(skb); 2896 err = 0; 2897 2898 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2899 return 0; 2900 2901 /* Only requests are handled by the kernel */ 2902 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2903 goto ack; 2904 2905 /* Skip control messages */ 2906 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2907 goto ack; 2908 2909 err = cb(skb, nlh); 2910 if (err == -EINTR) 2911 goto skip; 2912 2913 ack: 2914 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2915 netlink_ack(skb, nlh, err); 2916 2917 skip: 2918 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2919 if (msglen > skb->len) 2920 msglen = skb->len; 2921 skb_pull(skb, msglen); 2922 } 2923 2924 return 0; 2925 } 2926 EXPORT_SYMBOL(netlink_rcv_skb); 2927 2928 /** 2929 * nlmsg_notify - send a notification netlink message 2930 * @sk: netlink socket to use 2931 * @skb: notification message 2932 * @portid: destination netlink portid for reports or 0 2933 * @group: destination multicast group or 0 2934 * @report: 1 to report back, 0 to disable 2935 * @flags: allocation flags 2936 */ 2937 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2938 unsigned int group, int report, gfp_t flags) 2939 { 2940 int err = 0; 2941 2942 if (group) { 2943 int exclude_portid = 0; 2944 2945 if (report) { 2946 atomic_inc(&skb->users); 2947 exclude_portid = portid; 2948 } 2949 2950 /* errors reported via destination sk->sk_err, but propagate 2951 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2952 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2953 } 2954 2955 if (report) { 2956 int err2; 2957 2958 err2 = nlmsg_unicast(sk, skb, portid); 2959 if (!err || err == -ESRCH) 2960 err = err2; 2961 } 2962 2963 return err; 2964 } 2965 EXPORT_SYMBOL(nlmsg_notify); 2966 2967 #ifdef CONFIG_PROC_FS 2968 struct nl_seq_iter { 2969 struct seq_net_private p; 2970 struct rhashtable_iter hti; 2971 int link; 2972 }; 2973 2974 static int netlink_walk_start(struct nl_seq_iter *iter) 2975 { 2976 int err; 2977 2978 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 2979 if (err) { 2980 iter->link = MAX_LINKS; 2981 return err; 2982 } 2983 2984 err = rhashtable_walk_start(&iter->hti); 2985 return err == -EAGAIN ? 0 : err; 2986 } 2987 2988 static void netlink_walk_stop(struct nl_seq_iter *iter) 2989 { 2990 rhashtable_walk_stop(&iter->hti); 2991 rhashtable_walk_exit(&iter->hti); 2992 } 2993 2994 static void *__netlink_seq_next(struct seq_file *seq) 2995 { 2996 struct nl_seq_iter *iter = seq->private; 2997 struct netlink_sock *nlk; 2998 2999 do { 3000 for (;;) { 3001 int err; 3002 3003 nlk = rhashtable_walk_next(&iter->hti); 3004 3005 if (IS_ERR(nlk)) { 3006 if (PTR_ERR(nlk) == -EAGAIN) 3007 continue; 3008 3009 return nlk; 3010 } 3011 3012 if (nlk) 3013 break; 3014 3015 netlink_walk_stop(iter); 3016 if (++iter->link >= MAX_LINKS) 3017 return NULL; 3018 3019 err = netlink_walk_start(iter); 3020 if (err) 3021 return ERR_PTR(err); 3022 } 3023 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 3024 3025 return nlk; 3026 } 3027 3028 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 3029 { 3030 struct nl_seq_iter *iter = seq->private; 3031 void *obj = SEQ_START_TOKEN; 3032 loff_t pos; 3033 int err; 3034 3035 iter->link = 0; 3036 3037 err = netlink_walk_start(iter); 3038 if (err) 3039 return ERR_PTR(err); 3040 3041 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 3042 obj = __netlink_seq_next(seq); 3043 3044 return obj; 3045 } 3046 3047 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3048 { 3049 ++*pos; 3050 return __netlink_seq_next(seq); 3051 } 3052 3053 static void netlink_seq_stop(struct seq_file *seq, void *v) 3054 { 3055 struct nl_seq_iter *iter = seq->private; 3056 3057 if (iter->link >= MAX_LINKS) 3058 return; 3059 3060 netlink_walk_stop(iter); 3061 } 3062 3063 3064 static int netlink_seq_show(struct seq_file *seq, void *v) 3065 { 3066 if (v == SEQ_START_TOKEN) { 3067 seq_puts(seq, 3068 "sk Eth Pid Groups " 3069 "Rmem Wmem Dump Locks Drops Inode\n"); 3070 } else { 3071 struct sock *s = v; 3072 struct netlink_sock *nlk = nlk_sk(s); 3073 3074 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3075 s, 3076 s->sk_protocol, 3077 nlk->portid, 3078 nlk->groups ? (u32)nlk->groups[0] : 0, 3079 sk_rmem_alloc_get(s), 3080 sk_wmem_alloc_get(s), 3081 nlk->cb_running, 3082 atomic_read(&s->sk_refcnt), 3083 atomic_read(&s->sk_drops), 3084 sock_i_ino(s) 3085 ); 3086 3087 } 3088 return 0; 3089 } 3090 3091 static const struct seq_operations netlink_seq_ops = { 3092 .start = netlink_seq_start, 3093 .next = netlink_seq_next, 3094 .stop = netlink_seq_stop, 3095 .show = netlink_seq_show, 3096 }; 3097 3098 3099 static int netlink_seq_open(struct inode *inode, struct file *file) 3100 { 3101 return seq_open_net(inode, file, &netlink_seq_ops, 3102 sizeof(struct nl_seq_iter)); 3103 } 3104 3105 static const struct file_operations netlink_seq_fops = { 3106 .owner = THIS_MODULE, 3107 .open = netlink_seq_open, 3108 .read = seq_read, 3109 .llseek = seq_lseek, 3110 .release = seq_release_net, 3111 }; 3112 3113 #endif 3114 3115 int netlink_register_notifier(struct notifier_block *nb) 3116 { 3117 return atomic_notifier_chain_register(&netlink_chain, nb); 3118 } 3119 EXPORT_SYMBOL(netlink_register_notifier); 3120 3121 int netlink_unregister_notifier(struct notifier_block *nb) 3122 { 3123 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3124 } 3125 EXPORT_SYMBOL(netlink_unregister_notifier); 3126 3127 static const struct proto_ops netlink_ops = { 3128 .family = PF_NETLINK, 3129 .owner = THIS_MODULE, 3130 .release = netlink_release, 3131 .bind = netlink_bind, 3132 .connect = netlink_connect, 3133 .socketpair = sock_no_socketpair, 3134 .accept = sock_no_accept, 3135 .getname = netlink_getname, 3136 .poll = netlink_poll, 3137 .ioctl = sock_no_ioctl, 3138 .listen = sock_no_listen, 3139 .shutdown = sock_no_shutdown, 3140 .setsockopt = netlink_setsockopt, 3141 .getsockopt = netlink_getsockopt, 3142 .sendmsg = netlink_sendmsg, 3143 .recvmsg = netlink_recvmsg, 3144 .mmap = netlink_mmap, 3145 .sendpage = sock_no_sendpage, 3146 }; 3147 3148 static const struct net_proto_family netlink_family_ops = { 3149 .family = PF_NETLINK, 3150 .create = netlink_create, 3151 .owner = THIS_MODULE, /* for consistency 8) */ 3152 }; 3153 3154 static int __net_init netlink_net_init(struct net *net) 3155 { 3156 #ifdef CONFIG_PROC_FS 3157 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3158 return -ENOMEM; 3159 #endif 3160 return 0; 3161 } 3162 3163 static void __net_exit netlink_net_exit(struct net *net) 3164 { 3165 #ifdef CONFIG_PROC_FS 3166 remove_proc_entry("netlink", net->proc_net); 3167 #endif 3168 } 3169 3170 static void __init netlink_add_usersock_entry(void) 3171 { 3172 struct listeners *listeners; 3173 int groups = 32; 3174 3175 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3176 if (!listeners) 3177 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3178 3179 netlink_table_grab(); 3180 3181 nl_table[NETLINK_USERSOCK].groups = groups; 3182 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3183 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3184 nl_table[NETLINK_USERSOCK].registered = 1; 3185 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3186 3187 netlink_table_ungrab(); 3188 } 3189 3190 static struct pernet_operations __net_initdata netlink_net_ops = { 3191 .init = netlink_net_init, 3192 .exit = netlink_net_exit, 3193 }; 3194 3195 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 3196 { 3197 const struct netlink_sock *nlk = data; 3198 struct netlink_compare_arg arg; 3199 3200 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 3201 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 3202 } 3203 3204 static const struct rhashtable_params netlink_rhashtable_params = { 3205 .head_offset = offsetof(struct netlink_sock, node), 3206 .key_len = netlink_compare_arg_len, 3207 .obj_hashfn = netlink_hash, 3208 .obj_cmpfn = netlink_compare, 3209 .automatic_shrinking = true, 3210 }; 3211 3212 static int __init netlink_proto_init(void) 3213 { 3214 int i; 3215 int err = proto_register(&netlink_proto, 0); 3216 3217 if (err != 0) 3218 goto out; 3219 3220 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3221 3222 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3223 if (!nl_table) 3224 goto panic; 3225 3226 for (i = 0; i < MAX_LINKS; i++) { 3227 if (rhashtable_init(&nl_table[i].hash, 3228 &netlink_rhashtable_params) < 0) { 3229 while (--i > 0) 3230 rhashtable_destroy(&nl_table[i].hash); 3231 kfree(nl_table); 3232 goto panic; 3233 } 3234 } 3235 3236 INIT_LIST_HEAD(&netlink_tap_all); 3237 3238 netlink_add_usersock_entry(); 3239 3240 sock_register(&netlink_family_ops); 3241 register_pernet_subsys(&netlink_net_ops); 3242 /* The netlink device handler may be needed early. */ 3243 rtnetlink_init(); 3244 out: 3245 return err; 3246 panic: 3247 panic("netlink_init: Cannot allocate nl_table\n"); 3248 } 3249 3250 core_initcall(netlink_proto_init); 3251