1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/genetlink.h> 63 #include <linux/net_namespace.h> 64 #include <linux/nospec.h> 65 #include <linux/btf_ids.h> 66 67 #include <net/net_namespace.h> 68 #include <net/netns/generic.h> 69 #include <net/sock.h> 70 #include <net/scm.h> 71 #include <net/netlink.h> 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/netlink.h> 74 75 #include "af_netlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_test_bit(KERNEL_SOCKET, sk); 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk, bool lock_taken); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 if (group > 32) 163 return 0; 164 return group ? 1 << (group - 1) : 0; 165 } 166 167 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 168 gfp_t gfp_mask) 169 { 170 unsigned int len = skb->len; 171 struct sk_buff *new; 172 173 new = alloc_skb(len, gfp_mask); 174 if (new == NULL) 175 return NULL; 176 177 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 178 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 179 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 180 181 skb_put_data(new, skb->data, len); 182 return new; 183 } 184 185 static unsigned int netlink_tap_net_id; 186 187 struct netlink_tap_net { 188 struct list_head netlink_tap_all; 189 struct mutex netlink_tap_lock; 190 }; 191 192 int netlink_add_tap(struct netlink_tap *nt) 193 { 194 struct net *net = dev_net(nt->dev); 195 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 196 197 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 198 return -EINVAL; 199 200 mutex_lock(&nn->netlink_tap_lock); 201 list_add_rcu(&nt->list, &nn->netlink_tap_all); 202 mutex_unlock(&nn->netlink_tap_lock); 203 204 __module_get(nt->module); 205 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(netlink_add_tap); 209 210 static int __netlink_remove_tap(struct netlink_tap *nt) 211 { 212 struct net *net = dev_net(nt->dev); 213 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 214 bool found = false; 215 struct netlink_tap *tmp; 216 217 mutex_lock(&nn->netlink_tap_lock); 218 219 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 220 if (nt == tmp) { 221 list_del_rcu(&nt->list); 222 found = true; 223 goto out; 224 } 225 } 226 227 pr_warn("__netlink_remove_tap: %p not found\n", nt); 228 out: 229 mutex_unlock(&nn->netlink_tap_lock); 230 231 if (found) 232 module_put(nt->module); 233 234 return found ? 0 : -ENODEV; 235 } 236 237 int netlink_remove_tap(struct netlink_tap *nt) 238 { 239 int ret; 240 241 ret = __netlink_remove_tap(nt); 242 synchronize_net(); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(netlink_remove_tap); 247 248 static __net_init int netlink_tap_init_net(struct net *net) 249 { 250 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 251 252 INIT_LIST_HEAD(&nn->netlink_tap_all); 253 mutex_init(&nn->netlink_tap_lock); 254 return 0; 255 } 256 257 static struct pernet_operations netlink_tap_net_ops = { 258 .init = netlink_tap_init_net, 259 .id = &netlink_tap_net_id, 260 .size = sizeof(struct netlink_tap_net), 261 }; 262 263 static bool netlink_filter_tap(const struct sk_buff *skb) 264 { 265 struct sock *sk = skb->sk; 266 267 /* We take the more conservative approach and 268 * whitelist socket protocols that may pass. 269 */ 270 switch (sk->sk_protocol) { 271 case NETLINK_ROUTE: 272 case NETLINK_USERSOCK: 273 case NETLINK_SOCK_DIAG: 274 case NETLINK_NFLOG: 275 case NETLINK_XFRM: 276 case NETLINK_FIB_LOOKUP: 277 case NETLINK_NETFILTER: 278 case NETLINK_GENERIC: 279 return true; 280 } 281 282 return false; 283 } 284 285 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 286 struct net_device *dev) 287 { 288 struct sk_buff *nskb; 289 struct sock *sk = skb->sk; 290 int ret = -ENOMEM; 291 292 if (!net_eq(dev_net(dev), sock_net(sk))) 293 return 0; 294 295 dev_hold(dev); 296 297 if (is_vmalloc_addr(skb->head)) 298 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 299 else 300 nskb = skb_clone(skb, GFP_ATOMIC); 301 if (nskb) { 302 nskb->dev = dev; 303 nskb->protocol = htons((u16) sk->sk_protocol); 304 nskb->pkt_type = netlink_is_kernel(sk) ? 305 PACKET_KERNEL : PACKET_USER; 306 skb_reset_network_header(nskb); 307 ret = dev_queue_xmit(nskb); 308 if (unlikely(ret > 0)) 309 ret = net_xmit_errno(ret); 310 } 311 312 dev_put(dev); 313 return ret; 314 } 315 316 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 317 { 318 int ret; 319 struct netlink_tap *tmp; 320 321 if (!netlink_filter_tap(skb)) 322 return; 323 324 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 325 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 326 if (unlikely(ret)) 327 break; 328 } 329 } 330 331 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 332 { 333 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 334 335 rcu_read_lock(); 336 337 if (unlikely(!list_empty(&nn->netlink_tap_all))) 338 __netlink_deliver_tap(skb, nn); 339 340 rcu_read_unlock(); 341 } 342 343 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 344 struct sk_buff *skb) 345 { 346 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 347 netlink_deliver_tap(sock_net(dst), skb); 348 } 349 350 static void netlink_overrun(struct sock *sk) 351 { 352 if (!nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 353 if (!test_and_set_bit(NETLINK_S_CONGESTED, 354 &nlk_sk(sk)->state)) { 355 WRITE_ONCE(sk->sk_err, ENOBUFS); 356 sk_error_report(sk); 357 } 358 } 359 atomic_inc(&sk->sk_drops); 360 } 361 362 static void netlink_rcv_wake(struct sock *sk) 363 { 364 struct netlink_sock *nlk = nlk_sk(sk); 365 366 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 367 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 368 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 369 wake_up_interruptible(&nlk->wait); 370 } 371 372 static void netlink_skb_destructor(struct sk_buff *skb) 373 { 374 if (is_vmalloc_addr(skb->head)) { 375 if (!skb->cloned || 376 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 377 vfree_atomic(skb->head); 378 379 skb->head = NULL; 380 } 381 if (skb->sk != NULL) 382 sock_rfree(skb); 383 } 384 385 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 386 { 387 WARN_ON(skb->sk != NULL); 388 skb->sk = sk; 389 skb->destructor = netlink_skb_destructor; 390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 391 sk_mem_charge(sk, skb->truesize); 392 } 393 394 static void netlink_sock_destruct(struct sock *sk) 395 { 396 struct netlink_sock *nlk = nlk_sk(sk); 397 398 if (nlk->cb_running) { 399 if (nlk->cb.done) 400 nlk->cb.done(&nlk->cb); 401 module_put(nlk->cb.module); 402 kfree_skb(nlk->cb.skb); 403 } 404 405 skb_queue_purge(&sk->sk_receive_queue); 406 407 if (!sock_flag(sk, SOCK_DEAD)) { 408 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 409 return; 410 } 411 412 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 413 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 414 WARN_ON(nlk_sk(sk)->groups); 415 } 416 417 static void netlink_sock_destruct_work(struct work_struct *work) 418 { 419 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 420 work); 421 422 sk_free(&nlk->sk); 423 } 424 425 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 426 * SMP. Look, when several writers sleep and reader wakes them up, all but one 427 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 428 * this, _but_ remember, it adds useless work on UP machines. 429 */ 430 431 void netlink_table_grab(void) 432 __acquires(nl_table_lock) 433 { 434 might_sleep(); 435 436 write_lock_irq(&nl_table_lock); 437 438 if (atomic_read(&nl_table_users)) { 439 DECLARE_WAITQUEUE(wait, current); 440 441 add_wait_queue_exclusive(&nl_table_wait, &wait); 442 for (;;) { 443 set_current_state(TASK_UNINTERRUPTIBLE); 444 if (atomic_read(&nl_table_users) == 0) 445 break; 446 write_unlock_irq(&nl_table_lock); 447 schedule(); 448 write_lock_irq(&nl_table_lock); 449 } 450 451 __set_current_state(TASK_RUNNING); 452 remove_wait_queue(&nl_table_wait, &wait); 453 } 454 } 455 456 void netlink_table_ungrab(void) 457 __releases(nl_table_lock) 458 { 459 write_unlock_irq(&nl_table_lock); 460 wake_up(&nl_table_wait); 461 } 462 463 static inline void 464 netlink_lock_table(void) 465 { 466 unsigned long flags; 467 468 /* read_lock() synchronizes us to netlink_table_grab */ 469 470 read_lock_irqsave(&nl_table_lock, flags); 471 atomic_inc(&nl_table_users); 472 read_unlock_irqrestore(&nl_table_lock, flags); 473 } 474 475 static inline void 476 netlink_unlock_table(void) 477 { 478 if (atomic_dec_and_test(&nl_table_users)) 479 wake_up(&nl_table_wait); 480 } 481 482 struct netlink_compare_arg 483 { 484 possible_net_t pnet; 485 u32 portid; 486 }; 487 488 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 489 #define netlink_compare_arg_len \ 490 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 491 492 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 493 const void *ptr) 494 { 495 const struct netlink_compare_arg *x = arg->key; 496 const struct netlink_sock *nlk = ptr; 497 498 return nlk->portid != x->portid || 499 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 500 } 501 502 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 503 struct net *net, u32 portid) 504 { 505 memset(arg, 0, sizeof(*arg)); 506 write_pnet(&arg->pnet, net); 507 arg->portid = portid; 508 } 509 510 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 511 struct net *net) 512 { 513 struct netlink_compare_arg arg; 514 515 netlink_compare_arg_init(&arg, net, portid); 516 return rhashtable_lookup_fast(&table->hash, &arg, 517 netlink_rhashtable_params); 518 } 519 520 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 521 { 522 struct netlink_compare_arg arg; 523 524 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 525 return rhashtable_lookup_insert_key(&table->hash, &arg, 526 &nlk_sk(sk)->node, 527 netlink_rhashtable_params); 528 } 529 530 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 531 { 532 struct netlink_table *table = &nl_table[protocol]; 533 struct sock *sk; 534 535 rcu_read_lock(); 536 sk = __netlink_lookup(table, portid, net); 537 if (sk) 538 sock_hold(sk); 539 rcu_read_unlock(); 540 541 return sk; 542 } 543 544 static const struct proto_ops netlink_ops; 545 546 static void 547 netlink_update_listeners(struct sock *sk) 548 { 549 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 550 unsigned long mask; 551 unsigned int i; 552 struct listeners *listeners; 553 554 listeners = nl_deref_protected(tbl->listeners); 555 if (!listeners) 556 return; 557 558 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 559 mask = 0; 560 sk_for_each_bound(sk, &tbl->mc_list) { 561 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 562 mask |= nlk_sk(sk)->groups[i]; 563 } 564 listeners->masks[i] = mask; 565 } 566 /* this function is only called with the netlink table "grabbed", which 567 * makes sure updates are visible before bind or setsockopt return. */ 568 } 569 570 static int netlink_insert(struct sock *sk, u32 portid) 571 { 572 struct netlink_table *table = &nl_table[sk->sk_protocol]; 573 int err; 574 575 lock_sock(sk); 576 577 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 578 if (nlk_sk(sk)->bound) 579 goto err; 580 581 /* portid can be read locklessly from netlink_getname(). */ 582 WRITE_ONCE(nlk_sk(sk)->portid, portid); 583 584 sock_hold(sk); 585 586 err = __netlink_insert(table, sk); 587 if (err) { 588 /* In case the hashtable backend returns with -EBUSY 589 * from here, it must not escape to the caller. 590 */ 591 if (unlikely(err == -EBUSY)) 592 err = -EOVERFLOW; 593 if (err == -EEXIST) 594 err = -EADDRINUSE; 595 sock_put(sk); 596 goto err; 597 } 598 599 /* We need to ensure that the socket is hashed and visible. */ 600 smp_wmb(); 601 /* Paired with lockless reads from netlink_bind(), 602 * netlink_connect() and netlink_sendmsg(). 603 */ 604 WRITE_ONCE(nlk_sk(sk)->bound, portid); 605 606 err: 607 release_sock(sk); 608 return err; 609 } 610 611 static void netlink_remove(struct sock *sk) 612 { 613 struct netlink_table *table; 614 615 table = &nl_table[sk->sk_protocol]; 616 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 617 netlink_rhashtable_params)) { 618 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 619 __sock_put(sk); 620 } 621 622 netlink_table_grab(); 623 if (nlk_sk(sk)->subscriptions) { 624 __sk_del_bind_node(sk); 625 netlink_update_listeners(sk); 626 } 627 if (sk->sk_protocol == NETLINK_GENERIC) 628 atomic_inc(&genl_sk_destructing_cnt); 629 netlink_table_ungrab(); 630 } 631 632 static struct proto netlink_proto = { 633 .name = "NETLINK", 634 .owner = THIS_MODULE, 635 .obj_size = sizeof(struct netlink_sock), 636 }; 637 638 static int __netlink_create(struct net *net, struct socket *sock, 639 struct mutex *dump_cb_mutex, int protocol, 640 int kern) 641 { 642 struct sock *sk; 643 struct netlink_sock *nlk; 644 645 sock->ops = &netlink_ops; 646 647 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 648 if (!sk) 649 return -ENOMEM; 650 651 sock_init_data(sock, sk); 652 653 nlk = nlk_sk(sk); 654 mutex_init(&nlk->nl_cb_mutex); 655 lockdep_set_class_and_name(&nlk->nl_cb_mutex, 656 nlk_cb_mutex_keys + protocol, 657 nlk_cb_mutex_key_strings[protocol]); 658 nlk->dump_cb_mutex = dump_cb_mutex; 659 init_waitqueue_head(&nlk->wait); 660 661 sk->sk_destruct = netlink_sock_destruct; 662 sk->sk_protocol = protocol; 663 return 0; 664 } 665 666 static int netlink_create(struct net *net, struct socket *sock, int protocol, 667 int kern) 668 { 669 struct module *module = NULL; 670 struct mutex *cb_mutex; 671 struct netlink_sock *nlk; 672 int (*bind)(struct net *net, int group); 673 void (*unbind)(struct net *net, int group); 674 void (*release)(struct sock *sock, unsigned long *groups); 675 int err = 0; 676 677 sock->state = SS_UNCONNECTED; 678 679 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 680 return -ESOCKTNOSUPPORT; 681 682 if (protocol < 0 || protocol >= MAX_LINKS) 683 return -EPROTONOSUPPORT; 684 protocol = array_index_nospec(protocol, MAX_LINKS); 685 686 netlink_lock_table(); 687 #ifdef CONFIG_MODULES 688 if (!nl_table[protocol].registered) { 689 netlink_unlock_table(); 690 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 691 netlink_lock_table(); 692 } 693 #endif 694 if (nl_table[protocol].registered && 695 try_module_get(nl_table[protocol].module)) 696 module = nl_table[protocol].module; 697 else 698 err = -EPROTONOSUPPORT; 699 cb_mutex = nl_table[protocol].cb_mutex; 700 bind = nl_table[protocol].bind; 701 unbind = nl_table[protocol].unbind; 702 release = nl_table[protocol].release; 703 netlink_unlock_table(); 704 705 if (err < 0) 706 goto out; 707 708 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 709 if (err < 0) 710 goto out_module; 711 712 sock_prot_inuse_add(net, &netlink_proto, 1); 713 714 nlk = nlk_sk(sock->sk); 715 nlk->module = module; 716 nlk->netlink_bind = bind; 717 nlk->netlink_unbind = unbind; 718 nlk->netlink_release = release; 719 out: 720 return err; 721 722 out_module: 723 module_put(module); 724 goto out; 725 } 726 727 static void deferred_put_nlk_sk(struct rcu_head *head) 728 { 729 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 730 struct sock *sk = &nlk->sk; 731 732 kfree(nlk->groups); 733 nlk->groups = NULL; 734 735 if (!refcount_dec_and_test(&sk->sk_refcnt)) 736 return; 737 738 if (nlk->cb_running && nlk->cb.done) { 739 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 740 schedule_work(&nlk->work); 741 return; 742 } 743 744 sk_free(sk); 745 } 746 747 static int netlink_release(struct socket *sock) 748 { 749 struct sock *sk = sock->sk; 750 struct netlink_sock *nlk; 751 752 if (!sk) 753 return 0; 754 755 netlink_remove(sk); 756 sock_orphan(sk); 757 nlk = nlk_sk(sk); 758 759 /* 760 * OK. Socket is unlinked, any packets that arrive now 761 * will be purged. 762 */ 763 if (nlk->netlink_release) 764 nlk->netlink_release(sk, nlk->groups); 765 766 /* must not acquire netlink_table_lock in any way again before unbind 767 * and notifying genetlink is done as otherwise it might deadlock 768 */ 769 if (nlk->netlink_unbind) { 770 int i; 771 772 for (i = 0; i < nlk->ngroups; i++) 773 if (test_bit(i, nlk->groups)) 774 nlk->netlink_unbind(sock_net(sk), i + 1); 775 } 776 if (sk->sk_protocol == NETLINK_GENERIC && 777 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 778 wake_up(&genl_sk_destructing_waitq); 779 780 sock->sk = NULL; 781 wake_up_interruptible_all(&nlk->wait); 782 783 skb_queue_purge(&sk->sk_write_queue); 784 785 if (nlk->portid && nlk->bound) { 786 struct netlink_notify n = { 787 .net = sock_net(sk), 788 .protocol = sk->sk_protocol, 789 .portid = nlk->portid, 790 }; 791 blocking_notifier_call_chain(&netlink_chain, 792 NETLINK_URELEASE, &n); 793 } 794 795 module_put(nlk->module); 796 797 if (netlink_is_kernel(sk)) { 798 netlink_table_grab(); 799 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 800 if (--nl_table[sk->sk_protocol].registered == 0) { 801 struct listeners *old; 802 803 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 804 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 805 kfree_rcu(old, rcu); 806 nl_table[sk->sk_protocol].module = NULL; 807 nl_table[sk->sk_protocol].bind = NULL; 808 nl_table[sk->sk_protocol].unbind = NULL; 809 nl_table[sk->sk_protocol].flags = 0; 810 nl_table[sk->sk_protocol].registered = 0; 811 } 812 netlink_table_ungrab(); 813 } 814 815 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 816 817 /* Because struct net might disappear soon, do not keep a pointer. */ 818 if (!sk->sk_net_refcnt && sock_net(sk) != &init_net) { 819 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 820 /* Because of deferred_put_nlk_sk and use of work queue, 821 * it is possible netns will be freed before this socket. 822 */ 823 sock_net_set(sk, &init_net); 824 __netns_tracker_alloc(&init_net, &sk->ns_tracker, 825 false, GFP_KERNEL); 826 } 827 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 828 return 0; 829 } 830 831 static int netlink_autobind(struct socket *sock) 832 { 833 struct sock *sk = sock->sk; 834 struct net *net = sock_net(sk); 835 struct netlink_table *table = &nl_table[sk->sk_protocol]; 836 s32 portid = task_tgid_vnr(current); 837 int err; 838 s32 rover = -4096; 839 bool ok; 840 841 retry: 842 cond_resched(); 843 rcu_read_lock(); 844 ok = !__netlink_lookup(table, portid, net); 845 rcu_read_unlock(); 846 if (!ok) { 847 /* Bind collision, search negative portid values. */ 848 if (rover == -4096) 849 /* rover will be in range [S32_MIN, -4097] */ 850 rover = S32_MIN + get_random_u32_below(-4096 - S32_MIN); 851 else if (rover >= -4096) 852 rover = -4097; 853 portid = rover--; 854 goto retry; 855 } 856 857 err = netlink_insert(sk, portid); 858 if (err == -EADDRINUSE) 859 goto retry; 860 861 /* If 2 threads race to autobind, that is fine. */ 862 if (err == -EBUSY) 863 err = 0; 864 865 return err; 866 } 867 868 /** 869 * __netlink_ns_capable - General netlink message capability test 870 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 871 * @user_ns: The user namespace of the capability to use 872 * @cap: The capability to use 873 * 874 * Test to see if the opener of the socket we received the message 875 * from had when the netlink socket was created and the sender of the 876 * message has the capability @cap in the user namespace @user_ns. 877 */ 878 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 879 struct user_namespace *user_ns, int cap) 880 { 881 return ((nsp->flags & NETLINK_SKB_DST) || 882 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 883 ns_capable(user_ns, cap); 884 } 885 EXPORT_SYMBOL(__netlink_ns_capable); 886 887 /** 888 * netlink_ns_capable - General netlink message capability test 889 * @skb: socket buffer holding a netlink command from userspace 890 * @user_ns: The user namespace of the capability to use 891 * @cap: The capability to use 892 * 893 * Test to see if the opener of the socket we received the message 894 * from had when the netlink socket was created and the sender of the 895 * message has the capability @cap in the user namespace @user_ns. 896 */ 897 bool netlink_ns_capable(const struct sk_buff *skb, 898 struct user_namespace *user_ns, int cap) 899 { 900 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 901 } 902 EXPORT_SYMBOL(netlink_ns_capable); 903 904 /** 905 * netlink_capable - Netlink global message capability test 906 * @skb: socket buffer holding a netlink command from userspace 907 * @cap: The capability to use 908 * 909 * Test to see if the opener of the socket we received the message 910 * from had when the netlink socket was created and the sender of the 911 * message has the capability @cap in all user namespaces. 912 */ 913 bool netlink_capable(const struct sk_buff *skb, int cap) 914 { 915 return netlink_ns_capable(skb, &init_user_ns, cap); 916 } 917 EXPORT_SYMBOL(netlink_capable); 918 919 /** 920 * netlink_net_capable - Netlink network namespace message capability test 921 * @skb: socket buffer holding a netlink command from userspace 922 * @cap: The capability to use 923 * 924 * Test to see if the opener of the socket we received the message 925 * from had when the netlink socket was created and the sender of the 926 * message has the capability @cap over the network namespace of 927 * the socket we received the message from. 928 */ 929 bool netlink_net_capable(const struct sk_buff *skb, int cap) 930 { 931 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 932 } 933 EXPORT_SYMBOL(netlink_net_capable); 934 935 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 936 { 937 return (nl_table[sock->sk->sk_protocol].flags & flag) || 938 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 939 } 940 941 static void 942 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 943 { 944 struct netlink_sock *nlk = nlk_sk(sk); 945 946 if (nlk->subscriptions && !subscriptions) 947 __sk_del_bind_node(sk); 948 else if (!nlk->subscriptions && subscriptions) 949 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 950 nlk->subscriptions = subscriptions; 951 } 952 953 static int netlink_realloc_groups(struct sock *sk) 954 { 955 struct netlink_sock *nlk = nlk_sk(sk); 956 unsigned int groups; 957 unsigned long *new_groups; 958 int err = 0; 959 960 netlink_table_grab(); 961 962 groups = nl_table[sk->sk_protocol].groups; 963 if (!nl_table[sk->sk_protocol].registered) { 964 err = -ENOENT; 965 goto out_unlock; 966 } 967 968 if (nlk->ngroups >= groups) 969 goto out_unlock; 970 971 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 972 if (new_groups == NULL) { 973 err = -ENOMEM; 974 goto out_unlock; 975 } 976 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 977 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 978 979 nlk->groups = new_groups; 980 nlk->ngroups = groups; 981 out_unlock: 982 netlink_table_ungrab(); 983 return err; 984 } 985 986 static void netlink_undo_bind(int group, long unsigned int groups, 987 struct sock *sk) 988 { 989 struct netlink_sock *nlk = nlk_sk(sk); 990 int undo; 991 992 if (!nlk->netlink_unbind) 993 return; 994 995 for (undo = 0; undo < group; undo++) 996 if (test_bit(undo, &groups)) 997 nlk->netlink_unbind(sock_net(sk), undo + 1); 998 } 999 1000 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1001 int addr_len) 1002 { 1003 struct sock *sk = sock->sk; 1004 struct net *net = sock_net(sk); 1005 struct netlink_sock *nlk = nlk_sk(sk); 1006 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1007 int err = 0; 1008 unsigned long groups; 1009 bool bound; 1010 1011 if (addr_len < sizeof(struct sockaddr_nl)) 1012 return -EINVAL; 1013 1014 if (nladdr->nl_family != AF_NETLINK) 1015 return -EINVAL; 1016 groups = nladdr->nl_groups; 1017 1018 /* Only superuser is allowed to listen multicasts */ 1019 if (groups) { 1020 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1021 return -EPERM; 1022 err = netlink_realloc_groups(sk); 1023 if (err) 1024 return err; 1025 } 1026 1027 if (nlk->ngroups < BITS_PER_LONG) 1028 groups &= (1UL << nlk->ngroups) - 1; 1029 1030 /* Paired with WRITE_ONCE() in netlink_insert() */ 1031 bound = READ_ONCE(nlk->bound); 1032 if (bound) { 1033 /* Ensure nlk->portid is up-to-date. */ 1034 smp_rmb(); 1035 1036 if (nladdr->nl_pid != nlk->portid) 1037 return -EINVAL; 1038 } 1039 1040 if (nlk->netlink_bind && groups) { 1041 int group; 1042 1043 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1044 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1045 if (!test_bit(group, &groups)) 1046 continue; 1047 err = nlk->netlink_bind(net, group + 1); 1048 if (!err) 1049 continue; 1050 netlink_undo_bind(group, groups, sk); 1051 return err; 1052 } 1053 } 1054 1055 /* No need for barriers here as we return to user-space without 1056 * using any of the bound attributes. 1057 */ 1058 netlink_lock_table(); 1059 if (!bound) { 1060 err = nladdr->nl_pid ? 1061 netlink_insert(sk, nladdr->nl_pid) : 1062 netlink_autobind(sock); 1063 if (err) { 1064 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1065 goto unlock; 1066 } 1067 } 1068 1069 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1070 goto unlock; 1071 netlink_unlock_table(); 1072 1073 netlink_table_grab(); 1074 netlink_update_subscriptions(sk, nlk->subscriptions + 1075 hweight32(groups) - 1076 hweight32(nlk->groups[0])); 1077 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1078 netlink_update_listeners(sk); 1079 netlink_table_ungrab(); 1080 1081 return 0; 1082 1083 unlock: 1084 netlink_unlock_table(); 1085 return err; 1086 } 1087 1088 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1089 int alen, int flags) 1090 { 1091 int err = 0; 1092 struct sock *sk = sock->sk; 1093 struct netlink_sock *nlk = nlk_sk(sk); 1094 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1095 1096 if (alen < sizeof(addr->sa_family)) 1097 return -EINVAL; 1098 1099 if (addr->sa_family == AF_UNSPEC) { 1100 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1101 WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); 1102 /* dst_portid and dst_group can be read locklessly */ 1103 WRITE_ONCE(nlk->dst_portid, 0); 1104 WRITE_ONCE(nlk->dst_group, 0); 1105 return 0; 1106 } 1107 if (addr->sa_family != AF_NETLINK) 1108 return -EINVAL; 1109 1110 if (alen < sizeof(struct sockaddr_nl)) 1111 return -EINVAL; 1112 1113 if ((nladdr->nl_groups || nladdr->nl_pid) && 1114 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1115 return -EPERM; 1116 1117 /* No need for barriers here as we return to user-space without 1118 * using any of the bound attributes. 1119 * Paired with WRITE_ONCE() in netlink_insert(). 1120 */ 1121 if (!READ_ONCE(nlk->bound)) 1122 err = netlink_autobind(sock); 1123 1124 if (err == 0) { 1125 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1126 WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); 1127 /* dst_portid and dst_group can be read locklessly */ 1128 WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); 1129 WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); 1130 } 1131 1132 return err; 1133 } 1134 1135 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1136 int peer) 1137 { 1138 struct sock *sk = sock->sk; 1139 struct netlink_sock *nlk = nlk_sk(sk); 1140 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1141 1142 nladdr->nl_family = AF_NETLINK; 1143 nladdr->nl_pad = 0; 1144 1145 if (peer) { 1146 /* Paired with WRITE_ONCE() in netlink_connect() */ 1147 nladdr->nl_pid = READ_ONCE(nlk->dst_portid); 1148 nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); 1149 } else { 1150 /* Paired with WRITE_ONCE() in netlink_insert() */ 1151 nladdr->nl_pid = READ_ONCE(nlk->portid); 1152 netlink_lock_table(); 1153 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1154 netlink_unlock_table(); 1155 } 1156 return sizeof(*nladdr); 1157 } 1158 1159 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1160 unsigned long arg) 1161 { 1162 /* try to hand this ioctl down to the NIC drivers. 1163 */ 1164 return -ENOIOCTLCMD; 1165 } 1166 1167 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1168 { 1169 struct sock *sock; 1170 struct netlink_sock *nlk; 1171 1172 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1173 if (!sock) 1174 return ERR_PTR(-ECONNREFUSED); 1175 1176 /* Don't bother queuing skb if kernel socket has no input function */ 1177 nlk = nlk_sk(sock); 1178 /* dst_portid and sk_state can be changed in netlink_connect() */ 1179 if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && 1180 READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { 1181 sock_put(sock); 1182 return ERR_PTR(-ECONNREFUSED); 1183 } 1184 return sock; 1185 } 1186 1187 struct sock *netlink_getsockbyfilp(struct file *filp) 1188 { 1189 struct inode *inode = file_inode(filp); 1190 struct sock *sock; 1191 1192 if (!S_ISSOCK(inode->i_mode)) 1193 return ERR_PTR(-ENOTSOCK); 1194 1195 sock = SOCKET_I(inode)->sk; 1196 if (sock->sk_family != AF_NETLINK) 1197 return ERR_PTR(-EINVAL); 1198 1199 sock_hold(sock); 1200 return sock; 1201 } 1202 1203 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1204 int broadcast) 1205 { 1206 struct sk_buff *skb; 1207 void *data; 1208 1209 if (size <= NLMSG_GOODSIZE || broadcast) 1210 return alloc_skb(size, GFP_KERNEL); 1211 1212 size = SKB_DATA_ALIGN(size) + 1213 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1214 1215 data = vmalloc(size); 1216 if (data == NULL) 1217 return NULL; 1218 1219 skb = __build_skb(data, size); 1220 if (skb == NULL) 1221 vfree(data); 1222 else 1223 skb->destructor = netlink_skb_destructor; 1224 1225 return skb; 1226 } 1227 1228 /* 1229 * Attach a skb to a netlink socket. 1230 * The caller must hold a reference to the destination socket. On error, the 1231 * reference is dropped. The skb is not send to the destination, just all 1232 * all error checks are performed and memory in the queue is reserved. 1233 * Return values: 1234 * < 0: error. skb freed, reference to sock dropped. 1235 * 0: continue 1236 * 1: repeat lookup - reference dropped while waiting for socket memory. 1237 */ 1238 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1239 long *timeo, struct sock *ssk) 1240 { 1241 struct netlink_sock *nlk; 1242 1243 nlk = nlk_sk(sk); 1244 1245 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1246 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1247 DECLARE_WAITQUEUE(wait, current); 1248 if (!*timeo) { 1249 if (!ssk || netlink_is_kernel(ssk)) 1250 netlink_overrun(sk); 1251 sock_put(sk); 1252 kfree_skb(skb); 1253 return -EAGAIN; 1254 } 1255 1256 __set_current_state(TASK_INTERRUPTIBLE); 1257 add_wait_queue(&nlk->wait, &wait); 1258 1259 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1260 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1261 !sock_flag(sk, SOCK_DEAD)) 1262 *timeo = schedule_timeout(*timeo); 1263 1264 __set_current_state(TASK_RUNNING); 1265 remove_wait_queue(&nlk->wait, &wait); 1266 sock_put(sk); 1267 1268 if (signal_pending(current)) { 1269 kfree_skb(skb); 1270 return sock_intr_errno(*timeo); 1271 } 1272 return 1; 1273 } 1274 netlink_skb_set_owner_r(skb, sk); 1275 return 0; 1276 } 1277 1278 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1279 { 1280 int len = skb->len; 1281 1282 netlink_deliver_tap(sock_net(sk), skb); 1283 1284 skb_queue_tail(&sk->sk_receive_queue, skb); 1285 sk->sk_data_ready(sk); 1286 return len; 1287 } 1288 1289 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1290 { 1291 int len = __netlink_sendskb(sk, skb); 1292 1293 sock_put(sk); 1294 return len; 1295 } 1296 1297 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1298 { 1299 kfree_skb(skb); 1300 sock_put(sk); 1301 } 1302 1303 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1304 { 1305 int delta; 1306 1307 WARN_ON(skb->sk != NULL); 1308 delta = skb->end - skb->tail; 1309 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1310 return skb; 1311 1312 if (skb_shared(skb)) { 1313 struct sk_buff *nskb = skb_clone(skb, allocation); 1314 if (!nskb) 1315 return skb; 1316 consume_skb(skb); 1317 skb = nskb; 1318 } 1319 1320 pskb_expand_head(skb, 0, -delta, 1321 (allocation & ~__GFP_DIRECT_RECLAIM) | 1322 __GFP_NOWARN | __GFP_NORETRY); 1323 return skb; 1324 } 1325 1326 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1327 struct sock *ssk) 1328 { 1329 int ret; 1330 struct netlink_sock *nlk = nlk_sk(sk); 1331 1332 ret = -ECONNREFUSED; 1333 if (nlk->netlink_rcv != NULL) { 1334 ret = skb->len; 1335 netlink_skb_set_owner_r(skb, sk); 1336 NETLINK_CB(skb).sk = ssk; 1337 netlink_deliver_tap_kernel(sk, ssk, skb); 1338 nlk->netlink_rcv(skb); 1339 consume_skb(skb); 1340 } else { 1341 kfree_skb(skb); 1342 } 1343 sock_put(sk); 1344 return ret; 1345 } 1346 1347 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1348 u32 portid, int nonblock) 1349 { 1350 struct sock *sk; 1351 int err; 1352 long timeo; 1353 1354 skb = netlink_trim(skb, gfp_any()); 1355 1356 timeo = sock_sndtimeo(ssk, nonblock); 1357 retry: 1358 sk = netlink_getsockbyportid(ssk, portid); 1359 if (IS_ERR(sk)) { 1360 kfree_skb(skb); 1361 return PTR_ERR(sk); 1362 } 1363 if (netlink_is_kernel(sk)) 1364 return netlink_unicast_kernel(sk, skb, ssk); 1365 1366 if (sk_filter(sk, skb)) { 1367 err = skb->len; 1368 kfree_skb(skb); 1369 sock_put(sk); 1370 return err; 1371 } 1372 1373 err = netlink_attachskb(sk, skb, &timeo, ssk); 1374 if (err == 1) 1375 goto retry; 1376 if (err) 1377 return err; 1378 1379 return netlink_sendskb(sk, skb); 1380 } 1381 EXPORT_SYMBOL(netlink_unicast); 1382 1383 int netlink_has_listeners(struct sock *sk, unsigned int group) 1384 { 1385 int res = 0; 1386 struct listeners *listeners; 1387 1388 BUG_ON(!netlink_is_kernel(sk)); 1389 1390 rcu_read_lock(); 1391 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1392 1393 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1394 res = test_bit(group - 1, listeners->masks); 1395 1396 rcu_read_unlock(); 1397 1398 return res; 1399 } 1400 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1401 1402 bool netlink_strict_get_check(struct sk_buff *skb) 1403 { 1404 return nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 1405 } 1406 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1407 1408 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1409 { 1410 struct netlink_sock *nlk = nlk_sk(sk); 1411 1412 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1413 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1414 netlink_skb_set_owner_r(skb, sk); 1415 __netlink_sendskb(sk, skb); 1416 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1417 } 1418 return -1; 1419 } 1420 1421 struct netlink_broadcast_data { 1422 struct sock *exclude_sk; 1423 struct net *net; 1424 u32 portid; 1425 u32 group; 1426 int failure; 1427 int delivery_failure; 1428 int congested; 1429 int delivered; 1430 gfp_t allocation; 1431 struct sk_buff *skb, *skb2; 1432 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1433 void *tx_data; 1434 }; 1435 1436 static void do_one_broadcast(struct sock *sk, 1437 struct netlink_broadcast_data *p) 1438 { 1439 struct netlink_sock *nlk = nlk_sk(sk); 1440 int val; 1441 1442 if (p->exclude_sk == sk) 1443 return; 1444 1445 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1446 !test_bit(p->group - 1, nlk->groups)) 1447 return; 1448 1449 if (!net_eq(sock_net(sk), p->net)) { 1450 if (!nlk_test_bit(LISTEN_ALL_NSID, sk)) 1451 return; 1452 1453 if (!peernet_has_id(sock_net(sk), p->net)) 1454 return; 1455 1456 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1457 CAP_NET_BROADCAST)) 1458 return; 1459 } 1460 1461 if (p->failure) { 1462 netlink_overrun(sk); 1463 return; 1464 } 1465 1466 sock_hold(sk); 1467 if (p->skb2 == NULL) { 1468 if (skb_shared(p->skb)) { 1469 p->skb2 = skb_clone(p->skb, p->allocation); 1470 } else { 1471 p->skb2 = skb_get(p->skb); 1472 /* 1473 * skb ownership may have been set when 1474 * delivered to a previous socket. 1475 */ 1476 skb_orphan(p->skb2); 1477 } 1478 } 1479 if (p->skb2 == NULL) { 1480 netlink_overrun(sk); 1481 /* Clone failed. Notify ALL listeners. */ 1482 p->failure = 1; 1483 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1484 p->delivery_failure = 1; 1485 goto out; 1486 } 1487 1488 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1489 kfree_skb(p->skb2); 1490 p->skb2 = NULL; 1491 goto out; 1492 } 1493 1494 if (sk_filter(sk, p->skb2)) { 1495 kfree_skb(p->skb2); 1496 p->skb2 = NULL; 1497 goto out; 1498 } 1499 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1500 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1501 NETLINK_CB(p->skb2).nsid_is_set = true; 1502 val = netlink_broadcast_deliver(sk, p->skb2); 1503 if (val < 0) { 1504 netlink_overrun(sk); 1505 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1506 p->delivery_failure = 1; 1507 } else { 1508 p->congested |= val; 1509 p->delivered = 1; 1510 p->skb2 = NULL; 1511 } 1512 out: 1513 sock_put(sk); 1514 } 1515 1516 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, 1517 u32 portid, 1518 u32 group, gfp_t allocation, 1519 int (*filter)(struct sock *dsk, 1520 struct sk_buff *skb, void *data), 1521 void *filter_data) 1522 { 1523 struct net *net = sock_net(ssk); 1524 struct netlink_broadcast_data info; 1525 struct sock *sk; 1526 1527 skb = netlink_trim(skb, allocation); 1528 1529 info.exclude_sk = ssk; 1530 info.net = net; 1531 info.portid = portid; 1532 info.group = group; 1533 info.failure = 0; 1534 info.delivery_failure = 0; 1535 info.congested = 0; 1536 info.delivered = 0; 1537 info.allocation = allocation; 1538 info.skb = skb; 1539 info.skb2 = NULL; 1540 info.tx_filter = filter; 1541 info.tx_data = filter_data; 1542 1543 /* While we sleep in clone, do not allow to change socket list */ 1544 1545 netlink_lock_table(); 1546 1547 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1548 do_one_broadcast(sk, &info); 1549 1550 consume_skb(skb); 1551 1552 netlink_unlock_table(); 1553 1554 if (info.delivery_failure) { 1555 kfree_skb(info.skb2); 1556 return -ENOBUFS; 1557 } 1558 consume_skb(info.skb2); 1559 1560 if (info.delivered) { 1561 if (info.congested && gfpflags_allow_blocking(allocation)) 1562 yield(); 1563 return 0; 1564 } 1565 return -ESRCH; 1566 } 1567 EXPORT_SYMBOL(netlink_broadcast_filtered); 1568 1569 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1570 u32 group, gfp_t allocation) 1571 { 1572 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1573 NULL, NULL); 1574 } 1575 EXPORT_SYMBOL(netlink_broadcast); 1576 1577 struct netlink_set_err_data { 1578 struct sock *exclude_sk; 1579 u32 portid; 1580 u32 group; 1581 int code; 1582 }; 1583 1584 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1585 { 1586 struct netlink_sock *nlk = nlk_sk(sk); 1587 int ret = 0; 1588 1589 if (sk == p->exclude_sk) 1590 goto out; 1591 1592 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1593 goto out; 1594 1595 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1596 !test_bit(p->group - 1, nlk->groups)) 1597 goto out; 1598 1599 if (p->code == ENOBUFS && nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 1600 ret = 1; 1601 goto out; 1602 } 1603 1604 WRITE_ONCE(sk->sk_err, p->code); 1605 sk_error_report(sk); 1606 out: 1607 return ret; 1608 } 1609 1610 /** 1611 * netlink_set_err - report error to broadcast listeners 1612 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1613 * @portid: the PORTID of a process that we want to skip (if any) 1614 * @group: the broadcast group that will notice the error 1615 * @code: error code, must be negative (as usual in kernelspace) 1616 * 1617 * This function returns the number of broadcast listeners that have set the 1618 * NETLINK_NO_ENOBUFS socket option. 1619 */ 1620 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1621 { 1622 struct netlink_set_err_data info; 1623 unsigned long flags; 1624 struct sock *sk; 1625 int ret = 0; 1626 1627 info.exclude_sk = ssk; 1628 info.portid = portid; 1629 info.group = group; 1630 /* sk->sk_err wants a positive error value */ 1631 info.code = -code; 1632 1633 read_lock_irqsave(&nl_table_lock, flags); 1634 1635 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1636 ret += do_one_set_err(sk, &info); 1637 1638 read_unlock_irqrestore(&nl_table_lock, flags); 1639 return ret; 1640 } 1641 EXPORT_SYMBOL(netlink_set_err); 1642 1643 /* must be called with netlink table grabbed */ 1644 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1645 unsigned int group, 1646 int is_new) 1647 { 1648 int old, new = !!is_new, subscriptions; 1649 1650 old = test_bit(group - 1, nlk->groups); 1651 subscriptions = nlk->subscriptions - old + new; 1652 __assign_bit(group - 1, nlk->groups, new); 1653 netlink_update_subscriptions(&nlk->sk, subscriptions); 1654 netlink_update_listeners(&nlk->sk); 1655 } 1656 1657 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1658 sockptr_t optval, unsigned int optlen) 1659 { 1660 struct sock *sk = sock->sk; 1661 struct netlink_sock *nlk = nlk_sk(sk); 1662 unsigned int val = 0; 1663 int nr = -1; 1664 1665 if (level != SOL_NETLINK) 1666 return -ENOPROTOOPT; 1667 1668 if (optlen >= sizeof(int) && 1669 copy_from_sockptr(&val, optval, sizeof(val))) 1670 return -EFAULT; 1671 1672 switch (optname) { 1673 case NETLINK_PKTINFO: 1674 nr = NETLINK_F_RECV_PKTINFO; 1675 break; 1676 case NETLINK_ADD_MEMBERSHIP: 1677 case NETLINK_DROP_MEMBERSHIP: { 1678 int err; 1679 1680 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1681 return -EPERM; 1682 err = netlink_realloc_groups(sk); 1683 if (err) 1684 return err; 1685 if (!val || val - 1 >= nlk->ngroups) 1686 return -EINVAL; 1687 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1688 err = nlk->netlink_bind(sock_net(sk), val); 1689 if (err) 1690 return err; 1691 } 1692 netlink_table_grab(); 1693 netlink_update_socket_mc(nlk, val, 1694 optname == NETLINK_ADD_MEMBERSHIP); 1695 netlink_table_ungrab(); 1696 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1697 nlk->netlink_unbind(sock_net(sk), val); 1698 1699 break; 1700 } 1701 case NETLINK_BROADCAST_ERROR: 1702 nr = NETLINK_F_BROADCAST_SEND_ERROR; 1703 break; 1704 case NETLINK_NO_ENOBUFS: 1705 assign_bit(NETLINK_F_RECV_NO_ENOBUFS, &nlk->flags, val); 1706 if (val) { 1707 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1708 wake_up_interruptible(&nlk->wait); 1709 } 1710 break; 1711 case NETLINK_LISTEN_ALL_NSID: 1712 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1713 return -EPERM; 1714 nr = NETLINK_F_LISTEN_ALL_NSID; 1715 break; 1716 case NETLINK_CAP_ACK: 1717 nr = NETLINK_F_CAP_ACK; 1718 break; 1719 case NETLINK_EXT_ACK: 1720 nr = NETLINK_F_EXT_ACK; 1721 break; 1722 case NETLINK_GET_STRICT_CHK: 1723 nr = NETLINK_F_STRICT_CHK; 1724 break; 1725 default: 1726 return -ENOPROTOOPT; 1727 } 1728 if (nr >= 0) 1729 assign_bit(nr, &nlk->flags, val); 1730 return 0; 1731 } 1732 1733 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1734 char __user *optval, int __user *optlen) 1735 { 1736 struct sock *sk = sock->sk; 1737 struct netlink_sock *nlk = nlk_sk(sk); 1738 unsigned int flag; 1739 int len, val; 1740 1741 if (level != SOL_NETLINK) 1742 return -ENOPROTOOPT; 1743 1744 if (get_user(len, optlen)) 1745 return -EFAULT; 1746 if (len < 0) 1747 return -EINVAL; 1748 1749 switch (optname) { 1750 case NETLINK_PKTINFO: 1751 flag = NETLINK_F_RECV_PKTINFO; 1752 break; 1753 case NETLINK_BROADCAST_ERROR: 1754 flag = NETLINK_F_BROADCAST_SEND_ERROR; 1755 break; 1756 case NETLINK_NO_ENOBUFS: 1757 flag = NETLINK_F_RECV_NO_ENOBUFS; 1758 break; 1759 case NETLINK_LIST_MEMBERSHIPS: { 1760 int pos, idx, shift, err = 0; 1761 1762 netlink_lock_table(); 1763 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1764 if (len - pos < sizeof(u32)) 1765 break; 1766 1767 idx = pos / sizeof(unsigned long); 1768 shift = (pos % sizeof(unsigned long)) * 8; 1769 if (put_user((u32)(nlk->groups[idx] >> shift), 1770 (u32 __user *)(optval + pos))) { 1771 err = -EFAULT; 1772 break; 1773 } 1774 } 1775 if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) 1776 err = -EFAULT; 1777 netlink_unlock_table(); 1778 return err; 1779 } 1780 case NETLINK_CAP_ACK: 1781 flag = NETLINK_F_CAP_ACK; 1782 break; 1783 case NETLINK_EXT_ACK: 1784 flag = NETLINK_F_EXT_ACK; 1785 break; 1786 case NETLINK_GET_STRICT_CHK: 1787 flag = NETLINK_F_STRICT_CHK; 1788 break; 1789 default: 1790 return -ENOPROTOOPT; 1791 } 1792 1793 if (len < sizeof(int)) 1794 return -EINVAL; 1795 1796 len = sizeof(int); 1797 val = test_bit(flag, &nlk->flags); 1798 1799 if (put_user(len, optlen) || 1800 copy_to_user(optval, &val, len)) 1801 return -EFAULT; 1802 1803 return 0; 1804 } 1805 1806 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1807 { 1808 struct nl_pktinfo info; 1809 1810 info.group = NETLINK_CB(skb).dst_group; 1811 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1812 } 1813 1814 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1815 struct sk_buff *skb) 1816 { 1817 if (!NETLINK_CB(skb).nsid_is_set) 1818 return; 1819 1820 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1821 &NETLINK_CB(skb).nsid); 1822 } 1823 1824 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1825 { 1826 struct sock *sk = sock->sk; 1827 struct netlink_sock *nlk = nlk_sk(sk); 1828 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1829 u32 dst_portid; 1830 u32 dst_group; 1831 struct sk_buff *skb; 1832 int err; 1833 struct scm_cookie scm; 1834 u32 netlink_skb_flags = 0; 1835 1836 if (msg->msg_flags & MSG_OOB) 1837 return -EOPNOTSUPP; 1838 1839 if (len == 0) { 1840 pr_warn_once("Zero length message leads to an empty skb\n"); 1841 return -ENODATA; 1842 } 1843 1844 err = scm_send(sock, msg, &scm, true); 1845 if (err < 0) 1846 return err; 1847 1848 if (msg->msg_namelen) { 1849 err = -EINVAL; 1850 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1851 goto out; 1852 if (addr->nl_family != AF_NETLINK) 1853 goto out; 1854 dst_portid = addr->nl_pid; 1855 dst_group = ffs(addr->nl_groups); 1856 err = -EPERM; 1857 if ((dst_group || dst_portid) && 1858 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1859 goto out; 1860 netlink_skb_flags |= NETLINK_SKB_DST; 1861 } else { 1862 /* Paired with WRITE_ONCE() in netlink_connect() */ 1863 dst_portid = READ_ONCE(nlk->dst_portid); 1864 dst_group = READ_ONCE(nlk->dst_group); 1865 } 1866 1867 /* Paired with WRITE_ONCE() in netlink_insert() */ 1868 if (!READ_ONCE(nlk->bound)) { 1869 err = netlink_autobind(sock); 1870 if (err) 1871 goto out; 1872 } else { 1873 /* Ensure nlk is hashed and visible. */ 1874 smp_rmb(); 1875 } 1876 1877 err = -EMSGSIZE; 1878 if (len > sk->sk_sndbuf - 32) 1879 goto out; 1880 err = -ENOBUFS; 1881 skb = netlink_alloc_large_skb(len, dst_group); 1882 if (skb == NULL) 1883 goto out; 1884 1885 NETLINK_CB(skb).portid = nlk->portid; 1886 NETLINK_CB(skb).dst_group = dst_group; 1887 NETLINK_CB(skb).creds = scm.creds; 1888 NETLINK_CB(skb).flags = netlink_skb_flags; 1889 1890 err = -EFAULT; 1891 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1892 kfree_skb(skb); 1893 goto out; 1894 } 1895 1896 err = security_netlink_send(sk, skb); 1897 if (err) { 1898 kfree_skb(skb); 1899 goto out; 1900 } 1901 1902 if (dst_group) { 1903 refcount_inc(&skb->users); 1904 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1905 } 1906 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1907 1908 out: 1909 scm_destroy(&scm); 1910 return err; 1911 } 1912 1913 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1914 int flags) 1915 { 1916 struct scm_cookie scm; 1917 struct sock *sk = sock->sk; 1918 struct netlink_sock *nlk = nlk_sk(sk); 1919 size_t copied, max_recvmsg_len; 1920 struct sk_buff *skb, *data_skb; 1921 int err, ret; 1922 1923 if (flags & MSG_OOB) 1924 return -EOPNOTSUPP; 1925 1926 copied = 0; 1927 1928 skb = skb_recv_datagram(sk, flags, &err); 1929 if (skb == NULL) 1930 goto out; 1931 1932 data_skb = skb; 1933 1934 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1935 if (unlikely(skb_shinfo(skb)->frag_list)) { 1936 /* 1937 * If this skb has a frag_list, then here that means that we 1938 * will have to use the frag_list skb's data for compat tasks 1939 * and the regular skb's data for normal (non-compat) tasks. 1940 * 1941 * If we need to send the compat skb, assign it to the 1942 * 'data_skb' variable so that it will be used below for data 1943 * copying. We keep 'skb' for everything else, including 1944 * freeing both later. 1945 */ 1946 if (flags & MSG_CMSG_COMPAT) 1947 data_skb = skb_shinfo(skb)->frag_list; 1948 } 1949 #endif 1950 1951 /* Record the max length of recvmsg() calls for future allocations */ 1952 max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); 1953 max_recvmsg_len = min_t(size_t, max_recvmsg_len, 1954 SKB_WITH_OVERHEAD(32768)); 1955 WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); 1956 1957 copied = data_skb->len; 1958 if (len < copied) { 1959 msg->msg_flags |= MSG_TRUNC; 1960 copied = len; 1961 } 1962 1963 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1964 1965 if (msg->msg_name) { 1966 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1967 addr->nl_family = AF_NETLINK; 1968 addr->nl_pad = 0; 1969 addr->nl_pid = NETLINK_CB(skb).portid; 1970 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1971 msg->msg_namelen = sizeof(*addr); 1972 } 1973 1974 if (nlk_test_bit(RECV_PKTINFO, sk)) 1975 netlink_cmsg_recv_pktinfo(msg, skb); 1976 if (nlk_test_bit(LISTEN_ALL_NSID, sk)) 1977 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1978 1979 memset(&scm, 0, sizeof(scm)); 1980 scm.creds = *NETLINK_CREDS(skb); 1981 if (flags & MSG_TRUNC) 1982 copied = data_skb->len; 1983 1984 skb_free_datagram(sk, skb); 1985 1986 if (READ_ONCE(nlk->cb_running) && 1987 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 1988 ret = netlink_dump(sk, false); 1989 if (ret) { 1990 WRITE_ONCE(sk->sk_err, -ret); 1991 sk_error_report(sk); 1992 } 1993 } 1994 1995 scm_recv(sock, msg, &scm, flags); 1996 out: 1997 netlink_rcv_wake(sk); 1998 return err ? : copied; 1999 } 2000 2001 static void netlink_data_ready(struct sock *sk) 2002 { 2003 BUG(); 2004 } 2005 2006 /* 2007 * We export these functions to other modules. They provide a 2008 * complete set of kernel non-blocking support for message 2009 * queueing. 2010 */ 2011 2012 struct sock * 2013 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2014 struct netlink_kernel_cfg *cfg) 2015 { 2016 struct socket *sock; 2017 struct sock *sk; 2018 struct netlink_sock *nlk; 2019 struct listeners *listeners = NULL; 2020 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2021 unsigned int groups; 2022 2023 BUG_ON(!nl_table); 2024 2025 if (unit < 0 || unit >= MAX_LINKS) 2026 return NULL; 2027 2028 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2029 return NULL; 2030 2031 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2032 goto out_sock_release_nosk; 2033 2034 sk = sock->sk; 2035 2036 if (!cfg || cfg->groups < 32) 2037 groups = 32; 2038 else 2039 groups = cfg->groups; 2040 2041 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2042 if (!listeners) 2043 goto out_sock_release; 2044 2045 sk->sk_data_ready = netlink_data_ready; 2046 if (cfg && cfg->input) 2047 nlk_sk(sk)->netlink_rcv = cfg->input; 2048 2049 if (netlink_insert(sk, 0)) 2050 goto out_sock_release; 2051 2052 nlk = nlk_sk(sk); 2053 set_bit(NETLINK_F_KERNEL_SOCKET, &nlk->flags); 2054 2055 netlink_table_grab(); 2056 if (!nl_table[unit].registered) { 2057 nl_table[unit].groups = groups; 2058 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2059 nl_table[unit].cb_mutex = cb_mutex; 2060 nl_table[unit].module = module; 2061 if (cfg) { 2062 nl_table[unit].bind = cfg->bind; 2063 nl_table[unit].unbind = cfg->unbind; 2064 nl_table[unit].release = cfg->release; 2065 nl_table[unit].flags = cfg->flags; 2066 } 2067 nl_table[unit].registered = 1; 2068 } else { 2069 kfree(listeners); 2070 nl_table[unit].registered++; 2071 } 2072 netlink_table_ungrab(); 2073 return sk; 2074 2075 out_sock_release: 2076 kfree(listeners); 2077 netlink_kernel_release(sk); 2078 return NULL; 2079 2080 out_sock_release_nosk: 2081 sock_release(sock); 2082 return NULL; 2083 } 2084 EXPORT_SYMBOL(__netlink_kernel_create); 2085 2086 void 2087 netlink_kernel_release(struct sock *sk) 2088 { 2089 if (sk == NULL || sk->sk_socket == NULL) 2090 return; 2091 2092 sock_release(sk->sk_socket); 2093 } 2094 EXPORT_SYMBOL(netlink_kernel_release); 2095 2096 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2097 { 2098 struct listeners *new, *old; 2099 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2100 2101 if (groups < 32) 2102 groups = 32; 2103 2104 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2105 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2106 if (!new) 2107 return -ENOMEM; 2108 old = nl_deref_protected(tbl->listeners); 2109 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2110 rcu_assign_pointer(tbl->listeners, new); 2111 2112 kfree_rcu(old, rcu); 2113 } 2114 tbl->groups = groups; 2115 2116 return 0; 2117 } 2118 2119 /** 2120 * netlink_change_ngroups - change number of multicast groups 2121 * 2122 * This changes the number of multicast groups that are available 2123 * on a certain netlink family. Note that it is not possible to 2124 * change the number of groups to below 32. Also note that it does 2125 * not implicitly call netlink_clear_multicast_users() when the 2126 * number of groups is reduced. 2127 * 2128 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2129 * @groups: The new number of groups. 2130 */ 2131 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2132 { 2133 int err; 2134 2135 netlink_table_grab(); 2136 err = __netlink_change_ngroups(sk, groups); 2137 netlink_table_ungrab(); 2138 2139 return err; 2140 } 2141 2142 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2143 { 2144 struct sock *sk; 2145 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2146 struct hlist_node *tmp; 2147 2148 sk_for_each_bound_safe(sk, tmp, &tbl->mc_list) 2149 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2150 } 2151 2152 struct nlmsghdr * 2153 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2154 { 2155 struct nlmsghdr *nlh; 2156 int size = nlmsg_msg_size(len); 2157 2158 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2159 nlh->nlmsg_type = type; 2160 nlh->nlmsg_len = size; 2161 nlh->nlmsg_flags = flags; 2162 nlh->nlmsg_pid = portid; 2163 nlh->nlmsg_seq = seq; 2164 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2165 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2166 return nlh; 2167 } 2168 EXPORT_SYMBOL(__nlmsg_put); 2169 2170 /* 2171 * It looks a bit ugly. 2172 * It would be better to create kernel thread. 2173 */ 2174 2175 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2176 struct netlink_callback *cb, 2177 struct netlink_ext_ack *extack) 2178 { 2179 struct nlmsghdr *nlh; 2180 2181 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2182 NLM_F_MULTI | cb->answer_flags); 2183 if (WARN_ON(!nlh)) 2184 return -ENOBUFS; 2185 2186 nl_dump_check_consistent(cb, nlh); 2187 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2188 2189 if (extack->_msg && test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) { 2190 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2191 if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)) 2192 nlmsg_end(skb, nlh); 2193 } 2194 2195 return 0; 2196 } 2197 2198 static int netlink_dump(struct sock *sk, bool lock_taken) 2199 { 2200 struct netlink_sock *nlk = nlk_sk(sk); 2201 struct netlink_ext_ack extack = {}; 2202 struct netlink_callback *cb; 2203 struct sk_buff *skb = NULL; 2204 size_t max_recvmsg_len; 2205 struct module *module; 2206 int err = -ENOBUFS; 2207 int alloc_min_size; 2208 int alloc_size; 2209 2210 if (!lock_taken) 2211 mutex_lock(&nlk->nl_cb_mutex); 2212 if (!nlk->cb_running) { 2213 err = -EINVAL; 2214 goto errout_skb; 2215 } 2216 2217 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2218 goto errout_skb; 2219 2220 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2221 * required, but it makes sense to _attempt_ a 16K bytes allocation 2222 * to reduce number of system calls on dump operations, if user 2223 * ever provided a big enough buffer. 2224 */ 2225 cb = &nlk->cb; 2226 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2227 2228 max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); 2229 if (alloc_min_size < max_recvmsg_len) { 2230 alloc_size = max_recvmsg_len; 2231 skb = alloc_skb(alloc_size, 2232 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2233 __GFP_NOWARN | __GFP_NORETRY); 2234 } 2235 if (!skb) { 2236 alloc_size = alloc_min_size; 2237 skb = alloc_skb(alloc_size, GFP_KERNEL); 2238 } 2239 if (!skb) 2240 goto errout_skb; 2241 2242 /* Trim skb to allocated size. User is expected to provide buffer as 2243 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2244 * netlink_recvmsg())). dump will pack as many smaller messages as 2245 * could fit within the allocated skb. skb is typically allocated 2246 * with larger space than required (could be as much as near 2x the 2247 * requested size with align to next power of 2 approach). Allowing 2248 * dump to use the excess space makes it difficult for a user to have a 2249 * reasonable static buffer based on the expected largest dump of a 2250 * single netdev. The outcome is MSG_TRUNC error. 2251 */ 2252 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2253 2254 /* Make sure malicious BPF programs can not read unitialized memory 2255 * from skb->head -> skb->data 2256 */ 2257 skb_reset_network_header(skb); 2258 skb_reset_mac_header(skb); 2259 2260 netlink_skb_set_owner_r(skb, sk); 2261 2262 if (nlk->dump_done_errno > 0) { 2263 struct mutex *extra_mutex = nlk->dump_cb_mutex; 2264 2265 cb->extack = &extack; 2266 2267 if (cb->flags & RTNL_FLAG_DUMP_UNLOCKED) 2268 extra_mutex = NULL; 2269 if (extra_mutex) 2270 mutex_lock(extra_mutex); 2271 nlk->dump_done_errno = cb->dump(skb, cb); 2272 if (extra_mutex) 2273 mutex_unlock(extra_mutex); 2274 2275 cb->extack = NULL; 2276 } 2277 2278 if (nlk->dump_done_errno > 0 || 2279 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2280 mutex_unlock(&nlk->nl_cb_mutex); 2281 2282 if (sk_filter(sk, skb)) 2283 kfree_skb(skb); 2284 else 2285 __netlink_sendskb(sk, skb); 2286 return 0; 2287 } 2288 2289 if (netlink_dump_done(nlk, skb, cb, &extack)) 2290 goto errout_skb; 2291 2292 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2293 /* frag_list skb's data is used for compat tasks 2294 * and the regular skb's data for normal (non-compat) tasks. 2295 * See netlink_recvmsg(). 2296 */ 2297 if (unlikely(skb_shinfo(skb)->frag_list)) { 2298 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2299 goto errout_skb; 2300 } 2301 #endif 2302 2303 if (sk_filter(sk, skb)) 2304 kfree_skb(skb); 2305 else 2306 __netlink_sendskb(sk, skb); 2307 2308 if (cb->done) 2309 cb->done(cb); 2310 2311 WRITE_ONCE(nlk->cb_running, false); 2312 module = cb->module; 2313 skb = cb->skb; 2314 mutex_unlock(&nlk->nl_cb_mutex); 2315 module_put(module); 2316 consume_skb(skb); 2317 return 0; 2318 2319 errout_skb: 2320 mutex_unlock(&nlk->nl_cb_mutex); 2321 kfree_skb(skb); 2322 return err; 2323 } 2324 2325 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2326 const struct nlmsghdr *nlh, 2327 struct netlink_dump_control *control) 2328 { 2329 struct netlink_callback *cb; 2330 struct netlink_sock *nlk; 2331 struct sock *sk; 2332 int ret; 2333 2334 refcount_inc(&skb->users); 2335 2336 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2337 if (sk == NULL) { 2338 ret = -ECONNREFUSED; 2339 goto error_free; 2340 } 2341 2342 nlk = nlk_sk(sk); 2343 mutex_lock(&nlk->nl_cb_mutex); 2344 /* A dump is in progress... */ 2345 if (nlk->cb_running) { 2346 ret = -EBUSY; 2347 goto error_unlock; 2348 } 2349 /* add reference of module which cb->dump belongs to */ 2350 if (!try_module_get(control->module)) { 2351 ret = -EPROTONOSUPPORT; 2352 goto error_unlock; 2353 } 2354 2355 cb = &nlk->cb; 2356 memset(cb, 0, sizeof(*cb)); 2357 cb->dump = control->dump; 2358 cb->done = control->done; 2359 cb->nlh = nlh; 2360 cb->data = control->data; 2361 cb->module = control->module; 2362 cb->min_dump_alloc = control->min_dump_alloc; 2363 cb->flags = control->flags; 2364 cb->skb = skb; 2365 2366 cb->strict_check = nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 2367 2368 if (control->start) { 2369 cb->extack = control->extack; 2370 ret = control->start(cb); 2371 cb->extack = NULL; 2372 if (ret) 2373 goto error_put; 2374 } 2375 2376 WRITE_ONCE(nlk->cb_running, true); 2377 nlk->dump_done_errno = INT_MAX; 2378 2379 ret = netlink_dump(sk, true); 2380 2381 sock_put(sk); 2382 2383 if (ret) 2384 return ret; 2385 2386 /* We successfully started a dump, by returning -EINTR we 2387 * signal not to send ACK even if it was requested. 2388 */ 2389 return -EINTR; 2390 2391 error_put: 2392 module_put(control->module); 2393 error_unlock: 2394 sock_put(sk); 2395 mutex_unlock(&nlk->nl_cb_mutex); 2396 error_free: 2397 kfree_skb(skb); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(__netlink_dump_start); 2401 2402 static size_t 2403 netlink_ack_tlv_len(struct netlink_sock *nlk, int err, 2404 const struct netlink_ext_ack *extack) 2405 { 2406 size_t tlvlen; 2407 2408 if (!extack || !test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) 2409 return 0; 2410 2411 tlvlen = 0; 2412 if (extack->_msg) 2413 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2414 if (extack->cookie_len) 2415 tlvlen += nla_total_size(extack->cookie_len); 2416 2417 /* Following attributes are only reported as error (not warning) */ 2418 if (!err) 2419 return tlvlen; 2420 2421 if (extack->bad_attr) 2422 tlvlen += nla_total_size(sizeof(u32)); 2423 if (extack->policy) 2424 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2425 if (extack->miss_type) 2426 tlvlen += nla_total_size(sizeof(u32)); 2427 if (extack->miss_nest) 2428 tlvlen += nla_total_size(sizeof(u32)); 2429 2430 return tlvlen; 2431 } 2432 2433 static void 2434 netlink_ack_tlv_fill(struct sk_buff *in_skb, struct sk_buff *skb, 2435 struct nlmsghdr *nlh, int err, 2436 const struct netlink_ext_ack *extack) 2437 { 2438 if (extack->_msg) 2439 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); 2440 if (extack->cookie_len) 2441 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2442 extack->cookie_len, extack->cookie)); 2443 2444 if (!err) 2445 return; 2446 2447 if (extack->bad_attr && 2448 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2449 (u8 *)extack->bad_attr >= in_skb->data + in_skb->len)) 2450 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2451 (u8 *)extack->bad_attr - (u8 *)nlh)); 2452 if (extack->policy) 2453 netlink_policy_dump_write_attr(skb, extack->policy, 2454 NLMSGERR_ATTR_POLICY); 2455 if (extack->miss_type) 2456 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_TYPE, 2457 extack->miss_type)); 2458 if (extack->miss_nest && 2459 !WARN_ON((u8 *)extack->miss_nest < in_skb->data || 2460 (u8 *)extack->miss_nest > in_skb->data + in_skb->len)) 2461 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_NEST, 2462 (u8 *)extack->miss_nest - (u8 *)nlh)); 2463 } 2464 2465 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2466 const struct netlink_ext_ack *extack) 2467 { 2468 struct sk_buff *skb; 2469 struct nlmsghdr *rep; 2470 struct nlmsgerr *errmsg; 2471 size_t payload = sizeof(*errmsg); 2472 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2473 unsigned int flags = 0; 2474 size_t tlvlen; 2475 2476 /* Error messages get the original request appened, unless the user 2477 * requests to cap the error message, and get extra error data if 2478 * requested. 2479 */ 2480 if (err && !test_bit(NETLINK_F_CAP_ACK, &nlk->flags)) 2481 payload += nlmsg_len(nlh); 2482 else 2483 flags |= NLM_F_CAPPED; 2484 2485 tlvlen = netlink_ack_tlv_len(nlk, err, extack); 2486 if (tlvlen) 2487 flags |= NLM_F_ACK_TLVS; 2488 2489 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2490 if (!skb) 2491 goto err_skb; 2492 2493 rep = nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2494 NLMSG_ERROR, sizeof(*errmsg), flags); 2495 if (!rep) 2496 goto err_bad_put; 2497 errmsg = nlmsg_data(rep); 2498 errmsg->error = err; 2499 errmsg->msg = *nlh; 2500 2501 if (!(flags & NLM_F_CAPPED)) { 2502 if (!nlmsg_append(skb, nlmsg_len(nlh))) 2503 goto err_bad_put; 2504 2505 memcpy(nlmsg_data(&errmsg->msg), nlmsg_data(nlh), 2506 nlmsg_len(nlh)); 2507 } 2508 2509 if (tlvlen) 2510 netlink_ack_tlv_fill(in_skb, skb, nlh, err, extack); 2511 2512 nlmsg_end(skb, rep); 2513 2514 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2515 2516 return; 2517 2518 err_bad_put: 2519 nlmsg_free(skb); 2520 err_skb: 2521 WRITE_ONCE(NETLINK_CB(in_skb).sk->sk_err, ENOBUFS); 2522 sk_error_report(NETLINK_CB(in_skb).sk); 2523 } 2524 EXPORT_SYMBOL(netlink_ack); 2525 2526 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2527 struct nlmsghdr *, 2528 struct netlink_ext_ack *)) 2529 { 2530 struct netlink_ext_ack extack; 2531 struct nlmsghdr *nlh; 2532 int err; 2533 2534 while (skb->len >= nlmsg_total_size(0)) { 2535 int msglen; 2536 2537 memset(&extack, 0, sizeof(extack)); 2538 nlh = nlmsg_hdr(skb); 2539 err = 0; 2540 2541 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2542 return 0; 2543 2544 /* Only requests are handled by the kernel */ 2545 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2546 goto ack; 2547 2548 /* Skip control messages */ 2549 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2550 goto ack; 2551 2552 err = cb(skb, nlh, &extack); 2553 if (err == -EINTR) 2554 goto skip; 2555 2556 ack: 2557 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2558 netlink_ack(skb, nlh, err, &extack); 2559 2560 skip: 2561 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2562 if (msglen > skb->len) 2563 msglen = skb->len; 2564 skb_pull(skb, msglen); 2565 } 2566 2567 return 0; 2568 } 2569 EXPORT_SYMBOL(netlink_rcv_skb); 2570 2571 /** 2572 * nlmsg_notify - send a notification netlink message 2573 * @sk: netlink socket to use 2574 * @skb: notification message 2575 * @portid: destination netlink portid for reports or 0 2576 * @group: destination multicast group or 0 2577 * @report: 1 to report back, 0 to disable 2578 * @flags: allocation flags 2579 */ 2580 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2581 unsigned int group, int report, gfp_t flags) 2582 { 2583 int err = 0; 2584 2585 if (group) { 2586 int exclude_portid = 0; 2587 2588 if (report) { 2589 refcount_inc(&skb->users); 2590 exclude_portid = portid; 2591 } 2592 2593 /* errors reported via destination sk->sk_err, but propagate 2594 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2595 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2596 if (err == -ESRCH) 2597 err = 0; 2598 } 2599 2600 if (report) { 2601 int err2; 2602 2603 err2 = nlmsg_unicast(sk, skb, portid); 2604 if (!err) 2605 err = err2; 2606 } 2607 2608 return err; 2609 } 2610 EXPORT_SYMBOL(nlmsg_notify); 2611 2612 #ifdef CONFIG_PROC_FS 2613 struct nl_seq_iter { 2614 struct seq_net_private p; 2615 struct rhashtable_iter hti; 2616 int link; 2617 }; 2618 2619 static void netlink_walk_start(struct nl_seq_iter *iter) 2620 { 2621 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2622 rhashtable_walk_start(&iter->hti); 2623 } 2624 2625 static void netlink_walk_stop(struct nl_seq_iter *iter) 2626 { 2627 rhashtable_walk_stop(&iter->hti); 2628 rhashtable_walk_exit(&iter->hti); 2629 } 2630 2631 static void *__netlink_seq_next(struct seq_file *seq) 2632 { 2633 struct nl_seq_iter *iter = seq->private; 2634 struct netlink_sock *nlk; 2635 2636 do { 2637 for (;;) { 2638 nlk = rhashtable_walk_next(&iter->hti); 2639 2640 if (IS_ERR(nlk)) { 2641 if (PTR_ERR(nlk) == -EAGAIN) 2642 continue; 2643 2644 return nlk; 2645 } 2646 2647 if (nlk) 2648 break; 2649 2650 netlink_walk_stop(iter); 2651 if (++iter->link >= MAX_LINKS) 2652 return NULL; 2653 2654 netlink_walk_start(iter); 2655 } 2656 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2657 2658 return nlk; 2659 } 2660 2661 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2662 __acquires(RCU) 2663 { 2664 struct nl_seq_iter *iter = seq->private; 2665 void *obj = SEQ_START_TOKEN; 2666 loff_t pos; 2667 2668 iter->link = 0; 2669 2670 netlink_walk_start(iter); 2671 2672 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2673 obj = __netlink_seq_next(seq); 2674 2675 return obj; 2676 } 2677 2678 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2679 { 2680 ++*pos; 2681 return __netlink_seq_next(seq); 2682 } 2683 2684 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2685 { 2686 struct nl_seq_iter *iter = seq->private; 2687 2688 if (iter->link >= MAX_LINKS) 2689 return; 2690 2691 netlink_walk_stop(iter); 2692 } 2693 2694 2695 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2696 { 2697 if (v == SEQ_START_TOKEN) { 2698 seq_puts(seq, 2699 "sk Eth Pid Groups " 2700 "Rmem Wmem Dump Locks Drops Inode\n"); 2701 } else { 2702 struct sock *s = v; 2703 struct netlink_sock *nlk = nlk_sk(s); 2704 2705 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2706 s, 2707 s->sk_protocol, 2708 nlk->portid, 2709 nlk->groups ? (u32)nlk->groups[0] : 0, 2710 sk_rmem_alloc_get(s), 2711 sk_wmem_alloc_get(s), 2712 READ_ONCE(nlk->cb_running), 2713 refcount_read(&s->sk_refcnt), 2714 atomic_read(&s->sk_drops), 2715 sock_i_ino(s) 2716 ); 2717 2718 } 2719 return 0; 2720 } 2721 2722 #ifdef CONFIG_BPF_SYSCALL 2723 struct bpf_iter__netlink { 2724 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2725 __bpf_md_ptr(struct netlink_sock *, sk); 2726 }; 2727 2728 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2729 2730 static int netlink_prog_seq_show(struct bpf_prog *prog, 2731 struct bpf_iter_meta *meta, 2732 void *v) 2733 { 2734 struct bpf_iter__netlink ctx; 2735 2736 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2737 ctx.meta = meta; 2738 ctx.sk = nlk_sk((struct sock *)v); 2739 return bpf_iter_run_prog(prog, &ctx); 2740 } 2741 2742 static int netlink_seq_show(struct seq_file *seq, void *v) 2743 { 2744 struct bpf_iter_meta meta; 2745 struct bpf_prog *prog; 2746 2747 meta.seq = seq; 2748 prog = bpf_iter_get_info(&meta, false); 2749 if (!prog) 2750 return netlink_native_seq_show(seq, v); 2751 2752 if (v != SEQ_START_TOKEN) 2753 return netlink_prog_seq_show(prog, &meta, v); 2754 2755 return 0; 2756 } 2757 2758 static void netlink_seq_stop(struct seq_file *seq, void *v) 2759 { 2760 struct bpf_iter_meta meta; 2761 struct bpf_prog *prog; 2762 2763 if (!v) { 2764 meta.seq = seq; 2765 prog = bpf_iter_get_info(&meta, true); 2766 if (prog) 2767 (void)netlink_prog_seq_show(prog, &meta, v); 2768 } 2769 2770 netlink_native_seq_stop(seq, v); 2771 } 2772 #else 2773 static int netlink_seq_show(struct seq_file *seq, void *v) 2774 { 2775 return netlink_native_seq_show(seq, v); 2776 } 2777 2778 static void netlink_seq_stop(struct seq_file *seq, void *v) 2779 { 2780 netlink_native_seq_stop(seq, v); 2781 } 2782 #endif 2783 2784 static const struct seq_operations netlink_seq_ops = { 2785 .start = netlink_seq_start, 2786 .next = netlink_seq_next, 2787 .stop = netlink_seq_stop, 2788 .show = netlink_seq_show, 2789 }; 2790 #endif 2791 2792 int netlink_register_notifier(struct notifier_block *nb) 2793 { 2794 return blocking_notifier_chain_register(&netlink_chain, nb); 2795 } 2796 EXPORT_SYMBOL(netlink_register_notifier); 2797 2798 int netlink_unregister_notifier(struct notifier_block *nb) 2799 { 2800 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2801 } 2802 EXPORT_SYMBOL(netlink_unregister_notifier); 2803 2804 static const struct proto_ops netlink_ops = { 2805 .family = PF_NETLINK, 2806 .owner = THIS_MODULE, 2807 .release = netlink_release, 2808 .bind = netlink_bind, 2809 .connect = netlink_connect, 2810 .socketpair = sock_no_socketpair, 2811 .accept = sock_no_accept, 2812 .getname = netlink_getname, 2813 .poll = datagram_poll, 2814 .ioctl = netlink_ioctl, 2815 .listen = sock_no_listen, 2816 .shutdown = sock_no_shutdown, 2817 .setsockopt = netlink_setsockopt, 2818 .getsockopt = netlink_getsockopt, 2819 .sendmsg = netlink_sendmsg, 2820 .recvmsg = netlink_recvmsg, 2821 .mmap = sock_no_mmap, 2822 }; 2823 2824 static const struct net_proto_family netlink_family_ops = { 2825 .family = PF_NETLINK, 2826 .create = netlink_create, 2827 .owner = THIS_MODULE, /* for consistency 8) */ 2828 }; 2829 2830 static int __net_init netlink_net_init(struct net *net) 2831 { 2832 #ifdef CONFIG_PROC_FS 2833 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2834 sizeof(struct nl_seq_iter))) 2835 return -ENOMEM; 2836 #endif 2837 return 0; 2838 } 2839 2840 static void __net_exit netlink_net_exit(struct net *net) 2841 { 2842 #ifdef CONFIG_PROC_FS 2843 remove_proc_entry("netlink", net->proc_net); 2844 #endif 2845 } 2846 2847 static void __init netlink_add_usersock_entry(void) 2848 { 2849 struct listeners *listeners; 2850 int groups = 32; 2851 2852 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2853 if (!listeners) 2854 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2855 2856 netlink_table_grab(); 2857 2858 nl_table[NETLINK_USERSOCK].groups = groups; 2859 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2860 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2861 nl_table[NETLINK_USERSOCK].registered = 1; 2862 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2863 2864 netlink_table_ungrab(); 2865 } 2866 2867 static struct pernet_operations __net_initdata netlink_net_ops = { 2868 .init = netlink_net_init, 2869 .exit = netlink_net_exit, 2870 }; 2871 2872 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2873 { 2874 const struct netlink_sock *nlk = data; 2875 struct netlink_compare_arg arg; 2876 2877 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2878 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2879 } 2880 2881 static const struct rhashtable_params netlink_rhashtable_params = { 2882 .head_offset = offsetof(struct netlink_sock, node), 2883 .key_len = netlink_compare_arg_len, 2884 .obj_hashfn = netlink_hash, 2885 .obj_cmpfn = netlink_compare, 2886 .automatic_shrinking = true, 2887 }; 2888 2889 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2890 BTF_ID_LIST(btf_netlink_sock_id) 2891 BTF_ID(struct, netlink_sock) 2892 2893 static const struct bpf_iter_seq_info netlink_seq_info = { 2894 .seq_ops = &netlink_seq_ops, 2895 .init_seq_private = bpf_iter_init_seq_net, 2896 .fini_seq_private = bpf_iter_fini_seq_net, 2897 .seq_priv_size = sizeof(struct nl_seq_iter), 2898 }; 2899 2900 static struct bpf_iter_reg netlink_reg_info = { 2901 .target = "netlink", 2902 .ctx_arg_info_size = 1, 2903 .ctx_arg_info = { 2904 { offsetof(struct bpf_iter__netlink, sk), 2905 PTR_TO_BTF_ID_OR_NULL }, 2906 }, 2907 .seq_info = &netlink_seq_info, 2908 }; 2909 2910 static int __init bpf_iter_register(void) 2911 { 2912 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2913 return bpf_iter_reg_target(&netlink_reg_info); 2914 } 2915 #endif 2916 2917 static int __init netlink_proto_init(void) 2918 { 2919 int i; 2920 int err = proto_register(&netlink_proto, 0); 2921 2922 if (err != 0) 2923 goto out; 2924 2925 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2926 err = bpf_iter_register(); 2927 if (err) 2928 goto out; 2929 #endif 2930 2931 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2932 2933 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2934 if (!nl_table) 2935 goto panic; 2936 2937 for (i = 0; i < MAX_LINKS; i++) { 2938 if (rhashtable_init(&nl_table[i].hash, 2939 &netlink_rhashtable_params) < 0) { 2940 while (--i > 0) 2941 rhashtable_destroy(&nl_table[i].hash); 2942 kfree(nl_table); 2943 goto panic; 2944 } 2945 } 2946 2947 netlink_add_usersock_entry(); 2948 2949 sock_register(&netlink_family_ops); 2950 register_pernet_subsys(&netlink_net_ops); 2951 register_pernet_subsys(&netlink_tap_net_ops); 2952 /* The netlink device handler may be needed early. */ 2953 rtnetlink_init(); 2954 out: 2955 return err; 2956 panic: 2957 panic("netlink_init: Cannot allocate nl_table\n"); 2958 } 2959 2960 core_initcall(netlink_proto_init); 2961