xref: /openbmc/linux/net/netfilter/x_tables.c (revision 2d972b6a)
1 /*
2  * x_tables core - Backend for {ip,ip6,arp}_tables
3  *
4  * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5  * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on existing ip_tables code which is
8  *   Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9  *   Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31 
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37 
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41 
42 #define XT_PCPU_BLOCK_SIZE 4096
43 #define XT_MAX_TABLE_SIZE	(512 * 1024 * 1024)
44 
45 struct compat_delta {
46 	unsigned int offset; /* offset in kernel */
47 	int delta; /* delta in 32bit user land */
48 };
49 
50 struct xt_af {
51 	struct mutex mutex;
52 	struct list_head match;
53 	struct list_head target;
54 #ifdef CONFIG_COMPAT
55 	struct mutex compat_mutex;
56 	struct compat_delta *compat_tab;
57 	unsigned int number; /* number of slots in compat_tab[] */
58 	unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61 
62 static struct xt_af *xt;
63 
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 	[NFPROTO_UNSPEC] = "x",
66 	[NFPROTO_IPV4]   = "ip",
67 	[NFPROTO_ARP]    = "arp",
68 	[NFPROTO_BRIDGE] = "eb",
69 	[NFPROTO_IPV6]   = "ip6",
70 };
71 
72 /* Registration hooks for targets. */
73 int xt_register_target(struct xt_target *target)
74 {
75 	u_int8_t af = target->family;
76 
77 	mutex_lock(&xt[af].mutex);
78 	list_add(&target->list, &xt[af].target);
79 	mutex_unlock(&xt[af].mutex);
80 	return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83 
84 void
85 xt_unregister_target(struct xt_target *target)
86 {
87 	u_int8_t af = target->family;
88 
89 	mutex_lock(&xt[af].mutex);
90 	list_del(&target->list);
91 	mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94 
95 int
96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 	unsigned int i;
99 	int err = 0;
100 
101 	for (i = 0; i < n; i++) {
102 		err = xt_register_target(&target[i]);
103 		if (err)
104 			goto err;
105 	}
106 	return err;
107 
108 err:
109 	if (i > 0)
110 		xt_unregister_targets(target, i);
111 	return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114 
115 void
116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 	while (n-- > 0)
119 		xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122 
123 int xt_register_match(struct xt_match *match)
124 {
125 	u_int8_t af = match->family;
126 
127 	mutex_lock(&xt[af].mutex);
128 	list_add(&match->list, &xt[af].match);
129 	mutex_unlock(&xt[af].mutex);
130 	return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133 
134 void
135 xt_unregister_match(struct xt_match *match)
136 {
137 	u_int8_t af = match->family;
138 
139 	mutex_lock(&xt[af].mutex);
140 	list_del(&match->list);
141 	mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144 
145 int
146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 	unsigned int i;
149 	int err = 0;
150 
151 	for (i = 0; i < n; i++) {
152 		err = xt_register_match(&match[i]);
153 		if (err)
154 			goto err;
155 	}
156 	return err;
157 
158 err:
159 	if (i > 0)
160 		xt_unregister_matches(match, i);
161 	return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164 
165 void
166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 	while (n-- > 0)
169 		xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172 
173 
174 /*
175  * These are weird, but module loading must not be done with mutex
176  * held (since they will register), and we have to have a single
177  * function to use.
178  */
179 
180 /* Find match, grabs ref.  Returns ERR_PTR() on error. */
181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 	struct xt_match *m;
184 	int err = -ENOENT;
185 
186 	mutex_lock(&xt[af].mutex);
187 	list_for_each_entry(m, &xt[af].match, list) {
188 		if (strcmp(m->name, name) == 0) {
189 			if (m->revision == revision) {
190 				if (try_module_get(m->me)) {
191 					mutex_unlock(&xt[af].mutex);
192 					return m;
193 				}
194 			} else
195 				err = -EPROTOTYPE; /* Found something. */
196 		}
197 	}
198 	mutex_unlock(&xt[af].mutex);
199 
200 	if (af != NFPROTO_UNSPEC)
201 		/* Try searching again in the family-independent list */
202 		return xt_find_match(NFPROTO_UNSPEC, name, revision);
203 
204 	return ERR_PTR(err);
205 }
206 EXPORT_SYMBOL(xt_find_match);
207 
208 struct xt_match *
209 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
210 {
211 	struct xt_match *match;
212 
213 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
214 		return ERR_PTR(-EINVAL);
215 
216 	match = xt_find_match(nfproto, name, revision);
217 	if (IS_ERR(match)) {
218 		request_module("%st_%s", xt_prefix[nfproto], name);
219 		match = xt_find_match(nfproto, name, revision);
220 	}
221 
222 	return match;
223 }
224 EXPORT_SYMBOL_GPL(xt_request_find_match);
225 
226 /* Find target, grabs ref.  Returns ERR_PTR() on error. */
227 struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
228 {
229 	struct xt_target *t;
230 	int err = -ENOENT;
231 
232 	mutex_lock(&xt[af].mutex);
233 	list_for_each_entry(t, &xt[af].target, list) {
234 		if (strcmp(t->name, name) == 0) {
235 			if (t->revision == revision) {
236 				if (try_module_get(t->me)) {
237 					mutex_unlock(&xt[af].mutex);
238 					return t;
239 				}
240 			} else
241 				err = -EPROTOTYPE; /* Found something. */
242 		}
243 	}
244 	mutex_unlock(&xt[af].mutex);
245 
246 	if (af != NFPROTO_UNSPEC)
247 		/* Try searching again in the family-independent list */
248 		return xt_find_target(NFPROTO_UNSPEC, name, revision);
249 
250 	return ERR_PTR(err);
251 }
252 EXPORT_SYMBOL(xt_find_target);
253 
254 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
255 {
256 	struct xt_target *target;
257 
258 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
259 		return ERR_PTR(-EINVAL);
260 
261 	target = xt_find_target(af, name, revision);
262 	if (IS_ERR(target)) {
263 		request_module("%st_%s", xt_prefix[af], name);
264 		target = xt_find_target(af, name, revision);
265 	}
266 
267 	return target;
268 }
269 EXPORT_SYMBOL_GPL(xt_request_find_target);
270 
271 
272 static int xt_obj_to_user(u16 __user *psize, u16 size,
273 			  void __user *pname, const char *name,
274 			  u8 __user *prev, u8 rev)
275 {
276 	if (put_user(size, psize))
277 		return -EFAULT;
278 	if (copy_to_user(pname, name, strlen(name) + 1))
279 		return -EFAULT;
280 	if (put_user(rev, prev))
281 		return -EFAULT;
282 
283 	return 0;
284 }
285 
286 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE)				\
287 	xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size,	\
288 		       U->u.user.name, K->u.kernel.TYPE->name,		\
289 		       &U->u.user.revision, K->u.kernel.TYPE->revision)
290 
291 int xt_data_to_user(void __user *dst, const void *src,
292 		    int usersize, int size, int aligned_size)
293 {
294 	usersize = usersize ? : size;
295 	if (copy_to_user(dst, src, usersize))
296 		return -EFAULT;
297 	if (usersize != aligned_size &&
298 	    clear_user(dst + usersize, aligned_size - usersize))
299 		return -EFAULT;
300 
301 	return 0;
302 }
303 EXPORT_SYMBOL_GPL(xt_data_to_user);
304 
305 #define XT_DATA_TO_USER(U, K, TYPE)					\
306 	xt_data_to_user(U->data, K->data,				\
307 			K->u.kernel.TYPE->usersize,			\
308 			K->u.kernel.TYPE->TYPE##size,			\
309 			XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
310 
311 int xt_match_to_user(const struct xt_entry_match *m,
312 		     struct xt_entry_match __user *u)
313 {
314 	return XT_OBJ_TO_USER(u, m, match, 0) ||
315 	       XT_DATA_TO_USER(u, m, match);
316 }
317 EXPORT_SYMBOL_GPL(xt_match_to_user);
318 
319 int xt_target_to_user(const struct xt_entry_target *t,
320 		      struct xt_entry_target __user *u)
321 {
322 	return XT_OBJ_TO_USER(u, t, target, 0) ||
323 	       XT_DATA_TO_USER(u, t, target);
324 }
325 EXPORT_SYMBOL_GPL(xt_target_to_user);
326 
327 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
328 {
329 	const struct xt_match *m;
330 	int have_rev = 0;
331 
332 	list_for_each_entry(m, &xt[af].match, list) {
333 		if (strcmp(m->name, name) == 0) {
334 			if (m->revision > *bestp)
335 				*bestp = m->revision;
336 			if (m->revision == revision)
337 				have_rev = 1;
338 		}
339 	}
340 
341 	if (af != NFPROTO_UNSPEC && !have_rev)
342 		return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
343 
344 	return have_rev;
345 }
346 
347 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
348 {
349 	const struct xt_target *t;
350 	int have_rev = 0;
351 
352 	list_for_each_entry(t, &xt[af].target, list) {
353 		if (strcmp(t->name, name) == 0) {
354 			if (t->revision > *bestp)
355 				*bestp = t->revision;
356 			if (t->revision == revision)
357 				have_rev = 1;
358 		}
359 	}
360 
361 	if (af != NFPROTO_UNSPEC && !have_rev)
362 		return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
363 
364 	return have_rev;
365 }
366 
367 /* Returns true or false (if no such extension at all) */
368 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
369 		     int *err)
370 {
371 	int have_rev, best = -1;
372 
373 	mutex_lock(&xt[af].mutex);
374 	if (target == 1)
375 		have_rev = target_revfn(af, name, revision, &best);
376 	else
377 		have_rev = match_revfn(af, name, revision, &best);
378 	mutex_unlock(&xt[af].mutex);
379 
380 	/* Nothing at all?  Return 0 to try loading module. */
381 	if (best == -1) {
382 		*err = -ENOENT;
383 		return 0;
384 	}
385 
386 	*err = best;
387 	if (!have_rev)
388 		*err = -EPROTONOSUPPORT;
389 	return 1;
390 }
391 EXPORT_SYMBOL_GPL(xt_find_revision);
392 
393 static char *
394 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
395 {
396 	static const char *const inetbr_names[] = {
397 		"PREROUTING", "INPUT", "FORWARD",
398 		"OUTPUT", "POSTROUTING", "BROUTING",
399 	};
400 	static const char *const arp_names[] = {
401 		"INPUT", "FORWARD", "OUTPUT",
402 	};
403 	const char *const *names;
404 	unsigned int i, max;
405 	char *p = buf;
406 	bool np = false;
407 	int res;
408 
409 	names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
410 	max   = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
411 	                                   ARRAY_SIZE(inetbr_names);
412 	*p = '\0';
413 	for (i = 0; i < max; ++i) {
414 		if (!(mask & (1 << i)))
415 			continue;
416 		res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
417 		if (res > 0) {
418 			size -= res;
419 			p += res;
420 		}
421 		np = true;
422 	}
423 
424 	return buf;
425 }
426 
427 /**
428  * xt_check_proc_name - check that name is suitable for /proc file creation
429  *
430  * @name: file name candidate
431  * @size: length of buffer
432  *
433  * some x_tables modules wish to create a file in /proc.
434  * This function makes sure that the name is suitable for this
435  * purpose, it checks that name is NUL terminated and isn't a 'special'
436  * name, like "..".
437  *
438  * returns negative number on error or 0 if name is useable.
439  */
440 int xt_check_proc_name(const char *name, unsigned int size)
441 {
442 	if (name[0] == '\0')
443 		return -EINVAL;
444 
445 	if (strnlen(name, size) == size)
446 		return -ENAMETOOLONG;
447 
448 	if (strcmp(name, ".") == 0 ||
449 	    strcmp(name, "..") == 0 ||
450 	    strchr(name, '/'))
451 		return -EINVAL;
452 
453 	return 0;
454 }
455 EXPORT_SYMBOL(xt_check_proc_name);
456 
457 int xt_check_match(struct xt_mtchk_param *par,
458 		   unsigned int size, u_int8_t proto, bool inv_proto)
459 {
460 	int ret;
461 
462 	if (XT_ALIGN(par->match->matchsize) != size &&
463 	    par->match->matchsize != -1) {
464 		/*
465 		 * ebt_among is exempt from centralized matchsize checking
466 		 * because it uses a dynamic-size data set.
467 		 */
468 		pr_err_ratelimited("%s_tables: %s.%u match: invalid size %u (kernel) != (user) %u\n",
469 				   xt_prefix[par->family], par->match->name,
470 				   par->match->revision,
471 				   XT_ALIGN(par->match->matchsize), size);
472 		return -EINVAL;
473 	}
474 	if (par->match->table != NULL &&
475 	    strcmp(par->match->table, par->table) != 0) {
476 		pr_info_ratelimited("%s_tables: %s match: only valid in %s table, not %s\n",
477 				    xt_prefix[par->family], par->match->name,
478 				    par->match->table, par->table);
479 		return -EINVAL;
480 	}
481 	if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
482 		char used[64], allow[64];
483 
484 		pr_info_ratelimited("%s_tables: %s match: used from hooks %s, but only valid from %s\n",
485 				    xt_prefix[par->family], par->match->name,
486 				    textify_hooks(used, sizeof(used),
487 						  par->hook_mask, par->family),
488 				    textify_hooks(allow, sizeof(allow),
489 						  par->match->hooks,
490 						  par->family));
491 		return -EINVAL;
492 	}
493 	if (par->match->proto && (par->match->proto != proto || inv_proto)) {
494 		pr_info_ratelimited("%s_tables: %s match: only valid for protocol %u\n",
495 				    xt_prefix[par->family], par->match->name,
496 				    par->match->proto);
497 		return -EINVAL;
498 	}
499 	if (par->match->checkentry != NULL) {
500 		ret = par->match->checkentry(par);
501 		if (ret < 0)
502 			return ret;
503 		else if (ret > 0)
504 			/* Flag up potential errors. */
505 			return -EIO;
506 	}
507 	return 0;
508 }
509 EXPORT_SYMBOL_GPL(xt_check_match);
510 
511 /** xt_check_entry_match - check that matches end before start of target
512  *
513  * @match: beginning of xt_entry_match
514  * @target: beginning of this rules target (alleged end of matches)
515  * @alignment: alignment requirement of match structures
516  *
517  * Validates that all matches add up to the beginning of the target,
518  * and that each match covers at least the base structure size.
519  *
520  * Return: 0 on success, negative errno on failure.
521  */
522 static int xt_check_entry_match(const char *match, const char *target,
523 				const size_t alignment)
524 {
525 	const struct xt_entry_match *pos;
526 	int length = target - match;
527 
528 	if (length == 0) /* no matches */
529 		return 0;
530 
531 	pos = (struct xt_entry_match *)match;
532 	do {
533 		if ((unsigned long)pos % alignment)
534 			return -EINVAL;
535 
536 		if (length < (int)sizeof(struct xt_entry_match))
537 			return -EINVAL;
538 
539 		if (pos->u.match_size < sizeof(struct xt_entry_match))
540 			return -EINVAL;
541 
542 		if (pos->u.match_size > length)
543 			return -EINVAL;
544 
545 		length -= pos->u.match_size;
546 		pos = ((void *)((char *)(pos) + (pos)->u.match_size));
547 	} while (length > 0);
548 
549 	return 0;
550 }
551 
552 /** xt_check_table_hooks - check hook entry points are sane
553  *
554  * @info xt_table_info to check
555  * @valid_hooks - hook entry points that we can enter from
556  *
557  * Validates that the hook entry and underflows points are set up.
558  *
559  * Return: 0 on success, negative errno on failure.
560  */
561 int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks)
562 {
563 	const char *err = "unsorted underflow";
564 	unsigned int i, max_uflow, max_entry;
565 	bool check_hooks = false;
566 
567 	BUILD_BUG_ON(ARRAY_SIZE(info->hook_entry) != ARRAY_SIZE(info->underflow));
568 
569 	max_entry = 0;
570 	max_uflow = 0;
571 
572 	for (i = 0; i < ARRAY_SIZE(info->hook_entry); i++) {
573 		if (!(valid_hooks & (1 << i)))
574 			continue;
575 
576 		if (info->hook_entry[i] == 0xFFFFFFFF)
577 			return -EINVAL;
578 		if (info->underflow[i] == 0xFFFFFFFF)
579 			return -EINVAL;
580 
581 		if (check_hooks) {
582 			if (max_uflow > info->underflow[i])
583 				goto error;
584 
585 			if (max_uflow == info->underflow[i]) {
586 				err = "duplicate underflow";
587 				goto error;
588 			}
589 			if (max_entry > info->hook_entry[i]) {
590 				err = "unsorted entry";
591 				goto error;
592 			}
593 			if (max_entry == info->hook_entry[i]) {
594 				err = "duplicate entry";
595 				goto error;
596 			}
597 		}
598 		max_entry = info->hook_entry[i];
599 		max_uflow = info->underflow[i];
600 		check_hooks = true;
601 	}
602 
603 	return 0;
604 error:
605 	pr_err_ratelimited("%s at hook %d\n", err, i);
606 	return -EINVAL;
607 }
608 EXPORT_SYMBOL(xt_check_table_hooks);
609 
610 static bool verdict_ok(int verdict)
611 {
612 	if (verdict > 0)
613 		return true;
614 
615 	if (verdict < 0) {
616 		int v = -verdict - 1;
617 
618 		if (verdict == XT_RETURN)
619 			return true;
620 
621 		switch (v) {
622 		case NF_ACCEPT: return true;
623 		case NF_DROP: return true;
624 		case NF_QUEUE: return true;
625 		default:
626 			break;
627 		}
628 
629 		return false;
630 	}
631 
632 	return false;
633 }
634 
635 static bool error_tg_ok(unsigned int usersize, unsigned int kernsize,
636 			const char *msg, unsigned int msglen)
637 {
638 	return usersize == kernsize && strnlen(msg, msglen) < msglen;
639 }
640 
641 #ifdef CONFIG_COMPAT
642 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
643 {
644 	struct xt_af *xp = &xt[af];
645 
646 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
647 
648 	if (WARN_ON(!xp->compat_tab))
649 		return -ENOMEM;
650 
651 	if (xp->cur >= xp->number)
652 		return -EINVAL;
653 
654 	if (xp->cur)
655 		delta += xp->compat_tab[xp->cur - 1].delta;
656 	xp->compat_tab[xp->cur].offset = offset;
657 	xp->compat_tab[xp->cur].delta = delta;
658 	xp->cur++;
659 	return 0;
660 }
661 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
662 
663 void xt_compat_flush_offsets(u_int8_t af)
664 {
665 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
666 
667 	if (xt[af].compat_tab) {
668 		vfree(xt[af].compat_tab);
669 		xt[af].compat_tab = NULL;
670 		xt[af].number = 0;
671 		xt[af].cur = 0;
672 	}
673 }
674 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
675 
676 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
677 {
678 	struct compat_delta *tmp = xt[af].compat_tab;
679 	int mid, left = 0, right = xt[af].cur - 1;
680 
681 	while (left <= right) {
682 		mid = (left + right) >> 1;
683 		if (offset > tmp[mid].offset)
684 			left = mid + 1;
685 		else if (offset < tmp[mid].offset)
686 			right = mid - 1;
687 		else
688 			return mid ? tmp[mid - 1].delta : 0;
689 	}
690 	return left ? tmp[left - 1].delta : 0;
691 }
692 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
693 
694 int xt_compat_init_offsets(u8 af, unsigned int number)
695 {
696 	size_t mem;
697 
698 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
699 
700 	if (!number || number > (INT_MAX / sizeof(struct compat_delta)))
701 		return -EINVAL;
702 
703 	if (WARN_ON(xt[af].compat_tab))
704 		return -EINVAL;
705 
706 	mem = sizeof(struct compat_delta) * number;
707 	if (mem > XT_MAX_TABLE_SIZE)
708 		return -ENOMEM;
709 
710 	xt[af].compat_tab = vmalloc(mem);
711 	if (!xt[af].compat_tab)
712 		return -ENOMEM;
713 
714 	xt[af].number = number;
715 	xt[af].cur = 0;
716 
717 	return 0;
718 }
719 EXPORT_SYMBOL(xt_compat_init_offsets);
720 
721 int xt_compat_match_offset(const struct xt_match *match)
722 {
723 	u_int16_t csize = match->compatsize ? : match->matchsize;
724 	return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
725 }
726 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
727 
728 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
729 			       unsigned int *size)
730 {
731 	const struct xt_match *match = m->u.kernel.match;
732 	struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
733 	int pad, off = xt_compat_match_offset(match);
734 	u_int16_t msize = cm->u.user.match_size;
735 	char name[sizeof(m->u.user.name)];
736 
737 	m = *dstptr;
738 	memcpy(m, cm, sizeof(*cm));
739 	if (match->compat_from_user)
740 		match->compat_from_user(m->data, cm->data);
741 	else
742 		memcpy(m->data, cm->data, msize - sizeof(*cm));
743 	pad = XT_ALIGN(match->matchsize) - match->matchsize;
744 	if (pad > 0)
745 		memset(m->data + match->matchsize, 0, pad);
746 
747 	msize += off;
748 	m->u.user.match_size = msize;
749 	strlcpy(name, match->name, sizeof(name));
750 	module_put(match->me);
751 	strncpy(m->u.user.name, name, sizeof(m->u.user.name));
752 
753 	*size += off;
754 	*dstptr += msize;
755 }
756 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
757 
758 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE)			\
759 	xt_data_to_user(U->data, K->data,				\
760 			K->u.kernel.TYPE->usersize,			\
761 			C_SIZE,						\
762 			COMPAT_XT_ALIGN(C_SIZE))
763 
764 int xt_compat_match_to_user(const struct xt_entry_match *m,
765 			    void __user **dstptr, unsigned int *size)
766 {
767 	const struct xt_match *match = m->u.kernel.match;
768 	struct compat_xt_entry_match __user *cm = *dstptr;
769 	int off = xt_compat_match_offset(match);
770 	u_int16_t msize = m->u.user.match_size - off;
771 
772 	if (XT_OBJ_TO_USER(cm, m, match, msize))
773 		return -EFAULT;
774 
775 	if (match->compat_to_user) {
776 		if (match->compat_to_user((void __user *)cm->data, m->data))
777 			return -EFAULT;
778 	} else {
779 		if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
780 			return -EFAULT;
781 	}
782 
783 	*size -= off;
784 	*dstptr += msize;
785 	return 0;
786 }
787 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
788 
789 /* non-compat version may have padding after verdict */
790 struct compat_xt_standard_target {
791 	struct compat_xt_entry_target t;
792 	compat_uint_t verdict;
793 };
794 
795 struct compat_xt_error_target {
796 	struct compat_xt_entry_target t;
797 	char errorname[XT_FUNCTION_MAXNAMELEN];
798 };
799 
800 int xt_compat_check_entry_offsets(const void *base, const char *elems,
801 				  unsigned int target_offset,
802 				  unsigned int next_offset)
803 {
804 	long size_of_base_struct = elems - (const char *)base;
805 	const struct compat_xt_entry_target *t;
806 	const char *e = base;
807 
808 	if (target_offset < size_of_base_struct)
809 		return -EINVAL;
810 
811 	if (target_offset + sizeof(*t) > next_offset)
812 		return -EINVAL;
813 
814 	t = (void *)(e + target_offset);
815 	if (t->u.target_size < sizeof(*t))
816 		return -EINVAL;
817 
818 	if (target_offset + t->u.target_size > next_offset)
819 		return -EINVAL;
820 
821 	if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
822 		const struct compat_xt_standard_target *st = (const void *)t;
823 
824 		if (COMPAT_XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
825 			return -EINVAL;
826 
827 		if (!verdict_ok(st->verdict))
828 			return -EINVAL;
829 	} else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
830 		const struct compat_xt_error_target *et = (const void *)t;
831 
832 		if (!error_tg_ok(t->u.target_size, sizeof(*et),
833 				 et->errorname, sizeof(et->errorname)))
834 			return -EINVAL;
835 	}
836 
837 	/* compat_xt_entry match has less strict alignment requirements,
838 	 * otherwise they are identical.  In case of padding differences
839 	 * we need to add compat version of xt_check_entry_match.
840 	 */
841 	BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
842 
843 	return xt_check_entry_match(elems, base + target_offset,
844 				    __alignof__(struct compat_xt_entry_match));
845 }
846 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
847 #endif /* CONFIG_COMPAT */
848 
849 /**
850  * xt_check_entry_offsets - validate arp/ip/ip6t_entry
851  *
852  * @base: pointer to arp/ip/ip6t_entry
853  * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
854  * @target_offset: the arp/ip/ip6_t->target_offset
855  * @next_offset: the arp/ip/ip6_t->next_offset
856  *
857  * validates that target_offset and next_offset are sane and that all
858  * match sizes (if any) align with the target offset.
859  *
860  * This function does not validate the targets or matches themselves, it
861  * only tests that all the offsets and sizes are correct, that all
862  * match structures are aligned, and that the last structure ends where
863  * the target structure begins.
864  *
865  * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
866  *
867  * The arp/ip/ip6t_entry structure @base must have passed following tests:
868  * - it must point to a valid memory location
869  * - base to base + next_offset must be accessible, i.e. not exceed allocated
870  *   length.
871  *
872  * A well-formed entry looks like this:
873  *
874  * ip(6)t_entry   match [mtdata]  match [mtdata] target [tgdata] ip(6)t_entry
875  * e->elems[]-----'                              |               |
876  *                matchsize                      |               |
877  *                                matchsize      |               |
878  *                                               |               |
879  * target_offset---------------------------------'               |
880  * next_offset---------------------------------------------------'
881  *
882  * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
883  *          This is where matches (if any) and the target reside.
884  * target_offset: beginning of target.
885  * next_offset: start of the next rule; also: size of this rule.
886  * Since targets have a minimum size, target_offset + minlen <= next_offset.
887  *
888  * Every match stores its size, sum of sizes must not exceed target_offset.
889  *
890  * Return: 0 on success, negative errno on failure.
891  */
892 int xt_check_entry_offsets(const void *base,
893 			   const char *elems,
894 			   unsigned int target_offset,
895 			   unsigned int next_offset)
896 {
897 	long size_of_base_struct = elems - (const char *)base;
898 	const struct xt_entry_target *t;
899 	const char *e = base;
900 
901 	/* target start is within the ip/ip6/arpt_entry struct */
902 	if (target_offset < size_of_base_struct)
903 		return -EINVAL;
904 
905 	if (target_offset + sizeof(*t) > next_offset)
906 		return -EINVAL;
907 
908 	t = (void *)(e + target_offset);
909 	if (t->u.target_size < sizeof(*t))
910 		return -EINVAL;
911 
912 	if (target_offset + t->u.target_size > next_offset)
913 		return -EINVAL;
914 
915 	if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
916 		const struct xt_standard_target *st = (const void *)t;
917 
918 		if (XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
919 			return -EINVAL;
920 
921 		if (!verdict_ok(st->verdict))
922 			return -EINVAL;
923 	} else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
924 		const struct xt_error_target *et = (const void *)t;
925 
926 		if (!error_tg_ok(t->u.target_size, sizeof(*et),
927 				 et->errorname, sizeof(et->errorname)))
928 			return -EINVAL;
929 	}
930 
931 	return xt_check_entry_match(elems, base + target_offset,
932 				    __alignof__(struct xt_entry_match));
933 }
934 EXPORT_SYMBOL(xt_check_entry_offsets);
935 
936 /**
937  * xt_alloc_entry_offsets - allocate array to store rule head offsets
938  *
939  * @size: number of entries
940  *
941  * Return: NULL or kmalloc'd or vmalloc'd array
942  */
943 unsigned int *xt_alloc_entry_offsets(unsigned int size)
944 {
945 	if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int))
946 		return NULL;
947 
948 	return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
949 
950 }
951 EXPORT_SYMBOL(xt_alloc_entry_offsets);
952 
953 /**
954  * xt_find_jump_offset - check if target is a valid jump offset
955  *
956  * @offsets: array containing all valid rule start offsets of a rule blob
957  * @target: the jump target to search for
958  * @size: entries in @offset
959  */
960 bool xt_find_jump_offset(const unsigned int *offsets,
961 			 unsigned int target, unsigned int size)
962 {
963 	int m, low = 0, hi = size;
964 
965 	while (hi > low) {
966 		m = (low + hi) / 2u;
967 
968 		if (offsets[m] > target)
969 			hi = m;
970 		else if (offsets[m] < target)
971 			low = m + 1;
972 		else
973 			return true;
974 	}
975 
976 	return false;
977 }
978 EXPORT_SYMBOL(xt_find_jump_offset);
979 
980 int xt_check_target(struct xt_tgchk_param *par,
981 		    unsigned int size, u_int8_t proto, bool inv_proto)
982 {
983 	int ret;
984 
985 	if (XT_ALIGN(par->target->targetsize) != size) {
986 		pr_err_ratelimited("%s_tables: %s.%u target: invalid size %u (kernel) != (user) %u\n",
987 				   xt_prefix[par->family], par->target->name,
988 				   par->target->revision,
989 				   XT_ALIGN(par->target->targetsize), size);
990 		return -EINVAL;
991 	}
992 	if (par->target->table != NULL &&
993 	    strcmp(par->target->table, par->table) != 0) {
994 		pr_info_ratelimited("%s_tables: %s target: only valid in %s table, not %s\n",
995 				    xt_prefix[par->family], par->target->name,
996 				    par->target->table, par->table);
997 		return -EINVAL;
998 	}
999 	if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
1000 		char used[64], allow[64];
1001 
1002 		pr_info_ratelimited("%s_tables: %s target: used from hooks %s, but only usable from %s\n",
1003 				    xt_prefix[par->family], par->target->name,
1004 				    textify_hooks(used, sizeof(used),
1005 						  par->hook_mask, par->family),
1006 				    textify_hooks(allow, sizeof(allow),
1007 						  par->target->hooks,
1008 						  par->family));
1009 		return -EINVAL;
1010 	}
1011 	if (par->target->proto && (par->target->proto != proto || inv_proto)) {
1012 		pr_info_ratelimited("%s_tables: %s target: only valid for protocol %u\n",
1013 				    xt_prefix[par->family], par->target->name,
1014 				    par->target->proto);
1015 		return -EINVAL;
1016 	}
1017 	if (par->target->checkentry != NULL) {
1018 		ret = par->target->checkentry(par);
1019 		if (ret < 0)
1020 			return ret;
1021 		else if (ret > 0)
1022 			/* Flag up potential errors. */
1023 			return -EIO;
1024 	}
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(xt_check_target);
1028 
1029 /**
1030  * xt_copy_counters_from_user - copy counters and metadata from userspace
1031  *
1032  * @user: src pointer to userspace memory
1033  * @len: alleged size of userspace memory
1034  * @info: where to store the xt_counters_info metadata
1035  * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
1036  *
1037  * Copies counter meta data from @user and stores it in @info.
1038  *
1039  * vmallocs memory to hold the counters, then copies the counter data
1040  * from @user to the new memory and returns a pointer to it.
1041  *
1042  * If @compat is true, @info gets converted automatically to the 64bit
1043  * representation.
1044  *
1045  * The metadata associated with the counters is stored in @info.
1046  *
1047  * Return: returns pointer that caller has to test via IS_ERR().
1048  * If IS_ERR is false, caller has to vfree the pointer.
1049  */
1050 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
1051 				 struct xt_counters_info *info, bool compat)
1052 {
1053 	void *mem;
1054 	u64 size;
1055 
1056 #ifdef CONFIG_COMPAT
1057 	if (compat) {
1058 		/* structures only differ in size due to alignment */
1059 		struct compat_xt_counters_info compat_tmp;
1060 
1061 		if (len <= sizeof(compat_tmp))
1062 			return ERR_PTR(-EINVAL);
1063 
1064 		len -= sizeof(compat_tmp);
1065 		if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
1066 			return ERR_PTR(-EFAULT);
1067 
1068 		memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
1069 		info->num_counters = compat_tmp.num_counters;
1070 		user += sizeof(compat_tmp);
1071 	} else
1072 #endif
1073 	{
1074 		if (len <= sizeof(*info))
1075 			return ERR_PTR(-EINVAL);
1076 
1077 		len -= sizeof(*info);
1078 		if (copy_from_user(info, user, sizeof(*info)) != 0)
1079 			return ERR_PTR(-EFAULT);
1080 
1081 		user += sizeof(*info);
1082 	}
1083 	info->name[sizeof(info->name) - 1] = '\0';
1084 
1085 	size = sizeof(struct xt_counters);
1086 	size *= info->num_counters;
1087 
1088 	if (size != (u64)len)
1089 		return ERR_PTR(-EINVAL);
1090 
1091 	mem = vmalloc(len);
1092 	if (!mem)
1093 		return ERR_PTR(-ENOMEM);
1094 
1095 	if (copy_from_user(mem, user, len) == 0)
1096 		return mem;
1097 
1098 	vfree(mem);
1099 	return ERR_PTR(-EFAULT);
1100 }
1101 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
1102 
1103 #ifdef CONFIG_COMPAT
1104 int xt_compat_target_offset(const struct xt_target *target)
1105 {
1106 	u_int16_t csize = target->compatsize ? : target->targetsize;
1107 	return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
1108 }
1109 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
1110 
1111 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
1112 				unsigned int *size)
1113 {
1114 	const struct xt_target *target = t->u.kernel.target;
1115 	struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
1116 	int pad, off = xt_compat_target_offset(target);
1117 	u_int16_t tsize = ct->u.user.target_size;
1118 	char name[sizeof(t->u.user.name)];
1119 
1120 	t = *dstptr;
1121 	memcpy(t, ct, sizeof(*ct));
1122 	if (target->compat_from_user)
1123 		target->compat_from_user(t->data, ct->data);
1124 	else
1125 		memcpy(t->data, ct->data, tsize - sizeof(*ct));
1126 	pad = XT_ALIGN(target->targetsize) - target->targetsize;
1127 	if (pad > 0)
1128 		memset(t->data + target->targetsize, 0, pad);
1129 
1130 	tsize += off;
1131 	t->u.user.target_size = tsize;
1132 	strlcpy(name, target->name, sizeof(name));
1133 	module_put(target->me);
1134 	strncpy(t->u.user.name, name, sizeof(t->u.user.name));
1135 
1136 	*size += off;
1137 	*dstptr += tsize;
1138 }
1139 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1140 
1141 int xt_compat_target_to_user(const struct xt_entry_target *t,
1142 			     void __user **dstptr, unsigned int *size)
1143 {
1144 	const struct xt_target *target = t->u.kernel.target;
1145 	struct compat_xt_entry_target __user *ct = *dstptr;
1146 	int off = xt_compat_target_offset(target);
1147 	u_int16_t tsize = t->u.user.target_size - off;
1148 
1149 	if (XT_OBJ_TO_USER(ct, t, target, tsize))
1150 		return -EFAULT;
1151 
1152 	if (target->compat_to_user) {
1153 		if (target->compat_to_user((void __user *)ct->data, t->data))
1154 			return -EFAULT;
1155 	} else {
1156 		if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1157 			return -EFAULT;
1158 	}
1159 
1160 	*size -= off;
1161 	*dstptr += tsize;
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1165 #endif
1166 
1167 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1168 {
1169 	struct xt_table_info *info = NULL;
1170 	size_t sz = sizeof(*info) + size;
1171 
1172 	if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1173 		return NULL;
1174 
1175 	/* __GFP_NORETRY is not fully supported by kvmalloc but it should
1176 	 * work reasonably well if sz is too large and bail out rather
1177 	 * than shoot all processes down before realizing there is nothing
1178 	 * more to reclaim.
1179 	 */
1180 	info = kvmalloc(sz, GFP_KERNEL | __GFP_NORETRY);
1181 	if (!info)
1182 		return NULL;
1183 
1184 	memset(info, 0, sizeof(*info));
1185 	info->size = size;
1186 	return info;
1187 }
1188 EXPORT_SYMBOL(xt_alloc_table_info);
1189 
1190 void xt_free_table_info(struct xt_table_info *info)
1191 {
1192 	int cpu;
1193 
1194 	if (info->jumpstack != NULL) {
1195 		for_each_possible_cpu(cpu)
1196 			kvfree(info->jumpstack[cpu]);
1197 		kvfree(info->jumpstack);
1198 	}
1199 
1200 	kvfree(info);
1201 }
1202 EXPORT_SYMBOL(xt_free_table_info);
1203 
1204 /* Find table by name, grabs mutex & ref.  Returns ERR_PTR on error. */
1205 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1206 				    const char *name)
1207 {
1208 	struct xt_table *t, *found = NULL;
1209 
1210 	mutex_lock(&xt[af].mutex);
1211 	list_for_each_entry(t, &net->xt.tables[af], list)
1212 		if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1213 			return t;
1214 
1215 	if (net == &init_net)
1216 		goto out;
1217 
1218 	/* Table doesn't exist in this netns, re-try init */
1219 	list_for_each_entry(t, &init_net.xt.tables[af], list) {
1220 		int err;
1221 
1222 		if (strcmp(t->name, name))
1223 			continue;
1224 		if (!try_module_get(t->me))
1225 			goto out;
1226 		mutex_unlock(&xt[af].mutex);
1227 		err = t->table_init(net);
1228 		if (err < 0) {
1229 			module_put(t->me);
1230 			return ERR_PTR(err);
1231 		}
1232 
1233 		found = t;
1234 
1235 		mutex_lock(&xt[af].mutex);
1236 		break;
1237 	}
1238 
1239 	if (!found)
1240 		goto out;
1241 
1242 	/* and once again: */
1243 	list_for_each_entry(t, &net->xt.tables[af], list)
1244 		if (strcmp(t->name, name) == 0)
1245 			return t;
1246 
1247 	module_put(found->me);
1248  out:
1249 	mutex_unlock(&xt[af].mutex);
1250 	return ERR_PTR(-ENOENT);
1251 }
1252 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1253 
1254 struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af,
1255 					    const char *name)
1256 {
1257 	struct xt_table *t = xt_find_table_lock(net, af, name);
1258 
1259 #ifdef CONFIG_MODULES
1260 	if (IS_ERR(t)) {
1261 		int err = request_module("%stable_%s", xt_prefix[af], name);
1262 		if (err < 0)
1263 			return ERR_PTR(err);
1264 		t = xt_find_table_lock(net, af, name);
1265 	}
1266 #endif
1267 
1268 	return t;
1269 }
1270 EXPORT_SYMBOL_GPL(xt_request_find_table_lock);
1271 
1272 void xt_table_unlock(struct xt_table *table)
1273 {
1274 	mutex_unlock(&xt[table->af].mutex);
1275 }
1276 EXPORT_SYMBOL_GPL(xt_table_unlock);
1277 
1278 #ifdef CONFIG_COMPAT
1279 void xt_compat_lock(u_int8_t af)
1280 {
1281 	mutex_lock(&xt[af].compat_mutex);
1282 }
1283 EXPORT_SYMBOL_GPL(xt_compat_lock);
1284 
1285 void xt_compat_unlock(u_int8_t af)
1286 {
1287 	mutex_unlock(&xt[af].compat_mutex);
1288 }
1289 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1290 #endif
1291 
1292 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1293 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1294 
1295 struct static_key xt_tee_enabled __read_mostly;
1296 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1297 
1298 static int xt_jumpstack_alloc(struct xt_table_info *i)
1299 {
1300 	unsigned int size;
1301 	int cpu;
1302 
1303 	size = sizeof(void **) * nr_cpu_ids;
1304 	if (size > PAGE_SIZE)
1305 		i->jumpstack = kvzalloc(size, GFP_KERNEL);
1306 	else
1307 		i->jumpstack = kzalloc(size, GFP_KERNEL);
1308 	if (i->jumpstack == NULL)
1309 		return -ENOMEM;
1310 
1311 	/* ruleset without jumps -- no stack needed */
1312 	if (i->stacksize == 0)
1313 		return 0;
1314 
1315 	/* Jumpstack needs to be able to record two full callchains, one
1316 	 * from the first rule set traversal, plus one table reentrancy
1317 	 * via -j TEE without clobbering the callchain that brought us to
1318 	 * TEE target.
1319 	 *
1320 	 * This is done by allocating two jumpstacks per cpu, on reentry
1321 	 * the upper half of the stack is used.
1322 	 *
1323 	 * see the jumpstack setup in ipt_do_table() for more details.
1324 	 */
1325 	size = sizeof(void *) * i->stacksize * 2u;
1326 	for_each_possible_cpu(cpu) {
1327 		i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1328 			cpu_to_node(cpu));
1329 		if (i->jumpstack[cpu] == NULL)
1330 			/*
1331 			 * Freeing will be done later on by the callers. The
1332 			 * chain is: xt_replace_table -> __do_replace ->
1333 			 * do_replace -> xt_free_table_info.
1334 			 */
1335 			return -ENOMEM;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 struct xt_counters *xt_counters_alloc(unsigned int counters)
1342 {
1343 	struct xt_counters *mem;
1344 
1345 	if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1346 		return NULL;
1347 
1348 	counters *= sizeof(*mem);
1349 	if (counters > XT_MAX_TABLE_SIZE)
1350 		return NULL;
1351 
1352 	return vzalloc(counters);
1353 }
1354 EXPORT_SYMBOL(xt_counters_alloc);
1355 
1356 struct xt_table_info *
1357 xt_replace_table(struct xt_table *table,
1358 	      unsigned int num_counters,
1359 	      struct xt_table_info *newinfo,
1360 	      int *error)
1361 {
1362 	struct xt_table_info *private;
1363 	unsigned int cpu;
1364 	int ret;
1365 
1366 	ret = xt_jumpstack_alloc(newinfo);
1367 	if (ret < 0) {
1368 		*error = ret;
1369 		return NULL;
1370 	}
1371 
1372 	/* Do the substitution. */
1373 	local_bh_disable();
1374 	private = table->private;
1375 
1376 	/* Check inside lock: is the old number correct? */
1377 	if (num_counters != private->number) {
1378 		pr_debug("num_counters != table->private->number (%u/%u)\n",
1379 			 num_counters, private->number);
1380 		local_bh_enable();
1381 		*error = -EAGAIN;
1382 		return NULL;
1383 	}
1384 
1385 	newinfo->initial_entries = private->initial_entries;
1386 	/*
1387 	 * Ensure contents of newinfo are visible before assigning to
1388 	 * private.
1389 	 */
1390 	smp_wmb();
1391 	table->private = newinfo;
1392 
1393 	/* make sure all cpus see new ->private value */
1394 	smp_wmb();
1395 
1396 	/*
1397 	 * Even though table entries have now been swapped, other CPU's
1398 	 * may still be using the old entries...
1399 	 */
1400 	local_bh_enable();
1401 
1402 	/* ... so wait for even xt_recseq on all cpus */
1403 	for_each_possible_cpu(cpu) {
1404 		seqcount_t *s = &per_cpu(xt_recseq, cpu);
1405 		u32 seq = raw_read_seqcount(s);
1406 
1407 		if (seq & 1) {
1408 			do {
1409 				cond_resched();
1410 				cpu_relax();
1411 			} while (seq == raw_read_seqcount(s));
1412 		}
1413 	}
1414 
1415 #ifdef CONFIG_AUDIT
1416 	if (audit_enabled) {
1417 		audit_log(current->audit_context, GFP_KERNEL,
1418 			  AUDIT_NETFILTER_CFG,
1419 			  "table=%s family=%u entries=%u",
1420 			  table->name, table->af, private->number);
1421 	}
1422 #endif
1423 
1424 	return private;
1425 }
1426 EXPORT_SYMBOL_GPL(xt_replace_table);
1427 
1428 struct xt_table *xt_register_table(struct net *net,
1429 				   const struct xt_table *input_table,
1430 				   struct xt_table_info *bootstrap,
1431 				   struct xt_table_info *newinfo)
1432 {
1433 	int ret;
1434 	struct xt_table_info *private;
1435 	struct xt_table *t, *table;
1436 
1437 	/* Don't add one object to multiple lists. */
1438 	table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1439 	if (!table) {
1440 		ret = -ENOMEM;
1441 		goto out;
1442 	}
1443 
1444 	mutex_lock(&xt[table->af].mutex);
1445 	/* Don't autoload: we'd eat our tail... */
1446 	list_for_each_entry(t, &net->xt.tables[table->af], list) {
1447 		if (strcmp(t->name, table->name) == 0) {
1448 			ret = -EEXIST;
1449 			goto unlock;
1450 		}
1451 	}
1452 
1453 	/* Simplifies replace_table code. */
1454 	table->private = bootstrap;
1455 
1456 	if (!xt_replace_table(table, 0, newinfo, &ret))
1457 		goto unlock;
1458 
1459 	private = table->private;
1460 	pr_debug("table->private->number = %u\n", private->number);
1461 
1462 	/* save number of initial entries */
1463 	private->initial_entries = private->number;
1464 
1465 	list_add(&table->list, &net->xt.tables[table->af]);
1466 	mutex_unlock(&xt[table->af].mutex);
1467 	return table;
1468 
1469 unlock:
1470 	mutex_unlock(&xt[table->af].mutex);
1471 	kfree(table);
1472 out:
1473 	return ERR_PTR(ret);
1474 }
1475 EXPORT_SYMBOL_GPL(xt_register_table);
1476 
1477 void *xt_unregister_table(struct xt_table *table)
1478 {
1479 	struct xt_table_info *private;
1480 
1481 	mutex_lock(&xt[table->af].mutex);
1482 	private = table->private;
1483 	list_del(&table->list);
1484 	mutex_unlock(&xt[table->af].mutex);
1485 	kfree(table);
1486 
1487 	return private;
1488 }
1489 EXPORT_SYMBOL_GPL(xt_unregister_table);
1490 
1491 #ifdef CONFIG_PROC_FS
1492 struct xt_names_priv {
1493 	struct seq_net_private p;
1494 	u_int8_t af;
1495 };
1496 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1497 {
1498 	struct xt_names_priv *priv = seq->private;
1499 	struct net *net = seq_file_net(seq);
1500 	u_int8_t af = priv->af;
1501 
1502 	mutex_lock(&xt[af].mutex);
1503 	return seq_list_start(&net->xt.tables[af], *pos);
1504 }
1505 
1506 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1507 {
1508 	struct xt_names_priv *priv = seq->private;
1509 	struct net *net = seq_file_net(seq);
1510 	u_int8_t af = priv->af;
1511 
1512 	return seq_list_next(v, &net->xt.tables[af], pos);
1513 }
1514 
1515 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1516 {
1517 	struct xt_names_priv *priv = seq->private;
1518 	u_int8_t af = priv->af;
1519 
1520 	mutex_unlock(&xt[af].mutex);
1521 }
1522 
1523 static int xt_table_seq_show(struct seq_file *seq, void *v)
1524 {
1525 	struct xt_table *table = list_entry(v, struct xt_table, list);
1526 
1527 	if (*table->name)
1528 		seq_printf(seq, "%s\n", table->name);
1529 	return 0;
1530 }
1531 
1532 static const struct seq_operations xt_table_seq_ops = {
1533 	.start	= xt_table_seq_start,
1534 	.next	= xt_table_seq_next,
1535 	.stop	= xt_table_seq_stop,
1536 	.show	= xt_table_seq_show,
1537 };
1538 
1539 static int xt_table_open(struct inode *inode, struct file *file)
1540 {
1541 	int ret;
1542 	struct xt_names_priv *priv;
1543 
1544 	ret = seq_open_net(inode, file, &xt_table_seq_ops,
1545 			   sizeof(struct xt_names_priv));
1546 	if (!ret) {
1547 		priv = ((struct seq_file *)file->private_data)->private;
1548 		priv->af = (unsigned long)PDE_DATA(inode);
1549 	}
1550 	return ret;
1551 }
1552 
1553 static const struct file_operations xt_table_ops = {
1554 	.open	 = xt_table_open,
1555 	.read	 = seq_read,
1556 	.llseek	 = seq_lseek,
1557 	.release = seq_release_net,
1558 };
1559 
1560 /*
1561  * Traverse state for ip{,6}_{tables,matches} for helping crossing
1562  * the multi-AF mutexes.
1563  */
1564 struct nf_mttg_trav {
1565 	struct list_head *head, *curr;
1566 	uint8_t class, nfproto;
1567 };
1568 
1569 enum {
1570 	MTTG_TRAV_INIT,
1571 	MTTG_TRAV_NFP_UNSPEC,
1572 	MTTG_TRAV_NFP_SPEC,
1573 	MTTG_TRAV_DONE,
1574 };
1575 
1576 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1577     bool is_target)
1578 {
1579 	static const uint8_t next_class[] = {
1580 		[MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1581 		[MTTG_TRAV_NFP_SPEC]   = MTTG_TRAV_DONE,
1582 	};
1583 	struct nf_mttg_trav *trav = seq->private;
1584 
1585 	switch (trav->class) {
1586 	case MTTG_TRAV_INIT:
1587 		trav->class = MTTG_TRAV_NFP_UNSPEC;
1588 		mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1589 		trav->head = trav->curr = is_target ?
1590 			&xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1591  		break;
1592 	case MTTG_TRAV_NFP_UNSPEC:
1593 		trav->curr = trav->curr->next;
1594 		if (trav->curr != trav->head)
1595 			break;
1596 		mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1597 		mutex_lock(&xt[trav->nfproto].mutex);
1598 		trav->head = trav->curr = is_target ?
1599 			&xt[trav->nfproto].target : &xt[trav->nfproto].match;
1600 		trav->class = next_class[trav->class];
1601 		break;
1602 	case MTTG_TRAV_NFP_SPEC:
1603 		trav->curr = trav->curr->next;
1604 		if (trav->curr != trav->head)
1605 			break;
1606 		/* fall through */
1607 	default:
1608 		return NULL;
1609 	}
1610 
1611 	if (ppos != NULL)
1612 		++*ppos;
1613 	return trav;
1614 }
1615 
1616 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1617     bool is_target)
1618 {
1619 	struct nf_mttg_trav *trav = seq->private;
1620 	unsigned int j;
1621 
1622 	trav->class = MTTG_TRAV_INIT;
1623 	for (j = 0; j < *pos; ++j)
1624 		if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1625 			return NULL;
1626 	return trav;
1627 }
1628 
1629 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1630 {
1631 	struct nf_mttg_trav *trav = seq->private;
1632 
1633 	switch (trav->class) {
1634 	case MTTG_TRAV_NFP_UNSPEC:
1635 		mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1636 		break;
1637 	case MTTG_TRAV_NFP_SPEC:
1638 		mutex_unlock(&xt[trav->nfproto].mutex);
1639 		break;
1640 	}
1641 }
1642 
1643 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1644 {
1645 	return xt_mttg_seq_start(seq, pos, false);
1646 }
1647 
1648 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1649 {
1650 	return xt_mttg_seq_next(seq, v, ppos, false);
1651 }
1652 
1653 static int xt_match_seq_show(struct seq_file *seq, void *v)
1654 {
1655 	const struct nf_mttg_trav *trav = seq->private;
1656 	const struct xt_match *match;
1657 
1658 	switch (trav->class) {
1659 	case MTTG_TRAV_NFP_UNSPEC:
1660 	case MTTG_TRAV_NFP_SPEC:
1661 		if (trav->curr == trav->head)
1662 			return 0;
1663 		match = list_entry(trav->curr, struct xt_match, list);
1664 		if (*match->name)
1665 			seq_printf(seq, "%s\n", match->name);
1666 	}
1667 	return 0;
1668 }
1669 
1670 static const struct seq_operations xt_match_seq_ops = {
1671 	.start	= xt_match_seq_start,
1672 	.next	= xt_match_seq_next,
1673 	.stop	= xt_mttg_seq_stop,
1674 	.show	= xt_match_seq_show,
1675 };
1676 
1677 static int xt_match_open(struct inode *inode, struct file *file)
1678 {
1679 	struct nf_mttg_trav *trav;
1680 	trav = __seq_open_private(file, &xt_match_seq_ops, sizeof(*trav));
1681 	if (!trav)
1682 		return -ENOMEM;
1683 
1684 	trav->nfproto = (unsigned long)PDE_DATA(inode);
1685 	return 0;
1686 }
1687 
1688 static const struct file_operations xt_match_ops = {
1689 	.open	 = xt_match_open,
1690 	.read	 = seq_read,
1691 	.llseek	 = seq_lseek,
1692 	.release = seq_release_private,
1693 };
1694 
1695 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1696 {
1697 	return xt_mttg_seq_start(seq, pos, true);
1698 }
1699 
1700 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1701 {
1702 	return xt_mttg_seq_next(seq, v, ppos, true);
1703 }
1704 
1705 static int xt_target_seq_show(struct seq_file *seq, void *v)
1706 {
1707 	const struct nf_mttg_trav *trav = seq->private;
1708 	const struct xt_target *target;
1709 
1710 	switch (trav->class) {
1711 	case MTTG_TRAV_NFP_UNSPEC:
1712 	case MTTG_TRAV_NFP_SPEC:
1713 		if (trav->curr == trav->head)
1714 			return 0;
1715 		target = list_entry(trav->curr, struct xt_target, list);
1716 		if (*target->name)
1717 			seq_printf(seq, "%s\n", target->name);
1718 	}
1719 	return 0;
1720 }
1721 
1722 static const struct seq_operations xt_target_seq_ops = {
1723 	.start	= xt_target_seq_start,
1724 	.next	= xt_target_seq_next,
1725 	.stop	= xt_mttg_seq_stop,
1726 	.show	= xt_target_seq_show,
1727 };
1728 
1729 static int xt_target_open(struct inode *inode, struct file *file)
1730 {
1731 	struct nf_mttg_trav *trav;
1732 	trav = __seq_open_private(file, &xt_target_seq_ops, sizeof(*trav));
1733 	if (!trav)
1734 		return -ENOMEM;
1735 
1736 	trav->nfproto = (unsigned long)PDE_DATA(inode);
1737 	return 0;
1738 }
1739 
1740 static const struct file_operations xt_target_ops = {
1741 	.open	 = xt_target_open,
1742 	.read	 = seq_read,
1743 	.llseek	 = seq_lseek,
1744 	.release = seq_release_private,
1745 };
1746 
1747 #define FORMAT_TABLES	"_tables_names"
1748 #define	FORMAT_MATCHES	"_tables_matches"
1749 #define FORMAT_TARGETS 	"_tables_targets"
1750 
1751 #endif /* CONFIG_PROC_FS */
1752 
1753 /**
1754  * xt_hook_ops_alloc - set up hooks for a new table
1755  * @table:	table with metadata needed to set up hooks
1756  * @fn:		Hook function
1757  *
1758  * This function will create the nf_hook_ops that the x_table needs
1759  * to hand to xt_hook_link_net().
1760  */
1761 struct nf_hook_ops *
1762 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1763 {
1764 	unsigned int hook_mask = table->valid_hooks;
1765 	uint8_t i, num_hooks = hweight32(hook_mask);
1766 	uint8_t hooknum;
1767 	struct nf_hook_ops *ops;
1768 
1769 	if (!num_hooks)
1770 		return ERR_PTR(-EINVAL);
1771 
1772 	ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1773 	if (ops == NULL)
1774 		return ERR_PTR(-ENOMEM);
1775 
1776 	for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1777 	     hook_mask >>= 1, ++hooknum) {
1778 		if (!(hook_mask & 1))
1779 			continue;
1780 		ops[i].hook     = fn;
1781 		ops[i].pf       = table->af;
1782 		ops[i].hooknum  = hooknum;
1783 		ops[i].priority = table->priority;
1784 		++i;
1785 	}
1786 
1787 	return ops;
1788 }
1789 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1790 
1791 int xt_proto_init(struct net *net, u_int8_t af)
1792 {
1793 #ifdef CONFIG_PROC_FS
1794 	char buf[XT_FUNCTION_MAXNAMELEN];
1795 	struct proc_dir_entry *proc;
1796 	kuid_t root_uid;
1797 	kgid_t root_gid;
1798 #endif
1799 
1800 	if (af >= ARRAY_SIZE(xt_prefix))
1801 		return -EINVAL;
1802 
1803 
1804 #ifdef CONFIG_PROC_FS
1805 	root_uid = make_kuid(net->user_ns, 0);
1806 	root_gid = make_kgid(net->user_ns, 0);
1807 
1808 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1809 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1810 	proc = proc_create_data(buf, 0440, net->proc_net, &xt_table_ops,
1811 				(void *)(unsigned long)af);
1812 	if (!proc)
1813 		goto out;
1814 	if (uid_valid(root_uid) && gid_valid(root_gid))
1815 		proc_set_user(proc, root_uid, root_gid);
1816 
1817 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1818 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1819 	proc = proc_create_data(buf, 0440, net->proc_net, &xt_match_ops,
1820 				(void *)(unsigned long)af);
1821 	if (!proc)
1822 		goto out_remove_tables;
1823 	if (uid_valid(root_uid) && gid_valid(root_gid))
1824 		proc_set_user(proc, root_uid, root_gid);
1825 
1826 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1827 	strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1828 	proc = proc_create_data(buf, 0440, net->proc_net, &xt_target_ops,
1829 				(void *)(unsigned long)af);
1830 	if (!proc)
1831 		goto out_remove_matches;
1832 	if (uid_valid(root_uid) && gid_valid(root_gid))
1833 		proc_set_user(proc, root_uid, root_gid);
1834 #endif
1835 
1836 	return 0;
1837 
1838 #ifdef CONFIG_PROC_FS
1839 out_remove_matches:
1840 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1841 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1842 	remove_proc_entry(buf, net->proc_net);
1843 
1844 out_remove_tables:
1845 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1846 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1847 	remove_proc_entry(buf, net->proc_net);
1848 out:
1849 	return -1;
1850 #endif
1851 }
1852 EXPORT_SYMBOL_GPL(xt_proto_init);
1853 
1854 void xt_proto_fini(struct net *net, u_int8_t af)
1855 {
1856 #ifdef CONFIG_PROC_FS
1857 	char buf[XT_FUNCTION_MAXNAMELEN];
1858 
1859 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1860 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1861 	remove_proc_entry(buf, net->proc_net);
1862 
1863 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1864 	strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1865 	remove_proc_entry(buf, net->proc_net);
1866 
1867 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1868 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1869 	remove_proc_entry(buf, net->proc_net);
1870 #endif /*CONFIG_PROC_FS*/
1871 }
1872 EXPORT_SYMBOL_GPL(xt_proto_fini);
1873 
1874 /**
1875  * xt_percpu_counter_alloc - allocate x_tables rule counter
1876  *
1877  * @state: pointer to xt_percpu allocation state
1878  * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1879  *
1880  * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1881  * contain the address of the real (percpu) counter.
1882  *
1883  * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1884  * to fetch the real percpu counter.
1885  *
1886  * To speed up allocation and improve data locality, a 4kb block is
1887  * allocated.  Freeing any counter may free an entire block, so all
1888  * counters allocated using the same state must be freed at the same
1889  * time.
1890  *
1891  * xt_percpu_counter_alloc_state contains the base address of the
1892  * allocated page and the current sub-offset.
1893  *
1894  * returns false on error.
1895  */
1896 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1897 			     struct xt_counters *counter)
1898 {
1899 	BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1900 
1901 	if (nr_cpu_ids <= 1)
1902 		return true;
1903 
1904 	if (!state->mem) {
1905 		state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1906 					    XT_PCPU_BLOCK_SIZE);
1907 		if (!state->mem)
1908 			return false;
1909 	}
1910 	counter->pcnt = (__force unsigned long)(state->mem + state->off);
1911 	state->off += sizeof(*counter);
1912 	if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1913 		state->mem = NULL;
1914 		state->off = 0;
1915 	}
1916 	return true;
1917 }
1918 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1919 
1920 void xt_percpu_counter_free(struct xt_counters *counters)
1921 {
1922 	unsigned long pcnt = counters->pcnt;
1923 
1924 	if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1925 		free_percpu((void __percpu *)pcnt);
1926 }
1927 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1928 
1929 static int __net_init xt_net_init(struct net *net)
1930 {
1931 	int i;
1932 
1933 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
1934 		INIT_LIST_HEAD(&net->xt.tables[i]);
1935 	return 0;
1936 }
1937 
1938 static void __net_exit xt_net_exit(struct net *net)
1939 {
1940 	int i;
1941 
1942 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
1943 		WARN_ON_ONCE(!list_empty(&net->xt.tables[i]));
1944 }
1945 
1946 static struct pernet_operations xt_net_ops = {
1947 	.init = xt_net_init,
1948 	.exit = xt_net_exit,
1949 };
1950 
1951 static int __init xt_init(void)
1952 {
1953 	unsigned int i;
1954 	int rv;
1955 
1956 	for_each_possible_cpu(i) {
1957 		seqcount_init(&per_cpu(xt_recseq, i));
1958 	}
1959 
1960 	xt = kmalloc(sizeof(struct xt_af) * NFPROTO_NUMPROTO, GFP_KERNEL);
1961 	if (!xt)
1962 		return -ENOMEM;
1963 
1964 	for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1965 		mutex_init(&xt[i].mutex);
1966 #ifdef CONFIG_COMPAT
1967 		mutex_init(&xt[i].compat_mutex);
1968 		xt[i].compat_tab = NULL;
1969 #endif
1970 		INIT_LIST_HEAD(&xt[i].target);
1971 		INIT_LIST_HEAD(&xt[i].match);
1972 	}
1973 	rv = register_pernet_subsys(&xt_net_ops);
1974 	if (rv < 0)
1975 		kfree(xt);
1976 	return rv;
1977 }
1978 
1979 static void __exit xt_fini(void)
1980 {
1981 	unregister_pernet_subsys(&xt_net_ops);
1982 	kfree(xt);
1983 }
1984 
1985 module_init(xt_init);
1986 module_exit(xt_fini);
1987 
1988