xref: /openbmc/linux/net/netfilter/x_tables.c (revision 25763b3c)
1 /*
2  * x_tables core - Backend for {ip,ip6,arp}_tables
3  *
4  * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5  * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on existing ip_tables code which is
8  *   Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9  *   Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31 
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37 
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41 
42 #define XT_PCPU_BLOCK_SIZE 4096
43 #define XT_MAX_TABLE_SIZE	(512 * 1024 * 1024)
44 
45 struct compat_delta {
46 	unsigned int offset; /* offset in kernel */
47 	int delta; /* delta in 32bit user land */
48 };
49 
50 struct xt_af {
51 	struct mutex mutex;
52 	struct list_head match;
53 	struct list_head target;
54 #ifdef CONFIG_COMPAT
55 	struct mutex compat_mutex;
56 	struct compat_delta *compat_tab;
57 	unsigned int number; /* number of slots in compat_tab[] */
58 	unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61 
62 static struct xt_af *xt;
63 
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 	[NFPROTO_UNSPEC] = "x",
66 	[NFPROTO_IPV4]   = "ip",
67 	[NFPROTO_ARP]    = "arp",
68 	[NFPROTO_BRIDGE] = "eb",
69 	[NFPROTO_IPV6]   = "ip6",
70 };
71 
72 /* Registration hooks for targets. */
73 int xt_register_target(struct xt_target *target)
74 {
75 	u_int8_t af = target->family;
76 
77 	mutex_lock(&xt[af].mutex);
78 	list_add(&target->list, &xt[af].target);
79 	mutex_unlock(&xt[af].mutex);
80 	return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83 
84 void
85 xt_unregister_target(struct xt_target *target)
86 {
87 	u_int8_t af = target->family;
88 
89 	mutex_lock(&xt[af].mutex);
90 	list_del(&target->list);
91 	mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94 
95 int
96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 	unsigned int i;
99 	int err = 0;
100 
101 	for (i = 0; i < n; i++) {
102 		err = xt_register_target(&target[i]);
103 		if (err)
104 			goto err;
105 	}
106 	return err;
107 
108 err:
109 	if (i > 0)
110 		xt_unregister_targets(target, i);
111 	return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114 
115 void
116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 	while (n-- > 0)
119 		xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122 
123 int xt_register_match(struct xt_match *match)
124 {
125 	u_int8_t af = match->family;
126 
127 	mutex_lock(&xt[af].mutex);
128 	list_add(&match->list, &xt[af].match);
129 	mutex_unlock(&xt[af].mutex);
130 	return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133 
134 void
135 xt_unregister_match(struct xt_match *match)
136 {
137 	u_int8_t af = match->family;
138 
139 	mutex_lock(&xt[af].mutex);
140 	list_del(&match->list);
141 	mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144 
145 int
146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 	unsigned int i;
149 	int err = 0;
150 
151 	for (i = 0; i < n; i++) {
152 		err = xt_register_match(&match[i]);
153 		if (err)
154 			goto err;
155 	}
156 	return err;
157 
158 err:
159 	if (i > 0)
160 		xt_unregister_matches(match, i);
161 	return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164 
165 void
166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 	while (n-- > 0)
169 		xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172 
173 
174 /*
175  * These are weird, but module loading must not be done with mutex
176  * held (since they will register), and we have to have a single
177  * function to use.
178  */
179 
180 /* Find match, grabs ref.  Returns ERR_PTR() on error. */
181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 	struct xt_match *m;
184 	int err = -ENOENT;
185 
186 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
187 		return ERR_PTR(-EINVAL);
188 
189 	mutex_lock(&xt[af].mutex);
190 	list_for_each_entry(m, &xt[af].match, list) {
191 		if (strcmp(m->name, name) == 0) {
192 			if (m->revision == revision) {
193 				if (try_module_get(m->me)) {
194 					mutex_unlock(&xt[af].mutex);
195 					return m;
196 				}
197 			} else
198 				err = -EPROTOTYPE; /* Found something. */
199 		}
200 	}
201 	mutex_unlock(&xt[af].mutex);
202 
203 	if (af != NFPROTO_UNSPEC)
204 		/* Try searching again in the family-independent list */
205 		return xt_find_match(NFPROTO_UNSPEC, name, revision);
206 
207 	return ERR_PTR(err);
208 }
209 EXPORT_SYMBOL(xt_find_match);
210 
211 struct xt_match *
212 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
213 {
214 	struct xt_match *match;
215 
216 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
217 		return ERR_PTR(-EINVAL);
218 
219 	match = xt_find_match(nfproto, name, revision);
220 	if (IS_ERR(match)) {
221 		request_module("%st_%s", xt_prefix[nfproto], name);
222 		match = xt_find_match(nfproto, name, revision);
223 	}
224 
225 	return match;
226 }
227 EXPORT_SYMBOL_GPL(xt_request_find_match);
228 
229 /* Find target, grabs ref.  Returns ERR_PTR() on error. */
230 static struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
231 {
232 	struct xt_target *t;
233 	int err = -ENOENT;
234 
235 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
236 		return ERR_PTR(-EINVAL);
237 
238 	mutex_lock(&xt[af].mutex);
239 	list_for_each_entry(t, &xt[af].target, list) {
240 		if (strcmp(t->name, name) == 0) {
241 			if (t->revision == revision) {
242 				if (try_module_get(t->me)) {
243 					mutex_unlock(&xt[af].mutex);
244 					return t;
245 				}
246 			} else
247 				err = -EPROTOTYPE; /* Found something. */
248 		}
249 	}
250 	mutex_unlock(&xt[af].mutex);
251 
252 	if (af != NFPROTO_UNSPEC)
253 		/* Try searching again in the family-independent list */
254 		return xt_find_target(NFPROTO_UNSPEC, name, revision);
255 
256 	return ERR_PTR(err);
257 }
258 
259 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
260 {
261 	struct xt_target *target;
262 
263 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
264 		return ERR_PTR(-EINVAL);
265 
266 	target = xt_find_target(af, name, revision);
267 	if (IS_ERR(target)) {
268 		request_module("%st_%s", xt_prefix[af], name);
269 		target = xt_find_target(af, name, revision);
270 	}
271 
272 	return target;
273 }
274 EXPORT_SYMBOL_GPL(xt_request_find_target);
275 
276 
277 static int xt_obj_to_user(u16 __user *psize, u16 size,
278 			  void __user *pname, const char *name,
279 			  u8 __user *prev, u8 rev)
280 {
281 	if (put_user(size, psize))
282 		return -EFAULT;
283 	if (copy_to_user(pname, name, strlen(name) + 1))
284 		return -EFAULT;
285 	if (put_user(rev, prev))
286 		return -EFAULT;
287 
288 	return 0;
289 }
290 
291 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE)				\
292 	xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size,	\
293 		       U->u.user.name, K->u.kernel.TYPE->name,		\
294 		       &U->u.user.revision, K->u.kernel.TYPE->revision)
295 
296 int xt_data_to_user(void __user *dst, const void *src,
297 		    int usersize, int size, int aligned_size)
298 {
299 	usersize = usersize ? : size;
300 	if (copy_to_user(dst, src, usersize))
301 		return -EFAULT;
302 	if (usersize != aligned_size &&
303 	    clear_user(dst + usersize, aligned_size - usersize))
304 		return -EFAULT;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(xt_data_to_user);
309 
310 #define XT_DATA_TO_USER(U, K, TYPE)					\
311 	xt_data_to_user(U->data, K->data,				\
312 			K->u.kernel.TYPE->usersize,			\
313 			K->u.kernel.TYPE->TYPE##size,			\
314 			XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
315 
316 int xt_match_to_user(const struct xt_entry_match *m,
317 		     struct xt_entry_match __user *u)
318 {
319 	return XT_OBJ_TO_USER(u, m, match, 0) ||
320 	       XT_DATA_TO_USER(u, m, match);
321 }
322 EXPORT_SYMBOL_GPL(xt_match_to_user);
323 
324 int xt_target_to_user(const struct xt_entry_target *t,
325 		      struct xt_entry_target __user *u)
326 {
327 	return XT_OBJ_TO_USER(u, t, target, 0) ||
328 	       XT_DATA_TO_USER(u, t, target);
329 }
330 EXPORT_SYMBOL_GPL(xt_target_to_user);
331 
332 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
333 {
334 	const struct xt_match *m;
335 	int have_rev = 0;
336 
337 	list_for_each_entry(m, &xt[af].match, list) {
338 		if (strcmp(m->name, name) == 0) {
339 			if (m->revision > *bestp)
340 				*bestp = m->revision;
341 			if (m->revision == revision)
342 				have_rev = 1;
343 		}
344 	}
345 
346 	if (af != NFPROTO_UNSPEC && !have_rev)
347 		return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
348 
349 	return have_rev;
350 }
351 
352 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
353 {
354 	const struct xt_target *t;
355 	int have_rev = 0;
356 
357 	list_for_each_entry(t, &xt[af].target, list) {
358 		if (strcmp(t->name, name) == 0) {
359 			if (t->revision > *bestp)
360 				*bestp = t->revision;
361 			if (t->revision == revision)
362 				have_rev = 1;
363 		}
364 	}
365 
366 	if (af != NFPROTO_UNSPEC && !have_rev)
367 		return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
368 
369 	return have_rev;
370 }
371 
372 /* Returns true or false (if no such extension at all) */
373 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
374 		     int *err)
375 {
376 	int have_rev, best = -1;
377 
378 	mutex_lock(&xt[af].mutex);
379 	if (target == 1)
380 		have_rev = target_revfn(af, name, revision, &best);
381 	else
382 		have_rev = match_revfn(af, name, revision, &best);
383 	mutex_unlock(&xt[af].mutex);
384 
385 	/* Nothing at all?  Return 0 to try loading module. */
386 	if (best == -1) {
387 		*err = -ENOENT;
388 		return 0;
389 	}
390 
391 	*err = best;
392 	if (!have_rev)
393 		*err = -EPROTONOSUPPORT;
394 	return 1;
395 }
396 EXPORT_SYMBOL_GPL(xt_find_revision);
397 
398 static char *
399 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
400 {
401 	static const char *const inetbr_names[] = {
402 		"PREROUTING", "INPUT", "FORWARD",
403 		"OUTPUT", "POSTROUTING", "BROUTING",
404 	};
405 	static const char *const arp_names[] = {
406 		"INPUT", "FORWARD", "OUTPUT",
407 	};
408 	const char *const *names;
409 	unsigned int i, max;
410 	char *p = buf;
411 	bool np = false;
412 	int res;
413 
414 	names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
415 	max   = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
416 	                                   ARRAY_SIZE(inetbr_names);
417 	*p = '\0';
418 	for (i = 0; i < max; ++i) {
419 		if (!(mask & (1 << i)))
420 			continue;
421 		res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
422 		if (res > 0) {
423 			size -= res;
424 			p += res;
425 		}
426 		np = true;
427 	}
428 
429 	return buf;
430 }
431 
432 /**
433  * xt_check_proc_name - check that name is suitable for /proc file creation
434  *
435  * @name: file name candidate
436  * @size: length of buffer
437  *
438  * some x_tables modules wish to create a file in /proc.
439  * This function makes sure that the name is suitable for this
440  * purpose, it checks that name is NUL terminated and isn't a 'special'
441  * name, like "..".
442  *
443  * returns negative number on error or 0 if name is useable.
444  */
445 int xt_check_proc_name(const char *name, unsigned int size)
446 {
447 	if (name[0] == '\0')
448 		return -EINVAL;
449 
450 	if (strnlen(name, size) == size)
451 		return -ENAMETOOLONG;
452 
453 	if (strcmp(name, ".") == 0 ||
454 	    strcmp(name, "..") == 0 ||
455 	    strchr(name, '/'))
456 		return -EINVAL;
457 
458 	return 0;
459 }
460 EXPORT_SYMBOL(xt_check_proc_name);
461 
462 int xt_check_match(struct xt_mtchk_param *par,
463 		   unsigned int size, u16 proto, bool inv_proto)
464 {
465 	int ret;
466 
467 	if (XT_ALIGN(par->match->matchsize) != size &&
468 	    par->match->matchsize != -1) {
469 		/*
470 		 * ebt_among is exempt from centralized matchsize checking
471 		 * because it uses a dynamic-size data set.
472 		 */
473 		pr_err_ratelimited("%s_tables: %s.%u match: invalid size %u (kernel) != (user) %u\n",
474 				   xt_prefix[par->family], par->match->name,
475 				   par->match->revision,
476 				   XT_ALIGN(par->match->matchsize), size);
477 		return -EINVAL;
478 	}
479 	if (par->match->table != NULL &&
480 	    strcmp(par->match->table, par->table) != 0) {
481 		pr_info_ratelimited("%s_tables: %s match: only valid in %s table, not %s\n",
482 				    xt_prefix[par->family], par->match->name,
483 				    par->match->table, par->table);
484 		return -EINVAL;
485 	}
486 	if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
487 		char used[64], allow[64];
488 
489 		pr_info_ratelimited("%s_tables: %s match: used from hooks %s, but only valid from %s\n",
490 				    xt_prefix[par->family], par->match->name,
491 				    textify_hooks(used, sizeof(used),
492 						  par->hook_mask, par->family),
493 				    textify_hooks(allow, sizeof(allow),
494 						  par->match->hooks,
495 						  par->family));
496 		return -EINVAL;
497 	}
498 	if (par->match->proto && (par->match->proto != proto || inv_proto)) {
499 		pr_info_ratelimited("%s_tables: %s match: only valid for protocol %u\n",
500 				    xt_prefix[par->family], par->match->name,
501 				    par->match->proto);
502 		return -EINVAL;
503 	}
504 	if (par->match->checkentry != NULL) {
505 		ret = par->match->checkentry(par);
506 		if (ret < 0)
507 			return ret;
508 		else if (ret > 0)
509 			/* Flag up potential errors. */
510 			return -EIO;
511 	}
512 	return 0;
513 }
514 EXPORT_SYMBOL_GPL(xt_check_match);
515 
516 /** xt_check_entry_match - check that matches end before start of target
517  *
518  * @match: beginning of xt_entry_match
519  * @target: beginning of this rules target (alleged end of matches)
520  * @alignment: alignment requirement of match structures
521  *
522  * Validates that all matches add up to the beginning of the target,
523  * and that each match covers at least the base structure size.
524  *
525  * Return: 0 on success, negative errno on failure.
526  */
527 static int xt_check_entry_match(const char *match, const char *target,
528 				const size_t alignment)
529 {
530 	const struct xt_entry_match *pos;
531 	int length = target - match;
532 
533 	if (length == 0) /* no matches */
534 		return 0;
535 
536 	pos = (struct xt_entry_match *)match;
537 	do {
538 		if ((unsigned long)pos % alignment)
539 			return -EINVAL;
540 
541 		if (length < (int)sizeof(struct xt_entry_match))
542 			return -EINVAL;
543 
544 		if (pos->u.match_size < sizeof(struct xt_entry_match))
545 			return -EINVAL;
546 
547 		if (pos->u.match_size > length)
548 			return -EINVAL;
549 
550 		length -= pos->u.match_size;
551 		pos = ((void *)((char *)(pos) + (pos)->u.match_size));
552 	} while (length > 0);
553 
554 	return 0;
555 }
556 
557 /** xt_check_table_hooks - check hook entry points are sane
558  *
559  * @info xt_table_info to check
560  * @valid_hooks - hook entry points that we can enter from
561  *
562  * Validates that the hook entry and underflows points are set up.
563  *
564  * Return: 0 on success, negative errno on failure.
565  */
566 int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks)
567 {
568 	const char *err = "unsorted underflow";
569 	unsigned int i, max_uflow, max_entry;
570 	bool check_hooks = false;
571 
572 	BUILD_BUG_ON(ARRAY_SIZE(info->hook_entry) != ARRAY_SIZE(info->underflow));
573 
574 	max_entry = 0;
575 	max_uflow = 0;
576 
577 	for (i = 0; i < ARRAY_SIZE(info->hook_entry); i++) {
578 		if (!(valid_hooks & (1 << i)))
579 			continue;
580 
581 		if (info->hook_entry[i] == 0xFFFFFFFF)
582 			return -EINVAL;
583 		if (info->underflow[i] == 0xFFFFFFFF)
584 			return -EINVAL;
585 
586 		if (check_hooks) {
587 			if (max_uflow > info->underflow[i])
588 				goto error;
589 
590 			if (max_uflow == info->underflow[i]) {
591 				err = "duplicate underflow";
592 				goto error;
593 			}
594 			if (max_entry > info->hook_entry[i]) {
595 				err = "unsorted entry";
596 				goto error;
597 			}
598 			if (max_entry == info->hook_entry[i]) {
599 				err = "duplicate entry";
600 				goto error;
601 			}
602 		}
603 		max_entry = info->hook_entry[i];
604 		max_uflow = info->underflow[i];
605 		check_hooks = true;
606 	}
607 
608 	return 0;
609 error:
610 	pr_err_ratelimited("%s at hook %d\n", err, i);
611 	return -EINVAL;
612 }
613 EXPORT_SYMBOL(xt_check_table_hooks);
614 
615 static bool verdict_ok(int verdict)
616 {
617 	if (verdict > 0)
618 		return true;
619 
620 	if (verdict < 0) {
621 		int v = -verdict - 1;
622 
623 		if (verdict == XT_RETURN)
624 			return true;
625 
626 		switch (v) {
627 		case NF_ACCEPT: return true;
628 		case NF_DROP: return true;
629 		case NF_QUEUE: return true;
630 		default:
631 			break;
632 		}
633 
634 		return false;
635 	}
636 
637 	return false;
638 }
639 
640 static bool error_tg_ok(unsigned int usersize, unsigned int kernsize,
641 			const char *msg, unsigned int msglen)
642 {
643 	return usersize == kernsize && strnlen(msg, msglen) < msglen;
644 }
645 
646 #ifdef CONFIG_COMPAT
647 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
648 {
649 	struct xt_af *xp = &xt[af];
650 
651 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
652 
653 	if (WARN_ON(!xp->compat_tab))
654 		return -ENOMEM;
655 
656 	if (xp->cur >= xp->number)
657 		return -EINVAL;
658 
659 	if (xp->cur)
660 		delta += xp->compat_tab[xp->cur - 1].delta;
661 	xp->compat_tab[xp->cur].offset = offset;
662 	xp->compat_tab[xp->cur].delta = delta;
663 	xp->cur++;
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
667 
668 void xt_compat_flush_offsets(u_int8_t af)
669 {
670 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
671 
672 	if (xt[af].compat_tab) {
673 		vfree(xt[af].compat_tab);
674 		xt[af].compat_tab = NULL;
675 		xt[af].number = 0;
676 		xt[af].cur = 0;
677 	}
678 }
679 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
680 
681 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
682 {
683 	struct compat_delta *tmp = xt[af].compat_tab;
684 	int mid, left = 0, right = xt[af].cur - 1;
685 
686 	while (left <= right) {
687 		mid = (left + right) >> 1;
688 		if (offset > tmp[mid].offset)
689 			left = mid + 1;
690 		else if (offset < tmp[mid].offset)
691 			right = mid - 1;
692 		else
693 			return mid ? tmp[mid - 1].delta : 0;
694 	}
695 	return left ? tmp[left - 1].delta : 0;
696 }
697 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
698 
699 int xt_compat_init_offsets(u8 af, unsigned int number)
700 {
701 	size_t mem;
702 
703 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
704 
705 	if (!number || number > (INT_MAX / sizeof(struct compat_delta)))
706 		return -EINVAL;
707 
708 	if (WARN_ON(xt[af].compat_tab))
709 		return -EINVAL;
710 
711 	mem = sizeof(struct compat_delta) * number;
712 	if (mem > XT_MAX_TABLE_SIZE)
713 		return -ENOMEM;
714 
715 	xt[af].compat_tab = vmalloc(mem);
716 	if (!xt[af].compat_tab)
717 		return -ENOMEM;
718 
719 	xt[af].number = number;
720 	xt[af].cur = 0;
721 
722 	return 0;
723 }
724 EXPORT_SYMBOL(xt_compat_init_offsets);
725 
726 int xt_compat_match_offset(const struct xt_match *match)
727 {
728 	u_int16_t csize = match->compatsize ? : match->matchsize;
729 	return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
730 }
731 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
732 
733 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
734 			       unsigned int *size)
735 {
736 	const struct xt_match *match = m->u.kernel.match;
737 	struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
738 	int pad, off = xt_compat_match_offset(match);
739 	u_int16_t msize = cm->u.user.match_size;
740 	char name[sizeof(m->u.user.name)];
741 
742 	m = *dstptr;
743 	memcpy(m, cm, sizeof(*cm));
744 	if (match->compat_from_user)
745 		match->compat_from_user(m->data, cm->data);
746 	else
747 		memcpy(m->data, cm->data, msize - sizeof(*cm));
748 	pad = XT_ALIGN(match->matchsize) - match->matchsize;
749 	if (pad > 0)
750 		memset(m->data + match->matchsize, 0, pad);
751 
752 	msize += off;
753 	m->u.user.match_size = msize;
754 	strlcpy(name, match->name, sizeof(name));
755 	module_put(match->me);
756 	strncpy(m->u.user.name, name, sizeof(m->u.user.name));
757 
758 	*size += off;
759 	*dstptr += msize;
760 }
761 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
762 
763 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE)			\
764 	xt_data_to_user(U->data, K->data,				\
765 			K->u.kernel.TYPE->usersize,			\
766 			C_SIZE,						\
767 			COMPAT_XT_ALIGN(C_SIZE))
768 
769 int xt_compat_match_to_user(const struct xt_entry_match *m,
770 			    void __user **dstptr, unsigned int *size)
771 {
772 	const struct xt_match *match = m->u.kernel.match;
773 	struct compat_xt_entry_match __user *cm = *dstptr;
774 	int off = xt_compat_match_offset(match);
775 	u_int16_t msize = m->u.user.match_size - off;
776 
777 	if (XT_OBJ_TO_USER(cm, m, match, msize))
778 		return -EFAULT;
779 
780 	if (match->compat_to_user) {
781 		if (match->compat_to_user((void __user *)cm->data, m->data))
782 			return -EFAULT;
783 	} else {
784 		if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
785 			return -EFAULT;
786 	}
787 
788 	*size -= off;
789 	*dstptr += msize;
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
793 
794 /* non-compat version may have padding after verdict */
795 struct compat_xt_standard_target {
796 	struct compat_xt_entry_target t;
797 	compat_uint_t verdict;
798 };
799 
800 struct compat_xt_error_target {
801 	struct compat_xt_entry_target t;
802 	char errorname[XT_FUNCTION_MAXNAMELEN];
803 };
804 
805 int xt_compat_check_entry_offsets(const void *base, const char *elems,
806 				  unsigned int target_offset,
807 				  unsigned int next_offset)
808 {
809 	long size_of_base_struct = elems - (const char *)base;
810 	const struct compat_xt_entry_target *t;
811 	const char *e = base;
812 
813 	if (target_offset < size_of_base_struct)
814 		return -EINVAL;
815 
816 	if (target_offset + sizeof(*t) > next_offset)
817 		return -EINVAL;
818 
819 	t = (void *)(e + target_offset);
820 	if (t->u.target_size < sizeof(*t))
821 		return -EINVAL;
822 
823 	if (target_offset + t->u.target_size > next_offset)
824 		return -EINVAL;
825 
826 	if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
827 		const struct compat_xt_standard_target *st = (const void *)t;
828 
829 		if (COMPAT_XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
830 			return -EINVAL;
831 
832 		if (!verdict_ok(st->verdict))
833 			return -EINVAL;
834 	} else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
835 		const struct compat_xt_error_target *et = (const void *)t;
836 
837 		if (!error_tg_ok(t->u.target_size, sizeof(*et),
838 				 et->errorname, sizeof(et->errorname)))
839 			return -EINVAL;
840 	}
841 
842 	/* compat_xt_entry match has less strict alignment requirements,
843 	 * otherwise they are identical.  In case of padding differences
844 	 * we need to add compat version of xt_check_entry_match.
845 	 */
846 	BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
847 
848 	return xt_check_entry_match(elems, base + target_offset,
849 				    __alignof__(struct compat_xt_entry_match));
850 }
851 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
852 #endif /* CONFIG_COMPAT */
853 
854 /**
855  * xt_check_entry_offsets - validate arp/ip/ip6t_entry
856  *
857  * @base: pointer to arp/ip/ip6t_entry
858  * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
859  * @target_offset: the arp/ip/ip6_t->target_offset
860  * @next_offset: the arp/ip/ip6_t->next_offset
861  *
862  * validates that target_offset and next_offset are sane and that all
863  * match sizes (if any) align with the target offset.
864  *
865  * This function does not validate the targets or matches themselves, it
866  * only tests that all the offsets and sizes are correct, that all
867  * match structures are aligned, and that the last structure ends where
868  * the target structure begins.
869  *
870  * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
871  *
872  * The arp/ip/ip6t_entry structure @base must have passed following tests:
873  * - it must point to a valid memory location
874  * - base to base + next_offset must be accessible, i.e. not exceed allocated
875  *   length.
876  *
877  * A well-formed entry looks like this:
878  *
879  * ip(6)t_entry   match [mtdata]  match [mtdata] target [tgdata] ip(6)t_entry
880  * e->elems[]-----'                              |               |
881  *                matchsize                      |               |
882  *                                matchsize      |               |
883  *                                               |               |
884  * target_offset---------------------------------'               |
885  * next_offset---------------------------------------------------'
886  *
887  * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
888  *          This is where matches (if any) and the target reside.
889  * target_offset: beginning of target.
890  * next_offset: start of the next rule; also: size of this rule.
891  * Since targets have a minimum size, target_offset + minlen <= next_offset.
892  *
893  * Every match stores its size, sum of sizes must not exceed target_offset.
894  *
895  * Return: 0 on success, negative errno on failure.
896  */
897 int xt_check_entry_offsets(const void *base,
898 			   const char *elems,
899 			   unsigned int target_offset,
900 			   unsigned int next_offset)
901 {
902 	long size_of_base_struct = elems - (const char *)base;
903 	const struct xt_entry_target *t;
904 	const char *e = base;
905 
906 	/* target start is within the ip/ip6/arpt_entry struct */
907 	if (target_offset < size_of_base_struct)
908 		return -EINVAL;
909 
910 	if (target_offset + sizeof(*t) > next_offset)
911 		return -EINVAL;
912 
913 	t = (void *)(e + target_offset);
914 	if (t->u.target_size < sizeof(*t))
915 		return -EINVAL;
916 
917 	if (target_offset + t->u.target_size > next_offset)
918 		return -EINVAL;
919 
920 	if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
921 		const struct xt_standard_target *st = (const void *)t;
922 
923 		if (XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
924 			return -EINVAL;
925 
926 		if (!verdict_ok(st->verdict))
927 			return -EINVAL;
928 	} else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
929 		const struct xt_error_target *et = (const void *)t;
930 
931 		if (!error_tg_ok(t->u.target_size, sizeof(*et),
932 				 et->errorname, sizeof(et->errorname)))
933 			return -EINVAL;
934 	}
935 
936 	return xt_check_entry_match(elems, base + target_offset,
937 				    __alignof__(struct xt_entry_match));
938 }
939 EXPORT_SYMBOL(xt_check_entry_offsets);
940 
941 /**
942  * xt_alloc_entry_offsets - allocate array to store rule head offsets
943  *
944  * @size: number of entries
945  *
946  * Return: NULL or kmalloc'd or vmalloc'd array
947  */
948 unsigned int *xt_alloc_entry_offsets(unsigned int size)
949 {
950 	if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int))
951 		return NULL;
952 
953 	return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
954 
955 }
956 EXPORT_SYMBOL(xt_alloc_entry_offsets);
957 
958 /**
959  * xt_find_jump_offset - check if target is a valid jump offset
960  *
961  * @offsets: array containing all valid rule start offsets of a rule blob
962  * @target: the jump target to search for
963  * @size: entries in @offset
964  */
965 bool xt_find_jump_offset(const unsigned int *offsets,
966 			 unsigned int target, unsigned int size)
967 {
968 	int m, low = 0, hi = size;
969 
970 	while (hi > low) {
971 		m = (low + hi) / 2u;
972 
973 		if (offsets[m] > target)
974 			hi = m;
975 		else if (offsets[m] < target)
976 			low = m + 1;
977 		else
978 			return true;
979 	}
980 
981 	return false;
982 }
983 EXPORT_SYMBOL(xt_find_jump_offset);
984 
985 int xt_check_target(struct xt_tgchk_param *par,
986 		    unsigned int size, u16 proto, bool inv_proto)
987 {
988 	int ret;
989 
990 	if (XT_ALIGN(par->target->targetsize) != size) {
991 		pr_err_ratelimited("%s_tables: %s.%u target: invalid size %u (kernel) != (user) %u\n",
992 				   xt_prefix[par->family], par->target->name,
993 				   par->target->revision,
994 				   XT_ALIGN(par->target->targetsize), size);
995 		return -EINVAL;
996 	}
997 	if (par->target->table != NULL &&
998 	    strcmp(par->target->table, par->table) != 0) {
999 		pr_info_ratelimited("%s_tables: %s target: only valid in %s table, not %s\n",
1000 				    xt_prefix[par->family], par->target->name,
1001 				    par->target->table, par->table);
1002 		return -EINVAL;
1003 	}
1004 	if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
1005 		char used[64], allow[64];
1006 
1007 		pr_info_ratelimited("%s_tables: %s target: used from hooks %s, but only usable from %s\n",
1008 				    xt_prefix[par->family], par->target->name,
1009 				    textify_hooks(used, sizeof(used),
1010 						  par->hook_mask, par->family),
1011 				    textify_hooks(allow, sizeof(allow),
1012 						  par->target->hooks,
1013 						  par->family));
1014 		return -EINVAL;
1015 	}
1016 	if (par->target->proto && (par->target->proto != proto || inv_proto)) {
1017 		pr_info_ratelimited("%s_tables: %s target: only valid for protocol %u\n",
1018 				    xt_prefix[par->family], par->target->name,
1019 				    par->target->proto);
1020 		return -EINVAL;
1021 	}
1022 	if (par->target->checkentry != NULL) {
1023 		ret = par->target->checkentry(par);
1024 		if (ret < 0)
1025 			return ret;
1026 		else if (ret > 0)
1027 			/* Flag up potential errors. */
1028 			return -EIO;
1029 	}
1030 	return 0;
1031 }
1032 EXPORT_SYMBOL_GPL(xt_check_target);
1033 
1034 /**
1035  * xt_copy_counters_from_user - copy counters and metadata from userspace
1036  *
1037  * @user: src pointer to userspace memory
1038  * @len: alleged size of userspace memory
1039  * @info: where to store the xt_counters_info metadata
1040  * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
1041  *
1042  * Copies counter meta data from @user and stores it in @info.
1043  *
1044  * vmallocs memory to hold the counters, then copies the counter data
1045  * from @user to the new memory and returns a pointer to it.
1046  *
1047  * If @compat is true, @info gets converted automatically to the 64bit
1048  * representation.
1049  *
1050  * The metadata associated with the counters is stored in @info.
1051  *
1052  * Return: returns pointer that caller has to test via IS_ERR().
1053  * If IS_ERR is false, caller has to vfree the pointer.
1054  */
1055 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
1056 				 struct xt_counters_info *info, bool compat)
1057 {
1058 	void *mem;
1059 	u64 size;
1060 
1061 #ifdef CONFIG_COMPAT
1062 	if (compat) {
1063 		/* structures only differ in size due to alignment */
1064 		struct compat_xt_counters_info compat_tmp;
1065 
1066 		if (len <= sizeof(compat_tmp))
1067 			return ERR_PTR(-EINVAL);
1068 
1069 		len -= sizeof(compat_tmp);
1070 		if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
1071 			return ERR_PTR(-EFAULT);
1072 
1073 		memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
1074 		info->num_counters = compat_tmp.num_counters;
1075 		user += sizeof(compat_tmp);
1076 	} else
1077 #endif
1078 	{
1079 		if (len <= sizeof(*info))
1080 			return ERR_PTR(-EINVAL);
1081 
1082 		len -= sizeof(*info);
1083 		if (copy_from_user(info, user, sizeof(*info)) != 0)
1084 			return ERR_PTR(-EFAULT);
1085 
1086 		user += sizeof(*info);
1087 	}
1088 	info->name[sizeof(info->name) - 1] = '\0';
1089 
1090 	size = sizeof(struct xt_counters);
1091 	size *= info->num_counters;
1092 
1093 	if (size != (u64)len)
1094 		return ERR_PTR(-EINVAL);
1095 
1096 	mem = vmalloc(len);
1097 	if (!mem)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (copy_from_user(mem, user, len) == 0)
1101 		return mem;
1102 
1103 	vfree(mem);
1104 	return ERR_PTR(-EFAULT);
1105 }
1106 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
1107 
1108 #ifdef CONFIG_COMPAT
1109 int xt_compat_target_offset(const struct xt_target *target)
1110 {
1111 	u_int16_t csize = target->compatsize ? : target->targetsize;
1112 	return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
1113 }
1114 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
1115 
1116 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
1117 				unsigned int *size)
1118 {
1119 	const struct xt_target *target = t->u.kernel.target;
1120 	struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
1121 	int pad, off = xt_compat_target_offset(target);
1122 	u_int16_t tsize = ct->u.user.target_size;
1123 	char name[sizeof(t->u.user.name)];
1124 
1125 	t = *dstptr;
1126 	memcpy(t, ct, sizeof(*ct));
1127 	if (target->compat_from_user)
1128 		target->compat_from_user(t->data, ct->data);
1129 	else
1130 		memcpy(t->data, ct->data, tsize - sizeof(*ct));
1131 	pad = XT_ALIGN(target->targetsize) - target->targetsize;
1132 	if (pad > 0)
1133 		memset(t->data + target->targetsize, 0, pad);
1134 
1135 	tsize += off;
1136 	t->u.user.target_size = tsize;
1137 	strlcpy(name, target->name, sizeof(name));
1138 	module_put(target->me);
1139 	strncpy(t->u.user.name, name, sizeof(t->u.user.name));
1140 
1141 	*size += off;
1142 	*dstptr += tsize;
1143 }
1144 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1145 
1146 int xt_compat_target_to_user(const struct xt_entry_target *t,
1147 			     void __user **dstptr, unsigned int *size)
1148 {
1149 	const struct xt_target *target = t->u.kernel.target;
1150 	struct compat_xt_entry_target __user *ct = *dstptr;
1151 	int off = xt_compat_target_offset(target);
1152 	u_int16_t tsize = t->u.user.target_size - off;
1153 
1154 	if (XT_OBJ_TO_USER(ct, t, target, tsize))
1155 		return -EFAULT;
1156 
1157 	if (target->compat_to_user) {
1158 		if (target->compat_to_user((void __user *)ct->data, t->data))
1159 			return -EFAULT;
1160 	} else {
1161 		if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1162 			return -EFAULT;
1163 	}
1164 
1165 	*size -= off;
1166 	*dstptr += tsize;
1167 	return 0;
1168 }
1169 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1170 #endif
1171 
1172 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1173 {
1174 	struct xt_table_info *info = NULL;
1175 	size_t sz = sizeof(*info) + size;
1176 
1177 	if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1178 		return NULL;
1179 
1180 	info = kvmalloc(sz, GFP_KERNEL_ACCOUNT);
1181 	if (!info)
1182 		return NULL;
1183 
1184 	memset(info, 0, sizeof(*info));
1185 	info->size = size;
1186 	return info;
1187 }
1188 EXPORT_SYMBOL(xt_alloc_table_info);
1189 
1190 void xt_free_table_info(struct xt_table_info *info)
1191 {
1192 	int cpu;
1193 
1194 	if (info->jumpstack != NULL) {
1195 		for_each_possible_cpu(cpu)
1196 			kvfree(info->jumpstack[cpu]);
1197 		kvfree(info->jumpstack);
1198 	}
1199 
1200 	kvfree(info);
1201 }
1202 EXPORT_SYMBOL(xt_free_table_info);
1203 
1204 /* Find table by name, grabs mutex & ref.  Returns ERR_PTR on error. */
1205 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1206 				    const char *name)
1207 {
1208 	struct xt_table *t, *found = NULL;
1209 
1210 	mutex_lock(&xt[af].mutex);
1211 	list_for_each_entry(t, &net->xt.tables[af], list)
1212 		if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1213 			return t;
1214 
1215 	if (net == &init_net)
1216 		goto out;
1217 
1218 	/* Table doesn't exist in this netns, re-try init */
1219 	list_for_each_entry(t, &init_net.xt.tables[af], list) {
1220 		int err;
1221 
1222 		if (strcmp(t->name, name))
1223 			continue;
1224 		if (!try_module_get(t->me))
1225 			goto out;
1226 		mutex_unlock(&xt[af].mutex);
1227 		err = t->table_init(net);
1228 		if (err < 0) {
1229 			module_put(t->me);
1230 			return ERR_PTR(err);
1231 		}
1232 
1233 		found = t;
1234 
1235 		mutex_lock(&xt[af].mutex);
1236 		break;
1237 	}
1238 
1239 	if (!found)
1240 		goto out;
1241 
1242 	/* and once again: */
1243 	list_for_each_entry(t, &net->xt.tables[af], list)
1244 		if (strcmp(t->name, name) == 0)
1245 			return t;
1246 
1247 	module_put(found->me);
1248  out:
1249 	mutex_unlock(&xt[af].mutex);
1250 	return ERR_PTR(-ENOENT);
1251 }
1252 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1253 
1254 struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af,
1255 					    const char *name)
1256 {
1257 	struct xt_table *t = xt_find_table_lock(net, af, name);
1258 
1259 #ifdef CONFIG_MODULES
1260 	if (IS_ERR(t)) {
1261 		int err = request_module("%stable_%s", xt_prefix[af], name);
1262 		if (err < 0)
1263 			return ERR_PTR(err);
1264 		t = xt_find_table_lock(net, af, name);
1265 	}
1266 #endif
1267 
1268 	return t;
1269 }
1270 EXPORT_SYMBOL_GPL(xt_request_find_table_lock);
1271 
1272 void xt_table_unlock(struct xt_table *table)
1273 {
1274 	mutex_unlock(&xt[table->af].mutex);
1275 }
1276 EXPORT_SYMBOL_GPL(xt_table_unlock);
1277 
1278 #ifdef CONFIG_COMPAT
1279 void xt_compat_lock(u_int8_t af)
1280 {
1281 	mutex_lock(&xt[af].compat_mutex);
1282 }
1283 EXPORT_SYMBOL_GPL(xt_compat_lock);
1284 
1285 void xt_compat_unlock(u_int8_t af)
1286 {
1287 	mutex_unlock(&xt[af].compat_mutex);
1288 }
1289 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1290 #endif
1291 
1292 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1293 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1294 
1295 struct static_key xt_tee_enabled __read_mostly;
1296 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1297 
1298 static int xt_jumpstack_alloc(struct xt_table_info *i)
1299 {
1300 	unsigned int size;
1301 	int cpu;
1302 
1303 	size = sizeof(void **) * nr_cpu_ids;
1304 	if (size > PAGE_SIZE)
1305 		i->jumpstack = kvzalloc(size, GFP_KERNEL);
1306 	else
1307 		i->jumpstack = kzalloc(size, GFP_KERNEL);
1308 	if (i->jumpstack == NULL)
1309 		return -ENOMEM;
1310 
1311 	/* ruleset without jumps -- no stack needed */
1312 	if (i->stacksize == 0)
1313 		return 0;
1314 
1315 	/* Jumpstack needs to be able to record two full callchains, one
1316 	 * from the first rule set traversal, plus one table reentrancy
1317 	 * via -j TEE without clobbering the callchain that brought us to
1318 	 * TEE target.
1319 	 *
1320 	 * This is done by allocating two jumpstacks per cpu, on reentry
1321 	 * the upper half of the stack is used.
1322 	 *
1323 	 * see the jumpstack setup in ipt_do_table() for more details.
1324 	 */
1325 	size = sizeof(void *) * i->stacksize * 2u;
1326 	for_each_possible_cpu(cpu) {
1327 		i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1328 			cpu_to_node(cpu));
1329 		if (i->jumpstack[cpu] == NULL)
1330 			/*
1331 			 * Freeing will be done later on by the callers. The
1332 			 * chain is: xt_replace_table -> __do_replace ->
1333 			 * do_replace -> xt_free_table_info.
1334 			 */
1335 			return -ENOMEM;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 struct xt_counters *xt_counters_alloc(unsigned int counters)
1342 {
1343 	struct xt_counters *mem;
1344 
1345 	if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1346 		return NULL;
1347 
1348 	counters *= sizeof(*mem);
1349 	if (counters > XT_MAX_TABLE_SIZE)
1350 		return NULL;
1351 
1352 	return vzalloc(counters);
1353 }
1354 EXPORT_SYMBOL(xt_counters_alloc);
1355 
1356 struct xt_table_info *
1357 xt_replace_table(struct xt_table *table,
1358 	      unsigned int num_counters,
1359 	      struct xt_table_info *newinfo,
1360 	      int *error)
1361 {
1362 	struct xt_table_info *private;
1363 	unsigned int cpu;
1364 	int ret;
1365 
1366 	ret = xt_jumpstack_alloc(newinfo);
1367 	if (ret < 0) {
1368 		*error = ret;
1369 		return NULL;
1370 	}
1371 
1372 	/* Do the substitution. */
1373 	local_bh_disable();
1374 	private = table->private;
1375 
1376 	/* Check inside lock: is the old number correct? */
1377 	if (num_counters != private->number) {
1378 		pr_debug("num_counters != table->private->number (%u/%u)\n",
1379 			 num_counters, private->number);
1380 		local_bh_enable();
1381 		*error = -EAGAIN;
1382 		return NULL;
1383 	}
1384 
1385 	newinfo->initial_entries = private->initial_entries;
1386 	/*
1387 	 * Ensure contents of newinfo are visible before assigning to
1388 	 * private.
1389 	 */
1390 	smp_wmb();
1391 	table->private = newinfo;
1392 
1393 	/* make sure all cpus see new ->private value */
1394 	smp_wmb();
1395 
1396 	/*
1397 	 * Even though table entries have now been swapped, other CPU's
1398 	 * may still be using the old entries...
1399 	 */
1400 	local_bh_enable();
1401 
1402 	/* ... so wait for even xt_recseq on all cpus */
1403 	for_each_possible_cpu(cpu) {
1404 		seqcount_t *s = &per_cpu(xt_recseq, cpu);
1405 		u32 seq = raw_read_seqcount(s);
1406 
1407 		if (seq & 1) {
1408 			do {
1409 				cond_resched();
1410 				cpu_relax();
1411 			} while (seq == raw_read_seqcount(s));
1412 		}
1413 	}
1414 
1415 #ifdef CONFIG_AUDIT
1416 	if (audit_enabled) {
1417 		audit_log(audit_context(), GFP_KERNEL,
1418 			  AUDIT_NETFILTER_CFG,
1419 			  "table=%s family=%u entries=%u",
1420 			  table->name, table->af, private->number);
1421 	}
1422 #endif
1423 
1424 	return private;
1425 }
1426 EXPORT_SYMBOL_GPL(xt_replace_table);
1427 
1428 struct xt_table *xt_register_table(struct net *net,
1429 				   const struct xt_table *input_table,
1430 				   struct xt_table_info *bootstrap,
1431 				   struct xt_table_info *newinfo)
1432 {
1433 	int ret;
1434 	struct xt_table_info *private;
1435 	struct xt_table *t, *table;
1436 
1437 	/* Don't add one object to multiple lists. */
1438 	table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1439 	if (!table) {
1440 		ret = -ENOMEM;
1441 		goto out;
1442 	}
1443 
1444 	mutex_lock(&xt[table->af].mutex);
1445 	/* Don't autoload: we'd eat our tail... */
1446 	list_for_each_entry(t, &net->xt.tables[table->af], list) {
1447 		if (strcmp(t->name, table->name) == 0) {
1448 			ret = -EEXIST;
1449 			goto unlock;
1450 		}
1451 	}
1452 
1453 	/* Simplifies replace_table code. */
1454 	table->private = bootstrap;
1455 
1456 	if (!xt_replace_table(table, 0, newinfo, &ret))
1457 		goto unlock;
1458 
1459 	private = table->private;
1460 	pr_debug("table->private->number = %u\n", private->number);
1461 
1462 	/* save number of initial entries */
1463 	private->initial_entries = private->number;
1464 
1465 	list_add(&table->list, &net->xt.tables[table->af]);
1466 	mutex_unlock(&xt[table->af].mutex);
1467 	return table;
1468 
1469 unlock:
1470 	mutex_unlock(&xt[table->af].mutex);
1471 	kfree(table);
1472 out:
1473 	return ERR_PTR(ret);
1474 }
1475 EXPORT_SYMBOL_GPL(xt_register_table);
1476 
1477 void *xt_unregister_table(struct xt_table *table)
1478 {
1479 	struct xt_table_info *private;
1480 
1481 	mutex_lock(&xt[table->af].mutex);
1482 	private = table->private;
1483 	list_del(&table->list);
1484 	mutex_unlock(&xt[table->af].mutex);
1485 	kfree(table);
1486 
1487 	return private;
1488 }
1489 EXPORT_SYMBOL_GPL(xt_unregister_table);
1490 
1491 #ifdef CONFIG_PROC_FS
1492 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1493 {
1494 	struct net *net = seq_file_net(seq);
1495 	u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1496 
1497 	mutex_lock(&xt[af].mutex);
1498 	return seq_list_start(&net->xt.tables[af], *pos);
1499 }
1500 
1501 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1502 {
1503 	struct net *net = seq_file_net(seq);
1504 	u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1505 
1506 	return seq_list_next(v, &net->xt.tables[af], pos);
1507 }
1508 
1509 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1510 {
1511 	u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1512 
1513 	mutex_unlock(&xt[af].mutex);
1514 }
1515 
1516 static int xt_table_seq_show(struct seq_file *seq, void *v)
1517 {
1518 	struct xt_table *table = list_entry(v, struct xt_table, list);
1519 
1520 	if (*table->name)
1521 		seq_printf(seq, "%s\n", table->name);
1522 	return 0;
1523 }
1524 
1525 static const struct seq_operations xt_table_seq_ops = {
1526 	.start	= xt_table_seq_start,
1527 	.next	= xt_table_seq_next,
1528 	.stop	= xt_table_seq_stop,
1529 	.show	= xt_table_seq_show,
1530 };
1531 
1532 /*
1533  * Traverse state for ip{,6}_{tables,matches} for helping crossing
1534  * the multi-AF mutexes.
1535  */
1536 struct nf_mttg_trav {
1537 	struct list_head *head, *curr;
1538 	uint8_t class;
1539 };
1540 
1541 enum {
1542 	MTTG_TRAV_INIT,
1543 	MTTG_TRAV_NFP_UNSPEC,
1544 	MTTG_TRAV_NFP_SPEC,
1545 	MTTG_TRAV_DONE,
1546 };
1547 
1548 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1549     bool is_target)
1550 {
1551 	static const uint8_t next_class[] = {
1552 		[MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1553 		[MTTG_TRAV_NFP_SPEC]   = MTTG_TRAV_DONE,
1554 	};
1555 	uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file));
1556 	struct nf_mttg_trav *trav = seq->private;
1557 
1558 	switch (trav->class) {
1559 	case MTTG_TRAV_INIT:
1560 		trav->class = MTTG_TRAV_NFP_UNSPEC;
1561 		mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1562 		trav->head = trav->curr = is_target ?
1563 			&xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1564  		break;
1565 	case MTTG_TRAV_NFP_UNSPEC:
1566 		trav->curr = trav->curr->next;
1567 		if (trav->curr != trav->head)
1568 			break;
1569 		mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1570 		mutex_lock(&xt[nfproto].mutex);
1571 		trav->head = trav->curr = is_target ?
1572 			&xt[nfproto].target : &xt[nfproto].match;
1573 		trav->class = next_class[trav->class];
1574 		break;
1575 	case MTTG_TRAV_NFP_SPEC:
1576 		trav->curr = trav->curr->next;
1577 		if (trav->curr != trav->head)
1578 			break;
1579 		/* fall through */
1580 	default:
1581 		return NULL;
1582 	}
1583 
1584 	if (ppos != NULL)
1585 		++*ppos;
1586 	return trav;
1587 }
1588 
1589 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1590     bool is_target)
1591 {
1592 	struct nf_mttg_trav *trav = seq->private;
1593 	unsigned int j;
1594 
1595 	trav->class = MTTG_TRAV_INIT;
1596 	for (j = 0; j < *pos; ++j)
1597 		if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1598 			return NULL;
1599 	return trav;
1600 }
1601 
1602 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1603 {
1604 	uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file));
1605 	struct nf_mttg_trav *trav = seq->private;
1606 
1607 	switch (trav->class) {
1608 	case MTTG_TRAV_NFP_UNSPEC:
1609 		mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1610 		break;
1611 	case MTTG_TRAV_NFP_SPEC:
1612 		mutex_unlock(&xt[nfproto].mutex);
1613 		break;
1614 	}
1615 }
1616 
1617 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1618 {
1619 	return xt_mttg_seq_start(seq, pos, false);
1620 }
1621 
1622 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1623 {
1624 	return xt_mttg_seq_next(seq, v, ppos, false);
1625 }
1626 
1627 static int xt_match_seq_show(struct seq_file *seq, void *v)
1628 {
1629 	const struct nf_mttg_trav *trav = seq->private;
1630 	const struct xt_match *match;
1631 
1632 	switch (trav->class) {
1633 	case MTTG_TRAV_NFP_UNSPEC:
1634 	case MTTG_TRAV_NFP_SPEC:
1635 		if (trav->curr == trav->head)
1636 			return 0;
1637 		match = list_entry(trav->curr, struct xt_match, list);
1638 		if (*match->name)
1639 			seq_printf(seq, "%s\n", match->name);
1640 	}
1641 	return 0;
1642 }
1643 
1644 static const struct seq_operations xt_match_seq_ops = {
1645 	.start	= xt_match_seq_start,
1646 	.next	= xt_match_seq_next,
1647 	.stop	= xt_mttg_seq_stop,
1648 	.show	= xt_match_seq_show,
1649 };
1650 
1651 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1652 {
1653 	return xt_mttg_seq_start(seq, pos, true);
1654 }
1655 
1656 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1657 {
1658 	return xt_mttg_seq_next(seq, v, ppos, true);
1659 }
1660 
1661 static int xt_target_seq_show(struct seq_file *seq, void *v)
1662 {
1663 	const struct nf_mttg_trav *trav = seq->private;
1664 	const struct xt_target *target;
1665 
1666 	switch (trav->class) {
1667 	case MTTG_TRAV_NFP_UNSPEC:
1668 	case MTTG_TRAV_NFP_SPEC:
1669 		if (trav->curr == trav->head)
1670 			return 0;
1671 		target = list_entry(trav->curr, struct xt_target, list);
1672 		if (*target->name)
1673 			seq_printf(seq, "%s\n", target->name);
1674 	}
1675 	return 0;
1676 }
1677 
1678 static const struct seq_operations xt_target_seq_ops = {
1679 	.start	= xt_target_seq_start,
1680 	.next	= xt_target_seq_next,
1681 	.stop	= xt_mttg_seq_stop,
1682 	.show	= xt_target_seq_show,
1683 };
1684 
1685 #define FORMAT_TABLES	"_tables_names"
1686 #define	FORMAT_MATCHES	"_tables_matches"
1687 #define FORMAT_TARGETS 	"_tables_targets"
1688 
1689 #endif /* CONFIG_PROC_FS */
1690 
1691 /**
1692  * xt_hook_ops_alloc - set up hooks for a new table
1693  * @table:	table with metadata needed to set up hooks
1694  * @fn:		Hook function
1695  *
1696  * This function will create the nf_hook_ops that the x_table needs
1697  * to hand to xt_hook_link_net().
1698  */
1699 struct nf_hook_ops *
1700 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1701 {
1702 	unsigned int hook_mask = table->valid_hooks;
1703 	uint8_t i, num_hooks = hweight32(hook_mask);
1704 	uint8_t hooknum;
1705 	struct nf_hook_ops *ops;
1706 
1707 	if (!num_hooks)
1708 		return ERR_PTR(-EINVAL);
1709 
1710 	ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1711 	if (ops == NULL)
1712 		return ERR_PTR(-ENOMEM);
1713 
1714 	for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1715 	     hook_mask >>= 1, ++hooknum) {
1716 		if (!(hook_mask & 1))
1717 			continue;
1718 		ops[i].hook     = fn;
1719 		ops[i].pf       = table->af;
1720 		ops[i].hooknum  = hooknum;
1721 		ops[i].priority = table->priority;
1722 		++i;
1723 	}
1724 
1725 	return ops;
1726 }
1727 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1728 
1729 int xt_proto_init(struct net *net, u_int8_t af)
1730 {
1731 #ifdef CONFIG_PROC_FS
1732 	char buf[XT_FUNCTION_MAXNAMELEN];
1733 	struct proc_dir_entry *proc;
1734 	kuid_t root_uid;
1735 	kgid_t root_gid;
1736 #endif
1737 
1738 	if (af >= ARRAY_SIZE(xt_prefix))
1739 		return -EINVAL;
1740 
1741 
1742 #ifdef CONFIG_PROC_FS
1743 	root_uid = make_kuid(net->user_ns, 0);
1744 	root_gid = make_kgid(net->user_ns, 0);
1745 
1746 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1747 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1748 	proc = proc_create_net_data(buf, 0440, net->proc_net, &xt_table_seq_ops,
1749 			sizeof(struct seq_net_private),
1750 			(void *)(unsigned long)af);
1751 	if (!proc)
1752 		goto out;
1753 	if (uid_valid(root_uid) && gid_valid(root_gid))
1754 		proc_set_user(proc, root_uid, root_gid);
1755 
1756 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1757 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1758 	proc = proc_create_seq_private(buf, 0440, net->proc_net,
1759 			&xt_match_seq_ops, sizeof(struct nf_mttg_trav),
1760 			(void *)(unsigned long)af);
1761 	if (!proc)
1762 		goto out_remove_tables;
1763 	if (uid_valid(root_uid) && gid_valid(root_gid))
1764 		proc_set_user(proc, root_uid, root_gid);
1765 
1766 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1767 	strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1768 	proc = proc_create_seq_private(buf, 0440, net->proc_net,
1769 			 &xt_target_seq_ops, sizeof(struct nf_mttg_trav),
1770 			 (void *)(unsigned long)af);
1771 	if (!proc)
1772 		goto out_remove_matches;
1773 	if (uid_valid(root_uid) && gid_valid(root_gid))
1774 		proc_set_user(proc, root_uid, root_gid);
1775 #endif
1776 
1777 	return 0;
1778 
1779 #ifdef CONFIG_PROC_FS
1780 out_remove_matches:
1781 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1782 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1783 	remove_proc_entry(buf, net->proc_net);
1784 
1785 out_remove_tables:
1786 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1787 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1788 	remove_proc_entry(buf, net->proc_net);
1789 out:
1790 	return -1;
1791 #endif
1792 }
1793 EXPORT_SYMBOL_GPL(xt_proto_init);
1794 
1795 void xt_proto_fini(struct net *net, u_int8_t af)
1796 {
1797 #ifdef CONFIG_PROC_FS
1798 	char buf[XT_FUNCTION_MAXNAMELEN];
1799 
1800 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1801 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1802 	remove_proc_entry(buf, net->proc_net);
1803 
1804 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1805 	strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1806 	remove_proc_entry(buf, net->proc_net);
1807 
1808 	strlcpy(buf, xt_prefix[af], sizeof(buf));
1809 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1810 	remove_proc_entry(buf, net->proc_net);
1811 #endif /*CONFIG_PROC_FS*/
1812 }
1813 EXPORT_SYMBOL_GPL(xt_proto_fini);
1814 
1815 /**
1816  * xt_percpu_counter_alloc - allocate x_tables rule counter
1817  *
1818  * @state: pointer to xt_percpu allocation state
1819  * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1820  *
1821  * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1822  * contain the address of the real (percpu) counter.
1823  *
1824  * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1825  * to fetch the real percpu counter.
1826  *
1827  * To speed up allocation and improve data locality, a 4kb block is
1828  * allocated.  Freeing any counter may free an entire block, so all
1829  * counters allocated using the same state must be freed at the same
1830  * time.
1831  *
1832  * xt_percpu_counter_alloc_state contains the base address of the
1833  * allocated page and the current sub-offset.
1834  *
1835  * returns false on error.
1836  */
1837 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1838 			     struct xt_counters *counter)
1839 {
1840 	BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1841 
1842 	if (nr_cpu_ids <= 1)
1843 		return true;
1844 
1845 	if (!state->mem) {
1846 		state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1847 					    XT_PCPU_BLOCK_SIZE);
1848 		if (!state->mem)
1849 			return false;
1850 	}
1851 	counter->pcnt = (__force unsigned long)(state->mem + state->off);
1852 	state->off += sizeof(*counter);
1853 	if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1854 		state->mem = NULL;
1855 		state->off = 0;
1856 	}
1857 	return true;
1858 }
1859 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1860 
1861 void xt_percpu_counter_free(struct xt_counters *counters)
1862 {
1863 	unsigned long pcnt = counters->pcnt;
1864 
1865 	if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1866 		free_percpu((void __percpu *)pcnt);
1867 }
1868 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1869 
1870 static int __net_init xt_net_init(struct net *net)
1871 {
1872 	int i;
1873 
1874 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
1875 		INIT_LIST_HEAD(&net->xt.tables[i]);
1876 	return 0;
1877 }
1878 
1879 static void __net_exit xt_net_exit(struct net *net)
1880 {
1881 	int i;
1882 
1883 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
1884 		WARN_ON_ONCE(!list_empty(&net->xt.tables[i]));
1885 }
1886 
1887 static struct pernet_operations xt_net_ops = {
1888 	.init = xt_net_init,
1889 	.exit = xt_net_exit,
1890 };
1891 
1892 static int __init xt_init(void)
1893 {
1894 	unsigned int i;
1895 	int rv;
1896 
1897 	for_each_possible_cpu(i) {
1898 		seqcount_init(&per_cpu(xt_recseq, i));
1899 	}
1900 
1901 	xt = kcalloc(NFPROTO_NUMPROTO, sizeof(struct xt_af), GFP_KERNEL);
1902 	if (!xt)
1903 		return -ENOMEM;
1904 
1905 	for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1906 		mutex_init(&xt[i].mutex);
1907 #ifdef CONFIG_COMPAT
1908 		mutex_init(&xt[i].compat_mutex);
1909 		xt[i].compat_tab = NULL;
1910 #endif
1911 		INIT_LIST_HEAD(&xt[i].target);
1912 		INIT_LIST_HEAD(&xt[i].match);
1913 	}
1914 	rv = register_pernet_subsys(&xt_net_ops);
1915 	if (rv < 0)
1916 		kfree(xt);
1917 	return rv;
1918 }
1919 
1920 static void __exit xt_fini(void)
1921 {
1922 	unregister_pernet_subsys(&xt_net_ops);
1923 	kfree(xt);
1924 }
1925 
1926 module_init(xt_init);
1927 module_exit(xt_fini);
1928 
1929