1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net>
4  *
5  * Development of this code funded by Astaro AG (http://www.astaro.com/)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/list.h>
12 #include <linux/rbtree.h>
13 #include <linux/netlink.h>
14 #include <linux/netfilter.h>
15 #include <linux/netfilter/nf_tables.h>
16 #include <net/netfilter/nf_tables_core.h>
17 
18 struct nft_rbtree {
19 	struct rb_root		root;
20 	rwlock_t		lock;
21 	seqcount_rwlock_t	count;
22 	struct delayed_work	gc_work;
23 };
24 
25 struct nft_rbtree_elem {
26 	struct rb_node		node;
27 	struct nft_set_ext	ext;
28 };
29 
30 static bool nft_rbtree_interval_end(const struct nft_rbtree_elem *rbe)
31 {
32 	return nft_set_ext_exists(&rbe->ext, NFT_SET_EXT_FLAGS) &&
33 	       (*nft_set_ext_flags(&rbe->ext) & NFT_SET_ELEM_INTERVAL_END);
34 }
35 
36 static bool nft_rbtree_interval_start(const struct nft_rbtree_elem *rbe)
37 {
38 	return !nft_rbtree_interval_end(rbe);
39 }
40 
41 static int nft_rbtree_cmp(const struct nft_set *set,
42 			  const struct nft_rbtree_elem *e1,
43 			  const struct nft_rbtree_elem *e2)
44 {
45 	return memcmp(nft_set_ext_key(&e1->ext), nft_set_ext_key(&e2->ext),
46 		      set->klen);
47 }
48 
49 static bool __nft_rbtree_lookup(const struct net *net, const struct nft_set *set,
50 				const u32 *key, const struct nft_set_ext **ext,
51 				unsigned int seq)
52 {
53 	struct nft_rbtree *priv = nft_set_priv(set);
54 	const struct nft_rbtree_elem *rbe, *interval = NULL;
55 	u8 genmask = nft_genmask_cur(net);
56 	const struct rb_node *parent;
57 	int d;
58 
59 	parent = rcu_dereference_raw(priv->root.rb_node);
60 	while (parent != NULL) {
61 		if (read_seqcount_retry(&priv->count, seq))
62 			return false;
63 
64 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
65 
66 		d = memcmp(nft_set_ext_key(&rbe->ext), key, set->klen);
67 		if (d < 0) {
68 			parent = rcu_dereference_raw(parent->rb_left);
69 			if (interval &&
70 			    !nft_rbtree_cmp(set, rbe, interval) &&
71 			    nft_rbtree_interval_end(rbe) &&
72 			    nft_rbtree_interval_start(interval))
73 				continue;
74 			interval = rbe;
75 		} else if (d > 0)
76 			parent = rcu_dereference_raw(parent->rb_right);
77 		else {
78 			if (!nft_set_elem_active(&rbe->ext, genmask)) {
79 				parent = rcu_dereference_raw(parent->rb_left);
80 				continue;
81 			}
82 
83 			if (nft_set_elem_expired(&rbe->ext))
84 				return false;
85 
86 			if (nft_rbtree_interval_end(rbe)) {
87 				if (nft_set_is_anonymous(set))
88 					return false;
89 				parent = rcu_dereference_raw(parent->rb_left);
90 				interval = NULL;
91 				continue;
92 			}
93 
94 			*ext = &rbe->ext;
95 			return true;
96 		}
97 	}
98 
99 	if (set->flags & NFT_SET_INTERVAL && interval != NULL &&
100 	    nft_set_elem_active(&interval->ext, genmask) &&
101 	    !nft_set_elem_expired(&interval->ext) &&
102 	    nft_rbtree_interval_start(interval)) {
103 		*ext = &interval->ext;
104 		return true;
105 	}
106 
107 	return false;
108 }
109 
110 INDIRECT_CALLABLE_SCOPE
111 bool nft_rbtree_lookup(const struct net *net, const struct nft_set *set,
112 		       const u32 *key, const struct nft_set_ext **ext)
113 {
114 	struct nft_rbtree *priv = nft_set_priv(set);
115 	unsigned int seq = read_seqcount_begin(&priv->count);
116 	bool ret;
117 
118 	ret = __nft_rbtree_lookup(net, set, key, ext, seq);
119 	if (ret || !read_seqcount_retry(&priv->count, seq))
120 		return ret;
121 
122 	read_lock_bh(&priv->lock);
123 	seq = read_seqcount_begin(&priv->count);
124 	ret = __nft_rbtree_lookup(net, set, key, ext, seq);
125 	read_unlock_bh(&priv->lock);
126 
127 	return ret;
128 }
129 
130 static bool __nft_rbtree_get(const struct net *net, const struct nft_set *set,
131 			     const u32 *key, struct nft_rbtree_elem **elem,
132 			     unsigned int seq, unsigned int flags, u8 genmask)
133 {
134 	struct nft_rbtree_elem *rbe, *interval = NULL;
135 	struct nft_rbtree *priv = nft_set_priv(set);
136 	const struct rb_node *parent;
137 	const void *this;
138 	int d;
139 
140 	parent = rcu_dereference_raw(priv->root.rb_node);
141 	while (parent != NULL) {
142 		if (read_seqcount_retry(&priv->count, seq))
143 			return false;
144 
145 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
146 
147 		this = nft_set_ext_key(&rbe->ext);
148 		d = memcmp(this, key, set->klen);
149 		if (d < 0) {
150 			parent = rcu_dereference_raw(parent->rb_left);
151 			if (!(flags & NFT_SET_ELEM_INTERVAL_END))
152 				interval = rbe;
153 		} else if (d > 0) {
154 			parent = rcu_dereference_raw(parent->rb_right);
155 			if (flags & NFT_SET_ELEM_INTERVAL_END)
156 				interval = rbe;
157 		} else {
158 			if (!nft_set_elem_active(&rbe->ext, genmask)) {
159 				parent = rcu_dereference_raw(parent->rb_left);
160 				continue;
161 			}
162 
163 			if (nft_set_elem_expired(&rbe->ext))
164 				return false;
165 
166 			if (!nft_set_ext_exists(&rbe->ext, NFT_SET_EXT_FLAGS) ||
167 			    (*nft_set_ext_flags(&rbe->ext) & NFT_SET_ELEM_INTERVAL_END) ==
168 			    (flags & NFT_SET_ELEM_INTERVAL_END)) {
169 				*elem = rbe;
170 				return true;
171 			}
172 
173 			if (nft_rbtree_interval_end(rbe))
174 				interval = NULL;
175 
176 			parent = rcu_dereference_raw(parent->rb_left);
177 		}
178 	}
179 
180 	if (set->flags & NFT_SET_INTERVAL && interval != NULL &&
181 	    nft_set_elem_active(&interval->ext, genmask) &&
182 	    !nft_set_elem_expired(&interval->ext) &&
183 	    ((!nft_rbtree_interval_end(interval) &&
184 	      !(flags & NFT_SET_ELEM_INTERVAL_END)) ||
185 	     (nft_rbtree_interval_end(interval) &&
186 	      (flags & NFT_SET_ELEM_INTERVAL_END)))) {
187 		*elem = interval;
188 		return true;
189 	}
190 
191 	return false;
192 }
193 
194 static void *nft_rbtree_get(const struct net *net, const struct nft_set *set,
195 			    const struct nft_set_elem *elem, unsigned int flags)
196 {
197 	struct nft_rbtree *priv = nft_set_priv(set);
198 	unsigned int seq = read_seqcount_begin(&priv->count);
199 	struct nft_rbtree_elem *rbe = ERR_PTR(-ENOENT);
200 	const u32 *key = (const u32 *)&elem->key.val;
201 	u8 genmask = nft_genmask_cur(net);
202 	bool ret;
203 
204 	ret = __nft_rbtree_get(net, set, key, &rbe, seq, flags, genmask);
205 	if (ret || !read_seqcount_retry(&priv->count, seq))
206 		return rbe;
207 
208 	read_lock_bh(&priv->lock);
209 	seq = read_seqcount_begin(&priv->count);
210 	ret = __nft_rbtree_get(net, set, key, &rbe, seq, flags, genmask);
211 	if (!ret)
212 		rbe = ERR_PTR(-ENOENT);
213 	read_unlock_bh(&priv->lock);
214 
215 	return rbe;
216 }
217 
218 static int nft_rbtree_gc_elem(const struct nft_set *__set,
219 			      struct nft_rbtree *priv,
220 			      struct nft_rbtree_elem *rbe)
221 {
222 	struct nft_set *set = (struct nft_set *)__set;
223 	struct rb_node *prev = rb_prev(&rbe->node);
224 	struct nft_rbtree_elem *rbe_prev;
225 	struct nft_set_gc_batch *gcb;
226 
227 	gcb = nft_set_gc_batch_check(set, NULL, GFP_ATOMIC);
228 	if (!gcb)
229 		return -ENOMEM;
230 
231 	/* search for expired end interval coming before this element. */
232 	do {
233 		rbe_prev = rb_entry(prev, struct nft_rbtree_elem, node);
234 		if (nft_rbtree_interval_end(rbe_prev))
235 			break;
236 
237 		prev = rb_prev(prev);
238 	} while (prev != NULL);
239 
240 	rb_erase(&rbe_prev->node, &priv->root);
241 	rb_erase(&rbe->node, &priv->root);
242 	atomic_sub(2, &set->nelems);
243 
244 	nft_set_gc_batch_add(gcb, rbe);
245 	nft_set_gc_batch_complete(gcb);
246 
247 	return 0;
248 }
249 
250 static bool nft_rbtree_update_first(const struct nft_set *set,
251 				    struct nft_rbtree_elem *rbe,
252 				    struct rb_node *first)
253 {
254 	struct nft_rbtree_elem *first_elem;
255 
256 	first_elem = rb_entry(first, struct nft_rbtree_elem, node);
257 	/* this element is closest to where the new element is to be inserted:
258 	 * update the first element for the node list path.
259 	 */
260 	if (nft_rbtree_cmp(set, rbe, first_elem) < 0)
261 		return true;
262 
263 	return false;
264 }
265 
266 static int __nft_rbtree_insert(const struct net *net, const struct nft_set *set,
267 			       struct nft_rbtree_elem *new,
268 			       struct nft_set_ext **ext)
269 {
270 	struct nft_rbtree_elem *rbe, *rbe_le = NULL, *rbe_ge = NULL;
271 	struct rb_node *node, *parent, **p, *first = NULL;
272 	struct nft_rbtree *priv = nft_set_priv(set);
273 	u8 genmask = nft_genmask_next(net);
274 	int d, err;
275 
276 	/* Descend the tree to search for an existing element greater than the
277 	 * key value to insert that is greater than the new element. This is the
278 	 * first element to walk the ordered elements to find possible overlap.
279 	 */
280 	parent = NULL;
281 	p = &priv->root.rb_node;
282 	while (*p != NULL) {
283 		parent = *p;
284 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
285 		d = nft_rbtree_cmp(set, rbe, new);
286 
287 		if (d < 0) {
288 			p = &parent->rb_left;
289 		} else if (d > 0) {
290 			if (!first ||
291 			    nft_rbtree_update_first(set, rbe, first))
292 				first = &rbe->node;
293 
294 			p = &parent->rb_right;
295 		} else {
296 			if (nft_rbtree_interval_end(rbe))
297 				p = &parent->rb_left;
298 			else
299 				p = &parent->rb_right;
300 		}
301 	}
302 
303 	if (!first)
304 		first = rb_first(&priv->root);
305 
306 	/* Detect overlap by going through the list of valid tree nodes.
307 	 * Values stored in the tree are in reversed order, starting from
308 	 * highest to lowest value.
309 	 */
310 	for (node = first; node != NULL; node = rb_next(node)) {
311 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
312 
313 		if (!nft_set_elem_active(&rbe->ext, genmask))
314 			continue;
315 
316 		/* perform garbage collection to avoid bogus overlap reports. */
317 		if (nft_set_elem_expired(&rbe->ext)) {
318 			err = nft_rbtree_gc_elem(set, priv, rbe);
319 			if (err < 0)
320 				return err;
321 
322 			continue;
323 		}
324 
325 		d = nft_rbtree_cmp(set, rbe, new);
326 		if (d == 0) {
327 			/* Matching end element: no need to look for an
328 			 * overlapping greater or equal element.
329 			 */
330 			if (nft_rbtree_interval_end(rbe)) {
331 				rbe_le = rbe;
332 				break;
333 			}
334 
335 			/* first element that is greater or equal to key value. */
336 			if (!rbe_ge) {
337 				rbe_ge = rbe;
338 				continue;
339 			}
340 
341 			/* this is a closer more or equal element, update it. */
342 			if (nft_rbtree_cmp(set, rbe_ge, new) != 0) {
343 				rbe_ge = rbe;
344 				continue;
345 			}
346 
347 			/* element is equal to key value, make sure flags are
348 			 * the same, an existing more or equal start element
349 			 * must not be replaced by more or equal end element.
350 			 */
351 			if ((nft_rbtree_interval_start(new) &&
352 			     nft_rbtree_interval_start(rbe_ge)) ||
353 			    (nft_rbtree_interval_end(new) &&
354 			     nft_rbtree_interval_end(rbe_ge))) {
355 				rbe_ge = rbe;
356 				continue;
357 			}
358 		} else if (d > 0) {
359 			/* annotate element greater than the new element. */
360 			rbe_ge = rbe;
361 			continue;
362 		} else if (d < 0) {
363 			/* annotate element less than the new element. */
364 			rbe_le = rbe;
365 			break;
366 		}
367 	}
368 
369 	/* - new start element matching existing start element: full overlap
370 	 *   reported as -EEXIST, cleared by caller if NLM_F_EXCL is not given.
371 	 */
372 	if (rbe_ge && !nft_rbtree_cmp(set, new, rbe_ge) &&
373 	    nft_rbtree_interval_start(rbe_ge) == nft_rbtree_interval_start(new)) {
374 		*ext = &rbe_ge->ext;
375 		return -EEXIST;
376 	}
377 
378 	/* - new end element matching existing end element: full overlap
379 	 *   reported as -EEXIST, cleared by caller if NLM_F_EXCL is not given.
380 	 */
381 	if (rbe_le && !nft_rbtree_cmp(set, new, rbe_le) &&
382 	    nft_rbtree_interval_end(rbe_le) == nft_rbtree_interval_end(new)) {
383 		*ext = &rbe_le->ext;
384 		return -EEXIST;
385 	}
386 
387 	/* - new start element with existing closest, less or equal key value
388 	 *   being a start element: partial overlap, reported as -ENOTEMPTY.
389 	 *   Anonymous sets allow for two consecutive start element since they
390 	 *   are constant, skip them to avoid bogus overlap reports.
391 	 */
392 	if (!nft_set_is_anonymous(set) && rbe_le &&
393 	    nft_rbtree_interval_start(rbe_le) && nft_rbtree_interval_start(new))
394 		return -ENOTEMPTY;
395 
396 	/* - new end element with existing closest, less or equal key value
397 	 *   being a end element: partial overlap, reported as -ENOTEMPTY.
398 	 */
399 	if (rbe_le &&
400 	    nft_rbtree_interval_end(rbe_le) && nft_rbtree_interval_end(new))
401 		return -ENOTEMPTY;
402 
403 	/* - new end element with existing closest, greater or equal key value
404 	 *   being an end element: partial overlap, reported as -ENOTEMPTY
405 	 */
406 	if (rbe_ge &&
407 	    nft_rbtree_interval_end(rbe_ge) && nft_rbtree_interval_end(new))
408 		return -ENOTEMPTY;
409 
410 	/* Accepted element: pick insertion point depending on key value */
411 	parent = NULL;
412 	p = &priv->root.rb_node;
413 	while (*p != NULL) {
414 		parent = *p;
415 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
416 		d = nft_rbtree_cmp(set, rbe, new);
417 
418 		if (d < 0)
419 			p = &parent->rb_left;
420 		else if (d > 0)
421 			p = &parent->rb_right;
422 		else if (nft_rbtree_interval_end(rbe))
423 			p = &parent->rb_left;
424 		else
425 			p = &parent->rb_right;
426 	}
427 
428 	rb_link_node_rcu(&new->node, parent, p);
429 	rb_insert_color(&new->node, &priv->root);
430 	return 0;
431 }
432 
433 static int nft_rbtree_insert(const struct net *net, const struct nft_set *set,
434 			     const struct nft_set_elem *elem,
435 			     struct nft_set_ext **ext)
436 {
437 	struct nft_rbtree *priv = nft_set_priv(set);
438 	struct nft_rbtree_elem *rbe = elem->priv;
439 	int err;
440 
441 	write_lock_bh(&priv->lock);
442 	write_seqcount_begin(&priv->count);
443 	err = __nft_rbtree_insert(net, set, rbe, ext);
444 	write_seqcount_end(&priv->count);
445 	write_unlock_bh(&priv->lock);
446 
447 	return err;
448 }
449 
450 static void nft_rbtree_remove(const struct net *net,
451 			      const struct nft_set *set,
452 			      const struct nft_set_elem *elem)
453 {
454 	struct nft_rbtree *priv = nft_set_priv(set);
455 	struct nft_rbtree_elem *rbe = elem->priv;
456 
457 	write_lock_bh(&priv->lock);
458 	write_seqcount_begin(&priv->count);
459 	rb_erase(&rbe->node, &priv->root);
460 	write_seqcount_end(&priv->count);
461 	write_unlock_bh(&priv->lock);
462 }
463 
464 static void nft_rbtree_activate(const struct net *net,
465 				const struct nft_set *set,
466 				const struct nft_set_elem *elem)
467 {
468 	struct nft_rbtree_elem *rbe = elem->priv;
469 
470 	nft_set_elem_change_active(net, set, &rbe->ext);
471 	nft_set_elem_clear_busy(&rbe->ext);
472 }
473 
474 static bool nft_rbtree_flush(const struct net *net,
475 			     const struct nft_set *set, void *priv)
476 {
477 	struct nft_rbtree_elem *rbe = priv;
478 
479 	if (!nft_set_elem_mark_busy(&rbe->ext) ||
480 	    !nft_is_active(net, &rbe->ext)) {
481 		nft_set_elem_change_active(net, set, &rbe->ext);
482 		return true;
483 	}
484 	return false;
485 }
486 
487 static void *nft_rbtree_deactivate(const struct net *net,
488 				   const struct nft_set *set,
489 				   const struct nft_set_elem *elem)
490 {
491 	const struct nft_rbtree *priv = nft_set_priv(set);
492 	const struct rb_node *parent = priv->root.rb_node;
493 	struct nft_rbtree_elem *rbe, *this = elem->priv;
494 	u8 genmask = nft_genmask_next(net);
495 	int d;
496 
497 	while (parent != NULL) {
498 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
499 
500 		d = memcmp(nft_set_ext_key(&rbe->ext), &elem->key.val,
501 					   set->klen);
502 		if (d < 0)
503 			parent = parent->rb_left;
504 		else if (d > 0)
505 			parent = parent->rb_right;
506 		else {
507 			if (nft_rbtree_interval_end(rbe) &&
508 			    nft_rbtree_interval_start(this)) {
509 				parent = parent->rb_left;
510 				continue;
511 			} else if (nft_rbtree_interval_start(rbe) &&
512 				   nft_rbtree_interval_end(this)) {
513 				parent = parent->rb_right;
514 				continue;
515 			} else if (!nft_set_elem_active(&rbe->ext, genmask)) {
516 				parent = parent->rb_left;
517 				continue;
518 			}
519 			nft_rbtree_flush(net, set, rbe);
520 			return rbe;
521 		}
522 	}
523 	return NULL;
524 }
525 
526 static void nft_rbtree_walk(const struct nft_ctx *ctx,
527 			    struct nft_set *set,
528 			    struct nft_set_iter *iter)
529 {
530 	struct nft_rbtree *priv = nft_set_priv(set);
531 	struct nft_rbtree_elem *rbe;
532 	struct nft_set_elem elem;
533 	struct rb_node *node;
534 
535 	read_lock_bh(&priv->lock);
536 	for (node = rb_first(&priv->root); node != NULL; node = rb_next(node)) {
537 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
538 
539 		if (iter->count < iter->skip)
540 			goto cont;
541 		if (nft_set_elem_expired(&rbe->ext))
542 			goto cont;
543 		if (!nft_set_elem_active(&rbe->ext, iter->genmask))
544 			goto cont;
545 
546 		elem.priv = rbe;
547 
548 		iter->err = iter->fn(ctx, set, iter, &elem);
549 		if (iter->err < 0) {
550 			read_unlock_bh(&priv->lock);
551 			return;
552 		}
553 cont:
554 		iter->count++;
555 	}
556 	read_unlock_bh(&priv->lock);
557 }
558 
559 static void nft_rbtree_gc(struct work_struct *work)
560 {
561 	struct nft_rbtree_elem *rbe, *rbe_end = NULL, *rbe_prev = NULL;
562 	struct nft_set_gc_batch *gcb = NULL;
563 	struct nft_rbtree *priv;
564 	struct rb_node *node;
565 	struct nft_set *set;
566 	struct net *net;
567 	u8 genmask;
568 
569 	priv = container_of(work, struct nft_rbtree, gc_work.work);
570 	set  = nft_set_container_of(priv);
571 	net  = read_pnet(&set->net);
572 	genmask = nft_genmask_cur(net);
573 
574 	write_lock_bh(&priv->lock);
575 	write_seqcount_begin(&priv->count);
576 	for (node = rb_first(&priv->root); node != NULL; node = rb_next(node)) {
577 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
578 
579 		if (!nft_set_elem_active(&rbe->ext, genmask))
580 			continue;
581 
582 		/* elements are reversed in the rbtree for historical reasons,
583 		 * from highest to lowest value, that is why end element is
584 		 * always visited before the start element.
585 		 */
586 		if (nft_rbtree_interval_end(rbe)) {
587 			rbe_end = rbe;
588 			continue;
589 		}
590 		if (!nft_set_elem_expired(&rbe->ext))
591 			continue;
592 
593 		if (nft_set_elem_mark_busy(&rbe->ext)) {
594 			rbe_end = NULL;
595 			continue;
596 		}
597 
598 		if (rbe_prev) {
599 			rb_erase(&rbe_prev->node, &priv->root);
600 			rbe_prev = NULL;
601 		}
602 		gcb = nft_set_gc_batch_check(set, gcb, GFP_ATOMIC);
603 		if (!gcb)
604 			break;
605 
606 		atomic_dec(&set->nelems);
607 		nft_set_gc_batch_add(gcb, rbe);
608 		rbe_prev = rbe;
609 
610 		if (rbe_end) {
611 			atomic_dec(&set->nelems);
612 			nft_set_gc_batch_add(gcb, rbe_end);
613 			rb_erase(&rbe_end->node, &priv->root);
614 			rbe_end = NULL;
615 		}
616 		node = rb_next(node);
617 		if (!node)
618 			break;
619 	}
620 	if (rbe_prev)
621 		rb_erase(&rbe_prev->node, &priv->root);
622 	write_seqcount_end(&priv->count);
623 	write_unlock_bh(&priv->lock);
624 
625 	rbe = nft_set_catchall_gc(set);
626 	if (rbe) {
627 		gcb = nft_set_gc_batch_check(set, gcb, GFP_ATOMIC);
628 		if (gcb)
629 			nft_set_gc_batch_add(gcb, rbe);
630 	}
631 	nft_set_gc_batch_complete(gcb);
632 
633 	queue_delayed_work(system_power_efficient_wq, &priv->gc_work,
634 			   nft_set_gc_interval(set));
635 }
636 
637 static u64 nft_rbtree_privsize(const struct nlattr * const nla[],
638 			       const struct nft_set_desc *desc)
639 {
640 	return sizeof(struct nft_rbtree);
641 }
642 
643 static int nft_rbtree_init(const struct nft_set *set,
644 			   const struct nft_set_desc *desc,
645 			   const struct nlattr * const nla[])
646 {
647 	struct nft_rbtree *priv = nft_set_priv(set);
648 
649 	rwlock_init(&priv->lock);
650 	seqcount_rwlock_init(&priv->count, &priv->lock);
651 	priv->root = RB_ROOT;
652 
653 	INIT_DEFERRABLE_WORK(&priv->gc_work, nft_rbtree_gc);
654 	if (set->flags & NFT_SET_TIMEOUT)
655 		queue_delayed_work(system_power_efficient_wq, &priv->gc_work,
656 				   nft_set_gc_interval(set));
657 
658 	return 0;
659 }
660 
661 static void nft_rbtree_destroy(const struct nft_set *set)
662 {
663 	struct nft_rbtree *priv = nft_set_priv(set);
664 	struct nft_rbtree_elem *rbe;
665 	struct rb_node *node;
666 
667 	cancel_delayed_work_sync(&priv->gc_work);
668 	rcu_barrier();
669 	while ((node = priv->root.rb_node) != NULL) {
670 		rb_erase(node, &priv->root);
671 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
672 		nft_set_elem_destroy(set, rbe, true);
673 	}
674 }
675 
676 static bool nft_rbtree_estimate(const struct nft_set_desc *desc, u32 features,
677 				struct nft_set_estimate *est)
678 {
679 	if (desc->field_count > 1)
680 		return false;
681 
682 	if (desc->size)
683 		est->size = sizeof(struct nft_rbtree) +
684 			    desc->size * sizeof(struct nft_rbtree_elem);
685 	else
686 		est->size = ~0;
687 
688 	est->lookup = NFT_SET_CLASS_O_LOG_N;
689 	est->space  = NFT_SET_CLASS_O_N;
690 
691 	return true;
692 }
693 
694 const struct nft_set_type nft_set_rbtree_type = {
695 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | NFT_SET_TIMEOUT,
696 	.ops		= {
697 		.privsize	= nft_rbtree_privsize,
698 		.elemsize	= offsetof(struct nft_rbtree_elem, ext),
699 		.estimate	= nft_rbtree_estimate,
700 		.init		= nft_rbtree_init,
701 		.destroy	= nft_rbtree_destroy,
702 		.insert		= nft_rbtree_insert,
703 		.remove		= nft_rbtree_remove,
704 		.deactivate	= nft_rbtree_deactivate,
705 		.flush		= nft_rbtree_flush,
706 		.activate	= nft_rbtree_activate,
707 		.lookup		= nft_rbtree_lookup,
708 		.walk		= nft_rbtree_walk,
709 		.get		= nft_rbtree_get,
710 	},
711 };
712