1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4  *
5  * Copyright (c) 2019-2020 Red Hat GmbH
6  *
7  * Author: Stefano Brivio <sbrivio@redhat.com>
8  */
9 
10 /**
11  * DOC: Theory of Operation
12  *
13  *
14  * Problem
15  * -------
16  *
17  * Match packet bytes against entries composed of ranged or non-ranged packet
18  * field specifiers, mapping them to arbitrary references. For example:
19  *
20  * ::
21  *
22  *               --- fields --->
23  *      |    [net],[port],[net]... => [reference]
24  *   entries [net],[port],[net]... => [reference]
25  *      |    [net],[port],[net]... => [reference]
26  *      V    ...
27  *
28  * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29  * ranges. Arbitrary packet fields can be matched.
30  *
31  *
32  * Algorithm Overview
33  * ------------------
34  *
35  * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36  * relies on the consideration that every contiguous range in a space of b bits
37  * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38  * as also illustrated in Section 9 of [Kogan 2014].
39  *
40  * Classification against a number of entries, that require matching given bits
41  * of a packet field, is performed by grouping those bits in sets of arbitrary
42  * size, and classifying packet bits one group at a time.
43  *
44  * Example:
45  *   to match the source port (16 bits) of a packet, we can divide those 16 bits
46  *   in 4 groups of 4 bits each. Given the entry:
47  *      0000 0001 0101 1001
48  *   and a packet with source port:
49  *      0000 0001 1010 1001
50  *   first and second groups match, but the third doesn't. We conclude that the
51  *   packet doesn't match the given entry.
52  *
53  * Translate the set to a sequence of lookup tables, one per field. Each table
54  * has two dimensions: bit groups to be matched for a single packet field, and
55  * all the possible values of said groups (buckets). Input entries are
56  * represented as one or more rules, depending on the number of composing
57  * netmasks for the given field specifier, and a group match is indicated as a
58  * set bit, with number corresponding to the rule index, in all the buckets
59  * whose value matches the entry for a given group.
60  *
61  * Rules are mapped between fields through an array of x, n pairs, with each
62  * item mapping a matched rule to one or more rules. The position of the pair in
63  * the array indicates the matched rule to be mapped to the next field, x
64  * indicates the first rule index in the next field, and n the amount of
65  * next-field rules the current rule maps to.
66  *
67  * The mapping array for the last field maps to the desired references.
68  *
69  * To match, we perform table lookups using the values of grouped packet bits,
70  * and use a sequence of bitwise operations to progressively evaluate rule
71  * matching.
72  *
73  * A stand-alone, reference implementation, also including notes about possible
74  * future optimisations, is available at:
75  *    https://pipapo.lameexcu.se/
76  *
77  * Insertion
78  * ---------
79  *
80  * - For each packet field:
81  *
82  *   - divide the b packet bits we want to classify into groups of size t,
83  *     obtaining ceil(b / t) groups
84  *
85  *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86  *      of 4 bits each
87  *
88  *   - allocate a lookup table with one column ("bucket") for each possible
89  *     value of a group, and with one row for each group
90  *
91  *      Example: 8 groups, 2^4 buckets:
92  *
93  * ::
94  *
95  *                     bucket
96  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
97  *        0
98  *        1
99  *        2
100  *        3
101  *        4
102  *        5
103  *        6
104  *        7
105  *
106  *   - map the bits we want to classify for the current field, for a given
107  *     entry, to a single rule for non-ranged and netmask set items, and to one
108  *     or multiple rules for ranges. Ranges are expanded to composing netmasks
109  *     by pipapo_expand().
110  *
111  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112  *      - rule #0: 10.0.0.5
113  *      - rule #1: 192.168.1.0/24
114  *      - rule #2: 192.168.2.0/31
115  *
116  *   - insert references to the rules in the lookup table, selecting buckets
117  *     according to bit values of a rule in the given group. This is done by
118  *     pipapo_insert().
119  *
120  *      Example: given:
121  *      - rule #0: 10.0.0.5 mapping to buckets
122  *        < 0 10  0 0   0 0  0 5 >
123  *      - rule #1: 192.168.1.0/24 mapping to buckets
124  *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
125  *      - rule #2: 192.168.2.0/31 mapping to buckets
126  *        < 12 0  10 8  0 2  0 < 0..1 > >
127  *
128  *      these bits are set in the lookup table:
129  *
130  * ::
131  *
132  *                     bucket
133  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
134  *        0    0                                              1,2
135  *        1   1,2                                      0
136  *        2    0                                      1,2
137  *        3    0                              1,2
138  *        4  0,1,2
139  *        5    0   1   2
140  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
141  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
142  *
143  *   - if this is not the last field in the set, fill a mapping array that maps
144  *     rules from the lookup table to rules belonging to the same entry in
145  *     the next lookup table, done by pipapo_map().
146  *
147  *     Note that as rules map to contiguous ranges of rules, given how netmask
148  *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149  *     this information as pairs of first rule index, rule count.
150  *
151  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152  *      given lookup table #0 for field 0 (see example above):
153  *
154  * ::
155  *
156  *                     bucket
157  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
158  *        0    0                                              1,2
159  *        1   1,2                                      0
160  *        2    0                                      1,2
161  *        3    0                              1,2
162  *        4  0,1,2
163  *        5    0   1   2
164  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
165  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
166  *
167  *      and lookup table #1 for field 1 with:
168  *      - rule #0: 1024 mapping to buckets
169  *        < 0  0  4  0 >
170  *      - rule #1: 2048 mapping to buckets
171  *        < 0  0  5  0 >
172  *
173  * ::
174  *
175  *                     bucket
176  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
177  *        0   0,1
178  *        1   0,1
179  *        2                    0   1
180  *        3   0,1
181  *
182  *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183  *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184  *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185  *
186  * ::
187  *
188  *       rule indices in current field: 0    1    2
189  *       map to rules in next field:    0    1    1
190  *
191  *   - if this is the last field in the set, fill a mapping array that maps
192  *     rules from the last lookup table to element pointers, also done by
193  *     pipapo_map().
194  *
195  *     Note that, in this implementation, we have two elements (start, end) for
196  *     each entry. The pointer to the end element is stored in this array, and
197  *     the pointer to the start element is linked from it.
198  *
199  *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200  *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201  *      From the rules of lookup table #1 as mapped above:
202  *
203  * ::
204  *
205  *       rule indices in last field:    0    1
206  *       map to elements:             0x66  0x42
207  *
208  *
209  * Matching
210  * --------
211  *
212  * We use a result bitmap, with the size of a single lookup table bucket, to
213  * represent the matching state that applies at every algorithm step. This is
214  * done by pipapo_lookup().
215  *
216  * - For each packet field:
217  *
218  *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
219  *
220  *   - perform a lookup into the table corresponding to the current field,
221  *     for each group, and at every group, AND the current result bitmap with
222  *     the value from the lookup table bucket
223  *
224  * ::
225  *
226  *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
227  *      insertion examples.
228  *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229  *      convenience in this example. Initial result bitmap is 0xff, the steps
230  *      below show the value of the result bitmap after each group is processed:
231  *
232  *                     bucket
233  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
234  *        0    0                                              1,2
235  *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236  *
237  *        1   1,2                                      0
238  *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239  *
240  *        2    0                                      1,2
241  *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242  *
243  *        3    0                              1,2
244  *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245  *
246  *        4  0,1,2
247  *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248  *
249  *        5    0   1   2
250  *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251  *
252  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
253  *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254  *
255  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
256  *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257  *
258  *   - at the next field, start with a new, all-zeroes result bitmap. For each
259  *     bit set in the previous result bitmap, fill the new result bitmap
260  *     (fill_map in pipapo_lookup()) with the rule indices from the
261  *     corresponding buckets of the mapping field for this field, done by
262  *     pipapo_refill()
263  *
264  *      Example: with mapping table from insertion examples, with the current
265  *      result bitmap from the previous example, 0x02:
266  *
267  * ::
268  *
269  *       rule indices in current field: 0    1    2
270  *       map to rules in next field:    0    1    1
271  *
272  *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273  *      set.
274  *
275  *      We can now extend this example to cover the second iteration of the step
276  *      above (lookup and AND bitmap): assuming the port field is
277  *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
278  *      for "port" field from pre-computation example:
279  *
280  * ::
281  *
282  *                     bucket
283  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
284  *        0   0,1
285  *        1   0,1
286  *        2                    0   1
287  *        3   0,1
288  *
289  *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290  *       & 0x3 [bucket 0], resulting bitmap is 0x2.
291  *
292  *   - if this is the last field in the set, look up the value from the mapping
293  *     array corresponding to the final result bitmap
294  *
295  *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296  *      last field from insertion example:
297  *
298  * ::
299  *
300  *       rule indices in last field:    0    1
301  *       map to elements:             0x66  0x42
302  *
303  *      the matching element is at 0x42.
304  *
305  *
306  * References
307  * ----------
308  *
309  * [Ligatti 2010]
310  *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311  *      Automatic Time-space Tradeoffs
312  *      Jay Ligatti, Josh Kuhn, and Chris Gage.
313  *      Proceedings of the IEEE International Conference on Computer
314  *      Communication Networks (ICCCN), August 2010.
315  *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316  *
317  * [Rottenstreich 2010]
318  *      Worst-Case TCAM Rule Expansion
319  *      Ori Rottenstreich and Isaac Keslassy.
320  *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321  *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322  *
323  * [Kogan 2014]
324  *      SAX-PAC (Scalable And eXpressive PAcket Classification)
325  *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326  *      and Patrick Eugster.
327  *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328  *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329  */
330 
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341 
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344 
345 /* Current working bitmap index, toggled between field matches */
346 static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
347 
348 /**
349  * pipapo_refill() - For each set bit, set bits from selected mapping table item
350  * @map:	Bitmap to be scanned for set bits
351  * @len:	Length of bitmap in longs
352  * @rules:	Number of rules in field
353  * @dst:	Destination bitmap
354  * @mt:		Mapping table containing bit set specifiers
355  * @match_only:	Find a single bit and return, don't fill
356  *
357  * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
358  *
359  * For each bit set in map, select the bucket from mapping table with index
360  * corresponding to the position of the bit set. Use start bit and amount of
361  * bits specified in bucket to fill region in dst.
362  *
363  * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
364  */
365 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
366 		  union nft_pipapo_map_bucket *mt, bool match_only)
367 {
368 	unsigned long bitset;
369 	int k, ret = -1;
370 
371 	for (k = 0; k < len; k++) {
372 		bitset = map[k];
373 		while (bitset) {
374 			unsigned long t = bitset & -bitset;
375 			int r = __builtin_ctzl(bitset);
376 			int i = k * BITS_PER_LONG + r;
377 
378 			if (unlikely(i >= rules)) {
379 				map[k] = 0;
380 				return -1;
381 			}
382 
383 			if (match_only) {
384 				bitmap_clear(map, i, 1);
385 				return i;
386 			}
387 
388 			ret = 0;
389 
390 			bitmap_set(dst, mt[i].to, mt[i].n);
391 
392 			bitset ^= t;
393 		}
394 		map[k] = 0;
395 	}
396 
397 	return ret;
398 }
399 
400 /**
401  * nft_pipapo_lookup() - Lookup function
402  * @net:	Network namespace
403  * @set:	nftables API set representation
404  * @key:	nftables API element representation containing key data
405  * @ext:	nftables API extension pointer, filled with matching reference
406  *
407  * For more details, see DOC: Theory of Operation.
408  *
409  * Return: true on match, false otherwise.
410  */
411 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
412 		       const u32 *key, const struct nft_set_ext **ext)
413 {
414 	struct nft_pipapo *priv = nft_set_priv(set);
415 	unsigned long *res_map, *fill_map;
416 	u8 genmask = nft_genmask_cur(net);
417 	const u8 *rp = (const u8 *)key;
418 	struct nft_pipapo_match *m;
419 	struct nft_pipapo_field *f;
420 	bool map_index;
421 	int i;
422 
423 	local_bh_disable();
424 
425 	map_index = raw_cpu_read(nft_pipapo_scratch_index);
426 
427 	m = rcu_dereference(priv->match);
428 
429 	if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
430 		goto out;
431 
432 	res_map  = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
433 	fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
434 
435 	memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
436 
437 	nft_pipapo_for_each_field(f, i, m) {
438 		bool last = i == m->field_count - 1;
439 		int b;
440 
441 		/* For each bit group: select lookup table bucket depending on
442 		 * packet bytes value, then AND bucket value
443 		 */
444 		if (likely(f->bb == 8))
445 			pipapo_and_field_buckets_8bit(f, res_map, rp);
446 		else
447 			pipapo_and_field_buckets_4bit(f, res_map, rp);
448 		NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449 
450 		rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451 
452 		/* Now populate the bitmap for the next field, unless this is
453 		 * the last field, in which case return the matched 'ext'
454 		 * pointer if any.
455 		 *
456 		 * Now res_map contains the matching bitmap, and fill_map is the
457 		 * bitmap for the next field.
458 		 */
459 next_match:
460 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 				  last);
462 		if (b < 0) {
463 			raw_cpu_write(nft_pipapo_scratch_index, map_index);
464 			local_bh_enable();
465 
466 			return false;
467 		}
468 
469 		if (last) {
470 			*ext = &f->mt[b].e->ext;
471 			if (unlikely(nft_set_elem_expired(*ext) ||
472 				     !nft_set_elem_active(*ext, genmask)))
473 				goto next_match;
474 
475 			/* Last field: we're just returning the key without
476 			 * filling the initial bitmap for the next field, so the
477 			 * current inactive bitmap is clean and can be reused as
478 			 * *next* bitmap (not initial) for the next packet.
479 			 */
480 			raw_cpu_write(nft_pipapo_scratch_index, map_index);
481 			local_bh_enable();
482 
483 			return true;
484 		}
485 
486 		/* Swap bitmap indices: res_map is the initial bitmap for the
487 		 * next field, and fill_map is guaranteed to be all-zeroes at
488 		 * this point.
489 		 */
490 		map_index = !map_index;
491 		swap(res_map, fill_map);
492 
493 		rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 	}
495 
496 out:
497 	local_bh_enable();
498 	return false;
499 }
500 
501 /**
502  * pipapo_get() - Get matching element reference given key data
503  * @net:	Network namespace
504  * @set:	nftables API set representation
505  * @data:	Key data to be matched against existing elements
506  * @genmask:	If set, check that element is active in given genmask
507  *
508  * This is essentially the same as the lookup function, except that it matches
509  * key data against the uncommitted copy and doesn't use preallocated maps for
510  * bitmap results.
511  *
512  * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
513  */
514 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
515 					  const struct nft_set *set,
516 					  const u8 *data, u8 genmask)
517 {
518 	struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
519 	struct nft_pipapo *priv = nft_set_priv(set);
520 	struct nft_pipapo_match *m = priv->clone;
521 	unsigned long *res_map, *fill_map = NULL;
522 	struct nft_pipapo_field *f;
523 	int i;
524 
525 	res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
526 	if (!res_map) {
527 		ret = ERR_PTR(-ENOMEM);
528 		goto out;
529 	}
530 
531 	fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
532 	if (!fill_map) {
533 		ret = ERR_PTR(-ENOMEM);
534 		goto out;
535 	}
536 
537 	memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
538 
539 	nft_pipapo_for_each_field(f, i, m) {
540 		bool last = i == m->field_count - 1;
541 		int b;
542 
543 		/* For each bit group: select lookup table bucket depending on
544 		 * packet bytes value, then AND bucket value
545 		 */
546 		if (f->bb == 8)
547 			pipapo_and_field_buckets_8bit(f, res_map, data);
548 		else if (f->bb == 4)
549 			pipapo_and_field_buckets_4bit(f, res_map, data);
550 		else
551 			BUG();
552 
553 		data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
554 
555 		/* Now populate the bitmap for the next field, unless this is
556 		 * the last field, in which case return the matched 'ext'
557 		 * pointer if any.
558 		 *
559 		 * Now res_map contains the matching bitmap, and fill_map is the
560 		 * bitmap for the next field.
561 		 */
562 next_match:
563 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
564 				  last);
565 		if (b < 0)
566 			goto out;
567 
568 		if (last) {
569 			if (nft_set_elem_expired(&f->mt[b].e->ext))
570 				goto next_match;
571 			if ((genmask &&
572 			     !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
573 				goto next_match;
574 
575 			ret = f->mt[b].e;
576 			goto out;
577 		}
578 
579 		data += NFT_PIPAPO_GROUPS_PADDING(f);
580 
581 		/* Swap bitmap indices: fill_map will be the initial bitmap for
582 		 * the next field (i.e. the new res_map), and res_map is
583 		 * guaranteed to be all-zeroes at this point, ready to be filled
584 		 * according to the next mapping table.
585 		 */
586 		swap(res_map, fill_map);
587 	}
588 
589 out:
590 	kfree(fill_map);
591 	kfree(res_map);
592 	return ret;
593 }
594 
595 /**
596  * nft_pipapo_get() - Get matching element reference given key data
597  * @net:	Network namespace
598  * @set:	nftables API set representation
599  * @elem:	nftables API element representation containing key data
600  * @flags:	Unused
601  */
602 static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
603 			    const struct nft_set_elem *elem, unsigned int flags)
604 {
605 	return pipapo_get(net, set, (const u8 *)elem->key.val.data,
606 			 nft_genmask_cur(net));
607 }
608 
609 /**
610  * pipapo_resize() - Resize lookup or mapping table, or both
611  * @f:		Field containing lookup and mapping tables
612  * @old_rules:	Previous amount of rules in field
613  * @rules:	New amount of rules
614  *
615  * Increase, decrease or maintain tables size depending on new amount of rules,
616  * and copy data over. In case the new size is smaller, throw away data for
617  * highest-numbered rules.
618  *
619  * Return: 0 on success, -ENOMEM on allocation failure.
620  */
621 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
622 {
623 	long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
624 	union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
625 	size_t new_bucket_size, copy;
626 	int group, bucket;
627 
628 	new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
629 #ifdef NFT_PIPAPO_ALIGN
630 	new_bucket_size = roundup(new_bucket_size,
631 				  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
632 #endif
633 
634 	if (new_bucket_size == f->bsize)
635 		goto mt;
636 
637 	if (new_bucket_size > f->bsize)
638 		copy = f->bsize;
639 	else
640 		copy = new_bucket_size;
641 
642 	new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
643 			  new_bucket_size * sizeof(*new_lt) +
644 			  NFT_PIPAPO_ALIGN_HEADROOM,
645 			  GFP_KERNEL);
646 	if (!new_lt)
647 		return -ENOMEM;
648 
649 	new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
650 	old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
651 
652 	for (group = 0; group < f->groups; group++) {
653 		for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
654 			memcpy(new_p, old_p, copy * sizeof(*new_p));
655 			new_p += copy;
656 			old_p += copy;
657 
658 			if (new_bucket_size > f->bsize)
659 				new_p += new_bucket_size - f->bsize;
660 			else
661 				old_p += f->bsize - new_bucket_size;
662 		}
663 	}
664 
665 mt:
666 	new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
667 	if (!new_mt) {
668 		kvfree(new_lt);
669 		return -ENOMEM;
670 	}
671 
672 	memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
673 	if (rules > old_rules) {
674 		memset(new_mt + old_rules, 0,
675 		       (rules - old_rules) * sizeof(*new_mt));
676 	}
677 
678 	if (new_lt) {
679 		f->bsize = new_bucket_size;
680 		NFT_PIPAPO_LT_ASSIGN(f, new_lt);
681 		kvfree(old_lt);
682 	}
683 
684 	f->mt = new_mt;
685 	kvfree(old_mt);
686 
687 	return 0;
688 }
689 
690 /**
691  * pipapo_bucket_set() - Set rule bit in bucket given group and group value
692  * @f:		Field containing lookup table
693  * @rule:	Rule index
694  * @group:	Group index
695  * @v:		Value of bit group
696  */
697 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
698 			      int v)
699 {
700 	unsigned long *pos;
701 
702 	pos = NFT_PIPAPO_LT_ALIGN(f->lt);
703 	pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
704 	pos += f->bsize * v;
705 
706 	__set_bit(rule, pos);
707 }
708 
709 /**
710  * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
711  * @old_groups:	Number of current groups
712  * @bsize:	Size of one bucket, in longs
713  * @old_lt:	Pointer to the current lookup table
714  * @new_lt:	Pointer to the new, pre-allocated lookup table
715  *
716  * Each bucket with index b in the new lookup table, belonging to group g, is
717  * filled with the bit intersection between:
718  * - bucket with index given by the upper 4 bits of b, from group g, and
719  * - bucket with index given by the lower 4 bits of b, from group g + 1
720  *
721  * That is, given buckets from the new lookup table N(x, y) and the old lookup
722  * table O(x, y), with x bucket index, and y group index:
723  *
724  *	N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
725  *
726  * This ensures equivalence of the matching results on lookup. Two examples in
727  * pictures:
728  *
729  *              bucket
730  *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
731  *    0                ^
732  *    1                |                                                 ^
733  *   ...             ( & )                                               |
734  *                  /     \                                              |
735  *                 /       \                                         .-( & )-.
736  *                /  bucket \                                        |       |
737  *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
738  *        0     /             \                                      |       |
739  *        1                    \                                     |       |
740  *        2                                                          |     --'
741  *        3                                                          '-
742  *       ...
743  */
744 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
745 			       unsigned long *old_lt, unsigned long *new_lt)
746 {
747 	int g, b, i;
748 
749 	for (g = 0; g < old_groups / 2; g++) {
750 		int src_g0 = g * 2, src_g1 = g * 2 + 1;
751 
752 		for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
753 			int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
754 			int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
755 			int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
756 			int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
757 
758 			for (i = 0; i < bsize; i++) {
759 				*new_lt = old_lt[src_i0 * bsize + i] &
760 					  old_lt[src_i1 * bsize + i];
761 				new_lt++;
762 			}
763 		}
764 	}
765 }
766 
767 /**
768  * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
769  * @old_groups:	Number of current groups
770  * @bsize:	Size of one bucket, in longs
771  * @old_lt:	Pointer to the current lookup table
772  * @new_lt:	Pointer to the new, pre-allocated lookup table
773  *
774  * Each bucket with index b in the new lookup table, belonging to group g, is
775  * filled with the bit union of:
776  * - all the buckets with index such that the upper four bits of the lower byte
777  *   equal b, from group g, with g odd
778  * - all the buckets with index such that the lower four bits equal b, from
779  *   group g, with g even
780  *
781  * That is, given buckets from the new lookup table N(x, y) and the old lookup
782  * table O(x, y), with x bucket index, and y group index:
783  *
784  *	- with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
785  *	- with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
786  *
787  * where U() denotes the arbitrary union operation (binary OR of n terms). This
788  * ensures equivalence of the matching results on lookup.
789  */
790 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
791 			       unsigned long *old_lt, unsigned long *new_lt)
792 {
793 	int g, b, bsrc, i;
794 
795 	memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
796 			  sizeof(unsigned long));
797 
798 	for (g = 0; g < old_groups * 2; g += 2) {
799 		int src_g = g / 2;
800 
801 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
802 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
803 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
804 			     bsrc++) {
805 				if (((bsrc & 0xf0) >> 4) != b)
806 					continue;
807 
808 				for (i = 0; i < bsize; i++)
809 					new_lt[i] |= old_lt[bsrc * bsize + i];
810 			}
811 
812 			new_lt += bsize;
813 		}
814 
815 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
816 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
817 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
818 			     bsrc++) {
819 				if ((bsrc & 0x0f) != b)
820 					continue;
821 
822 				for (i = 0; i < bsize; i++)
823 					new_lt[i] |= old_lt[bsrc * bsize + i];
824 			}
825 
826 			new_lt += bsize;
827 		}
828 	}
829 }
830 
831 /**
832  * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
833  * @f:		Field containing lookup table
834  */
835 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
836 {
837 	unsigned long *new_lt;
838 	int groups, bb;
839 	size_t lt_size;
840 
841 	lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
842 		  sizeof(*f->lt);
843 
844 	if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
845 	    lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
846 		groups = f->groups * 2;
847 		bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
848 
849 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
850 			  sizeof(*f->lt);
851 	} else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
852 		   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
853 		groups = f->groups / 2;
854 		bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
855 
856 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
857 			  sizeof(*f->lt);
858 
859 		/* Don't increase group width if the resulting lookup table size
860 		 * would exceed the upper size threshold for a "small" set.
861 		 */
862 		if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
863 			return;
864 	} else {
865 		return;
866 	}
867 
868 	new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
869 	if (!new_lt)
870 		return;
871 
872 	NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
873 	if (f->bb == 4 && bb == 8) {
874 		pipapo_lt_4b_to_8b(f->groups, f->bsize,
875 				   NFT_PIPAPO_LT_ALIGN(f->lt),
876 				   NFT_PIPAPO_LT_ALIGN(new_lt));
877 	} else if (f->bb == 8 && bb == 4) {
878 		pipapo_lt_8b_to_4b(f->groups, f->bsize,
879 				   NFT_PIPAPO_LT_ALIGN(f->lt),
880 				   NFT_PIPAPO_LT_ALIGN(new_lt));
881 	} else {
882 		BUG();
883 	}
884 
885 	f->groups = groups;
886 	f->bb = bb;
887 	kvfree(f->lt);
888 	NFT_PIPAPO_LT_ASSIGN(f, new_lt);
889 }
890 
891 /**
892  * pipapo_insert() - Insert new rule in field given input key and mask length
893  * @f:		Field containing lookup table
894  * @k:		Input key for classification, without nftables padding
895  * @mask_bits:	Length of mask; matches field length for non-ranged entry
896  *
897  * Insert a new rule reference in lookup buckets corresponding to k and
898  * mask_bits.
899  *
900  * Return: 1 on success (one rule inserted), negative error code on failure.
901  */
902 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
903 			 int mask_bits)
904 {
905 	int rule = f->rules, group, ret, bit_offset = 0;
906 
907 	ret = pipapo_resize(f, f->rules, f->rules + 1);
908 	if (ret)
909 		return ret;
910 
911 	f->rules++;
912 
913 	for (group = 0; group < f->groups; group++) {
914 		int i, v;
915 		u8 mask;
916 
917 		v = k[group / (BITS_PER_BYTE / f->bb)];
918 		v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
919 		v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
920 
921 		bit_offset += f->bb;
922 		bit_offset %= BITS_PER_BYTE;
923 
924 		if (mask_bits >= (group + 1) * f->bb) {
925 			/* Not masked */
926 			pipapo_bucket_set(f, rule, group, v);
927 		} else if (mask_bits <= group * f->bb) {
928 			/* Completely masked */
929 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
930 				pipapo_bucket_set(f, rule, group, i);
931 		} else {
932 			/* The mask limit falls on this group */
933 			mask = GENMASK(f->bb - 1, 0);
934 			mask >>= mask_bits - group * f->bb;
935 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
936 				if ((i & ~mask) == (v & ~mask))
937 					pipapo_bucket_set(f, rule, group, i);
938 			}
939 		}
940 	}
941 
942 	pipapo_lt_bits_adjust(f);
943 
944 	return 1;
945 }
946 
947 /**
948  * pipapo_step_diff() - Check if setting @step bit in netmask would change it
949  * @base:	Mask we are expanding
950  * @step:	Step bit for given expansion step
951  * @len:	Total length of mask space (set and unset bits), bytes
952  *
953  * Convenience function for mask expansion.
954  *
955  * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
956  */
957 static bool pipapo_step_diff(u8 *base, int step, int len)
958 {
959 	/* Network order, byte-addressed */
960 #ifdef __BIG_ENDIAN__
961 	return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
962 #else
963 	return !(BIT(step % BITS_PER_BYTE) &
964 		 base[len - 1 - step / BITS_PER_BYTE]);
965 #endif
966 }
967 
968 /**
969  * pipapo_step_after_end() - Check if mask exceeds range end with given step
970  * @base:	Mask we are expanding
971  * @end:	End of range
972  * @step:	Step bit for given expansion step, highest bit to be set
973  * @len:	Total length of mask space (set and unset bits), bytes
974  *
975  * Convenience function for mask expansion.
976  *
977  * Return: true if mask exceeds range setting step bits, false otherwise.
978  */
979 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
980 				  int len)
981 {
982 	u8 tmp[NFT_PIPAPO_MAX_BYTES];
983 	int i;
984 
985 	memcpy(tmp, base, len);
986 
987 	/* Network order, byte-addressed */
988 	for (i = 0; i <= step; i++)
989 #ifdef __BIG_ENDIAN__
990 		tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
991 #else
992 		tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
993 #endif
994 
995 	return memcmp(tmp, end, len) > 0;
996 }
997 
998 /**
999  * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1000  * @base:	Netmask base
1001  * @step:	Step bit to sum
1002  * @len:	Netmask length, bytes
1003  */
1004 static void pipapo_base_sum(u8 *base, int step, int len)
1005 {
1006 	bool carry = false;
1007 	int i;
1008 
1009 	/* Network order, byte-addressed */
1010 #ifdef __BIG_ENDIAN__
1011 	for (i = step / BITS_PER_BYTE; i < len; i++) {
1012 #else
1013 	for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1014 #endif
1015 		if (carry)
1016 			base[i]++;
1017 		else
1018 			base[i] += 1 << (step % BITS_PER_BYTE);
1019 
1020 		if (base[i])
1021 			break;
1022 
1023 		carry = true;
1024 	}
1025 }
1026 
1027 /**
1028  * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1029  * @f:		Field containing lookup table
1030  * @start:	Start of range
1031  * @end:	End of range
1032  * @len:	Length of value in bits
1033  *
1034  * Expand range to composing netmasks and insert corresponding rule references
1035  * in lookup buckets.
1036  *
1037  * Return: number of inserted rules on success, negative error code on failure.
1038  */
1039 static int pipapo_expand(struct nft_pipapo_field *f,
1040 			 const u8 *start, const u8 *end, int len)
1041 {
1042 	int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1043 	u8 base[NFT_PIPAPO_MAX_BYTES];
1044 
1045 	memcpy(base, start, bytes);
1046 	while (memcmp(base, end, bytes) <= 0) {
1047 		int err;
1048 
1049 		step = 0;
1050 		while (pipapo_step_diff(base, step, bytes)) {
1051 			if (pipapo_step_after_end(base, end, step, bytes))
1052 				break;
1053 
1054 			step++;
1055 			if (step >= len) {
1056 				if (!masks) {
1057 					err = pipapo_insert(f, base, 0);
1058 					if (err < 0)
1059 						return err;
1060 					masks = 1;
1061 				}
1062 				goto out;
1063 			}
1064 		}
1065 
1066 		err = pipapo_insert(f, base, len - step);
1067 
1068 		if (err < 0)
1069 			return err;
1070 
1071 		masks++;
1072 		pipapo_base_sum(base, step, bytes);
1073 	}
1074 out:
1075 	return masks;
1076 }
1077 
1078 /**
1079  * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1080  * @m:		Matching data, including mapping table
1081  * @map:	Table of rule maps: array of first rule and amount of rules
1082  *		in next field a given rule maps to, for each field
1083  * @e:		For last field, nft_set_ext pointer matching rules map to
1084  */
1085 static void pipapo_map(struct nft_pipapo_match *m,
1086 		       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1087 		       struct nft_pipapo_elem *e)
1088 {
1089 	struct nft_pipapo_field *f;
1090 	int i, j;
1091 
1092 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1093 		for (j = 0; j < map[i].n; j++) {
1094 			f->mt[map[i].to + j].to = map[i + 1].to;
1095 			f->mt[map[i].to + j].n = map[i + 1].n;
1096 		}
1097 	}
1098 
1099 	/* Last field: map to ext instead of mapping to next field */
1100 	for (j = 0; j < map[i].n; j++)
1101 		f->mt[map[i].to + j].e = e;
1102 }
1103 
1104 /**
1105  * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1106  * @clone:	Copy of matching data with pending insertions and deletions
1107  * @bsize_max:	Maximum bucket size, scratch maps cover two buckets
1108  *
1109  * Return: 0 on success, -ENOMEM on failure.
1110  */
1111 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1112 				  unsigned long bsize_max)
1113 {
1114 	int i;
1115 
1116 	for_each_possible_cpu(i) {
1117 		unsigned long *scratch;
1118 #ifdef NFT_PIPAPO_ALIGN
1119 		unsigned long *scratch_aligned;
1120 #endif
1121 
1122 		scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1123 				       NFT_PIPAPO_ALIGN_HEADROOM,
1124 				       GFP_KERNEL, cpu_to_node(i));
1125 		if (!scratch) {
1126 			/* On failure, there's no need to undo previous
1127 			 * allocations: this means that some scratch maps have
1128 			 * a bigger allocated size now (this is only called on
1129 			 * insertion), but the extra space won't be used by any
1130 			 * CPU as new elements are not inserted and m->bsize_max
1131 			 * is not updated.
1132 			 */
1133 			return -ENOMEM;
1134 		}
1135 
1136 		kfree(*per_cpu_ptr(clone->scratch, i));
1137 
1138 		*per_cpu_ptr(clone->scratch, i) = scratch;
1139 
1140 #ifdef NFT_PIPAPO_ALIGN
1141 		scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1142 		*per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1143 #endif
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 /**
1150  * nft_pipapo_insert() - Validate and insert ranged elements
1151  * @net:	Network namespace
1152  * @set:	nftables API set representation
1153  * @elem:	nftables API element representation containing key data
1154  * @ext2:	Filled with pointer to &struct nft_set_ext in inserted element
1155  *
1156  * Return: 0 on success, error pointer on failure.
1157  */
1158 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1159 			     const struct nft_set_elem *elem,
1160 			     struct nft_set_ext **ext2)
1161 {
1162 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1163 	union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1164 	const u8 *start = (const u8 *)elem->key.val.data, *end;
1165 	struct nft_pipapo_elem *e = elem->priv, *dup;
1166 	struct nft_pipapo *priv = nft_set_priv(set);
1167 	struct nft_pipapo_match *m = priv->clone;
1168 	u8 genmask = nft_genmask_next(net);
1169 	struct nft_pipapo_field *f;
1170 	const u8 *start_p, *end_p;
1171 	int i, bsize_max, err = 0;
1172 
1173 	if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1174 		end = (const u8 *)nft_set_ext_key_end(ext)->data;
1175 	else
1176 		end = start;
1177 
1178 	dup = pipapo_get(net, set, start, genmask);
1179 	if (!IS_ERR(dup)) {
1180 		/* Check if we already have the same exact entry */
1181 		const struct nft_data *dup_key, *dup_end;
1182 
1183 		dup_key = nft_set_ext_key(&dup->ext);
1184 		if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1185 			dup_end = nft_set_ext_key_end(&dup->ext);
1186 		else
1187 			dup_end = dup_key;
1188 
1189 		if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1190 		    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1191 			*ext2 = &dup->ext;
1192 			return -EEXIST;
1193 		}
1194 
1195 		return -ENOTEMPTY;
1196 	}
1197 
1198 	if (PTR_ERR(dup) == -ENOENT) {
1199 		/* Look for partially overlapping entries */
1200 		dup = pipapo_get(net, set, end, nft_genmask_next(net));
1201 	}
1202 
1203 	if (PTR_ERR(dup) != -ENOENT) {
1204 		if (IS_ERR(dup))
1205 			return PTR_ERR(dup);
1206 		*ext2 = &dup->ext;
1207 		return -ENOTEMPTY;
1208 	}
1209 
1210 	/* Validate */
1211 	start_p = start;
1212 	end_p = end;
1213 	nft_pipapo_for_each_field(f, i, m) {
1214 		if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1215 			return -ENOSPC;
1216 
1217 		if (memcmp(start_p, end_p,
1218 			   f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1219 			return -EINVAL;
1220 
1221 		start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1222 		end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1223 	}
1224 
1225 	/* Insert */
1226 	priv->dirty = true;
1227 
1228 	bsize_max = m->bsize_max;
1229 
1230 	nft_pipapo_for_each_field(f, i, m) {
1231 		int ret;
1232 
1233 		rulemap[i].to = f->rules;
1234 
1235 		ret = memcmp(start, end,
1236 			     f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1237 		if (!ret)
1238 			ret = pipapo_insert(f, start, f->groups * f->bb);
1239 		else
1240 			ret = pipapo_expand(f, start, end, f->groups * f->bb);
1241 
1242 		if (ret < 0)
1243 			return ret;
1244 
1245 		if (f->bsize > bsize_max)
1246 			bsize_max = f->bsize;
1247 
1248 		rulemap[i].n = ret;
1249 
1250 		start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1251 		end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1252 	}
1253 
1254 	if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1255 		put_cpu_ptr(m->scratch);
1256 
1257 		err = pipapo_realloc_scratch(m, bsize_max);
1258 		if (err)
1259 			return err;
1260 
1261 		m->bsize_max = bsize_max;
1262 	} else {
1263 		put_cpu_ptr(m->scratch);
1264 	}
1265 
1266 	*ext2 = &e->ext;
1267 
1268 	pipapo_map(m, rulemap, e);
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * pipapo_clone() - Clone matching data to create new working copy
1275  * @old:	Existing matching data
1276  *
1277  * Return: copy of matching data passed as 'old', error pointer on failure
1278  */
1279 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1280 {
1281 	struct nft_pipapo_field *dst, *src;
1282 	struct nft_pipapo_match *new;
1283 	int i;
1284 
1285 	new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL);
1286 	if (!new)
1287 		return ERR_PTR(-ENOMEM);
1288 
1289 	new->field_count = old->field_count;
1290 	new->bsize_max = old->bsize_max;
1291 
1292 	new->scratch = alloc_percpu(*new->scratch);
1293 	if (!new->scratch)
1294 		goto out_scratch;
1295 
1296 #ifdef NFT_PIPAPO_ALIGN
1297 	new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1298 	if (!new->scratch_aligned)
1299 		goto out_scratch;
1300 #endif
1301 	for_each_possible_cpu(i)
1302 		*per_cpu_ptr(new->scratch, i) = NULL;
1303 
1304 	if (pipapo_realloc_scratch(new, old->bsize_max))
1305 		goto out_scratch_realloc;
1306 
1307 	rcu_head_init(&new->rcu);
1308 
1309 	src = old->f;
1310 	dst = new->f;
1311 
1312 	for (i = 0; i < old->field_count; i++) {
1313 		unsigned long *new_lt;
1314 
1315 		memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1316 
1317 		new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1318 				  src->bsize * sizeof(*dst->lt) +
1319 				  NFT_PIPAPO_ALIGN_HEADROOM,
1320 				  GFP_KERNEL);
1321 		if (!new_lt)
1322 			goto out_lt;
1323 
1324 		NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1325 
1326 		memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1327 		       NFT_PIPAPO_LT_ALIGN(src->lt),
1328 		       src->bsize * sizeof(*dst->lt) *
1329 		       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1330 
1331 		dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1332 		if (!dst->mt)
1333 			goto out_mt;
1334 
1335 		memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1336 		src++;
1337 		dst++;
1338 	}
1339 
1340 	return new;
1341 
1342 out_mt:
1343 	kvfree(dst->lt);
1344 out_lt:
1345 	for (dst--; i > 0; i--) {
1346 		kvfree(dst->mt);
1347 		kvfree(dst->lt);
1348 		dst--;
1349 	}
1350 out_scratch_realloc:
1351 	for_each_possible_cpu(i)
1352 		kfree(*per_cpu_ptr(new->scratch, i));
1353 #ifdef NFT_PIPAPO_ALIGN
1354 	free_percpu(new->scratch_aligned);
1355 #endif
1356 out_scratch:
1357 	free_percpu(new->scratch);
1358 	kfree(new);
1359 
1360 	return ERR_PTR(-ENOMEM);
1361 }
1362 
1363 /**
1364  * pipapo_rules_same_key() - Get number of rules originated from the same entry
1365  * @f:		Field containing mapping table
1366  * @first:	Index of first rule in set of rules mapping to same entry
1367  *
1368  * Using the fact that all rules in a field that originated from the same entry
1369  * will map to the same set of rules in the next field, or to the same element
1370  * reference, return the cardinality of the set of rules that originated from
1371  * the same entry as the rule with index @first, @first rule included.
1372  *
1373  * In pictures:
1374  *				rules
1375  *	field #0		0    1    2    3    4
1376  *		map to:		0    1   2-4  2-4  5-9
1377  *				.    .    .......   . ...
1378  *				|    |    |    | \   \
1379  *				|    |    |    |  \   \
1380  *				|    |    |    |   \   \
1381  *				'    '    '    '    '   \
1382  *	in field #1		0    1    2    3    4    5 ...
1383  *
1384  * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1385  * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1386  *
1387  * For the last field in a set, we can rely on associated entries to map to the
1388  * same element references.
1389  *
1390  * Return: Number of rules that originated from the same entry as @first.
1391  */
1392 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1393 {
1394 	struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1395 	int r;
1396 
1397 	for (r = first; r < f->rules; r++) {
1398 		if (r != first && e != f->mt[r].e)
1399 			return r - first;
1400 
1401 		e = f->mt[r].e;
1402 	}
1403 
1404 	if (r != first)
1405 		return r - first;
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1412  * @mt:		Mapping array
1413  * @rules:	Original amount of rules in mapping table
1414  * @start:	First rule index to be removed
1415  * @n:		Amount of rules to be removed
1416  * @to_offset:	First rule index, in next field, this group of rules maps to
1417  * @is_last:	If this is the last field, delete reference from mapping array
1418  *
1419  * This is used to unmap rules from the mapping table for a single field,
1420  * maintaining consistency and compactness for the existing ones.
1421  *
1422  * In pictures: let's assume that we want to delete rules 2 and 3 from the
1423  * following mapping array:
1424  *
1425  *                 rules
1426  *               0      1      2      3      4
1427  *      map to:  4-10   4-10   11-15  11-15  16-18
1428  *
1429  * the result will be:
1430  *
1431  *                 rules
1432  *               0      1      2
1433  *      map to:  4-10   4-10   11-13
1434  *
1435  * for fields before the last one. In case this is the mapping table for the
1436  * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1437  *
1438  *                      rules
1439  *                        0      1      2      3      4
1440  *  element pointers:  0x42   0x42   0x33   0x33   0x44
1441  *
1442  * the result will be:
1443  *
1444  *                      rules
1445  *                        0      1      2
1446  *  element pointers:  0x42   0x42   0x44
1447  */
1448 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1449 			 int start, int n, int to_offset, bool is_last)
1450 {
1451 	int i;
1452 
1453 	memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1454 	memset(mt + rules - n, 0, n * sizeof(*mt));
1455 
1456 	if (is_last)
1457 		return;
1458 
1459 	for (i = start; i < rules - n; i++)
1460 		mt[i].to -= to_offset;
1461 }
1462 
1463 /**
1464  * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1465  * @m:		Matching data
1466  * @rulemap:	Table of rule maps, arrays of first rule and amount of rules
1467  *		in next field a given entry maps to, for each field
1468  *
1469  * For each rule in lookup table buckets mapping to this set of rules, drop
1470  * all bits set in lookup table mapping. In pictures, assuming we want to drop
1471  * rules 0 and 1 from this lookup table:
1472  *
1473  *                     bucket
1474  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1475  *        0    0                                              1,2
1476  *        1   1,2                                      0
1477  *        2    0                                      1,2
1478  *        3    0                              1,2
1479  *        4  0,1,2
1480  *        5    0   1   2
1481  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1482  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1483  *
1484  * rule 2 becomes rule 0, and the result will be:
1485  *
1486  *                     bucket
1487  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1488  *        0                                                    0
1489  *        1    0
1490  *        2                                            0
1491  *        3                                    0
1492  *        4    0
1493  *        5            0
1494  *        6    0
1495  *        7    0   0
1496  *
1497  * once this is done, call unmap() to drop all the corresponding rule references
1498  * from mapping tables.
1499  */
1500 static void pipapo_drop(struct nft_pipapo_match *m,
1501 			union nft_pipapo_map_bucket rulemap[])
1502 {
1503 	struct nft_pipapo_field *f;
1504 	int i;
1505 
1506 	nft_pipapo_for_each_field(f, i, m) {
1507 		int g;
1508 
1509 		for (g = 0; g < f->groups; g++) {
1510 			unsigned long *pos;
1511 			int b;
1512 
1513 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1514 			      NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1515 
1516 			for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1517 				bitmap_cut(pos, pos, rulemap[i].to,
1518 					   rulemap[i].n,
1519 					   f->bsize * BITS_PER_LONG);
1520 
1521 				pos += f->bsize;
1522 			}
1523 		}
1524 
1525 		pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1526 			     rulemap[i + 1].n, i == m->field_count - 1);
1527 		if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1528 			/* We can ignore this, a failure to shrink tables down
1529 			 * doesn't make tables invalid.
1530 			 */
1531 			;
1532 		}
1533 		f->rules -= rulemap[i].n;
1534 
1535 		pipapo_lt_bits_adjust(f);
1536 	}
1537 }
1538 
1539 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1540 				     struct nft_pipapo_elem *e)
1541 
1542 {
1543 	struct nft_set_elem elem = {
1544 		.priv	= e,
1545 	};
1546 
1547 	nft_setelem_data_deactivate(net, set, &elem);
1548 }
1549 
1550 /**
1551  * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1552  * @_set:	nftables API set representation
1553  * @m:		Matching data
1554  */
1555 static void pipapo_gc(const struct nft_set *_set, struct nft_pipapo_match *m)
1556 {
1557 	struct nft_set *set = (struct nft_set *) _set;
1558 	struct nft_pipapo *priv = nft_set_priv(set);
1559 	struct net *net = read_pnet(&set->net);
1560 	int rules_f0, first_rule = 0;
1561 	struct nft_pipapo_elem *e;
1562 	struct nft_trans_gc *gc;
1563 
1564 	gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1565 	if (!gc)
1566 		return;
1567 
1568 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1569 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1570 		struct nft_pipapo_field *f;
1571 		int i, start, rules_fx;
1572 
1573 		start = first_rule;
1574 		rules_fx = rules_f0;
1575 
1576 		nft_pipapo_for_each_field(f, i, m) {
1577 			rulemap[i].to = start;
1578 			rulemap[i].n = rules_fx;
1579 
1580 			if (i < m->field_count - 1) {
1581 				rules_fx = f->mt[start].n;
1582 				start = f->mt[start].to;
1583 			}
1584 		}
1585 
1586 		/* Pick the last field, and its last index */
1587 		f--;
1588 		i--;
1589 		e = f->mt[rulemap[i].to].e;
1590 
1591 		/* synchronous gc never fails, there is no need to set on
1592 		 * NFT_SET_ELEM_DEAD_BIT.
1593 		 */
1594 		if (nft_set_elem_expired(&e->ext)) {
1595 			priv->dirty = true;
1596 
1597 			gc = nft_trans_gc_queue_sync(gc, GFP_ATOMIC);
1598 			if (!gc)
1599 				return;
1600 
1601 			nft_pipapo_gc_deactivate(net, set, e);
1602 			pipapo_drop(m, rulemap);
1603 			nft_trans_gc_elem_add(gc, e);
1604 
1605 			/* And check again current first rule, which is now the
1606 			 * first we haven't checked.
1607 			 */
1608 		} else {
1609 			first_rule += rules_f0;
1610 		}
1611 	}
1612 
1613 	gc = nft_trans_gc_catchall_sync(gc);
1614 	if (gc) {
1615 		nft_trans_gc_queue_sync_done(gc);
1616 		priv->last_gc = jiffies;
1617 	}
1618 }
1619 
1620 /**
1621  * pipapo_free_fields() - Free per-field tables contained in matching data
1622  * @m:		Matching data
1623  */
1624 static void pipapo_free_fields(struct nft_pipapo_match *m)
1625 {
1626 	struct nft_pipapo_field *f;
1627 	int i;
1628 
1629 	nft_pipapo_for_each_field(f, i, m) {
1630 		kvfree(f->lt);
1631 		kvfree(f->mt);
1632 	}
1633 }
1634 
1635 static void pipapo_free_match(struct nft_pipapo_match *m)
1636 {
1637 	int i;
1638 
1639 	for_each_possible_cpu(i)
1640 		kfree(*per_cpu_ptr(m->scratch, i));
1641 
1642 #ifdef NFT_PIPAPO_ALIGN
1643 	free_percpu(m->scratch_aligned);
1644 #endif
1645 	free_percpu(m->scratch);
1646 
1647 	pipapo_free_fields(m);
1648 
1649 	kfree(m);
1650 }
1651 
1652 /**
1653  * pipapo_reclaim_match - RCU callback to free fields from old matching data
1654  * @rcu:	RCU head
1655  */
1656 static void pipapo_reclaim_match(struct rcu_head *rcu)
1657 {
1658 	struct nft_pipapo_match *m;
1659 
1660 	m = container_of(rcu, struct nft_pipapo_match, rcu);
1661 	pipapo_free_match(m);
1662 }
1663 
1664 /**
1665  * nft_pipapo_commit() - Replace lookup data with current working copy
1666  * @set:	nftables API set representation
1667  *
1668  * While at it, check if we should perform garbage collection on the working
1669  * copy before committing it for lookup, and don't replace the table if the
1670  * working copy doesn't have pending changes.
1671  *
1672  * We also need to create a new working copy for subsequent insertions and
1673  * deletions.
1674  */
1675 static void nft_pipapo_commit(const struct nft_set *set)
1676 {
1677 	struct nft_pipapo *priv = nft_set_priv(set);
1678 	struct nft_pipapo_match *new_clone, *old;
1679 
1680 	if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1681 		pipapo_gc(set, priv->clone);
1682 
1683 	if (!priv->dirty)
1684 		return;
1685 
1686 	new_clone = pipapo_clone(priv->clone);
1687 	if (IS_ERR(new_clone))
1688 		return;
1689 
1690 	priv->dirty = false;
1691 
1692 	old = rcu_access_pointer(priv->match);
1693 	rcu_assign_pointer(priv->match, priv->clone);
1694 	if (old)
1695 		call_rcu(&old->rcu, pipapo_reclaim_match);
1696 
1697 	priv->clone = new_clone;
1698 }
1699 
1700 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1701 {
1702 #ifdef CONFIG_PROVE_LOCKING
1703 	const struct net *net = read_pnet(&set->net);
1704 
1705 	return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1706 #else
1707 	return true;
1708 #endif
1709 }
1710 
1711 static void nft_pipapo_abort(const struct nft_set *set)
1712 {
1713 	struct nft_pipapo *priv = nft_set_priv(set);
1714 	struct nft_pipapo_match *new_clone, *m;
1715 
1716 	if (!priv->dirty)
1717 		return;
1718 
1719 	m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set));
1720 
1721 	new_clone = pipapo_clone(m);
1722 	if (IS_ERR(new_clone))
1723 		return;
1724 
1725 	priv->dirty = false;
1726 
1727 	pipapo_free_match(priv->clone);
1728 	priv->clone = new_clone;
1729 }
1730 
1731 /**
1732  * nft_pipapo_activate() - Mark element reference as active given key, commit
1733  * @net:	Network namespace
1734  * @set:	nftables API set representation
1735  * @elem:	nftables API element representation containing key data
1736  *
1737  * On insertion, elements are added to a copy of the matching data currently
1738  * in use for lookups, and not directly inserted into current lookup data. Both
1739  * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1740  * element, hence we can't purpose either one as a real commit operation.
1741  */
1742 static void nft_pipapo_activate(const struct net *net,
1743 				const struct nft_set *set,
1744 				const struct nft_set_elem *elem)
1745 {
1746 	struct nft_pipapo_elem *e = elem->priv;
1747 
1748 	nft_set_elem_change_active(net, set, &e->ext);
1749 }
1750 
1751 /**
1752  * pipapo_deactivate() - Check that element is in set, mark as inactive
1753  * @net:	Network namespace
1754  * @set:	nftables API set representation
1755  * @data:	Input key data
1756  * @ext:	nftables API extension pointer, used to check for end element
1757  *
1758  * This is a convenience function that can be called from both
1759  * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1760  * operation.
1761  *
1762  * Return: deactivated element if found, NULL otherwise.
1763  */
1764 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1765 			       const u8 *data, const struct nft_set_ext *ext)
1766 {
1767 	struct nft_pipapo_elem *e;
1768 
1769 	e = pipapo_get(net, set, data, nft_genmask_next(net));
1770 	if (IS_ERR(e))
1771 		return NULL;
1772 
1773 	nft_set_elem_change_active(net, set, &e->ext);
1774 
1775 	return e;
1776 }
1777 
1778 /**
1779  * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1780  * @net:	Network namespace
1781  * @set:	nftables API set representation
1782  * @elem:	nftables API element representation containing key data
1783  *
1784  * Return: deactivated element if found, NULL otherwise.
1785  */
1786 static void *nft_pipapo_deactivate(const struct net *net,
1787 				   const struct nft_set *set,
1788 				   const struct nft_set_elem *elem)
1789 {
1790 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1791 
1792 	return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1793 }
1794 
1795 /**
1796  * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1797  * @net:	Network namespace
1798  * @set:	nftables API set representation
1799  * @elem:	nftables API element representation containing key data
1800  *
1801  * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1802  * different interface, and it's also called once for each element in a set
1803  * being flushed, so we can't implement, strictly speaking, a flush operation,
1804  * which would otherwise be as simple as allocating an empty copy of the
1805  * matching data.
1806  *
1807  * Note that we could in theory do that, mark the set as flushed, and ignore
1808  * subsequent calls, but we would leak all the elements after the first one,
1809  * because they wouldn't then be freed as result of API calls.
1810  *
1811  * Return: true if element was found and deactivated.
1812  */
1813 static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1814 			     void *elem)
1815 {
1816 	struct nft_pipapo_elem *e = elem;
1817 
1818 	return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1819 				 &e->ext);
1820 }
1821 
1822 /**
1823  * pipapo_get_boundaries() - Get byte interval for associated rules
1824  * @f:		Field including lookup table
1825  * @first_rule:	First rule (lowest index)
1826  * @rule_count:	Number of associated rules
1827  * @left:	Byte expression for left boundary (start of range)
1828  * @right:	Byte expression for right boundary (end of range)
1829  *
1830  * Given the first rule and amount of rules that originated from the same entry,
1831  * build the original range associated with the entry, and calculate the length
1832  * of the originating netmask.
1833  *
1834  * In pictures:
1835  *
1836  *                     bucket
1837  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1838  *        0                                                   1,2
1839  *        1   1,2
1840  *        2                                           1,2
1841  *        3                                   1,2
1842  *        4   1,2
1843  *        5        1   2
1844  *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1845  *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1846  *
1847  * this is the lookup table corresponding to the IPv4 range
1848  * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1849  * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1850  *
1851  * This function fills @left and @right with the byte values of the leftmost
1852  * and rightmost bucket indices for the lowest and highest rule indices,
1853  * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1854  * nibbles:
1855  *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1856  *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1857  * corresponding to bytes:
1858  *   left:  < 192, 168, 1, 0 >
1859  *   right: < 192, 168, 2, 1 >
1860  * with mask length irrelevant here, unused on return, as the range is already
1861  * defined by its start and end points. The mask length is relevant for a single
1862  * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1863  * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1864  * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1865  * between leftmost and rightmost bucket indices for each group, would be 24.
1866  *
1867  * Return: mask length, in bits.
1868  */
1869 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1870 				 int rule_count, u8 *left, u8 *right)
1871 {
1872 	int g, mask_len = 0, bit_offset = 0;
1873 	u8 *l = left, *r = right;
1874 
1875 	for (g = 0; g < f->groups; g++) {
1876 		int b, x0, x1;
1877 
1878 		x0 = -1;
1879 		x1 = -1;
1880 		for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1881 			unsigned long *pos;
1882 
1883 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1884 			      (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1885 			if (test_bit(first_rule, pos) && x0 == -1)
1886 				x0 = b;
1887 			if (test_bit(first_rule + rule_count - 1, pos))
1888 				x1 = b;
1889 		}
1890 
1891 		*l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1892 		*r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1893 
1894 		bit_offset += f->bb;
1895 		if (bit_offset >= BITS_PER_BYTE) {
1896 			bit_offset %= BITS_PER_BYTE;
1897 			l++;
1898 			r++;
1899 		}
1900 
1901 		if (x1 - x0 == 0)
1902 			mask_len += 4;
1903 		else if (x1 - x0 == 1)
1904 			mask_len += 3;
1905 		else if (x1 - x0 == 3)
1906 			mask_len += 2;
1907 		else if (x1 - x0 == 7)
1908 			mask_len += 1;
1909 	}
1910 
1911 	return mask_len;
1912 }
1913 
1914 /**
1915  * pipapo_match_field() - Match rules against byte ranges
1916  * @f:		Field including the lookup table
1917  * @first_rule:	First of associated rules originating from same entry
1918  * @rule_count:	Amount of associated rules
1919  * @start:	Start of range to be matched
1920  * @end:	End of range to be matched
1921  *
1922  * Return: true on match, false otherwise.
1923  */
1924 static bool pipapo_match_field(struct nft_pipapo_field *f,
1925 			       int first_rule, int rule_count,
1926 			       const u8 *start, const u8 *end)
1927 {
1928 	u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1929 	u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1930 
1931 	pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1932 
1933 	return !memcmp(start, left,
1934 		       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1935 	       !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1936 }
1937 
1938 /**
1939  * nft_pipapo_remove() - Remove element given key, commit
1940  * @net:	Network namespace
1941  * @set:	nftables API set representation
1942  * @elem:	nftables API element representation containing key data
1943  *
1944  * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1945  * API, but it's called once per element in the pending transaction, so we can't
1946  * implement this as a single commit operation. Closest we can get is to remove
1947  * the matched element here, if any, and commit the updated matching data.
1948  */
1949 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1950 			      const struct nft_set_elem *elem)
1951 {
1952 	struct nft_pipapo *priv = nft_set_priv(set);
1953 	struct nft_pipapo_match *m = priv->clone;
1954 	struct nft_pipapo_elem *e = elem->priv;
1955 	int rules_f0, first_rule = 0;
1956 	const u8 *data;
1957 
1958 	data = (const u8 *)nft_set_ext_key(&e->ext);
1959 
1960 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1961 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1962 		const u8 *match_start, *match_end;
1963 		struct nft_pipapo_field *f;
1964 		int i, start, rules_fx;
1965 
1966 		match_start = data;
1967 
1968 		if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
1969 			match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1970 		else
1971 			match_end = data;
1972 
1973 		start = first_rule;
1974 		rules_fx = rules_f0;
1975 
1976 		nft_pipapo_for_each_field(f, i, m) {
1977 			if (!pipapo_match_field(f, start, rules_fx,
1978 						match_start, match_end))
1979 				break;
1980 
1981 			rulemap[i].to = start;
1982 			rulemap[i].n = rules_fx;
1983 
1984 			rules_fx = f->mt[start].n;
1985 			start = f->mt[start].to;
1986 
1987 			match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1988 			match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1989 		}
1990 
1991 		if (i == m->field_count) {
1992 			priv->dirty = true;
1993 			pipapo_drop(m, rulemap);
1994 			return;
1995 		}
1996 
1997 		first_rule += rules_f0;
1998 	}
1999 }
2000 
2001 /**
2002  * nft_pipapo_walk() - Walk over elements
2003  * @ctx:	nftables API context
2004  * @set:	nftables API set representation
2005  * @iter:	Iterator
2006  *
2007  * As elements are referenced in the mapping array for the last field, directly
2008  * scan that array: there's no need to follow rule mappings from the first
2009  * field.
2010  */
2011 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2012 			    struct nft_set_iter *iter)
2013 {
2014 	struct nft_pipapo *priv = nft_set_priv(set);
2015 	struct net *net = read_pnet(&set->net);
2016 	struct nft_pipapo_match *m;
2017 	struct nft_pipapo_field *f;
2018 	int i, r;
2019 
2020 	rcu_read_lock();
2021 	if (iter->genmask == nft_genmask_cur(net))
2022 		m = rcu_dereference(priv->match);
2023 	else
2024 		m = priv->clone;
2025 
2026 	if (unlikely(!m))
2027 		goto out;
2028 
2029 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2030 		;
2031 
2032 	for (r = 0; r < f->rules; r++) {
2033 		struct nft_pipapo_elem *e;
2034 		struct nft_set_elem elem;
2035 
2036 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2037 			continue;
2038 
2039 		if (iter->count < iter->skip)
2040 			goto cont;
2041 
2042 		e = f->mt[r].e;
2043 
2044 		elem.priv = e;
2045 
2046 		iter->err = iter->fn(ctx, set, iter, &elem);
2047 		if (iter->err < 0)
2048 			goto out;
2049 
2050 cont:
2051 		iter->count++;
2052 	}
2053 
2054 out:
2055 	rcu_read_unlock();
2056 }
2057 
2058 /**
2059  * nft_pipapo_privsize() - Return the size of private data for the set
2060  * @nla:	netlink attributes, ignored as size doesn't depend on them
2061  * @desc:	Set description, ignored as size doesn't depend on it
2062  *
2063  * Return: size of private data for this set implementation, in bytes
2064  */
2065 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2066 			       const struct nft_set_desc *desc)
2067 {
2068 	return sizeof(struct nft_pipapo);
2069 }
2070 
2071 /**
2072  * nft_pipapo_estimate() - Set size, space and lookup complexity
2073  * @desc:	Set description, element count and field description used
2074  * @features:	Flags: NFT_SET_INTERVAL needs to be there
2075  * @est:	Storage for estimation data
2076  *
2077  * Return: true if set description is compatible, false otherwise
2078  */
2079 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2080 				struct nft_set_estimate *est)
2081 {
2082 	if (!(features & NFT_SET_INTERVAL) ||
2083 	    desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2084 		return false;
2085 
2086 	est->size = pipapo_estimate_size(desc);
2087 	if (!est->size)
2088 		return false;
2089 
2090 	est->lookup = NFT_SET_CLASS_O_LOG_N;
2091 
2092 	est->space = NFT_SET_CLASS_O_N;
2093 
2094 	return true;
2095 }
2096 
2097 /**
2098  * nft_pipapo_init() - Initialise data for a set instance
2099  * @set:	nftables API set representation
2100  * @desc:	Set description
2101  * @nla:	netlink attributes
2102  *
2103  * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2104  * attributes, initialise internal set parameters, current instance of matching
2105  * data and a copy for subsequent insertions.
2106  *
2107  * Return: 0 on success, negative error code on failure.
2108  */
2109 static int nft_pipapo_init(const struct nft_set *set,
2110 			   const struct nft_set_desc *desc,
2111 			   const struct nlattr * const nla[])
2112 {
2113 	struct nft_pipapo *priv = nft_set_priv(set);
2114 	struct nft_pipapo_match *m;
2115 	struct nft_pipapo_field *f;
2116 	int err, i, field_count;
2117 
2118 	field_count = desc->field_count ? : 1;
2119 
2120 	if (field_count > NFT_PIPAPO_MAX_FIELDS)
2121 		return -EINVAL;
2122 
2123 	m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2124 	if (!m)
2125 		return -ENOMEM;
2126 
2127 	m->field_count = field_count;
2128 	m->bsize_max = 0;
2129 
2130 	m->scratch = alloc_percpu(unsigned long *);
2131 	if (!m->scratch) {
2132 		err = -ENOMEM;
2133 		goto out_scratch;
2134 	}
2135 	for_each_possible_cpu(i)
2136 		*per_cpu_ptr(m->scratch, i) = NULL;
2137 
2138 #ifdef NFT_PIPAPO_ALIGN
2139 	m->scratch_aligned = alloc_percpu(unsigned long *);
2140 	if (!m->scratch_aligned) {
2141 		err = -ENOMEM;
2142 		goto out_free;
2143 	}
2144 	for_each_possible_cpu(i)
2145 		*per_cpu_ptr(m->scratch_aligned, i) = NULL;
2146 #endif
2147 
2148 	rcu_head_init(&m->rcu);
2149 
2150 	nft_pipapo_for_each_field(f, i, m) {
2151 		int len = desc->field_len[i] ? : set->klen;
2152 
2153 		f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2154 		f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2155 
2156 		priv->width += round_up(len, sizeof(u32));
2157 
2158 		f->bsize = 0;
2159 		f->rules = 0;
2160 		NFT_PIPAPO_LT_ASSIGN(f, NULL);
2161 		f->mt = NULL;
2162 	}
2163 
2164 	/* Create an initial clone of matching data for next insertion */
2165 	priv->clone = pipapo_clone(m);
2166 	if (IS_ERR(priv->clone)) {
2167 		err = PTR_ERR(priv->clone);
2168 		goto out_free;
2169 	}
2170 
2171 	priv->dirty = false;
2172 
2173 	rcu_assign_pointer(priv->match, m);
2174 
2175 	return 0;
2176 
2177 out_free:
2178 #ifdef NFT_PIPAPO_ALIGN
2179 	free_percpu(m->scratch_aligned);
2180 #endif
2181 	free_percpu(m->scratch);
2182 out_scratch:
2183 	kfree(m);
2184 
2185 	return err;
2186 }
2187 
2188 /**
2189  * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2190  * @ctx:	context
2191  * @set:	nftables API set representation
2192  * @m:		matching data pointing to key mapping array
2193  */
2194 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2195 					 const struct nft_set *set,
2196 					 struct nft_pipapo_match *m)
2197 {
2198 	struct nft_pipapo_field *f;
2199 	int i, r;
2200 
2201 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2202 		;
2203 
2204 	for (r = 0; r < f->rules; r++) {
2205 		struct nft_pipapo_elem *e;
2206 
2207 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2208 			continue;
2209 
2210 		e = f->mt[r].e;
2211 
2212 		nf_tables_set_elem_destroy(ctx, set, e);
2213 	}
2214 }
2215 
2216 /**
2217  * nft_pipapo_destroy() - Free private data for set and all committed elements
2218  * @ctx:	context
2219  * @set:	nftables API set representation
2220  */
2221 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2222 			       const struct nft_set *set)
2223 {
2224 	struct nft_pipapo *priv = nft_set_priv(set);
2225 	struct nft_pipapo_match *m;
2226 	int cpu;
2227 
2228 	m = rcu_dereference_protected(priv->match, true);
2229 	if (m) {
2230 		rcu_barrier();
2231 
2232 		nft_set_pipapo_match_destroy(ctx, set, m);
2233 
2234 #ifdef NFT_PIPAPO_ALIGN
2235 		free_percpu(m->scratch_aligned);
2236 #endif
2237 		for_each_possible_cpu(cpu)
2238 			kfree(*per_cpu_ptr(m->scratch, cpu));
2239 		free_percpu(m->scratch);
2240 		pipapo_free_fields(m);
2241 		kfree(m);
2242 		priv->match = NULL;
2243 	}
2244 
2245 	if (priv->clone) {
2246 		m = priv->clone;
2247 
2248 		if (priv->dirty)
2249 			nft_set_pipapo_match_destroy(ctx, set, m);
2250 
2251 #ifdef NFT_PIPAPO_ALIGN
2252 		free_percpu(priv->clone->scratch_aligned);
2253 #endif
2254 		for_each_possible_cpu(cpu)
2255 			kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2256 		free_percpu(priv->clone->scratch);
2257 
2258 		pipapo_free_fields(priv->clone);
2259 		kfree(priv->clone);
2260 		priv->clone = NULL;
2261 	}
2262 }
2263 
2264 /**
2265  * nft_pipapo_gc_init() - Initialise garbage collection
2266  * @set:	nftables API set representation
2267  *
2268  * Instead of actually setting up a periodic work for garbage collection, as
2269  * this operation requires a swap of matching data with the working copy, we'll
2270  * do that opportunistically with other commit operations if the interval is
2271  * elapsed, so we just need to set the current jiffies timestamp here.
2272  */
2273 static void nft_pipapo_gc_init(const struct nft_set *set)
2274 {
2275 	struct nft_pipapo *priv = nft_set_priv(set);
2276 
2277 	priv->last_gc = jiffies;
2278 }
2279 
2280 const struct nft_set_type nft_set_pipapo_type = {
2281 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2282 			  NFT_SET_TIMEOUT,
2283 	.ops		= {
2284 		.lookup		= nft_pipapo_lookup,
2285 		.insert		= nft_pipapo_insert,
2286 		.activate	= nft_pipapo_activate,
2287 		.deactivate	= nft_pipapo_deactivate,
2288 		.flush		= nft_pipapo_flush,
2289 		.remove		= nft_pipapo_remove,
2290 		.walk		= nft_pipapo_walk,
2291 		.get		= nft_pipapo_get,
2292 		.privsize	= nft_pipapo_privsize,
2293 		.estimate	= nft_pipapo_estimate,
2294 		.init		= nft_pipapo_init,
2295 		.destroy	= nft_pipapo_destroy,
2296 		.gc_init	= nft_pipapo_gc_init,
2297 		.commit		= nft_pipapo_commit,
2298 		.abort		= nft_pipapo_abort,
2299 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2300 	},
2301 };
2302 
2303 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2304 const struct nft_set_type nft_set_pipapo_avx2_type = {
2305 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2306 			  NFT_SET_TIMEOUT,
2307 	.ops		= {
2308 		.lookup		= nft_pipapo_avx2_lookup,
2309 		.insert		= nft_pipapo_insert,
2310 		.activate	= nft_pipapo_activate,
2311 		.deactivate	= nft_pipapo_deactivate,
2312 		.flush		= nft_pipapo_flush,
2313 		.remove		= nft_pipapo_remove,
2314 		.walk		= nft_pipapo_walk,
2315 		.get		= nft_pipapo_get,
2316 		.privsize	= nft_pipapo_privsize,
2317 		.estimate	= nft_pipapo_avx2_estimate,
2318 		.init		= nft_pipapo_init,
2319 		.destroy	= nft_pipapo_destroy,
2320 		.gc_init	= nft_pipapo_gc_init,
2321 		.commit		= nft_pipapo_commit,
2322 		.abort		= nft_pipapo_abort,
2323 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2324 	},
2325 };
2326 #endif
2327