1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4  *
5  * Copyright (c) 2019-2020 Red Hat GmbH
6  *
7  * Author: Stefano Brivio <sbrivio@redhat.com>
8  */
9 
10 /**
11  * DOC: Theory of Operation
12  *
13  *
14  * Problem
15  * -------
16  *
17  * Match packet bytes against entries composed of ranged or non-ranged packet
18  * field specifiers, mapping them to arbitrary references. For example:
19  *
20  * ::
21  *
22  *               --- fields --->
23  *      |    [net],[port],[net]... => [reference]
24  *   entries [net],[port],[net]... => [reference]
25  *      |    [net],[port],[net]... => [reference]
26  *      V    ...
27  *
28  * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29  * ranges. Arbitrary packet fields can be matched.
30  *
31  *
32  * Algorithm Overview
33  * ------------------
34  *
35  * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36  * relies on the consideration that every contiguous range in a space of b bits
37  * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38  * as also illustrated in Section 9 of [Kogan 2014].
39  *
40  * Classification against a number of entries, that require matching given bits
41  * of a packet field, is performed by grouping those bits in sets of arbitrary
42  * size, and classifying packet bits one group at a time.
43  *
44  * Example:
45  *   to match the source port (16 bits) of a packet, we can divide those 16 bits
46  *   in 4 groups of 4 bits each. Given the entry:
47  *      0000 0001 0101 1001
48  *   and a packet with source port:
49  *      0000 0001 1010 1001
50  *   first and second groups match, but the third doesn't. We conclude that the
51  *   packet doesn't match the given entry.
52  *
53  * Translate the set to a sequence of lookup tables, one per field. Each table
54  * has two dimensions: bit groups to be matched for a single packet field, and
55  * all the possible values of said groups (buckets). Input entries are
56  * represented as one or more rules, depending on the number of composing
57  * netmasks for the given field specifier, and a group match is indicated as a
58  * set bit, with number corresponding to the rule index, in all the buckets
59  * whose value matches the entry for a given group.
60  *
61  * Rules are mapped between fields through an array of x, n pairs, with each
62  * item mapping a matched rule to one or more rules. The position of the pair in
63  * the array indicates the matched rule to be mapped to the next field, x
64  * indicates the first rule index in the next field, and n the amount of
65  * next-field rules the current rule maps to.
66  *
67  * The mapping array for the last field maps to the desired references.
68  *
69  * To match, we perform table lookups using the values of grouped packet bits,
70  * and use a sequence of bitwise operations to progressively evaluate rule
71  * matching.
72  *
73  * A stand-alone, reference implementation, also including notes about possible
74  * future optimisations, is available at:
75  *    https://pipapo.lameexcu.se/
76  *
77  * Insertion
78  * ---------
79  *
80  * - For each packet field:
81  *
82  *   - divide the b packet bits we want to classify into groups of size t,
83  *     obtaining ceil(b / t) groups
84  *
85  *      Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86  *      of 4 bits each
87  *
88  *   - allocate a lookup table with one column ("bucket") for each possible
89  *     value of a group, and with one row for each group
90  *
91  *      Example: 8 groups, 2^4 buckets:
92  *
93  * ::
94  *
95  *                     bucket
96  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
97  *        0
98  *        1
99  *        2
100  *        3
101  *        4
102  *        5
103  *        6
104  *        7
105  *
106  *   - map the bits we want to classify for the current field, for a given
107  *     entry, to a single rule for non-ranged and netmask set items, and to one
108  *     or multiple rules for ranges. Ranges are expanded to composing netmasks
109  *     by pipapo_expand().
110  *
111  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112  *      - rule #0: 10.0.0.5
113  *      - rule #1: 192.168.1.0/24
114  *      - rule #2: 192.168.2.0/31
115  *
116  *   - insert references to the rules in the lookup table, selecting buckets
117  *     according to bit values of a rule in the given group. This is done by
118  *     pipapo_insert().
119  *
120  *      Example: given:
121  *      - rule #0: 10.0.0.5 mapping to buckets
122  *        < 0 10  0 0   0 0  0 5 >
123  *      - rule #1: 192.168.1.0/24 mapping to buckets
124  *        < 12 0  10 8  0 1  < 0..15 > < 0..15 > >
125  *      - rule #2: 192.168.2.0/31 mapping to buckets
126  *        < 12 0  10 8  0 2  0 < 0..1 > >
127  *
128  *      these bits are set in the lookup table:
129  *
130  * ::
131  *
132  *                     bucket
133  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
134  *        0    0                                              1,2
135  *        1   1,2                                      0
136  *        2    0                                      1,2
137  *        3    0                              1,2
138  *        4  0,1,2
139  *        5    0   1   2
140  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
141  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
142  *
143  *   - if this is not the last field in the set, fill a mapping array that maps
144  *     rules from the lookup table to rules belonging to the same entry in
145  *     the next lookup table, done by pipapo_map().
146  *
147  *     Note that as rules map to contiguous ranges of rules, given how netmask
148  *     expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149  *     this information as pairs of first rule index, rule count.
150  *
151  *      Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152  *      given lookup table #0 for field 0 (see example above):
153  *
154  * ::
155  *
156  *                     bucket
157  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
158  *        0    0                                              1,2
159  *        1   1,2                                      0
160  *        2    0                                      1,2
161  *        3    0                              1,2
162  *        4  0,1,2
163  *        5    0   1   2
164  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
165  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
166  *
167  *      and lookup table #1 for field 1 with:
168  *      - rule #0: 1024 mapping to buckets
169  *        < 0  0  4  0 >
170  *      - rule #1: 2048 mapping to buckets
171  *        < 0  0  5  0 >
172  *
173  * ::
174  *
175  *                     bucket
176  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
177  *        0   0,1
178  *        1   0,1
179  *        2                    0   1
180  *        3   0,1
181  *
182  *      we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183  *      in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184  *      (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185  *
186  * ::
187  *
188  *       rule indices in current field: 0    1    2
189  *       map to rules in next field:    0    1    1
190  *
191  *   - if this is the last field in the set, fill a mapping array that maps
192  *     rules from the last lookup table to element pointers, also done by
193  *     pipapo_map().
194  *
195  *     Note that, in this implementation, we have two elements (start, end) for
196  *     each entry. The pointer to the end element is stored in this array, and
197  *     the pointer to the start element is linked from it.
198  *
199  *      Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200  *      pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201  *      From the rules of lookup table #1 as mapped above:
202  *
203  * ::
204  *
205  *       rule indices in last field:    0    1
206  *       map to elements:             0x66  0x42
207  *
208  *
209  * Matching
210  * --------
211  *
212  * We use a result bitmap, with the size of a single lookup table bucket, to
213  * represent the matching state that applies at every algorithm step. This is
214  * done by pipapo_lookup().
215  *
216  * - For each packet field:
217  *
218  *   - start with an all-ones result bitmap (res_map in pipapo_lookup())
219  *
220  *   - perform a lookup into the table corresponding to the current field,
221  *     for each group, and at every group, AND the current result bitmap with
222  *     the value from the lookup table bucket
223  *
224  * ::
225  *
226  *      Example: 192.168.1.5 < 12 0  10 8  0 1  0 5 >, with lookup table from
227  *      insertion examples.
228  *      Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229  *      convenience in this example. Initial result bitmap is 0xff, the steps
230  *      below show the value of the result bitmap after each group is processed:
231  *
232  *                     bucket
233  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
234  *        0    0                                              1,2
235  *        result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236  *
237  *        1   1,2                                      0
238  *        result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239  *
240  *        2    0                                      1,2
241  *        result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242  *
243  *        3    0                              1,2
244  *        result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245  *
246  *        4  0,1,2
247  *        result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248  *
249  *        5    0   1   2
250  *        result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251  *
252  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
253  *        result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254  *
255  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
256  *        final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257  *
258  *   - at the next field, start with a new, all-zeroes result bitmap. For each
259  *     bit set in the previous result bitmap, fill the new result bitmap
260  *     (fill_map in pipapo_lookup()) with the rule indices from the
261  *     corresponding buckets of the mapping field for this field, done by
262  *     pipapo_refill()
263  *
264  *      Example: with mapping table from insertion examples, with the current
265  *      result bitmap from the previous example, 0x02:
266  *
267  * ::
268  *
269  *       rule indices in current field: 0    1    2
270  *       map to rules in next field:    0    1    1
271  *
272  *      the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273  *      set.
274  *
275  *      We can now extend this example to cover the second iteration of the step
276  *      above (lookup and AND bitmap): assuming the port field is
277  *      2048 < 0  0  5  0 >, with starting result bitmap 0x2, and lookup table
278  *      for "port" field from pre-computation example:
279  *
280  * ::
281  *
282  *                     bucket
283  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
284  *        0   0,1
285  *        1   0,1
286  *        2                    0   1
287  *        3   0,1
288  *
289  *       operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290  *       & 0x3 [bucket 0], resulting bitmap is 0x2.
291  *
292  *   - if this is the last field in the set, look up the value from the mapping
293  *     array corresponding to the final result bitmap
294  *
295  *      Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296  *      last field from insertion example:
297  *
298  * ::
299  *
300  *       rule indices in last field:    0    1
301  *       map to elements:             0x66  0x42
302  *
303  *      the matching element is at 0x42.
304  *
305  *
306  * References
307  * ----------
308  *
309  * [Ligatti 2010]
310  *      A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311  *      Automatic Time-space Tradeoffs
312  *      Jay Ligatti, Josh Kuhn, and Chris Gage.
313  *      Proceedings of the IEEE International Conference on Computer
314  *      Communication Networks (ICCCN), August 2010.
315  *      https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316  *
317  * [Rottenstreich 2010]
318  *      Worst-Case TCAM Rule Expansion
319  *      Ori Rottenstreich and Isaac Keslassy.
320  *      2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321  *      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322  *
323  * [Kogan 2014]
324  *      SAX-PAC (Scalable And eXpressive PAcket Classification)
325  *      Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326  *      and Patrick Eugster.
327  *      Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328  *      https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329  */
330 
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341 
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344 
345 /* Current working bitmap index, toggled between field matches */
346 static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
347 
348 /**
349  * pipapo_refill() - For each set bit, set bits from selected mapping table item
350  * @map:	Bitmap to be scanned for set bits
351  * @len:	Length of bitmap in longs
352  * @rules:	Number of rules in field
353  * @dst:	Destination bitmap
354  * @mt:		Mapping table containing bit set specifiers
355  * @match_only:	Find a single bit and return, don't fill
356  *
357  * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
358  *
359  * For each bit set in map, select the bucket from mapping table with index
360  * corresponding to the position of the bit set. Use start bit and amount of
361  * bits specified in bucket to fill region in dst.
362  *
363  * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
364  */
365 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
366 		  union nft_pipapo_map_bucket *mt, bool match_only)
367 {
368 	unsigned long bitset;
369 	int k, ret = -1;
370 
371 	for (k = 0; k < len; k++) {
372 		bitset = map[k];
373 		while (bitset) {
374 			unsigned long t = bitset & -bitset;
375 			int r = __builtin_ctzl(bitset);
376 			int i = k * BITS_PER_LONG + r;
377 
378 			if (unlikely(i >= rules)) {
379 				map[k] = 0;
380 				return -1;
381 			}
382 
383 			if (match_only) {
384 				bitmap_clear(map, i, 1);
385 				return i;
386 			}
387 
388 			ret = 0;
389 
390 			bitmap_set(dst, mt[i].to, mt[i].n);
391 
392 			bitset ^= t;
393 		}
394 		map[k] = 0;
395 	}
396 
397 	return ret;
398 }
399 
400 /**
401  * nft_pipapo_lookup() - Lookup function
402  * @net:	Network namespace
403  * @set:	nftables API set representation
404  * @key:	nftables API element representation containing key data
405  * @ext:	nftables API extension pointer, filled with matching reference
406  *
407  * For more details, see DOC: Theory of Operation.
408  *
409  * Return: true on match, false otherwise.
410  */
411 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
412 		       const u32 *key, const struct nft_set_ext **ext)
413 {
414 	struct nft_pipapo *priv = nft_set_priv(set);
415 	unsigned long *res_map, *fill_map;
416 	u8 genmask = nft_genmask_cur(net);
417 	const u8 *rp = (const u8 *)key;
418 	struct nft_pipapo_match *m;
419 	struct nft_pipapo_field *f;
420 	bool map_index;
421 	int i;
422 
423 	local_bh_disable();
424 
425 	map_index = raw_cpu_read(nft_pipapo_scratch_index);
426 
427 	m = rcu_dereference(priv->match);
428 
429 	if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
430 		goto out;
431 
432 	res_map  = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
433 	fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
434 
435 	memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
436 
437 	nft_pipapo_for_each_field(f, i, m) {
438 		bool last = i == m->field_count - 1;
439 		int b;
440 
441 		/* For each bit group: select lookup table bucket depending on
442 		 * packet bytes value, then AND bucket value
443 		 */
444 		if (likely(f->bb == 8))
445 			pipapo_and_field_buckets_8bit(f, res_map, rp);
446 		else
447 			pipapo_and_field_buckets_4bit(f, res_map, rp);
448 		NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449 
450 		rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451 
452 		/* Now populate the bitmap for the next field, unless this is
453 		 * the last field, in which case return the matched 'ext'
454 		 * pointer if any.
455 		 *
456 		 * Now res_map contains the matching bitmap, and fill_map is the
457 		 * bitmap for the next field.
458 		 */
459 next_match:
460 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 				  last);
462 		if (b < 0) {
463 			raw_cpu_write(nft_pipapo_scratch_index, map_index);
464 			local_bh_enable();
465 
466 			return false;
467 		}
468 
469 		if (last) {
470 			*ext = &f->mt[b].e->ext;
471 			if (unlikely(nft_set_elem_expired(*ext) ||
472 				     !nft_set_elem_active(*ext, genmask)))
473 				goto next_match;
474 
475 			/* Last field: we're just returning the key without
476 			 * filling the initial bitmap for the next field, so the
477 			 * current inactive bitmap is clean and can be reused as
478 			 * *next* bitmap (not initial) for the next packet.
479 			 */
480 			raw_cpu_write(nft_pipapo_scratch_index, map_index);
481 			local_bh_enable();
482 
483 			return true;
484 		}
485 
486 		/* Swap bitmap indices: res_map is the initial bitmap for the
487 		 * next field, and fill_map is guaranteed to be all-zeroes at
488 		 * this point.
489 		 */
490 		map_index = !map_index;
491 		swap(res_map, fill_map);
492 
493 		rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 	}
495 
496 out:
497 	local_bh_enable();
498 	return false;
499 }
500 
501 /**
502  * pipapo_get() - Get matching element reference given key data
503  * @net:	Network namespace
504  * @set:	nftables API set representation
505  * @data:	Key data to be matched against existing elements
506  * @genmask:	If set, check that element is active in given genmask
507  *
508  * This is essentially the same as the lookup function, except that it matches
509  * key data against the uncommitted copy and doesn't use preallocated maps for
510  * bitmap results.
511  *
512  * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
513  */
514 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
515 					  const struct nft_set *set,
516 					  const u8 *data, u8 genmask)
517 {
518 	struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
519 	struct nft_pipapo *priv = nft_set_priv(set);
520 	struct nft_pipapo_match *m = priv->clone;
521 	unsigned long *res_map, *fill_map = NULL;
522 	struct nft_pipapo_field *f;
523 	int i;
524 
525 	res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
526 	if (!res_map) {
527 		ret = ERR_PTR(-ENOMEM);
528 		goto out;
529 	}
530 
531 	fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
532 	if (!fill_map) {
533 		ret = ERR_PTR(-ENOMEM);
534 		goto out;
535 	}
536 
537 	memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
538 
539 	nft_pipapo_for_each_field(f, i, m) {
540 		bool last = i == m->field_count - 1;
541 		int b;
542 
543 		/* For each bit group: select lookup table bucket depending on
544 		 * packet bytes value, then AND bucket value
545 		 */
546 		if (f->bb == 8)
547 			pipapo_and_field_buckets_8bit(f, res_map, data);
548 		else if (f->bb == 4)
549 			pipapo_and_field_buckets_4bit(f, res_map, data);
550 		else
551 			BUG();
552 
553 		data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
554 
555 		/* Now populate the bitmap for the next field, unless this is
556 		 * the last field, in which case return the matched 'ext'
557 		 * pointer if any.
558 		 *
559 		 * Now res_map contains the matching bitmap, and fill_map is the
560 		 * bitmap for the next field.
561 		 */
562 next_match:
563 		b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
564 				  last);
565 		if (b < 0)
566 			goto out;
567 
568 		if (last) {
569 			if (nft_set_elem_expired(&f->mt[b].e->ext) ||
570 			    (genmask &&
571 			     !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
572 				goto next_match;
573 
574 			ret = f->mt[b].e;
575 			goto out;
576 		}
577 
578 		data += NFT_PIPAPO_GROUPS_PADDING(f);
579 
580 		/* Swap bitmap indices: fill_map will be the initial bitmap for
581 		 * the next field (i.e. the new res_map), and res_map is
582 		 * guaranteed to be all-zeroes at this point, ready to be filled
583 		 * according to the next mapping table.
584 		 */
585 		swap(res_map, fill_map);
586 	}
587 
588 out:
589 	kfree(fill_map);
590 	kfree(res_map);
591 	return ret;
592 }
593 
594 /**
595  * nft_pipapo_get() - Get matching element reference given key data
596  * @net:	Network namespace
597  * @set:	nftables API set representation
598  * @elem:	nftables API element representation containing key data
599  * @flags:	Unused
600  */
601 static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
602 			    const struct nft_set_elem *elem, unsigned int flags)
603 {
604 	return pipapo_get(net, set, (const u8 *)elem->key.val.data,
605 			  nft_genmask_cur(net));
606 }
607 
608 /**
609  * pipapo_resize() - Resize lookup or mapping table, or both
610  * @f:		Field containing lookup and mapping tables
611  * @old_rules:	Previous amount of rules in field
612  * @rules:	New amount of rules
613  *
614  * Increase, decrease or maintain tables size depending on new amount of rules,
615  * and copy data over. In case the new size is smaller, throw away data for
616  * highest-numbered rules.
617  *
618  * Return: 0 on success, -ENOMEM on allocation failure.
619  */
620 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
621 {
622 	long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
623 	union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
624 	size_t new_bucket_size, copy;
625 	int group, bucket;
626 
627 	new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
628 #ifdef NFT_PIPAPO_ALIGN
629 	new_bucket_size = roundup(new_bucket_size,
630 				  NFT_PIPAPO_ALIGN / sizeof(*new_lt));
631 #endif
632 
633 	if (new_bucket_size == f->bsize)
634 		goto mt;
635 
636 	if (new_bucket_size > f->bsize)
637 		copy = f->bsize;
638 	else
639 		copy = new_bucket_size;
640 
641 	new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
642 			  new_bucket_size * sizeof(*new_lt) +
643 			  NFT_PIPAPO_ALIGN_HEADROOM,
644 			  GFP_KERNEL);
645 	if (!new_lt)
646 		return -ENOMEM;
647 
648 	new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
649 	old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
650 
651 	for (group = 0; group < f->groups; group++) {
652 		for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
653 			memcpy(new_p, old_p, copy * sizeof(*new_p));
654 			new_p += copy;
655 			old_p += copy;
656 
657 			if (new_bucket_size > f->bsize)
658 				new_p += new_bucket_size - f->bsize;
659 			else
660 				old_p += f->bsize - new_bucket_size;
661 		}
662 	}
663 
664 mt:
665 	new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
666 	if (!new_mt) {
667 		kvfree(new_lt);
668 		return -ENOMEM;
669 	}
670 
671 	memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
672 	if (rules > old_rules) {
673 		memset(new_mt + old_rules, 0,
674 		       (rules - old_rules) * sizeof(*new_mt));
675 	}
676 
677 	if (new_lt) {
678 		f->bsize = new_bucket_size;
679 		NFT_PIPAPO_LT_ASSIGN(f, new_lt);
680 		kvfree(old_lt);
681 	}
682 
683 	f->mt = new_mt;
684 	kvfree(old_mt);
685 
686 	return 0;
687 }
688 
689 /**
690  * pipapo_bucket_set() - Set rule bit in bucket given group and group value
691  * @f:		Field containing lookup table
692  * @rule:	Rule index
693  * @group:	Group index
694  * @v:		Value of bit group
695  */
696 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
697 			      int v)
698 {
699 	unsigned long *pos;
700 
701 	pos = NFT_PIPAPO_LT_ALIGN(f->lt);
702 	pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
703 	pos += f->bsize * v;
704 
705 	__set_bit(rule, pos);
706 }
707 
708 /**
709  * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
710  * @old_groups:	Number of current groups
711  * @bsize:	Size of one bucket, in longs
712  * @old_lt:	Pointer to the current lookup table
713  * @new_lt:	Pointer to the new, pre-allocated lookup table
714  *
715  * Each bucket with index b in the new lookup table, belonging to group g, is
716  * filled with the bit intersection between:
717  * - bucket with index given by the upper 4 bits of b, from group g, and
718  * - bucket with index given by the lower 4 bits of b, from group g + 1
719  *
720  * That is, given buckets from the new lookup table N(x, y) and the old lookup
721  * table O(x, y), with x bucket index, and y group index:
722  *
723  *	N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
724  *
725  * This ensures equivalence of the matching results on lookup. Two examples in
726  * pictures:
727  *
728  *              bucket
729  *  group  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 254 255
730  *    0                ^
731  *    1                |                                                 ^
732  *   ...             ( & )                                               |
733  *                  /     \                                              |
734  *                 /       \                                         .-( & )-.
735  *                /  bucket \                                        |       |
736  *      group  0 / 1   2   3 \ 4   5   6   7   8   9  10  11  12  13 |14  15 |
737  *        0     /             \                                      |       |
738  *        1                    \                                     |       |
739  *        2                                                          |     --'
740  *        3                                                          '-
741  *       ...
742  */
743 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
744 			       unsigned long *old_lt, unsigned long *new_lt)
745 {
746 	int g, b, i;
747 
748 	for (g = 0; g < old_groups / 2; g++) {
749 		int src_g0 = g * 2, src_g1 = g * 2 + 1;
750 
751 		for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
752 			int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
753 			int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
754 			int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
755 			int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
756 
757 			for (i = 0; i < bsize; i++) {
758 				*new_lt = old_lt[src_i0 * bsize + i] &
759 					  old_lt[src_i1 * bsize + i];
760 				new_lt++;
761 			}
762 		}
763 	}
764 }
765 
766 /**
767  * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
768  * @old_groups:	Number of current groups
769  * @bsize:	Size of one bucket, in longs
770  * @old_lt:	Pointer to the current lookup table
771  * @new_lt:	Pointer to the new, pre-allocated lookup table
772  *
773  * Each bucket with index b in the new lookup table, belonging to group g, is
774  * filled with the bit union of:
775  * - all the buckets with index such that the upper four bits of the lower byte
776  *   equal b, from group g, with g odd
777  * - all the buckets with index such that the lower four bits equal b, from
778  *   group g, with g even
779  *
780  * That is, given buckets from the new lookup table N(x, y) and the old lookup
781  * table O(x, y), with x bucket index, and y group index:
782  *
783  *	- with g odd:  N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
784  *	- with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
785  *
786  * where U() denotes the arbitrary union operation (binary OR of n terms). This
787  * ensures equivalence of the matching results on lookup.
788  */
789 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
790 			       unsigned long *old_lt, unsigned long *new_lt)
791 {
792 	int g, b, bsrc, i;
793 
794 	memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
795 			  sizeof(unsigned long));
796 
797 	for (g = 0; g < old_groups * 2; g += 2) {
798 		int src_g = g / 2;
799 
800 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
801 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
802 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
803 			     bsrc++) {
804 				if (((bsrc & 0xf0) >> 4) != b)
805 					continue;
806 
807 				for (i = 0; i < bsize; i++)
808 					new_lt[i] |= old_lt[bsrc * bsize + i];
809 			}
810 
811 			new_lt += bsize;
812 		}
813 
814 		for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
815 			for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
816 			     bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
817 			     bsrc++) {
818 				if ((bsrc & 0x0f) != b)
819 					continue;
820 
821 				for (i = 0; i < bsize; i++)
822 					new_lt[i] |= old_lt[bsrc * bsize + i];
823 			}
824 
825 			new_lt += bsize;
826 		}
827 	}
828 }
829 
830 /**
831  * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
832  * @f:		Field containing lookup table
833  */
834 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
835 {
836 	unsigned long *new_lt;
837 	int groups, bb;
838 	size_t lt_size;
839 
840 	lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
841 		  sizeof(*f->lt);
842 
843 	if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
844 	    lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
845 		groups = f->groups * 2;
846 		bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
847 
848 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
849 			  sizeof(*f->lt);
850 	} else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
851 		   lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
852 		groups = f->groups / 2;
853 		bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
854 
855 		lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
856 			  sizeof(*f->lt);
857 
858 		/* Don't increase group width if the resulting lookup table size
859 		 * would exceed the upper size threshold for a "small" set.
860 		 */
861 		if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
862 			return;
863 	} else {
864 		return;
865 	}
866 
867 	new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
868 	if (!new_lt)
869 		return;
870 
871 	NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
872 	if (f->bb == 4 && bb == 8) {
873 		pipapo_lt_4b_to_8b(f->groups, f->bsize,
874 				   NFT_PIPAPO_LT_ALIGN(f->lt),
875 				   NFT_PIPAPO_LT_ALIGN(new_lt));
876 	} else if (f->bb == 8 && bb == 4) {
877 		pipapo_lt_8b_to_4b(f->groups, f->bsize,
878 				   NFT_PIPAPO_LT_ALIGN(f->lt),
879 				   NFT_PIPAPO_LT_ALIGN(new_lt));
880 	} else {
881 		BUG();
882 	}
883 
884 	f->groups = groups;
885 	f->bb = bb;
886 	kvfree(f->lt);
887 	NFT_PIPAPO_LT_ASSIGN(f, new_lt);
888 }
889 
890 /**
891  * pipapo_insert() - Insert new rule in field given input key and mask length
892  * @f:		Field containing lookup table
893  * @k:		Input key for classification, without nftables padding
894  * @mask_bits:	Length of mask; matches field length for non-ranged entry
895  *
896  * Insert a new rule reference in lookup buckets corresponding to k and
897  * mask_bits.
898  *
899  * Return: 1 on success (one rule inserted), negative error code on failure.
900  */
901 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
902 			 int mask_bits)
903 {
904 	int rule = f->rules++, group, ret, bit_offset = 0;
905 
906 	ret = pipapo_resize(f, f->rules - 1, f->rules);
907 	if (ret)
908 		return ret;
909 
910 	for (group = 0; group < f->groups; group++) {
911 		int i, v;
912 		u8 mask;
913 
914 		v = k[group / (BITS_PER_BYTE / f->bb)];
915 		v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
916 		v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
917 
918 		bit_offset += f->bb;
919 		bit_offset %= BITS_PER_BYTE;
920 
921 		if (mask_bits >= (group + 1) * f->bb) {
922 			/* Not masked */
923 			pipapo_bucket_set(f, rule, group, v);
924 		} else if (mask_bits <= group * f->bb) {
925 			/* Completely masked */
926 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
927 				pipapo_bucket_set(f, rule, group, i);
928 		} else {
929 			/* The mask limit falls on this group */
930 			mask = GENMASK(f->bb - 1, 0);
931 			mask >>= mask_bits - group * f->bb;
932 			for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
933 				if ((i & ~mask) == (v & ~mask))
934 					pipapo_bucket_set(f, rule, group, i);
935 			}
936 		}
937 	}
938 
939 	pipapo_lt_bits_adjust(f);
940 
941 	return 1;
942 }
943 
944 /**
945  * pipapo_step_diff() - Check if setting @step bit in netmask would change it
946  * @base:	Mask we are expanding
947  * @step:	Step bit for given expansion step
948  * @len:	Total length of mask space (set and unset bits), bytes
949  *
950  * Convenience function for mask expansion.
951  *
952  * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
953  */
954 static bool pipapo_step_diff(u8 *base, int step, int len)
955 {
956 	/* Network order, byte-addressed */
957 #ifdef __BIG_ENDIAN__
958 	return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
959 #else
960 	return !(BIT(step % BITS_PER_BYTE) &
961 		 base[len - 1 - step / BITS_PER_BYTE]);
962 #endif
963 }
964 
965 /**
966  * pipapo_step_after_end() - Check if mask exceeds range end with given step
967  * @base:	Mask we are expanding
968  * @end:	End of range
969  * @step:	Step bit for given expansion step, highest bit to be set
970  * @len:	Total length of mask space (set and unset bits), bytes
971  *
972  * Convenience function for mask expansion.
973  *
974  * Return: true if mask exceeds range setting step bits, false otherwise.
975  */
976 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
977 				  int len)
978 {
979 	u8 tmp[NFT_PIPAPO_MAX_BYTES];
980 	int i;
981 
982 	memcpy(tmp, base, len);
983 
984 	/* Network order, byte-addressed */
985 	for (i = 0; i <= step; i++)
986 #ifdef __BIG_ENDIAN__
987 		tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
988 #else
989 		tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
990 #endif
991 
992 	return memcmp(tmp, end, len) > 0;
993 }
994 
995 /**
996  * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
997  * @base:	Netmask base
998  * @step:	Step bit to sum
999  * @len:	Netmask length, bytes
1000  */
1001 static void pipapo_base_sum(u8 *base, int step, int len)
1002 {
1003 	bool carry = false;
1004 	int i;
1005 
1006 	/* Network order, byte-addressed */
1007 #ifdef __BIG_ENDIAN__
1008 	for (i = step / BITS_PER_BYTE; i < len; i++) {
1009 #else
1010 	for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1011 #endif
1012 		if (carry)
1013 			base[i]++;
1014 		else
1015 			base[i] += 1 << (step % BITS_PER_BYTE);
1016 
1017 		if (base[i])
1018 			break;
1019 
1020 		carry = true;
1021 	}
1022 }
1023 
1024 /**
1025  * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1026  * @f:		Field containing lookup table
1027  * @start:	Start of range
1028  * @end:	End of range
1029  * @len:	Length of value in bits
1030  *
1031  * Expand range to composing netmasks and insert corresponding rule references
1032  * in lookup buckets.
1033  *
1034  * Return: number of inserted rules on success, negative error code on failure.
1035  */
1036 static int pipapo_expand(struct nft_pipapo_field *f,
1037 			 const u8 *start, const u8 *end, int len)
1038 {
1039 	int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1040 	u8 base[NFT_PIPAPO_MAX_BYTES];
1041 
1042 	memcpy(base, start, bytes);
1043 	while (memcmp(base, end, bytes) <= 0) {
1044 		int err;
1045 
1046 		step = 0;
1047 		while (pipapo_step_diff(base, step, bytes)) {
1048 			if (pipapo_step_after_end(base, end, step, bytes))
1049 				break;
1050 
1051 			step++;
1052 			if (step >= len) {
1053 				if (!masks) {
1054 					pipapo_insert(f, base, 0);
1055 					masks = 1;
1056 				}
1057 				goto out;
1058 			}
1059 		}
1060 
1061 		err = pipapo_insert(f, base, len - step);
1062 
1063 		if (err < 0)
1064 			return err;
1065 
1066 		masks++;
1067 		pipapo_base_sum(base, step, bytes);
1068 	}
1069 out:
1070 	return masks;
1071 }
1072 
1073 /**
1074  * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1075  * @m:		Matching data, including mapping table
1076  * @map:	Table of rule maps: array of first rule and amount of rules
1077  *		in next field a given rule maps to, for each field
1078  * @e:		For last field, nft_set_ext pointer matching rules map to
1079  */
1080 static void pipapo_map(struct nft_pipapo_match *m,
1081 		       union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1082 		       struct nft_pipapo_elem *e)
1083 {
1084 	struct nft_pipapo_field *f;
1085 	int i, j;
1086 
1087 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1088 		for (j = 0; j < map[i].n; j++) {
1089 			f->mt[map[i].to + j].to = map[i + 1].to;
1090 			f->mt[map[i].to + j].n = map[i + 1].n;
1091 		}
1092 	}
1093 
1094 	/* Last field: map to ext instead of mapping to next field */
1095 	for (j = 0; j < map[i].n; j++)
1096 		f->mt[map[i].to + j].e = e;
1097 }
1098 
1099 /**
1100  * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1101  * @clone:	Copy of matching data with pending insertions and deletions
1102  * @bsize_max:	Maximum bucket size, scratch maps cover two buckets
1103  *
1104  * Return: 0 on success, -ENOMEM on failure.
1105  */
1106 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1107 				  unsigned long bsize_max)
1108 {
1109 	int i;
1110 
1111 	for_each_possible_cpu(i) {
1112 		unsigned long *scratch;
1113 #ifdef NFT_PIPAPO_ALIGN
1114 		unsigned long *scratch_aligned;
1115 #endif
1116 
1117 		scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2 +
1118 				       NFT_PIPAPO_ALIGN_HEADROOM,
1119 				       GFP_KERNEL, cpu_to_node(i));
1120 		if (!scratch) {
1121 			/* On failure, there's no need to undo previous
1122 			 * allocations: this means that some scratch maps have
1123 			 * a bigger allocated size now (this is only called on
1124 			 * insertion), but the extra space won't be used by any
1125 			 * CPU as new elements are not inserted and m->bsize_max
1126 			 * is not updated.
1127 			 */
1128 			return -ENOMEM;
1129 		}
1130 
1131 		kfree(*per_cpu_ptr(clone->scratch, i));
1132 
1133 		*per_cpu_ptr(clone->scratch, i) = scratch;
1134 
1135 #ifdef NFT_PIPAPO_ALIGN
1136 		scratch_aligned = NFT_PIPAPO_LT_ALIGN(scratch);
1137 		*per_cpu_ptr(clone->scratch_aligned, i) = scratch_aligned;
1138 #endif
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 /**
1145  * nft_pipapo_insert() - Validate and insert ranged elements
1146  * @net:	Network namespace
1147  * @set:	nftables API set representation
1148  * @elem:	nftables API element representation containing key data
1149  * @ext2:	Filled with pointer to &struct nft_set_ext in inserted element
1150  *
1151  * Return: 0 on success, error pointer on failure.
1152  */
1153 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1154 			     const struct nft_set_elem *elem,
1155 			     struct nft_set_ext **ext2)
1156 {
1157 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1158 	union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1159 	const u8 *start = (const u8 *)elem->key.val.data, *end;
1160 	struct nft_pipapo_elem *e = elem->priv, *dup;
1161 	struct nft_pipapo *priv = nft_set_priv(set);
1162 	struct nft_pipapo_match *m = priv->clone;
1163 	u8 genmask = nft_genmask_next(net);
1164 	struct nft_pipapo_field *f;
1165 	const u8 *start_p, *end_p;
1166 	int i, bsize_max, err = 0;
1167 
1168 	if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1169 		end = (const u8 *)nft_set_ext_key_end(ext)->data;
1170 	else
1171 		end = start;
1172 
1173 	dup = pipapo_get(net, set, start, genmask);
1174 	if (!IS_ERR(dup)) {
1175 		/* Check if we already have the same exact entry */
1176 		const struct nft_data *dup_key, *dup_end;
1177 
1178 		dup_key = nft_set_ext_key(&dup->ext);
1179 		if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1180 			dup_end = nft_set_ext_key_end(&dup->ext);
1181 		else
1182 			dup_end = dup_key;
1183 
1184 		if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1185 		    !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1186 			*ext2 = &dup->ext;
1187 			return -EEXIST;
1188 		}
1189 
1190 		return -ENOTEMPTY;
1191 	}
1192 
1193 	if (PTR_ERR(dup) == -ENOENT) {
1194 		/* Look for partially overlapping entries */
1195 		dup = pipapo_get(net, set, end, nft_genmask_next(net));
1196 	}
1197 
1198 	if (PTR_ERR(dup) != -ENOENT) {
1199 		if (IS_ERR(dup))
1200 			return PTR_ERR(dup);
1201 		*ext2 = &dup->ext;
1202 		return -ENOTEMPTY;
1203 	}
1204 
1205 	/* Validate */
1206 	start_p = start;
1207 	end_p = end;
1208 	nft_pipapo_for_each_field(f, i, m) {
1209 		if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1210 			return -ENOSPC;
1211 
1212 		if (memcmp(start_p, end_p,
1213 			   f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1214 			return -EINVAL;
1215 
1216 		start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1217 		end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1218 	}
1219 
1220 	/* Insert */
1221 	priv->dirty = true;
1222 
1223 	bsize_max = m->bsize_max;
1224 
1225 	nft_pipapo_for_each_field(f, i, m) {
1226 		int ret;
1227 
1228 		rulemap[i].to = f->rules;
1229 
1230 		ret = memcmp(start, end,
1231 			     f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1232 		if (!ret)
1233 			ret = pipapo_insert(f, start, f->groups * f->bb);
1234 		else
1235 			ret = pipapo_expand(f, start, end, f->groups * f->bb);
1236 
1237 		if (f->bsize > bsize_max)
1238 			bsize_max = f->bsize;
1239 
1240 		rulemap[i].n = ret;
1241 
1242 		start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1243 		end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1244 	}
1245 
1246 	if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1247 		put_cpu_ptr(m->scratch);
1248 
1249 		err = pipapo_realloc_scratch(m, bsize_max);
1250 		if (err)
1251 			return err;
1252 
1253 		m->bsize_max = bsize_max;
1254 	} else {
1255 		put_cpu_ptr(m->scratch);
1256 	}
1257 
1258 	*ext2 = &e->ext;
1259 
1260 	pipapo_map(m, rulemap, e);
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  * pipapo_clone() - Clone matching data to create new working copy
1267  * @old:	Existing matching data
1268  *
1269  * Return: copy of matching data passed as 'old', error pointer on failure
1270  */
1271 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1272 {
1273 	struct nft_pipapo_field *dst, *src;
1274 	struct nft_pipapo_match *new;
1275 	int i;
1276 
1277 	new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count,
1278 		      GFP_KERNEL);
1279 	if (!new)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	new->field_count = old->field_count;
1283 	new->bsize_max = old->bsize_max;
1284 
1285 	new->scratch = alloc_percpu(*new->scratch);
1286 	if (!new->scratch)
1287 		goto out_scratch;
1288 
1289 #ifdef NFT_PIPAPO_ALIGN
1290 	new->scratch_aligned = alloc_percpu(*new->scratch_aligned);
1291 	if (!new->scratch_aligned)
1292 		goto out_scratch;
1293 #endif
1294 	for_each_possible_cpu(i)
1295 		*per_cpu_ptr(new->scratch, i) = NULL;
1296 
1297 	if (pipapo_realloc_scratch(new, old->bsize_max))
1298 		goto out_scratch_realloc;
1299 
1300 	rcu_head_init(&new->rcu);
1301 
1302 	src = old->f;
1303 	dst = new->f;
1304 
1305 	for (i = 0; i < old->field_count; i++) {
1306 		unsigned long *new_lt;
1307 
1308 		memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1309 
1310 		new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1311 				  src->bsize * sizeof(*dst->lt) +
1312 				  NFT_PIPAPO_ALIGN_HEADROOM,
1313 				  GFP_KERNEL);
1314 		if (!new_lt)
1315 			goto out_lt;
1316 
1317 		NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1318 
1319 		memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1320 		       NFT_PIPAPO_LT_ALIGN(src->lt),
1321 		       src->bsize * sizeof(*dst->lt) *
1322 		       src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1323 
1324 		dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1325 		if (!dst->mt)
1326 			goto out_mt;
1327 
1328 		memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1329 		src++;
1330 		dst++;
1331 	}
1332 
1333 	return new;
1334 
1335 out_mt:
1336 	kvfree(dst->lt);
1337 out_lt:
1338 	for (dst--; i > 0; i--) {
1339 		kvfree(dst->mt);
1340 		kvfree(dst->lt);
1341 		dst--;
1342 	}
1343 out_scratch_realloc:
1344 	for_each_possible_cpu(i)
1345 		kfree(*per_cpu_ptr(new->scratch, i));
1346 #ifdef NFT_PIPAPO_ALIGN
1347 	free_percpu(new->scratch_aligned);
1348 #endif
1349 out_scratch:
1350 	free_percpu(new->scratch);
1351 	kfree(new);
1352 
1353 	return ERR_PTR(-ENOMEM);
1354 }
1355 
1356 /**
1357  * pipapo_rules_same_key() - Get number of rules originated from the same entry
1358  * @f:		Field containing mapping table
1359  * @first:	Index of first rule in set of rules mapping to same entry
1360  *
1361  * Using the fact that all rules in a field that originated from the same entry
1362  * will map to the same set of rules in the next field, or to the same element
1363  * reference, return the cardinality of the set of rules that originated from
1364  * the same entry as the rule with index @first, @first rule included.
1365  *
1366  * In pictures:
1367  *				rules
1368  *	field #0		0    1    2    3    4
1369  *		map to:		0    1   2-4  2-4  5-9
1370  *				.    .    .......   . ...
1371  *				|    |    |    | \   \
1372  *				|    |    |    |  \   \
1373  *				|    |    |    |   \   \
1374  *				'    '    '    '    '   \
1375  *	in field #1		0    1    2    3    4    5 ...
1376  *
1377  * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1378  * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1379  *
1380  * For the last field in a set, we can rely on associated entries to map to the
1381  * same element references.
1382  *
1383  * Return: Number of rules that originated from the same entry as @first.
1384  */
1385 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1386 {
1387 	struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1388 	int r;
1389 
1390 	for (r = first; r < f->rules; r++) {
1391 		if (r != first && e != f->mt[r].e)
1392 			return r - first;
1393 
1394 		e = f->mt[r].e;
1395 	}
1396 
1397 	if (r != first)
1398 		return r - first;
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1405  * @mt:		Mapping array
1406  * @rules:	Original amount of rules in mapping table
1407  * @start:	First rule index to be removed
1408  * @n:		Amount of rules to be removed
1409  * @to_offset:	First rule index, in next field, this group of rules maps to
1410  * @is_last:	If this is the last field, delete reference from mapping array
1411  *
1412  * This is used to unmap rules from the mapping table for a single field,
1413  * maintaining consistency and compactness for the existing ones.
1414  *
1415  * In pictures: let's assume that we want to delete rules 2 and 3 from the
1416  * following mapping array:
1417  *
1418  *                 rules
1419  *               0      1      2      3      4
1420  *      map to:  4-10   4-10   11-15  11-15  16-18
1421  *
1422  * the result will be:
1423  *
1424  *                 rules
1425  *               0      1      2
1426  *      map to:  4-10   4-10   11-13
1427  *
1428  * for fields before the last one. In case this is the mapping table for the
1429  * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1430  *
1431  *                      rules
1432  *                        0      1      2      3      4
1433  *  element pointers:  0x42   0x42   0x33   0x33   0x44
1434  *
1435  * the result will be:
1436  *
1437  *                      rules
1438  *                        0      1      2
1439  *  element pointers:  0x42   0x42   0x44
1440  */
1441 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1442 			 int start, int n, int to_offset, bool is_last)
1443 {
1444 	int i;
1445 
1446 	memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1447 	memset(mt + rules - n, 0, n * sizeof(*mt));
1448 
1449 	if (is_last)
1450 		return;
1451 
1452 	for (i = start; i < rules - n; i++)
1453 		mt[i].to -= to_offset;
1454 }
1455 
1456 /**
1457  * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1458  * @m:		Matching data
1459  * @rulemap:	Table of rule maps, arrays of first rule and amount of rules
1460  *		in next field a given entry maps to, for each field
1461  *
1462  * For each rule in lookup table buckets mapping to this set of rules, drop
1463  * all bits set in lookup table mapping. In pictures, assuming we want to drop
1464  * rules 0 and 1 from this lookup table:
1465  *
1466  *                     bucket
1467  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1468  *        0    0                                              1,2
1469  *        1   1,2                                      0
1470  *        2    0                                      1,2
1471  *        3    0                              1,2
1472  *        4  0,1,2
1473  *        5    0   1   2
1474  *        6  0,1,2 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1475  *        7   1,2 1,2  1   1   1  0,1  1   1   1   1   1   1   1   1   1   1
1476  *
1477  * rule 2 becomes rule 0, and the result will be:
1478  *
1479  *                     bucket
1480  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1481  *        0                                                    0
1482  *        1    0
1483  *        2                                            0
1484  *        3                                    0
1485  *        4    0
1486  *        5            0
1487  *        6    0
1488  *        7    0   0
1489  *
1490  * once this is done, call unmap() to drop all the corresponding rule references
1491  * from mapping tables.
1492  */
1493 static void pipapo_drop(struct nft_pipapo_match *m,
1494 			union nft_pipapo_map_bucket rulemap[])
1495 {
1496 	struct nft_pipapo_field *f;
1497 	int i;
1498 
1499 	nft_pipapo_for_each_field(f, i, m) {
1500 		int g;
1501 
1502 		for (g = 0; g < f->groups; g++) {
1503 			unsigned long *pos;
1504 			int b;
1505 
1506 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1507 			      NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1508 
1509 			for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1510 				bitmap_cut(pos, pos, rulemap[i].to,
1511 					   rulemap[i].n,
1512 					   f->bsize * BITS_PER_LONG);
1513 
1514 				pos += f->bsize;
1515 			}
1516 		}
1517 
1518 		pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1519 			     rulemap[i + 1].n, i == m->field_count - 1);
1520 		if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1521 			/* We can ignore this, a failure to shrink tables down
1522 			 * doesn't make tables invalid.
1523 			 */
1524 			;
1525 		}
1526 		f->rules -= rulemap[i].n;
1527 
1528 		pipapo_lt_bits_adjust(f);
1529 	}
1530 }
1531 
1532 /**
1533  * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1534  * @set:	nftables API set representation
1535  * @m:		Matching data
1536  */
1537 static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m)
1538 {
1539 	struct nft_pipapo *priv = nft_set_priv(set);
1540 	int rules_f0, first_rule = 0;
1541 	struct nft_pipapo_elem *e;
1542 
1543 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1544 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1545 		struct nft_pipapo_field *f;
1546 		int i, start, rules_fx;
1547 
1548 		start = first_rule;
1549 		rules_fx = rules_f0;
1550 
1551 		nft_pipapo_for_each_field(f, i, m) {
1552 			rulemap[i].to = start;
1553 			rulemap[i].n = rules_fx;
1554 
1555 			if (i < m->field_count - 1) {
1556 				rules_fx = f->mt[start].n;
1557 				start = f->mt[start].to;
1558 			}
1559 		}
1560 
1561 		/* Pick the last field, and its last index */
1562 		f--;
1563 		i--;
1564 		e = f->mt[rulemap[i].to].e;
1565 		if (nft_set_elem_expired(&e->ext) &&
1566 		    !nft_set_elem_mark_busy(&e->ext)) {
1567 			priv->dirty = true;
1568 			pipapo_drop(m, rulemap);
1569 
1570 			rcu_barrier();
1571 			nft_set_elem_destroy(set, e, true);
1572 
1573 			/* And check again current first rule, which is now the
1574 			 * first we haven't checked.
1575 			 */
1576 		} else {
1577 			first_rule += rules_f0;
1578 		}
1579 	}
1580 
1581 	e = nft_set_catchall_gc(set);
1582 	if (e)
1583 		nft_set_elem_destroy(set, e, true);
1584 
1585 	priv->last_gc = jiffies;
1586 }
1587 
1588 /**
1589  * pipapo_free_fields() - Free per-field tables contained in matching data
1590  * @m:		Matching data
1591  */
1592 static void pipapo_free_fields(struct nft_pipapo_match *m)
1593 {
1594 	struct nft_pipapo_field *f;
1595 	int i;
1596 
1597 	nft_pipapo_for_each_field(f, i, m) {
1598 		kvfree(f->lt);
1599 		kvfree(f->mt);
1600 	}
1601 }
1602 
1603 /**
1604  * pipapo_reclaim_match - RCU callback to free fields from old matching data
1605  * @rcu:	RCU head
1606  */
1607 static void pipapo_reclaim_match(struct rcu_head *rcu)
1608 {
1609 	struct nft_pipapo_match *m;
1610 	int i;
1611 
1612 	m = container_of(rcu, struct nft_pipapo_match, rcu);
1613 
1614 	for_each_possible_cpu(i)
1615 		kfree(*per_cpu_ptr(m->scratch, i));
1616 
1617 #ifdef NFT_PIPAPO_ALIGN
1618 	free_percpu(m->scratch_aligned);
1619 #endif
1620 	free_percpu(m->scratch);
1621 
1622 	pipapo_free_fields(m);
1623 
1624 	kfree(m);
1625 }
1626 
1627 /**
1628  * pipapo_commit() - Replace lookup data with current working copy
1629  * @set:	nftables API set representation
1630  *
1631  * While at it, check if we should perform garbage collection on the working
1632  * copy before committing it for lookup, and don't replace the table if the
1633  * working copy doesn't have pending changes.
1634  *
1635  * We also need to create a new working copy for subsequent insertions and
1636  * deletions.
1637  */
1638 static void pipapo_commit(const struct nft_set *set)
1639 {
1640 	struct nft_pipapo *priv = nft_set_priv(set);
1641 	struct nft_pipapo_match *new_clone, *old;
1642 
1643 	if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1644 		pipapo_gc(set, priv->clone);
1645 
1646 	if (!priv->dirty)
1647 		return;
1648 
1649 	new_clone = pipapo_clone(priv->clone);
1650 	if (IS_ERR(new_clone))
1651 		return;
1652 
1653 	priv->dirty = false;
1654 
1655 	old = rcu_access_pointer(priv->match);
1656 	rcu_assign_pointer(priv->match, priv->clone);
1657 	if (old)
1658 		call_rcu(&old->rcu, pipapo_reclaim_match);
1659 
1660 	priv->clone = new_clone;
1661 }
1662 
1663 /**
1664  * nft_pipapo_activate() - Mark element reference as active given key, commit
1665  * @net:	Network namespace
1666  * @set:	nftables API set representation
1667  * @elem:	nftables API element representation containing key data
1668  *
1669  * On insertion, elements are added to a copy of the matching data currently
1670  * in use for lookups, and not directly inserted into current lookup data, so
1671  * we'll take care of that by calling pipapo_commit() here. Both
1672  * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1673  * element, hence we can't purpose either one as a real commit operation.
1674  */
1675 static void nft_pipapo_activate(const struct net *net,
1676 				const struct nft_set *set,
1677 				const struct nft_set_elem *elem)
1678 {
1679 	struct nft_pipapo_elem *e;
1680 
1681 	e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0);
1682 	if (IS_ERR(e))
1683 		return;
1684 
1685 	nft_set_elem_change_active(net, set, &e->ext);
1686 	nft_set_elem_clear_busy(&e->ext);
1687 
1688 	pipapo_commit(set);
1689 }
1690 
1691 /**
1692  * pipapo_deactivate() - Check that element is in set, mark as inactive
1693  * @net:	Network namespace
1694  * @set:	nftables API set representation
1695  * @data:	Input key data
1696  * @ext:	nftables API extension pointer, used to check for end element
1697  *
1698  * This is a convenience function that can be called from both
1699  * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1700  * operation.
1701  *
1702  * Return: deactivated element if found, NULL otherwise.
1703  */
1704 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1705 			       const u8 *data, const struct nft_set_ext *ext)
1706 {
1707 	struct nft_pipapo_elem *e;
1708 
1709 	e = pipapo_get(net, set, data, nft_genmask_next(net));
1710 	if (IS_ERR(e))
1711 		return NULL;
1712 
1713 	nft_set_elem_change_active(net, set, &e->ext);
1714 
1715 	return e;
1716 }
1717 
1718 /**
1719  * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1720  * @net:	Network namespace
1721  * @set:	nftables API set representation
1722  * @elem:	nftables API element representation containing key data
1723  *
1724  * Return: deactivated element if found, NULL otherwise.
1725  */
1726 static void *nft_pipapo_deactivate(const struct net *net,
1727 				   const struct nft_set *set,
1728 				   const struct nft_set_elem *elem)
1729 {
1730 	const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1731 
1732 	return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1733 }
1734 
1735 /**
1736  * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1737  * @net:	Network namespace
1738  * @set:	nftables API set representation
1739  * @elem:	nftables API element representation containing key data
1740  *
1741  * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1742  * different interface, and it's also called once for each element in a set
1743  * being flushed, so we can't implement, strictly speaking, a flush operation,
1744  * which would otherwise be as simple as allocating an empty copy of the
1745  * matching data.
1746  *
1747  * Note that we could in theory do that, mark the set as flushed, and ignore
1748  * subsequent calls, but we would leak all the elements after the first one,
1749  * because they wouldn't then be freed as result of API calls.
1750  *
1751  * Return: true if element was found and deactivated.
1752  */
1753 static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1754 			     void *elem)
1755 {
1756 	struct nft_pipapo_elem *e = elem;
1757 
1758 	return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1759 				 &e->ext);
1760 }
1761 
1762 /**
1763  * pipapo_get_boundaries() - Get byte interval for associated rules
1764  * @f:		Field including lookup table
1765  * @first_rule:	First rule (lowest index)
1766  * @rule_count:	Number of associated rules
1767  * @left:	Byte expression for left boundary (start of range)
1768  * @right:	Byte expression for right boundary (end of range)
1769  *
1770  * Given the first rule and amount of rules that originated from the same entry,
1771  * build the original range associated with the entry, and calculate the length
1772  * of the originating netmask.
1773  *
1774  * In pictures:
1775  *
1776  *                     bucket
1777  *      group  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
1778  *        0                                                   1,2
1779  *        1   1,2
1780  *        2                                           1,2
1781  *        3                                   1,2
1782  *        4   1,2
1783  *        5        1   2
1784  *        6   1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
1785  *        7   1,2 1,2  1   1   1   1   1   1   1   1   1   1   1   1   1   1
1786  *
1787  * this is the lookup table corresponding to the IPv4 range
1788  * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1789  * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1790  *
1791  * This function fills @left and @right with the byte values of the leftmost
1792  * and rightmost bucket indices for the lowest and highest rule indices,
1793  * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1794  * nibbles:
1795  *   left:  < 12, 0, 10, 8, 0, 1, 0, 0 >
1796  *   right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1797  * corresponding to bytes:
1798  *   left:  < 192, 168, 1, 0 >
1799  *   right: < 192, 168, 2, 1 >
1800  * with mask length irrelevant here, unused on return, as the range is already
1801  * defined by its start and end points. The mask length is relevant for a single
1802  * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1803  * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1804  * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1805  * between leftmost and rightmost bucket indices for each group, would be 24.
1806  *
1807  * Return: mask length, in bits.
1808  */
1809 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1810 				 int rule_count, u8 *left, u8 *right)
1811 {
1812 	int g, mask_len = 0, bit_offset = 0;
1813 	u8 *l = left, *r = right;
1814 
1815 	for (g = 0; g < f->groups; g++) {
1816 		int b, x0, x1;
1817 
1818 		x0 = -1;
1819 		x1 = -1;
1820 		for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1821 			unsigned long *pos;
1822 
1823 			pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1824 			      (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1825 			if (test_bit(first_rule, pos) && x0 == -1)
1826 				x0 = b;
1827 			if (test_bit(first_rule + rule_count - 1, pos))
1828 				x1 = b;
1829 		}
1830 
1831 		*l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1832 		*r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1833 
1834 		bit_offset += f->bb;
1835 		if (bit_offset >= BITS_PER_BYTE) {
1836 			bit_offset %= BITS_PER_BYTE;
1837 			l++;
1838 			r++;
1839 		}
1840 
1841 		if (x1 - x0 == 0)
1842 			mask_len += 4;
1843 		else if (x1 - x0 == 1)
1844 			mask_len += 3;
1845 		else if (x1 - x0 == 3)
1846 			mask_len += 2;
1847 		else if (x1 - x0 == 7)
1848 			mask_len += 1;
1849 	}
1850 
1851 	return mask_len;
1852 }
1853 
1854 /**
1855  * pipapo_match_field() - Match rules against byte ranges
1856  * @f:		Field including the lookup table
1857  * @first_rule:	First of associated rules originating from same entry
1858  * @rule_count:	Amount of associated rules
1859  * @start:	Start of range to be matched
1860  * @end:	End of range to be matched
1861  *
1862  * Return: true on match, false otherwise.
1863  */
1864 static bool pipapo_match_field(struct nft_pipapo_field *f,
1865 			       int first_rule, int rule_count,
1866 			       const u8 *start, const u8 *end)
1867 {
1868 	u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1869 	u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1870 
1871 	pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1872 
1873 	return !memcmp(start, left,
1874 		       f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1875 	       !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1876 }
1877 
1878 /**
1879  * nft_pipapo_remove() - Remove element given key, commit
1880  * @net:	Network namespace
1881  * @set:	nftables API set representation
1882  * @elem:	nftables API element representation containing key data
1883  *
1884  * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1885  * API, but it's called once per element in the pending transaction, so we can't
1886  * implement this as a single commit operation. Closest we can get is to remove
1887  * the matched element here, if any, and commit the updated matching data.
1888  */
1889 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1890 			      const struct nft_set_elem *elem)
1891 {
1892 	struct nft_pipapo *priv = nft_set_priv(set);
1893 	struct nft_pipapo_match *m = priv->clone;
1894 	struct nft_pipapo_elem *e = elem->priv;
1895 	int rules_f0, first_rule = 0;
1896 	const u8 *data;
1897 
1898 	data = (const u8 *)nft_set_ext_key(&e->ext);
1899 
1900 	e = pipapo_get(net, set, data, 0);
1901 	if (IS_ERR(e))
1902 		return;
1903 
1904 	while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1905 		union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1906 		const u8 *match_start, *match_end;
1907 		struct nft_pipapo_field *f;
1908 		int i, start, rules_fx;
1909 
1910 		match_start = data;
1911 		match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1912 
1913 		start = first_rule;
1914 		rules_fx = rules_f0;
1915 
1916 		nft_pipapo_for_each_field(f, i, m) {
1917 			if (!pipapo_match_field(f, start, rules_fx,
1918 						match_start, match_end))
1919 				break;
1920 
1921 			rulemap[i].to = start;
1922 			rulemap[i].n = rules_fx;
1923 
1924 			rules_fx = f->mt[start].n;
1925 			start = f->mt[start].to;
1926 
1927 			match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1928 			match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1929 		}
1930 
1931 		if (i == m->field_count) {
1932 			priv->dirty = true;
1933 			pipapo_drop(m, rulemap);
1934 			pipapo_commit(set);
1935 			return;
1936 		}
1937 
1938 		first_rule += rules_f0;
1939 	}
1940 }
1941 
1942 /**
1943  * nft_pipapo_walk() - Walk over elements
1944  * @ctx:	nftables API context
1945  * @set:	nftables API set representation
1946  * @iter:	Iterator
1947  *
1948  * As elements are referenced in the mapping array for the last field, directly
1949  * scan that array: there's no need to follow rule mappings from the first
1950  * field.
1951  */
1952 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
1953 			    struct nft_set_iter *iter)
1954 {
1955 	struct nft_pipapo *priv = nft_set_priv(set);
1956 	struct nft_pipapo_match *m;
1957 	struct nft_pipapo_field *f;
1958 	int i, r;
1959 
1960 	rcu_read_lock();
1961 	m = rcu_dereference(priv->match);
1962 
1963 	if (unlikely(!m))
1964 		goto out;
1965 
1966 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
1967 		;
1968 
1969 	for (r = 0; r < f->rules; r++) {
1970 		struct nft_pipapo_elem *e;
1971 		struct nft_set_elem elem;
1972 
1973 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
1974 			continue;
1975 
1976 		if (iter->count < iter->skip)
1977 			goto cont;
1978 
1979 		e = f->mt[r].e;
1980 		if (nft_set_elem_expired(&e->ext))
1981 			goto cont;
1982 
1983 		elem.priv = e;
1984 
1985 		iter->err = iter->fn(ctx, set, iter, &elem);
1986 		if (iter->err < 0)
1987 			goto out;
1988 
1989 cont:
1990 		iter->count++;
1991 	}
1992 
1993 out:
1994 	rcu_read_unlock();
1995 }
1996 
1997 /**
1998  * nft_pipapo_privsize() - Return the size of private data for the set
1999  * @nla:	netlink attributes, ignored as size doesn't depend on them
2000  * @desc:	Set description, ignored as size doesn't depend on it
2001  *
2002  * Return: size of private data for this set implementation, in bytes
2003  */
2004 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2005 			       const struct nft_set_desc *desc)
2006 {
2007 	return sizeof(struct nft_pipapo);
2008 }
2009 
2010 /**
2011  * nft_pipapo_estimate() - Set size, space and lookup complexity
2012  * @desc:	Set description, element count and field description used
2013  * @features:	Flags: NFT_SET_INTERVAL needs to be there
2014  * @est:	Storage for estimation data
2015  *
2016  * Return: true if set description is compatible, false otherwise
2017  */
2018 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2019 				struct nft_set_estimate *est)
2020 {
2021 	if (!(features & NFT_SET_INTERVAL) ||
2022 	    desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2023 		return false;
2024 
2025 	est->size = pipapo_estimate_size(desc);
2026 	if (!est->size)
2027 		return false;
2028 
2029 	est->lookup = NFT_SET_CLASS_O_LOG_N;
2030 
2031 	est->space = NFT_SET_CLASS_O_N;
2032 
2033 	return true;
2034 }
2035 
2036 /**
2037  * nft_pipapo_init() - Initialise data for a set instance
2038  * @set:	nftables API set representation
2039  * @desc:	Set description
2040  * @nla:	netlink attributes
2041  *
2042  * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2043  * attributes, initialise internal set parameters, current instance of matching
2044  * data and a copy for subsequent insertions.
2045  *
2046  * Return: 0 on success, negative error code on failure.
2047  */
2048 static int nft_pipapo_init(const struct nft_set *set,
2049 			   const struct nft_set_desc *desc,
2050 			   const struct nlattr * const nla[])
2051 {
2052 	struct nft_pipapo *priv = nft_set_priv(set);
2053 	struct nft_pipapo_match *m;
2054 	struct nft_pipapo_field *f;
2055 	int err, i, field_count;
2056 
2057 	field_count = desc->field_count ? : 1;
2058 
2059 	if (field_count > NFT_PIPAPO_MAX_FIELDS)
2060 		return -EINVAL;
2061 
2062 	m = kmalloc(sizeof(*priv->match) + sizeof(*f) * field_count,
2063 		    GFP_KERNEL);
2064 	if (!m)
2065 		return -ENOMEM;
2066 
2067 	m->field_count = field_count;
2068 	m->bsize_max = 0;
2069 
2070 	m->scratch = alloc_percpu(unsigned long *);
2071 	if (!m->scratch) {
2072 		err = -ENOMEM;
2073 		goto out_scratch;
2074 	}
2075 	for_each_possible_cpu(i)
2076 		*per_cpu_ptr(m->scratch, i) = NULL;
2077 
2078 #ifdef NFT_PIPAPO_ALIGN
2079 	m->scratch_aligned = alloc_percpu(unsigned long *);
2080 	if (!m->scratch_aligned) {
2081 		err = -ENOMEM;
2082 		goto out_free;
2083 	}
2084 	for_each_possible_cpu(i)
2085 		*per_cpu_ptr(m->scratch_aligned, i) = NULL;
2086 #endif
2087 
2088 	rcu_head_init(&m->rcu);
2089 
2090 	nft_pipapo_for_each_field(f, i, m) {
2091 		int len = desc->field_len[i] ? : set->klen;
2092 
2093 		f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2094 		f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2095 
2096 		priv->width += round_up(len, sizeof(u32));
2097 
2098 		f->bsize = 0;
2099 		f->rules = 0;
2100 		NFT_PIPAPO_LT_ASSIGN(f, NULL);
2101 		f->mt = NULL;
2102 	}
2103 
2104 	/* Create an initial clone of matching data for next insertion */
2105 	priv->clone = pipapo_clone(m);
2106 	if (IS_ERR(priv->clone)) {
2107 		err = PTR_ERR(priv->clone);
2108 		goto out_free;
2109 	}
2110 
2111 	priv->dirty = false;
2112 
2113 	rcu_assign_pointer(priv->match, m);
2114 
2115 	return 0;
2116 
2117 out_free:
2118 #ifdef NFT_PIPAPO_ALIGN
2119 	free_percpu(m->scratch_aligned);
2120 #endif
2121 	free_percpu(m->scratch);
2122 out_scratch:
2123 	kfree(m);
2124 
2125 	return err;
2126 }
2127 
2128 /**
2129  * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2130  * @set:	nftables API set representation
2131  * @m:		matching data pointing to key mapping array
2132  */
2133 static void nft_set_pipapo_match_destroy(const struct nft_set *set,
2134 					 struct nft_pipapo_match *m)
2135 {
2136 	struct nft_pipapo_field *f;
2137 	int i, r;
2138 
2139 	for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2140 		;
2141 
2142 	for (r = 0; r < f->rules; r++) {
2143 		struct nft_pipapo_elem *e;
2144 
2145 		if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2146 			continue;
2147 
2148 		e = f->mt[r].e;
2149 
2150 		nft_set_elem_destroy(set, e, true);
2151 	}
2152 }
2153 
2154 /**
2155  * nft_pipapo_destroy() - Free private data for set and all committed elements
2156  * @set:	nftables API set representation
2157  */
2158 static void nft_pipapo_destroy(const struct nft_set *set)
2159 {
2160 	struct nft_pipapo *priv = nft_set_priv(set);
2161 	struct nft_pipapo_match *m;
2162 	int cpu;
2163 
2164 	m = rcu_dereference_protected(priv->match, true);
2165 	if (m) {
2166 		rcu_barrier();
2167 
2168 		nft_set_pipapo_match_destroy(set, m);
2169 
2170 #ifdef NFT_PIPAPO_ALIGN
2171 		free_percpu(m->scratch_aligned);
2172 #endif
2173 		for_each_possible_cpu(cpu)
2174 			kfree(*per_cpu_ptr(m->scratch, cpu));
2175 		free_percpu(m->scratch);
2176 		pipapo_free_fields(m);
2177 		kfree(m);
2178 		priv->match = NULL;
2179 	}
2180 
2181 	if (priv->clone) {
2182 		m = priv->clone;
2183 
2184 		if (priv->dirty)
2185 			nft_set_pipapo_match_destroy(set, m);
2186 
2187 #ifdef NFT_PIPAPO_ALIGN
2188 		free_percpu(priv->clone->scratch_aligned);
2189 #endif
2190 		for_each_possible_cpu(cpu)
2191 			kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
2192 		free_percpu(priv->clone->scratch);
2193 
2194 		pipapo_free_fields(priv->clone);
2195 		kfree(priv->clone);
2196 		priv->clone = NULL;
2197 	}
2198 }
2199 
2200 /**
2201  * nft_pipapo_gc_init() - Initialise garbage collection
2202  * @set:	nftables API set representation
2203  *
2204  * Instead of actually setting up a periodic work for garbage collection, as
2205  * this operation requires a swap of matching data with the working copy, we'll
2206  * do that opportunistically with other commit operations if the interval is
2207  * elapsed, so we just need to set the current jiffies timestamp here.
2208  */
2209 static void nft_pipapo_gc_init(const struct nft_set *set)
2210 {
2211 	struct nft_pipapo *priv = nft_set_priv(set);
2212 
2213 	priv->last_gc = jiffies;
2214 }
2215 
2216 const struct nft_set_type nft_set_pipapo_type = {
2217 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2218 			  NFT_SET_TIMEOUT,
2219 	.ops		= {
2220 		.lookup		= nft_pipapo_lookup,
2221 		.insert		= nft_pipapo_insert,
2222 		.activate	= nft_pipapo_activate,
2223 		.deactivate	= nft_pipapo_deactivate,
2224 		.flush		= nft_pipapo_flush,
2225 		.remove		= nft_pipapo_remove,
2226 		.walk		= nft_pipapo_walk,
2227 		.get		= nft_pipapo_get,
2228 		.privsize	= nft_pipapo_privsize,
2229 		.estimate	= nft_pipapo_estimate,
2230 		.init		= nft_pipapo_init,
2231 		.destroy	= nft_pipapo_destroy,
2232 		.gc_init	= nft_pipapo_gc_init,
2233 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2234 	},
2235 };
2236 
2237 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2238 const struct nft_set_type nft_set_pipapo_avx2_type = {
2239 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2240 			  NFT_SET_TIMEOUT,
2241 	.ops		= {
2242 		.lookup		= nft_pipapo_avx2_lookup,
2243 		.insert		= nft_pipapo_insert,
2244 		.activate	= nft_pipapo_activate,
2245 		.deactivate	= nft_pipapo_deactivate,
2246 		.flush		= nft_pipapo_flush,
2247 		.remove		= nft_pipapo_remove,
2248 		.walk		= nft_pipapo_walk,
2249 		.get		= nft_pipapo_get,
2250 		.privsize	= nft_pipapo_privsize,
2251 		.estimate	= nft_pipapo_avx2_estimate,
2252 		.init		= nft_pipapo_init,
2253 		.destroy	= nft_pipapo_destroy,
2254 		.gc_init	= nft_pipapo_gc_init,
2255 		.elemsize	= offsetof(struct nft_pipapo_elem, ext),
2256 	},
2257 };
2258 #endif
2259