xref: /openbmc/linux/net/netfilter/nf_nat_core.c (revision bfad37c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1999-2001 Paul `Rusty' Russell
4  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
5  * (C) 2011 Patrick McHardy <kaber@trash.net>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/timer.h>
13 #include <linux/skbuff.h>
14 #include <linux/gfp.h>
15 #include <net/xfrm.h>
16 #include <linux/siphash.h>
17 #include <linux/rtnetlink.h>
18 
19 #include <net/netfilter/nf_conntrack.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_seqadj.h>
23 #include <net/netfilter/nf_conntrack_zones.h>
24 #include <net/netfilter/nf_nat.h>
25 #include <net/netfilter/nf_nat_helper.h>
26 #include <uapi/linux/netfilter/nf_nat.h>
27 
28 #include "nf_internals.h"
29 
30 static spinlock_t nf_nat_locks[CONNTRACK_LOCKS];
31 
32 static DEFINE_MUTEX(nf_nat_proto_mutex);
33 static unsigned int nat_net_id __read_mostly;
34 
35 static struct hlist_head *nf_nat_bysource __read_mostly;
36 static unsigned int nf_nat_htable_size __read_mostly;
37 static siphash_key_t nf_nat_hash_rnd __read_mostly;
38 
39 struct nf_nat_lookup_hook_priv {
40 	struct nf_hook_entries __rcu *entries;
41 
42 	struct rcu_head rcu_head;
43 };
44 
45 struct nf_nat_hooks_net {
46 	struct nf_hook_ops *nat_hook_ops;
47 	unsigned int users;
48 };
49 
50 struct nat_net {
51 	struct nf_nat_hooks_net nat_proto_net[NFPROTO_NUMPROTO];
52 };
53 
54 #ifdef CONFIG_XFRM
55 static void nf_nat_ipv4_decode_session(struct sk_buff *skb,
56 				       const struct nf_conn *ct,
57 				       enum ip_conntrack_dir dir,
58 				       unsigned long statusbit,
59 				       struct flowi *fl)
60 {
61 	const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
62 	struct flowi4 *fl4 = &fl->u.ip4;
63 
64 	if (ct->status & statusbit) {
65 		fl4->daddr = t->dst.u3.ip;
66 		if (t->dst.protonum == IPPROTO_TCP ||
67 		    t->dst.protonum == IPPROTO_UDP ||
68 		    t->dst.protonum == IPPROTO_UDPLITE ||
69 		    t->dst.protonum == IPPROTO_DCCP ||
70 		    t->dst.protonum == IPPROTO_SCTP)
71 			fl4->fl4_dport = t->dst.u.all;
72 	}
73 
74 	statusbit ^= IPS_NAT_MASK;
75 
76 	if (ct->status & statusbit) {
77 		fl4->saddr = t->src.u3.ip;
78 		if (t->dst.protonum == IPPROTO_TCP ||
79 		    t->dst.protonum == IPPROTO_UDP ||
80 		    t->dst.protonum == IPPROTO_UDPLITE ||
81 		    t->dst.protonum == IPPROTO_DCCP ||
82 		    t->dst.protonum == IPPROTO_SCTP)
83 			fl4->fl4_sport = t->src.u.all;
84 	}
85 }
86 
87 static void nf_nat_ipv6_decode_session(struct sk_buff *skb,
88 				       const struct nf_conn *ct,
89 				       enum ip_conntrack_dir dir,
90 				       unsigned long statusbit,
91 				       struct flowi *fl)
92 {
93 #if IS_ENABLED(CONFIG_IPV6)
94 	const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
95 	struct flowi6 *fl6 = &fl->u.ip6;
96 
97 	if (ct->status & statusbit) {
98 		fl6->daddr = t->dst.u3.in6;
99 		if (t->dst.protonum == IPPROTO_TCP ||
100 		    t->dst.protonum == IPPROTO_UDP ||
101 		    t->dst.protonum == IPPROTO_UDPLITE ||
102 		    t->dst.protonum == IPPROTO_DCCP ||
103 		    t->dst.protonum == IPPROTO_SCTP)
104 			fl6->fl6_dport = t->dst.u.all;
105 	}
106 
107 	statusbit ^= IPS_NAT_MASK;
108 
109 	if (ct->status & statusbit) {
110 		fl6->saddr = t->src.u3.in6;
111 		if (t->dst.protonum == IPPROTO_TCP ||
112 		    t->dst.protonum == IPPROTO_UDP ||
113 		    t->dst.protonum == IPPROTO_UDPLITE ||
114 		    t->dst.protonum == IPPROTO_DCCP ||
115 		    t->dst.protonum == IPPROTO_SCTP)
116 			fl6->fl6_sport = t->src.u.all;
117 	}
118 #endif
119 }
120 
121 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
122 {
123 	const struct nf_conn *ct;
124 	enum ip_conntrack_info ctinfo;
125 	enum ip_conntrack_dir dir;
126 	unsigned  long statusbit;
127 	u8 family;
128 
129 	ct = nf_ct_get(skb, &ctinfo);
130 	if (ct == NULL)
131 		return;
132 
133 	family = nf_ct_l3num(ct);
134 	dir = CTINFO2DIR(ctinfo);
135 	if (dir == IP_CT_DIR_ORIGINAL)
136 		statusbit = IPS_DST_NAT;
137 	else
138 		statusbit = IPS_SRC_NAT;
139 
140 	switch (family) {
141 	case NFPROTO_IPV4:
142 		nf_nat_ipv4_decode_session(skb, ct, dir, statusbit, fl);
143 		return;
144 	case NFPROTO_IPV6:
145 		nf_nat_ipv6_decode_session(skb, ct, dir, statusbit, fl);
146 		return;
147 	}
148 }
149 #endif /* CONFIG_XFRM */
150 
151 /* We keep an extra hash for each conntrack, for fast searching. */
152 static unsigned int
153 hash_by_src(const struct net *n, const struct nf_conntrack_tuple *tuple)
154 {
155 	unsigned int hash;
156 	struct {
157 		struct nf_conntrack_man src;
158 		u32 net_mix;
159 		u32 protonum;
160 	} __aligned(SIPHASH_ALIGNMENT) combined;
161 
162 	get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
163 
164 	memset(&combined, 0, sizeof(combined));
165 
166 	/* Original src, to ensure we map it consistently if poss. */
167 	combined.src = tuple->src;
168 	combined.net_mix = net_hash_mix(n);
169 	combined.protonum = tuple->dst.protonum;
170 
171 	hash = siphash(&combined, sizeof(combined), &nf_nat_hash_rnd);
172 
173 	return reciprocal_scale(hash, nf_nat_htable_size);
174 }
175 
176 /* Is this tuple already taken? (not by us) */
177 static int
178 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
179 		  const struct nf_conn *ignored_conntrack)
180 {
181 	/* Conntrack tracking doesn't keep track of outgoing tuples; only
182 	 * incoming ones.  NAT means they don't have a fixed mapping,
183 	 * so we invert the tuple and look for the incoming reply.
184 	 *
185 	 * We could keep a separate hash if this proves too slow.
186 	 */
187 	struct nf_conntrack_tuple reply;
188 
189 	nf_ct_invert_tuple(&reply, tuple);
190 	return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
191 }
192 
193 static bool nf_nat_inet_in_range(const struct nf_conntrack_tuple *t,
194 				 const struct nf_nat_range2 *range)
195 {
196 	if (t->src.l3num == NFPROTO_IPV4)
197 		return ntohl(t->src.u3.ip) >= ntohl(range->min_addr.ip) &&
198 		       ntohl(t->src.u3.ip) <= ntohl(range->max_addr.ip);
199 
200 	return ipv6_addr_cmp(&t->src.u3.in6, &range->min_addr.in6) >= 0 &&
201 	       ipv6_addr_cmp(&t->src.u3.in6, &range->max_addr.in6) <= 0;
202 }
203 
204 /* Is the manipable part of the tuple between min and max incl? */
205 static bool l4proto_in_range(const struct nf_conntrack_tuple *tuple,
206 			     enum nf_nat_manip_type maniptype,
207 			     const union nf_conntrack_man_proto *min,
208 			     const union nf_conntrack_man_proto *max)
209 {
210 	__be16 port;
211 
212 	switch (tuple->dst.protonum) {
213 	case IPPROTO_ICMP:
214 	case IPPROTO_ICMPV6:
215 		return ntohs(tuple->src.u.icmp.id) >= ntohs(min->icmp.id) &&
216 		       ntohs(tuple->src.u.icmp.id) <= ntohs(max->icmp.id);
217 	case IPPROTO_GRE: /* all fall though */
218 	case IPPROTO_TCP:
219 	case IPPROTO_UDP:
220 	case IPPROTO_UDPLITE:
221 	case IPPROTO_DCCP:
222 	case IPPROTO_SCTP:
223 		if (maniptype == NF_NAT_MANIP_SRC)
224 			port = tuple->src.u.all;
225 		else
226 			port = tuple->dst.u.all;
227 
228 		return ntohs(port) >= ntohs(min->all) &&
229 		       ntohs(port) <= ntohs(max->all);
230 	default:
231 		return true;
232 	}
233 }
234 
235 /* If we source map this tuple so reply looks like reply_tuple, will
236  * that meet the constraints of range.
237  */
238 static int in_range(const struct nf_conntrack_tuple *tuple,
239 		    const struct nf_nat_range2 *range)
240 {
241 	/* If we are supposed to map IPs, then we must be in the
242 	 * range specified, otherwise let this drag us onto a new src IP.
243 	 */
244 	if (range->flags & NF_NAT_RANGE_MAP_IPS &&
245 	    !nf_nat_inet_in_range(tuple, range))
246 		return 0;
247 
248 	if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED))
249 		return 1;
250 
251 	return l4proto_in_range(tuple, NF_NAT_MANIP_SRC,
252 				&range->min_proto, &range->max_proto);
253 }
254 
255 static inline int
256 same_src(const struct nf_conn *ct,
257 	 const struct nf_conntrack_tuple *tuple)
258 {
259 	const struct nf_conntrack_tuple *t;
260 
261 	t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
262 	return (t->dst.protonum == tuple->dst.protonum &&
263 		nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
264 		t->src.u.all == tuple->src.u.all);
265 }
266 
267 /* Only called for SRC manip */
268 static int
269 find_appropriate_src(struct net *net,
270 		     const struct nf_conntrack_zone *zone,
271 		     const struct nf_conntrack_tuple *tuple,
272 		     struct nf_conntrack_tuple *result,
273 		     const struct nf_nat_range2 *range)
274 {
275 	unsigned int h = hash_by_src(net, tuple);
276 	const struct nf_conn *ct;
277 
278 	hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) {
279 		if (same_src(ct, tuple) &&
280 		    net_eq(net, nf_ct_net(ct)) &&
281 		    nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
282 			/* Copy source part from reply tuple. */
283 			nf_ct_invert_tuple(result,
284 				       &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
285 			result->dst = tuple->dst;
286 
287 			if (in_range(result, range))
288 				return 1;
289 		}
290 	}
291 	return 0;
292 }
293 
294 /* For [FUTURE] fragmentation handling, we want the least-used
295  * src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
296  * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
297  * 1-65535, we don't do pro-rata allocation based on ports; we choose
298  * the ip with the lowest src-ip/dst-ip/proto usage.
299  */
300 static void
301 find_best_ips_proto(const struct nf_conntrack_zone *zone,
302 		    struct nf_conntrack_tuple *tuple,
303 		    const struct nf_nat_range2 *range,
304 		    const struct nf_conn *ct,
305 		    enum nf_nat_manip_type maniptype)
306 {
307 	union nf_inet_addr *var_ipp;
308 	unsigned int i, max;
309 	/* Host order */
310 	u32 minip, maxip, j, dist;
311 	bool full_range;
312 
313 	/* No IP mapping?  Do nothing. */
314 	if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
315 		return;
316 
317 	if (maniptype == NF_NAT_MANIP_SRC)
318 		var_ipp = &tuple->src.u3;
319 	else
320 		var_ipp = &tuple->dst.u3;
321 
322 	/* Fast path: only one choice. */
323 	if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
324 		*var_ipp = range->min_addr;
325 		return;
326 	}
327 
328 	if (nf_ct_l3num(ct) == NFPROTO_IPV4)
329 		max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
330 	else
331 		max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
332 
333 	/* Hashing source and destination IPs gives a fairly even
334 	 * spread in practice (if there are a small number of IPs
335 	 * involved, there usually aren't that many connections
336 	 * anyway).  The consistency means that servers see the same
337 	 * client coming from the same IP (some Internet Banking sites
338 	 * like this), even across reboots.
339 	 */
340 	j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
341 		   range->flags & NF_NAT_RANGE_PERSISTENT ?
342 			0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
343 
344 	full_range = false;
345 	for (i = 0; i <= max; i++) {
346 		/* If first bytes of the address are at the maximum, use the
347 		 * distance. Otherwise use the full range.
348 		 */
349 		if (!full_range) {
350 			minip = ntohl((__force __be32)range->min_addr.all[i]);
351 			maxip = ntohl((__force __be32)range->max_addr.all[i]);
352 			dist  = maxip - minip + 1;
353 		} else {
354 			minip = 0;
355 			dist  = ~0;
356 		}
357 
358 		var_ipp->all[i] = (__force __u32)
359 			htonl(minip + reciprocal_scale(j, dist));
360 		if (var_ipp->all[i] != range->max_addr.all[i])
361 			full_range = true;
362 
363 		if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
364 			j ^= (__force u32)tuple->dst.u3.all[i];
365 	}
366 }
367 
368 /* Alter the per-proto part of the tuple (depending on maniptype), to
369  * give a unique tuple in the given range if possible.
370  *
371  * Per-protocol part of tuple is initialized to the incoming packet.
372  */
373 static void nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple *tuple,
374 					const struct nf_nat_range2 *range,
375 					enum nf_nat_manip_type maniptype,
376 					const struct nf_conn *ct)
377 {
378 	unsigned int range_size, min, max, i, attempts;
379 	__be16 *keyptr;
380 	u16 off;
381 	static const unsigned int max_attempts = 128;
382 
383 	switch (tuple->dst.protonum) {
384 	case IPPROTO_ICMP:
385 	case IPPROTO_ICMPV6:
386 		/* id is same for either direction... */
387 		keyptr = &tuple->src.u.icmp.id;
388 		if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
389 			min = 0;
390 			range_size = 65536;
391 		} else {
392 			min = ntohs(range->min_proto.icmp.id);
393 			range_size = ntohs(range->max_proto.icmp.id) -
394 				     ntohs(range->min_proto.icmp.id) + 1;
395 		}
396 		goto find_free_id;
397 #if IS_ENABLED(CONFIG_NF_CT_PROTO_GRE)
398 	case IPPROTO_GRE:
399 		/* If there is no master conntrack we are not PPTP,
400 		   do not change tuples */
401 		if (!ct->master)
402 			return;
403 
404 		if (maniptype == NF_NAT_MANIP_SRC)
405 			keyptr = &tuple->src.u.gre.key;
406 		else
407 			keyptr = &tuple->dst.u.gre.key;
408 
409 		if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
410 			min = 1;
411 			range_size = 65535;
412 		} else {
413 			min = ntohs(range->min_proto.gre.key);
414 			range_size = ntohs(range->max_proto.gre.key) - min + 1;
415 		}
416 		goto find_free_id;
417 #endif
418 	case IPPROTO_UDP:
419 	case IPPROTO_UDPLITE:
420 	case IPPROTO_TCP:
421 	case IPPROTO_SCTP:
422 	case IPPROTO_DCCP:
423 		if (maniptype == NF_NAT_MANIP_SRC)
424 			keyptr = &tuple->src.u.all;
425 		else
426 			keyptr = &tuple->dst.u.all;
427 
428 		break;
429 	default:
430 		return;
431 	}
432 
433 	/* If no range specified... */
434 	if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
435 		/* If it's dst rewrite, can't change port */
436 		if (maniptype == NF_NAT_MANIP_DST)
437 			return;
438 
439 		if (ntohs(*keyptr) < 1024) {
440 			/* Loose convention: >> 512 is credential passing */
441 			if (ntohs(*keyptr) < 512) {
442 				min = 1;
443 				range_size = 511 - min + 1;
444 			} else {
445 				min = 600;
446 				range_size = 1023 - min + 1;
447 			}
448 		} else {
449 			min = 1024;
450 			range_size = 65535 - 1024 + 1;
451 		}
452 	} else {
453 		min = ntohs(range->min_proto.all);
454 		max = ntohs(range->max_proto.all);
455 		if (unlikely(max < min))
456 			swap(max, min);
457 		range_size = max - min + 1;
458 	}
459 
460 find_free_id:
461 	if (range->flags & NF_NAT_RANGE_PROTO_OFFSET)
462 		off = (ntohs(*keyptr) - ntohs(range->base_proto.all));
463 	else
464 		off = prandom_u32();
465 
466 	attempts = range_size;
467 	if (attempts > max_attempts)
468 		attempts = max_attempts;
469 
470 	/* We are in softirq; doing a search of the entire range risks
471 	 * soft lockup when all tuples are already used.
472 	 *
473 	 * If we can't find any free port from first offset, pick a new
474 	 * one and try again, with ever smaller search window.
475 	 */
476 another_round:
477 	for (i = 0; i < attempts; i++, off++) {
478 		*keyptr = htons(min + off % range_size);
479 		if (!nf_nat_used_tuple(tuple, ct))
480 			return;
481 	}
482 
483 	if (attempts >= range_size || attempts < 16)
484 		return;
485 	attempts /= 2;
486 	off = prandom_u32();
487 	goto another_round;
488 }
489 
490 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
491  * we change the source to map into the range. For NF_INET_PRE_ROUTING
492  * and NF_INET_LOCAL_OUT, we change the destination to map into the
493  * range. It might not be possible to get a unique tuple, but we try.
494  * At worst (or if we race), we will end up with a final duplicate in
495  * __nf_conntrack_confirm and drop the packet. */
496 static void
497 get_unique_tuple(struct nf_conntrack_tuple *tuple,
498 		 const struct nf_conntrack_tuple *orig_tuple,
499 		 const struct nf_nat_range2 *range,
500 		 struct nf_conn *ct,
501 		 enum nf_nat_manip_type maniptype)
502 {
503 	const struct nf_conntrack_zone *zone;
504 	struct net *net = nf_ct_net(ct);
505 
506 	zone = nf_ct_zone(ct);
507 
508 	/* 1) If this srcip/proto/src-proto-part is currently mapped,
509 	 * and that same mapping gives a unique tuple within the given
510 	 * range, use that.
511 	 *
512 	 * This is only required for source (ie. NAT/masq) mappings.
513 	 * So far, we don't do local source mappings, so multiple
514 	 * manips not an issue.
515 	 */
516 	if (maniptype == NF_NAT_MANIP_SRC &&
517 	    !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
518 		/* try the original tuple first */
519 		if (in_range(orig_tuple, range)) {
520 			if (!nf_nat_used_tuple(orig_tuple, ct)) {
521 				*tuple = *orig_tuple;
522 				return;
523 			}
524 		} else if (find_appropriate_src(net, zone,
525 						orig_tuple, tuple, range)) {
526 			pr_debug("get_unique_tuple: Found current src map\n");
527 			if (!nf_nat_used_tuple(tuple, ct))
528 				return;
529 		}
530 	}
531 
532 	/* 2) Select the least-used IP/proto combination in the given range */
533 	*tuple = *orig_tuple;
534 	find_best_ips_proto(zone, tuple, range, ct, maniptype);
535 
536 	/* 3) The per-protocol part of the manip is made to map into
537 	 * the range to make a unique tuple.
538 	 */
539 
540 	/* Only bother mapping if it's not already in range and unique */
541 	if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
542 		if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
543 			if (!(range->flags & NF_NAT_RANGE_PROTO_OFFSET) &&
544 			    l4proto_in_range(tuple, maniptype,
545 			          &range->min_proto,
546 			          &range->max_proto) &&
547 			    (range->min_proto.all == range->max_proto.all ||
548 			     !nf_nat_used_tuple(tuple, ct)))
549 				return;
550 		} else if (!nf_nat_used_tuple(tuple, ct)) {
551 			return;
552 		}
553 	}
554 
555 	/* Last chance: get protocol to try to obtain unique tuple. */
556 	nf_nat_l4proto_unique_tuple(tuple, range, maniptype, ct);
557 }
558 
559 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
560 {
561 	struct nf_conn_nat *nat = nfct_nat(ct);
562 	if (nat)
563 		return nat;
564 
565 	if (!nf_ct_is_confirmed(ct))
566 		nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
567 
568 	return nat;
569 }
570 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
571 
572 unsigned int
573 nf_nat_setup_info(struct nf_conn *ct,
574 		  const struct nf_nat_range2 *range,
575 		  enum nf_nat_manip_type maniptype)
576 {
577 	struct net *net = nf_ct_net(ct);
578 	struct nf_conntrack_tuple curr_tuple, new_tuple;
579 
580 	/* Can't setup nat info for confirmed ct. */
581 	if (nf_ct_is_confirmed(ct))
582 		return NF_ACCEPT;
583 
584 	WARN_ON(maniptype != NF_NAT_MANIP_SRC &&
585 		maniptype != NF_NAT_MANIP_DST);
586 
587 	if (WARN_ON(nf_nat_initialized(ct, maniptype)))
588 		return NF_DROP;
589 
590 	/* What we've got will look like inverse of reply. Normally
591 	 * this is what is in the conntrack, except for prior
592 	 * manipulations (future optimization: if num_manips == 0,
593 	 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
594 	 */
595 	nf_ct_invert_tuple(&curr_tuple,
596 			   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
597 
598 	get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
599 
600 	if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
601 		struct nf_conntrack_tuple reply;
602 
603 		/* Alter conntrack table so will recognize replies. */
604 		nf_ct_invert_tuple(&reply, &new_tuple);
605 		nf_conntrack_alter_reply(ct, &reply);
606 
607 		/* Non-atomic: we own this at the moment. */
608 		if (maniptype == NF_NAT_MANIP_SRC)
609 			ct->status |= IPS_SRC_NAT;
610 		else
611 			ct->status |= IPS_DST_NAT;
612 
613 		if (nfct_help(ct) && !nfct_seqadj(ct))
614 			if (!nfct_seqadj_ext_add(ct))
615 				return NF_DROP;
616 	}
617 
618 	if (maniptype == NF_NAT_MANIP_SRC) {
619 		unsigned int srchash;
620 		spinlock_t *lock;
621 
622 		srchash = hash_by_src(net,
623 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
624 		lock = &nf_nat_locks[srchash % CONNTRACK_LOCKS];
625 		spin_lock_bh(lock);
626 		hlist_add_head_rcu(&ct->nat_bysource,
627 				   &nf_nat_bysource[srchash]);
628 		spin_unlock_bh(lock);
629 	}
630 
631 	/* It's done. */
632 	if (maniptype == NF_NAT_MANIP_DST)
633 		ct->status |= IPS_DST_NAT_DONE;
634 	else
635 		ct->status |= IPS_SRC_NAT_DONE;
636 
637 	return NF_ACCEPT;
638 }
639 EXPORT_SYMBOL(nf_nat_setup_info);
640 
641 static unsigned int
642 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
643 {
644 	/* Force range to this IP; let proto decide mapping for
645 	 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
646 	 * Use reply in case it's already been mangled (eg local packet).
647 	 */
648 	union nf_inet_addr ip =
649 		(manip == NF_NAT_MANIP_SRC ?
650 		ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
651 		ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
652 	struct nf_nat_range2 range = {
653 		.flags		= NF_NAT_RANGE_MAP_IPS,
654 		.min_addr	= ip,
655 		.max_addr	= ip,
656 	};
657 	return nf_nat_setup_info(ct, &range, manip);
658 }
659 
660 unsigned int
661 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
662 {
663 	return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
664 }
665 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
666 
667 /* Do packet manipulations according to nf_nat_setup_info. */
668 unsigned int nf_nat_packet(struct nf_conn *ct,
669 			   enum ip_conntrack_info ctinfo,
670 			   unsigned int hooknum,
671 			   struct sk_buff *skb)
672 {
673 	enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
674 	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
675 	unsigned int verdict = NF_ACCEPT;
676 	unsigned long statusbit;
677 
678 	if (mtype == NF_NAT_MANIP_SRC)
679 		statusbit = IPS_SRC_NAT;
680 	else
681 		statusbit = IPS_DST_NAT;
682 
683 	/* Invert if this is reply dir. */
684 	if (dir == IP_CT_DIR_REPLY)
685 		statusbit ^= IPS_NAT_MASK;
686 
687 	/* Non-atomic: these bits don't change. */
688 	if (ct->status & statusbit)
689 		verdict = nf_nat_manip_pkt(skb, ct, mtype, dir);
690 
691 	return verdict;
692 }
693 EXPORT_SYMBOL_GPL(nf_nat_packet);
694 
695 unsigned int
696 nf_nat_inet_fn(void *priv, struct sk_buff *skb,
697 	       const struct nf_hook_state *state)
698 {
699 	struct nf_conn *ct;
700 	enum ip_conntrack_info ctinfo;
701 	struct nf_conn_nat *nat;
702 	/* maniptype == SRC for postrouting. */
703 	enum nf_nat_manip_type maniptype = HOOK2MANIP(state->hook);
704 
705 	ct = nf_ct_get(skb, &ctinfo);
706 	/* Can't track?  It's not due to stress, or conntrack would
707 	 * have dropped it.  Hence it's the user's responsibilty to
708 	 * packet filter it out, or implement conntrack/NAT for that
709 	 * protocol. 8) --RR
710 	 */
711 	if (!ct)
712 		return NF_ACCEPT;
713 
714 	nat = nfct_nat(ct);
715 
716 	switch (ctinfo) {
717 	case IP_CT_RELATED:
718 	case IP_CT_RELATED_REPLY:
719 		/* Only ICMPs can be IP_CT_IS_REPLY.  Fallthrough */
720 	case IP_CT_NEW:
721 		/* Seen it before?  This can happen for loopback, retrans,
722 		 * or local packets.
723 		 */
724 		if (!nf_nat_initialized(ct, maniptype)) {
725 			struct nf_nat_lookup_hook_priv *lpriv = priv;
726 			struct nf_hook_entries *e = rcu_dereference(lpriv->entries);
727 			unsigned int ret;
728 			int i;
729 
730 			if (!e)
731 				goto null_bind;
732 
733 			for (i = 0; i < e->num_hook_entries; i++) {
734 				ret = e->hooks[i].hook(e->hooks[i].priv, skb,
735 						       state);
736 				if (ret != NF_ACCEPT)
737 					return ret;
738 				if (nf_nat_initialized(ct, maniptype))
739 					goto do_nat;
740 			}
741 null_bind:
742 			ret = nf_nat_alloc_null_binding(ct, state->hook);
743 			if (ret != NF_ACCEPT)
744 				return ret;
745 		} else {
746 			pr_debug("Already setup manip %s for ct %p (status bits 0x%lx)\n",
747 				 maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST",
748 				 ct, ct->status);
749 			if (nf_nat_oif_changed(state->hook, ctinfo, nat,
750 					       state->out))
751 				goto oif_changed;
752 		}
753 		break;
754 	default:
755 		/* ESTABLISHED */
756 		WARN_ON(ctinfo != IP_CT_ESTABLISHED &&
757 			ctinfo != IP_CT_ESTABLISHED_REPLY);
758 		if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out))
759 			goto oif_changed;
760 	}
761 do_nat:
762 	return nf_nat_packet(ct, ctinfo, state->hook, skb);
763 
764 oif_changed:
765 	nf_ct_kill_acct(ct, ctinfo, skb);
766 	return NF_DROP;
767 }
768 EXPORT_SYMBOL_GPL(nf_nat_inet_fn);
769 
770 struct nf_nat_proto_clean {
771 	u8	l3proto;
772 	u8	l4proto;
773 };
774 
775 /* kill conntracks with affected NAT section */
776 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
777 {
778 	const struct nf_nat_proto_clean *clean = data;
779 
780 	if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
781 	    (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
782 		return 0;
783 
784 	return i->status & IPS_NAT_MASK ? 1 : 0;
785 }
786 
787 static void __nf_nat_cleanup_conntrack(struct nf_conn *ct)
788 {
789 	unsigned int h;
790 
791 	h = hash_by_src(nf_ct_net(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
792 	spin_lock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
793 	hlist_del_rcu(&ct->nat_bysource);
794 	spin_unlock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
795 }
796 
797 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
798 {
799 	if (nf_nat_proto_remove(ct, data))
800 		return 1;
801 
802 	/* This module is being removed and conntrack has nat null binding.
803 	 * Remove it from bysource hash, as the table will be freed soon.
804 	 *
805 	 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
806 	 * will delete entry from already-freed table.
807 	 */
808 	if (test_and_clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status))
809 		__nf_nat_cleanup_conntrack(ct);
810 
811 	/* don't delete conntrack.  Although that would make things a lot
812 	 * simpler, we'd end up flushing all conntracks on nat rmmod.
813 	 */
814 	return 0;
815 }
816 
817 /* No one using conntrack by the time this called. */
818 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
819 {
820 	if (ct->status & IPS_SRC_NAT_DONE)
821 		__nf_nat_cleanup_conntrack(ct);
822 }
823 
824 static struct nf_ct_ext_type nat_extend __read_mostly = {
825 	.len		= sizeof(struct nf_conn_nat),
826 	.align		= __alignof__(struct nf_conn_nat),
827 	.destroy	= nf_nat_cleanup_conntrack,
828 	.id		= NF_CT_EXT_NAT,
829 };
830 
831 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
832 
833 #include <linux/netfilter/nfnetlink.h>
834 #include <linux/netfilter/nfnetlink_conntrack.h>
835 
836 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
837 	[CTA_PROTONAT_PORT_MIN]	= { .type = NLA_U16 },
838 	[CTA_PROTONAT_PORT_MAX]	= { .type = NLA_U16 },
839 };
840 
841 static int nf_nat_l4proto_nlattr_to_range(struct nlattr *tb[],
842 					  struct nf_nat_range2 *range)
843 {
844 	if (tb[CTA_PROTONAT_PORT_MIN]) {
845 		range->min_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MIN]);
846 		range->max_proto.all = range->min_proto.all;
847 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
848 	}
849 	if (tb[CTA_PROTONAT_PORT_MAX]) {
850 		range->max_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MAX]);
851 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
852 	}
853 	return 0;
854 }
855 
856 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
857 				     const struct nf_conn *ct,
858 				     struct nf_nat_range2 *range)
859 {
860 	struct nlattr *tb[CTA_PROTONAT_MAX+1];
861 	int err;
862 
863 	err = nla_parse_nested_deprecated(tb, CTA_PROTONAT_MAX, attr,
864 					  protonat_nla_policy, NULL);
865 	if (err < 0)
866 		return err;
867 
868 	return nf_nat_l4proto_nlattr_to_range(tb, range);
869 }
870 
871 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
872 	[CTA_NAT_V4_MINIP]	= { .type = NLA_U32 },
873 	[CTA_NAT_V4_MAXIP]	= { .type = NLA_U32 },
874 	[CTA_NAT_V6_MINIP]	= { .len = sizeof(struct in6_addr) },
875 	[CTA_NAT_V6_MAXIP]	= { .len = sizeof(struct in6_addr) },
876 	[CTA_NAT_PROTO]		= { .type = NLA_NESTED },
877 };
878 
879 static int nf_nat_ipv4_nlattr_to_range(struct nlattr *tb[],
880 				       struct nf_nat_range2 *range)
881 {
882 	if (tb[CTA_NAT_V4_MINIP]) {
883 		range->min_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MINIP]);
884 		range->flags |= NF_NAT_RANGE_MAP_IPS;
885 	}
886 
887 	if (tb[CTA_NAT_V4_MAXIP])
888 		range->max_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MAXIP]);
889 	else
890 		range->max_addr.ip = range->min_addr.ip;
891 
892 	return 0;
893 }
894 
895 static int nf_nat_ipv6_nlattr_to_range(struct nlattr *tb[],
896 				       struct nf_nat_range2 *range)
897 {
898 	if (tb[CTA_NAT_V6_MINIP]) {
899 		nla_memcpy(&range->min_addr.ip6, tb[CTA_NAT_V6_MINIP],
900 			   sizeof(struct in6_addr));
901 		range->flags |= NF_NAT_RANGE_MAP_IPS;
902 	}
903 
904 	if (tb[CTA_NAT_V6_MAXIP])
905 		nla_memcpy(&range->max_addr.ip6, tb[CTA_NAT_V6_MAXIP],
906 			   sizeof(struct in6_addr));
907 	else
908 		range->max_addr = range->min_addr;
909 
910 	return 0;
911 }
912 
913 static int
914 nfnetlink_parse_nat(const struct nlattr *nat,
915 		    const struct nf_conn *ct, struct nf_nat_range2 *range)
916 {
917 	struct nlattr *tb[CTA_NAT_MAX+1];
918 	int err;
919 
920 	memset(range, 0, sizeof(*range));
921 
922 	err = nla_parse_nested_deprecated(tb, CTA_NAT_MAX, nat,
923 					  nat_nla_policy, NULL);
924 	if (err < 0)
925 		return err;
926 
927 	switch (nf_ct_l3num(ct)) {
928 	case NFPROTO_IPV4:
929 		err = nf_nat_ipv4_nlattr_to_range(tb, range);
930 		break;
931 	case NFPROTO_IPV6:
932 		err = nf_nat_ipv6_nlattr_to_range(tb, range);
933 		break;
934 	default:
935 		err = -EPROTONOSUPPORT;
936 		break;
937 	}
938 
939 	if (err)
940 		return err;
941 
942 	if (!tb[CTA_NAT_PROTO])
943 		return 0;
944 
945 	return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
946 }
947 
948 /* This function is called under rcu_read_lock() */
949 static int
950 nfnetlink_parse_nat_setup(struct nf_conn *ct,
951 			  enum nf_nat_manip_type manip,
952 			  const struct nlattr *attr)
953 {
954 	struct nf_nat_range2 range;
955 	int err;
956 
957 	/* Should not happen, restricted to creating new conntracks
958 	 * via ctnetlink.
959 	 */
960 	if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
961 		return -EEXIST;
962 
963 	/* No NAT information has been passed, allocate the null-binding */
964 	if (attr == NULL)
965 		return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0;
966 
967 	err = nfnetlink_parse_nat(attr, ct, &range);
968 	if (err < 0)
969 		return err;
970 
971 	return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0;
972 }
973 #else
974 static int
975 nfnetlink_parse_nat_setup(struct nf_conn *ct,
976 			  enum nf_nat_manip_type manip,
977 			  const struct nlattr *attr)
978 {
979 	return -EOPNOTSUPP;
980 }
981 #endif
982 
983 static struct nf_ct_helper_expectfn follow_master_nat = {
984 	.name		= "nat-follow-master",
985 	.expectfn	= nf_nat_follow_master,
986 };
987 
988 int nf_nat_register_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
989 		       const struct nf_hook_ops *orig_nat_ops, unsigned int ops_count)
990 {
991 	struct nat_net *nat_net = net_generic(net, nat_net_id);
992 	struct nf_nat_hooks_net *nat_proto_net;
993 	struct nf_nat_lookup_hook_priv *priv;
994 	unsigned int hooknum = ops->hooknum;
995 	struct nf_hook_ops *nat_ops;
996 	int i, ret;
997 
998 	if (WARN_ON_ONCE(pf >= ARRAY_SIZE(nat_net->nat_proto_net)))
999 		return -EINVAL;
1000 
1001 	nat_proto_net = &nat_net->nat_proto_net[pf];
1002 
1003 	for (i = 0; i < ops_count; i++) {
1004 		if (orig_nat_ops[i].hooknum == hooknum) {
1005 			hooknum = i;
1006 			break;
1007 		}
1008 	}
1009 
1010 	if (WARN_ON_ONCE(i == ops_count))
1011 		return -EINVAL;
1012 
1013 	mutex_lock(&nf_nat_proto_mutex);
1014 	if (!nat_proto_net->nat_hook_ops) {
1015 		WARN_ON(nat_proto_net->users != 0);
1016 
1017 		nat_ops = kmemdup(orig_nat_ops, sizeof(*orig_nat_ops) * ops_count, GFP_KERNEL);
1018 		if (!nat_ops) {
1019 			mutex_unlock(&nf_nat_proto_mutex);
1020 			return -ENOMEM;
1021 		}
1022 
1023 		for (i = 0; i < ops_count; i++) {
1024 			priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1025 			if (priv) {
1026 				nat_ops[i].priv = priv;
1027 				continue;
1028 			}
1029 			mutex_unlock(&nf_nat_proto_mutex);
1030 			while (i)
1031 				kfree(nat_ops[--i].priv);
1032 			kfree(nat_ops);
1033 			return -ENOMEM;
1034 		}
1035 
1036 		ret = nf_register_net_hooks(net, nat_ops, ops_count);
1037 		if (ret < 0) {
1038 			mutex_unlock(&nf_nat_proto_mutex);
1039 			for (i = 0; i < ops_count; i++)
1040 				kfree(nat_ops[i].priv);
1041 			kfree(nat_ops);
1042 			return ret;
1043 		}
1044 
1045 		nat_proto_net->nat_hook_ops = nat_ops;
1046 	}
1047 
1048 	nat_ops = nat_proto_net->nat_hook_ops;
1049 	priv = nat_ops[hooknum].priv;
1050 	if (WARN_ON_ONCE(!priv)) {
1051 		mutex_unlock(&nf_nat_proto_mutex);
1052 		return -EOPNOTSUPP;
1053 	}
1054 
1055 	ret = nf_hook_entries_insert_raw(&priv->entries, ops);
1056 	if (ret == 0)
1057 		nat_proto_net->users++;
1058 
1059 	mutex_unlock(&nf_nat_proto_mutex);
1060 	return ret;
1061 }
1062 
1063 void nf_nat_unregister_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1064 			  unsigned int ops_count)
1065 {
1066 	struct nat_net *nat_net = net_generic(net, nat_net_id);
1067 	struct nf_nat_hooks_net *nat_proto_net;
1068 	struct nf_nat_lookup_hook_priv *priv;
1069 	struct nf_hook_ops *nat_ops;
1070 	int hooknum = ops->hooknum;
1071 	int i;
1072 
1073 	if (pf >= ARRAY_SIZE(nat_net->nat_proto_net))
1074 		return;
1075 
1076 	nat_proto_net = &nat_net->nat_proto_net[pf];
1077 
1078 	mutex_lock(&nf_nat_proto_mutex);
1079 	if (WARN_ON(nat_proto_net->users == 0))
1080 		goto unlock;
1081 
1082 	nat_proto_net->users--;
1083 
1084 	nat_ops = nat_proto_net->nat_hook_ops;
1085 	for (i = 0; i < ops_count; i++) {
1086 		if (nat_ops[i].hooknum == hooknum) {
1087 			hooknum = i;
1088 			break;
1089 		}
1090 	}
1091 	if (WARN_ON_ONCE(i == ops_count))
1092 		goto unlock;
1093 	priv = nat_ops[hooknum].priv;
1094 	nf_hook_entries_delete_raw(&priv->entries, ops);
1095 
1096 	if (nat_proto_net->users == 0) {
1097 		nf_unregister_net_hooks(net, nat_ops, ops_count);
1098 
1099 		for (i = 0; i < ops_count; i++) {
1100 			priv = nat_ops[i].priv;
1101 			kfree_rcu(priv, rcu_head);
1102 		}
1103 
1104 		nat_proto_net->nat_hook_ops = NULL;
1105 		kfree(nat_ops);
1106 	}
1107 unlock:
1108 	mutex_unlock(&nf_nat_proto_mutex);
1109 }
1110 
1111 static struct pernet_operations nat_net_ops = {
1112 	.id = &nat_net_id,
1113 	.size = sizeof(struct nat_net),
1114 };
1115 
1116 static struct nf_nat_hook nat_hook = {
1117 	.parse_nat_setup	= nfnetlink_parse_nat_setup,
1118 #ifdef CONFIG_XFRM
1119 	.decode_session		= __nf_nat_decode_session,
1120 #endif
1121 	.manip_pkt		= nf_nat_manip_pkt,
1122 };
1123 
1124 static int __init nf_nat_init(void)
1125 {
1126 	int ret, i;
1127 
1128 	/* Leave them the same for the moment. */
1129 	nf_nat_htable_size = nf_conntrack_htable_size;
1130 	if (nf_nat_htable_size < CONNTRACK_LOCKS)
1131 		nf_nat_htable_size = CONNTRACK_LOCKS;
1132 
1133 	nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
1134 	if (!nf_nat_bysource)
1135 		return -ENOMEM;
1136 
1137 	ret = nf_ct_extend_register(&nat_extend);
1138 	if (ret < 0) {
1139 		kvfree(nf_nat_bysource);
1140 		pr_err("Unable to register extension\n");
1141 		return ret;
1142 	}
1143 
1144 	for (i = 0; i < CONNTRACK_LOCKS; i++)
1145 		spin_lock_init(&nf_nat_locks[i]);
1146 
1147 	ret = register_pernet_subsys(&nat_net_ops);
1148 	if (ret < 0) {
1149 		nf_ct_extend_unregister(&nat_extend);
1150 		kvfree(nf_nat_bysource);
1151 		return ret;
1152 	}
1153 
1154 	nf_ct_helper_expectfn_register(&follow_master_nat);
1155 
1156 	WARN_ON(nf_nat_hook != NULL);
1157 	RCU_INIT_POINTER(nf_nat_hook, &nat_hook);
1158 
1159 	return 0;
1160 }
1161 
1162 static void __exit nf_nat_cleanup(void)
1163 {
1164 	struct nf_nat_proto_clean clean = {};
1165 
1166 	nf_ct_iterate_destroy(nf_nat_proto_clean, &clean);
1167 
1168 	nf_ct_extend_unregister(&nat_extend);
1169 	nf_ct_helper_expectfn_unregister(&follow_master_nat);
1170 	RCU_INIT_POINTER(nf_nat_hook, NULL);
1171 
1172 	synchronize_net();
1173 	kvfree(nf_nat_bysource);
1174 	unregister_pernet_subsys(&nat_net_ops);
1175 }
1176 
1177 MODULE_LICENSE("GPL");
1178 
1179 module_init(nf_nat_init);
1180 module_exit(nf_nat_cleanup);
1181