xref: /openbmc/linux/net/netfilter/nf_nat_core.c (revision 5927145e)
1 /*
2  * (C) 1999-2001 Paul `Rusty' Russell
3  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4  * (C) 2011 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19 
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32 
33 static spinlock_t nf_nat_locks[CONNTRACK_LOCKS];
34 
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37 						__read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39 						__read_mostly;
40 
41 static struct hlist_head *nf_nat_bysource __read_mostly;
42 static unsigned int nf_nat_htable_size __read_mostly;
43 static unsigned int nf_nat_hash_rnd __read_mostly;
44 
45 inline const struct nf_nat_l3proto *
46 __nf_nat_l3proto_find(u8 family)
47 {
48 	return rcu_dereference(nf_nat_l3protos[family]);
49 }
50 
51 inline const struct nf_nat_l4proto *
52 __nf_nat_l4proto_find(u8 family, u8 protonum)
53 {
54 	return rcu_dereference(nf_nat_l4protos[family][protonum]);
55 }
56 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
57 
58 #ifdef CONFIG_XFRM
59 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
60 {
61 	const struct nf_nat_l3proto *l3proto;
62 	const struct nf_conn *ct;
63 	enum ip_conntrack_info ctinfo;
64 	enum ip_conntrack_dir dir;
65 	unsigned  long statusbit;
66 	u8 family;
67 
68 	ct = nf_ct_get(skb, &ctinfo);
69 	if (ct == NULL)
70 		return;
71 
72 	family = nf_ct_l3num(ct);
73 	l3proto = __nf_nat_l3proto_find(family);
74 	if (l3proto == NULL)
75 		return;
76 
77 	dir = CTINFO2DIR(ctinfo);
78 	if (dir == IP_CT_DIR_ORIGINAL)
79 		statusbit = IPS_DST_NAT;
80 	else
81 		statusbit = IPS_SRC_NAT;
82 
83 	l3proto->decode_session(skb, ct, dir, statusbit, fl);
84 }
85 
86 int nf_xfrm_me_harder(struct net *net, struct sk_buff *skb, unsigned int family)
87 {
88 	struct flowi fl;
89 	unsigned int hh_len;
90 	struct dst_entry *dst;
91 	int err;
92 
93 	err = xfrm_decode_session(skb, &fl, family);
94 	if (err < 0)
95 		return err;
96 
97 	dst = skb_dst(skb);
98 	if (dst->xfrm)
99 		dst = ((struct xfrm_dst *)dst)->route;
100 	dst_hold(dst);
101 
102 	dst = xfrm_lookup(net, dst, &fl, skb->sk, 0);
103 	if (IS_ERR(dst))
104 		return PTR_ERR(dst);
105 
106 	skb_dst_drop(skb);
107 	skb_dst_set(skb, dst);
108 
109 	/* Change in oif may mean change in hh_len. */
110 	hh_len = skb_dst(skb)->dev->hard_header_len;
111 	if (skb_headroom(skb) < hh_len &&
112 	    pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
113 		return -ENOMEM;
114 	return 0;
115 }
116 EXPORT_SYMBOL(nf_xfrm_me_harder);
117 #endif /* CONFIG_XFRM */
118 
119 /* We keep an extra hash for each conntrack, for fast searching. */
120 static unsigned int
121 hash_by_src(const struct net *n, const struct nf_conntrack_tuple *tuple)
122 {
123 	unsigned int hash;
124 
125 	get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
126 
127 	/* Original src, to ensure we map it consistently if poss. */
128 	hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
129 		      tuple->dst.protonum ^ nf_nat_hash_rnd ^ net_hash_mix(n));
130 
131 	return reciprocal_scale(hash, nf_nat_htable_size);
132 }
133 
134 /* Is this tuple already taken? (not by us) */
135 int
136 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
137 		  const struct nf_conn *ignored_conntrack)
138 {
139 	/* Conntrack tracking doesn't keep track of outgoing tuples; only
140 	 * incoming ones.  NAT means they don't have a fixed mapping,
141 	 * so we invert the tuple and look for the incoming reply.
142 	 *
143 	 * We could keep a separate hash if this proves too slow.
144 	 */
145 	struct nf_conntrack_tuple reply;
146 
147 	nf_ct_invert_tuplepr(&reply, tuple);
148 	return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
149 }
150 EXPORT_SYMBOL(nf_nat_used_tuple);
151 
152 /* If we source map this tuple so reply looks like reply_tuple, will
153  * that meet the constraints of range.
154  */
155 static int in_range(const struct nf_nat_l3proto *l3proto,
156 		    const struct nf_nat_l4proto *l4proto,
157 		    const struct nf_conntrack_tuple *tuple,
158 		    const struct nf_nat_range *range)
159 {
160 	/* If we are supposed to map IPs, then we must be in the
161 	 * range specified, otherwise let this drag us onto a new src IP.
162 	 */
163 	if (range->flags & NF_NAT_RANGE_MAP_IPS &&
164 	    !l3proto->in_range(tuple, range))
165 		return 0;
166 
167 	if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
168 	    l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
169 			      &range->min_proto, &range->max_proto))
170 		return 1;
171 
172 	return 0;
173 }
174 
175 static inline int
176 same_src(const struct nf_conn *ct,
177 	 const struct nf_conntrack_tuple *tuple)
178 {
179 	const struct nf_conntrack_tuple *t;
180 
181 	t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
182 	return (t->dst.protonum == tuple->dst.protonum &&
183 		nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
184 		t->src.u.all == tuple->src.u.all);
185 }
186 
187 /* Only called for SRC manip */
188 static int
189 find_appropriate_src(struct net *net,
190 		     const struct nf_conntrack_zone *zone,
191 		     const struct nf_nat_l3proto *l3proto,
192 		     const struct nf_nat_l4proto *l4proto,
193 		     const struct nf_conntrack_tuple *tuple,
194 		     struct nf_conntrack_tuple *result,
195 		     const struct nf_nat_range *range)
196 {
197 	unsigned int h = hash_by_src(net, tuple);
198 	const struct nf_conn *ct;
199 
200 	hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) {
201 		if (same_src(ct, tuple) &&
202 		    net_eq(net, nf_ct_net(ct)) &&
203 		    nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
204 			/* Copy source part from reply tuple. */
205 			nf_ct_invert_tuplepr(result,
206 				       &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
207 			result->dst = tuple->dst;
208 
209 			if (in_range(l3proto, l4proto, result, range))
210 				return 1;
211 		}
212 	}
213 	return 0;
214 }
215 
216 /* For [FUTURE] fragmentation handling, we want the least-used
217  * src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
218  * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
219  * 1-65535, we don't do pro-rata allocation based on ports; we choose
220  * the ip with the lowest src-ip/dst-ip/proto usage.
221  */
222 static void
223 find_best_ips_proto(const struct nf_conntrack_zone *zone,
224 		    struct nf_conntrack_tuple *tuple,
225 		    const struct nf_nat_range *range,
226 		    const struct nf_conn *ct,
227 		    enum nf_nat_manip_type maniptype)
228 {
229 	union nf_inet_addr *var_ipp;
230 	unsigned int i, max;
231 	/* Host order */
232 	u32 minip, maxip, j, dist;
233 	bool full_range;
234 
235 	/* No IP mapping?  Do nothing. */
236 	if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
237 		return;
238 
239 	if (maniptype == NF_NAT_MANIP_SRC)
240 		var_ipp = &tuple->src.u3;
241 	else
242 		var_ipp = &tuple->dst.u3;
243 
244 	/* Fast path: only one choice. */
245 	if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
246 		*var_ipp = range->min_addr;
247 		return;
248 	}
249 
250 	if (nf_ct_l3num(ct) == NFPROTO_IPV4)
251 		max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
252 	else
253 		max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
254 
255 	/* Hashing source and destination IPs gives a fairly even
256 	 * spread in practice (if there are a small number of IPs
257 	 * involved, there usually aren't that many connections
258 	 * anyway).  The consistency means that servers see the same
259 	 * client coming from the same IP (some Internet Banking sites
260 	 * like this), even across reboots.
261 	 */
262 	j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
263 		   range->flags & NF_NAT_RANGE_PERSISTENT ?
264 			0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
265 
266 	full_range = false;
267 	for (i = 0; i <= max; i++) {
268 		/* If first bytes of the address are at the maximum, use the
269 		 * distance. Otherwise use the full range.
270 		 */
271 		if (!full_range) {
272 			minip = ntohl((__force __be32)range->min_addr.all[i]);
273 			maxip = ntohl((__force __be32)range->max_addr.all[i]);
274 			dist  = maxip - minip + 1;
275 		} else {
276 			minip = 0;
277 			dist  = ~0;
278 		}
279 
280 		var_ipp->all[i] = (__force __u32)
281 			htonl(minip + reciprocal_scale(j, dist));
282 		if (var_ipp->all[i] != range->max_addr.all[i])
283 			full_range = true;
284 
285 		if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
286 			j ^= (__force u32)tuple->dst.u3.all[i];
287 	}
288 }
289 
290 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
291  * we change the source to map into the range. For NF_INET_PRE_ROUTING
292  * and NF_INET_LOCAL_OUT, we change the destination to map into the
293  * range. It might not be possible to get a unique tuple, but we try.
294  * At worst (or if we race), we will end up with a final duplicate in
295  * __ip_conntrack_confirm and drop the packet. */
296 static void
297 get_unique_tuple(struct nf_conntrack_tuple *tuple,
298 		 const struct nf_conntrack_tuple *orig_tuple,
299 		 const struct nf_nat_range *range,
300 		 struct nf_conn *ct,
301 		 enum nf_nat_manip_type maniptype)
302 {
303 	const struct nf_conntrack_zone *zone;
304 	const struct nf_nat_l3proto *l3proto;
305 	const struct nf_nat_l4proto *l4proto;
306 	struct net *net = nf_ct_net(ct);
307 
308 	zone = nf_ct_zone(ct);
309 
310 	rcu_read_lock();
311 	l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
312 	l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
313 					orig_tuple->dst.protonum);
314 
315 	/* 1) If this srcip/proto/src-proto-part is currently mapped,
316 	 * and that same mapping gives a unique tuple within the given
317 	 * range, use that.
318 	 *
319 	 * This is only required for source (ie. NAT/masq) mappings.
320 	 * So far, we don't do local source mappings, so multiple
321 	 * manips not an issue.
322 	 */
323 	if (maniptype == NF_NAT_MANIP_SRC &&
324 	    !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
325 		/* try the original tuple first */
326 		if (in_range(l3proto, l4proto, orig_tuple, range)) {
327 			if (!nf_nat_used_tuple(orig_tuple, ct)) {
328 				*tuple = *orig_tuple;
329 				goto out;
330 			}
331 		} else if (find_appropriate_src(net, zone, l3proto, l4proto,
332 						orig_tuple, tuple, range)) {
333 			pr_debug("get_unique_tuple: Found current src map\n");
334 			if (!nf_nat_used_tuple(tuple, ct))
335 				goto out;
336 		}
337 	}
338 
339 	/* 2) Select the least-used IP/proto combination in the given range */
340 	*tuple = *orig_tuple;
341 	find_best_ips_proto(zone, tuple, range, ct, maniptype);
342 
343 	/* 3) The per-protocol part of the manip is made to map into
344 	 * the range to make a unique tuple.
345 	 */
346 
347 	/* Only bother mapping if it's not already in range and unique */
348 	if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
349 		if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
350 			if (l4proto->in_range(tuple, maniptype,
351 					      &range->min_proto,
352 					      &range->max_proto) &&
353 			    (range->min_proto.all == range->max_proto.all ||
354 			     !nf_nat_used_tuple(tuple, ct)))
355 				goto out;
356 		} else if (!nf_nat_used_tuple(tuple, ct)) {
357 			goto out;
358 		}
359 	}
360 
361 	/* Last change: get protocol to try to obtain unique tuple. */
362 	l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
363 out:
364 	rcu_read_unlock();
365 }
366 
367 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
368 {
369 	struct nf_conn_nat *nat = nfct_nat(ct);
370 	if (nat)
371 		return nat;
372 
373 	if (!nf_ct_is_confirmed(ct))
374 		nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
375 
376 	return nat;
377 }
378 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
379 
380 unsigned int
381 nf_nat_setup_info(struct nf_conn *ct,
382 		  const struct nf_nat_range *range,
383 		  enum nf_nat_manip_type maniptype)
384 {
385 	struct net *net = nf_ct_net(ct);
386 	struct nf_conntrack_tuple curr_tuple, new_tuple;
387 
388 	/* Can't setup nat info for confirmed ct. */
389 	if (nf_ct_is_confirmed(ct))
390 		return NF_ACCEPT;
391 
392 	WARN_ON(maniptype != NF_NAT_MANIP_SRC &&
393 		maniptype != NF_NAT_MANIP_DST);
394 
395 	if (WARN_ON(nf_nat_initialized(ct, maniptype)))
396 		return NF_DROP;
397 
398 	/* What we've got will look like inverse of reply. Normally
399 	 * this is what is in the conntrack, except for prior
400 	 * manipulations (future optimization: if num_manips == 0,
401 	 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
402 	 */
403 	nf_ct_invert_tuplepr(&curr_tuple,
404 			     &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
405 
406 	get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
407 
408 	if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
409 		struct nf_conntrack_tuple reply;
410 
411 		/* Alter conntrack table so will recognize replies. */
412 		nf_ct_invert_tuplepr(&reply, &new_tuple);
413 		nf_conntrack_alter_reply(ct, &reply);
414 
415 		/* Non-atomic: we own this at the moment. */
416 		if (maniptype == NF_NAT_MANIP_SRC)
417 			ct->status |= IPS_SRC_NAT;
418 		else
419 			ct->status |= IPS_DST_NAT;
420 
421 		if (nfct_help(ct) && !nfct_seqadj(ct))
422 			if (!nfct_seqadj_ext_add(ct))
423 				return NF_DROP;
424 	}
425 
426 	if (maniptype == NF_NAT_MANIP_SRC) {
427 		unsigned int srchash;
428 		spinlock_t *lock;
429 
430 		srchash = hash_by_src(net,
431 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
432 		lock = &nf_nat_locks[srchash % CONNTRACK_LOCKS];
433 		spin_lock_bh(lock);
434 		hlist_add_head_rcu(&ct->nat_bysource,
435 				   &nf_nat_bysource[srchash]);
436 		spin_unlock_bh(lock);
437 	}
438 
439 	/* It's done. */
440 	if (maniptype == NF_NAT_MANIP_DST)
441 		ct->status |= IPS_DST_NAT_DONE;
442 	else
443 		ct->status |= IPS_SRC_NAT_DONE;
444 
445 	return NF_ACCEPT;
446 }
447 EXPORT_SYMBOL(nf_nat_setup_info);
448 
449 static unsigned int
450 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
451 {
452 	/* Force range to this IP; let proto decide mapping for
453 	 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
454 	 * Use reply in case it's already been mangled (eg local packet).
455 	 */
456 	union nf_inet_addr ip =
457 		(manip == NF_NAT_MANIP_SRC ?
458 		ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
459 		ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
460 	struct nf_nat_range range = {
461 		.flags		= NF_NAT_RANGE_MAP_IPS,
462 		.min_addr	= ip,
463 		.max_addr	= ip,
464 	};
465 	return nf_nat_setup_info(ct, &range, manip);
466 }
467 
468 unsigned int
469 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
470 {
471 	return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
472 }
473 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
474 
475 /* Do packet manipulations according to nf_nat_setup_info. */
476 unsigned int nf_nat_packet(struct nf_conn *ct,
477 			   enum ip_conntrack_info ctinfo,
478 			   unsigned int hooknum,
479 			   struct sk_buff *skb)
480 {
481 	const struct nf_nat_l3proto *l3proto;
482 	const struct nf_nat_l4proto *l4proto;
483 	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
484 	unsigned long statusbit;
485 	enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
486 
487 	if (mtype == NF_NAT_MANIP_SRC)
488 		statusbit = IPS_SRC_NAT;
489 	else
490 		statusbit = IPS_DST_NAT;
491 
492 	/* Invert if this is reply dir. */
493 	if (dir == IP_CT_DIR_REPLY)
494 		statusbit ^= IPS_NAT_MASK;
495 
496 	/* Non-atomic: these bits don't change. */
497 	if (ct->status & statusbit) {
498 		struct nf_conntrack_tuple target;
499 
500 		/* We are aiming to look like inverse of other direction. */
501 		nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
502 
503 		l3proto = __nf_nat_l3proto_find(target.src.l3num);
504 		l4proto = __nf_nat_l4proto_find(target.src.l3num,
505 						target.dst.protonum);
506 		if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
507 			return NF_DROP;
508 	}
509 	return NF_ACCEPT;
510 }
511 EXPORT_SYMBOL_GPL(nf_nat_packet);
512 
513 struct nf_nat_proto_clean {
514 	u8	l3proto;
515 	u8	l4proto;
516 };
517 
518 /* kill conntracks with affected NAT section */
519 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
520 {
521 	const struct nf_nat_proto_clean *clean = data;
522 
523 	if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
524 	    (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
525 		return 0;
526 
527 	return i->status & IPS_NAT_MASK ? 1 : 0;
528 }
529 
530 static void __nf_nat_cleanup_conntrack(struct nf_conn *ct)
531 {
532 	unsigned int h;
533 
534 	h = hash_by_src(nf_ct_net(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
535 	spin_lock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
536 	hlist_del_rcu(&ct->nat_bysource);
537 	spin_unlock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
538 }
539 
540 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
541 {
542 	if (nf_nat_proto_remove(ct, data))
543 		return 1;
544 
545 	/* This module is being removed and conntrack has nat null binding.
546 	 * Remove it from bysource hash, as the table will be freed soon.
547 	 *
548 	 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
549 	 * will delete entry from already-freed table.
550 	 */
551 	if (test_and_clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status))
552 		__nf_nat_cleanup_conntrack(ct);
553 
554 	/* don't delete conntrack.  Although that would make things a lot
555 	 * simpler, we'd end up flushing all conntracks on nat rmmod.
556 	 */
557 	return 0;
558 }
559 
560 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
561 {
562 	struct nf_nat_proto_clean clean = {
563 		.l3proto = l3proto,
564 		.l4proto = l4proto,
565 	};
566 
567 	nf_ct_iterate_destroy(nf_nat_proto_remove, &clean);
568 }
569 
570 static void nf_nat_l3proto_clean(u8 l3proto)
571 {
572 	struct nf_nat_proto_clean clean = {
573 		.l3proto = l3proto,
574 	};
575 
576 	nf_ct_iterate_destroy(nf_nat_proto_remove, &clean);
577 }
578 
579 /* Protocol registration. */
580 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
581 {
582 	const struct nf_nat_l4proto **l4protos;
583 	unsigned int i;
584 	int ret = 0;
585 
586 	mutex_lock(&nf_nat_proto_mutex);
587 	if (nf_nat_l4protos[l3proto] == NULL) {
588 		l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
589 				   GFP_KERNEL);
590 		if (l4protos == NULL) {
591 			ret = -ENOMEM;
592 			goto out;
593 		}
594 
595 		for (i = 0; i < IPPROTO_MAX; i++)
596 			RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
597 
598 		/* Before making proto_array visible to lockless readers,
599 		 * we must make sure its content is committed to memory.
600 		 */
601 		smp_wmb();
602 
603 		nf_nat_l4protos[l3proto] = l4protos;
604 	}
605 
606 	if (rcu_dereference_protected(
607 			nf_nat_l4protos[l3proto][l4proto->l4proto],
608 			lockdep_is_held(&nf_nat_proto_mutex)
609 			) != &nf_nat_l4proto_unknown) {
610 		ret = -EBUSY;
611 		goto out;
612 	}
613 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
614  out:
615 	mutex_unlock(&nf_nat_proto_mutex);
616 	return ret;
617 }
618 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
619 
620 /* No one stores the protocol anywhere; simply delete it. */
621 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
622 {
623 	mutex_lock(&nf_nat_proto_mutex);
624 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
625 			 &nf_nat_l4proto_unknown);
626 	mutex_unlock(&nf_nat_proto_mutex);
627 	synchronize_rcu();
628 
629 	nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
630 }
631 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
632 
633 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
634 {
635 	int err;
636 
637 	err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
638 	if (err < 0)
639 		return err;
640 
641 	mutex_lock(&nf_nat_proto_mutex);
642 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
643 			 &nf_nat_l4proto_tcp);
644 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
645 			 &nf_nat_l4proto_udp);
646 #ifdef CONFIG_NF_NAT_PROTO_DCCP
647 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_DCCP],
648 			 &nf_nat_l4proto_dccp);
649 #endif
650 #ifdef CONFIG_NF_NAT_PROTO_SCTP
651 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_SCTP],
652 			 &nf_nat_l4proto_sctp);
653 #endif
654 #ifdef CONFIG_NF_NAT_PROTO_UDPLITE
655 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDPLITE],
656 			 &nf_nat_l4proto_udplite);
657 #endif
658 	mutex_unlock(&nf_nat_proto_mutex);
659 
660 	RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
661 	return 0;
662 }
663 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
664 
665 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
666 {
667 	mutex_lock(&nf_nat_proto_mutex);
668 	RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
669 	mutex_unlock(&nf_nat_proto_mutex);
670 	synchronize_rcu();
671 
672 	nf_nat_l3proto_clean(l3proto->l3proto);
673 	nf_ct_l3proto_module_put(l3proto->l3proto);
674 }
675 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
676 
677 /* No one using conntrack by the time this called. */
678 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
679 {
680 	if (ct->status & IPS_SRC_NAT_DONE)
681 		__nf_nat_cleanup_conntrack(ct);
682 }
683 
684 static struct nf_ct_ext_type nat_extend __read_mostly = {
685 	.len		= sizeof(struct nf_conn_nat),
686 	.align		= __alignof__(struct nf_conn_nat),
687 	.destroy	= nf_nat_cleanup_conntrack,
688 	.id		= NF_CT_EXT_NAT,
689 };
690 
691 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
692 
693 #include <linux/netfilter/nfnetlink.h>
694 #include <linux/netfilter/nfnetlink_conntrack.h>
695 
696 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
697 	[CTA_PROTONAT_PORT_MIN]	= { .type = NLA_U16 },
698 	[CTA_PROTONAT_PORT_MAX]	= { .type = NLA_U16 },
699 };
700 
701 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
702 				     const struct nf_conn *ct,
703 				     struct nf_nat_range *range)
704 {
705 	struct nlattr *tb[CTA_PROTONAT_MAX+1];
706 	const struct nf_nat_l4proto *l4proto;
707 	int err;
708 
709 	err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr,
710 			       protonat_nla_policy, NULL);
711 	if (err < 0)
712 		return err;
713 
714 	l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
715 	if (l4proto->nlattr_to_range)
716 		err = l4proto->nlattr_to_range(tb, range);
717 
718 	return err;
719 }
720 
721 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
722 	[CTA_NAT_V4_MINIP]	= { .type = NLA_U32 },
723 	[CTA_NAT_V4_MAXIP]	= { .type = NLA_U32 },
724 	[CTA_NAT_V6_MINIP]	= { .len = sizeof(struct in6_addr) },
725 	[CTA_NAT_V6_MAXIP]	= { .len = sizeof(struct in6_addr) },
726 	[CTA_NAT_PROTO]		= { .type = NLA_NESTED },
727 };
728 
729 static int
730 nfnetlink_parse_nat(const struct nlattr *nat,
731 		    const struct nf_conn *ct, struct nf_nat_range *range,
732 		    const struct nf_nat_l3proto *l3proto)
733 {
734 	struct nlattr *tb[CTA_NAT_MAX+1];
735 	int err;
736 
737 	memset(range, 0, sizeof(*range));
738 
739 	err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy, NULL);
740 	if (err < 0)
741 		return err;
742 
743 	err = l3proto->nlattr_to_range(tb, range);
744 	if (err < 0)
745 		return err;
746 
747 	if (!tb[CTA_NAT_PROTO])
748 		return 0;
749 
750 	return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
751 }
752 
753 /* This function is called under rcu_read_lock() */
754 static int
755 nfnetlink_parse_nat_setup(struct nf_conn *ct,
756 			  enum nf_nat_manip_type manip,
757 			  const struct nlattr *attr)
758 {
759 	struct nf_nat_range range;
760 	const struct nf_nat_l3proto *l3proto;
761 	int err;
762 
763 	/* Should not happen, restricted to creating new conntracks
764 	 * via ctnetlink.
765 	 */
766 	if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
767 		return -EEXIST;
768 
769 	/* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
770 	 * attach the null binding, otherwise this may oops.
771 	 */
772 	l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
773 	if (l3proto == NULL)
774 		return -EAGAIN;
775 
776 	/* No NAT information has been passed, allocate the null-binding */
777 	if (attr == NULL)
778 		return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0;
779 
780 	err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
781 	if (err < 0)
782 		return err;
783 
784 	return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0;
785 }
786 #else
787 static int
788 nfnetlink_parse_nat_setup(struct nf_conn *ct,
789 			  enum nf_nat_manip_type manip,
790 			  const struct nlattr *attr)
791 {
792 	return -EOPNOTSUPP;
793 }
794 #endif
795 
796 static struct nf_ct_helper_expectfn follow_master_nat = {
797 	.name		= "nat-follow-master",
798 	.expectfn	= nf_nat_follow_master,
799 };
800 
801 static int __init nf_nat_init(void)
802 {
803 	int ret, i;
804 
805 	/* Leave them the same for the moment. */
806 	nf_nat_htable_size = nf_conntrack_htable_size;
807 	if (nf_nat_htable_size < CONNTRACK_LOCKS)
808 		nf_nat_htable_size = CONNTRACK_LOCKS;
809 
810 	nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
811 	if (!nf_nat_bysource)
812 		return -ENOMEM;
813 
814 	ret = nf_ct_extend_register(&nat_extend);
815 	if (ret < 0) {
816 		nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
817 		printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
818 		return ret;
819 	}
820 
821 	for (i = 0; i < CONNTRACK_LOCKS; i++)
822 		spin_lock_init(&nf_nat_locks[i]);
823 
824 	nf_ct_helper_expectfn_register(&follow_master_nat);
825 
826 	BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
827 	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
828 			   nfnetlink_parse_nat_setup);
829 #ifdef CONFIG_XFRM
830 	BUG_ON(nf_nat_decode_session_hook != NULL);
831 	RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
832 #endif
833 	return 0;
834 }
835 
836 static void __exit nf_nat_cleanup(void)
837 {
838 	struct nf_nat_proto_clean clean = {};
839 	unsigned int i;
840 
841 	nf_ct_iterate_destroy(nf_nat_proto_clean, &clean);
842 
843 	nf_ct_extend_unregister(&nat_extend);
844 	nf_ct_helper_expectfn_unregister(&follow_master_nat);
845 	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
846 #ifdef CONFIG_XFRM
847 	RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
848 #endif
849 	synchronize_rcu();
850 
851 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
852 		kfree(nf_nat_l4protos[i]);
853 	synchronize_net();
854 	nf_ct_free_hashtable(nf_nat_bysource, nf_nat_htable_size);
855 }
856 
857 MODULE_LICENSE("GPL");
858 
859 module_init(nf_nat_init);
860 module_exit(nf_nat_cleanup);
861