xref: /openbmc/linux/net/netfilter/nf_nat_core.c (revision 56d06fa2)
1 /*
2  * (C) 1999-2001 Paul `Rusty' Russell
3  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4  * (C) 2011 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19 
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32 
33 static DEFINE_SPINLOCK(nf_nat_lock);
34 
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37 						__read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39 						__read_mostly;
40 
41 
42 inline const struct nf_nat_l3proto *
43 __nf_nat_l3proto_find(u8 family)
44 {
45 	return rcu_dereference(nf_nat_l3protos[family]);
46 }
47 
48 inline const struct nf_nat_l4proto *
49 __nf_nat_l4proto_find(u8 family, u8 protonum)
50 {
51 	return rcu_dereference(nf_nat_l4protos[family][protonum]);
52 }
53 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
54 
55 #ifdef CONFIG_XFRM
56 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
57 {
58 	const struct nf_nat_l3proto *l3proto;
59 	const struct nf_conn *ct;
60 	enum ip_conntrack_info ctinfo;
61 	enum ip_conntrack_dir dir;
62 	unsigned  long statusbit;
63 	u8 family;
64 
65 	ct = nf_ct_get(skb, &ctinfo);
66 	if (ct == NULL)
67 		return;
68 
69 	family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
70 	rcu_read_lock();
71 	l3proto = __nf_nat_l3proto_find(family);
72 	if (l3proto == NULL)
73 		goto out;
74 
75 	dir = CTINFO2DIR(ctinfo);
76 	if (dir == IP_CT_DIR_ORIGINAL)
77 		statusbit = IPS_DST_NAT;
78 	else
79 		statusbit = IPS_SRC_NAT;
80 
81 	l3proto->decode_session(skb, ct, dir, statusbit, fl);
82 out:
83 	rcu_read_unlock();
84 }
85 
86 int nf_xfrm_me_harder(struct net *net, struct sk_buff *skb, unsigned int family)
87 {
88 	struct flowi fl;
89 	unsigned int hh_len;
90 	struct dst_entry *dst;
91 	int err;
92 
93 	err = xfrm_decode_session(skb, &fl, family);
94 	if (err < 0)
95 		return err;
96 
97 	dst = skb_dst(skb);
98 	if (dst->xfrm)
99 		dst = ((struct xfrm_dst *)dst)->route;
100 	dst_hold(dst);
101 
102 	dst = xfrm_lookup(net, dst, &fl, skb->sk, 0);
103 	if (IS_ERR(dst))
104 		return PTR_ERR(dst);
105 
106 	skb_dst_drop(skb);
107 	skb_dst_set(skb, dst);
108 
109 	/* Change in oif may mean change in hh_len. */
110 	hh_len = skb_dst(skb)->dev->hard_header_len;
111 	if (skb_headroom(skb) < hh_len &&
112 	    pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
113 		return -ENOMEM;
114 	return 0;
115 }
116 EXPORT_SYMBOL(nf_xfrm_me_harder);
117 #endif /* CONFIG_XFRM */
118 
119 /* We keep an extra hash for each conntrack, for fast searching. */
120 static inline unsigned int
121 hash_by_src(const struct net *net, const struct nf_conntrack_tuple *tuple)
122 {
123 	unsigned int hash;
124 
125 	/* Original src, to ensure we map it consistently if poss. */
126 	hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
127 		      tuple->dst.protonum ^ nf_conntrack_hash_rnd);
128 
129 	return reciprocal_scale(hash, net->ct.nat_htable_size);
130 }
131 
132 /* Is this tuple already taken? (not by us) */
133 int
134 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
135 		  const struct nf_conn *ignored_conntrack)
136 {
137 	/* Conntrack tracking doesn't keep track of outgoing tuples; only
138 	 * incoming ones.  NAT means they don't have a fixed mapping,
139 	 * so we invert the tuple and look for the incoming reply.
140 	 *
141 	 * We could keep a separate hash if this proves too slow.
142 	 */
143 	struct nf_conntrack_tuple reply;
144 
145 	nf_ct_invert_tuplepr(&reply, tuple);
146 	return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
147 }
148 EXPORT_SYMBOL(nf_nat_used_tuple);
149 
150 /* If we source map this tuple so reply looks like reply_tuple, will
151  * that meet the constraints of range.
152  */
153 static int in_range(const struct nf_nat_l3proto *l3proto,
154 		    const struct nf_nat_l4proto *l4proto,
155 		    const struct nf_conntrack_tuple *tuple,
156 		    const struct nf_nat_range *range)
157 {
158 	/* If we are supposed to map IPs, then we must be in the
159 	 * range specified, otherwise let this drag us onto a new src IP.
160 	 */
161 	if (range->flags & NF_NAT_RANGE_MAP_IPS &&
162 	    !l3proto->in_range(tuple, range))
163 		return 0;
164 
165 	if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
166 	    l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
167 			      &range->min_proto, &range->max_proto))
168 		return 1;
169 
170 	return 0;
171 }
172 
173 static inline int
174 same_src(const struct nf_conn *ct,
175 	 const struct nf_conntrack_tuple *tuple)
176 {
177 	const struct nf_conntrack_tuple *t;
178 
179 	t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
180 	return (t->dst.protonum == tuple->dst.protonum &&
181 		nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
182 		t->src.u.all == tuple->src.u.all);
183 }
184 
185 /* Only called for SRC manip */
186 static int
187 find_appropriate_src(struct net *net,
188 		     const struct nf_conntrack_zone *zone,
189 		     const struct nf_nat_l3proto *l3proto,
190 		     const struct nf_nat_l4proto *l4proto,
191 		     const struct nf_conntrack_tuple *tuple,
192 		     struct nf_conntrack_tuple *result,
193 		     const struct nf_nat_range *range)
194 {
195 	unsigned int h = hash_by_src(net, tuple);
196 	const struct nf_conn_nat *nat;
197 	const struct nf_conn *ct;
198 
199 	hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
200 		ct = nat->ct;
201 		if (same_src(ct, tuple) &&
202 		    nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
203 			/* Copy source part from reply tuple. */
204 			nf_ct_invert_tuplepr(result,
205 				       &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
206 			result->dst = tuple->dst;
207 
208 			if (in_range(l3proto, l4proto, result, range))
209 				return 1;
210 		}
211 	}
212 	return 0;
213 }
214 
215 /* For [FUTURE] fragmentation handling, we want the least-used
216  * src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
217  * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
218  * 1-65535, we don't do pro-rata allocation based on ports; we choose
219  * the ip with the lowest src-ip/dst-ip/proto usage.
220  */
221 static void
222 find_best_ips_proto(const struct nf_conntrack_zone *zone,
223 		    struct nf_conntrack_tuple *tuple,
224 		    const struct nf_nat_range *range,
225 		    const struct nf_conn *ct,
226 		    enum nf_nat_manip_type maniptype)
227 {
228 	union nf_inet_addr *var_ipp;
229 	unsigned int i, max;
230 	/* Host order */
231 	u32 minip, maxip, j, dist;
232 	bool full_range;
233 
234 	/* No IP mapping?  Do nothing. */
235 	if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
236 		return;
237 
238 	if (maniptype == NF_NAT_MANIP_SRC)
239 		var_ipp = &tuple->src.u3;
240 	else
241 		var_ipp = &tuple->dst.u3;
242 
243 	/* Fast path: only one choice. */
244 	if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
245 		*var_ipp = range->min_addr;
246 		return;
247 	}
248 
249 	if (nf_ct_l3num(ct) == NFPROTO_IPV4)
250 		max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
251 	else
252 		max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
253 
254 	/* Hashing source and destination IPs gives a fairly even
255 	 * spread in practice (if there are a small number of IPs
256 	 * involved, there usually aren't that many connections
257 	 * anyway).  The consistency means that servers see the same
258 	 * client coming from the same IP (some Internet Banking sites
259 	 * like this), even across reboots.
260 	 */
261 	j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
262 		   range->flags & NF_NAT_RANGE_PERSISTENT ?
263 			0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
264 
265 	full_range = false;
266 	for (i = 0; i <= max; i++) {
267 		/* If first bytes of the address are at the maximum, use the
268 		 * distance. Otherwise use the full range.
269 		 */
270 		if (!full_range) {
271 			minip = ntohl((__force __be32)range->min_addr.all[i]);
272 			maxip = ntohl((__force __be32)range->max_addr.all[i]);
273 			dist  = maxip - minip + 1;
274 		} else {
275 			minip = 0;
276 			dist  = ~0;
277 		}
278 
279 		var_ipp->all[i] = (__force __u32)
280 			htonl(minip + reciprocal_scale(j, dist));
281 		if (var_ipp->all[i] != range->max_addr.all[i])
282 			full_range = true;
283 
284 		if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
285 			j ^= (__force u32)tuple->dst.u3.all[i];
286 	}
287 }
288 
289 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
290  * we change the source to map into the range. For NF_INET_PRE_ROUTING
291  * and NF_INET_LOCAL_OUT, we change the destination to map into the
292  * range. It might not be possible to get a unique tuple, but we try.
293  * At worst (or if we race), we will end up with a final duplicate in
294  * __ip_conntrack_confirm and drop the packet. */
295 static void
296 get_unique_tuple(struct nf_conntrack_tuple *tuple,
297 		 const struct nf_conntrack_tuple *orig_tuple,
298 		 const struct nf_nat_range *range,
299 		 struct nf_conn *ct,
300 		 enum nf_nat_manip_type maniptype)
301 {
302 	const struct nf_conntrack_zone *zone;
303 	const struct nf_nat_l3proto *l3proto;
304 	const struct nf_nat_l4proto *l4proto;
305 	struct net *net = nf_ct_net(ct);
306 
307 	zone = nf_ct_zone(ct);
308 
309 	rcu_read_lock();
310 	l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
311 	l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
312 					orig_tuple->dst.protonum);
313 
314 	/* 1) If this srcip/proto/src-proto-part is currently mapped,
315 	 * and that same mapping gives a unique tuple within the given
316 	 * range, use that.
317 	 *
318 	 * This is only required for source (ie. NAT/masq) mappings.
319 	 * So far, we don't do local source mappings, so multiple
320 	 * manips not an issue.
321 	 */
322 	if (maniptype == NF_NAT_MANIP_SRC &&
323 	    !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
324 		/* try the original tuple first */
325 		if (in_range(l3proto, l4proto, orig_tuple, range)) {
326 			if (!nf_nat_used_tuple(orig_tuple, ct)) {
327 				*tuple = *orig_tuple;
328 				goto out;
329 			}
330 		} else if (find_appropriate_src(net, zone, l3proto, l4proto,
331 						orig_tuple, tuple, range)) {
332 			pr_debug("get_unique_tuple: Found current src map\n");
333 			if (!nf_nat_used_tuple(tuple, ct))
334 				goto out;
335 		}
336 	}
337 
338 	/* 2) Select the least-used IP/proto combination in the given range */
339 	*tuple = *orig_tuple;
340 	find_best_ips_proto(zone, tuple, range, ct, maniptype);
341 
342 	/* 3) The per-protocol part of the manip is made to map into
343 	 * the range to make a unique tuple.
344 	 */
345 
346 	/* Only bother mapping if it's not already in range and unique */
347 	if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
348 		if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
349 			if (l4proto->in_range(tuple, maniptype,
350 					      &range->min_proto,
351 					      &range->max_proto) &&
352 			    (range->min_proto.all == range->max_proto.all ||
353 			     !nf_nat_used_tuple(tuple, ct)))
354 				goto out;
355 		} else if (!nf_nat_used_tuple(tuple, ct)) {
356 			goto out;
357 		}
358 	}
359 
360 	/* Last change: get protocol to try to obtain unique tuple. */
361 	l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
362 out:
363 	rcu_read_unlock();
364 }
365 
366 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
367 {
368 	struct nf_conn_nat *nat = nfct_nat(ct);
369 	if (nat)
370 		return nat;
371 
372 	if (!nf_ct_is_confirmed(ct))
373 		nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
374 
375 	return nat;
376 }
377 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
378 
379 unsigned int
380 nf_nat_setup_info(struct nf_conn *ct,
381 		  const struct nf_nat_range *range,
382 		  enum nf_nat_manip_type maniptype)
383 {
384 	struct net *net = nf_ct_net(ct);
385 	struct nf_conntrack_tuple curr_tuple, new_tuple;
386 	struct nf_conn_nat *nat;
387 
388 	/* nat helper or nfctnetlink also setup binding */
389 	nat = nf_ct_nat_ext_add(ct);
390 	if (nat == NULL)
391 		return NF_ACCEPT;
392 
393 	NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
394 		     maniptype == NF_NAT_MANIP_DST);
395 	BUG_ON(nf_nat_initialized(ct, maniptype));
396 
397 	/* What we've got will look like inverse of reply. Normally
398 	 * this is what is in the conntrack, except for prior
399 	 * manipulations (future optimization: if num_manips == 0,
400 	 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
401 	 */
402 	nf_ct_invert_tuplepr(&curr_tuple,
403 			     &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
404 
405 	get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
406 
407 	if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
408 		struct nf_conntrack_tuple reply;
409 
410 		/* Alter conntrack table so will recognize replies. */
411 		nf_ct_invert_tuplepr(&reply, &new_tuple);
412 		nf_conntrack_alter_reply(ct, &reply);
413 
414 		/* Non-atomic: we own this at the moment. */
415 		if (maniptype == NF_NAT_MANIP_SRC)
416 			ct->status |= IPS_SRC_NAT;
417 		else
418 			ct->status |= IPS_DST_NAT;
419 
420 		if (nfct_help(ct))
421 			nfct_seqadj_ext_add(ct);
422 	}
423 
424 	if (maniptype == NF_NAT_MANIP_SRC) {
425 		unsigned int srchash;
426 
427 		srchash = hash_by_src(net,
428 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
429 		spin_lock_bh(&nf_nat_lock);
430 		/* nf_conntrack_alter_reply might re-allocate extension aera */
431 		nat = nfct_nat(ct);
432 		nat->ct = ct;
433 		hlist_add_head_rcu(&nat->bysource,
434 				   &net->ct.nat_bysource[srchash]);
435 		spin_unlock_bh(&nf_nat_lock);
436 	}
437 
438 	/* It's done. */
439 	if (maniptype == NF_NAT_MANIP_DST)
440 		ct->status |= IPS_DST_NAT_DONE;
441 	else
442 		ct->status |= IPS_SRC_NAT_DONE;
443 
444 	return NF_ACCEPT;
445 }
446 EXPORT_SYMBOL(nf_nat_setup_info);
447 
448 static unsigned int
449 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
450 {
451 	/* Force range to this IP; let proto decide mapping for
452 	 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
453 	 * Use reply in case it's already been mangled (eg local packet).
454 	 */
455 	union nf_inet_addr ip =
456 		(manip == NF_NAT_MANIP_SRC ?
457 		ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
458 		ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
459 	struct nf_nat_range range = {
460 		.flags		= NF_NAT_RANGE_MAP_IPS,
461 		.min_addr	= ip,
462 		.max_addr	= ip,
463 	};
464 	return nf_nat_setup_info(ct, &range, manip);
465 }
466 
467 unsigned int
468 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
469 {
470 	return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
471 }
472 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
473 
474 /* Do packet manipulations according to nf_nat_setup_info. */
475 unsigned int nf_nat_packet(struct nf_conn *ct,
476 			   enum ip_conntrack_info ctinfo,
477 			   unsigned int hooknum,
478 			   struct sk_buff *skb)
479 {
480 	const struct nf_nat_l3proto *l3proto;
481 	const struct nf_nat_l4proto *l4proto;
482 	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
483 	unsigned long statusbit;
484 	enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
485 
486 	if (mtype == NF_NAT_MANIP_SRC)
487 		statusbit = IPS_SRC_NAT;
488 	else
489 		statusbit = IPS_DST_NAT;
490 
491 	/* Invert if this is reply dir. */
492 	if (dir == IP_CT_DIR_REPLY)
493 		statusbit ^= IPS_NAT_MASK;
494 
495 	/* Non-atomic: these bits don't change. */
496 	if (ct->status & statusbit) {
497 		struct nf_conntrack_tuple target;
498 
499 		/* We are aiming to look like inverse of other direction. */
500 		nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
501 
502 		l3proto = __nf_nat_l3proto_find(target.src.l3num);
503 		l4proto = __nf_nat_l4proto_find(target.src.l3num,
504 						target.dst.protonum);
505 		if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
506 			return NF_DROP;
507 	}
508 	return NF_ACCEPT;
509 }
510 EXPORT_SYMBOL_GPL(nf_nat_packet);
511 
512 struct nf_nat_proto_clean {
513 	u8	l3proto;
514 	u8	l4proto;
515 };
516 
517 /* kill conntracks with affected NAT section */
518 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
519 {
520 	const struct nf_nat_proto_clean *clean = data;
521 	struct nf_conn_nat *nat = nfct_nat(i);
522 
523 	if (!nat)
524 		return 0;
525 
526 	if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
527 	    (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
528 		return 0;
529 
530 	return i->status & IPS_NAT_MASK ? 1 : 0;
531 }
532 
533 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
534 {
535 	struct nf_conn_nat *nat = nfct_nat(ct);
536 
537 	if (nf_nat_proto_remove(ct, data))
538 		return 1;
539 
540 	if (!nat || !nat->ct)
541 		return 0;
542 
543 	/* This netns is being destroyed, and conntrack has nat null binding.
544 	 * Remove it from bysource hash, as the table will be freed soon.
545 	 *
546 	 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
547 	 * will delete entry from already-freed table.
548 	 */
549 	if (!del_timer(&ct->timeout))
550 		return 1;
551 
552 	spin_lock_bh(&nf_nat_lock);
553 	hlist_del_rcu(&nat->bysource);
554 	ct->status &= ~IPS_NAT_DONE_MASK;
555 	nat->ct = NULL;
556 	spin_unlock_bh(&nf_nat_lock);
557 
558 	add_timer(&ct->timeout);
559 
560 	/* don't delete conntrack.  Although that would make things a lot
561 	 * simpler, we'd end up flushing all conntracks on nat rmmod.
562 	 */
563 	return 0;
564 }
565 
566 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
567 {
568 	struct nf_nat_proto_clean clean = {
569 		.l3proto = l3proto,
570 		.l4proto = l4proto,
571 	};
572 	struct net *net;
573 
574 	rtnl_lock();
575 	for_each_net(net)
576 		nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
577 	rtnl_unlock();
578 }
579 
580 static void nf_nat_l3proto_clean(u8 l3proto)
581 {
582 	struct nf_nat_proto_clean clean = {
583 		.l3proto = l3proto,
584 	};
585 	struct net *net;
586 
587 	rtnl_lock();
588 
589 	for_each_net(net)
590 		nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
591 	rtnl_unlock();
592 }
593 
594 /* Protocol registration. */
595 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
596 {
597 	const struct nf_nat_l4proto **l4protos;
598 	unsigned int i;
599 	int ret = 0;
600 
601 	mutex_lock(&nf_nat_proto_mutex);
602 	if (nf_nat_l4protos[l3proto] == NULL) {
603 		l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
604 				   GFP_KERNEL);
605 		if (l4protos == NULL) {
606 			ret = -ENOMEM;
607 			goto out;
608 		}
609 
610 		for (i = 0; i < IPPROTO_MAX; i++)
611 			RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
612 
613 		/* Before making proto_array visible to lockless readers,
614 		 * we must make sure its content is committed to memory.
615 		 */
616 		smp_wmb();
617 
618 		nf_nat_l4protos[l3proto] = l4protos;
619 	}
620 
621 	if (rcu_dereference_protected(
622 			nf_nat_l4protos[l3proto][l4proto->l4proto],
623 			lockdep_is_held(&nf_nat_proto_mutex)
624 			) != &nf_nat_l4proto_unknown) {
625 		ret = -EBUSY;
626 		goto out;
627 	}
628 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
629  out:
630 	mutex_unlock(&nf_nat_proto_mutex);
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
634 
635 /* No one stores the protocol anywhere; simply delete it. */
636 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
637 {
638 	mutex_lock(&nf_nat_proto_mutex);
639 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
640 			 &nf_nat_l4proto_unknown);
641 	mutex_unlock(&nf_nat_proto_mutex);
642 	synchronize_rcu();
643 
644 	nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
645 }
646 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
647 
648 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
649 {
650 	int err;
651 
652 	err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
653 	if (err < 0)
654 		return err;
655 
656 	mutex_lock(&nf_nat_proto_mutex);
657 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
658 			 &nf_nat_l4proto_tcp);
659 	RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
660 			 &nf_nat_l4proto_udp);
661 	mutex_unlock(&nf_nat_proto_mutex);
662 
663 	RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
667 
668 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
669 {
670 	mutex_lock(&nf_nat_proto_mutex);
671 	RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
672 	mutex_unlock(&nf_nat_proto_mutex);
673 	synchronize_rcu();
674 
675 	nf_nat_l3proto_clean(l3proto->l3proto);
676 	nf_ct_l3proto_module_put(l3proto->l3proto);
677 }
678 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
679 
680 /* No one using conntrack by the time this called. */
681 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
682 {
683 	struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
684 
685 	if (nat == NULL || nat->ct == NULL)
686 		return;
687 
688 	NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
689 
690 	spin_lock_bh(&nf_nat_lock);
691 	hlist_del_rcu(&nat->bysource);
692 	spin_unlock_bh(&nf_nat_lock);
693 }
694 
695 static void nf_nat_move_storage(void *new, void *old)
696 {
697 	struct nf_conn_nat *new_nat = new;
698 	struct nf_conn_nat *old_nat = old;
699 	struct nf_conn *ct = old_nat->ct;
700 
701 	if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
702 		return;
703 
704 	spin_lock_bh(&nf_nat_lock);
705 	hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
706 	spin_unlock_bh(&nf_nat_lock);
707 }
708 
709 static struct nf_ct_ext_type nat_extend __read_mostly = {
710 	.len		= sizeof(struct nf_conn_nat),
711 	.align		= __alignof__(struct nf_conn_nat),
712 	.destroy	= nf_nat_cleanup_conntrack,
713 	.move		= nf_nat_move_storage,
714 	.id		= NF_CT_EXT_NAT,
715 	.flags		= NF_CT_EXT_F_PREALLOC,
716 };
717 
718 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
719 
720 #include <linux/netfilter/nfnetlink.h>
721 #include <linux/netfilter/nfnetlink_conntrack.h>
722 
723 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
724 	[CTA_PROTONAT_PORT_MIN]	= { .type = NLA_U16 },
725 	[CTA_PROTONAT_PORT_MAX]	= { .type = NLA_U16 },
726 };
727 
728 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
729 				     const struct nf_conn *ct,
730 				     struct nf_nat_range *range)
731 {
732 	struct nlattr *tb[CTA_PROTONAT_MAX+1];
733 	const struct nf_nat_l4proto *l4proto;
734 	int err;
735 
736 	err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
737 	if (err < 0)
738 		return err;
739 
740 	l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
741 	if (l4proto->nlattr_to_range)
742 		err = l4proto->nlattr_to_range(tb, range);
743 
744 	return err;
745 }
746 
747 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
748 	[CTA_NAT_V4_MINIP]	= { .type = NLA_U32 },
749 	[CTA_NAT_V4_MAXIP]	= { .type = NLA_U32 },
750 	[CTA_NAT_V6_MINIP]	= { .len = sizeof(struct in6_addr) },
751 	[CTA_NAT_V6_MAXIP]	= { .len = sizeof(struct in6_addr) },
752 	[CTA_NAT_PROTO]		= { .type = NLA_NESTED },
753 };
754 
755 static int
756 nfnetlink_parse_nat(const struct nlattr *nat,
757 		    const struct nf_conn *ct, struct nf_nat_range *range,
758 		    const struct nf_nat_l3proto *l3proto)
759 {
760 	struct nlattr *tb[CTA_NAT_MAX+1];
761 	int err;
762 
763 	memset(range, 0, sizeof(*range));
764 
765 	err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
766 	if (err < 0)
767 		return err;
768 
769 	err = l3proto->nlattr_to_range(tb, range);
770 	if (err < 0)
771 		return err;
772 
773 	if (!tb[CTA_NAT_PROTO])
774 		return 0;
775 
776 	return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
777 }
778 
779 /* This function is called under rcu_read_lock() */
780 static int
781 nfnetlink_parse_nat_setup(struct nf_conn *ct,
782 			  enum nf_nat_manip_type manip,
783 			  const struct nlattr *attr)
784 {
785 	struct nf_nat_range range;
786 	const struct nf_nat_l3proto *l3proto;
787 	int err;
788 
789 	/* Should not happen, restricted to creating new conntracks
790 	 * via ctnetlink.
791 	 */
792 	if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
793 		return -EEXIST;
794 
795 	/* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
796 	 * attach the null binding, otherwise this may oops.
797 	 */
798 	l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
799 	if (l3proto == NULL)
800 		return -EAGAIN;
801 
802 	/* No NAT information has been passed, allocate the null-binding */
803 	if (attr == NULL)
804 		return __nf_nat_alloc_null_binding(ct, manip);
805 
806 	err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
807 	if (err < 0)
808 		return err;
809 
810 	return nf_nat_setup_info(ct, &range, manip);
811 }
812 #else
813 static int
814 nfnetlink_parse_nat_setup(struct nf_conn *ct,
815 			  enum nf_nat_manip_type manip,
816 			  const struct nlattr *attr)
817 {
818 	return -EOPNOTSUPP;
819 }
820 #endif
821 
822 static int __net_init nf_nat_net_init(struct net *net)
823 {
824 	/* Leave them the same for the moment. */
825 	net->ct.nat_htable_size = net->ct.htable_size;
826 	net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
827 	if (!net->ct.nat_bysource)
828 		return -ENOMEM;
829 	return 0;
830 }
831 
832 static void __net_exit nf_nat_net_exit(struct net *net)
833 {
834 	struct nf_nat_proto_clean clean = {};
835 
836 	nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean, 0, 0);
837 	synchronize_rcu();
838 	nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
839 }
840 
841 static struct pernet_operations nf_nat_net_ops = {
842 	.init = nf_nat_net_init,
843 	.exit = nf_nat_net_exit,
844 };
845 
846 static struct nf_ct_helper_expectfn follow_master_nat = {
847 	.name		= "nat-follow-master",
848 	.expectfn	= nf_nat_follow_master,
849 };
850 
851 static int __init nf_nat_init(void)
852 {
853 	int ret;
854 
855 	ret = nf_ct_extend_register(&nat_extend);
856 	if (ret < 0) {
857 		printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
858 		return ret;
859 	}
860 
861 	ret = register_pernet_subsys(&nf_nat_net_ops);
862 	if (ret < 0)
863 		goto cleanup_extend;
864 
865 	nf_ct_helper_expectfn_register(&follow_master_nat);
866 
867 	/* Initialize fake conntrack so that NAT will skip it */
868 	nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
869 
870 	BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
871 	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
872 			   nfnetlink_parse_nat_setup);
873 #ifdef CONFIG_XFRM
874 	BUG_ON(nf_nat_decode_session_hook != NULL);
875 	RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
876 #endif
877 	return 0;
878 
879  cleanup_extend:
880 	nf_ct_extend_unregister(&nat_extend);
881 	return ret;
882 }
883 
884 static void __exit nf_nat_cleanup(void)
885 {
886 	unsigned int i;
887 
888 	unregister_pernet_subsys(&nf_nat_net_ops);
889 	nf_ct_extend_unregister(&nat_extend);
890 	nf_ct_helper_expectfn_unregister(&follow_master_nat);
891 	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
892 #ifdef CONFIG_XFRM
893 	RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
894 #endif
895 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
896 		kfree(nf_nat_l4protos[i]);
897 	synchronize_net();
898 }
899 
900 MODULE_LICENSE("GPL");
901 
902 module_init(nf_nat_init);
903 module_exit(nf_nat_cleanup);
904