1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	u32			avg_timeout;
70 	u32			start_time;
71 	bool			exiting;
72 	bool			early_drop;
73 };
74 
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78 
79 /* serialize hash resizes and nf_ct_iterate_cleanup */
80 static DEFINE_MUTEX(nf_conntrack_mutex);
81 
82 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
83 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
84 
85 /* clamp timeouts to this value (TCP unacked) */
86 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
87 
88 /* large initial bias so that we don't scan often just because we have
89  * three entries with a 1s timeout.
90  */
91 #define GC_SCAN_INTERVAL_INIT	INT_MAX
92 
93 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
94 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
95 
96 #define MIN_CHAINLEN	8u
97 #define MAX_CHAINLEN	(32u - MIN_CHAINLEN)
98 
99 static struct conntrack_gc_work conntrack_gc_work;
100 
101 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
102 {
103 	/* 1) Acquire the lock */
104 	spin_lock(lock);
105 
106 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
107 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
108 	 */
109 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
110 		return;
111 
112 	/* fast path failed, unlock */
113 	spin_unlock(lock);
114 
115 	/* Slow path 1) get global lock */
116 	spin_lock(&nf_conntrack_locks_all_lock);
117 
118 	/* Slow path 2) get the lock we want */
119 	spin_lock(lock);
120 
121 	/* Slow path 3) release the global lock */
122 	spin_unlock(&nf_conntrack_locks_all_lock);
123 }
124 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
125 
126 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
127 {
128 	h1 %= CONNTRACK_LOCKS;
129 	h2 %= CONNTRACK_LOCKS;
130 	spin_unlock(&nf_conntrack_locks[h1]);
131 	if (h1 != h2)
132 		spin_unlock(&nf_conntrack_locks[h2]);
133 }
134 
135 /* return true if we need to recompute hashes (in case hash table was resized) */
136 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
137 				     unsigned int h2, unsigned int sequence)
138 {
139 	h1 %= CONNTRACK_LOCKS;
140 	h2 %= CONNTRACK_LOCKS;
141 	if (h1 <= h2) {
142 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
143 		if (h1 != h2)
144 			spin_lock_nested(&nf_conntrack_locks[h2],
145 					 SINGLE_DEPTH_NESTING);
146 	} else {
147 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
148 		spin_lock_nested(&nf_conntrack_locks[h1],
149 				 SINGLE_DEPTH_NESTING);
150 	}
151 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
152 		nf_conntrack_double_unlock(h1, h2);
153 		return true;
154 	}
155 	return false;
156 }
157 
158 static void nf_conntrack_all_lock(void)
159 	__acquires(&nf_conntrack_locks_all_lock)
160 {
161 	int i;
162 
163 	spin_lock(&nf_conntrack_locks_all_lock);
164 
165 	/* For nf_contrack_locks_all, only the latest time when another
166 	 * CPU will see an update is controlled, by the "release" of the
167 	 * spin_lock below.
168 	 * The earliest time is not controlled, an thus KCSAN could detect
169 	 * a race when nf_conntract_lock() reads the variable.
170 	 * WRITE_ONCE() is used to ensure the compiler will not
171 	 * optimize the write.
172 	 */
173 	WRITE_ONCE(nf_conntrack_locks_all, true);
174 
175 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
176 		spin_lock(&nf_conntrack_locks[i]);
177 
178 		/* This spin_unlock provides the "release" to ensure that
179 		 * nf_conntrack_locks_all==true is visible to everyone that
180 		 * acquired spin_lock(&nf_conntrack_locks[]).
181 		 */
182 		spin_unlock(&nf_conntrack_locks[i]);
183 	}
184 }
185 
186 static void nf_conntrack_all_unlock(void)
187 	__releases(&nf_conntrack_locks_all_lock)
188 {
189 	/* All prior stores must be complete before we clear
190 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
191 	 * might observe the false value but not the entire
192 	 * critical section.
193 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
194 	 */
195 	smp_store_release(&nf_conntrack_locks_all, false);
196 	spin_unlock(&nf_conntrack_locks_all_lock);
197 }
198 
199 unsigned int nf_conntrack_htable_size __read_mostly;
200 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
201 
202 unsigned int nf_conntrack_max __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_max);
204 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
205 static siphash_aligned_key_t nf_conntrack_hash_rnd;
206 
207 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
208 			      unsigned int zoneid,
209 			      const struct net *net)
210 {
211 	struct {
212 		struct nf_conntrack_man src;
213 		union nf_inet_addr dst_addr;
214 		unsigned int zone;
215 		u32 net_mix;
216 		u16 dport;
217 		u16 proto;
218 	} __aligned(SIPHASH_ALIGNMENT) combined;
219 
220 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
221 
222 	memset(&combined, 0, sizeof(combined));
223 
224 	/* The direction must be ignored, so handle usable members manually. */
225 	combined.src = tuple->src;
226 	combined.dst_addr = tuple->dst.u3;
227 	combined.zone = zoneid;
228 	combined.net_mix = net_hash_mix(net);
229 	combined.dport = (__force __u16)tuple->dst.u.all;
230 	combined.proto = tuple->dst.protonum;
231 
232 	return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
233 }
234 
235 static u32 scale_hash(u32 hash)
236 {
237 	return reciprocal_scale(hash, nf_conntrack_htable_size);
238 }
239 
240 static u32 __hash_conntrack(const struct net *net,
241 			    const struct nf_conntrack_tuple *tuple,
242 			    unsigned int zoneid,
243 			    unsigned int size)
244 {
245 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
246 }
247 
248 static u32 hash_conntrack(const struct net *net,
249 			  const struct nf_conntrack_tuple *tuple,
250 			  unsigned int zoneid)
251 {
252 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
253 }
254 
255 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
256 				  unsigned int dataoff,
257 				  struct nf_conntrack_tuple *tuple)
258 {	struct {
259 		__be16 sport;
260 		__be16 dport;
261 	} _inet_hdr, *inet_hdr;
262 
263 	/* Actually only need first 4 bytes to get ports. */
264 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
265 	if (!inet_hdr)
266 		return false;
267 
268 	tuple->src.u.udp.port = inet_hdr->sport;
269 	tuple->dst.u.udp.port = inet_hdr->dport;
270 	return true;
271 }
272 
273 static bool
274 nf_ct_get_tuple(const struct sk_buff *skb,
275 		unsigned int nhoff,
276 		unsigned int dataoff,
277 		u_int16_t l3num,
278 		u_int8_t protonum,
279 		struct net *net,
280 		struct nf_conntrack_tuple *tuple)
281 {
282 	unsigned int size;
283 	const __be32 *ap;
284 	__be32 _addrs[8];
285 
286 	memset(tuple, 0, sizeof(*tuple));
287 
288 	tuple->src.l3num = l3num;
289 	switch (l3num) {
290 	case NFPROTO_IPV4:
291 		nhoff += offsetof(struct iphdr, saddr);
292 		size = 2 * sizeof(__be32);
293 		break;
294 	case NFPROTO_IPV6:
295 		nhoff += offsetof(struct ipv6hdr, saddr);
296 		size = sizeof(_addrs);
297 		break;
298 	default:
299 		return true;
300 	}
301 
302 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
303 	if (!ap)
304 		return false;
305 
306 	switch (l3num) {
307 	case NFPROTO_IPV4:
308 		tuple->src.u3.ip = ap[0];
309 		tuple->dst.u3.ip = ap[1];
310 		break;
311 	case NFPROTO_IPV6:
312 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
313 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
314 		break;
315 	}
316 
317 	tuple->dst.protonum = protonum;
318 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
319 
320 	switch (protonum) {
321 #if IS_ENABLED(CONFIG_IPV6)
322 	case IPPROTO_ICMPV6:
323 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
324 #endif
325 	case IPPROTO_ICMP:
326 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
327 #ifdef CONFIG_NF_CT_PROTO_GRE
328 	case IPPROTO_GRE:
329 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
330 #endif
331 	case IPPROTO_TCP:
332 	case IPPROTO_UDP: /* fallthrough */
333 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
334 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
335 	case IPPROTO_UDPLITE:
336 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_SCTP
339 	case IPPROTO_SCTP:
340 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_DCCP
343 	case IPPROTO_DCCP:
344 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
345 #endif
346 	default:
347 		break;
348 	}
349 
350 	return true;
351 }
352 
353 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
354 			    u_int8_t *protonum)
355 {
356 	int dataoff = -1;
357 	const struct iphdr *iph;
358 	struct iphdr _iph;
359 
360 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
361 	if (!iph)
362 		return -1;
363 
364 	/* Conntrack defragments packets, we might still see fragments
365 	 * inside ICMP packets though.
366 	 */
367 	if (iph->frag_off & htons(IP_OFFSET))
368 		return -1;
369 
370 	dataoff = nhoff + (iph->ihl << 2);
371 	*protonum = iph->protocol;
372 
373 	/* Check bogus IP headers */
374 	if (dataoff > skb->len) {
375 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
376 			 nhoff, iph->ihl << 2, skb->len);
377 		return -1;
378 	}
379 	return dataoff;
380 }
381 
382 #if IS_ENABLED(CONFIG_IPV6)
383 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
384 			    u8 *protonum)
385 {
386 	int protoff = -1;
387 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
388 	__be16 frag_off;
389 	u8 nexthdr;
390 
391 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
392 			  &nexthdr, sizeof(nexthdr)) != 0) {
393 		pr_debug("can't get nexthdr\n");
394 		return -1;
395 	}
396 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
397 	/*
398 	 * (protoff == skb->len) means the packet has not data, just
399 	 * IPv6 and possibly extensions headers, but it is tracked anyway
400 	 */
401 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
402 		pr_debug("can't find proto in pkt\n");
403 		return -1;
404 	}
405 
406 	*protonum = nexthdr;
407 	return protoff;
408 }
409 #endif
410 
411 static int get_l4proto(const struct sk_buff *skb,
412 		       unsigned int nhoff, u8 pf, u8 *l4num)
413 {
414 	switch (pf) {
415 	case NFPROTO_IPV4:
416 		return ipv4_get_l4proto(skb, nhoff, l4num);
417 #if IS_ENABLED(CONFIG_IPV6)
418 	case NFPROTO_IPV6:
419 		return ipv6_get_l4proto(skb, nhoff, l4num);
420 #endif
421 	default:
422 		*l4num = 0;
423 		break;
424 	}
425 	return -1;
426 }
427 
428 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
429 		       u_int16_t l3num,
430 		       struct net *net, struct nf_conntrack_tuple *tuple)
431 {
432 	u8 protonum;
433 	int protoff;
434 
435 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
436 	if (protoff <= 0)
437 		return false;
438 
439 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
440 }
441 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
442 
443 bool
444 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
445 		   const struct nf_conntrack_tuple *orig)
446 {
447 	memset(inverse, 0, sizeof(*inverse));
448 
449 	inverse->src.l3num = orig->src.l3num;
450 
451 	switch (orig->src.l3num) {
452 	case NFPROTO_IPV4:
453 		inverse->src.u3.ip = orig->dst.u3.ip;
454 		inverse->dst.u3.ip = orig->src.u3.ip;
455 		break;
456 	case NFPROTO_IPV6:
457 		inverse->src.u3.in6 = orig->dst.u3.in6;
458 		inverse->dst.u3.in6 = orig->src.u3.in6;
459 		break;
460 	default:
461 		break;
462 	}
463 
464 	inverse->dst.dir = !orig->dst.dir;
465 
466 	inverse->dst.protonum = orig->dst.protonum;
467 
468 	switch (orig->dst.protonum) {
469 	case IPPROTO_ICMP:
470 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
471 #if IS_ENABLED(CONFIG_IPV6)
472 	case IPPROTO_ICMPV6:
473 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
474 #endif
475 	}
476 
477 	inverse->src.u.all = orig->dst.u.all;
478 	inverse->dst.u.all = orig->src.u.all;
479 	return true;
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
482 
483 /* Generate a almost-unique pseudo-id for a given conntrack.
484  *
485  * intentionally doesn't re-use any of the seeds used for hash
486  * table location, we assume id gets exposed to userspace.
487  *
488  * Following nf_conn items do not change throughout lifetime
489  * of the nf_conn:
490  *
491  * 1. nf_conn address
492  * 2. nf_conn->master address (normally NULL)
493  * 3. the associated net namespace
494  * 4. the original direction tuple
495  */
496 u32 nf_ct_get_id(const struct nf_conn *ct)
497 {
498 	static siphash_aligned_key_t ct_id_seed;
499 	unsigned long a, b, c, d;
500 
501 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
502 
503 	a = (unsigned long)ct;
504 	b = (unsigned long)ct->master;
505 	c = (unsigned long)nf_ct_net(ct);
506 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
507 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
508 				   &ct_id_seed);
509 #ifdef CONFIG_64BIT
510 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
511 #else
512 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
513 #endif
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_get_id);
516 
517 static void
518 clean_from_lists(struct nf_conn *ct)
519 {
520 	pr_debug("clean_from_lists(%p)\n", ct);
521 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
522 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
523 
524 	/* Destroy all pending expectations */
525 	nf_ct_remove_expectations(ct);
526 }
527 
528 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
529 
530 /* Released via nf_ct_destroy() */
531 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
532 				 const struct nf_conntrack_zone *zone,
533 				 gfp_t flags)
534 {
535 	struct nf_conn *tmpl, *p;
536 
537 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
538 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
539 		if (!tmpl)
540 			return NULL;
541 
542 		p = tmpl;
543 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
544 		if (tmpl != p) {
545 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
546 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
547 		}
548 	} else {
549 		tmpl = kzalloc(sizeof(*tmpl), flags);
550 		if (!tmpl)
551 			return NULL;
552 	}
553 
554 	tmpl->status = IPS_TEMPLATE;
555 	write_pnet(&tmpl->ct_net, net);
556 	nf_ct_zone_add(tmpl, zone);
557 	refcount_set(&tmpl->ct_general.use, 1);
558 
559 	return tmpl;
560 }
561 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
562 
563 void nf_ct_tmpl_free(struct nf_conn *tmpl)
564 {
565 	kfree(tmpl->ext);
566 
567 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
568 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
569 	else
570 		kfree(tmpl);
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
573 
574 static void destroy_gre_conntrack(struct nf_conn *ct)
575 {
576 #ifdef CONFIG_NF_CT_PROTO_GRE
577 	struct nf_conn *master = ct->master;
578 
579 	if (master)
580 		nf_ct_gre_keymap_destroy(master);
581 #endif
582 }
583 
584 void nf_ct_destroy(struct nf_conntrack *nfct)
585 {
586 	struct nf_conn *ct = (struct nf_conn *)nfct;
587 
588 	pr_debug("%s(%p)\n", __func__, ct);
589 	WARN_ON(refcount_read(&nfct->use) != 0);
590 
591 	if (unlikely(nf_ct_is_template(ct))) {
592 		nf_ct_tmpl_free(ct);
593 		return;
594 	}
595 
596 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
597 		destroy_gre_conntrack(ct);
598 
599 	/* Expectations will have been removed in clean_from_lists,
600 	 * except TFTP can create an expectation on the first packet,
601 	 * before connection is in the list, so we need to clean here,
602 	 * too.
603 	 */
604 	nf_ct_remove_expectations(ct);
605 
606 	if (ct->master)
607 		nf_ct_put(ct->master);
608 
609 	pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
610 	nf_conntrack_free(ct);
611 }
612 EXPORT_SYMBOL(nf_ct_destroy);
613 
614 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
615 {
616 	struct net *net = nf_ct_net(ct);
617 	unsigned int hash, reply_hash;
618 	unsigned int sequence;
619 
620 	do {
621 		sequence = read_seqcount_begin(&nf_conntrack_generation);
622 		hash = hash_conntrack(net,
623 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
624 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
625 		reply_hash = hash_conntrack(net,
626 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
627 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
628 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
629 
630 	clean_from_lists(ct);
631 	nf_conntrack_double_unlock(hash, reply_hash);
632 }
633 
634 static void nf_ct_delete_from_lists(struct nf_conn *ct)
635 {
636 	nf_ct_helper_destroy(ct);
637 	local_bh_disable();
638 
639 	__nf_ct_delete_from_lists(ct);
640 
641 	local_bh_enable();
642 }
643 
644 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
645 {
646 #ifdef CONFIG_NF_CONNTRACK_EVENTS
647 	struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
648 
649 	spin_lock(&cnet->ecache.dying_lock);
650 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
651 				 &cnet->ecache.dying_list);
652 	spin_unlock(&cnet->ecache.dying_lock);
653 #endif
654 }
655 
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 	struct nf_conn_tstamp *tstamp;
659 	struct net *net;
660 
661 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
662 		return false;
663 
664 	tstamp = nf_conn_tstamp_find(ct);
665 	if (tstamp) {
666 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
667 
668 		tstamp->stop = ktime_get_real_ns();
669 		if (timeout < 0)
670 			tstamp->stop -= jiffies_to_nsecs(-timeout);
671 	}
672 
673 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
674 				    portid, report) < 0) {
675 		/* destroy event was not delivered. nf_ct_put will
676 		 * be done by event cache worker on redelivery.
677 		 */
678 		nf_ct_helper_destroy(ct);
679 		local_bh_disable();
680 		__nf_ct_delete_from_lists(ct);
681 		nf_ct_add_to_ecache_list(ct);
682 		local_bh_enable();
683 
684 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
685 		return false;
686 	}
687 
688 	net = nf_ct_net(ct);
689 	if (nf_conntrack_ecache_dwork_pending(net))
690 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
691 	nf_ct_delete_from_lists(ct);
692 	nf_ct_put(ct);
693 	return true;
694 }
695 EXPORT_SYMBOL_GPL(nf_ct_delete);
696 
697 static inline bool
698 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
699 		const struct nf_conntrack_tuple *tuple,
700 		const struct nf_conntrack_zone *zone,
701 		const struct net *net)
702 {
703 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
704 
705 	/* A conntrack can be recreated with the equal tuple,
706 	 * so we need to check that the conntrack is confirmed
707 	 */
708 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
709 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
710 	       nf_ct_is_confirmed(ct) &&
711 	       net_eq(net, nf_ct_net(ct));
712 }
713 
714 static inline bool
715 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
716 {
717 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
718 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
719 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
720 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
721 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
722 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
723 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
724 }
725 
726 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
727 static void nf_ct_gc_expired(struct nf_conn *ct)
728 {
729 	if (!refcount_inc_not_zero(&ct->ct_general.use))
730 		return;
731 
732 	if (nf_ct_should_gc(ct))
733 		nf_ct_kill(ct);
734 
735 	nf_ct_put(ct);
736 }
737 
738 /*
739  * Warning :
740  * - Caller must take a reference on returned object
741  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
742  */
743 static struct nf_conntrack_tuple_hash *
744 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
745 		      const struct nf_conntrack_tuple *tuple, u32 hash)
746 {
747 	struct nf_conntrack_tuple_hash *h;
748 	struct hlist_nulls_head *ct_hash;
749 	struct hlist_nulls_node *n;
750 	unsigned int bucket, hsize;
751 
752 begin:
753 	nf_conntrack_get_ht(&ct_hash, &hsize);
754 	bucket = reciprocal_scale(hash, hsize);
755 
756 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
757 		struct nf_conn *ct;
758 
759 		ct = nf_ct_tuplehash_to_ctrack(h);
760 		if (nf_ct_is_expired(ct)) {
761 			nf_ct_gc_expired(ct);
762 			continue;
763 		}
764 
765 		if (nf_ct_key_equal(h, tuple, zone, net))
766 			return h;
767 	}
768 	/*
769 	 * if the nulls value we got at the end of this lookup is
770 	 * not the expected one, we must restart lookup.
771 	 * We probably met an item that was moved to another chain.
772 	 */
773 	if (get_nulls_value(n) != bucket) {
774 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
775 		goto begin;
776 	}
777 
778 	return NULL;
779 }
780 
781 /* Find a connection corresponding to a tuple. */
782 static struct nf_conntrack_tuple_hash *
783 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
784 			const struct nf_conntrack_tuple *tuple, u32 hash)
785 {
786 	struct nf_conntrack_tuple_hash *h;
787 	struct nf_conn *ct;
788 
789 	rcu_read_lock();
790 
791 	h = ____nf_conntrack_find(net, zone, tuple, hash);
792 	if (h) {
793 		/* We have a candidate that matches the tuple we're interested
794 		 * in, try to obtain a reference and re-check tuple
795 		 */
796 		ct = nf_ct_tuplehash_to_ctrack(h);
797 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
798 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
799 				goto found;
800 
801 			/* TYPESAFE_BY_RCU recycled the candidate */
802 			nf_ct_put(ct);
803 		}
804 
805 		h = NULL;
806 	}
807 found:
808 	rcu_read_unlock();
809 
810 	return h;
811 }
812 
813 struct nf_conntrack_tuple_hash *
814 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
815 		      const struct nf_conntrack_tuple *tuple)
816 {
817 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
818 	struct nf_conntrack_tuple_hash *thash;
819 
820 	thash = __nf_conntrack_find_get(net, zone, tuple,
821 					hash_conntrack_raw(tuple, zone_id, net));
822 
823 	if (thash)
824 		return thash;
825 
826 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
827 	if (rid != zone_id)
828 		return __nf_conntrack_find_get(net, zone, tuple,
829 					       hash_conntrack_raw(tuple, rid, net));
830 	return thash;
831 }
832 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
833 
834 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
835 				       unsigned int hash,
836 				       unsigned int reply_hash)
837 {
838 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
839 			   &nf_conntrack_hash[hash]);
840 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
841 			   &nf_conntrack_hash[reply_hash]);
842 }
843 
844 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
845 {
846 	/* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
847 	 * may contain stale pointers to e.g. helper that has been removed.
848 	 *
849 	 * The helper can't clear this because the nf_conn object isn't in
850 	 * any hash and synchronize_rcu() isn't enough because associated skb
851 	 * might sit in a queue.
852 	 */
853 	return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
854 }
855 
856 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
857 {
858 	if (!ext)
859 		return true;
860 
861 	if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
862 		return false;
863 
864 	/* inserted into conntrack table, nf_ct_iterate_cleanup()
865 	 * will find it.  Disable nf_ct_ext_find() id check.
866 	 */
867 	WRITE_ONCE(ext->gen_id, 0);
868 	return true;
869 }
870 
871 int
872 nf_conntrack_hash_check_insert(struct nf_conn *ct)
873 {
874 	const struct nf_conntrack_zone *zone;
875 	struct net *net = nf_ct_net(ct);
876 	unsigned int hash, reply_hash;
877 	struct nf_conntrack_tuple_hash *h;
878 	struct hlist_nulls_node *n;
879 	unsigned int max_chainlen;
880 	unsigned int chainlen = 0;
881 	unsigned int sequence;
882 	int err = -EEXIST;
883 
884 	zone = nf_ct_zone(ct);
885 
886 	if (!nf_ct_ext_valid_pre(ct->ext)) {
887 		NF_CT_STAT_INC(net, insert_failed);
888 		return -ETIMEDOUT;
889 	}
890 
891 	local_bh_disable();
892 	do {
893 		sequence = read_seqcount_begin(&nf_conntrack_generation);
894 		hash = hash_conntrack(net,
895 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
896 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
897 		reply_hash = hash_conntrack(net,
898 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
899 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
900 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
901 
902 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
903 
904 	/* See if there's one in the list already, including reverse */
905 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
906 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
907 				    zone, net))
908 			goto out;
909 
910 		if (chainlen++ > max_chainlen)
911 			goto chaintoolong;
912 	}
913 
914 	chainlen = 0;
915 
916 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
917 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
918 				    zone, net))
919 			goto out;
920 		if (chainlen++ > max_chainlen)
921 			goto chaintoolong;
922 	}
923 
924 	smp_wmb();
925 	/* The caller holds a reference to this object */
926 	refcount_set(&ct->ct_general.use, 2);
927 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
928 	nf_conntrack_double_unlock(hash, reply_hash);
929 	NF_CT_STAT_INC(net, insert);
930 	local_bh_enable();
931 
932 	if (!nf_ct_ext_valid_post(ct->ext)) {
933 		nf_ct_kill(ct);
934 		NF_CT_STAT_INC(net, drop);
935 		return -ETIMEDOUT;
936 	}
937 
938 	return 0;
939 chaintoolong:
940 	NF_CT_STAT_INC(net, chaintoolong);
941 	err = -ENOSPC;
942 out:
943 	nf_conntrack_double_unlock(hash, reply_hash);
944 	local_bh_enable();
945 	return err;
946 }
947 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
948 
949 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
950 		    unsigned int bytes)
951 {
952 	struct nf_conn_acct *acct;
953 
954 	acct = nf_conn_acct_find(ct);
955 	if (acct) {
956 		struct nf_conn_counter *counter = acct->counter;
957 
958 		atomic64_add(packets, &counter[dir].packets);
959 		atomic64_add(bytes, &counter[dir].bytes);
960 	}
961 }
962 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
963 
964 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
965 			     const struct nf_conn *loser_ct)
966 {
967 	struct nf_conn_acct *acct;
968 
969 	acct = nf_conn_acct_find(loser_ct);
970 	if (acct) {
971 		struct nf_conn_counter *counter = acct->counter;
972 		unsigned int bytes;
973 
974 		/* u32 should be fine since we must have seen one packet. */
975 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
976 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
977 	}
978 }
979 
980 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
981 {
982 	struct nf_conn_tstamp *tstamp;
983 
984 	refcount_inc(&ct->ct_general.use);
985 
986 	/* set conntrack timestamp, if enabled. */
987 	tstamp = nf_conn_tstamp_find(ct);
988 	if (tstamp)
989 		tstamp->start = ktime_get_real_ns();
990 }
991 
992 /* caller must hold locks to prevent concurrent changes */
993 static int __nf_ct_resolve_clash(struct sk_buff *skb,
994 				 struct nf_conntrack_tuple_hash *h)
995 {
996 	/* This is the conntrack entry already in hashes that won race. */
997 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
998 	enum ip_conntrack_info ctinfo;
999 	struct nf_conn *loser_ct;
1000 
1001 	loser_ct = nf_ct_get(skb, &ctinfo);
1002 
1003 	if (nf_ct_is_dying(ct))
1004 		return NF_DROP;
1005 
1006 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1007 	    nf_ct_match(ct, loser_ct)) {
1008 		struct net *net = nf_ct_net(ct);
1009 
1010 		nf_conntrack_get(&ct->ct_general);
1011 
1012 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1013 		nf_ct_put(loser_ct);
1014 		nf_ct_set(skb, ct, ctinfo);
1015 
1016 		NF_CT_STAT_INC(net, clash_resolve);
1017 		return NF_ACCEPT;
1018 	}
1019 
1020 	return NF_DROP;
1021 }
1022 
1023 /**
1024  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1025  *
1026  * @skb: skb that causes the collision
1027  * @repl_idx: hash slot for reply direction
1028  *
1029  * Called when origin or reply direction had a clash.
1030  * The skb can be handled without packet drop provided the reply direction
1031  * is unique or there the existing entry has the identical tuple in both
1032  * directions.
1033  *
1034  * Caller must hold conntrack table locks to prevent concurrent updates.
1035  *
1036  * Returns NF_DROP if the clash could not be handled.
1037  */
1038 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1039 {
1040 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1041 	const struct nf_conntrack_zone *zone;
1042 	struct nf_conntrack_tuple_hash *h;
1043 	struct hlist_nulls_node *n;
1044 	struct net *net;
1045 
1046 	zone = nf_ct_zone(loser_ct);
1047 	net = nf_ct_net(loser_ct);
1048 
1049 	/* Reply direction must never result in a clash, unless both origin
1050 	 * and reply tuples are identical.
1051 	 */
1052 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1053 		if (nf_ct_key_equal(h,
1054 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1055 				    zone, net))
1056 			return __nf_ct_resolve_clash(skb, h);
1057 	}
1058 
1059 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1060 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1061 
1062 	/* IPS_NAT_CLASH removes the entry automatically on the first
1063 	 * reply.  Also prevents UDP tracker from moving the entry to
1064 	 * ASSURED state, i.e. the entry can always be evicted under
1065 	 * pressure.
1066 	 */
1067 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1068 
1069 	__nf_conntrack_insert_prepare(loser_ct);
1070 
1071 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1072 	 * already in the table.  This also hides the clashing entry from
1073 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1074 	 */
1075 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1076 
1077 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1078 				 &nf_conntrack_hash[repl_idx]);
1079 
1080 	NF_CT_STAT_INC(net, clash_resolve);
1081 	return NF_ACCEPT;
1082 }
1083 
1084 /**
1085  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1086  *
1087  * @skb: skb that causes the clash
1088  * @h: tuplehash of the clashing entry already in table
1089  * @reply_hash: hash slot for reply direction
1090  *
1091  * A conntrack entry can be inserted to the connection tracking table
1092  * if there is no existing entry with an identical tuple.
1093  *
1094  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1095  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1096  * will find the already-existing entry.
1097  *
1098  * The major problem with such packet drop is the extra delay added by
1099  * the packet loss -- it will take some time for a retransmit to occur
1100  * (or the sender to time out when waiting for a reply).
1101  *
1102  * This function attempts to handle the situation without packet drop.
1103  *
1104  * If @skb has no NAT transformation or if the colliding entries are
1105  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1106  * and @skb is associated with the conntrack entry already in the table.
1107  *
1108  * Failing that, the new, unconfirmed conntrack is still added to the table
1109  * provided that the collision only occurs in the ORIGINAL direction.
1110  * The new entry will be added only in the non-clashing REPLY direction,
1111  * so packets in the ORIGINAL direction will continue to match the existing
1112  * entry.  The new entry will also have a fixed timeout so it expires --
1113  * due to the collision, it will only see reply traffic.
1114  *
1115  * Returns NF_DROP if the clash could not be resolved.
1116  */
1117 static __cold noinline int
1118 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1119 		    u32 reply_hash)
1120 {
1121 	/* This is the conntrack entry already in hashes that won race. */
1122 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1123 	const struct nf_conntrack_l4proto *l4proto;
1124 	enum ip_conntrack_info ctinfo;
1125 	struct nf_conn *loser_ct;
1126 	struct net *net;
1127 	int ret;
1128 
1129 	loser_ct = nf_ct_get(skb, &ctinfo);
1130 	net = nf_ct_net(loser_ct);
1131 
1132 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1133 	if (!l4proto->allow_clash)
1134 		goto drop;
1135 
1136 	ret = __nf_ct_resolve_clash(skb, h);
1137 	if (ret == NF_ACCEPT)
1138 		return ret;
1139 
1140 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1141 	if (ret == NF_ACCEPT)
1142 		return ret;
1143 
1144 drop:
1145 	NF_CT_STAT_INC(net, drop);
1146 	NF_CT_STAT_INC(net, insert_failed);
1147 	return NF_DROP;
1148 }
1149 
1150 /* Confirm a connection given skb; places it in hash table */
1151 int
1152 __nf_conntrack_confirm(struct sk_buff *skb)
1153 {
1154 	unsigned int chainlen = 0, sequence, max_chainlen;
1155 	const struct nf_conntrack_zone *zone;
1156 	unsigned int hash, reply_hash;
1157 	struct nf_conntrack_tuple_hash *h;
1158 	struct nf_conn *ct;
1159 	struct nf_conn_help *help;
1160 	struct hlist_nulls_node *n;
1161 	enum ip_conntrack_info ctinfo;
1162 	struct net *net;
1163 	int ret = NF_DROP;
1164 
1165 	ct = nf_ct_get(skb, &ctinfo);
1166 	net = nf_ct_net(ct);
1167 
1168 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1169 	   ICMP/TCP RST packets in other direction.  Actual packet
1170 	   which created connection will be IP_CT_NEW or for an
1171 	   expected connection, IP_CT_RELATED. */
1172 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1173 		return NF_ACCEPT;
1174 
1175 	zone = nf_ct_zone(ct);
1176 	local_bh_disable();
1177 
1178 	do {
1179 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1180 		/* reuse the hash saved before */
1181 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1182 		hash = scale_hash(hash);
1183 		reply_hash = hash_conntrack(net,
1184 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1185 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1186 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1187 
1188 	/* We're not in hash table, and we refuse to set up related
1189 	 * connections for unconfirmed conns.  But packet copies and
1190 	 * REJECT will give spurious warnings here.
1191 	 */
1192 
1193 	/* Another skb with the same unconfirmed conntrack may
1194 	 * win the race. This may happen for bridge(br_flood)
1195 	 * or broadcast/multicast packets do skb_clone with
1196 	 * unconfirmed conntrack.
1197 	 */
1198 	if (unlikely(nf_ct_is_confirmed(ct))) {
1199 		WARN_ON_ONCE(1);
1200 		nf_conntrack_double_unlock(hash, reply_hash);
1201 		local_bh_enable();
1202 		return NF_DROP;
1203 	}
1204 
1205 	if (!nf_ct_ext_valid_pre(ct->ext)) {
1206 		NF_CT_STAT_INC(net, insert_failed);
1207 		goto dying;
1208 	}
1209 
1210 	pr_debug("Confirming conntrack %p\n", ct);
1211 	/* We have to check the DYING flag after unlink to prevent
1212 	 * a race against nf_ct_get_next_corpse() possibly called from
1213 	 * user context, else we insert an already 'dead' hash, blocking
1214 	 * further use of that particular connection -JM.
1215 	 */
1216 	ct->status |= IPS_CONFIRMED;
1217 
1218 	if (unlikely(nf_ct_is_dying(ct))) {
1219 		NF_CT_STAT_INC(net, insert_failed);
1220 		goto dying;
1221 	}
1222 
1223 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1224 	/* See if there's one in the list already, including reverse:
1225 	   NAT could have grabbed it without realizing, since we're
1226 	   not in the hash.  If there is, we lost race. */
1227 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1228 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1229 				    zone, net))
1230 			goto out;
1231 		if (chainlen++ > max_chainlen)
1232 			goto chaintoolong;
1233 	}
1234 
1235 	chainlen = 0;
1236 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1237 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1238 				    zone, net))
1239 			goto out;
1240 		if (chainlen++ > max_chainlen) {
1241 chaintoolong:
1242 			NF_CT_STAT_INC(net, chaintoolong);
1243 			NF_CT_STAT_INC(net, insert_failed);
1244 			ret = NF_DROP;
1245 			goto dying;
1246 		}
1247 	}
1248 
1249 	/* Timer relative to confirmation time, not original
1250 	   setting time, otherwise we'd get timer wrap in
1251 	   weird delay cases. */
1252 	ct->timeout += nfct_time_stamp;
1253 
1254 	__nf_conntrack_insert_prepare(ct);
1255 
1256 	/* Since the lookup is lockless, hash insertion must be done after
1257 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1258 	 * guarantee that no other CPU can find the conntrack before the above
1259 	 * stores are visible.
1260 	 */
1261 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1262 	nf_conntrack_double_unlock(hash, reply_hash);
1263 	local_bh_enable();
1264 
1265 	/* ext area is still valid (rcu read lock is held,
1266 	 * but will go out of scope soon, we need to remove
1267 	 * this conntrack again.
1268 	 */
1269 	if (!nf_ct_ext_valid_post(ct->ext)) {
1270 		nf_ct_kill(ct);
1271 		NF_CT_STAT_INC(net, drop);
1272 		return NF_DROP;
1273 	}
1274 
1275 	help = nfct_help(ct);
1276 	if (help && help->helper)
1277 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1278 
1279 	nf_conntrack_event_cache(master_ct(ct) ?
1280 				 IPCT_RELATED : IPCT_NEW, ct);
1281 	return NF_ACCEPT;
1282 
1283 out:
1284 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1285 dying:
1286 	nf_conntrack_double_unlock(hash, reply_hash);
1287 	local_bh_enable();
1288 	return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1291 
1292 /* Returns true if a connection correspondings to the tuple (required
1293    for NAT). */
1294 int
1295 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1296 			 const struct nf_conn *ignored_conntrack)
1297 {
1298 	struct net *net = nf_ct_net(ignored_conntrack);
1299 	const struct nf_conntrack_zone *zone;
1300 	struct nf_conntrack_tuple_hash *h;
1301 	struct hlist_nulls_head *ct_hash;
1302 	unsigned int hash, hsize;
1303 	struct hlist_nulls_node *n;
1304 	struct nf_conn *ct;
1305 
1306 	zone = nf_ct_zone(ignored_conntrack);
1307 
1308 	rcu_read_lock();
1309  begin:
1310 	nf_conntrack_get_ht(&ct_hash, &hsize);
1311 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1312 
1313 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1314 		ct = nf_ct_tuplehash_to_ctrack(h);
1315 
1316 		if (ct == ignored_conntrack)
1317 			continue;
1318 
1319 		if (nf_ct_is_expired(ct)) {
1320 			nf_ct_gc_expired(ct);
1321 			continue;
1322 		}
1323 
1324 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1325 			/* Tuple is taken already, so caller will need to find
1326 			 * a new source port to use.
1327 			 *
1328 			 * Only exception:
1329 			 * If the *original tuples* are identical, then both
1330 			 * conntracks refer to the same flow.
1331 			 * This is a rare situation, it can occur e.g. when
1332 			 * more than one UDP packet is sent from same socket
1333 			 * in different threads.
1334 			 *
1335 			 * Let nf_ct_resolve_clash() deal with this later.
1336 			 */
1337 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1338 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1339 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1340 				continue;
1341 
1342 			NF_CT_STAT_INC_ATOMIC(net, found);
1343 			rcu_read_unlock();
1344 			return 1;
1345 		}
1346 	}
1347 
1348 	if (get_nulls_value(n) != hash) {
1349 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1350 		goto begin;
1351 	}
1352 
1353 	rcu_read_unlock();
1354 
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1358 
1359 #define NF_CT_EVICTION_RANGE	8
1360 
1361 /* There's a small race here where we may free a just-assured
1362    connection.  Too bad: we're in trouble anyway. */
1363 static unsigned int early_drop_list(struct net *net,
1364 				    struct hlist_nulls_head *head)
1365 {
1366 	struct nf_conntrack_tuple_hash *h;
1367 	struct hlist_nulls_node *n;
1368 	unsigned int drops = 0;
1369 	struct nf_conn *tmp;
1370 
1371 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1372 		tmp = nf_ct_tuplehash_to_ctrack(h);
1373 
1374 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1375 			continue;
1376 
1377 		if (nf_ct_is_expired(tmp)) {
1378 			nf_ct_gc_expired(tmp);
1379 			continue;
1380 		}
1381 
1382 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1383 		    !net_eq(nf_ct_net(tmp), net) ||
1384 		    nf_ct_is_dying(tmp))
1385 			continue;
1386 
1387 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1388 			continue;
1389 
1390 		/* kill only if still in same netns -- might have moved due to
1391 		 * SLAB_TYPESAFE_BY_RCU rules.
1392 		 *
1393 		 * We steal the timer reference.  If that fails timer has
1394 		 * already fired or someone else deleted it. Just drop ref
1395 		 * and move to next entry.
1396 		 */
1397 		if (net_eq(nf_ct_net(tmp), net) &&
1398 		    nf_ct_is_confirmed(tmp) &&
1399 		    nf_ct_delete(tmp, 0, 0))
1400 			drops++;
1401 
1402 		nf_ct_put(tmp);
1403 	}
1404 
1405 	return drops;
1406 }
1407 
1408 static noinline int early_drop(struct net *net, unsigned int hash)
1409 {
1410 	unsigned int i, bucket;
1411 
1412 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1413 		struct hlist_nulls_head *ct_hash;
1414 		unsigned int hsize, drops;
1415 
1416 		rcu_read_lock();
1417 		nf_conntrack_get_ht(&ct_hash, &hsize);
1418 		if (!i)
1419 			bucket = reciprocal_scale(hash, hsize);
1420 		else
1421 			bucket = (bucket + 1) % hsize;
1422 
1423 		drops = early_drop_list(net, &ct_hash[bucket]);
1424 		rcu_read_unlock();
1425 
1426 		if (drops) {
1427 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1428 			return true;
1429 		}
1430 	}
1431 
1432 	return false;
1433 }
1434 
1435 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1436 {
1437 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1438 }
1439 
1440 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1441 {
1442 	const struct nf_conntrack_l4proto *l4proto;
1443 
1444 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1445 		return true;
1446 
1447 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1448 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1449 		return true;
1450 
1451 	return false;
1452 }
1453 
1454 static void gc_worker(struct work_struct *work)
1455 {
1456 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1457 	u32 end_time, start_time = nfct_time_stamp;
1458 	struct conntrack_gc_work *gc_work;
1459 	unsigned int expired_count = 0;
1460 	unsigned long next_run;
1461 	s32 delta_time;
1462 
1463 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1464 
1465 	i = gc_work->next_bucket;
1466 	if (gc_work->early_drop)
1467 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1468 
1469 	if (i == 0) {
1470 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1471 		gc_work->start_time = start_time;
1472 	}
1473 
1474 	next_run = gc_work->avg_timeout;
1475 
1476 	end_time = start_time + GC_SCAN_MAX_DURATION;
1477 
1478 	do {
1479 		struct nf_conntrack_tuple_hash *h;
1480 		struct hlist_nulls_head *ct_hash;
1481 		struct hlist_nulls_node *n;
1482 		struct nf_conn *tmp;
1483 
1484 		rcu_read_lock();
1485 
1486 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1487 		if (i >= hashsz) {
1488 			rcu_read_unlock();
1489 			break;
1490 		}
1491 
1492 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1493 			struct nf_conntrack_net *cnet;
1494 			unsigned long expires;
1495 			struct net *net;
1496 
1497 			tmp = nf_ct_tuplehash_to_ctrack(h);
1498 
1499 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1500 				nf_ct_offload_timeout(tmp);
1501 				continue;
1502 			}
1503 
1504 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1505 				rcu_read_unlock();
1506 
1507 				gc_work->next_bucket = i;
1508 				gc_work->avg_timeout = next_run;
1509 
1510 				delta_time = nfct_time_stamp - gc_work->start_time;
1511 
1512 				/* re-sched immediately if total cycle time is exceeded */
1513 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1514 				goto early_exit;
1515 			}
1516 
1517 			if (nf_ct_is_expired(tmp)) {
1518 				nf_ct_gc_expired(tmp);
1519 				expired_count++;
1520 				continue;
1521 			}
1522 
1523 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1524 			next_run += expires;
1525 			next_run /= 2u;
1526 
1527 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1528 				continue;
1529 
1530 			net = nf_ct_net(tmp);
1531 			cnet = nf_ct_pernet(net);
1532 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1533 				continue;
1534 
1535 			/* need to take reference to avoid possible races */
1536 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1537 				continue;
1538 
1539 			if (gc_worker_skip_ct(tmp)) {
1540 				nf_ct_put(tmp);
1541 				continue;
1542 			}
1543 
1544 			if (gc_worker_can_early_drop(tmp)) {
1545 				nf_ct_kill(tmp);
1546 				expired_count++;
1547 			}
1548 
1549 			nf_ct_put(tmp);
1550 		}
1551 
1552 		/* could check get_nulls_value() here and restart if ct
1553 		 * was moved to another chain.  But given gc is best-effort
1554 		 * we will just continue with next hash slot.
1555 		 */
1556 		rcu_read_unlock();
1557 		cond_resched();
1558 		i++;
1559 
1560 		delta_time = nfct_time_stamp - end_time;
1561 		if (delta_time > 0 && i < hashsz) {
1562 			gc_work->avg_timeout = next_run;
1563 			gc_work->next_bucket = i;
1564 			next_run = 0;
1565 			goto early_exit;
1566 		}
1567 	} while (i < hashsz);
1568 
1569 	gc_work->next_bucket = 0;
1570 
1571 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1572 
1573 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1574 	if (next_run > (unsigned long)delta_time)
1575 		next_run -= delta_time;
1576 	else
1577 		next_run = 1;
1578 
1579 early_exit:
1580 	if (gc_work->exiting)
1581 		return;
1582 
1583 	if (next_run)
1584 		gc_work->early_drop = false;
1585 
1586 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1587 }
1588 
1589 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1590 {
1591 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1592 	gc_work->exiting = false;
1593 }
1594 
1595 static struct nf_conn *
1596 __nf_conntrack_alloc(struct net *net,
1597 		     const struct nf_conntrack_zone *zone,
1598 		     const struct nf_conntrack_tuple *orig,
1599 		     const struct nf_conntrack_tuple *repl,
1600 		     gfp_t gfp, u32 hash)
1601 {
1602 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1603 	unsigned int ct_count;
1604 	struct nf_conn *ct;
1605 
1606 	/* We don't want any race condition at early drop stage */
1607 	ct_count = atomic_inc_return(&cnet->count);
1608 
1609 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1610 		if (!early_drop(net, hash)) {
1611 			if (!conntrack_gc_work.early_drop)
1612 				conntrack_gc_work.early_drop = true;
1613 			atomic_dec(&cnet->count);
1614 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1615 			return ERR_PTR(-ENOMEM);
1616 		}
1617 	}
1618 
1619 	/*
1620 	 * Do not use kmem_cache_zalloc(), as this cache uses
1621 	 * SLAB_TYPESAFE_BY_RCU.
1622 	 */
1623 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1624 	if (ct == NULL)
1625 		goto out;
1626 
1627 	spin_lock_init(&ct->lock);
1628 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1629 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1630 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1631 	/* save hash for reusing when confirming */
1632 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1633 	ct->status = 0;
1634 	WRITE_ONCE(ct->timeout, 0);
1635 	write_pnet(&ct->ct_net, net);
1636 	memset_after(ct, 0, __nfct_init_offset);
1637 
1638 	nf_ct_zone_add(ct, zone);
1639 
1640 	/* Because we use RCU lookups, we set ct_general.use to zero before
1641 	 * this is inserted in any list.
1642 	 */
1643 	refcount_set(&ct->ct_general.use, 0);
1644 	return ct;
1645 out:
1646 	atomic_dec(&cnet->count);
1647 	return ERR_PTR(-ENOMEM);
1648 }
1649 
1650 struct nf_conn *nf_conntrack_alloc(struct net *net,
1651 				   const struct nf_conntrack_zone *zone,
1652 				   const struct nf_conntrack_tuple *orig,
1653 				   const struct nf_conntrack_tuple *repl,
1654 				   gfp_t gfp)
1655 {
1656 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1657 }
1658 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1659 
1660 void nf_conntrack_free(struct nf_conn *ct)
1661 {
1662 	struct net *net = nf_ct_net(ct);
1663 	struct nf_conntrack_net *cnet;
1664 
1665 	/* A freed object has refcnt == 0, that's
1666 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1667 	 */
1668 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1669 
1670 	if (ct->status & IPS_SRC_NAT_DONE) {
1671 		const struct nf_nat_hook *nat_hook;
1672 
1673 		rcu_read_lock();
1674 		nat_hook = rcu_dereference(nf_nat_hook);
1675 		if (nat_hook)
1676 			nat_hook->remove_nat_bysrc(ct);
1677 		rcu_read_unlock();
1678 	}
1679 
1680 	kfree(ct->ext);
1681 	kmem_cache_free(nf_conntrack_cachep, ct);
1682 	cnet = nf_ct_pernet(net);
1683 
1684 	smp_mb__before_atomic();
1685 	atomic_dec(&cnet->count);
1686 }
1687 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1688 
1689 
1690 /* Allocate a new conntrack: we return -ENOMEM if classification
1691    failed due to stress.  Otherwise it really is unclassifiable. */
1692 static noinline struct nf_conntrack_tuple_hash *
1693 init_conntrack(struct net *net, struct nf_conn *tmpl,
1694 	       const struct nf_conntrack_tuple *tuple,
1695 	       struct sk_buff *skb,
1696 	       unsigned int dataoff, u32 hash)
1697 {
1698 	struct nf_conn *ct;
1699 	struct nf_conn_help *help;
1700 	struct nf_conntrack_tuple repl_tuple;
1701 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1702 	struct nf_conntrack_ecache *ecache;
1703 #endif
1704 	struct nf_conntrack_expect *exp = NULL;
1705 	const struct nf_conntrack_zone *zone;
1706 	struct nf_conn_timeout *timeout_ext;
1707 	struct nf_conntrack_zone tmp;
1708 	struct nf_conntrack_net *cnet;
1709 
1710 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1711 		pr_debug("Can't invert tuple.\n");
1712 		return NULL;
1713 	}
1714 
1715 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1716 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1717 				  hash);
1718 	if (IS_ERR(ct))
1719 		return (struct nf_conntrack_tuple_hash *)ct;
1720 
1721 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1722 		nf_conntrack_free(ct);
1723 		return ERR_PTR(-ENOMEM);
1724 	}
1725 
1726 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1727 
1728 	if (timeout_ext)
1729 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1730 				      GFP_ATOMIC);
1731 
1732 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1733 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1734 	nf_ct_labels_ext_add(ct);
1735 
1736 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1737 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1738 
1739 	if ((ecache || net->ct.sysctl_events) &&
1740 	    !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1741 				  ecache ? ecache->expmask : 0,
1742 				  GFP_ATOMIC)) {
1743 		nf_conntrack_free(ct);
1744 		return ERR_PTR(-ENOMEM);
1745 	}
1746 #endif
1747 
1748 	cnet = nf_ct_pernet(net);
1749 	if (cnet->expect_count) {
1750 		spin_lock_bh(&nf_conntrack_expect_lock);
1751 		exp = nf_ct_find_expectation(net, zone, tuple);
1752 		if (exp) {
1753 			pr_debug("expectation arrives ct=%p exp=%p\n",
1754 				 ct, exp);
1755 			/* Welcome, Mr. Bond.  We've been expecting you... */
1756 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1757 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1758 			ct->master = exp->master;
1759 			if (exp->helper) {
1760 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1761 				if (help)
1762 					rcu_assign_pointer(help->helper, exp->helper);
1763 			}
1764 
1765 #ifdef CONFIG_NF_CONNTRACK_MARK
1766 			ct->mark = exp->master->mark;
1767 #endif
1768 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1769 			ct->secmark = exp->master->secmark;
1770 #endif
1771 			NF_CT_STAT_INC(net, expect_new);
1772 		}
1773 		spin_unlock_bh(&nf_conntrack_expect_lock);
1774 	}
1775 	if (!exp)
1776 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1777 
1778 	/* Now it is going to be associated with an sk_buff, set refcount to 1. */
1779 	refcount_set(&ct->ct_general.use, 1);
1780 
1781 	if (exp) {
1782 		if (exp->expectfn)
1783 			exp->expectfn(ct, exp);
1784 		nf_ct_expect_put(exp);
1785 	}
1786 
1787 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1788 }
1789 
1790 /* On success, returns 0, sets skb->_nfct | ctinfo */
1791 static int
1792 resolve_normal_ct(struct nf_conn *tmpl,
1793 		  struct sk_buff *skb,
1794 		  unsigned int dataoff,
1795 		  u_int8_t protonum,
1796 		  const struct nf_hook_state *state)
1797 {
1798 	const struct nf_conntrack_zone *zone;
1799 	struct nf_conntrack_tuple tuple;
1800 	struct nf_conntrack_tuple_hash *h;
1801 	enum ip_conntrack_info ctinfo;
1802 	struct nf_conntrack_zone tmp;
1803 	u32 hash, zone_id, rid;
1804 	struct nf_conn *ct;
1805 
1806 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1807 			     dataoff, state->pf, protonum, state->net,
1808 			     &tuple)) {
1809 		pr_debug("Can't get tuple\n");
1810 		return 0;
1811 	}
1812 
1813 	/* look for tuple match */
1814 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1815 
1816 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1817 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1818 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1819 
1820 	if (!h) {
1821 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1822 		if (zone_id != rid) {
1823 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1824 
1825 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1826 		}
1827 	}
1828 
1829 	if (!h) {
1830 		h = init_conntrack(state->net, tmpl, &tuple,
1831 				   skb, dataoff, hash);
1832 		if (!h)
1833 			return 0;
1834 		if (IS_ERR(h))
1835 			return PTR_ERR(h);
1836 	}
1837 	ct = nf_ct_tuplehash_to_ctrack(h);
1838 
1839 	/* It exists; we have (non-exclusive) reference. */
1840 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1841 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1842 	} else {
1843 		/* Once we've had two way comms, always ESTABLISHED. */
1844 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1845 			pr_debug("normal packet for %p\n", ct);
1846 			ctinfo = IP_CT_ESTABLISHED;
1847 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1848 			pr_debug("related packet for %p\n", ct);
1849 			ctinfo = IP_CT_RELATED;
1850 		} else {
1851 			pr_debug("new packet for %p\n", ct);
1852 			ctinfo = IP_CT_NEW;
1853 		}
1854 	}
1855 	nf_ct_set(skb, ct, ctinfo);
1856 	return 0;
1857 }
1858 
1859 /*
1860  * icmp packets need special treatment to handle error messages that are
1861  * related to a connection.
1862  *
1863  * Callers need to check if skb has a conntrack assigned when this
1864  * helper returns; in such case skb belongs to an already known connection.
1865  */
1866 static unsigned int __cold
1867 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1868 			 struct sk_buff *skb,
1869 			 unsigned int dataoff,
1870 			 u8 protonum,
1871 			 const struct nf_hook_state *state)
1872 {
1873 	int ret;
1874 
1875 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1876 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1877 #if IS_ENABLED(CONFIG_IPV6)
1878 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1879 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1880 #endif
1881 	else
1882 		return NF_ACCEPT;
1883 
1884 	if (ret <= 0)
1885 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1886 
1887 	return ret;
1888 }
1889 
1890 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1891 			  enum ip_conntrack_info ctinfo)
1892 {
1893 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1894 
1895 	if (!timeout)
1896 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1897 
1898 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1899 	return NF_ACCEPT;
1900 }
1901 
1902 /* Returns verdict for packet, or -1 for invalid. */
1903 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1904 				      struct sk_buff *skb,
1905 				      unsigned int dataoff,
1906 				      enum ip_conntrack_info ctinfo,
1907 				      const struct nf_hook_state *state)
1908 {
1909 	switch (nf_ct_protonum(ct)) {
1910 	case IPPROTO_TCP:
1911 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1912 					       ctinfo, state);
1913 	case IPPROTO_UDP:
1914 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1915 					       ctinfo, state);
1916 	case IPPROTO_ICMP:
1917 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1918 #if IS_ENABLED(CONFIG_IPV6)
1919 	case IPPROTO_ICMPV6:
1920 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1921 #endif
1922 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1923 	case IPPROTO_UDPLITE:
1924 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1925 						   ctinfo, state);
1926 #endif
1927 #ifdef CONFIG_NF_CT_PROTO_SCTP
1928 	case IPPROTO_SCTP:
1929 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1930 						ctinfo, state);
1931 #endif
1932 #ifdef CONFIG_NF_CT_PROTO_DCCP
1933 	case IPPROTO_DCCP:
1934 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1935 						ctinfo, state);
1936 #endif
1937 #ifdef CONFIG_NF_CT_PROTO_GRE
1938 	case IPPROTO_GRE:
1939 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1940 					       ctinfo, state);
1941 #endif
1942 	}
1943 
1944 	return generic_packet(ct, skb, ctinfo);
1945 }
1946 
1947 unsigned int
1948 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1949 {
1950 	enum ip_conntrack_info ctinfo;
1951 	struct nf_conn *ct, *tmpl;
1952 	u_int8_t protonum;
1953 	int dataoff, ret;
1954 
1955 	tmpl = nf_ct_get(skb, &ctinfo);
1956 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1957 		/* Previously seen (loopback or untracked)?  Ignore. */
1958 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1959 		     ctinfo == IP_CT_UNTRACKED)
1960 			return NF_ACCEPT;
1961 		skb->_nfct = 0;
1962 	}
1963 
1964 	/* rcu_read_lock()ed by nf_hook_thresh */
1965 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1966 	if (dataoff <= 0) {
1967 		pr_debug("not prepared to track yet or error occurred\n");
1968 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1969 		ret = NF_ACCEPT;
1970 		goto out;
1971 	}
1972 
1973 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1974 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1975 					       protonum, state);
1976 		if (ret <= 0) {
1977 			ret = -ret;
1978 			goto out;
1979 		}
1980 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1981 		if (skb->_nfct)
1982 			goto out;
1983 	}
1984 repeat:
1985 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1986 				protonum, state);
1987 	if (ret < 0) {
1988 		/* Too stressed to deal. */
1989 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1990 		ret = NF_DROP;
1991 		goto out;
1992 	}
1993 
1994 	ct = nf_ct_get(skb, &ctinfo);
1995 	if (!ct) {
1996 		/* Not valid part of a connection */
1997 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1998 		ret = NF_ACCEPT;
1999 		goto out;
2000 	}
2001 
2002 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2003 	if (ret <= 0) {
2004 		/* Invalid: inverse of the return code tells
2005 		 * the netfilter core what to do */
2006 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
2007 		nf_ct_put(ct);
2008 		skb->_nfct = 0;
2009 		/* Special case: TCP tracker reports an attempt to reopen a
2010 		 * closed/aborted connection. We have to go back and create a
2011 		 * fresh conntrack.
2012 		 */
2013 		if (ret == -NF_REPEAT)
2014 			goto repeat;
2015 
2016 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2017 		if (ret == -NF_DROP)
2018 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
2019 
2020 		ret = -ret;
2021 		goto out;
2022 	}
2023 
2024 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2025 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2026 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2027 out:
2028 	if (tmpl)
2029 		nf_ct_put(tmpl);
2030 
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2034 
2035 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2036    implicitly racy: see __nf_conntrack_confirm */
2037 void nf_conntrack_alter_reply(struct nf_conn *ct,
2038 			      const struct nf_conntrack_tuple *newreply)
2039 {
2040 	struct nf_conn_help *help = nfct_help(ct);
2041 
2042 	/* Should be unconfirmed, so not in hash table yet */
2043 	WARN_ON(nf_ct_is_confirmed(ct));
2044 
2045 	pr_debug("Altering reply tuple of %p to ", ct);
2046 	nf_ct_dump_tuple(newreply);
2047 
2048 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2049 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2050 		return;
2051 
2052 	rcu_read_lock();
2053 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
2054 	rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2057 
2058 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2059 void __nf_ct_refresh_acct(struct nf_conn *ct,
2060 			  enum ip_conntrack_info ctinfo,
2061 			  const struct sk_buff *skb,
2062 			  u32 extra_jiffies,
2063 			  bool do_acct)
2064 {
2065 	/* Only update if this is not a fixed timeout */
2066 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2067 		goto acct;
2068 
2069 	/* If not in hash table, timer will not be active yet */
2070 	if (nf_ct_is_confirmed(ct))
2071 		extra_jiffies += nfct_time_stamp;
2072 
2073 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2074 		WRITE_ONCE(ct->timeout, extra_jiffies);
2075 acct:
2076 	if (do_acct)
2077 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2078 }
2079 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2080 
2081 bool nf_ct_kill_acct(struct nf_conn *ct,
2082 		     enum ip_conntrack_info ctinfo,
2083 		     const struct sk_buff *skb)
2084 {
2085 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2086 
2087 	return nf_ct_delete(ct, 0, 0);
2088 }
2089 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2090 
2091 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2092 
2093 #include <linux/netfilter/nfnetlink.h>
2094 #include <linux/netfilter/nfnetlink_conntrack.h>
2095 #include <linux/mutex.h>
2096 
2097 /* Generic function for tcp/udp/sctp/dccp and alike. */
2098 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2099 			       const struct nf_conntrack_tuple *tuple)
2100 {
2101 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2102 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2103 		goto nla_put_failure;
2104 	return 0;
2105 
2106 nla_put_failure:
2107 	return -1;
2108 }
2109 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2110 
2111 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2112 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2113 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2114 };
2115 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2116 
2117 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2118 			       struct nf_conntrack_tuple *t,
2119 			       u_int32_t flags)
2120 {
2121 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2122 		if (!tb[CTA_PROTO_SRC_PORT])
2123 			return -EINVAL;
2124 
2125 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2126 	}
2127 
2128 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2129 		if (!tb[CTA_PROTO_DST_PORT])
2130 			return -EINVAL;
2131 
2132 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2133 	}
2134 
2135 	return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2138 
2139 unsigned int nf_ct_port_nlattr_tuple_size(void)
2140 {
2141 	static unsigned int size __read_mostly;
2142 
2143 	if (!size)
2144 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2145 
2146 	return size;
2147 }
2148 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2149 #endif
2150 
2151 /* Used by ipt_REJECT and ip6t_REJECT. */
2152 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2153 {
2154 	struct nf_conn *ct;
2155 	enum ip_conntrack_info ctinfo;
2156 
2157 	/* This ICMP is in reverse direction to the packet which caused it */
2158 	ct = nf_ct_get(skb, &ctinfo);
2159 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2160 		ctinfo = IP_CT_RELATED_REPLY;
2161 	else
2162 		ctinfo = IP_CT_RELATED;
2163 
2164 	/* Attach to new skbuff, and increment count */
2165 	nf_ct_set(nskb, ct, ctinfo);
2166 	nf_conntrack_get(skb_nfct(nskb));
2167 }
2168 
2169 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2170 				 struct nf_conn *ct,
2171 				 enum ip_conntrack_info ctinfo)
2172 {
2173 	const struct nf_nat_hook *nat_hook;
2174 	struct nf_conntrack_tuple_hash *h;
2175 	struct nf_conntrack_tuple tuple;
2176 	unsigned int status;
2177 	int dataoff;
2178 	u16 l3num;
2179 	u8 l4num;
2180 
2181 	l3num = nf_ct_l3num(ct);
2182 
2183 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2184 	if (dataoff <= 0)
2185 		return -1;
2186 
2187 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2188 			     l4num, net, &tuple))
2189 		return -1;
2190 
2191 	if (ct->status & IPS_SRC_NAT) {
2192 		memcpy(tuple.src.u3.all,
2193 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2194 		       sizeof(tuple.src.u3.all));
2195 		tuple.src.u.all =
2196 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2197 	}
2198 
2199 	if (ct->status & IPS_DST_NAT) {
2200 		memcpy(tuple.dst.u3.all,
2201 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2202 		       sizeof(tuple.dst.u3.all));
2203 		tuple.dst.u.all =
2204 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2205 	}
2206 
2207 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2208 	if (!h)
2209 		return 0;
2210 
2211 	/* Store status bits of the conntrack that is clashing to re-do NAT
2212 	 * mangling according to what it has been done already to this packet.
2213 	 */
2214 	status = ct->status;
2215 
2216 	nf_ct_put(ct);
2217 	ct = nf_ct_tuplehash_to_ctrack(h);
2218 	nf_ct_set(skb, ct, ctinfo);
2219 
2220 	nat_hook = rcu_dereference(nf_nat_hook);
2221 	if (!nat_hook)
2222 		return 0;
2223 
2224 	if (status & IPS_SRC_NAT &&
2225 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2226 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2227 		return -1;
2228 
2229 	if (status & IPS_DST_NAT &&
2230 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2231 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2232 		return -1;
2233 
2234 	return 0;
2235 }
2236 
2237 /* This packet is coming from userspace via nf_queue, complete the packet
2238  * processing after the helper invocation in nf_confirm().
2239  */
2240 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2241 			       enum ip_conntrack_info ctinfo)
2242 {
2243 	const struct nf_conntrack_helper *helper;
2244 	const struct nf_conn_help *help;
2245 	int protoff;
2246 
2247 	help = nfct_help(ct);
2248 	if (!help)
2249 		return 0;
2250 
2251 	helper = rcu_dereference(help->helper);
2252 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2253 		return 0;
2254 
2255 	switch (nf_ct_l3num(ct)) {
2256 	case NFPROTO_IPV4:
2257 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2258 		break;
2259 #if IS_ENABLED(CONFIG_IPV6)
2260 	case NFPROTO_IPV6: {
2261 		__be16 frag_off;
2262 		u8 pnum;
2263 
2264 		pnum = ipv6_hdr(skb)->nexthdr;
2265 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2266 					   &frag_off);
2267 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2268 			return 0;
2269 		break;
2270 	}
2271 #endif
2272 	default:
2273 		return 0;
2274 	}
2275 
2276 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2277 	    !nf_is_loopback_packet(skb)) {
2278 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2279 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2280 			return -1;
2281 		}
2282 	}
2283 
2284 	/* We've seen it coming out the other side: confirm it */
2285 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2286 }
2287 
2288 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2289 {
2290 	enum ip_conntrack_info ctinfo;
2291 	struct nf_conn *ct;
2292 	int err;
2293 
2294 	ct = nf_ct_get(skb, &ctinfo);
2295 	if (!ct)
2296 		return 0;
2297 
2298 	if (!nf_ct_is_confirmed(ct)) {
2299 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2300 		if (err < 0)
2301 			return err;
2302 
2303 		ct = nf_ct_get(skb, &ctinfo);
2304 	}
2305 
2306 	return nf_confirm_cthelper(skb, ct, ctinfo);
2307 }
2308 
2309 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2310 				       const struct sk_buff *skb)
2311 {
2312 	const struct nf_conntrack_tuple *src_tuple;
2313 	const struct nf_conntrack_tuple_hash *hash;
2314 	struct nf_conntrack_tuple srctuple;
2315 	enum ip_conntrack_info ctinfo;
2316 	struct nf_conn *ct;
2317 
2318 	ct = nf_ct_get(skb, &ctinfo);
2319 	if (ct) {
2320 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2321 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2322 		return true;
2323 	}
2324 
2325 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2326 			       NFPROTO_IPV4, dev_net(skb->dev),
2327 			       &srctuple))
2328 		return false;
2329 
2330 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2331 				     &nf_ct_zone_dflt,
2332 				     &srctuple);
2333 	if (!hash)
2334 		return false;
2335 
2336 	ct = nf_ct_tuplehash_to_ctrack(hash);
2337 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2338 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2339 	nf_ct_put(ct);
2340 
2341 	return true;
2342 }
2343 
2344 /* Bring out ya dead! */
2345 static struct nf_conn *
2346 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2347 		const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2348 {
2349 	struct nf_conntrack_tuple_hash *h;
2350 	struct nf_conn *ct;
2351 	struct hlist_nulls_node *n;
2352 	spinlock_t *lockp;
2353 
2354 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2355 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2356 
2357 		if (hlist_nulls_empty(hslot))
2358 			continue;
2359 
2360 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2361 		local_bh_disable();
2362 		nf_conntrack_lock(lockp);
2363 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2364 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2365 				continue;
2366 			/* All nf_conn objects are added to hash table twice, one
2367 			 * for original direction tuple, once for the reply tuple.
2368 			 *
2369 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2370 			 * tuple is added (the original tuple already existed for
2371 			 * a different object).
2372 			 *
2373 			 * We only need to call the iterator once for each
2374 			 * conntrack, so we just use the 'reply' direction
2375 			 * tuple while iterating.
2376 			 */
2377 			ct = nf_ct_tuplehash_to_ctrack(h);
2378 
2379 			if (iter_data->net &&
2380 			    !net_eq(iter_data->net, nf_ct_net(ct)))
2381 				continue;
2382 
2383 			if (iter(ct, iter_data->data))
2384 				goto found;
2385 		}
2386 		spin_unlock(lockp);
2387 		local_bh_enable();
2388 		cond_resched();
2389 	}
2390 
2391 	return NULL;
2392 found:
2393 	refcount_inc(&ct->ct_general.use);
2394 	spin_unlock(lockp);
2395 	local_bh_enable();
2396 	return ct;
2397 }
2398 
2399 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2400 				  const struct nf_ct_iter_data *iter_data)
2401 {
2402 	unsigned int bucket = 0;
2403 	struct nf_conn *ct;
2404 
2405 	might_sleep();
2406 
2407 	mutex_lock(&nf_conntrack_mutex);
2408 	while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2409 		/* Time to push up daises... */
2410 
2411 		nf_ct_delete(ct, iter_data->portid, iter_data->report);
2412 		nf_ct_put(ct);
2413 		cond_resched();
2414 	}
2415 	mutex_unlock(&nf_conntrack_mutex);
2416 }
2417 
2418 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2419 			       const struct nf_ct_iter_data *iter_data)
2420 {
2421 	struct net *net = iter_data->net;
2422 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2423 
2424 	might_sleep();
2425 
2426 	if (atomic_read(&cnet->count) == 0)
2427 		return;
2428 
2429 	nf_ct_iterate_cleanup(iter, iter_data);
2430 }
2431 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2432 
2433 /**
2434  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2435  * @iter: callback to invoke for each conntrack
2436  * @data: data to pass to @iter
2437  *
2438  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2439  * unconfirmed list as dying (so they will not be inserted into
2440  * main table).
2441  *
2442  * Can only be called in module exit path.
2443  */
2444 void
2445 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2446 {
2447 	struct nf_ct_iter_data iter_data = {};
2448 	struct net *net;
2449 
2450 	down_read(&net_rwsem);
2451 	for_each_net(net) {
2452 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2453 
2454 		if (atomic_read(&cnet->count) == 0)
2455 			continue;
2456 		nf_queue_nf_hook_drop(net);
2457 	}
2458 	up_read(&net_rwsem);
2459 
2460 	/* Need to wait for netns cleanup worker to finish, if its
2461 	 * running -- it might have deleted a net namespace from
2462 	 * the global list, so hook drop above might not have
2463 	 * affected all namespaces.
2464 	 */
2465 	net_ns_barrier();
2466 
2467 	/* a skb w. unconfirmed conntrack could have been reinjected just
2468 	 * before we called nf_queue_nf_hook_drop().
2469 	 *
2470 	 * This makes sure its inserted into conntrack table.
2471 	 */
2472 	synchronize_net();
2473 
2474 	nf_ct_ext_bump_genid();
2475 	iter_data.data = data;
2476 	nf_ct_iterate_cleanup(iter, &iter_data);
2477 
2478 	/* Another cpu might be in a rcu read section with
2479 	 * rcu protected pointer cleared in iter callback
2480 	 * or hidden via nf_ct_ext_bump_genid() above.
2481 	 *
2482 	 * Wait until those are done.
2483 	 */
2484 	synchronize_rcu();
2485 }
2486 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2487 
2488 static int kill_all(struct nf_conn *i, void *data)
2489 {
2490 	return 1;
2491 }
2492 
2493 void nf_conntrack_cleanup_start(void)
2494 {
2495 	conntrack_gc_work.exiting = true;
2496 }
2497 
2498 void nf_conntrack_cleanup_end(void)
2499 {
2500 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2501 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2502 	kvfree(nf_conntrack_hash);
2503 
2504 	nf_conntrack_proto_fini();
2505 	nf_conntrack_helper_fini();
2506 	nf_conntrack_expect_fini();
2507 
2508 	kmem_cache_destroy(nf_conntrack_cachep);
2509 }
2510 
2511 /*
2512  * Mishearing the voices in his head, our hero wonders how he's
2513  * supposed to kill the mall.
2514  */
2515 void nf_conntrack_cleanup_net(struct net *net)
2516 {
2517 	LIST_HEAD(single);
2518 
2519 	list_add(&net->exit_list, &single);
2520 	nf_conntrack_cleanup_net_list(&single);
2521 }
2522 
2523 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2524 {
2525 	struct nf_ct_iter_data iter_data = {};
2526 	struct net *net;
2527 	int busy;
2528 
2529 	/*
2530 	 * This makes sure all current packets have passed through
2531 	 *  netfilter framework.  Roll on, two-stage module
2532 	 *  delete...
2533 	 */
2534 	synchronize_net();
2535 i_see_dead_people:
2536 	busy = 0;
2537 	list_for_each_entry(net, net_exit_list, exit_list) {
2538 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2539 
2540 		iter_data.net = net;
2541 		nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2542 		if (atomic_read(&cnet->count) != 0)
2543 			busy = 1;
2544 	}
2545 	if (busy) {
2546 		schedule();
2547 		goto i_see_dead_people;
2548 	}
2549 
2550 	list_for_each_entry(net, net_exit_list, exit_list) {
2551 		nf_conntrack_ecache_pernet_fini(net);
2552 		nf_conntrack_expect_pernet_fini(net);
2553 		free_percpu(net->ct.stat);
2554 	}
2555 }
2556 
2557 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2558 {
2559 	struct hlist_nulls_head *hash;
2560 	unsigned int nr_slots, i;
2561 
2562 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2563 		return NULL;
2564 
2565 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2566 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2567 
2568 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2569 
2570 	if (hash && nulls)
2571 		for (i = 0; i < nr_slots; i++)
2572 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2573 
2574 	return hash;
2575 }
2576 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2577 
2578 int nf_conntrack_hash_resize(unsigned int hashsize)
2579 {
2580 	int i, bucket;
2581 	unsigned int old_size;
2582 	struct hlist_nulls_head *hash, *old_hash;
2583 	struct nf_conntrack_tuple_hash *h;
2584 	struct nf_conn *ct;
2585 
2586 	if (!hashsize)
2587 		return -EINVAL;
2588 
2589 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2590 	if (!hash)
2591 		return -ENOMEM;
2592 
2593 	mutex_lock(&nf_conntrack_mutex);
2594 	old_size = nf_conntrack_htable_size;
2595 	if (old_size == hashsize) {
2596 		mutex_unlock(&nf_conntrack_mutex);
2597 		kvfree(hash);
2598 		return 0;
2599 	}
2600 
2601 	local_bh_disable();
2602 	nf_conntrack_all_lock();
2603 	write_seqcount_begin(&nf_conntrack_generation);
2604 
2605 	/* Lookups in the old hash might happen in parallel, which means we
2606 	 * might get false negatives during connection lookup. New connections
2607 	 * created because of a false negative won't make it into the hash
2608 	 * though since that required taking the locks.
2609 	 */
2610 
2611 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2612 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2613 			unsigned int zone_id;
2614 
2615 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2616 					      struct nf_conntrack_tuple_hash, hnnode);
2617 			ct = nf_ct_tuplehash_to_ctrack(h);
2618 			hlist_nulls_del_rcu(&h->hnnode);
2619 
2620 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2621 			bucket = __hash_conntrack(nf_ct_net(ct),
2622 						  &h->tuple, zone_id, hashsize);
2623 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2624 		}
2625 	}
2626 	old_hash = nf_conntrack_hash;
2627 
2628 	nf_conntrack_hash = hash;
2629 	nf_conntrack_htable_size = hashsize;
2630 
2631 	write_seqcount_end(&nf_conntrack_generation);
2632 	nf_conntrack_all_unlock();
2633 	local_bh_enable();
2634 
2635 	mutex_unlock(&nf_conntrack_mutex);
2636 
2637 	synchronize_net();
2638 	kvfree(old_hash);
2639 	return 0;
2640 }
2641 
2642 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2643 {
2644 	unsigned int hashsize;
2645 	int rc;
2646 
2647 	if (current->nsproxy->net_ns != &init_net)
2648 		return -EOPNOTSUPP;
2649 
2650 	/* On boot, we can set this without any fancy locking. */
2651 	if (!nf_conntrack_hash)
2652 		return param_set_uint(val, kp);
2653 
2654 	rc = kstrtouint(val, 0, &hashsize);
2655 	if (rc)
2656 		return rc;
2657 
2658 	return nf_conntrack_hash_resize(hashsize);
2659 }
2660 
2661 int nf_conntrack_init_start(void)
2662 {
2663 	unsigned long nr_pages = totalram_pages();
2664 	int max_factor = 8;
2665 	int ret = -ENOMEM;
2666 	int i;
2667 
2668 	seqcount_spinlock_init(&nf_conntrack_generation,
2669 			       &nf_conntrack_locks_all_lock);
2670 
2671 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2672 		spin_lock_init(&nf_conntrack_locks[i]);
2673 
2674 	if (!nf_conntrack_htable_size) {
2675 		nf_conntrack_htable_size
2676 			= (((nr_pages << PAGE_SHIFT) / 16384)
2677 			   / sizeof(struct hlist_head));
2678 		if (BITS_PER_LONG >= 64 &&
2679 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2680 			nf_conntrack_htable_size = 262144;
2681 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2682 			nf_conntrack_htable_size = 65536;
2683 
2684 		if (nf_conntrack_htable_size < 1024)
2685 			nf_conntrack_htable_size = 1024;
2686 		/* Use a max. factor of one by default to keep the average
2687 		 * hash chain length at 2 entries.  Each entry has to be added
2688 		 * twice (once for original direction, once for reply).
2689 		 * When a table size is given we use the old value of 8 to
2690 		 * avoid implicit reduction of the max entries setting.
2691 		 */
2692 		max_factor = 1;
2693 	}
2694 
2695 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2696 	if (!nf_conntrack_hash)
2697 		return -ENOMEM;
2698 
2699 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2700 
2701 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2702 						sizeof(struct nf_conn),
2703 						NFCT_INFOMASK + 1,
2704 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2705 	if (!nf_conntrack_cachep)
2706 		goto err_cachep;
2707 
2708 	ret = nf_conntrack_expect_init();
2709 	if (ret < 0)
2710 		goto err_expect;
2711 
2712 	ret = nf_conntrack_helper_init();
2713 	if (ret < 0)
2714 		goto err_helper;
2715 
2716 	ret = nf_conntrack_proto_init();
2717 	if (ret < 0)
2718 		goto err_proto;
2719 
2720 	conntrack_gc_work_init(&conntrack_gc_work);
2721 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2722 
2723 	ret = register_nf_conntrack_bpf();
2724 	if (ret < 0)
2725 		goto err_kfunc;
2726 
2727 	return 0;
2728 
2729 err_kfunc:
2730 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2731 	nf_conntrack_proto_fini();
2732 err_proto:
2733 	nf_conntrack_helper_fini();
2734 err_helper:
2735 	nf_conntrack_expect_fini();
2736 err_expect:
2737 	kmem_cache_destroy(nf_conntrack_cachep);
2738 err_cachep:
2739 	kvfree(nf_conntrack_hash);
2740 	return ret;
2741 }
2742 
2743 static const struct nf_ct_hook nf_conntrack_hook = {
2744 	.update		= nf_conntrack_update,
2745 	.destroy	= nf_ct_destroy,
2746 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2747 	.attach		= nf_conntrack_attach,
2748 };
2749 
2750 void nf_conntrack_init_end(void)
2751 {
2752 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2753 }
2754 
2755 /*
2756  * We need to use special "null" values, not used in hash table
2757  */
2758 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2759 
2760 int nf_conntrack_init_net(struct net *net)
2761 {
2762 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2763 	int ret = -ENOMEM;
2764 
2765 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2766 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2767 	atomic_set(&cnet->count, 0);
2768 
2769 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2770 	if (!net->ct.stat)
2771 		return ret;
2772 
2773 	ret = nf_conntrack_expect_pernet_init(net);
2774 	if (ret < 0)
2775 		goto err_expect;
2776 
2777 	nf_conntrack_acct_pernet_init(net);
2778 	nf_conntrack_tstamp_pernet_init(net);
2779 	nf_conntrack_ecache_pernet_init(net);
2780 	nf_conntrack_helper_pernet_init(net);
2781 	nf_conntrack_proto_pernet_init(net);
2782 
2783 	return 0;
2784 
2785 err_expect:
2786 	free_percpu(net->ct.stat);
2787 	return ret;
2788 }
2789