1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	u32			avg_timeout;
70 	u32			start_time;
71 	bool			exiting;
72 	bool			early_drop;
73 };
74 
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78 
79 /* serialize hash resizes and nf_ct_iterate_cleanup */
80 static DEFINE_MUTEX(nf_conntrack_mutex);
81 
82 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
83 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
84 
85 /* clamp timeouts to this value (TCP unacked) */
86 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
87 
88 /* large initial bias so that we don't scan often just because we have
89  * three entries with a 1s timeout.
90  */
91 #define GC_SCAN_INTERVAL_INIT	INT_MAX
92 
93 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
94 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
95 
96 #define MIN_CHAINLEN	8u
97 #define MAX_CHAINLEN	(32u - MIN_CHAINLEN)
98 
99 static struct conntrack_gc_work conntrack_gc_work;
100 
101 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
102 {
103 	/* 1) Acquire the lock */
104 	spin_lock(lock);
105 
106 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
107 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
108 	 */
109 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
110 		return;
111 
112 	/* fast path failed, unlock */
113 	spin_unlock(lock);
114 
115 	/* Slow path 1) get global lock */
116 	spin_lock(&nf_conntrack_locks_all_lock);
117 
118 	/* Slow path 2) get the lock we want */
119 	spin_lock(lock);
120 
121 	/* Slow path 3) release the global lock */
122 	spin_unlock(&nf_conntrack_locks_all_lock);
123 }
124 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
125 
126 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
127 {
128 	h1 %= CONNTRACK_LOCKS;
129 	h2 %= CONNTRACK_LOCKS;
130 	spin_unlock(&nf_conntrack_locks[h1]);
131 	if (h1 != h2)
132 		spin_unlock(&nf_conntrack_locks[h2]);
133 }
134 
135 /* return true if we need to recompute hashes (in case hash table was resized) */
136 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
137 				     unsigned int h2, unsigned int sequence)
138 {
139 	h1 %= CONNTRACK_LOCKS;
140 	h2 %= CONNTRACK_LOCKS;
141 	if (h1 <= h2) {
142 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
143 		if (h1 != h2)
144 			spin_lock_nested(&nf_conntrack_locks[h2],
145 					 SINGLE_DEPTH_NESTING);
146 	} else {
147 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
148 		spin_lock_nested(&nf_conntrack_locks[h1],
149 				 SINGLE_DEPTH_NESTING);
150 	}
151 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
152 		nf_conntrack_double_unlock(h1, h2);
153 		return true;
154 	}
155 	return false;
156 }
157 
158 static void nf_conntrack_all_lock(void)
159 	__acquires(&nf_conntrack_locks_all_lock)
160 {
161 	int i;
162 
163 	spin_lock(&nf_conntrack_locks_all_lock);
164 
165 	/* For nf_contrack_locks_all, only the latest time when another
166 	 * CPU will see an update is controlled, by the "release" of the
167 	 * spin_lock below.
168 	 * The earliest time is not controlled, an thus KCSAN could detect
169 	 * a race when nf_conntract_lock() reads the variable.
170 	 * WRITE_ONCE() is used to ensure the compiler will not
171 	 * optimize the write.
172 	 */
173 	WRITE_ONCE(nf_conntrack_locks_all, true);
174 
175 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
176 		spin_lock(&nf_conntrack_locks[i]);
177 
178 		/* This spin_unlock provides the "release" to ensure that
179 		 * nf_conntrack_locks_all==true is visible to everyone that
180 		 * acquired spin_lock(&nf_conntrack_locks[]).
181 		 */
182 		spin_unlock(&nf_conntrack_locks[i]);
183 	}
184 }
185 
186 static void nf_conntrack_all_unlock(void)
187 	__releases(&nf_conntrack_locks_all_lock)
188 {
189 	/* All prior stores must be complete before we clear
190 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
191 	 * might observe the false value but not the entire
192 	 * critical section.
193 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
194 	 */
195 	smp_store_release(&nf_conntrack_locks_all, false);
196 	spin_unlock(&nf_conntrack_locks_all_lock);
197 }
198 
199 unsigned int nf_conntrack_htable_size __read_mostly;
200 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
201 
202 unsigned int nf_conntrack_max __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_max);
204 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
205 static siphash_aligned_key_t nf_conntrack_hash_rnd;
206 
207 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
208 			      unsigned int zoneid,
209 			      const struct net *net)
210 {
211 	struct {
212 		struct nf_conntrack_man src;
213 		union nf_inet_addr dst_addr;
214 		unsigned int zone;
215 		u32 net_mix;
216 		u16 dport;
217 		u16 proto;
218 	} __aligned(SIPHASH_ALIGNMENT) combined;
219 
220 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
221 
222 	memset(&combined, 0, sizeof(combined));
223 
224 	/* The direction must be ignored, so handle usable members manually. */
225 	combined.src = tuple->src;
226 	combined.dst_addr = tuple->dst.u3;
227 	combined.zone = zoneid;
228 	combined.net_mix = net_hash_mix(net);
229 	combined.dport = (__force __u16)tuple->dst.u.all;
230 	combined.proto = tuple->dst.protonum;
231 
232 	return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
233 }
234 
235 static u32 scale_hash(u32 hash)
236 {
237 	return reciprocal_scale(hash, nf_conntrack_htable_size);
238 }
239 
240 static u32 __hash_conntrack(const struct net *net,
241 			    const struct nf_conntrack_tuple *tuple,
242 			    unsigned int zoneid,
243 			    unsigned int size)
244 {
245 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
246 }
247 
248 static u32 hash_conntrack(const struct net *net,
249 			  const struct nf_conntrack_tuple *tuple,
250 			  unsigned int zoneid)
251 {
252 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
253 }
254 
255 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
256 				  unsigned int dataoff,
257 				  struct nf_conntrack_tuple *tuple)
258 {	struct {
259 		__be16 sport;
260 		__be16 dport;
261 	} _inet_hdr, *inet_hdr;
262 
263 	/* Actually only need first 4 bytes to get ports. */
264 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
265 	if (!inet_hdr)
266 		return false;
267 
268 	tuple->src.u.udp.port = inet_hdr->sport;
269 	tuple->dst.u.udp.port = inet_hdr->dport;
270 	return true;
271 }
272 
273 static bool
274 nf_ct_get_tuple(const struct sk_buff *skb,
275 		unsigned int nhoff,
276 		unsigned int dataoff,
277 		u_int16_t l3num,
278 		u_int8_t protonum,
279 		struct net *net,
280 		struct nf_conntrack_tuple *tuple)
281 {
282 	unsigned int size;
283 	const __be32 *ap;
284 	__be32 _addrs[8];
285 
286 	memset(tuple, 0, sizeof(*tuple));
287 
288 	tuple->src.l3num = l3num;
289 	switch (l3num) {
290 	case NFPROTO_IPV4:
291 		nhoff += offsetof(struct iphdr, saddr);
292 		size = 2 * sizeof(__be32);
293 		break;
294 	case NFPROTO_IPV6:
295 		nhoff += offsetof(struct ipv6hdr, saddr);
296 		size = sizeof(_addrs);
297 		break;
298 	default:
299 		return true;
300 	}
301 
302 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
303 	if (!ap)
304 		return false;
305 
306 	switch (l3num) {
307 	case NFPROTO_IPV4:
308 		tuple->src.u3.ip = ap[0];
309 		tuple->dst.u3.ip = ap[1];
310 		break;
311 	case NFPROTO_IPV6:
312 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
313 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
314 		break;
315 	}
316 
317 	tuple->dst.protonum = protonum;
318 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
319 
320 	switch (protonum) {
321 #if IS_ENABLED(CONFIG_IPV6)
322 	case IPPROTO_ICMPV6:
323 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
324 #endif
325 	case IPPROTO_ICMP:
326 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
327 #ifdef CONFIG_NF_CT_PROTO_GRE
328 	case IPPROTO_GRE:
329 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
330 #endif
331 	case IPPROTO_TCP:
332 	case IPPROTO_UDP: /* fallthrough */
333 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
334 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
335 	case IPPROTO_UDPLITE:
336 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_SCTP
339 	case IPPROTO_SCTP:
340 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_DCCP
343 	case IPPROTO_DCCP:
344 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
345 #endif
346 	default:
347 		break;
348 	}
349 
350 	return true;
351 }
352 
353 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
354 			    u_int8_t *protonum)
355 {
356 	int dataoff = -1;
357 	const struct iphdr *iph;
358 	struct iphdr _iph;
359 
360 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
361 	if (!iph)
362 		return -1;
363 
364 	/* Conntrack defragments packets, we might still see fragments
365 	 * inside ICMP packets though.
366 	 */
367 	if (iph->frag_off & htons(IP_OFFSET))
368 		return -1;
369 
370 	dataoff = nhoff + (iph->ihl << 2);
371 	*protonum = iph->protocol;
372 
373 	/* Check bogus IP headers */
374 	if (dataoff > skb->len) {
375 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
376 			 nhoff, iph->ihl << 2, skb->len);
377 		return -1;
378 	}
379 	return dataoff;
380 }
381 
382 #if IS_ENABLED(CONFIG_IPV6)
383 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
384 			    u8 *protonum)
385 {
386 	int protoff = -1;
387 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
388 	__be16 frag_off;
389 	u8 nexthdr;
390 
391 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
392 			  &nexthdr, sizeof(nexthdr)) != 0) {
393 		pr_debug("can't get nexthdr\n");
394 		return -1;
395 	}
396 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
397 	/*
398 	 * (protoff == skb->len) means the packet has not data, just
399 	 * IPv6 and possibly extensions headers, but it is tracked anyway
400 	 */
401 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
402 		pr_debug("can't find proto in pkt\n");
403 		return -1;
404 	}
405 
406 	*protonum = nexthdr;
407 	return protoff;
408 }
409 #endif
410 
411 static int get_l4proto(const struct sk_buff *skb,
412 		       unsigned int nhoff, u8 pf, u8 *l4num)
413 {
414 	switch (pf) {
415 	case NFPROTO_IPV4:
416 		return ipv4_get_l4proto(skb, nhoff, l4num);
417 #if IS_ENABLED(CONFIG_IPV6)
418 	case NFPROTO_IPV6:
419 		return ipv6_get_l4proto(skb, nhoff, l4num);
420 #endif
421 	default:
422 		*l4num = 0;
423 		break;
424 	}
425 	return -1;
426 }
427 
428 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
429 		       u_int16_t l3num,
430 		       struct net *net, struct nf_conntrack_tuple *tuple)
431 {
432 	u8 protonum;
433 	int protoff;
434 
435 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
436 	if (protoff <= 0)
437 		return false;
438 
439 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
440 }
441 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
442 
443 bool
444 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
445 		   const struct nf_conntrack_tuple *orig)
446 {
447 	memset(inverse, 0, sizeof(*inverse));
448 
449 	inverse->src.l3num = orig->src.l3num;
450 
451 	switch (orig->src.l3num) {
452 	case NFPROTO_IPV4:
453 		inverse->src.u3.ip = orig->dst.u3.ip;
454 		inverse->dst.u3.ip = orig->src.u3.ip;
455 		break;
456 	case NFPROTO_IPV6:
457 		inverse->src.u3.in6 = orig->dst.u3.in6;
458 		inverse->dst.u3.in6 = orig->src.u3.in6;
459 		break;
460 	default:
461 		break;
462 	}
463 
464 	inverse->dst.dir = !orig->dst.dir;
465 
466 	inverse->dst.protonum = orig->dst.protonum;
467 
468 	switch (orig->dst.protonum) {
469 	case IPPROTO_ICMP:
470 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
471 #if IS_ENABLED(CONFIG_IPV6)
472 	case IPPROTO_ICMPV6:
473 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
474 #endif
475 	}
476 
477 	inverse->src.u.all = orig->dst.u.all;
478 	inverse->dst.u.all = orig->src.u.all;
479 	return true;
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
482 
483 /* Generate a almost-unique pseudo-id for a given conntrack.
484  *
485  * intentionally doesn't re-use any of the seeds used for hash
486  * table location, we assume id gets exposed to userspace.
487  *
488  * Following nf_conn items do not change throughout lifetime
489  * of the nf_conn:
490  *
491  * 1. nf_conn address
492  * 2. nf_conn->master address (normally NULL)
493  * 3. the associated net namespace
494  * 4. the original direction tuple
495  */
496 u32 nf_ct_get_id(const struct nf_conn *ct)
497 {
498 	static siphash_aligned_key_t ct_id_seed;
499 	unsigned long a, b, c, d;
500 
501 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
502 
503 	a = (unsigned long)ct;
504 	b = (unsigned long)ct->master;
505 	c = (unsigned long)nf_ct_net(ct);
506 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
507 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
508 				   &ct_id_seed);
509 #ifdef CONFIG_64BIT
510 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
511 #else
512 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
513 #endif
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_get_id);
516 
517 static void
518 clean_from_lists(struct nf_conn *ct)
519 {
520 	pr_debug("clean_from_lists(%p)\n", ct);
521 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
522 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
523 
524 	/* Destroy all pending expectations */
525 	nf_ct_remove_expectations(ct);
526 }
527 
528 /* must be called with local_bh_disable */
529 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
530 {
531 	struct ct_pcpu *pcpu;
532 
533 	/* add this conntrack to the (per cpu) dying list */
534 	ct->cpu = smp_processor_id();
535 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
536 
537 	spin_lock(&pcpu->lock);
538 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
539 			     &pcpu->dying);
540 	spin_unlock(&pcpu->lock);
541 }
542 
543 /* must be called with local_bh_disable */
544 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
545 {
546 	struct ct_pcpu *pcpu;
547 
548 	/* add this conntrack to the (per cpu) unconfirmed list */
549 	ct->cpu = smp_processor_id();
550 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
551 
552 	spin_lock(&pcpu->lock);
553 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
554 			     &pcpu->unconfirmed);
555 	spin_unlock(&pcpu->lock);
556 }
557 
558 /* must be called with local_bh_disable */
559 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
560 {
561 	struct ct_pcpu *pcpu;
562 
563 	/* We overload first tuple to link into unconfirmed or dying list.*/
564 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
565 
566 	spin_lock(&pcpu->lock);
567 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
568 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
569 	spin_unlock(&pcpu->lock);
570 }
571 
572 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
573 
574 /* Released via nf_ct_destroy() */
575 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
576 				 const struct nf_conntrack_zone *zone,
577 				 gfp_t flags)
578 {
579 	struct nf_conn *tmpl, *p;
580 
581 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
582 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
583 		if (!tmpl)
584 			return NULL;
585 
586 		p = tmpl;
587 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
588 		if (tmpl != p) {
589 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
590 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
591 		}
592 	} else {
593 		tmpl = kzalloc(sizeof(*tmpl), flags);
594 		if (!tmpl)
595 			return NULL;
596 	}
597 
598 	tmpl->status = IPS_TEMPLATE;
599 	write_pnet(&tmpl->ct_net, net);
600 	nf_ct_zone_add(tmpl, zone);
601 	refcount_set(&tmpl->ct_general.use, 1);
602 
603 	return tmpl;
604 }
605 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
606 
607 void nf_ct_tmpl_free(struct nf_conn *tmpl)
608 {
609 	kfree(tmpl->ext);
610 
611 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
612 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
613 	else
614 		kfree(tmpl);
615 }
616 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
617 
618 static void destroy_gre_conntrack(struct nf_conn *ct)
619 {
620 #ifdef CONFIG_NF_CT_PROTO_GRE
621 	struct nf_conn *master = ct->master;
622 
623 	if (master)
624 		nf_ct_gre_keymap_destroy(master);
625 #endif
626 }
627 
628 void nf_ct_destroy(struct nf_conntrack *nfct)
629 {
630 	struct nf_conn *ct = (struct nf_conn *)nfct;
631 
632 	pr_debug("%s(%p)\n", __func__, ct);
633 	WARN_ON(refcount_read(&nfct->use) != 0);
634 
635 	if (unlikely(nf_ct_is_template(ct))) {
636 		nf_ct_tmpl_free(ct);
637 		return;
638 	}
639 
640 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
641 		destroy_gre_conntrack(ct);
642 
643 	local_bh_disable();
644 	/* Expectations will have been removed in clean_from_lists,
645 	 * except TFTP can create an expectation on the first packet,
646 	 * before connection is in the list, so we need to clean here,
647 	 * too.
648 	 */
649 	nf_ct_remove_expectations(ct);
650 
651 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
652 
653 	local_bh_enable();
654 
655 	if (ct->master)
656 		nf_ct_put(ct->master);
657 
658 	pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
659 	nf_conntrack_free(ct);
660 }
661 EXPORT_SYMBOL(nf_ct_destroy);
662 
663 static void nf_ct_delete_from_lists(struct nf_conn *ct)
664 {
665 	struct net *net = nf_ct_net(ct);
666 	unsigned int hash, reply_hash;
667 	unsigned int sequence;
668 
669 	nf_ct_helper_destroy(ct);
670 
671 	local_bh_disable();
672 	do {
673 		sequence = read_seqcount_begin(&nf_conntrack_generation);
674 		hash = hash_conntrack(net,
675 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
676 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
677 		reply_hash = hash_conntrack(net,
678 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
679 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
680 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
681 
682 	clean_from_lists(ct);
683 	nf_conntrack_double_unlock(hash, reply_hash);
684 
685 	nf_ct_add_to_dying_list(ct);
686 
687 	local_bh_enable();
688 }
689 
690 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
691 {
692 	struct nf_conn_tstamp *tstamp;
693 	struct net *net;
694 
695 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
696 		return false;
697 
698 	tstamp = nf_conn_tstamp_find(ct);
699 	if (tstamp) {
700 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
701 
702 		tstamp->stop = ktime_get_real_ns();
703 		if (timeout < 0)
704 			tstamp->stop -= jiffies_to_nsecs(-timeout);
705 	}
706 
707 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
708 				    portid, report) < 0) {
709 		/* destroy event was not delivered. nf_ct_put will
710 		 * be done by event cache worker on redelivery.
711 		 */
712 		nf_ct_delete_from_lists(ct);
713 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
714 		return false;
715 	}
716 
717 	net = nf_ct_net(ct);
718 	if (nf_conntrack_ecache_dwork_pending(net))
719 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
720 	nf_ct_delete_from_lists(ct);
721 	nf_ct_put(ct);
722 	return true;
723 }
724 EXPORT_SYMBOL_GPL(nf_ct_delete);
725 
726 static inline bool
727 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
728 		const struct nf_conntrack_tuple *tuple,
729 		const struct nf_conntrack_zone *zone,
730 		const struct net *net)
731 {
732 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
733 
734 	/* A conntrack can be recreated with the equal tuple,
735 	 * so we need to check that the conntrack is confirmed
736 	 */
737 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
738 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
739 	       nf_ct_is_confirmed(ct) &&
740 	       net_eq(net, nf_ct_net(ct));
741 }
742 
743 static inline bool
744 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
745 {
746 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
747 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
748 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
749 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
750 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
751 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
752 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
753 }
754 
755 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
756 static void nf_ct_gc_expired(struct nf_conn *ct)
757 {
758 	if (!refcount_inc_not_zero(&ct->ct_general.use))
759 		return;
760 
761 	if (nf_ct_should_gc(ct))
762 		nf_ct_kill(ct);
763 
764 	nf_ct_put(ct);
765 }
766 
767 /*
768  * Warning :
769  * - Caller must take a reference on returned object
770  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
771  */
772 static struct nf_conntrack_tuple_hash *
773 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
774 		      const struct nf_conntrack_tuple *tuple, u32 hash)
775 {
776 	struct nf_conntrack_tuple_hash *h;
777 	struct hlist_nulls_head *ct_hash;
778 	struct hlist_nulls_node *n;
779 	unsigned int bucket, hsize;
780 
781 begin:
782 	nf_conntrack_get_ht(&ct_hash, &hsize);
783 	bucket = reciprocal_scale(hash, hsize);
784 
785 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
786 		struct nf_conn *ct;
787 
788 		ct = nf_ct_tuplehash_to_ctrack(h);
789 		if (nf_ct_is_expired(ct)) {
790 			nf_ct_gc_expired(ct);
791 			continue;
792 		}
793 
794 		if (nf_ct_key_equal(h, tuple, zone, net))
795 			return h;
796 	}
797 	/*
798 	 * if the nulls value we got at the end of this lookup is
799 	 * not the expected one, we must restart lookup.
800 	 * We probably met an item that was moved to another chain.
801 	 */
802 	if (get_nulls_value(n) != bucket) {
803 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
804 		goto begin;
805 	}
806 
807 	return NULL;
808 }
809 
810 /* Find a connection corresponding to a tuple. */
811 static struct nf_conntrack_tuple_hash *
812 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
813 			const struct nf_conntrack_tuple *tuple, u32 hash)
814 {
815 	struct nf_conntrack_tuple_hash *h;
816 	struct nf_conn *ct;
817 
818 	rcu_read_lock();
819 
820 	h = ____nf_conntrack_find(net, zone, tuple, hash);
821 	if (h) {
822 		/* We have a candidate that matches the tuple we're interested
823 		 * in, try to obtain a reference and re-check tuple
824 		 */
825 		ct = nf_ct_tuplehash_to_ctrack(h);
826 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
827 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
828 				goto found;
829 
830 			/* TYPESAFE_BY_RCU recycled the candidate */
831 			nf_ct_put(ct);
832 		}
833 
834 		h = NULL;
835 	}
836 found:
837 	rcu_read_unlock();
838 
839 	return h;
840 }
841 
842 struct nf_conntrack_tuple_hash *
843 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
844 		      const struct nf_conntrack_tuple *tuple)
845 {
846 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
847 	struct nf_conntrack_tuple_hash *thash;
848 
849 	thash = __nf_conntrack_find_get(net, zone, tuple,
850 					hash_conntrack_raw(tuple, zone_id, net));
851 
852 	if (thash)
853 		return thash;
854 
855 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
856 	if (rid != zone_id)
857 		return __nf_conntrack_find_get(net, zone, tuple,
858 					       hash_conntrack_raw(tuple, rid, net));
859 	return thash;
860 }
861 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
862 
863 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
864 				       unsigned int hash,
865 				       unsigned int reply_hash)
866 {
867 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
868 			   &nf_conntrack_hash[hash]);
869 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
870 			   &nf_conntrack_hash[reply_hash]);
871 }
872 
873 int
874 nf_conntrack_hash_check_insert(struct nf_conn *ct)
875 {
876 	const struct nf_conntrack_zone *zone;
877 	struct net *net = nf_ct_net(ct);
878 	unsigned int hash, reply_hash;
879 	struct nf_conntrack_tuple_hash *h;
880 	struct hlist_nulls_node *n;
881 	unsigned int max_chainlen;
882 	unsigned int chainlen = 0;
883 	unsigned int sequence;
884 	int err = -EEXIST;
885 
886 	zone = nf_ct_zone(ct);
887 
888 	local_bh_disable();
889 	do {
890 		sequence = read_seqcount_begin(&nf_conntrack_generation);
891 		hash = hash_conntrack(net,
892 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
893 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
894 		reply_hash = hash_conntrack(net,
895 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
896 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
897 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
898 
899 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
900 
901 	/* See if there's one in the list already, including reverse */
902 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
903 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
904 				    zone, net))
905 			goto out;
906 
907 		if (chainlen++ > max_chainlen)
908 			goto chaintoolong;
909 	}
910 
911 	chainlen = 0;
912 
913 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
914 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
915 				    zone, net))
916 			goto out;
917 		if (chainlen++ > max_chainlen)
918 			goto chaintoolong;
919 	}
920 
921 	smp_wmb();
922 	/* The caller holds a reference to this object */
923 	refcount_set(&ct->ct_general.use, 2);
924 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
925 	nf_conntrack_double_unlock(hash, reply_hash);
926 	NF_CT_STAT_INC(net, insert);
927 	local_bh_enable();
928 	return 0;
929 chaintoolong:
930 	NF_CT_STAT_INC(net, chaintoolong);
931 	err = -ENOSPC;
932 out:
933 	nf_conntrack_double_unlock(hash, reply_hash);
934 	local_bh_enable();
935 	return err;
936 }
937 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
938 
939 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
940 		    unsigned int bytes)
941 {
942 	struct nf_conn_acct *acct;
943 
944 	acct = nf_conn_acct_find(ct);
945 	if (acct) {
946 		struct nf_conn_counter *counter = acct->counter;
947 
948 		atomic64_add(packets, &counter[dir].packets);
949 		atomic64_add(bytes, &counter[dir].bytes);
950 	}
951 }
952 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
953 
954 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
955 			     const struct nf_conn *loser_ct)
956 {
957 	struct nf_conn_acct *acct;
958 
959 	acct = nf_conn_acct_find(loser_ct);
960 	if (acct) {
961 		struct nf_conn_counter *counter = acct->counter;
962 		unsigned int bytes;
963 
964 		/* u32 should be fine since we must have seen one packet. */
965 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
966 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
967 	}
968 }
969 
970 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
971 {
972 	struct nf_conn_tstamp *tstamp;
973 
974 	refcount_inc(&ct->ct_general.use);
975 	ct->status |= IPS_CONFIRMED;
976 
977 	/* set conntrack timestamp, if enabled. */
978 	tstamp = nf_conn_tstamp_find(ct);
979 	if (tstamp)
980 		tstamp->start = ktime_get_real_ns();
981 }
982 
983 /* caller must hold locks to prevent concurrent changes */
984 static int __nf_ct_resolve_clash(struct sk_buff *skb,
985 				 struct nf_conntrack_tuple_hash *h)
986 {
987 	/* This is the conntrack entry already in hashes that won race. */
988 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
989 	enum ip_conntrack_info ctinfo;
990 	struct nf_conn *loser_ct;
991 
992 	loser_ct = nf_ct_get(skb, &ctinfo);
993 
994 	if (nf_ct_is_dying(ct))
995 		return NF_DROP;
996 
997 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
998 	    nf_ct_match(ct, loser_ct)) {
999 		struct net *net = nf_ct_net(ct);
1000 
1001 		nf_conntrack_get(&ct->ct_general);
1002 
1003 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1004 		nf_ct_add_to_dying_list(loser_ct);
1005 		nf_ct_put(loser_ct);
1006 		nf_ct_set(skb, ct, ctinfo);
1007 
1008 		NF_CT_STAT_INC(net, clash_resolve);
1009 		return NF_ACCEPT;
1010 	}
1011 
1012 	return NF_DROP;
1013 }
1014 
1015 /**
1016  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1017  *
1018  * @skb: skb that causes the collision
1019  * @repl_idx: hash slot for reply direction
1020  *
1021  * Called when origin or reply direction had a clash.
1022  * The skb can be handled without packet drop provided the reply direction
1023  * is unique or there the existing entry has the identical tuple in both
1024  * directions.
1025  *
1026  * Caller must hold conntrack table locks to prevent concurrent updates.
1027  *
1028  * Returns NF_DROP if the clash could not be handled.
1029  */
1030 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1031 {
1032 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1033 	const struct nf_conntrack_zone *zone;
1034 	struct nf_conntrack_tuple_hash *h;
1035 	struct hlist_nulls_node *n;
1036 	struct net *net;
1037 
1038 	zone = nf_ct_zone(loser_ct);
1039 	net = nf_ct_net(loser_ct);
1040 
1041 	/* Reply direction must never result in a clash, unless both origin
1042 	 * and reply tuples are identical.
1043 	 */
1044 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1045 		if (nf_ct_key_equal(h,
1046 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1047 				    zone, net))
1048 			return __nf_ct_resolve_clash(skb, h);
1049 	}
1050 
1051 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1052 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1053 
1054 	/* IPS_NAT_CLASH removes the entry automatically on the first
1055 	 * reply.  Also prevents UDP tracker from moving the entry to
1056 	 * ASSURED state, i.e. the entry can always be evicted under
1057 	 * pressure.
1058 	 */
1059 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1060 
1061 	__nf_conntrack_insert_prepare(loser_ct);
1062 
1063 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1064 	 * already in the table.  This also hides the clashing entry from
1065 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1066 	 */
1067 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1068 
1069 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1070 				 &nf_conntrack_hash[repl_idx]);
1071 
1072 	NF_CT_STAT_INC(net, clash_resolve);
1073 	return NF_ACCEPT;
1074 }
1075 
1076 /**
1077  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1078  *
1079  * @skb: skb that causes the clash
1080  * @h: tuplehash of the clashing entry already in table
1081  * @reply_hash: hash slot for reply direction
1082  *
1083  * A conntrack entry can be inserted to the connection tracking table
1084  * if there is no existing entry with an identical tuple.
1085  *
1086  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1087  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1088  * will find the already-existing entry.
1089  *
1090  * The major problem with such packet drop is the extra delay added by
1091  * the packet loss -- it will take some time for a retransmit to occur
1092  * (or the sender to time out when waiting for a reply).
1093  *
1094  * This function attempts to handle the situation without packet drop.
1095  *
1096  * If @skb has no NAT transformation or if the colliding entries are
1097  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1098  * and @skb is associated with the conntrack entry already in the table.
1099  *
1100  * Failing that, the new, unconfirmed conntrack is still added to the table
1101  * provided that the collision only occurs in the ORIGINAL direction.
1102  * The new entry will be added only in the non-clashing REPLY direction,
1103  * so packets in the ORIGINAL direction will continue to match the existing
1104  * entry.  The new entry will also have a fixed timeout so it expires --
1105  * due to the collision, it will only see reply traffic.
1106  *
1107  * Returns NF_DROP if the clash could not be resolved.
1108  */
1109 static __cold noinline int
1110 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1111 		    u32 reply_hash)
1112 {
1113 	/* This is the conntrack entry already in hashes that won race. */
1114 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1115 	const struct nf_conntrack_l4proto *l4proto;
1116 	enum ip_conntrack_info ctinfo;
1117 	struct nf_conn *loser_ct;
1118 	struct net *net;
1119 	int ret;
1120 
1121 	loser_ct = nf_ct_get(skb, &ctinfo);
1122 	net = nf_ct_net(loser_ct);
1123 
1124 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1125 	if (!l4proto->allow_clash)
1126 		goto drop;
1127 
1128 	ret = __nf_ct_resolve_clash(skb, h);
1129 	if (ret == NF_ACCEPT)
1130 		return ret;
1131 
1132 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1133 	if (ret == NF_ACCEPT)
1134 		return ret;
1135 
1136 drop:
1137 	nf_ct_add_to_dying_list(loser_ct);
1138 	NF_CT_STAT_INC(net, drop);
1139 	NF_CT_STAT_INC(net, insert_failed);
1140 	return NF_DROP;
1141 }
1142 
1143 /* Confirm a connection given skb; places it in hash table */
1144 int
1145 __nf_conntrack_confirm(struct sk_buff *skb)
1146 {
1147 	unsigned int chainlen = 0, sequence, max_chainlen;
1148 	const struct nf_conntrack_zone *zone;
1149 	unsigned int hash, reply_hash;
1150 	struct nf_conntrack_tuple_hash *h;
1151 	struct nf_conn *ct;
1152 	struct nf_conn_help *help;
1153 	struct hlist_nulls_node *n;
1154 	enum ip_conntrack_info ctinfo;
1155 	struct net *net;
1156 	int ret = NF_DROP;
1157 
1158 	ct = nf_ct_get(skb, &ctinfo);
1159 	net = nf_ct_net(ct);
1160 
1161 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1162 	   ICMP/TCP RST packets in other direction.  Actual packet
1163 	   which created connection will be IP_CT_NEW or for an
1164 	   expected connection, IP_CT_RELATED. */
1165 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1166 		return NF_ACCEPT;
1167 
1168 	zone = nf_ct_zone(ct);
1169 	local_bh_disable();
1170 
1171 	do {
1172 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1173 		/* reuse the hash saved before */
1174 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1175 		hash = scale_hash(hash);
1176 		reply_hash = hash_conntrack(net,
1177 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1178 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1179 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1180 
1181 	/* We're not in hash table, and we refuse to set up related
1182 	 * connections for unconfirmed conns.  But packet copies and
1183 	 * REJECT will give spurious warnings here.
1184 	 */
1185 
1186 	/* Another skb with the same unconfirmed conntrack may
1187 	 * win the race. This may happen for bridge(br_flood)
1188 	 * or broadcast/multicast packets do skb_clone with
1189 	 * unconfirmed conntrack.
1190 	 */
1191 	if (unlikely(nf_ct_is_confirmed(ct))) {
1192 		WARN_ON_ONCE(1);
1193 		nf_conntrack_double_unlock(hash, reply_hash);
1194 		local_bh_enable();
1195 		return NF_DROP;
1196 	}
1197 
1198 	pr_debug("Confirming conntrack %p\n", ct);
1199 	/* We have to check the DYING flag after unlink to prevent
1200 	 * a race against nf_ct_get_next_corpse() possibly called from
1201 	 * user context, else we insert an already 'dead' hash, blocking
1202 	 * further use of that particular connection -JM.
1203 	 */
1204 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
1205 
1206 	if (unlikely(nf_ct_is_dying(ct))) {
1207 		nf_ct_add_to_dying_list(ct);
1208 		NF_CT_STAT_INC(net, insert_failed);
1209 		goto dying;
1210 	}
1211 
1212 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1213 	/* See if there's one in the list already, including reverse:
1214 	   NAT could have grabbed it without realizing, since we're
1215 	   not in the hash.  If there is, we lost race. */
1216 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1217 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1218 				    zone, net))
1219 			goto out;
1220 		if (chainlen++ > max_chainlen)
1221 			goto chaintoolong;
1222 	}
1223 
1224 	chainlen = 0;
1225 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1226 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1227 				    zone, net))
1228 			goto out;
1229 		if (chainlen++ > max_chainlen) {
1230 chaintoolong:
1231 			nf_ct_add_to_dying_list(ct);
1232 			NF_CT_STAT_INC(net, chaintoolong);
1233 			NF_CT_STAT_INC(net, insert_failed);
1234 			ret = NF_DROP;
1235 			goto dying;
1236 		}
1237 	}
1238 
1239 	/* Timer relative to confirmation time, not original
1240 	   setting time, otherwise we'd get timer wrap in
1241 	   weird delay cases. */
1242 	ct->timeout += nfct_time_stamp;
1243 
1244 	__nf_conntrack_insert_prepare(ct);
1245 
1246 	/* Since the lookup is lockless, hash insertion must be done after
1247 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1248 	 * guarantee that no other CPU can find the conntrack before the above
1249 	 * stores are visible.
1250 	 */
1251 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1252 	nf_conntrack_double_unlock(hash, reply_hash);
1253 	local_bh_enable();
1254 
1255 	help = nfct_help(ct);
1256 	if (help && help->helper)
1257 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1258 
1259 	nf_conntrack_event_cache(master_ct(ct) ?
1260 				 IPCT_RELATED : IPCT_NEW, ct);
1261 	return NF_ACCEPT;
1262 
1263 out:
1264 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1265 dying:
1266 	nf_conntrack_double_unlock(hash, reply_hash);
1267 	local_bh_enable();
1268 	return ret;
1269 }
1270 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1271 
1272 /* Returns true if a connection correspondings to the tuple (required
1273    for NAT). */
1274 int
1275 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1276 			 const struct nf_conn *ignored_conntrack)
1277 {
1278 	struct net *net = nf_ct_net(ignored_conntrack);
1279 	const struct nf_conntrack_zone *zone;
1280 	struct nf_conntrack_tuple_hash *h;
1281 	struct hlist_nulls_head *ct_hash;
1282 	unsigned int hash, hsize;
1283 	struct hlist_nulls_node *n;
1284 	struct nf_conn *ct;
1285 
1286 	zone = nf_ct_zone(ignored_conntrack);
1287 
1288 	rcu_read_lock();
1289  begin:
1290 	nf_conntrack_get_ht(&ct_hash, &hsize);
1291 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1292 
1293 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1294 		ct = nf_ct_tuplehash_to_ctrack(h);
1295 
1296 		if (ct == ignored_conntrack)
1297 			continue;
1298 
1299 		if (nf_ct_is_expired(ct)) {
1300 			nf_ct_gc_expired(ct);
1301 			continue;
1302 		}
1303 
1304 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1305 			/* Tuple is taken already, so caller will need to find
1306 			 * a new source port to use.
1307 			 *
1308 			 * Only exception:
1309 			 * If the *original tuples* are identical, then both
1310 			 * conntracks refer to the same flow.
1311 			 * This is a rare situation, it can occur e.g. when
1312 			 * more than one UDP packet is sent from same socket
1313 			 * in different threads.
1314 			 *
1315 			 * Let nf_ct_resolve_clash() deal with this later.
1316 			 */
1317 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1318 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1319 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1320 				continue;
1321 
1322 			NF_CT_STAT_INC_ATOMIC(net, found);
1323 			rcu_read_unlock();
1324 			return 1;
1325 		}
1326 	}
1327 
1328 	if (get_nulls_value(n) != hash) {
1329 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1330 		goto begin;
1331 	}
1332 
1333 	rcu_read_unlock();
1334 
1335 	return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1338 
1339 #define NF_CT_EVICTION_RANGE	8
1340 
1341 /* There's a small race here where we may free a just-assured
1342    connection.  Too bad: we're in trouble anyway. */
1343 static unsigned int early_drop_list(struct net *net,
1344 				    struct hlist_nulls_head *head)
1345 {
1346 	struct nf_conntrack_tuple_hash *h;
1347 	struct hlist_nulls_node *n;
1348 	unsigned int drops = 0;
1349 	struct nf_conn *tmp;
1350 
1351 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1352 		tmp = nf_ct_tuplehash_to_ctrack(h);
1353 
1354 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1355 			continue;
1356 
1357 		if (nf_ct_is_expired(tmp)) {
1358 			nf_ct_gc_expired(tmp);
1359 			continue;
1360 		}
1361 
1362 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1363 		    !net_eq(nf_ct_net(tmp), net) ||
1364 		    nf_ct_is_dying(tmp))
1365 			continue;
1366 
1367 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1368 			continue;
1369 
1370 		/* kill only if still in same netns -- might have moved due to
1371 		 * SLAB_TYPESAFE_BY_RCU rules.
1372 		 *
1373 		 * We steal the timer reference.  If that fails timer has
1374 		 * already fired or someone else deleted it. Just drop ref
1375 		 * and move to next entry.
1376 		 */
1377 		if (net_eq(nf_ct_net(tmp), net) &&
1378 		    nf_ct_is_confirmed(tmp) &&
1379 		    nf_ct_delete(tmp, 0, 0))
1380 			drops++;
1381 
1382 		nf_ct_put(tmp);
1383 	}
1384 
1385 	return drops;
1386 }
1387 
1388 static noinline int early_drop(struct net *net, unsigned int hash)
1389 {
1390 	unsigned int i, bucket;
1391 
1392 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1393 		struct hlist_nulls_head *ct_hash;
1394 		unsigned int hsize, drops;
1395 
1396 		rcu_read_lock();
1397 		nf_conntrack_get_ht(&ct_hash, &hsize);
1398 		if (!i)
1399 			bucket = reciprocal_scale(hash, hsize);
1400 		else
1401 			bucket = (bucket + 1) % hsize;
1402 
1403 		drops = early_drop_list(net, &ct_hash[bucket]);
1404 		rcu_read_unlock();
1405 
1406 		if (drops) {
1407 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1408 			return true;
1409 		}
1410 	}
1411 
1412 	return false;
1413 }
1414 
1415 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1416 {
1417 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1418 }
1419 
1420 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1421 {
1422 	const struct nf_conntrack_l4proto *l4proto;
1423 
1424 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1425 		return true;
1426 
1427 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1428 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1429 		return true;
1430 
1431 	return false;
1432 }
1433 
1434 static void gc_worker(struct work_struct *work)
1435 {
1436 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1437 	u32 end_time, start_time = nfct_time_stamp;
1438 	struct conntrack_gc_work *gc_work;
1439 	unsigned int expired_count = 0;
1440 	unsigned long next_run;
1441 	s32 delta_time;
1442 
1443 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1444 
1445 	i = gc_work->next_bucket;
1446 	if (gc_work->early_drop)
1447 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1448 
1449 	if (i == 0) {
1450 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1451 		gc_work->start_time = start_time;
1452 	}
1453 
1454 	next_run = gc_work->avg_timeout;
1455 
1456 	end_time = start_time + GC_SCAN_MAX_DURATION;
1457 
1458 	do {
1459 		struct nf_conntrack_tuple_hash *h;
1460 		struct hlist_nulls_head *ct_hash;
1461 		struct hlist_nulls_node *n;
1462 		struct nf_conn *tmp;
1463 
1464 		rcu_read_lock();
1465 
1466 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1467 		if (i >= hashsz) {
1468 			rcu_read_unlock();
1469 			break;
1470 		}
1471 
1472 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1473 			struct nf_conntrack_net *cnet;
1474 			unsigned long expires;
1475 			struct net *net;
1476 
1477 			tmp = nf_ct_tuplehash_to_ctrack(h);
1478 
1479 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1480 				nf_ct_offload_timeout(tmp);
1481 				continue;
1482 			}
1483 
1484 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1485 				rcu_read_unlock();
1486 
1487 				gc_work->next_bucket = i;
1488 				gc_work->avg_timeout = next_run;
1489 
1490 				delta_time = nfct_time_stamp - gc_work->start_time;
1491 
1492 				/* re-sched immediately if total cycle time is exceeded */
1493 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1494 				goto early_exit;
1495 			}
1496 
1497 			if (nf_ct_is_expired(tmp)) {
1498 				nf_ct_gc_expired(tmp);
1499 				expired_count++;
1500 				continue;
1501 			}
1502 
1503 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1504 			next_run += expires;
1505 			next_run /= 2u;
1506 
1507 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1508 				continue;
1509 
1510 			net = nf_ct_net(tmp);
1511 			cnet = nf_ct_pernet(net);
1512 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1513 				continue;
1514 
1515 			/* need to take reference to avoid possible races */
1516 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1517 				continue;
1518 
1519 			if (gc_worker_skip_ct(tmp)) {
1520 				nf_ct_put(tmp);
1521 				continue;
1522 			}
1523 
1524 			if (gc_worker_can_early_drop(tmp)) {
1525 				nf_ct_kill(tmp);
1526 				expired_count++;
1527 			}
1528 
1529 			nf_ct_put(tmp);
1530 		}
1531 
1532 		/* could check get_nulls_value() here and restart if ct
1533 		 * was moved to another chain.  But given gc is best-effort
1534 		 * we will just continue with next hash slot.
1535 		 */
1536 		rcu_read_unlock();
1537 		cond_resched();
1538 		i++;
1539 
1540 		delta_time = nfct_time_stamp - end_time;
1541 		if (delta_time > 0 && i < hashsz) {
1542 			gc_work->avg_timeout = next_run;
1543 			gc_work->next_bucket = i;
1544 			next_run = 0;
1545 			goto early_exit;
1546 		}
1547 	} while (i < hashsz);
1548 
1549 	gc_work->next_bucket = 0;
1550 
1551 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1552 
1553 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1554 	if (next_run > (unsigned long)delta_time)
1555 		next_run -= delta_time;
1556 	else
1557 		next_run = 1;
1558 
1559 early_exit:
1560 	if (gc_work->exiting)
1561 		return;
1562 
1563 	if (next_run)
1564 		gc_work->early_drop = false;
1565 
1566 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1567 }
1568 
1569 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1570 {
1571 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1572 	gc_work->exiting = false;
1573 }
1574 
1575 static struct nf_conn *
1576 __nf_conntrack_alloc(struct net *net,
1577 		     const struct nf_conntrack_zone *zone,
1578 		     const struct nf_conntrack_tuple *orig,
1579 		     const struct nf_conntrack_tuple *repl,
1580 		     gfp_t gfp, u32 hash)
1581 {
1582 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1583 	unsigned int ct_count;
1584 	struct nf_conn *ct;
1585 
1586 	/* We don't want any race condition at early drop stage */
1587 	ct_count = atomic_inc_return(&cnet->count);
1588 
1589 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1590 		if (!early_drop(net, hash)) {
1591 			if (!conntrack_gc_work.early_drop)
1592 				conntrack_gc_work.early_drop = true;
1593 			atomic_dec(&cnet->count);
1594 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1595 			return ERR_PTR(-ENOMEM);
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * Do not use kmem_cache_zalloc(), as this cache uses
1601 	 * SLAB_TYPESAFE_BY_RCU.
1602 	 */
1603 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1604 	if (ct == NULL)
1605 		goto out;
1606 
1607 	spin_lock_init(&ct->lock);
1608 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1609 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1610 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1611 	/* save hash for reusing when confirming */
1612 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1613 	ct->status = 0;
1614 	WRITE_ONCE(ct->timeout, 0);
1615 	write_pnet(&ct->ct_net, net);
1616 	memset_after(ct, 0, __nfct_init_offset);
1617 
1618 	nf_ct_zone_add(ct, zone);
1619 
1620 	/* Because we use RCU lookups, we set ct_general.use to zero before
1621 	 * this is inserted in any list.
1622 	 */
1623 	refcount_set(&ct->ct_general.use, 0);
1624 	return ct;
1625 out:
1626 	atomic_dec(&cnet->count);
1627 	return ERR_PTR(-ENOMEM);
1628 }
1629 
1630 struct nf_conn *nf_conntrack_alloc(struct net *net,
1631 				   const struct nf_conntrack_zone *zone,
1632 				   const struct nf_conntrack_tuple *orig,
1633 				   const struct nf_conntrack_tuple *repl,
1634 				   gfp_t gfp)
1635 {
1636 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1637 }
1638 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1639 
1640 void nf_conntrack_free(struct nf_conn *ct)
1641 {
1642 	struct net *net = nf_ct_net(ct);
1643 	struct nf_conntrack_net *cnet;
1644 
1645 	/* A freed object has refcnt == 0, that's
1646 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1647 	 */
1648 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1649 
1650 	if (ct->status & IPS_SRC_NAT_DONE) {
1651 		const struct nf_nat_hook *nat_hook;
1652 
1653 		rcu_read_lock();
1654 		nat_hook = rcu_dereference(nf_nat_hook);
1655 		if (nat_hook)
1656 			nat_hook->remove_nat_bysrc(ct);
1657 		rcu_read_unlock();
1658 	}
1659 
1660 	kfree(ct->ext);
1661 	kmem_cache_free(nf_conntrack_cachep, ct);
1662 	cnet = nf_ct_pernet(net);
1663 
1664 	smp_mb__before_atomic();
1665 	atomic_dec(&cnet->count);
1666 }
1667 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1668 
1669 
1670 /* Allocate a new conntrack: we return -ENOMEM if classification
1671    failed due to stress.  Otherwise it really is unclassifiable. */
1672 static noinline struct nf_conntrack_tuple_hash *
1673 init_conntrack(struct net *net, struct nf_conn *tmpl,
1674 	       const struct nf_conntrack_tuple *tuple,
1675 	       struct sk_buff *skb,
1676 	       unsigned int dataoff, u32 hash)
1677 {
1678 	struct nf_conn *ct;
1679 	struct nf_conn_help *help;
1680 	struct nf_conntrack_tuple repl_tuple;
1681 	struct nf_conntrack_ecache *ecache;
1682 	struct nf_conntrack_expect *exp = NULL;
1683 	const struct nf_conntrack_zone *zone;
1684 	struct nf_conn_timeout *timeout_ext;
1685 	struct nf_conntrack_zone tmp;
1686 	struct nf_conntrack_net *cnet;
1687 
1688 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1689 		pr_debug("Can't invert tuple.\n");
1690 		return NULL;
1691 	}
1692 
1693 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1694 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1695 				  hash);
1696 	if (IS_ERR(ct))
1697 		return (struct nf_conntrack_tuple_hash *)ct;
1698 
1699 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1700 		nf_conntrack_free(ct);
1701 		return ERR_PTR(-ENOMEM);
1702 	}
1703 
1704 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1705 
1706 	if (timeout_ext)
1707 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1708 				      GFP_ATOMIC);
1709 
1710 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1711 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1712 	nf_ct_labels_ext_add(ct);
1713 
1714 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1715 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1716 				 ecache ? ecache->expmask : 0,
1717 			     GFP_ATOMIC);
1718 
1719 	local_bh_disable();
1720 	cnet = nf_ct_pernet(net);
1721 	if (cnet->expect_count) {
1722 		spin_lock(&nf_conntrack_expect_lock);
1723 		exp = nf_ct_find_expectation(net, zone, tuple);
1724 		if (exp) {
1725 			pr_debug("expectation arrives ct=%p exp=%p\n",
1726 				 ct, exp);
1727 			/* Welcome, Mr. Bond.  We've been expecting you... */
1728 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1729 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1730 			ct->master = exp->master;
1731 			if (exp->helper) {
1732 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1733 				if (help)
1734 					rcu_assign_pointer(help->helper, exp->helper);
1735 			}
1736 
1737 #ifdef CONFIG_NF_CONNTRACK_MARK
1738 			ct->mark = exp->master->mark;
1739 #endif
1740 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1741 			ct->secmark = exp->master->secmark;
1742 #endif
1743 			NF_CT_STAT_INC(net, expect_new);
1744 		}
1745 		spin_unlock(&nf_conntrack_expect_lock);
1746 	}
1747 	if (!exp)
1748 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1749 
1750 	/* Now it is inserted into the unconfirmed list, set refcount to 1. */
1751 	refcount_set(&ct->ct_general.use, 1);
1752 	nf_ct_add_to_unconfirmed_list(ct);
1753 
1754 	local_bh_enable();
1755 
1756 	if (exp) {
1757 		if (exp->expectfn)
1758 			exp->expectfn(ct, exp);
1759 		nf_ct_expect_put(exp);
1760 	}
1761 
1762 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1763 }
1764 
1765 /* On success, returns 0, sets skb->_nfct | ctinfo */
1766 static int
1767 resolve_normal_ct(struct nf_conn *tmpl,
1768 		  struct sk_buff *skb,
1769 		  unsigned int dataoff,
1770 		  u_int8_t protonum,
1771 		  const struct nf_hook_state *state)
1772 {
1773 	const struct nf_conntrack_zone *zone;
1774 	struct nf_conntrack_tuple tuple;
1775 	struct nf_conntrack_tuple_hash *h;
1776 	enum ip_conntrack_info ctinfo;
1777 	struct nf_conntrack_zone tmp;
1778 	u32 hash, zone_id, rid;
1779 	struct nf_conn *ct;
1780 
1781 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1782 			     dataoff, state->pf, protonum, state->net,
1783 			     &tuple)) {
1784 		pr_debug("Can't get tuple\n");
1785 		return 0;
1786 	}
1787 
1788 	/* look for tuple match */
1789 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1790 
1791 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1792 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1793 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1794 
1795 	if (!h) {
1796 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1797 		if (zone_id != rid) {
1798 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1799 
1800 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1801 		}
1802 	}
1803 
1804 	if (!h) {
1805 		h = init_conntrack(state->net, tmpl, &tuple,
1806 				   skb, dataoff, hash);
1807 		if (!h)
1808 			return 0;
1809 		if (IS_ERR(h))
1810 			return PTR_ERR(h);
1811 	}
1812 	ct = nf_ct_tuplehash_to_ctrack(h);
1813 
1814 	/* It exists; we have (non-exclusive) reference. */
1815 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1816 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1817 	} else {
1818 		/* Once we've had two way comms, always ESTABLISHED. */
1819 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1820 			pr_debug("normal packet for %p\n", ct);
1821 			ctinfo = IP_CT_ESTABLISHED;
1822 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1823 			pr_debug("related packet for %p\n", ct);
1824 			ctinfo = IP_CT_RELATED;
1825 		} else {
1826 			pr_debug("new packet for %p\n", ct);
1827 			ctinfo = IP_CT_NEW;
1828 		}
1829 	}
1830 	nf_ct_set(skb, ct, ctinfo);
1831 	return 0;
1832 }
1833 
1834 /*
1835  * icmp packets need special treatment to handle error messages that are
1836  * related to a connection.
1837  *
1838  * Callers need to check if skb has a conntrack assigned when this
1839  * helper returns; in such case skb belongs to an already known connection.
1840  */
1841 static unsigned int __cold
1842 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1843 			 struct sk_buff *skb,
1844 			 unsigned int dataoff,
1845 			 u8 protonum,
1846 			 const struct nf_hook_state *state)
1847 {
1848 	int ret;
1849 
1850 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1851 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1852 #if IS_ENABLED(CONFIG_IPV6)
1853 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1854 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1855 #endif
1856 	else
1857 		return NF_ACCEPT;
1858 
1859 	if (ret <= 0)
1860 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1861 
1862 	return ret;
1863 }
1864 
1865 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1866 			  enum ip_conntrack_info ctinfo)
1867 {
1868 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1869 
1870 	if (!timeout)
1871 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1872 
1873 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1874 	return NF_ACCEPT;
1875 }
1876 
1877 /* Returns verdict for packet, or -1 for invalid. */
1878 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1879 				      struct sk_buff *skb,
1880 				      unsigned int dataoff,
1881 				      enum ip_conntrack_info ctinfo,
1882 				      const struct nf_hook_state *state)
1883 {
1884 	switch (nf_ct_protonum(ct)) {
1885 	case IPPROTO_TCP:
1886 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1887 					       ctinfo, state);
1888 	case IPPROTO_UDP:
1889 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1890 					       ctinfo, state);
1891 	case IPPROTO_ICMP:
1892 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1893 #if IS_ENABLED(CONFIG_IPV6)
1894 	case IPPROTO_ICMPV6:
1895 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1896 #endif
1897 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1898 	case IPPROTO_UDPLITE:
1899 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1900 						   ctinfo, state);
1901 #endif
1902 #ifdef CONFIG_NF_CT_PROTO_SCTP
1903 	case IPPROTO_SCTP:
1904 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1905 						ctinfo, state);
1906 #endif
1907 #ifdef CONFIG_NF_CT_PROTO_DCCP
1908 	case IPPROTO_DCCP:
1909 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1910 						ctinfo, state);
1911 #endif
1912 #ifdef CONFIG_NF_CT_PROTO_GRE
1913 	case IPPROTO_GRE:
1914 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1915 					       ctinfo, state);
1916 #endif
1917 	}
1918 
1919 	return generic_packet(ct, skb, ctinfo);
1920 }
1921 
1922 unsigned int
1923 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1924 {
1925 	enum ip_conntrack_info ctinfo;
1926 	struct nf_conn *ct, *tmpl;
1927 	u_int8_t protonum;
1928 	int dataoff, ret;
1929 
1930 	tmpl = nf_ct_get(skb, &ctinfo);
1931 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1932 		/* Previously seen (loopback or untracked)?  Ignore. */
1933 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1934 		     ctinfo == IP_CT_UNTRACKED)
1935 			return NF_ACCEPT;
1936 		skb->_nfct = 0;
1937 	}
1938 
1939 	/* rcu_read_lock()ed by nf_hook_thresh */
1940 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1941 	if (dataoff <= 0) {
1942 		pr_debug("not prepared to track yet or error occurred\n");
1943 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1944 		ret = NF_ACCEPT;
1945 		goto out;
1946 	}
1947 
1948 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1949 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1950 					       protonum, state);
1951 		if (ret <= 0) {
1952 			ret = -ret;
1953 			goto out;
1954 		}
1955 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1956 		if (skb->_nfct)
1957 			goto out;
1958 	}
1959 repeat:
1960 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1961 				protonum, state);
1962 	if (ret < 0) {
1963 		/* Too stressed to deal. */
1964 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1965 		ret = NF_DROP;
1966 		goto out;
1967 	}
1968 
1969 	ct = nf_ct_get(skb, &ctinfo);
1970 	if (!ct) {
1971 		/* Not valid part of a connection */
1972 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1973 		ret = NF_ACCEPT;
1974 		goto out;
1975 	}
1976 
1977 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1978 	if (ret <= 0) {
1979 		/* Invalid: inverse of the return code tells
1980 		 * the netfilter core what to do */
1981 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1982 		nf_ct_put(ct);
1983 		skb->_nfct = 0;
1984 		/* Special case: TCP tracker reports an attempt to reopen a
1985 		 * closed/aborted connection. We have to go back and create a
1986 		 * fresh conntrack.
1987 		 */
1988 		if (ret == -NF_REPEAT)
1989 			goto repeat;
1990 
1991 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1992 		if (ret == -NF_DROP)
1993 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1994 
1995 		ret = -ret;
1996 		goto out;
1997 	}
1998 
1999 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2000 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2001 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2002 out:
2003 	if (tmpl)
2004 		nf_ct_put(tmpl);
2005 
2006 	return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2009 
2010 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2011    implicitly racy: see __nf_conntrack_confirm */
2012 void nf_conntrack_alter_reply(struct nf_conn *ct,
2013 			      const struct nf_conntrack_tuple *newreply)
2014 {
2015 	struct nf_conn_help *help = nfct_help(ct);
2016 
2017 	/* Should be unconfirmed, so not in hash table yet */
2018 	WARN_ON(nf_ct_is_confirmed(ct));
2019 
2020 	pr_debug("Altering reply tuple of %p to ", ct);
2021 	nf_ct_dump_tuple(newreply);
2022 
2023 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2024 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2025 		return;
2026 
2027 	rcu_read_lock();
2028 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
2029 	rcu_read_unlock();
2030 }
2031 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2032 
2033 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2034 void __nf_ct_refresh_acct(struct nf_conn *ct,
2035 			  enum ip_conntrack_info ctinfo,
2036 			  const struct sk_buff *skb,
2037 			  u32 extra_jiffies,
2038 			  bool do_acct)
2039 {
2040 	/* Only update if this is not a fixed timeout */
2041 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2042 		goto acct;
2043 
2044 	/* If not in hash table, timer will not be active yet */
2045 	if (nf_ct_is_confirmed(ct))
2046 		extra_jiffies += nfct_time_stamp;
2047 
2048 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2049 		WRITE_ONCE(ct->timeout, extra_jiffies);
2050 acct:
2051 	if (do_acct)
2052 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2053 }
2054 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2055 
2056 bool nf_ct_kill_acct(struct nf_conn *ct,
2057 		     enum ip_conntrack_info ctinfo,
2058 		     const struct sk_buff *skb)
2059 {
2060 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2061 
2062 	return nf_ct_delete(ct, 0, 0);
2063 }
2064 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2065 
2066 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2067 
2068 #include <linux/netfilter/nfnetlink.h>
2069 #include <linux/netfilter/nfnetlink_conntrack.h>
2070 #include <linux/mutex.h>
2071 
2072 /* Generic function for tcp/udp/sctp/dccp and alike. */
2073 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2074 			       const struct nf_conntrack_tuple *tuple)
2075 {
2076 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2077 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2078 		goto nla_put_failure;
2079 	return 0;
2080 
2081 nla_put_failure:
2082 	return -1;
2083 }
2084 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2085 
2086 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2087 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2088 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2089 };
2090 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2091 
2092 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2093 			       struct nf_conntrack_tuple *t,
2094 			       u_int32_t flags)
2095 {
2096 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2097 		if (!tb[CTA_PROTO_SRC_PORT])
2098 			return -EINVAL;
2099 
2100 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2101 	}
2102 
2103 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2104 		if (!tb[CTA_PROTO_DST_PORT])
2105 			return -EINVAL;
2106 
2107 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2108 	}
2109 
2110 	return 0;
2111 }
2112 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2113 
2114 unsigned int nf_ct_port_nlattr_tuple_size(void)
2115 {
2116 	static unsigned int size __read_mostly;
2117 
2118 	if (!size)
2119 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2120 
2121 	return size;
2122 }
2123 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2124 #endif
2125 
2126 /* Used by ipt_REJECT and ip6t_REJECT. */
2127 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2128 {
2129 	struct nf_conn *ct;
2130 	enum ip_conntrack_info ctinfo;
2131 
2132 	/* This ICMP is in reverse direction to the packet which caused it */
2133 	ct = nf_ct_get(skb, &ctinfo);
2134 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2135 		ctinfo = IP_CT_RELATED_REPLY;
2136 	else
2137 		ctinfo = IP_CT_RELATED;
2138 
2139 	/* Attach to new skbuff, and increment count */
2140 	nf_ct_set(nskb, ct, ctinfo);
2141 	nf_conntrack_get(skb_nfct(nskb));
2142 }
2143 
2144 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2145 				 struct nf_conn *ct,
2146 				 enum ip_conntrack_info ctinfo)
2147 {
2148 	const struct nf_nat_hook *nat_hook;
2149 	struct nf_conntrack_tuple_hash *h;
2150 	struct nf_conntrack_tuple tuple;
2151 	unsigned int status;
2152 	int dataoff;
2153 	u16 l3num;
2154 	u8 l4num;
2155 
2156 	l3num = nf_ct_l3num(ct);
2157 
2158 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2159 	if (dataoff <= 0)
2160 		return -1;
2161 
2162 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2163 			     l4num, net, &tuple))
2164 		return -1;
2165 
2166 	if (ct->status & IPS_SRC_NAT) {
2167 		memcpy(tuple.src.u3.all,
2168 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2169 		       sizeof(tuple.src.u3.all));
2170 		tuple.src.u.all =
2171 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2172 	}
2173 
2174 	if (ct->status & IPS_DST_NAT) {
2175 		memcpy(tuple.dst.u3.all,
2176 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2177 		       sizeof(tuple.dst.u3.all));
2178 		tuple.dst.u.all =
2179 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2180 	}
2181 
2182 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2183 	if (!h)
2184 		return 0;
2185 
2186 	/* Store status bits of the conntrack that is clashing to re-do NAT
2187 	 * mangling according to what it has been done already to this packet.
2188 	 */
2189 	status = ct->status;
2190 
2191 	nf_ct_put(ct);
2192 	ct = nf_ct_tuplehash_to_ctrack(h);
2193 	nf_ct_set(skb, ct, ctinfo);
2194 
2195 	nat_hook = rcu_dereference(nf_nat_hook);
2196 	if (!nat_hook)
2197 		return 0;
2198 
2199 	if (status & IPS_SRC_NAT &&
2200 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2201 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2202 		return -1;
2203 
2204 	if (status & IPS_DST_NAT &&
2205 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2206 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2207 		return -1;
2208 
2209 	return 0;
2210 }
2211 
2212 /* This packet is coming from userspace via nf_queue, complete the packet
2213  * processing after the helper invocation in nf_confirm().
2214  */
2215 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2216 			       enum ip_conntrack_info ctinfo)
2217 {
2218 	const struct nf_conntrack_helper *helper;
2219 	const struct nf_conn_help *help;
2220 	int protoff;
2221 
2222 	help = nfct_help(ct);
2223 	if (!help)
2224 		return 0;
2225 
2226 	helper = rcu_dereference(help->helper);
2227 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2228 		return 0;
2229 
2230 	switch (nf_ct_l3num(ct)) {
2231 	case NFPROTO_IPV4:
2232 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2233 		break;
2234 #if IS_ENABLED(CONFIG_IPV6)
2235 	case NFPROTO_IPV6: {
2236 		__be16 frag_off;
2237 		u8 pnum;
2238 
2239 		pnum = ipv6_hdr(skb)->nexthdr;
2240 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2241 					   &frag_off);
2242 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2243 			return 0;
2244 		break;
2245 	}
2246 #endif
2247 	default:
2248 		return 0;
2249 	}
2250 
2251 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2252 	    !nf_is_loopback_packet(skb)) {
2253 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2254 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2255 			return -1;
2256 		}
2257 	}
2258 
2259 	/* We've seen it coming out the other side: confirm it */
2260 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2261 }
2262 
2263 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2264 {
2265 	enum ip_conntrack_info ctinfo;
2266 	struct nf_conn *ct;
2267 	int err;
2268 
2269 	ct = nf_ct_get(skb, &ctinfo);
2270 	if (!ct)
2271 		return 0;
2272 
2273 	if (!nf_ct_is_confirmed(ct)) {
2274 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2275 		if (err < 0)
2276 			return err;
2277 
2278 		ct = nf_ct_get(skb, &ctinfo);
2279 	}
2280 
2281 	return nf_confirm_cthelper(skb, ct, ctinfo);
2282 }
2283 
2284 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2285 				       const struct sk_buff *skb)
2286 {
2287 	const struct nf_conntrack_tuple *src_tuple;
2288 	const struct nf_conntrack_tuple_hash *hash;
2289 	struct nf_conntrack_tuple srctuple;
2290 	enum ip_conntrack_info ctinfo;
2291 	struct nf_conn *ct;
2292 
2293 	ct = nf_ct_get(skb, &ctinfo);
2294 	if (ct) {
2295 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2296 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2297 		return true;
2298 	}
2299 
2300 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2301 			       NFPROTO_IPV4, dev_net(skb->dev),
2302 			       &srctuple))
2303 		return false;
2304 
2305 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2306 				     &nf_ct_zone_dflt,
2307 				     &srctuple);
2308 	if (!hash)
2309 		return false;
2310 
2311 	ct = nf_ct_tuplehash_to_ctrack(hash);
2312 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2313 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2314 	nf_ct_put(ct);
2315 
2316 	return true;
2317 }
2318 
2319 /* Bring out ya dead! */
2320 static struct nf_conn *
2321 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2322 		void *data, unsigned int *bucket)
2323 {
2324 	struct nf_conntrack_tuple_hash *h;
2325 	struct nf_conn *ct;
2326 	struct hlist_nulls_node *n;
2327 	spinlock_t *lockp;
2328 
2329 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2330 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2331 
2332 		if (hlist_nulls_empty(hslot))
2333 			continue;
2334 
2335 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2336 		local_bh_disable();
2337 		nf_conntrack_lock(lockp);
2338 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2339 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2340 				continue;
2341 			/* All nf_conn objects are added to hash table twice, one
2342 			 * for original direction tuple, once for the reply tuple.
2343 			 *
2344 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2345 			 * tuple is added (the original tuple already existed for
2346 			 * a different object).
2347 			 *
2348 			 * We only need to call the iterator once for each
2349 			 * conntrack, so we just use the 'reply' direction
2350 			 * tuple while iterating.
2351 			 */
2352 			ct = nf_ct_tuplehash_to_ctrack(h);
2353 			if (iter(ct, data))
2354 				goto found;
2355 		}
2356 		spin_unlock(lockp);
2357 		local_bh_enable();
2358 		cond_resched();
2359 	}
2360 
2361 	return NULL;
2362 found:
2363 	refcount_inc(&ct->ct_general.use);
2364 	spin_unlock(lockp);
2365 	local_bh_enable();
2366 	return ct;
2367 }
2368 
2369 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2370 				  void *data, u32 portid, int report)
2371 {
2372 	unsigned int bucket = 0;
2373 	struct nf_conn *ct;
2374 
2375 	might_sleep();
2376 
2377 	mutex_lock(&nf_conntrack_mutex);
2378 	while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2379 		/* Time to push up daises... */
2380 
2381 		nf_ct_delete(ct, portid, report);
2382 		nf_ct_put(ct);
2383 		cond_resched();
2384 	}
2385 	mutex_unlock(&nf_conntrack_mutex);
2386 }
2387 
2388 struct iter_data {
2389 	int (*iter)(struct nf_conn *i, void *data);
2390 	void *data;
2391 	struct net *net;
2392 };
2393 
2394 static int iter_net_only(struct nf_conn *i, void *data)
2395 {
2396 	struct iter_data *d = data;
2397 
2398 	if (!net_eq(d->net, nf_ct_net(i)))
2399 		return 0;
2400 
2401 	return d->iter(i, d->data);
2402 }
2403 
2404 static void
2405 __nf_ct_unconfirmed_destroy(struct net *net)
2406 {
2407 	int cpu;
2408 
2409 	for_each_possible_cpu(cpu) {
2410 		struct nf_conntrack_tuple_hash *h;
2411 		struct hlist_nulls_node *n;
2412 		struct ct_pcpu *pcpu;
2413 
2414 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2415 
2416 		spin_lock_bh(&pcpu->lock);
2417 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2418 			struct nf_conn *ct;
2419 
2420 			ct = nf_ct_tuplehash_to_ctrack(h);
2421 
2422 			/* we cannot call iter() on unconfirmed list, the
2423 			 * owning cpu can reallocate ct->ext at any time.
2424 			 */
2425 			set_bit(IPS_DYING_BIT, &ct->status);
2426 		}
2427 		spin_unlock_bh(&pcpu->lock);
2428 		cond_resched();
2429 	}
2430 }
2431 
2432 void nf_ct_unconfirmed_destroy(struct net *net)
2433 {
2434 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2435 
2436 	might_sleep();
2437 
2438 	if (atomic_read(&cnet->count) > 0) {
2439 		__nf_ct_unconfirmed_destroy(net);
2440 		nf_queue_nf_hook_drop(net);
2441 		synchronize_net();
2442 	}
2443 }
2444 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2445 
2446 void nf_ct_iterate_cleanup_net(struct net *net,
2447 			       int (*iter)(struct nf_conn *i, void *data),
2448 			       void *data, u32 portid, int report)
2449 {
2450 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2451 	struct iter_data d;
2452 
2453 	might_sleep();
2454 
2455 	if (atomic_read(&cnet->count) == 0)
2456 		return;
2457 
2458 	d.iter = iter;
2459 	d.data = data;
2460 	d.net = net;
2461 
2462 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2463 }
2464 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2465 
2466 /**
2467  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2468  * @iter: callback to invoke for each conntrack
2469  * @data: data to pass to @iter
2470  *
2471  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2472  * unconfirmed list as dying (so they will not be inserted into
2473  * main table).
2474  *
2475  * Can only be called in module exit path.
2476  */
2477 void
2478 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2479 {
2480 	struct net *net;
2481 
2482 	down_read(&net_rwsem);
2483 	for_each_net(net) {
2484 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2485 
2486 		if (atomic_read(&cnet->count) == 0)
2487 			continue;
2488 		__nf_ct_unconfirmed_destroy(net);
2489 		nf_queue_nf_hook_drop(net);
2490 	}
2491 	up_read(&net_rwsem);
2492 
2493 	/* Need to wait for netns cleanup worker to finish, if its
2494 	 * running -- it might have deleted a net namespace from
2495 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2496 	 * not have affected all namespaces.
2497 	 */
2498 	net_ns_barrier();
2499 
2500 	/* a conntrack could have been unlinked from unconfirmed list
2501 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2502 	 * This makes sure its inserted into conntrack table.
2503 	 */
2504 	synchronize_net();
2505 
2506 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2507 }
2508 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2509 
2510 static int kill_all(struct nf_conn *i, void *data)
2511 {
2512 	return net_eq(nf_ct_net(i), data);
2513 }
2514 
2515 void nf_conntrack_cleanup_start(void)
2516 {
2517 	conntrack_gc_work.exiting = true;
2518 }
2519 
2520 void nf_conntrack_cleanup_end(void)
2521 {
2522 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2523 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2524 	kvfree(nf_conntrack_hash);
2525 
2526 	nf_conntrack_proto_fini();
2527 	nf_conntrack_helper_fini();
2528 	nf_conntrack_expect_fini();
2529 
2530 	kmem_cache_destroy(nf_conntrack_cachep);
2531 }
2532 
2533 /*
2534  * Mishearing the voices in his head, our hero wonders how he's
2535  * supposed to kill the mall.
2536  */
2537 void nf_conntrack_cleanup_net(struct net *net)
2538 {
2539 	LIST_HEAD(single);
2540 
2541 	list_add(&net->exit_list, &single);
2542 	nf_conntrack_cleanup_net_list(&single);
2543 }
2544 
2545 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2546 {
2547 	int busy;
2548 	struct net *net;
2549 
2550 	/*
2551 	 * This makes sure all current packets have passed through
2552 	 *  netfilter framework.  Roll on, two-stage module
2553 	 *  delete...
2554 	 */
2555 	synchronize_net();
2556 i_see_dead_people:
2557 	busy = 0;
2558 	list_for_each_entry(net, net_exit_list, exit_list) {
2559 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2560 
2561 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2562 		if (atomic_read(&cnet->count) != 0)
2563 			busy = 1;
2564 	}
2565 	if (busy) {
2566 		schedule();
2567 		goto i_see_dead_people;
2568 	}
2569 
2570 	list_for_each_entry(net, net_exit_list, exit_list) {
2571 		nf_conntrack_ecache_pernet_fini(net);
2572 		nf_conntrack_expect_pernet_fini(net);
2573 		free_percpu(net->ct.stat);
2574 		free_percpu(net->ct.pcpu_lists);
2575 	}
2576 }
2577 
2578 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2579 {
2580 	struct hlist_nulls_head *hash;
2581 	unsigned int nr_slots, i;
2582 
2583 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2584 		return NULL;
2585 
2586 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2587 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2588 
2589 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2590 
2591 	if (hash && nulls)
2592 		for (i = 0; i < nr_slots; i++)
2593 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2594 
2595 	return hash;
2596 }
2597 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2598 
2599 int nf_conntrack_hash_resize(unsigned int hashsize)
2600 {
2601 	int i, bucket;
2602 	unsigned int old_size;
2603 	struct hlist_nulls_head *hash, *old_hash;
2604 	struct nf_conntrack_tuple_hash *h;
2605 	struct nf_conn *ct;
2606 
2607 	if (!hashsize)
2608 		return -EINVAL;
2609 
2610 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2611 	if (!hash)
2612 		return -ENOMEM;
2613 
2614 	mutex_lock(&nf_conntrack_mutex);
2615 	old_size = nf_conntrack_htable_size;
2616 	if (old_size == hashsize) {
2617 		mutex_unlock(&nf_conntrack_mutex);
2618 		kvfree(hash);
2619 		return 0;
2620 	}
2621 
2622 	local_bh_disable();
2623 	nf_conntrack_all_lock();
2624 	write_seqcount_begin(&nf_conntrack_generation);
2625 
2626 	/* Lookups in the old hash might happen in parallel, which means we
2627 	 * might get false negatives during connection lookup. New connections
2628 	 * created because of a false negative won't make it into the hash
2629 	 * though since that required taking the locks.
2630 	 */
2631 
2632 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2633 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2634 			unsigned int zone_id;
2635 
2636 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2637 					      struct nf_conntrack_tuple_hash, hnnode);
2638 			ct = nf_ct_tuplehash_to_ctrack(h);
2639 			hlist_nulls_del_rcu(&h->hnnode);
2640 
2641 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2642 			bucket = __hash_conntrack(nf_ct_net(ct),
2643 						  &h->tuple, zone_id, hashsize);
2644 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2645 		}
2646 	}
2647 	old_hash = nf_conntrack_hash;
2648 
2649 	nf_conntrack_hash = hash;
2650 	nf_conntrack_htable_size = hashsize;
2651 
2652 	write_seqcount_end(&nf_conntrack_generation);
2653 	nf_conntrack_all_unlock();
2654 	local_bh_enable();
2655 
2656 	mutex_unlock(&nf_conntrack_mutex);
2657 
2658 	synchronize_net();
2659 	kvfree(old_hash);
2660 	return 0;
2661 }
2662 
2663 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2664 {
2665 	unsigned int hashsize;
2666 	int rc;
2667 
2668 	if (current->nsproxy->net_ns != &init_net)
2669 		return -EOPNOTSUPP;
2670 
2671 	/* On boot, we can set this without any fancy locking. */
2672 	if (!nf_conntrack_hash)
2673 		return param_set_uint(val, kp);
2674 
2675 	rc = kstrtouint(val, 0, &hashsize);
2676 	if (rc)
2677 		return rc;
2678 
2679 	return nf_conntrack_hash_resize(hashsize);
2680 }
2681 
2682 int nf_conntrack_init_start(void)
2683 {
2684 	unsigned long nr_pages = totalram_pages();
2685 	int max_factor = 8;
2686 	int ret = -ENOMEM;
2687 	int i;
2688 
2689 	seqcount_spinlock_init(&nf_conntrack_generation,
2690 			       &nf_conntrack_locks_all_lock);
2691 
2692 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2693 		spin_lock_init(&nf_conntrack_locks[i]);
2694 
2695 	if (!nf_conntrack_htable_size) {
2696 		nf_conntrack_htable_size
2697 			= (((nr_pages << PAGE_SHIFT) / 16384)
2698 			   / sizeof(struct hlist_head));
2699 		if (BITS_PER_LONG >= 64 &&
2700 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2701 			nf_conntrack_htable_size = 262144;
2702 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2703 			nf_conntrack_htable_size = 65536;
2704 
2705 		if (nf_conntrack_htable_size < 1024)
2706 			nf_conntrack_htable_size = 1024;
2707 		/* Use a max. factor of one by default to keep the average
2708 		 * hash chain length at 2 entries.  Each entry has to be added
2709 		 * twice (once for original direction, once for reply).
2710 		 * When a table size is given we use the old value of 8 to
2711 		 * avoid implicit reduction of the max entries setting.
2712 		 */
2713 		max_factor = 1;
2714 	}
2715 
2716 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2717 	if (!nf_conntrack_hash)
2718 		return -ENOMEM;
2719 
2720 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2721 
2722 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2723 						sizeof(struct nf_conn),
2724 						NFCT_INFOMASK + 1,
2725 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2726 	if (!nf_conntrack_cachep)
2727 		goto err_cachep;
2728 
2729 	ret = nf_conntrack_expect_init();
2730 	if (ret < 0)
2731 		goto err_expect;
2732 
2733 	ret = nf_conntrack_helper_init();
2734 	if (ret < 0)
2735 		goto err_helper;
2736 
2737 	ret = nf_conntrack_proto_init();
2738 	if (ret < 0)
2739 		goto err_proto;
2740 
2741 	conntrack_gc_work_init(&conntrack_gc_work);
2742 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2743 
2744 	ret = register_nf_conntrack_bpf();
2745 	if (ret < 0)
2746 		goto err_kfunc;
2747 
2748 	return 0;
2749 
2750 err_kfunc:
2751 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2752 	nf_conntrack_proto_fini();
2753 err_proto:
2754 	nf_conntrack_helper_fini();
2755 err_helper:
2756 	nf_conntrack_expect_fini();
2757 err_expect:
2758 	kmem_cache_destroy(nf_conntrack_cachep);
2759 err_cachep:
2760 	kvfree(nf_conntrack_hash);
2761 	return ret;
2762 }
2763 
2764 static const struct nf_ct_hook nf_conntrack_hook = {
2765 	.update		= nf_conntrack_update,
2766 	.destroy	= nf_ct_destroy,
2767 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2768 	.attach		= nf_conntrack_attach,
2769 };
2770 
2771 void nf_conntrack_init_end(void)
2772 {
2773 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2774 }
2775 
2776 /*
2777  * We need to use special "null" values, not used in hash table
2778  */
2779 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2780 #define DYING_NULLS_VAL		((1<<30)+1)
2781 
2782 int nf_conntrack_init_net(struct net *net)
2783 {
2784 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2785 	int ret = -ENOMEM;
2786 	int cpu;
2787 
2788 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2789 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2790 	atomic_set(&cnet->count, 0);
2791 
2792 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2793 	if (!net->ct.pcpu_lists)
2794 		goto err_stat;
2795 
2796 	for_each_possible_cpu(cpu) {
2797 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2798 
2799 		spin_lock_init(&pcpu->lock);
2800 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2801 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2802 	}
2803 
2804 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2805 	if (!net->ct.stat)
2806 		goto err_pcpu_lists;
2807 
2808 	ret = nf_conntrack_expect_pernet_init(net);
2809 	if (ret < 0)
2810 		goto err_expect;
2811 
2812 	nf_conntrack_acct_pernet_init(net);
2813 	nf_conntrack_tstamp_pernet_init(net);
2814 	nf_conntrack_ecache_pernet_init(net);
2815 	nf_conntrack_helper_pernet_init(net);
2816 	nf_conntrack_proto_pernet_init(net);
2817 
2818 	return 0;
2819 
2820 err_expect:
2821 	free_percpu(net->ct.stat);
2822 err_pcpu_lists:
2823 	free_percpu(net->ct.pcpu_lists);
2824 err_stat:
2825 	return ret;
2826 }
2827