1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4 
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38 
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l4proto.h>
41 #include <net/netfilter/nf_conntrack_expect.h>
42 #include <net/netfilter/nf_conntrack_helper.h>
43 #include <net/netfilter/nf_conntrack_seqadj.h>
44 #include <net/netfilter/nf_conntrack_core.h>
45 #include <net/netfilter/nf_conntrack_extend.h>
46 #include <net/netfilter/nf_conntrack_acct.h>
47 #include <net/netfilter/nf_conntrack_ecache.h>
48 #include <net/netfilter/nf_conntrack_zones.h>
49 #include <net/netfilter/nf_conntrack_timestamp.h>
50 #include <net/netfilter/nf_conntrack_timeout.h>
51 #include <net/netfilter/nf_conntrack_labels.h>
52 #include <net/netfilter/nf_conntrack_synproxy.h>
53 #include <net/netfilter/nf_nat.h>
54 #include <net/netfilter/nf_nat_core.h>
55 #include <net/netfilter/nf_nat_helper.h>
56 #include <net/netns/hash.h>
57 #include <net/ip.h>
58 
59 #include "nf_internals.h"
60 
61 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
62 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
63 
64 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
65 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
66 
67 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
68 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
69 
70 struct conntrack_gc_work {
71 	struct delayed_work	dwork;
72 	u32			last_bucket;
73 	bool			exiting;
74 	bool			early_drop;
75 	long			next_gc_run;
76 };
77 
78 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
79 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
80 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
81 static __read_mostly bool nf_conntrack_locks_all;
82 
83 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
84 #define GC_MAX_BUCKETS_DIV	128u
85 /* upper bound of full table scan */
86 #define GC_MAX_SCAN_JIFFIES	(16u * HZ)
87 /* desired ratio of entries found to be expired */
88 #define GC_EVICT_RATIO	50u
89 
90 static struct conntrack_gc_work conntrack_gc_work;
91 
92 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
93 {
94 	/* 1) Acquire the lock */
95 	spin_lock(lock);
96 
97 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
98 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
99 	 */
100 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
101 		return;
102 
103 	/* fast path failed, unlock */
104 	spin_unlock(lock);
105 
106 	/* Slow path 1) get global lock */
107 	spin_lock(&nf_conntrack_locks_all_lock);
108 
109 	/* Slow path 2) get the lock we want */
110 	spin_lock(lock);
111 
112 	/* Slow path 3) release the global lock */
113 	spin_unlock(&nf_conntrack_locks_all_lock);
114 }
115 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
116 
117 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
118 {
119 	h1 %= CONNTRACK_LOCKS;
120 	h2 %= CONNTRACK_LOCKS;
121 	spin_unlock(&nf_conntrack_locks[h1]);
122 	if (h1 != h2)
123 		spin_unlock(&nf_conntrack_locks[h2]);
124 }
125 
126 /* return true if we need to recompute hashes (in case hash table was resized) */
127 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
128 				     unsigned int h2, unsigned int sequence)
129 {
130 	h1 %= CONNTRACK_LOCKS;
131 	h2 %= CONNTRACK_LOCKS;
132 	if (h1 <= h2) {
133 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
134 		if (h1 != h2)
135 			spin_lock_nested(&nf_conntrack_locks[h2],
136 					 SINGLE_DEPTH_NESTING);
137 	} else {
138 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
139 		spin_lock_nested(&nf_conntrack_locks[h1],
140 				 SINGLE_DEPTH_NESTING);
141 	}
142 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
143 		nf_conntrack_double_unlock(h1, h2);
144 		return true;
145 	}
146 	return false;
147 }
148 
149 static void nf_conntrack_all_lock(void)
150 {
151 	int i;
152 
153 	spin_lock(&nf_conntrack_locks_all_lock);
154 
155 	nf_conntrack_locks_all = true;
156 
157 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
158 		spin_lock(&nf_conntrack_locks[i]);
159 
160 		/* This spin_unlock provides the "release" to ensure that
161 		 * nf_conntrack_locks_all==true is visible to everyone that
162 		 * acquired spin_lock(&nf_conntrack_locks[]).
163 		 */
164 		spin_unlock(&nf_conntrack_locks[i]);
165 	}
166 }
167 
168 static void nf_conntrack_all_unlock(void)
169 {
170 	/* All prior stores must be complete before we clear
171 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
172 	 * might observe the false value but not the entire
173 	 * critical section.
174 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
175 	 */
176 	smp_store_release(&nf_conntrack_locks_all, false);
177 	spin_unlock(&nf_conntrack_locks_all_lock);
178 }
179 
180 unsigned int nf_conntrack_htable_size __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
182 
183 unsigned int nf_conntrack_max __read_mostly;
184 EXPORT_SYMBOL_GPL(nf_conntrack_max);
185 seqcount_t nf_conntrack_generation __read_mostly;
186 static unsigned int nf_conntrack_hash_rnd __read_mostly;
187 
188 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
189 			      const struct net *net)
190 {
191 	unsigned int n;
192 	u32 seed;
193 
194 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
195 
196 	/* The direction must be ignored, so we hash everything up to the
197 	 * destination ports (which is a multiple of 4) and treat the last
198 	 * three bytes manually.
199 	 */
200 	seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
201 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
202 	return jhash2((u32 *)tuple, n, seed ^
203 		      (((__force __u16)tuple->dst.u.all << 16) |
204 		      tuple->dst.protonum));
205 }
206 
207 static u32 scale_hash(u32 hash)
208 {
209 	return reciprocal_scale(hash, nf_conntrack_htable_size);
210 }
211 
212 static u32 __hash_conntrack(const struct net *net,
213 			    const struct nf_conntrack_tuple *tuple,
214 			    unsigned int size)
215 {
216 	return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
217 }
218 
219 static u32 hash_conntrack(const struct net *net,
220 			  const struct nf_conntrack_tuple *tuple)
221 {
222 	return scale_hash(hash_conntrack_raw(tuple, net));
223 }
224 
225 static bool
226 nf_ct_get_tuple(const struct sk_buff *skb,
227 		unsigned int nhoff,
228 		unsigned int dataoff,
229 		u_int16_t l3num,
230 		u_int8_t protonum,
231 		struct net *net,
232 		struct nf_conntrack_tuple *tuple,
233 		const struct nf_conntrack_l4proto *l4proto)
234 {
235 	unsigned int size;
236 	const __be32 *ap;
237 	__be32 _addrs[8];
238 	struct {
239 		__be16 sport;
240 		__be16 dport;
241 	} _inet_hdr, *inet_hdr;
242 
243 	memset(tuple, 0, sizeof(*tuple));
244 
245 	tuple->src.l3num = l3num;
246 	switch (l3num) {
247 	case NFPROTO_IPV4:
248 		nhoff += offsetof(struct iphdr, saddr);
249 		size = 2 * sizeof(__be32);
250 		break;
251 	case NFPROTO_IPV6:
252 		nhoff += offsetof(struct ipv6hdr, saddr);
253 		size = sizeof(_addrs);
254 		break;
255 	default:
256 		return true;
257 	}
258 
259 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
260 	if (!ap)
261 		return false;
262 
263 	switch (l3num) {
264 	case NFPROTO_IPV4:
265 		tuple->src.u3.ip = ap[0];
266 		tuple->dst.u3.ip = ap[1];
267 		break;
268 	case NFPROTO_IPV6:
269 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
270 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
271 		break;
272 	}
273 
274 	tuple->dst.protonum = protonum;
275 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
276 
277 	if (unlikely(l4proto->pkt_to_tuple))
278 		return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
279 
280 	/* Actually only need first 4 bytes to get ports. */
281 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
282 	if (!inet_hdr)
283 		return false;
284 
285 	tuple->src.u.udp.port = inet_hdr->sport;
286 	tuple->dst.u.udp.port = inet_hdr->dport;
287 	return true;
288 }
289 
290 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
291 			    u_int8_t *protonum)
292 {
293 	int dataoff = -1;
294 	const struct iphdr *iph;
295 	struct iphdr _iph;
296 
297 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
298 	if (!iph)
299 		return -1;
300 
301 	/* Conntrack defragments packets, we might still see fragments
302 	 * inside ICMP packets though.
303 	 */
304 	if (iph->frag_off & htons(IP_OFFSET))
305 		return -1;
306 
307 	dataoff = nhoff + (iph->ihl << 2);
308 	*protonum = iph->protocol;
309 
310 	/* Check bogus IP headers */
311 	if (dataoff > skb->len) {
312 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
313 			 nhoff, iph->ihl << 2, skb->len);
314 		return -1;
315 	}
316 	return dataoff;
317 }
318 
319 #if IS_ENABLED(CONFIG_IPV6)
320 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
321 			    u8 *protonum)
322 {
323 	int protoff = -1;
324 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
325 	__be16 frag_off;
326 	u8 nexthdr;
327 
328 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
329 			  &nexthdr, sizeof(nexthdr)) != 0) {
330 		pr_debug("can't get nexthdr\n");
331 		return -1;
332 	}
333 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
334 	/*
335 	 * (protoff == skb->len) means the packet has not data, just
336 	 * IPv6 and possibly extensions headers, but it is tracked anyway
337 	 */
338 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
339 		pr_debug("can't find proto in pkt\n");
340 		return -1;
341 	}
342 
343 	*protonum = nexthdr;
344 	return protoff;
345 }
346 #endif
347 
348 static int get_l4proto(const struct sk_buff *skb,
349 		       unsigned int nhoff, u8 pf, u8 *l4num)
350 {
351 	switch (pf) {
352 	case NFPROTO_IPV4:
353 		return ipv4_get_l4proto(skb, nhoff, l4num);
354 #if IS_ENABLED(CONFIG_IPV6)
355 	case NFPROTO_IPV6:
356 		return ipv6_get_l4proto(skb, nhoff, l4num);
357 #endif
358 	default:
359 		*l4num = 0;
360 		break;
361 	}
362 	return -1;
363 }
364 
365 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
366 		       u_int16_t l3num,
367 		       struct net *net, struct nf_conntrack_tuple *tuple)
368 {
369 	const struct nf_conntrack_l4proto *l4proto;
370 	u8 protonum;
371 	int protoff;
372 	int ret;
373 
374 	rcu_read_lock();
375 
376 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
377 	if (protoff <= 0) {
378 		rcu_read_unlock();
379 		return false;
380 	}
381 
382 	l4proto = __nf_ct_l4proto_find(protonum);
383 
384 	ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
385 			      l4proto);
386 
387 	rcu_read_unlock();
388 	return ret;
389 }
390 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
391 
392 bool
393 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
394 		   const struct nf_conntrack_tuple *orig,
395 		   const struct nf_conntrack_l4proto *l4proto)
396 {
397 	memset(inverse, 0, sizeof(*inverse));
398 
399 	inverse->src.l3num = orig->src.l3num;
400 
401 	switch (orig->src.l3num) {
402 	case NFPROTO_IPV4:
403 		inverse->src.u3.ip = orig->dst.u3.ip;
404 		inverse->dst.u3.ip = orig->src.u3.ip;
405 		break;
406 	case NFPROTO_IPV6:
407 		inverse->src.u3.in6 = orig->dst.u3.in6;
408 		inverse->dst.u3.in6 = orig->src.u3.in6;
409 		break;
410 	default:
411 		break;
412 	}
413 
414 	inverse->dst.dir = !orig->dst.dir;
415 
416 	inverse->dst.protonum = orig->dst.protonum;
417 
418 	if (unlikely(l4proto->invert_tuple))
419 		return l4proto->invert_tuple(inverse, orig);
420 
421 	inverse->src.u.all = orig->dst.u.all;
422 	inverse->dst.u.all = orig->src.u.all;
423 	return true;
424 }
425 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
426 
427 static void
428 clean_from_lists(struct nf_conn *ct)
429 {
430 	pr_debug("clean_from_lists(%p)\n", ct);
431 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
432 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
433 
434 	/* Destroy all pending expectations */
435 	nf_ct_remove_expectations(ct);
436 }
437 
438 /* must be called with local_bh_disable */
439 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
440 {
441 	struct ct_pcpu *pcpu;
442 
443 	/* add this conntrack to the (per cpu) dying list */
444 	ct->cpu = smp_processor_id();
445 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
446 
447 	spin_lock(&pcpu->lock);
448 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
449 			     &pcpu->dying);
450 	spin_unlock(&pcpu->lock);
451 }
452 
453 /* must be called with local_bh_disable */
454 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
455 {
456 	struct ct_pcpu *pcpu;
457 
458 	/* add this conntrack to the (per cpu) unconfirmed list */
459 	ct->cpu = smp_processor_id();
460 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
461 
462 	spin_lock(&pcpu->lock);
463 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
464 			     &pcpu->unconfirmed);
465 	spin_unlock(&pcpu->lock);
466 }
467 
468 /* must be called with local_bh_disable */
469 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
470 {
471 	struct ct_pcpu *pcpu;
472 
473 	/* We overload first tuple to link into unconfirmed or dying list.*/
474 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
475 
476 	spin_lock(&pcpu->lock);
477 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
478 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
479 	spin_unlock(&pcpu->lock);
480 }
481 
482 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
483 
484 /* Released via destroy_conntrack() */
485 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
486 				 const struct nf_conntrack_zone *zone,
487 				 gfp_t flags)
488 {
489 	struct nf_conn *tmpl, *p;
490 
491 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
492 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
493 		if (!tmpl)
494 			return NULL;
495 
496 		p = tmpl;
497 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
498 		if (tmpl != p) {
499 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
500 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
501 		}
502 	} else {
503 		tmpl = kzalloc(sizeof(*tmpl), flags);
504 		if (!tmpl)
505 			return NULL;
506 	}
507 
508 	tmpl->status = IPS_TEMPLATE;
509 	write_pnet(&tmpl->ct_net, net);
510 	nf_ct_zone_add(tmpl, zone);
511 	atomic_set(&tmpl->ct_general.use, 0);
512 
513 	return tmpl;
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
516 
517 void nf_ct_tmpl_free(struct nf_conn *tmpl)
518 {
519 	nf_ct_ext_destroy(tmpl);
520 	nf_ct_ext_free(tmpl);
521 
522 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
523 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
524 	else
525 		kfree(tmpl);
526 }
527 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
528 
529 static void
530 destroy_conntrack(struct nf_conntrack *nfct)
531 {
532 	struct nf_conn *ct = (struct nf_conn *)nfct;
533 	const struct nf_conntrack_l4proto *l4proto;
534 
535 	pr_debug("destroy_conntrack(%p)\n", ct);
536 	WARN_ON(atomic_read(&nfct->use) != 0);
537 
538 	if (unlikely(nf_ct_is_template(ct))) {
539 		nf_ct_tmpl_free(ct);
540 		return;
541 	}
542 	l4proto = __nf_ct_l4proto_find(nf_ct_protonum(ct));
543 	if (l4proto->destroy)
544 		l4proto->destroy(ct);
545 
546 	local_bh_disable();
547 	/* Expectations will have been removed in clean_from_lists,
548 	 * except TFTP can create an expectation on the first packet,
549 	 * before connection is in the list, so we need to clean here,
550 	 * too.
551 	 */
552 	nf_ct_remove_expectations(ct);
553 
554 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
555 
556 	local_bh_enable();
557 
558 	if (ct->master)
559 		nf_ct_put(ct->master);
560 
561 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
562 	nf_conntrack_free(ct);
563 }
564 
565 static void nf_ct_delete_from_lists(struct nf_conn *ct)
566 {
567 	struct net *net = nf_ct_net(ct);
568 	unsigned int hash, reply_hash;
569 	unsigned int sequence;
570 
571 	nf_ct_helper_destroy(ct);
572 
573 	local_bh_disable();
574 	do {
575 		sequence = read_seqcount_begin(&nf_conntrack_generation);
576 		hash = hash_conntrack(net,
577 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
578 		reply_hash = hash_conntrack(net,
579 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
580 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
581 
582 	clean_from_lists(ct);
583 	nf_conntrack_double_unlock(hash, reply_hash);
584 
585 	nf_ct_add_to_dying_list(ct);
586 
587 	local_bh_enable();
588 }
589 
590 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
591 {
592 	struct nf_conn_tstamp *tstamp;
593 
594 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
595 		return false;
596 
597 	tstamp = nf_conn_tstamp_find(ct);
598 	if (tstamp && tstamp->stop == 0)
599 		tstamp->stop = ktime_get_real_ns();
600 
601 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
602 				    portid, report) < 0) {
603 		/* destroy event was not delivered. nf_ct_put will
604 		 * be done by event cache worker on redelivery.
605 		 */
606 		nf_ct_delete_from_lists(ct);
607 		nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
608 		return false;
609 	}
610 
611 	nf_conntrack_ecache_work(nf_ct_net(ct));
612 	nf_ct_delete_from_lists(ct);
613 	nf_ct_put(ct);
614 	return true;
615 }
616 EXPORT_SYMBOL_GPL(nf_ct_delete);
617 
618 static inline bool
619 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
620 		const struct nf_conntrack_tuple *tuple,
621 		const struct nf_conntrack_zone *zone,
622 		const struct net *net)
623 {
624 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
625 
626 	/* A conntrack can be recreated with the equal tuple,
627 	 * so we need to check that the conntrack is confirmed
628 	 */
629 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
630 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
631 	       nf_ct_is_confirmed(ct) &&
632 	       net_eq(net, nf_ct_net(ct));
633 }
634 
635 static inline bool
636 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
637 {
638 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
639 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
640 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
641 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
642 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
643 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
644 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
645 }
646 
647 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
648 static void nf_ct_gc_expired(struct nf_conn *ct)
649 {
650 	if (!atomic_inc_not_zero(&ct->ct_general.use))
651 		return;
652 
653 	if (nf_ct_should_gc(ct))
654 		nf_ct_kill(ct);
655 
656 	nf_ct_put(ct);
657 }
658 
659 /*
660  * Warning :
661  * - Caller must take a reference on returned object
662  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
663  */
664 static struct nf_conntrack_tuple_hash *
665 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
666 		      const struct nf_conntrack_tuple *tuple, u32 hash)
667 {
668 	struct nf_conntrack_tuple_hash *h;
669 	struct hlist_nulls_head *ct_hash;
670 	struct hlist_nulls_node *n;
671 	unsigned int bucket, hsize;
672 
673 begin:
674 	nf_conntrack_get_ht(&ct_hash, &hsize);
675 	bucket = reciprocal_scale(hash, hsize);
676 
677 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
678 		struct nf_conn *ct;
679 
680 		ct = nf_ct_tuplehash_to_ctrack(h);
681 		if (nf_ct_is_expired(ct)) {
682 			nf_ct_gc_expired(ct);
683 			continue;
684 		}
685 
686 		if (nf_ct_is_dying(ct))
687 			continue;
688 
689 		if (nf_ct_key_equal(h, tuple, zone, net))
690 			return h;
691 	}
692 	/*
693 	 * if the nulls value we got at the end of this lookup is
694 	 * not the expected one, we must restart lookup.
695 	 * We probably met an item that was moved to another chain.
696 	 */
697 	if (get_nulls_value(n) != bucket) {
698 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
699 		goto begin;
700 	}
701 
702 	return NULL;
703 }
704 
705 /* Find a connection corresponding to a tuple. */
706 static struct nf_conntrack_tuple_hash *
707 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
708 			const struct nf_conntrack_tuple *tuple, u32 hash)
709 {
710 	struct nf_conntrack_tuple_hash *h;
711 	struct nf_conn *ct;
712 
713 	rcu_read_lock();
714 begin:
715 	h = ____nf_conntrack_find(net, zone, tuple, hash);
716 	if (h) {
717 		ct = nf_ct_tuplehash_to_ctrack(h);
718 		if (unlikely(nf_ct_is_dying(ct) ||
719 			     !atomic_inc_not_zero(&ct->ct_general.use)))
720 			h = NULL;
721 		else {
722 			if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
723 				nf_ct_put(ct);
724 				goto begin;
725 			}
726 		}
727 	}
728 	rcu_read_unlock();
729 
730 	return h;
731 }
732 
733 struct nf_conntrack_tuple_hash *
734 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
735 		      const struct nf_conntrack_tuple *tuple)
736 {
737 	return __nf_conntrack_find_get(net, zone, tuple,
738 				       hash_conntrack_raw(tuple, net));
739 }
740 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
741 
742 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
743 				       unsigned int hash,
744 				       unsigned int reply_hash)
745 {
746 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
747 			   &nf_conntrack_hash[hash]);
748 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
749 			   &nf_conntrack_hash[reply_hash]);
750 }
751 
752 int
753 nf_conntrack_hash_check_insert(struct nf_conn *ct)
754 {
755 	const struct nf_conntrack_zone *zone;
756 	struct net *net = nf_ct_net(ct);
757 	unsigned int hash, reply_hash;
758 	struct nf_conntrack_tuple_hash *h;
759 	struct hlist_nulls_node *n;
760 	unsigned int sequence;
761 
762 	zone = nf_ct_zone(ct);
763 
764 	local_bh_disable();
765 	do {
766 		sequence = read_seqcount_begin(&nf_conntrack_generation);
767 		hash = hash_conntrack(net,
768 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
769 		reply_hash = hash_conntrack(net,
770 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
771 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
772 
773 	/* See if there's one in the list already, including reverse */
774 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
775 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
776 				    zone, net))
777 			goto out;
778 
779 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
780 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
781 				    zone, net))
782 			goto out;
783 
784 	smp_wmb();
785 	/* The caller holds a reference to this object */
786 	atomic_set(&ct->ct_general.use, 2);
787 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
788 	nf_conntrack_double_unlock(hash, reply_hash);
789 	NF_CT_STAT_INC(net, insert);
790 	local_bh_enable();
791 	return 0;
792 
793 out:
794 	nf_conntrack_double_unlock(hash, reply_hash);
795 	NF_CT_STAT_INC(net, insert_failed);
796 	local_bh_enable();
797 	return -EEXIST;
798 }
799 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
800 
801 static inline void nf_ct_acct_update(struct nf_conn *ct,
802 				     enum ip_conntrack_info ctinfo,
803 				     unsigned int len)
804 {
805 	struct nf_conn_acct *acct;
806 
807 	acct = nf_conn_acct_find(ct);
808 	if (acct) {
809 		struct nf_conn_counter *counter = acct->counter;
810 
811 		atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
812 		atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
813 	}
814 }
815 
816 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
817 			     const struct nf_conn *loser_ct)
818 {
819 	struct nf_conn_acct *acct;
820 
821 	acct = nf_conn_acct_find(loser_ct);
822 	if (acct) {
823 		struct nf_conn_counter *counter = acct->counter;
824 		unsigned int bytes;
825 
826 		/* u32 should be fine since we must have seen one packet. */
827 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
828 		nf_ct_acct_update(ct, ctinfo, bytes);
829 	}
830 }
831 
832 /* Resolve race on insertion if this protocol allows this. */
833 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
834 			       enum ip_conntrack_info ctinfo,
835 			       struct nf_conntrack_tuple_hash *h)
836 {
837 	/* This is the conntrack entry already in hashes that won race. */
838 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
839 	const struct nf_conntrack_l4proto *l4proto;
840 	enum ip_conntrack_info oldinfo;
841 	struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
842 
843 	l4proto = __nf_ct_l4proto_find(nf_ct_protonum(ct));
844 	if (l4proto->allow_clash &&
845 	    !nf_ct_is_dying(ct) &&
846 	    atomic_inc_not_zero(&ct->ct_general.use)) {
847 		if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
848 		    nf_ct_match(ct, loser_ct)) {
849 			nf_ct_acct_merge(ct, ctinfo, loser_ct);
850 			nf_conntrack_put(&loser_ct->ct_general);
851 			nf_ct_set(skb, ct, oldinfo);
852 			return NF_ACCEPT;
853 		}
854 		nf_ct_put(ct);
855 	}
856 	NF_CT_STAT_INC(net, drop);
857 	return NF_DROP;
858 }
859 
860 /* Confirm a connection given skb; places it in hash table */
861 int
862 __nf_conntrack_confirm(struct sk_buff *skb)
863 {
864 	const struct nf_conntrack_zone *zone;
865 	unsigned int hash, reply_hash;
866 	struct nf_conntrack_tuple_hash *h;
867 	struct nf_conn *ct;
868 	struct nf_conn_help *help;
869 	struct nf_conn_tstamp *tstamp;
870 	struct hlist_nulls_node *n;
871 	enum ip_conntrack_info ctinfo;
872 	struct net *net;
873 	unsigned int sequence;
874 	int ret = NF_DROP;
875 
876 	ct = nf_ct_get(skb, &ctinfo);
877 	net = nf_ct_net(ct);
878 
879 	/* ipt_REJECT uses nf_conntrack_attach to attach related
880 	   ICMP/TCP RST packets in other direction.  Actual packet
881 	   which created connection will be IP_CT_NEW or for an
882 	   expected connection, IP_CT_RELATED. */
883 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
884 		return NF_ACCEPT;
885 
886 	zone = nf_ct_zone(ct);
887 	local_bh_disable();
888 
889 	do {
890 		sequence = read_seqcount_begin(&nf_conntrack_generation);
891 		/* reuse the hash saved before */
892 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
893 		hash = scale_hash(hash);
894 		reply_hash = hash_conntrack(net,
895 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
896 
897 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
898 
899 	/* We're not in hash table, and we refuse to set up related
900 	 * connections for unconfirmed conns.  But packet copies and
901 	 * REJECT will give spurious warnings here.
902 	 */
903 
904 	/* No external references means no one else could have
905 	 * confirmed us.
906 	 */
907 	WARN_ON(nf_ct_is_confirmed(ct));
908 	pr_debug("Confirming conntrack %p\n", ct);
909 	/* We have to check the DYING flag after unlink to prevent
910 	 * a race against nf_ct_get_next_corpse() possibly called from
911 	 * user context, else we insert an already 'dead' hash, blocking
912 	 * further use of that particular connection -JM.
913 	 */
914 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
915 
916 	if (unlikely(nf_ct_is_dying(ct))) {
917 		nf_ct_add_to_dying_list(ct);
918 		goto dying;
919 	}
920 
921 	/* See if there's one in the list already, including reverse:
922 	   NAT could have grabbed it without realizing, since we're
923 	   not in the hash.  If there is, we lost race. */
924 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
925 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
926 				    zone, net))
927 			goto out;
928 
929 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
930 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
931 				    zone, net))
932 			goto out;
933 
934 	/* Timer relative to confirmation time, not original
935 	   setting time, otherwise we'd get timer wrap in
936 	   weird delay cases. */
937 	ct->timeout += nfct_time_stamp;
938 	atomic_inc(&ct->ct_general.use);
939 	ct->status |= IPS_CONFIRMED;
940 
941 	/* set conntrack timestamp, if enabled. */
942 	tstamp = nf_conn_tstamp_find(ct);
943 	if (tstamp) {
944 		if (skb->tstamp == 0)
945 			__net_timestamp(skb);
946 
947 		tstamp->start = ktime_to_ns(skb->tstamp);
948 	}
949 	/* Since the lookup is lockless, hash insertion must be done after
950 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
951 	 * guarantee that no other CPU can find the conntrack before the above
952 	 * stores are visible.
953 	 */
954 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
955 	nf_conntrack_double_unlock(hash, reply_hash);
956 	local_bh_enable();
957 
958 	help = nfct_help(ct);
959 	if (help && help->helper)
960 		nf_conntrack_event_cache(IPCT_HELPER, ct);
961 
962 	nf_conntrack_event_cache(master_ct(ct) ?
963 				 IPCT_RELATED : IPCT_NEW, ct);
964 	return NF_ACCEPT;
965 
966 out:
967 	nf_ct_add_to_dying_list(ct);
968 	ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
969 dying:
970 	nf_conntrack_double_unlock(hash, reply_hash);
971 	NF_CT_STAT_INC(net, insert_failed);
972 	local_bh_enable();
973 	return ret;
974 }
975 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
976 
977 /* Returns true if a connection correspondings to the tuple (required
978    for NAT). */
979 int
980 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
981 			 const struct nf_conn *ignored_conntrack)
982 {
983 	struct net *net = nf_ct_net(ignored_conntrack);
984 	const struct nf_conntrack_zone *zone;
985 	struct nf_conntrack_tuple_hash *h;
986 	struct hlist_nulls_head *ct_hash;
987 	unsigned int hash, hsize;
988 	struct hlist_nulls_node *n;
989 	struct nf_conn *ct;
990 
991 	zone = nf_ct_zone(ignored_conntrack);
992 
993 	rcu_read_lock();
994  begin:
995 	nf_conntrack_get_ht(&ct_hash, &hsize);
996 	hash = __hash_conntrack(net, tuple, hsize);
997 
998 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
999 		ct = nf_ct_tuplehash_to_ctrack(h);
1000 
1001 		if (ct == ignored_conntrack)
1002 			continue;
1003 
1004 		if (nf_ct_is_expired(ct)) {
1005 			nf_ct_gc_expired(ct);
1006 			continue;
1007 		}
1008 
1009 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1010 			NF_CT_STAT_INC_ATOMIC(net, found);
1011 			rcu_read_unlock();
1012 			return 1;
1013 		}
1014 	}
1015 
1016 	if (get_nulls_value(n) != hash) {
1017 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1018 		goto begin;
1019 	}
1020 
1021 	rcu_read_unlock();
1022 
1023 	return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1026 
1027 #define NF_CT_EVICTION_RANGE	8
1028 
1029 /* There's a small race here where we may free a just-assured
1030    connection.  Too bad: we're in trouble anyway. */
1031 static unsigned int early_drop_list(struct net *net,
1032 				    struct hlist_nulls_head *head)
1033 {
1034 	struct nf_conntrack_tuple_hash *h;
1035 	struct hlist_nulls_node *n;
1036 	unsigned int drops = 0;
1037 	struct nf_conn *tmp;
1038 
1039 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1040 		tmp = nf_ct_tuplehash_to_ctrack(h);
1041 
1042 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1043 			continue;
1044 
1045 		if (nf_ct_is_expired(tmp)) {
1046 			nf_ct_gc_expired(tmp);
1047 			continue;
1048 		}
1049 
1050 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1051 		    !net_eq(nf_ct_net(tmp), net) ||
1052 		    nf_ct_is_dying(tmp))
1053 			continue;
1054 
1055 		if (!atomic_inc_not_zero(&tmp->ct_general.use))
1056 			continue;
1057 
1058 		/* kill only if still in same netns -- might have moved due to
1059 		 * SLAB_TYPESAFE_BY_RCU rules.
1060 		 *
1061 		 * We steal the timer reference.  If that fails timer has
1062 		 * already fired or someone else deleted it. Just drop ref
1063 		 * and move to next entry.
1064 		 */
1065 		if (net_eq(nf_ct_net(tmp), net) &&
1066 		    nf_ct_is_confirmed(tmp) &&
1067 		    nf_ct_delete(tmp, 0, 0))
1068 			drops++;
1069 
1070 		nf_ct_put(tmp);
1071 	}
1072 
1073 	return drops;
1074 }
1075 
1076 static noinline int early_drop(struct net *net, unsigned int hash)
1077 {
1078 	unsigned int i, bucket;
1079 
1080 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1081 		struct hlist_nulls_head *ct_hash;
1082 		unsigned int hsize, drops;
1083 
1084 		rcu_read_lock();
1085 		nf_conntrack_get_ht(&ct_hash, &hsize);
1086 		if (!i)
1087 			bucket = reciprocal_scale(hash, hsize);
1088 		else
1089 			bucket = (bucket + 1) % hsize;
1090 
1091 		drops = early_drop_list(net, &ct_hash[bucket]);
1092 		rcu_read_unlock();
1093 
1094 		if (drops) {
1095 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1096 			return true;
1097 		}
1098 	}
1099 
1100 	return false;
1101 }
1102 
1103 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1104 {
1105 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1106 }
1107 
1108 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1109 {
1110 	const struct nf_conntrack_l4proto *l4proto;
1111 
1112 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1113 		return true;
1114 
1115 	l4proto = __nf_ct_l4proto_find(nf_ct_protonum(ct));
1116 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1117 		return true;
1118 
1119 	return false;
1120 }
1121 
1122 #define	DAY	(86400 * HZ)
1123 
1124 /* Set an arbitrary timeout large enough not to ever expire, this save
1125  * us a check for the IPS_OFFLOAD_BIT from the packet path via
1126  * nf_ct_is_expired().
1127  */
1128 static void nf_ct_offload_timeout(struct nf_conn *ct)
1129 {
1130 	if (nf_ct_expires(ct) < DAY / 2)
1131 		ct->timeout = nfct_time_stamp + DAY;
1132 }
1133 
1134 static void gc_worker(struct work_struct *work)
1135 {
1136 	unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1137 	unsigned int i, goal, buckets = 0, expired_count = 0;
1138 	unsigned int nf_conntrack_max95 = 0;
1139 	struct conntrack_gc_work *gc_work;
1140 	unsigned int ratio, scanned = 0;
1141 	unsigned long next_run;
1142 
1143 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1144 
1145 	goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1146 	i = gc_work->last_bucket;
1147 	if (gc_work->early_drop)
1148 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1149 
1150 	do {
1151 		struct nf_conntrack_tuple_hash *h;
1152 		struct hlist_nulls_head *ct_hash;
1153 		struct hlist_nulls_node *n;
1154 		unsigned int hashsz;
1155 		struct nf_conn *tmp;
1156 
1157 		i++;
1158 		rcu_read_lock();
1159 
1160 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1161 		if (i >= hashsz)
1162 			i = 0;
1163 
1164 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1165 			struct net *net;
1166 
1167 			tmp = nf_ct_tuplehash_to_ctrack(h);
1168 
1169 			scanned++;
1170 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1171 				nf_ct_offload_timeout(tmp);
1172 				continue;
1173 			}
1174 
1175 			if (nf_ct_is_expired(tmp)) {
1176 				nf_ct_gc_expired(tmp);
1177 				expired_count++;
1178 				continue;
1179 			}
1180 
1181 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1182 				continue;
1183 
1184 			net = nf_ct_net(tmp);
1185 			if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1186 				continue;
1187 
1188 			/* need to take reference to avoid possible races */
1189 			if (!atomic_inc_not_zero(&tmp->ct_general.use))
1190 				continue;
1191 
1192 			if (gc_worker_skip_ct(tmp)) {
1193 				nf_ct_put(tmp);
1194 				continue;
1195 			}
1196 
1197 			if (gc_worker_can_early_drop(tmp))
1198 				nf_ct_kill(tmp);
1199 
1200 			nf_ct_put(tmp);
1201 		}
1202 
1203 		/* could check get_nulls_value() here and restart if ct
1204 		 * was moved to another chain.  But given gc is best-effort
1205 		 * we will just continue with next hash slot.
1206 		 */
1207 		rcu_read_unlock();
1208 		cond_resched();
1209 	} while (++buckets < goal);
1210 
1211 	if (gc_work->exiting)
1212 		return;
1213 
1214 	/*
1215 	 * Eviction will normally happen from the packet path, and not
1216 	 * from this gc worker.
1217 	 *
1218 	 * This worker is only here to reap expired entries when system went
1219 	 * idle after a busy period.
1220 	 *
1221 	 * The heuristics below are supposed to balance conflicting goals:
1222 	 *
1223 	 * 1. Minimize time until we notice a stale entry
1224 	 * 2. Maximize scan intervals to not waste cycles
1225 	 *
1226 	 * Normally, expire ratio will be close to 0.
1227 	 *
1228 	 * As soon as a sizeable fraction of the entries have expired
1229 	 * increase scan frequency.
1230 	 */
1231 	ratio = scanned ? expired_count * 100 / scanned : 0;
1232 	if (ratio > GC_EVICT_RATIO) {
1233 		gc_work->next_gc_run = min_interval;
1234 	} else {
1235 		unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1236 
1237 		BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1238 
1239 		gc_work->next_gc_run += min_interval;
1240 		if (gc_work->next_gc_run > max)
1241 			gc_work->next_gc_run = max;
1242 	}
1243 
1244 	next_run = gc_work->next_gc_run;
1245 	gc_work->last_bucket = i;
1246 	gc_work->early_drop = false;
1247 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1248 }
1249 
1250 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1251 {
1252 	INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1253 	gc_work->next_gc_run = HZ;
1254 	gc_work->exiting = false;
1255 }
1256 
1257 static struct nf_conn *
1258 __nf_conntrack_alloc(struct net *net,
1259 		     const struct nf_conntrack_zone *zone,
1260 		     const struct nf_conntrack_tuple *orig,
1261 		     const struct nf_conntrack_tuple *repl,
1262 		     gfp_t gfp, u32 hash)
1263 {
1264 	struct nf_conn *ct;
1265 
1266 	/* We don't want any race condition at early drop stage */
1267 	atomic_inc(&net->ct.count);
1268 
1269 	if (nf_conntrack_max &&
1270 	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1271 		if (!early_drop(net, hash)) {
1272 			if (!conntrack_gc_work.early_drop)
1273 				conntrack_gc_work.early_drop = true;
1274 			atomic_dec(&net->ct.count);
1275 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1276 			return ERR_PTR(-ENOMEM);
1277 		}
1278 	}
1279 
1280 	/*
1281 	 * Do not use kmem_cache_zalloc(), as this cache uses
1282 	 * SLAB_TYPESAFE_BY_RCU.
1283 	 */
1284 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1285 	if (ct == NULL)
1286 		goto out;
1287 
1288 	spin_lock_init(&ct->lock);
1289 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1290 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1291 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1292 	/* save hash for reusing when confirming */
1293 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1294 	ct->status = 0;
1295 	write_pnet(&ct->ct_net, net);
1296 	memset(&ct->__nfct_init_offset[0], 0,
1297 	       offsetof(struct nf_conn, proto) -
1298 	       offsetof(struct nf_conn, __nfct_init_offset[0]));
1299 
1300 	nf_ct_zone_add(ct, zone);
1301 
1302 	/* Because we use RCU lookups, we set ct_general.use to zero before
1303 	 * this is inserted in any list.
1304 	 */
1305 	atomic_set(&ct->ct_general.use, 0);
1306 	return ct;
1307 out:
1308 	atomic_dec(&net->ct.count);
1309 	return ERR_PTR(-ENOMEM);
1310 }
1311 
1312 struct nf_conn *nf_conntrack_alloc(struct net *net,
1313 				   const struct nf_conntrack_zone *zone,
1314 				   const struct nf_conntrack_tuple *orig,
1315 				   const struct nf_conntrack_tuple *repl,
1316 				   gfp_t gfp)
1317 {
1318 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1319 }
1320 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1321 
1322 void nf_conntrack_free(struct nf_conn *ct)
1323 {
1324 	struct net *net = nf_ct_net(ct);
1325 
1326 	/* A freed object has refcnt == 0, that's
1327 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1328 	 */
1329 	WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1330 
1331 	nf_ct_ext_destroy(ct);
1332 	nf_ct_ext_free(ct);
1333 	kmem_cache_free(nf_conntrack_cachep, ct);
1334 	smp_mb__before_atomic();
1335 	atomic_dec(&net->ct.count);
1336 }
1337 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1338 
1339 
1340 /* Allocate a new conntrack: we return -ENOMEM if classification
1341    failed due to stress.  Otherwise it really is unclassifiable. */
1342 static noinline struct nf_conntrack_tuple_hash *
1343 init_conntrack(struct net *net, struct nf_conn *tmpl,
1344 	       const struct nf_conntrack_tuple *tuple,
1345 	       const struct nf_conntrack_l4proto *l4proto,
1346 	       struct sk_buff *skb,
1347 	       unsigned int dataoff, u32 hash)
1348 {
1349 	struct nf_conn *ct;
1350 	struct nf_conn_help *help;
1351 	struct nf_conntrack_tuple repl_tuple;
1352 	struct nf_conntrack_ecache *ecache;
1353 	struct nf_conntrack_expect *exp = NULL;
1354 	const struct nf_conntrack_zone *zone;
1355 	struct nf_conn_timeout *timeout_ext;
1356 	struct nf_conntrack_zone tmp;
1357 
1358 	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l4proto)) {
1359 		pr_debug("Can't invert tuple.\n");
1360 		return NULL;
1361 	}
1362 
1363 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1364 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1365 				  hash);
1366 	if (IS_ERR(ct))
1367 		return (struct nf_conntrack_tuple_hash *)ct;
1368 
1369 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1370 		nf_conntrack_free(ct);
1371 		return ERR_PTR(-ENOMEM);
1372 	}
1373 
1374 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1375 
1376 	if (timeout_ext)
1377 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1378 				      GFP_ATOMIC);
1379 
1380 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1381 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1382 	nf_ct_labels_ext_add(ct);
1383 
1384 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1385 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1386 				 ecache ? ecache->expmask : 0,
1387 			     GFP_ATOMIC);
1388 
1389 	local_bh_disable();
1390 	if (net->ct.expect_count) {
1391 		spin_lock(&nf_conntrack_expect_lock);
1392 		exp = nf_ct_find_expectation(net, zone, tuple);
1393 		if (exp) {
1394 			pr_debug("expectation arrives ct=%p exp=%p\n",
1395 				 ct, exp);
1396 			/* Welcome, Mr. Bond.  We've been expecting you... */
1397 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1398 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1399 			ct->master = exp->master;
1400 			if (exp->helper) {
1401 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1402 				if (help)
1403 					rcu_assign_pointer(help->helper, exp->helper);
1404 			}
1405 
1406 #ifdef CONFIG_NF_CONNTRACK_MARK
1407 			ct->mark = exp->master->mark;
1408 #endif
1409 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1410 			ct->secmark = exp->master->secmark;
1411 #endif
1412 			NF_CT_STAT_INC(net, expect_new);
1413 		}
1414 		spin_unlock(&nf_conntrack_expect_lock);
1415 	}
1416 	if (!exp)
1417 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1418 
1419 	/* Now it is inserted into the unconfirmed list, bump refcount */
1420 	nf_conntrack_get(&ct->ct_general);
1421 	nf_ct_add_to_unconfirmed_list(ct);
1422 
1423 	local_bh_enable();
1424 
1425 	if (exp) {
1426 		if (exp->expectfn)
1427 			exp->expectfn(ct, exp);
1428 		nf_ct_expect_put(exp);
1429 	}
1430 
1431 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1432 }
1433 
1434 /* On success, returns 0, sets skb->_nfct | ctinfo */
1435 static int
1436 resolve_normal_ct(struct nf_conn *tmpl,
1437 		  struct sk_buff *skb,
1438 		  unsigned int dataoff,
1439 		  u_int8_t protonum,
1440 		  const struct nf_conntrack_l4proto *l4proto,
1441 		  const struct nf_hook_state *state)
1442 {
1443 	const struct nf_conntrack_zone *zone;
1444 	struct nf_conntrack_tuple tuple;
1445 	struct nf_conntrack_tuple_hash *h;
1446 	enum ip_conntrack_info ctinfo;
1447 	struct nf_conntrack_zone tmp;
1448 	struct nf_conn *ct;
1449 	u32 hash;
1450 
1451 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1452 			     dataoff, state->pf, protonum, state->net,
1453 			     &tuple, l4proto)) {
1454 		pr_debug("Can't get tuple\n");
1455 		return 0;
1456 	}
1457 
1458 	/* look for tuple match */
1459 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1460 	hash = hash_conntrack_raw(&tuple, state->net);
1461 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1462 	if (!h) {
1463 		h = init_conntrack(state->net, tmpl, &tuple, l4proto,
1464 				   skb, dataoff, hash);
1465 		if (!h)
1466 			return 0;
1467 		if (IS_ERR(h))
1468 			return PTR_ERR(h);
1469 	}
1470 	ct = nf_ct_tuplehash_to_ctrack(h);
1471 
1472 	/* It exists; we have (non-exclusive) reference. */
1473 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1474 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1475 	} else {
1476 		/* Once we've had two way comms, always ESTABLISHED. */
1477 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1478 			pr_debug("normal packet for %p\n", ct);
1479 			ctinfo = IP_CT_ESTABLISHED;
1480 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1481 			pr_debug("related packet for %p\n", ct);
1482 			ctinfo = IP_CT_RELATED;
1483 		} else {
1484 			pr_debug("new packet for %p\n", ct);
1485 			ctinfo = IP_CT_NEW;
1486 		}
1487 	}
1488 	nf_ct_set(skb, ct, ctinfo);
1489 	return 0;
1490 }
1491 
1492 /*
1493  * icmp packets need special treatment to handle error messages that are
1494  * related to a connection.
1495  *
1496  * Callers need to check if skb has a conntrack assigned when this
1497  * helper returns; in such case skb belongs to an already known connection.
1498  */
1499 static unsigned int __cold
1500 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1501 			 struct sk_buff *skb,
1502 			 unsigned int dataoff,
1503 			 u8 protonum,
1504 			 const struct nf_hook_state *state)
1505 {
1506 	int ret;
1507 
1508 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1509 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1510 #if IS_ENABLED(CONFIG_IPV6)
1511 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1512 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1513 #endif
1514 	else
1515 		return NF_ACCEPT;
1516 
1517 	if (ret <= 0) {
1518 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1519 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 unsigned int
1526 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1527 {
1528 	const struct nf_conntrack_l4proto *l4proto;
1529 	enum ip_conntrack_info ctinfo;
1530 	struct nf_conn *ct, *tmpl;
1531 	u_int8_t protonum;
1532 	int dataoff, ret;
1533 
1534 	tmpl = nf_ct_get(skb, &ctinfo);
1535 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1536 		/* Previously seen (loopback or untracked)?  Ignore. */
1537 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1538 		     ctinfo == IP_CT_UNTRACKED) {
1539 			NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1540 			return NF_ACCEPT;
1541 		}
1542 		skb->_nfct = 0;
1543 	}
1544 
1545 	/* rcu_read_lock()ed by nf_hook_thresh */
1546 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1547 	if (dataoff <= 0) {
1548 		pr_debug("not prepared to track yet or error occurred\n");
1549 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1550 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1551 		ret = NF_ACCEPT;
1552 		goto out;
1553 	}
1554 
1555 	l4proto = __nf_ct_l4proto_find(protonum);
1556 
1557 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1558 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1559 					       protonum, state);
1560 		if (ret <= 0) {
1561 			ret = -ret;
1562 			goto out;
1563 		}
1564 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1565 		if (skb->_nfct)
1566 			goto out;
1567 	}
1568 repeat:
1569 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1570 				protonum, l4proto, state);
1571 	if (ret < 0) {
1572 		/* Too stressed to deal. */
1573 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
1574 		ret = NF_DROP;
1575 		goto out;
1576 	}
1577 
1578 	ct = nf_ct_get(skb, &ctinfo);
1579 	if (!ct) {
1580 		/* Not valid part of a connection */
1581 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1582 		ret = NF_ACCEPT;
1583 		goto out;
1584 	}
1585 
1586 	ret = l4proto->packet(ct, skb, dataoff, ctinfo, state);
1587 	if (ret <= 0) {
1588 		/* Invalid: inverse of the return code tells
1589 		 * the netfilter core what to do */
1590 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1591 		nf_conntrack_put(&ct->ct_general);
1592 		skb->_nfct = 0;
1593 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1594 		if (ret == -NF_DROP)
1595 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
1596 		/* Special case: TCP tracker reports an attempt to reopen a
1597 		 * closed/aborted connection. We have to go back and create a
1598 		 * fresh conntrack.
1599 		 */
1600 		if (ret == -NF_REPEAT)
1601 			goto repeat;
1602 		ret = -ret;
1603 		goto out;
1604 	}
1605 
1606 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1607 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1608 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1609 out:
1610 	if (tmpl)
1611 		nf_ct_put(tmpl);
1612 
1613 	return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1616 
1617 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1618 			  const struct nf_conntrack_tuple *orig)
1619 {
1620 	bool ret;
1621 
1622 	rcu_read_lock();
1623 	ret = nf_ct_invert_tuple(inverse, orig,
1624 				 __nf_ct_l4proto_find(orig->dst.protonum));
1625 	rcu_read_unlock();
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1629 
1630 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1631    implicitly racy: see __nf_conntrack_confirm */
1632 void nf_conntrack_alter_reply(struct nf_conn *ct,
1633 			      const struct nf_conntrack_tuple *newreply)
1634 {
1635 	struct nf_conn_help *help = nfct_help(ct);
1636 
1637 	/* Should be unconfirmed, so not in hash table yet */
1638 	WARN_ON(nf_ct_is_confirmed(ct));
1639 
1640 	pr_debug("Altering reply tuple of %p to ", ct);
1641 	nf_ct_dump_tuple(newreply);
1642 
1643 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1644 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1645 		return;
1646 
1647 	rcu_read_lock();
1648 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1649 	rcu_read_unlock();
1650 }
1651 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1652 
1653 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1654 void __nf_ct_refresh_acct(struct nf_conn *ct,
1655 			  enum ip_conntrack_info ctinfo,
1656 			  const struct sk_buff *skb,
1657 			  unsigned long extra_jiffies,
1658 			  int do_acct)
1659 {
1660 	WARN_ON(!skb);
1661 
1662 	/* Only update if this is not a fixed timeout */
1663 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1664 		goto acct;
1665 
1666 	/* If not in hash table, timer will not be active yet */
1667 	if (nf_ct_is_confirmed(ct))
1668 		extra_jiffies += nfct_time_stamp;
1669 
1670 	ct->timeout = extra_jiffies;
1671 acct:
1672 	if (do_acct)
1673 		nf_ct_acct_update(ct, ctinfo, skb->len);
1674 }
1675 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1676 
1677 bool nf_ct_kill_acct(struct nf_conn *ct,
1678 		     enum ip_conntrack_info ctinfo,
1679 		     const struct sk_buff *skb)
1680 {
1681 	nf_ct_acct_update(ct, ctinfo, skb->len);
1682 
1683 	return nf_ct_delete(ct, 0, 0);
1684 }
1685 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1686 
1687 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1688 
1689 #include <linux/netfilter/nfnetlink.h>
1690 #include <linux/netfilter/nfnetlink_conntrack.h>
1691 #include <linux/mutex.h>
1692 
1693 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1694  * in ip_conntrack_core, since we don't want the protocols to autoload
1695  * or depend on ctnetlink */
1696 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1697 			       const struct nf_conntrack_tuple *tuple)
1698 {
1699 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1700 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1701 		goto nla_put_failure;
1702 	return 0;
1703 
1704 nla_put_failure:
1705 	return -1;
1706 }
1707 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1708 
1709 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1710 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1711 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1712 };
1713 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1714 
1715 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1716 			       struct nf_conntrack_tuple *t)
1717 {
1718 	if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1719 		return -EINVAL;
1720 
1721 	t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1722 	t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1723 
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1727 
1728 unsigned int nf_ct_port_nlattr_tuple_size(void)
1729 {
1730 	static unsigned int size __read_mostly;
1731 
1732 	if (!size)
1733 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1734 
1735 	return size;
1736 }
1737 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1738 #endif
1739 
1740 /* Used by ipt_REJECT and ip6t_REJECT. */
1741 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1742 {
1743 	struct nf_conn *ct;
1744 	enum ip_conntrack_info ctinfo;
1745 
1746 	/* This ICMP is in reverse direction to the packet which caused it */
1747 	ct = nf_ct_get(skb, &ctinfo);
1748 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1749 		ctinfo = IP_CT_RELATED_REPLY;
1750 	else
1751 		ctinfo = IP_CT_RELATED;
1752 
1753 	/* Attach to new skbuff, and increment count */
1754 	nf_ct_set(nskb, ct, ctinfo);
1755 	nf_conntrack_get(skb_nfct(nskb));
1756 }
1757 
1758 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1759 {
1760 	const struct nf_conntrack_l4proto *l4proto;
1761 	struct nf_conntrack_tuple_hash *h;
1762 	struct nf_conntrack_tuple tuple;
1763 	enum ip_conntrack_info ctinfo;
1764 	struct nf_nat_hook *nat_hook;
1765 	unsigned int status;
1766 	struct nf_conn *ct;
1767 	int dataoff;
1768 	u16 l3num;
1769 	u8 l4num;
1770 
1771 	ct = nf_ct_get(skb, &ctinfo);
1772 	if (!ct || nf_ct_is_confirmed(ct))
1773 		return 0;
1774 
1775 	l3num = nf_ct_l3num(ct);
1776 
1777 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1778 	if (dataoff <= 0)
1779 		return -1;
1780 
1781 	l4proto = nf_ct_l4proto_find_get(l4num);
1782 
1783 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1784 			     l4num, net, &tuple, l4proto))
1785 		return -1;
1786 
1787 	if (ct->status & IPS_SRC_NAT) {
1788 		memcpy(tuple.src.u3.all,
1789 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1790 		       sizeof(tuple.src.u3.all));
1791 		tuple.src.u.all =
1792 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1793 	}
1794 
1795 	if (ct->status & IPS_DST_NAT) {
1796 		memcpy(tuple.dst.u3.all,
1797 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1798 		       sizeof(tuple.dst.u3.all));
1799 		tuple.dst.u.all =
1800 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1801 	}
1802 
1803 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1804 	if (!h)
1805 		return 0;
1806 
1807 	/* Store status bits of the conntrack that is clashing to re-do NAT
1808 	 * mangling according to what it has been done already to this packet.
1809 	 */
1810 	status = ct->status;
1811 
1812 	nf_ct_put(ct);
1813 	ct = nf_ct_tuplehash_to_ctrack(h);
1814 	nf_ct_set(skb, ct, ctinfo);
1815 
1816 	nat_hook = rcu_dereference(nf_nat_hook);
1817 	if (!nat_hook)
1818 		return 0;
1819 
1820 	if (status & IPS_SRC_NAT &&
1821 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1822 				IP_CT_DIR_ORIGINAL) == NF_DROP)
1823 		return -1;
1824 
1825 	if (status & IPS_DST_NAT &&
1826 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1827 				IP_CT_DIR_ORIGINAL) == NF_DROP)
1828 		return -1;
1829 
1830 	return 0;
1831 }
1832 
1833 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1834 				       const struct sk_buff *skb)
1835 {
1836 	const struct nf_conntrack_tuple *src_tuple;
1837 	const struct nf_conntrack_tuple_hash *hash;
1838 	struct nf_conntrack_tuple srctuple;
1839 	enum ip_conntrack_info ctinfo;
1840 	struct nf_conn *ct;
1841 
1842 	ct = nf_ct_get(skb, &ctinfo);
1843 	if (ct) {
1844 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1845 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1846 		return true;
1847 	}
1848 
1849 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1850 			       NFPROTO_IPV4, dev_net(skb->dev),
1851 			       &srctuple))
1852 		return false;
1853 
1854 	hash = nf_conntrack_find_get(dev_net(skb->dev),
1855 				     &nf_ct_zone_dflt,
1856 				     &srctuple);
1857 	if (!hash)
1858 		return false;
1859 
1860 	ct = nf_ct_tuplehash_to_ctrack(hash);
1861 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1862 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1863 	nf_ct_put(ct);
1864 
1865 	return true;
1866 }
1867 
1868 /* Bring out ya dead! */
1869 static struct nf_conn *
1870 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1871 		void *data, unsigned int *bucket)
1872 {
1873 	struct nf_conntrack_tuple_hash *h;
1874 	struct nf_conn *ct;
1875 	struct hlist_nulls_node *n;
1876 	spinlock_t *lockp;
1877 
1878 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1879 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1880 		local_bh_disable();
1881 		nf_conntrack_lock(lockp);
1882 		if (*bucket < nf_conntrack_htable_size) {
1883 			hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1884 				if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1885 					continue;
1886 				ct = nf_ct_tuplehash_to_ctrack(h);
1887 				if (iter(ct, data))
1888 					goto found;
1889 			}
1890 		}
1891 		spin_unlock(lockp);
1892 		local_bh_enable();
1893 		cond_resched();
1894 	}
1895 
1896 	return NULL;
1897 found:
1898 	atomic_inc(&ct->ct_general.use);
1899 	spin_unlock(lockp);
1900 	local_bh_enable();
1901 	return ct;
1902 }
1903 
1904 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
1905 				  void *data, u32 portid, int report)
1906 {
1907 	unsigned int bucket = 0, sequence;
1908 	struct nf_conn *ct;
1909 
1910 	might_sleep();
1911 
1912 	for (;;) {
1913 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1914 
1915 		while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1916 			/* Time to push up daises... */
1917 
1918 			nf_ct_delete(ct, portid, report);
1919 			nf_ct_put(ct);
1920 			cond_resched();
1921 		}
1922 
1923 		if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
1924 			break;
1925 		bucket = 0;
1926 	}
1927 }
1928 
1929 struct iter_data {
1930 	int (*iter)(struct nf_conn *i, void *data);
1931 	void *data;
1932 	struct net *net;
1933 };
1934 
1935 static int iter_net_only(struct nf_conn *i, void *data)
1936 {
1937 	struct iter_data *d = data;
1938 
1939 	if (!net_eq(d->net, nf_ct_net(i)))
1940 		return 0;
1941 
1942 	return d->iter(i, d->data);
1943 }
1944 
1945 static void
1946 __nf_ct_unconfirmed_destroy(struct net *net)
1947 {
1948 	int cpu;
1949 
1950 	for_each_possible_cpu(cpu) {
1951 		struct nf_conntrack_tuple_hash *h;
1952 		struct hlist_nulls_node *n;
1953 		struct ct_pcpu *pcpu;
1954 
1955 		pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1956 
1957 		spin_lock_bh(&pcpu->lock);
1958 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1959 			struct nf_conn *ct;
1960 
1961 			ct = nf_ct_tuplehash_to_ctrack(h);
1962 
1963 			/* we cannot call iter() on unconfirmed list, the
1964 			 * owning cpu can reallocate ct->ext at any time.
1965 			 */
1966 			set_bit(IPS_DYING_BIT, &ct->status);
1967 		}
1968 		spin_unlock_bh(&pcpu->lock);
1969 		cond_resched();
1970 	}
1971 }
1972 
1973 void nf_ct_unconfirmed_destroy(struct net *net)
1974 {
1975 	might_sleep();
1976 
1977 	if (atomic_read(&net->ct.count) > 0) {
1978 		__nf_ct_unconfirmed_destroy(net);
1979 		nf_queue_nf_hook_drop(net);
1980 		synchronize_net();
1981 	}
1982 }
1983 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
1984 
1985 void nf_ct_iterate_cleanup_net(struct net *net,
1986 			       int (*iter)(struct nf_conn *i, void *data),
1987 			       void *data, u32 portid, int report)
1988 {
1989 	struct iter_data d;
1990 
1991 	might_sleep();
1992 
1993 	if (atomic_read(&net->ct.count) == 0)
1994 		return;
1995 
1996 	d.iter = iter;
1997 	d.data = data;
1998 	d.net = net;
1999 
2000 	nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2001 }
2002 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2003 
2004 /**
2005  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2006  * @iter: callback to invoke for each conntrack
2007  * @data: data to pass to @iter
2008  *
2009  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2010  * unconfirmed list as dying (so they will not be inserted into
2011  * main table).
2012  *
2013  * Can only be called in module exit path.
2014  */
2015 void
2016 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2017 {
2018 	struct net *net;
2019 
2020 	down_read(&net_rwsem);
2021 	for_each_net(net) {
2022 		if (atomic_read(&net->ct.count) == 0)
2023 			continue;
2024 		__nf_ct_unconfirmed_destroy(net);
2025 		nf_queue_nf_hook_drop(net);
2026 	}
2027 	up_read(&net_rwsem);
2028 
2029 	/* Need to wait for netns cleanup worker to finish, if its
2030 	 * running -- it might have deleted a net namespace from
2031 	 * the global list, so our __nf_ct_unconfirmed_destroy() might
2032 	 * not have affected all namespaces.
2033 	 */
2034 	net_ns_barrier();
2035 
2036 	/* a conntrack could have been unlinked from unconfirmed list
2037 	 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2038 	 * This makes sure its inserted into conntrack table.
2039 	 */
2040 	synchronize_net();
2041 
2042 	nf_ct_iterate_cleanup(iter, data, 0, 0);
2043 }
2044 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2045 
2046 static int kill_all(struct nf_conn *i, void *data)
2047 {
2048 	return net_eq(nf_ct_net(i), data);
2049 }
2050 
2051 void nf_conntrack_cleanup_start(void)
2052 {
2053 	conntrack_gc_work.exiting = true;
2054 	RCU_INIT_POINTER(ip_ct_attach, NULL);
2055 }
2056 
2057 void nf_conntrack_cleanup_end(void)
2058 {
2059 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2060 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2061 	kvfree(nf_conntrack_hash);
2062 
2063 	nf_conntrack_proto_fini();
2064 	nf_conntrack_seqadj_fini();
2065 	nf_conntrack_labels_fini();
2066 	nf_conntrack_helper_fini();
2067 	nf_conntrack_timeout_fini();
2068 	nf_conntrack_ecache_fini();
2069 	nf_conntrack_tstamp_fini();
2070 	nf_conntrack_acct_fini();
2071 	nf_conntrack_expect_fini();
2072 
2073 	kmem_cache_destroy(nf_conntrack_cachep);
2074 }
2075 
2076 /*
2077  * Mishearing the voices in his head, our hero wonders how he's
2078  * supposed to kill the mall.
2079  */
2080 void nf_conntrack_cleanup_net(struct net *net)
2081 {
2082 	LIST_HEAD(single);
2083 
2084 	list_add(&net->exit_list, &single);
2085 	nf_conntrack_cleanup_net_list(&single);
2086 }
2087 
2088 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2089 {
2090 	int busy;
2091 	struct net *net;
2092 
2093 	/*
2094 	 * This makes sure all current packets have passed through
2095 	 *  netfilter framework.  Roll on, two-stage module
2096 	 *  delete...
2097 	 */
2098 	synchronize_net();
2099 i_see_dead_people:
2100 	busy = 0;
2101 	list_for_each_entry(net, net_exit_list, exit_list) {
2102 		nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2103 		if (atomic_read(&net->ct.count) != 0)
2104 			busy = 1;
2105 	}
2106 	if (busy) {
2107 		schedule();
2108 		goto i_see_dead_people;
2109 	}
2110 
2111 	list_for_each_entry(net, net_exit_list, exit_list) {
2112 		nf_conntrack_proto_pernet_fini(net);
2113 		nf_conntrack_ecache_pernet_fini(net);
2114 		nf_conntrack_expect_pernet_fini(net);
2115 		free_percpu(net->ct.stat);
2116 		free_percpu(net->ct.pcpu_lists);
2117 	}
2118 }
2119 
2120 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2121 {
2122 	struct hlist_nulls_head *hash;
2123 	unsigned int nr_slots, i;
2124 
2125 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2126 		return NULL;
2127 
2128 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2129 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2130 
2131 	hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2132 			      GFP_KERNEL | __GFP_ZERO);
2133 
2134 	if (hash && nulls)
2135 		for (i = 0; i < nr_slots; i++)
2136 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2137 
2138 	return hash;
2139 }
2140 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2141 
2142 int nf_conntrack_hash_resize(unsigned int hashsize)
2143 {
2144 	int i, bucket;
2145 	unsigned int old_size;
2146 	struct hlist_nulls_head *hash, *old_hash;
2147 	struct nf_conntrack_tuple_hash *h;
2148 	struct nf_conn *ct;
2149 
2150 	if (!hashsize)
2151 		return -EINVAL;
2152 
2153 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2154 	if (!hash)
2155 		return -ENOMEM;
2156 
2157 	old_size = nf_conntrack_htable_size;
2158 	if (old_size == hashsize) {
2159 		kvfree(hash);
2160 		return 0;
2161 	}
2162 
2163 	local_bh_disable();
2164 	nf_conntrack_all_lock();
2165 	write_seqcount_begin(&nf_conntrack_generation);
2166 
2167 	/* Lookups in the old hash might happen in parallel, which means we
2168 	 * might get false negatives during connection lookup. New connections
2169 	 * created because of a false negative won't make it into the hash
2170 	 * though since that required taking the locks.
2171 	 */
2172 
2173 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2174 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2175 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2176 					      struct nf_conntrack_tuple_hash, hnnode);
2177 			ct = nf_ct_tuplehash_to_ctrack(h);
2178 			hlist_nulls_del_rcu(&h->hnnode);
2179 			bucket = __hash_conntrack(nf_ct_net(ct),
2180 						  &h->tuple, hashsize);
2181 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2182 		}
2183 	}
2184 	old_size = nf_conntrack_htable_size;
2185 	old_hash = nf_conntrack_hash;
2186 
2187 	nf_conntrack_hash = hash;
2188 	nf_conntrack_htable_size = hashsize;
2189 
2190 	write_seqcount_end(&nf_conntrack_generation);
2191 	nf_conntrack_all_unlock();
2192 	local_bh_enable();
2193 
2194 	synchronize_net();
2195 	kvfree(old_hash);
2196 	return 0;
2197 }
2198 
2199 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2200 {
2201 	unsigned int hashsize;
2202 	int rc;
2203 
2204 	if (current->nsproxy->net_ns != &init_net)
2205 		return -EOPNOTSUPP;
2206 
2207 	/* On boot, we can set this without any fancy locking. */
2208 	if (!nf_conntrack_hash)
2209 		return param_set_uint(val, kp);
2210 
2211 	rc = kstrtouint(val, 0, &hashsize);
2212 	if (rc)
2213 		return rc;
2214 
2215 	return nf_conntrack_hash_resize(hashsize);
2216 }
2217 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2218 
2219 static __always_inline unsigned int total_extension_size(void)
2220 {
2221 	/* remember to add new extensions below */
2222 	BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2223 
2224 	return sizeof(struct nf_ct_ext) +
2225 	       sizeof(struct nf_conn_help)
2226 #if IS_ENABLED(CONFIG_NF_NAT)
2227 		+ sizeof(struct nf_conn_nat)
2228 #endif
2229 		+ sizeof(struct nf_conn_seqadj)
2230 		+ sizeof(struct nf_conn_acct)
2231 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2232 		+ sizeof(struct nf_conntrack_ecache)
2233 #endif
2234 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2235 		+ sizeof(struct nf_conn_tstamp)
2236 #endif
2237 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2238 		+ sizeof(struct nf_conn_timeout)
2239 #endif
2240 #ifdef CONFIG_NF_CONNTRACK_LABELS
2241 		+ sizeof(struct nf_conn_labels)
2242 #endif
2243 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2244 		+ sizeof(struct nf_conn_synproxy)
2245 #endif
2246 	;
2247 };
2248 
2249 int nf_conntrack_init_start(void)
2250 {
2251 	unsigned long nr_pages = totalram_pages();
2252 	int max_factor = 8;
2253 	int ret = -ENOMEM;
2254 	int i;
2255 
2256 	/* struct nf_ct_ext uses u8 to store offsets/size */
2257 	BUILD_BUG_ON(total_extension_size() > 255u);
2258 
2259 	seqcount_init(&nf_conntrack_generation);
2260 
2261 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2262 		spin_lock_init(&nf_conntrack_locks[i]);
2263 
2264 	if (!nf_conntrack_htable_size) {
2265 		/* Idea from tcp.c: use 1/16384 of memory.
2266 		 * On i386: 32MB machine has 512 buckets.
2267 		 * >= 1GB machines have 16384 buckets.
2268 		 * >= 4GB machines have 65536 buckets.
2269 		 */
2270 		nf_conntrack_htable_size
2271 			= (((nr_pages << PAGE_SHIFT) / 16384)
2272 			   / sizeof(struct hlist_head));
2273 		if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2274 			nf_conntrack_htable_size = 65536;
2275 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2276 			nf_conntrack_htable_size = 16384;
2277 		if (nf_conntrack_htable_size < 32)
2278 			nf_conntrack_htable_size = 32;
2279 
2280 		/* Use a max. factor of four by default to get the same max as
2281 		 * with the old struct list_heads. When a table size is given
2282 		 * we use the old value of 8 to avoid reducing the max.
2283 		 * entries. */
2284 		max_factor = 4;
2285 	}
2286 
2287 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2288 	if (!nf_conntrack_hash)
2289 		return -ENOMEM;
2290 
2291 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2292 
2293 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2294 						sizeof(struct nf_conn),
2295 						NFCT_INFOMASK + 1,
2296 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2297 	if (!nf_conntrack_cachep)
2298 		goto err_cachep;
2299 
2300 	ret = nf_conntrack_expect_init();
2301 	if (ret < 0)
2302 		goto err_expect;
2303 
2304 	ret = nf_conntrack_acct_init();
2305 	if (ret < 0)
2306 		goto err_acct;
2307 
2308 	ret = nf_conntrack_tstamp_init();
2309 	if (ret < 0)
2310 		goto err_tstamp;
2311 
2312 	ret = nf_conntrack_ecache_init();
2313 	if (ret < 0)
2314 		goto err_ecache;
2315 
2316 	ret = nf_conntrack_timeout_init();
2317 	if (ret < 0)
2318 		goto err_timeout;
2319 
2320 	ret = nf_conntrack_helper_init();
2321 	if (ret < 0)
2322 		goto err_helper;
2323 
2324 	ret = nf_conntrack_labels_init();
2325 	if (ret < 0)
2326 		goto err_labels;
2327 
2328 	ret = nf_conntrack_seqadj_init();
2329 	if (ret < 0)
2330 		goto err_seqadj;
2331 
2332 	ret = nf_conntrack_proto_init();
2333 	if (ret < 0)
2334 		goto err_proto;
2335 
2336 	conntrack_gc_work_init(&conntrack_gc_work);
2337 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2338 
2339 	return 0;
2340 
2341 err_proto:
2342 	nf_conntrack_seqadj_fini();
2343 err_seqadj:
2344 	nf_conntrack_labels_fini();
2345 err_labels:
2346 	nf_conntrack_helper_fini();
2347 err_helper:
2348 	nf_conntrack_timeout_fini();
2349 err_timeout:
2350 	nf_conntrack_ecache_fini();
2351 err_ecache:
2352 	nf_conntrack_tstamp_fini();
2353 err_tstamp:
2354 	nf_conntrack_acct_fini();
2355 err_acct:
2356 	nf_conntrack_expect_fini();
2357 err_expect:
2358 	kmem_cache_destroy(nf_conntrack_cachep);
2359 err_cachep:
2360 	kvfree(nf_conntrack_hash);
2361 	return ret;
2362 }
2363 
2364 static struct nf_ct_hook nf_conntrack_hook = {
2365 	.update		= nf_conntrack_update,
2366 	.destroy	= destroy_conntrack,
2367 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2368 };
2369 
2370 void nf_conntrack_init_end(void)
2371 {
2372 	/* For use by REJECT target */
2373 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2374 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2375 }
2376 
2377 /*
2378  * We need to use special "null" values, not used in hash table
2379  */
2380 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2381 #define DYING_NULLS_VAL		((1<<30)+1)
2382 #define TEMPLATE_NULLS_VAL	((1<<30)+2)
2383 
2384 int nf_conntrack_init_net(struct net *net)
2385 {
2386 	int ret = -ENOMEM;
2387 	int cpu;
2388 
2389 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2390 	atomic_set(&net->ct.count, 0);
2391 
2392 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2393 	if (!net->ct.pcpu_lists)
2394 		goto err_stat;
2395 
2396 	for_each_possible_cpu(cpu) {
2397 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2398 
2399 		spin_lock_init(&pcpu->lock);
2400 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2401 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2402 	}
2403 
2404 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2405 	if (!net->ct.stat)
2406 		goto err_pcpu_lists;
2407 
2408 	ret = nf_conntrack_expect_pernet_init(net);
2409 	if (ret < 0)
2410 		goto err_expect;
2411 
2412 	nf_conntrack_acct_pernet_init(net);
2413 	nf_conntrack_tstamp_pernet_init(net);
2414 	nf_conntrack_ecache_pernet_init(net);
2415 	nf_conntrack_helper_pernet_init(net);
2416 
2417 	ret = nf_conntrack_proto_pernet_init(net);
2418 	if (ret < 0)
2419 		goto err_proto;
2420 	return 0;
2421 
2422 err_proto:
2423 	nf_conntrack_ecache_pernet_fini(net);
2424 	nf_conntrack_expect_pernet_fini(net);
2425 err_expect:
2426 	free_percpu(net->ct.stat);
2427 err_pcpu_lists:
2428 	free_percpu(net->ct.pcpu_lists);
2429 err_stat:
2430 	return ret;
2431 }
2432