1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	u32			avg_timeout;
70 	u32			count;
71 	u32			start_time;
72 	bool			exiting;
73 	bool			early_drop;
74 };
75 
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79 
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82 
83 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
85 
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
88 
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90  * wakeup often just because we have three entries with a 1s timeout while still
91  * allowing non-idle machines to wakeup more often when needed.
92  */
93 #define GC_SCAN_INITIAL_COUNT	100
94 #define GC_SCAN_INTERVAL_INIT	GC_SCAN_INTERVAL_MAX
95 
96 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
98 
99 #define MIN_CHAINLEN	8u
100 #define MAX_CHAINLEN	(32u - MIN_CHAINLEN)
101 
102 static struct conntrack_gc_work conntrack_gc_work;
103 
104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106 	/* 1) Acquire the lock */
107 	spin_lock(lock);
108 
109 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 	 */
112 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 		return;
114 
115 	/* fast path failed, unlock */
116 	spin_unlock(lock);
117 
118 	/* Slow path 1) get global lock */
119 	spin_lock(&nf_conntrack_locks_all_lock);
120 
121 	/* Slow path 2) get the lock we want */
122 	spin_lock(lock);
123 
124 	/* Slow path 3) release the global lock */
125 	spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128 
129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131 	h1 %= CONNTRACK_LOCKS;
132 	h2 %= CONNTRACK_LOCKS;
133 	spin_unlock(&nf_conntrack_locks[h1]);
134 	if (h1 != h2)
135 		spin_unlock(&nf_conntrack_locks[h2]);
136 }
137 
138 /* return true if we need to recompute hashes (in case hash table was resized) */
139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 				     unsigned int h2, unsigned int sequence)
141 {
142 	h1 %= CONNTRACK_LOCKS;
143 	h2 %= CONNTRACK_LOCKS;
144 	if (h1 <= h2) {
145 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 		if (h1 != h2)
147 			spin_lock_nested(&nf_conntrack_locks[h2],
148 					 SINGLE_DEPTH_NESTING);
149 	} else {
150 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 		spin_lock_nested(&nf_conntrack_locks[h1],
152 				 SINGLE_DEPTH_NESTING);
153 	}
154 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 		nf_conntrack_double_unlock(h1, h2);
156 		return true;
157 	}
158 	return false;
159 }
160 
161 static void nf_conntrack_all_lock(void)
162 	__acquires(&nf_conntrack_locks_all_lock)
163 {
164 	int i;
165 
166 	spin_lock(&nf_conntrack_locks_all_lock);
167 
168 	/* For nf_contrack_locks_all, only the latest time when another
169 	 * CPU will see an update is controlled, by the "release" of the
170 	 * spin_lock below.
171 	 * The earliest time is not controlled, an thus KCSAN could detect
172 	 * a race when nf_conntract_lock() reads the variable.
173 	 * WRITE_ONCE() is used to ensure the compiler will not
174 	 * optimize the write.
175 	 */
176 	WRITE_ONCE(nf_conntrack_locks_all, true);
177 
178 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 		spin_lock(&nf_conntrack_locks[i]);
180 
181 		/* This spin_unlock provides the "release" to ensure that
182 		 * nf_conntrack_locks_all==true is visible to everyone that
183 		 * acquired spin_lock(&nf_conntrack_locks[]).
184 		 */
185 		spin_unlock(&nf_conntrack_locks[i]);
186 	}
187 }
188 
189 static void nf_conntrack_all_unlock(void)
190 	__releases(&nf_conntrack_locks_all_lock)
191 {
192 	/* All prior stores must be complete before we clear
193 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 	 * might observe the false value but not the entire
195 	 * critical section.
196 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 	 */
198 	smp_store_release(&nf_conntrack_locks_all, false);
199 	spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201 
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204 
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209 
210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 			      unsigned int zoneid,
212 			      const struct net *net)
213 {
214 	u64 a, b, c, d;
215 
216 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217 
218 	/* The direction must be ignored, handle usable tuplehash members manually */
219 	a = (u64)tuple->src.u3.all[0] << 32 | tuple->src.u3.all[3];
220 	b = (u64)tuple->dst.u3.all[0] << 32 | tuple->dst.u3.all[3];
221 
222 	c = (__force u64)tuple->src.u.all << 32 | (__force u64)tuple->dst.u.all << 16;
223 	c |= tuple->dst.protonum;
224 
225 	d = (u64)zoneid << 32 | net_hash_mix(net);
226 
227 	/* IPv4: u3.all[1,2,3] == 0 */
228 	c ^= (u64)tuple->src.u3.all[1] << 32 | tuple->src.u3.all[2];
229 	d += (u64)tuple->dst.u3.all[1] << 32 | tuple->dst.u3.all[2];
230 
231 	return (u32)siphash_4u64(a, b, c, d, &nf_conntrack_hash_rnd);
232 }
233 
234 static u32 scale_hash(u32 hash)
235 {
236 	return reciprocal_scale(hash, nf_conntrack_htable_size);
237 }
238 
239 static u32 __hash_conntrack(const struct net *net,
240 			    const struct nf_conntrack_tuple *tuple,
241 			    unsigned int zoneid,
242 			    unsigned int size)
243 {
244 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
245 }
246 
247 static u32 hash_conntrack(const struct net *net,
248 			  const struct nf_conntrack_tuple *tuple,
249 			  unsigned int zoneid)
250 {
251 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
252 }
253 
254 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
255 				  unsigned int dataoff,
256 				  struct nf_conntrack_tuple *tuple)
257 {	struct {
258 		__be16 sport;
259 		__be16 dport;
260 	} _inet_hdr, *inet_hdr;
261 
262 	/* Actually only need first 4 bytes to get ports. */
263 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
264 	if (!inet_hdr)
265 		return false;
266 
267 	tuple->src.u.udp.port = inet_hdr->sport;
268 	tuple->dst.u.udp.port = inet_hdr->dport;
269 	return true;
270 }
271 
272 static bool
273 nf_ct_get_tuple(const struct sk_buff *skb,
274 		unsigned int nhoff,
275 		unsigned int dataoff,
276 		u_int16_t l3num,
277 		u_int8_t protonum,
278 		struct net *net,
279 		struct nf_conntrack_tuple *tuple)
280 {
281 	unsigned int size;
282 	const __be32 *ap;
283 	__be32 _addrs[8];
284 
285 	memset(tuple, 0, sizeof(*tuple));
286 
287 	tuple->src.l3num = l3num;
288 	switch (l3num) {
289 	case NFPROTO_IPV4:
290 		nhoff += offsetof(struct iphdr, saddr);
291 		size = 2 * sizeof(__be32);
292 		break;
293 	case NFPROTO_IPV6:
294 		nhoff += offsetof(struct ipv6hdr, saddr);
295 		size = sizeof(_addrs);
296 		break;
297 	default:
298 		return true;
299 	}
300 
301 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
302 	if (!ap)
303 		return false;
304 
305 	switch (l3num) {
306 	case NFPROTO_IPV4:
307 		tuple->src.u3.ip = ap[0];
308 		tuple->dst.u3.ip = ap[1];
309 		break;
310 	case NFPROTO_IPV6:
311 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
312 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
313 		break;
314 	}
315 
316 	tuple->dst.protonum = protonum;
317 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
318 
319 	switch (protonum) {
320 #if IS_ENABLED(CONFIG_IPV6)
321 	case IPPROTO_ICMPV6:
322 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
323 #endif
324 	case IPPROTO_ICMP:
325 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
326 #ifdef CONFIG_NF_CT_PROTO_GRE
327 	case IPPROTO_GRE:
328 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
329 #endif
330 	case IPPROTO_TCP:
331 	case IPPROTO_UDP:
332 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
333 	case IPPROTO_UDPLITE:
334 #endif
335 #ifdef CONFIG_NF_CT_PROTO_SCTP
336 	case IPPROTO_SCTP:
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_DCCP
339 	case IPPROTO_DCCP:
340 #endif
341 		/* fallthrough */
342 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
343 	default:
344 		break;
345 	}
346 
347 	return true;
348 }
349 
350 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351 			    u_int8_t *protonum)
352 {
353 	int dataoff = -1;
354 	const struct iphdr *iph;
355 	struct iphdr _iph;
356 
357 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
358 	if (!iph)
359 		return -1;
360 
361 	/* Conntrack defragments packets, we might still see fragments
362 	 * inside ICMP packets though.
363 	 */
364 	if (iph->frag_off & htons(IP_OFFSET))
365 		return -1;
366 
367 	dataoff = nhoff + (iph->ihl << 2);
368 	*protonum = iph->protocol;
369 
370 	/* Check bogus IP headers */
371 	if (dataoff > skb->len) {
372 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
373 			 nhoff, iph->ihl << 2, skb->len);
374 		return -1;
375 	}
376 	return dataoff;
377 }
378 
379 #if IS_ENABLED(CONFIG_IPV6)
380 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
381 			    u8 *protonum)
382 {
383 	int protoff = -1;
384 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
385 	__be16 frag_off;
386 	u8 nexthdr;
387 
388 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
389 			  &nexthdr, sizeof(nexthdr)) != 0) {
390 		pr_debug("can't get nexthdr\n");
391 		return -1;
392 	}
393 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
394 	/*
395 	 * (protoff == skb->len) means the packet has not data, just
396 	 * IPv6 and possibly extensions headers, but it is tracked anyway
397 	 */
398 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
399 		pr_debug("can't find proto in pkt\n");
400 		return -1;
401 	}
402 
403 	*protonum = nexthdr;
404 	return protoff;
405 }
406 #endif
407 
408 static int get_l4proto(const struct sk_buff *skb,
409 		       unsigned int nhoff, u8 pf, u8 *l4num)
410 {
411 	switch (pf) {
412 	case NFPROTO_IPV4:
413 		return ipv4_get_l4proto(skb, nhoff, l4num);
414 #if IS_ENABLED(CONFIG_IPV6)
415 	case NFPROTO_IPV6:
416 		return ipv6_get_l4proto(skb, nhoff, l4num);
417 #endif
418 	default:
419 		*l4num = 0;
420 		break;
421 	}
422 	return -1;
423 }
424 
425 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
426 		       u_int16_t l3num,
427 		       struct net *net, struct nf_conntrack_tuple *tuple)
428 {
429 	u8 protonum;
430 	int protoff;
431 
432 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
433 	if (protoff <= 0)
434 		return false;
435 
436 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
437 }
438 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
439 
440 bool
441 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
442 		   const struct nf_conntrack_tuple *orig)
443 {
444 	memset(inverse, 0, sizeof(*inverse));
445 
446 	inverse->src.l3num = orig->src.l3num;
447 
448 	switch (orig->src.l3num) {
449 	case NFPROTO_IPV4:
450 		inverse->src.u3.ip = orig->dst.u3.ip;
451 		inverse->dst.u3.ip = orig->src.u3.ip;
452 		break;
453 	case NFPROTO_IPV6:
454 		inverse->src.u3.in6 = orig->dst.u3.in6;
455 		inverse->dst.u3.in6 = orig->src.u3.in6;
456 		break;
457 	default:
458 		break;
459 	}
460 
461 	inverse->dst.dir = !orig->dst.dir;
462 
463 	inverse->dst.protonum = orig->dst.protonum;
464 
465 	switch (orig->dst.protonum) {
466 	case IPPROTO_ICMP:
467 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
468 #if IS_ENABLED(CONFIG_IPV6)
469 	case IPPROTO_ICMPV6:
470 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
471 #endif
472 	}
473 
474 	inverse->src.u.all = orig->dst.u.all;
475 	inverse->dst.u.all = orig->src.u.all;
476 	return true;
477 }
478 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
479 
480 /* Generate a almost-unique pseudo-id for a given conntrack.
481  *
482  * intentionally doesn't re-use any of the seeds used for hash
483  * table location, we assume id gets exposed to userspace.
484  *
485  * Following nf_conn items do not change throughout lifetime
486  * of the nf_conn:
487  *
488  * 1. nf_conn address
489  * 2. nf_conn->master address (normally NULL)
490  * 3. the associated net namespace
491  * 4. the original direction tuple
492  */
493 u32 nf_ct_get_id(const struct nf_conn *ct)
494 {
495 	static siphash_aligned_key_t ct_id_seed;
496 	unsigned long a, b, c, d;
497 
498 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
499 
500 	a = (unsigned long)ct;
501 	b = (unsigned long)ct->master;
502 	c = (unsigned long)nf_ct_net(ct);
503 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
504 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
505 				   &ct_id_seed);
506 #ifdef CONFIG_64BIT
507 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
508 #else
509 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
510 #endif
511 }
512 EXPORT_SYMBOL_GPL(nf_ct_get_id);
513 
514 static void
515 clean_from_lists(struct nf_conn *ct)
516 {
517 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
518 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
519 
520 	/* Destroy all pending expectations */
521 	nf_ct_remove_expectations(ct);
522 }
523 
524 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
525 
526 /* Released via nf_ct_destroy() */
527 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
528 				 const struct nf_conntrack_zone *zone,
529 				 gfp_t flags)
530 {
531 	struct nf_conn *tmpl, *p;
532 
533 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
534 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
535 		if (!tmpl)
536 			return NULL;
537 
538 		p = tmpl;
539 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
540 		if (tmpl != p) {
541 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
542 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
543 		}
544 	} else {
545 		tmpl = kzalloc(sizeof(*tmpl), flags);
546 		if (!tmpl)
547 			return NULL;
548 	}
549 
550 	tmpl->status = IPS_TEMPLATE;
551 	write_pnet(&tmpl->ct_net, net);
552 	nf_ct_zone_add(tmpl, zone);
553 	refcount_set(&tmpl->ct_general.use, 1);
554 
555 	return tmpl;
556 }
557 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
558 
559 void nf_ct_tmpl_free(struct nf_conn *tmpl)
560 {
561 	kfree(tmpl->ext);
562 
563 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
564 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
565 	else
566 		kfree(tmpl);
567 }
568 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
569 
570 static void destroy_gre_conntrack(struct nf_conn *ct)
571 {
572 #ifdef CONFIG_NF_CT_PROTO_GRE
573 	struct nf_conn *master = ct->master;
574 
575 	if (master)
576 		nf_ct_gre_keymap_destroy(master);
577 #endif
578 }
579 
580 void nf_ct_destroy(struct nf_conntrack *nfct)
581 {
582 	struct nf_conn *ct = (struct nf_conn *)nfct;
583 
584 	WARN_ON(refcount_read(&nfct->use) != 0);
585 
586 	if (unlikely(nf_ct_is_template(ct))) {
587 		nf_ct_tmpl_free(ct);
588 		return;
589 	}
590 
591 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
592 		destroy_gre_conntrack(ct);
593 
594 	/* Expectations will have been removed in clean_from_lists,
595 	 * except TFTP can create an expectation on the first packet,
596 	 * before connection is in the list, so we need to clean here,
597 	 * too.
598 	 */
599 	nf_ct_remove_expectations(ct);
600 
601 	if (ct->master)
602 		nf_ct_put(ct->master);
603 
604 	nf_conntrack_free(ct);
605 }
606 EXPORT_SYMBOL(nf_ct_destroy);
607 
608 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
609 {
610 	struct net *net = nf_ct_net(ct);
611 	unsigned int hash, reply_hash;
612 	unsigned int sequence;
613 
614 	do {
615 		sequence = read_seqcount_begin(&nf_conntrack_generation);
616 		hash = hash_conntrack(net,
617 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
618 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
619 		reply_hash = hash_conntrack(net,
620 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
621 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
622 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
623 
624 	clean_from_lists(ct);
625 	nf_conntrack_double_unlock(hash, reply_hash);
626 }
627 
628 static void nf_ct_delete_from_lists(struct nf_conn *ct)
629 {
630 	nf_ct_helper_destroy(ct);
631 	local_bh_disable();
632 
633 	__nf_ct_delete_from_lists(ct);
634 
635 	local_bh_enable();
636 }
637 
638 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
639 {
640 #ifdef CONFIG_NF_CONNTRACK_EVENTS
641 	struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
642 
643 	spin_lock(&cnet->ecache.dying_lock);
644 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
645 				 &cnet->ecache.dying_list);
646 	spin_unlock(&cnet->ecache.dying_lock);
647 #endif
648 }
649 
650 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
651 {
652 	struct nf_conn_tstamp *tstamp;
653 	struct net *net;
654 
655 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
656 		return false;
657 
658 	tstamp = nf_conn_tstamp_find(ct);
659 	if (tstamp) {
660 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
661 
662 		tstamp->stop = ktime_get_real_ns();
663 		if (timeout < 0)
664 			tstamp->stop -= jiffies_to_nsecs(-timeout);
665 	}
666 
667 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 				    portid, report) < 0) {
669 		/* destroy event was not delivered. nf_ct_put will
670 		 * be done by event cache worker on redelivery.
671 		 */
672 		nf_ct_helper_destroy(ct);
673 		local_bh_disable();
674 		__nf_ct_delete_from_lists(ct);
675 		nf_ct_add_to_ecache_list(ct);
676 		local_bh_enable();
677 
678 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
679 		return false;
680 	}
681 
682 	net = nf_ct_net(ct);
683 	if (nf_conntrack_ecache_dwork_pending(net))
684 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
685 	nf_ct_delete_from_lists(ct);
686 	nf_ct_put(ct);
687 	return true;
688 }
689 EXPORT_SYMBOL_GPL(nf_ct_delete);
690 
691 static inline bool
692 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
693 		const struct nf_conntrack_tuple *tuple,
694 		const struct nf_conntrack_zone *zone,
695 		const struct net *net)
696 {
697 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
698 
699 	/* A conntrack can be recreated with the equal tuple,
700 	 * so we need to check that the conntrack is confirmed
701 	 */
702 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
703 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
704 	       nf_ct_is_confirmed(ct) &&
705 	       net_eq(net, nf_ct_net(ct));
706 }
707 
708 static inline bool
709 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
710 {
711 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
712 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
713 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
714 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
715 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
716 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
717 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
718 }
719 
720 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
721 static void nf_ct_gc_expired(struct nf_conn *ct)
722 {
723 	if (!refcount_inc_not_zero(&ct->ct_general.use))
724 		return;
725 
726 	/* load ->status after refcount increase */
727 	smp_acquire__after_ctrl_dep();
728 
729 	if (nf_ct_should_gc(ct))
730 		nf_ct_kill(ct);
731 
732 	nf_ct_put(ct);
733 }
734 
735 /*
736  * Warning :
737  * - Caller must take a reference on returned object
738  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
739  */
740 static struct nf_conntrack_tuple_hash *
741 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
742 		      const struct nf_conntrack_tuple *tuple, u32 hash)
743 {
744 	struct nf_conntrack_tuple_hash *h;
745 	struct hlist_nulls_head *ct_hash;
746 	struct hlist_nulls_node *n;
747 	unsigned int bucket, hsize;
748 
749 begin:
750 	nf_conntrack_get_ht(&ct_hash, &hsize);
751 	bucket = reciprocal_scale(hash, hsize);
752 
753 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
754 		struct nf_conn *ct;
755 
756 		ct = nf_ct_tuplehash_to_ctrack(h);
757 		if (nf_ct_is_expired(ct)) {
758 			nf_ct_gc_expired(ct);
759 			continue;
760 		}
761 
762 		if (nf_ct_key_equal(h, tuple, zone, net))
763 			return h;
764 	}
765 	/*
766 	 * if the nulls value we got at the end of this lookup is
767 	 * not the expected one, we must restart lookup.
768 	 * We probably met an item that was moved to another chain.
769 	 */
770 	if (get_nulls_value(n) != bucket) {
771 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
772 		goto begin;
773 	}
774 
775 	return NULL;
776 }
777 
778 /* Find a connection corresponding to a tuple. */
779 static struct nf_conntrack_tuple_hash *
780 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
781 			const struct nf_conntrack_tuple *tuple, u32 hash)
782 {
783 	struct nf_conntrack_tuple_hash *h;
784 	struct nf_conn *ct;
785 
786 	h = ____nf_conntrack_find(net, zone, tuple, hash);
787 	if (h) {
788 		/* We have a candidate that matches the tuple we're interested
789 		 * in, try to obtain a reference and re-check tuple
790 		 */
791 		ct = nf_ct_tuplehash_to_ctrack(h);
792 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
793 			/* re-check key after refcount */
794 			smp_acquire__after_ctrl_dep();
795 
796 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
797 				return h;
798 
799 			/* TYPESAFE_BY_RCU recycled the candidate */
800 			nf_ct_put(ct);
801 		}
802 
803 		h = NULL;
804 	}
805 
806 	return h;
807 }
808 
809 struct nf_conntrack_tuple_hash *
810 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
811 		      const struct nf_conntrack_tuple *tuple)
812 {
813 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
814 	struct nf_conntrack_tuple_hash *thash;
815 
816 	rcu_read_lock();
817 
818 	thash = __nf_conntrack_find_get(net, zone, tuple,
819 					hash_conntrack_raw(tuple, zone_id, net));
820 
821 	if (thash)
822 		goto out_unlock;
823 
824 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
825 	if (rid != zone_id)
826 		thash = __nf_conntrack_find_get(net, zone, tuple,
827 						hash_conntrack_raw(tuple, rid, net));
828 
829 out_unlock:
830 	rcu_read_unlock();
831 	return thash;
832 }
833 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
834 
835 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
836 				       unsigned int hash,
837 				       unsigned int reply_hash)
838 {
839 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
840 			   &nf_conntrack_hash[hash]);
841 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
842 			   &nf_conntrack_hash[reply_hash]);
843 }
844 
845 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
846 {
847 	/* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
848 	 * may contain stale pointers to e.g. helper that has been removed.
849 	 *
850 	 * The helper can't clear this because the nf_conn object isn't in
851 	 * any hash and synchronize_rcu() isn't enough because associated skb
852 	 * might sit in a queue.
853 	 */
854 	return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
855 }
856 
857 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
858 {
859 	if (!ext)
860 		return true;
861 
862 	if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
863 		return false;
864 
865 	/* inserted into conntrack table, nf_ct_iterate_cleanup()
866 	 * will find it.  Disable nf_ct_ext_find() id check.
867 	 */
868 	WRITE_ONCE(ext->gen_id, 0);
869 	return true;
870 }
871 
872 int
873 nf_conntrack_hash_check_insert(struct nf_conn *ct)
874 {
875 	const struct nf_conntrack_zone *zone;
876 	struct net *net = nf_ct_net(ct);
877 	unsigned int hash, reply_hash;
878 	struct nf_conntrack_tuple_hash *h;
879 	struct hlist_nulls_node *n;
880 	unsigned int max_chainlen;
881 	unsigned int chainlen = 0;
882 	unsigned int sequence;
883 	int err = -EEXIST;
884 
885 	zone = nf_ct_zone(ct);
886 
887 	if (!nf_ct_ext_valid_pre(ct->ext)) {
888 		NF_CT_STAT_INC_ATOMIC(net, insert_failed);
889 		return -ETIMEDOUT;
890 	}
891 
892 	local_bh_disable();
893 	do {
894 		sequence = read_seqcount_begin(&nf_conntrack_generation);
895 		hash = hash_conntrack(net,
896 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
897 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
898 		reply_hash = hash_conntrack(net,
899 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
900 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
901 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
902 
903 	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
904 
905 	/* See if there's one in the list already, including reverse */
906 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
907 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
908 				    zone, net))
909 			goto out;
910 
911 		if (chainlen++ > max_chainlen)
912 			goto chaintoolong;
913 	}
914 
915 	chainlen = 0;
916 
917 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
918 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
919 				    zone, net))
920 			goto out;
921 		if (chainlen++ > max_chainlen)
922 			goto chaintoolong;
923 	}
924 
925 	smp_wmb();
926 	/* The caller holds a reference to this object */
927 	refcount_set(&ct->ct_general.use, 2);
928 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
929 	nf_conntrack_double_unlock(hash, reply_hash);
930 	NF_CT_STAT_INC(net, insert);
931 	local_bh_enable();
932 
933 	if (!nf_ct_ext_valid_post(ct->ext)) {
934 		nf_ct_kill(ct);
935 		NF_CT_STAT_INC_ATOMIC(net, drop);
936 		return -ETIMEDOUT;
937 	}
938 
939 	return 0;
940 chaintoolong:
941 	NF_CT_STAT_INC(net, chaintoolong);
942 	err = -ENOSPC;
943 out:
944 	nf_conntrack_double_unlock(hash, reply_hash);
945 	local_bh_enable();
946 	return err;
947 }
948 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
949 
950 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
951 		    unsigned int bytes)
952 {
953 	struct nf_conn_acct *acct;
954 
955 	acct = nf_conn_acct_find(ct);
956 	if (acct) {
957 		struct nf_conn_counter *counter = acct->counter;
958 
959 		atomic64_add(packets, &counter[dir].packets);
960 		atomic64_add(bytes, &counter[dir].bytes);
961 	}
962 }
963 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
964 
965 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
966 			     const struct nf_conn *loser_ct)
967 {
968 	struct nf_conn_acct *acct;
969 
970 	acct = nf_conn_acct_find(loser_ct);
971 	if (acct) {
972 		struct nf_conn_counter *counter = acct->counter;
973 		unsigned int bytes;
974 
975 		/* u32 should be fine since we must have seen one packet. */
976 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
977 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
978 	}
979 }
980 
981 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
982 {
983 	struct nf_conn_tstamp *tstamp;
984 
985 	refcount_inc(&ct->ct_general.use);
986 
987 	/* set conntrack timestamp, if enabled. */
988 	tstamp = nf_conn_tstamp_find(ct);
989 	if (tstamp)
990 		tstamp->start = ktime_get_real_ns();
991 }
992 
993 /* caller must hold locks to prevent concurrent changes */
994 static int __nf_ct_resolve_clash(struct sk_buff *skb,
995 				 struct nf_conntrack_tuple_hash *h)
996 {
997 	/* This is the conntrack entry already in hashes that won race. */
998 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
999 	enum ip_conntrack_info ctinfo;
1000 	struct nf_conn *loser_ct;
1001 
1002 	loser_ct = nf_ct_get(skb, &ctinfo);
1003 
1004 	if (nf_ct_is_dying(ct))
1005 		return NF_DROP;
1006 
1007 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1008 	    nf_ct_match(ct, loser_ct)) {
1009 		struct net *net = nf_ct_net(ct);
1010 
1011 		nf_conntrack_get(&ct->ct_general);
1012 
1013 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1014 		nf_ct_put(loser_ct);
1015 		nf_ct_set(skb, ct, ctinfo);
1016 
1017 		NF_CT_STAT_INC(net, clash_resolve);
1018 		return NF_ACCEPT;
1019 	}
1020 
1021 	return NF_DROP;
1022 }
1023 
1024 /**
1025  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1026  *
1027  * @skb: skb that causes the collision
1028  * @repl_idx: hash slot for reply direction
1029  *
1030  * Called when origin or reply direction had a clash.
1031  * The skb can be handled without packet drop provided the reply direction
1032  * is unique or there the existing entry has the identical tuple in both
1033  * directions.
1034  *
1035  * Caller must hold conntrack table locks to prevent concurrent updates.
1036  *
1037  * Returns NF_DROP if the clash could not be handled.
1038  */
1039 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1040 {
1041 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1042 	const struct nf_conntrack_zone *zone;
1043 	struct nf_conntrack_tuple_hash *h;
1044 	struct hlist_nulls_node *n;
1045 	struct net *net;
1046 
1047 	zone = nf_ct_zone(loser_ct);
1048 	net = nf_ct_net(loser_ct);
1049 
1050 	/* Reply direction must never result in a clash, unless both origin
1051 	 * and reply tuples are identical.
1052 	 */
1053 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1054 		if (nf_ct_key_equal(h,
1055 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1056 				    zone, net))
1057 			return __nf_ct_resolve_clash(skb, h);
1058 	}
1059 
1060 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1061 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1062 
1063 	/* IPS_NAT_CLASH removes the entry automatically on the first
1064 	 * reply.  Also prevents UDP tracker from moving the entry to
1065 	 * ASSURED state, i.e. the entry can always be evicted under
1066 	 * pressure.
1067 	 */
1068 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1069 
1070 	__nf_conntrack_insert_prepare(loser_ct);
1071 
1072 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1073 	 * already in the table.  This also hides the clashing entry from
1074 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1075 	 */
1076 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1077 
1078 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1079 				 &nf_conntrack_hash[repl_idx]);
1080 
1081 	NF_CT_STAT_INC(net, clash_resolve);
1082 	return NF_ACCEPT;
1083 }
1084 
1085 /**
1086  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1087  *
1088  * @skb: skb that causes the clash
1089  * @h: tuplehash of the clashing entry already in table
1090  * @reply_hash: hash slot for reply direction
1091  *
1092  * A conntrack entry can be inserted to the connection tracking table
1093  * if there is no existing entry with an identical tuple.
1094  *
1095  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1096  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1097  * will find the already-existing entry.
1098  *
1099  * The major problem with such packet drop is the extra delay added by
1100  * the packet loss -- it will take some time for a retransmit to occur
1101  * (or the sender to time out when waiting for a reply).
1102  *
1103  * This function attempts to handle the situation without packet drop.
1104  *
1105  * If @skb has no NAT transformation or if the colliding entries are
1106  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1107  * and @skb is associated with the conntrack entry already in the table.
1108  *
1109  * Failing that, the new, unconfirmed conntrack is still added to the table
1110  * provided that the collision only occurs in the ORIGINAL direction.
1111  * The new entry will be added only in the non-clashing REPLY direction,
1112  * so packets in the ORIGINAL direction will continue to match the existing
1113  * entry.  The new entry will also have a fixed timeout so it expires --
1114  * due to the collision, it will only see reply traffic.
1115  *
1116  * Returns NF_DROP if the clash could not be resolved.
1117  */
1118 static __cold noinline int
1119 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1120 		    u32 reply_hash)
1121 {
1122 	/* This is the conntrack entry already in hashes that won race. */
1123 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1124 	const struct nf_conntrack_l4proto *l4proto;
1125 	enum ip_conntrack_info ctinfo;
1126 	struct nf_conn *loser_ct;
1127 	struct net *net;
1128 	int ret;
1129 
1130 	loser_ct = nf_ct_get(skb, &ctinfo);
1131 	net = nf_ct_net(loser_ct);
1132 
1133 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1134 	if (!l4proto->allow_clash)
1135 		goto drop;
1136 
1137 	ret = __nf_ct_resolve_clash(skb, h);
1138 	if (ret == NF_ACCEPT)
1139 		return ret;
1140 
1141 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1142 	if (ret == NF_ACCEPT)
1143 		return ret;
1144 
1145 drop:
1146 	NF_CT_STAT_INC(net, drop);
1147 	NF_CT_STAT_INC(net, insert_failed);
1148 	return NF_DROP;
1149 }
1150 
1151 /* Confirm a connection given skb; places it in hash table */
1152 int
1153 __nf_conntrack_confirm(struct sk_buff *skb)
1154 {
1155 	unsigned int chainlen = 0, sequence, max_chainlen;
1156 	const struct nf_conntrack_zone *zone;
1157 	unsigned int hash, reply_hash;
1158 	struct nf_conntrack_tuple_hash *h;
1159 	struct nf_conn *ct;
1160 	struct nf_conn_help *help;
1161 	struct hlist_nulls_node *n;
1162 	enum ip_conntrack_info ctinfo;
1163 	struct net *net;
1164 	int ret = NF_DROP;
1165 
1166 	ct = nf_ct_get(skb, &ctinfo);
1167 	net = nf_ct_net(ct);
1168 
1169 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1170 	   ICMP/TCP RST packets in other direction.  Actual packet
1171 	   which created connection will be IP_CT_NEW or for an
1172 	   expected connection, IP_CT_RELATED. */
1173 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1174 		return NF_ACCEPT;
1175 
1176 	zone = nf_ct_zone(ct);
1177 	local_bh_disable();
1178 
1179 	do {
1180 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1181 		/* reuse the hash saved before */
1182 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1183 		hash = scale_hash(hash);
1184 		reply_hash = hash_conntrack(net,
1185 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1186 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1187 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1188 
1189 	/* We're not in hash table, and we refuse to set up related
1190 	 * connections for unconfirmed conns.  But packet copies and
1191 	 * REJECT will give spurious warnings here.
1192 	 */
1193 
1194 	/* Another skb with the same unconfirmed conntrack may
1195 	 * win the race. This may happen for bridge(br_flood)
1196 	 * or broadcast/multicast packets do skb_clone with
1197 	 * unconfirmed conntrack.
1198 	 */
1199 	if (unlikely(nf_ct_is_confirmed(ct))) {
1200 		WARN_ON_ONCE(1);
1201 		nf_conntrack_double_unlock(hash, reply_hash);
1202 		local_bh_enable();
1203 		return NF_DROP;
1204 	}
1205 
1206 	if (!nf_ct_ext_valid_pre(ct->ext)) {
1207 		NF_CT_STAT_INC(net, insert_failed);
1208 		goto dying;
1209 	}
1210 
1211 	/* We have to check the DYING flag after unlink to prevent
1212 	 * a race against nf_ct_get_next_corpse() possibly called from
1213 	 * user context, else we insert an already 'dead' hash, blocking
1214 	 * further use of that particular connection -JM.
1215 	 */
1216 	ct->status |= IPS_CONFIRMED;
1217 
1218 	if (unlikely(nf_ct_is_dying(ct))) {
1219 		NF_CT_STAT_INC(net, insert_failed);
1220 		goto dying;
1221 	}
1222 
1223 	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1224 	/* See if there's one in the list already, including reverse:
1225 	   NAT could have grabbed it without realizing, since we're
1226 	   not in the hash.  If there is, we lost race. */
1227 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1228 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1229 				    zone, net))
1230 			goto out;
1231 		if (chainlen++ > max_chainlen)
1232 			goto chaintoolong;
1233 	}
1234 
1235 	chainlen = 0;
1236 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1237 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1238 				    zone, net))
1239 			goto out;
1240 		if (chainlen++ > max_chainlen) {
1241 chaintoolong:
1242 			NF_CT_STAT_INC(net, chaintoolong);
1243 			NF_CT_STAT_INC(net, insert_failed);
1244 			ret = NF_DROP;
1245 			goto dying;
1246 		}
1247 	}
1248 
1249 	/* Timer relative to confirmation time, not original
1250 	   setting time, otherwise we'd get timer wrap in
1251 	   weird delay cases. */
1252 	ct->timeout += nfct_time_stamp;
1253 
1254 	__nf_conntrack_insert_prepare(ct);
1255 
1256 	/* Since the lookup is lockless, hash insertion must be done after
1257 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1258 	 * guarantee that no other CPU can find the conntrack before the above
1259 	 * stores are visible.
1260 	 */
1261 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1262 	nf_conntrack_double_unlock(hash, reply_hash);
1263 	local_bh_enable();
1264 
1265 	/* ext area is still valid (rcu read lock is held,
1266 	 * but will go out of scope soon, we need to remove
1267 	 * this conntrack again.
1268 	 */
1269 	if (!nf_ct_ext_valid_post(ct->ext)) {
1270 		nf_ct_kill(ct);
1271 		NF_CT_STAT_INC_ATOMIC(net, drop);
1272 		return NF_DROP;
1273 	}
1274 
1275 	help = nfct_help(ct);
1276 	if (help && help->helper)
1277 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1278 
1279 	nf_conntrack_event_cache(master_ct(ct) ?
1280 				 IPCT_RELATED : IPCT_NEW, ct);
1281 	return NF_ACCEPT;
1282 
1283 out:
1284 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1285 dying:
1286 	nf_conntrack_double_unlock(hash, reply_hash);
1287 	local_bh_enable();
1288 	return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1291 
1292 /* Returns true if a connection correspondings to the tuple (required
1293    for NAT). */
1294 int
1295 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1296 			 const struct nf_conn *ignored_conntrack)
1297 {
1298 	struct net *net = nf_ct_net(ignored_conntrack);
1299 	const struct nf_conntrack_zone *zone;
1300 	struct nf_conntrack_tuple_hash *h;
1301 	struct hlist_nulls_head *ct_hash;
1302 	unsigned int hash, hsize;
1303 	struct hlist_nulls_node *n;
1304 	struct nf_conn *ct;
1305 
1306 	zone = nf_ct_zone(ignored_conntrack);
1307 
1308 	rcu_read_lock();
1309  begin:
1310 	nf_conntrack_get_ht(&ct_hash, &hsize);
1311 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1312 
1313 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1314 		ct = nf_ct_tuplehash_to_ctrack(h);
1315 
1316 		if (ct == ignored_conntrack)
1317 			continue;
1318 
1319 		if (nf_ct_is_expired(ct)) {
1320 			nf_ct_gc_expired(ct);
1321 			continue;
1322 		}
1323 
1324 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1325 			/* Tuple is taken already, so caller will need to find
1326 			 * a new source port to use.
1327 			 *
1328 			 * Only exception:
1329 			 * If the *original tuples* are identical, then both
1330 			 * conntracks refer to the same flow.
1331 			 * This is a rare situation, it can occur e.g. when
1332 			 * more than one UDP packet is sent from same socket
1333 			 * in different threads.
1334 			 *
1335 			 * Let nf_ct_resolve_clash() deal with this later.
1336 			 */
1337 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1338 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1339 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1340 				continue;
1341 
1342 			NF_CT_STAT_INC_ATOMIC(net, found);
1343 			rcu_read_unlock();
1344 			return 1;
1345 		}
1346 	}
1347 
1348 	if (get_nulls_value(n) != hash) {
1349 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1350 		goto begin;
1351 	}
1352 
1353 	rcu_read_unlock();
1354 
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1358 
1359 #define NF_CT_EVICTION_RANGE	8
1360 
1361 /* There's a small race here where we may free a just-assured
1362    connection.  Too bad: we're in trouble anyway. */
1363 static unsigned int early_drop_list(struct net *net,
1364 				    struct hlist_nulls_head *head)
1365 {
1366 	struct nf_conntrack_tuple_hash *h;
1367 	struct hlist_nulls_node *n;
1368 	unsigned int drops = 0;
1369 	struct nf_conn *tmp;
1370 
1371 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1372 		tmp = nf_ct_tuplehash_to_ctrack(h);
1373 
1374 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1375 			continue;
1376 
1377 		if (nf_ct_is_expired(tmp)) {
1378 			nf_ct_gc_expired(tmp);
1379 			continue;
1380 		}
1381 
1382 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1383 		    !net_eq(nf_ct_net(tmp), net) ||
1384 		    nf_ct_is_dying(tmp))
1385 			continue;
1386 
1387 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1388 			continue;
1389 
1390 		/* load ->ct_net and ->status after refcount increase */
1391 		smp_acquire__after_ctrl_dep();
1392 
1393 		/* kill only if still in same netns -- might have moved due to
1394 		 * SLAB_TYPESAFE_BY_RCU rules.
1395 		 *
1396 		 * We steal the timer reference.  If that fails timer has
1397 		 * already fired or someone else deleted it. Just drop ref
1398 		 * and move to next entry.
1399 		 */
1400 		if (net_eq(nf_ct_net(tmp), net) &&
1401 		    nf_ct_is_confirmed(tmp) &&
1402 		    nf_ct_delete(tmp, 0, 0))
1403 			drops++;
1404 
1405 		nf_ct_put(tmp);
1406 	}
1407 
1408 	return drops;
1409 }
1410 
1411 static noinline int early_drop(struct net *net, unsigned int hash)
1412 {
1413 	unsigned int i, bucket;
1414 
1415 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1416 		struct hlist_nulls_head *ct_hash;
1417 		unsigned int hsize, drops;
1418 
1419 		rcu_read_lock();
1420 		nf_conntrack_get_ht(&ct_hash, &hsize);
1421 		if (!i)
1422 			bucket = reciprocal_scale(hash, hsize);
1423 		else
1424 			bucket = (bucket + 1) % hsize;
1425 
1426 		drops = early_drop_list(net, &ct_hash[bucket]);
1427 		rcu_read_unlock();
1428 
1429 		if (drops) {
1430 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1431 			return true;
1432 		}
1433 	}
1434 
1435 	return false;
1436 }
1437 
1438 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1439 {
1440 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1441 }
1442 
1443 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1444 {
1445 	const struct nf_conntrack_l4proto *l4proto;
1446 
1447 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1448 		return true;
1449 
1450 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1451 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1452 		return true;
1453 
1454 	return false;
1455 }
1456 
1457 static void gc_worker(struct work_struct *work)
1458 {
1459 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1460 	u32 end_time, start_time = nfct_time_stamp;
1461 	struct conntrack_gc_work *gc_work;
1462 	unsigned int expired_count = 0;
1463 	unsigned long next_run;
1464 	s32 delta_time;
1465 	long count;
1466 
1467 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1468 
1469 	i = gc_work->next_bucket;
1470 	if (gc_work->early_drop)
1471 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1472 
1473 	if (i == 0) {
1474 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1475 		gc_work->count = GC_SCAN_INITIAL_COUNT;
1476 		gc_work->start_time = start_time;
1477 	}
1478 
1479 	next_run = gc_work->avg_timeout;
1480 	count = gc_work->count;
1481 
1482 	end_time = start_time + GC_SCAN_MAX_DURATION;
1483 
1484 	do {
1485 		struct nf_conntrack_tuple_hash *h;
1486 		struct hlist_nulls_head *ct_hash;
1487 		struct hlist_nulls_node *n;
1488 		struct nf_conn *tmp;
1489 
1490 		rcu_read_lock();
1491 
1492 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1493 		if (i >= hashsz) {
1494 			rcu_read_unlock();
1495 			break;
1496 		}
1497 
1498 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1499 			struct nf_conntrack_net *cnet;
1500 			struct net *net;
1501 			long expires;
1502 
1503 			tmp = nf_ct_tuplehash_to_ctrack(h);
1504 
1505 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1506 				nf_ct_offload_timeout(tmp);
1507 				continue;
1508 			}
1509 
1510 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1511 				rcu_read_unlock();
1512 
1513 				gc_work->next_bucket = i;
1514 				gc_work->avg_timeout = next_run;
1515 				gc_work->count = count;
1516 
1517 				delta_time = nfct_time_stamp - gc_work->start_time;
1518 
1519 				/* re-sched immediately if total cycle time is exceeded */
1520 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1521 				goto early_exit;
1522 			}
1523 
1524 			if (nf_ct_is_expired(tmp)) {
1525 				nf_ct_gc_expired(tmp);
1526 				expired_count++;
1527 				continue;
1528 			}
1529 
1530 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1531 			expires = (expires - (long)next_run) / ++count;
1532 			next_run += expires;
1533 
1534 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1535 				continue;
1536 
1537 			net = nf_ct_net(tmp);
1538 			cnet = nf_ct_pernet(net);
1539 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1540 				continue;
1541 
1542 			/* need to take reference to avoid possible races */
1543 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1544 				continue;
1545 
1546 			/* load ->status after refcount increase */
1547 			smp_acquire__after_ctrl_dep();
1548 
1549 			if (gc_worker_skip_ct(tmp)) {
1550 				nf_ct_put(tmp);
1551 				continue;
1552 			}
1553 
1554 			if (gc_worker_can_early_drop(tmp)) {
1555 				nf_ct_kill(tmp);
1556 				expired_count++;
1557 			}
1558 
1559 			nf_ct_put(tmp);
1560 		}
1561 
1562 		/* could check get_nulls_value() here and restart if ct
1563 		 * was moved to another chain.  But given gc is best-effort
1564 		 * we will just continue with next hash slot.
1565 		 */
1566 		rcu_read_unlock();
1567 		cond_resched();
1568 		i++;
1569 
1570 		delta_time = nfct_time_stamp - end_time;
1571 		if (delta_time > 0 && i < hashsz) {
1572 			gc_work->avg_timeout = next_run;
1573 			gc_work->count = count;
1574 			gc_work->next_bucket = i;
1575 			next_run = 0;
1576 			goto early_exit;
1577 		}
1578 	} while (i < hashsz);
1579 
1580 	gc_work->next_bucket = 0;
1581 
1582 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1583 
1584 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1585 	if (next_run > (unsigned long)delta_time)
1586 		next_run -= delta_time;
1587 	else
1588 		next_run = 1;
1589 
1590 early_exit:
1591 	if (gc_work->exiting)
1592 		return;
1593 
1594 	if (next_run)
1595 		gc_work->early_drop = false;
1596 
1597 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1598 }
1599 
1600 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1601 {
1602 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1603 	gc_work->exiting = false;
1604 }
1605 
1606 static struct nf_conn *
1607 __nf_conntrack_alloc(struct net *net,
1608 		     const struct nf_conntrack_zone *zone,
1609 		     const struct nf_conntrack_tuple *orig,
1610 		     const struct nf_conntrack_tuple *repl,
1611 		     gfp_t gfp, u32 hash)
1612 {
1613 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1614 	unsigned int ct_count;
1615 	struct nf_conn *ct;
1616 
1617 	/* We don't want any race condition at early drop stage */
1618 	ct_count = atomic_inc_return(&cnet->count);
1619 
1620 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1621 		if (!early_drop(net, hash)) {
1622 			if (!conntrack_gc_work.early_drop)
1623 				conntrack_gc_work.early_drop = true;
1624 			atomic_dec(&cnet->count);
1625 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1626 			return ERR_PTR(-ENOMEM);
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Do not use kmem_cache_zalloc(), as this cache uses
1632 	 * SLAB_TYPESAFE_BY_RCU.
1633 	 */
1634 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1635 	if (ct == NULL)
1636 		goto out;
1637 
1638 	spin_lock_init(&ct->lock);
1639 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1640 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1641 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1642 	/* save hash for reusing when confirming */
1643 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1644 	ct->status = 0;
1645 	WRITE_ONCE(ct->timeout, 0);
1646 	write_pnet(&ct->ct_net, net);
1647 	memset_after(ct, 0, __nfct_init_offset);
1648 
1649 	nf_ct_zone_add(ct, zone);
1650 
1651 	/* Because we use RCU lookups, we set ct_general.use to zero before
1652 	 * this is inserted in any list.
1653 	 */
1654 	refcount_set(&ct->ct_general.use, 0);
1655 	return ct;
1656 out:
1657 	atomic_dec(&cnet->count);
1658 	return ERR_PTR(-ENOMEM);
1659 }
1660 
1661 struct nf_conn *nf_conntrack_alloc(struct net *net,
1662 				   const struct nf_conntrack_zone *zone,
1663 				   const struct nf_conntrack_tuple *orig,
1664 				   const struct nf_conntrack_tuple *repl,
1665 				   gfp_t gfp)
1666 {
1667 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1668 }
1669 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1670 
1671 void nf_conntrack_free(struct nf_conn *ct)
1672 {
1673 	struct net *net = nf_ct_net(ct);
1674 	struct nf_conntrack_net *cnet;
1675 
1676 	/* A freed object has refcnt == 0, that's
1677 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1678 	 */
1679 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1680 
1681 	if (ct->status & IPS_SRC_NAT_DONE) {
1682 		const struct nf_nat_hook *nat_hook;
1683 
1684 		rcu_read_lock();
1685 		nat_hook = rcu_dereference(nf_nat_hook);
1686 		if (nat_hook)
1687 			nat_hook->remove_nat_bysrc(ct);
1688 		rcu_read_unlock();
1689 	}
1690 
1691 	kfree(ct->ext);
1692 	kmem_cache_free(nf_conntrack_cachep, ct);
1693 	cnet = nf_ct_pernet(net);
1694 
1695 	smp_mb__before_atomic();
1696 	atomic_dec(&cnet->count);
1697 }
1698 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1699 
1700 
1701 /* Allocate a new conntrack: we return -ENOMEM if classification
1702    failed due to stress.  Otherwise it really is unclassifiable. */
1703 static noinline struct nf_conntrack_tuple_hash *
1704 init_conntrack(struct net *net, struct nf_conn *tmpl,
1705 	       const struct nf_conntrack_tuple *tuple,
1706 	       struct sk_buff *skb,
1707 	       unsigned int dataoff, u32 hash)
1708 {
1709 	struct nf_conn *ct;
1710 	struct nf_conn_help *help;
1711 	struct nf_conntrack_tuple repl_tuple;
1712 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1713 	struct nf_conntrack_ecache *ecache;
1714 #endif
1715 	struct nf_conntrack_expect *exp = NULL;
1716 	const struct nf_conntrack_zone *zone;
1717 	struct nf_conn_timeout *timeout_ext;
1718 	struct nf_conntrack_zone tmp;
1719 	struct nf_conntrack_net *cnet;
1720 
1721 	if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1722 		return NULL;
1723 
1724 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1725 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1726 				  hash);
1727 	if (IS_ERR(ct))
1728 		return (struct nf_conntrack_tuple_hash *)ct;
1729 
1730 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1731 		nf_conntrack_free(ct);
1732 		return ERR_PTR(-ENOMEM);
1733 	}
1734 
1735 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1736 
1737 	if (timeout_ext)
1738 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1739 				      GFP_ATOMIC);
1740 
1741 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1742 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1743 	nf_ct_labels_ext_add(ct);
1744 
1745 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1746 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1747 
1748 	if ((ecache || net->ct.sysctl_events) &&
1749 	    !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1750 				  ecache ? ecache->expmask : 0,
1751 				  GFP_ATOMIC)) {
1752 		nf_conntrack_free(ct);
1753 		return ERR_PTR(-ENOMEM);
1754 	}
1755 #endif
1756 
1757 	cnet = nf_ct_pernet(net);
1758 	if (cnet->expect_count) {
1759 		spin_lock_bh(&nf_conntrack_expect_lock);
1760 		exp = nf_ct_find_expectation(net, zone, tuple);
1761 		if (exp) {
1762 			/* Welcome, Mr. Bond.  We've been expecting you... */
1763 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1764 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1765 			ct->master = exp->master;
1766 			if (exp->helper) {
1767 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1768 				if (help)
1769 					rcu_assign_pointer(help->helper, exp->helper);
1770 			}
1771 
1772 #ifdef CONFIG_NF_CONNTRACK_MARK
1773 			ct->mark = READ_ONCE(exp->master->mark);
1774 #endif
1775 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1776 			ct->secmark = exp->master->secmark;
1777 #endif
1778 			NF_CT_STAT_INC(net, expect_new);
1779 		}
1780 		spin_unlock_bh(&nf_conntrack_expect_lock);
1781 	}
1782 	if (!exp && tmpl)
1783 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1784 
1785 	/* Other CPU might have obtained a pointer to this object before it was
1786 	 * released.  Because refcount is 0, refcount_inc_not_zero() will fail.
1787 	 *
1788 	 * After refcount_set(1) it will succeed; ensure that zeroing of
1789 	 * ct->status and the correct ct->net pointer are visible; else other
1790 	 * core might observe CONFIRMED bit which means the entry is valid and
1791 	 * in the hash table, but its not (anymore).
1792 	 */
1793 	smp_wmb();
1794 
1795 	/* Now it is going to be associated with an sk_buff, set refcount to 1. */
1796 	refcount_set(&ct->ct_general.use, 1);
1797 
1798 	if (exp) {
1799 		if (exp->expectfn)
1800 			exp->expectfn(ct, exp);
1801 		nf_ct_expect_put(exp);
1802 	}
1803 
1804 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1805 }
1806 
1807 /* On success, returns 0, sets skb->_nfct | ctinfo */
1808 static int
1809 resolve_normal_ct(struct nf_conn *tmpl,
1810 		  struct sk_buff *skb,
1811 		  unsigned int dataoff,
1812 		  u_int8_t protonum,
1813 		  const struct nf_hook_state *state)
1814 {
1815 	const struct nf_conntrack_zone *zone;
1816 	struct nf_conntrack_tuple tuple;
1817 	struct nf_conntrack_tuple_hash *h;
1818 	enum ip_conntrack_info ctinfo;
1819 	struct nf_conntrack_zone tmp;
1820 	u32 hash, zone_id, rid;
1821 	struct nf_conn *ct;
1822 
1823 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1824 			     dataoff, state->pf, protonum, state->net,
1825 			     &tuple))
1826 		return 0;
1827 
1828 	/* look for tuple match */
1829 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1830 
1831 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1832 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1833 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1834 
1835 	if (!h) {
1836 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1837 		if (zone_id != rid) {
1838 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1839 
1840 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1841 		}
1842 	}
1843 
1844 	if (!h) {
1845 		h = init_conntrack(state->net, tmpl, &tuple,
1846 				   skb, dataoff, hash);
1847 		if (!h)
1848 			return 0;
1849 		if (IS_ERR(h))
1850 			return PTR_ERR(h);
1851 	}
1852 	ct = nf_ct_tuplehash_to_ctrack(h);
1853 
1854 	/* It exists; we have (non-exclusive) reference. */
1855 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1856 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1857 	} else {
1858 		unsigned long status = READ_ONCE(ct->status);
1859 
1860 		/* Once we've had two way comms, always ESTABLISHED. */
1861 		if (likely(status & IPS_SEEN_REPLY))
1862 			ctinfo = IP_CT_ESTABLISHED;
1863 		else if (status & IPS_EXPECTED)
1864 			ctinfo = IP_CT_RELATED;
1865 		else
1866 			ctinfo = IP_CT_NEW;
1867 	}
1868 	nf_ct_set(skb, ct, ctinfo);
1869 	return 0;
1870 }
1871 
1872 /*
1873  * icmp packets need special treatment to handle error messages that are
1874  * related to a connection.
1875  *
1876  * Callers need to check if skb has a conntrack assigned when this
1877  * helper returns; in such case skb belongs to an already known connection.
1878  */
1879 static unsigned int __cold
1880 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1881 			 struct sk_buff *skb,
1882 			 unsigned int dataoff,
1883 			 u8 protonum,
1884 			 const struct nf_hook_state *state)
1885 {
1886 	int ret;
1887 
1888 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1889 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1890 #if IS_ENABLED(CONFIG_IPV6)
1891 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1892 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1893 #endif
1894 	else
1895 		return NF_ACCEPT;
1896 
1897 	if (ret <= 0)
1898 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1899 
1900 	return ret;
1901 }
1902 
1903 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1904 			  enum ip_conntrack_info ctinfo)
1905 {
1906 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1907 
1908 	if (!timeout)
1909 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1910 
1911 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1912 	return NF_ACCEPT;
1913 }
1914 
1915 /* Returns verdict for packet, or -1 for invalid. */
1916 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1917 				      struct sk_buff *skb,
1918 				      unsigned int dataoff,
1919 				      enum ip_conntrack_info ctinfo,
1920 				      const struct nf_hook_state *state)
1921 {
1922 	switch (nf_ct_protonum(ct)) {
1923 	case IPPROTO_TCP:
1924 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1925 					       ctinfo, state);
1926 	case IPPROTO_UDP:
1927 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1928 					       ctinfo, state);
1929 	case IPPROTO_ICMP:
1930 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1931 #if IS_ENABLED(CONFIG_IPV6)
1932 	case IPPROTO_ICMPV6:
1933 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1934 #endif
1935 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1936 	case IPPROTO_UDPLITE:
1937 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1938 						   ctinfo, state);
1939 #endif
1940 #ifdef CONFIG_NF_CT_PROTO_SCTP
1941 	case IPPROTO_SCTP:
1942 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1943 						ctinfo, state);
1944 #endif
1945 #ifdef CONFIG_NF_CT_PROTO_DCCP
1946 	case IPPROTO_DCCP:
1947 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1948 						ctinfo, state);
1949 #endif
1950 #ifdef CONFIG_NF_CT_PROTO_GRE
1951 	case IPPROTO_GRE:
1952 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1953 					       ctinfo, state);
1954 #endif
1955 	}
1956 
1957 	return generic_packet(ct, skb, ctinfo);
1958 }
1959 
1960 unsigned int
1961 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1962 {
1963 	enum ip_conntrack_info ctinfo;
1964 	struct nf_conn *ct, *tmpl;
1965 	u_int8_t protonum;
1966 	int dataoff, ret;
1967 
1968 	tmpl = nf_ct_get(skb, &ctinfo);
1969 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1970 		/* Previously seen (loopback or untracked)?  Ignore. */
1971 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1972 		     ctinfo == IP_CT_UNTRACKED)
1973 			return NF_ACCEPT;
1974 		skb->_nfct = 0;
1975 	}
1976 
1977 	/* rcu_read_lock()ed by nf_hook_thresh */
1978 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1979 	if (dataoff <= 0) {
1980 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1981 		ret = NF_ACCEPT;
1982 		goto out;
1983 	}
1984 
1985 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1986 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1987 					       protonum, state);
1988 		if (ret <= 0) {
1989 			ret = -ret;
1990 			goto out;
1991 		}
1992 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1993 		if (skb->_nfct)
1994 			goto out;
1995 	}
1996 repeat:
1997 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1998 				protonum, state);
1999 	if (ret < 0) {
2000 		/* Too stressed to deal. */
2001 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
2002 		ret = NF_DROP;
2003 		goto out;
2004 	}
2005 
2006 	ct = nf_ct_get(skb, &ctinfo);
2007 	if (!ct) {
2008 		/* Not valid part of a connection */
2009 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2010 		ret = NF_ACCEPT;
2011 		goto out;
2012 	}
2013 
2014 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2015 	if (ret <= 0) {
2016 		/* Invalid: inverse of the return code tells
2017 		 * the netfilter core what to do */
2018 		nf_ct_put(ct);
2019 		skb->_nfct = 0;
2020 		/* Special case: TCP tracker reports an attempt to reopen a
2021 		 * closed/aborted connection. We have to go back and create a
2022 		 * fresh conntrack.
2023 		 */
2024 		if (ret == -NF_REPEAT)
2025 			goto repeat;
2026 
2027 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2028 		if (ret == -NF_DROP)
2029 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
2030 
2031 		ret = -ret;
2032 		goto out;
2033 	}
2034 
2035 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2036 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2037 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2038 out:
2039 	if (tmpl)
2040 		nf_ct_put(tmpl);
2041 
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2045 
2046 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2047    implicitly racy: see __nf_conntrack_confirm */
2048 void nf_conntrack_alter_reply(struct nf_conn *ct,
2049 			      const struct nf_conntrack_tuple *newreply)
2050 {
2051 	struct nf_conn_help *help = nfct_help(ct);
2052 
2053 	/* Should be unconfirmed, so not in hash table yet */
2054 	WARN_ON(nf_ct_is_confirmed(ct));
2055 
2056 	nf_ct_dump_tuple(newreply);
2057 
2058 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2059 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2060 		return;
2061 }
2062 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2063 
2064 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2065 void __nf_ct_refresh_acct(struct nf_conn *ct,
2066 			  enum ip_conntrack_info ctinfo,
2067 			  const struct sk_buff *skb,
2068 			  u32 extra_jiffies,
2069 			  bool do_acct)
2070 {
2071 	/* Only update if this is not a fixed timeout */
2072 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2073 		goto acct;
2074 
2075 	/* If not in hash table, timer will not be active yet */
2076 	if (nf_ct_is_confirmed(ct))
2077 		extra_jiffies += nfct_time_stamp;
2078 
2079 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2080 		WRITE_ONCE(ct->timeout, extra_jiffies);
2081 acct:
2082 	if (do_acct)
2083 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2084 }
2085 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2086 
2087 bool nf_ct_kill_acct(struct nf_conn *ct,
2088 		     enum ip_conntrack_info ctinfo,
2089 		     const struct sk_buff *skb)
2090 {
2091 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2092 
2093 	return nf_ct_delete(ct, 0, 0);
2094 }
2095 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2096 
2097 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2098 
2099 #include <linux/netfilter/nfnetlink.h>
2100 #include <linux/netfilter/nfnetlink_conntrack.h>
2101 #include <linux/mutex.h>
2102 
2103 /* Generic function for tcp/udp/sctp/dccp and alike. */
2104 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2105 			       const struct nf_conntrack_tuple *tuple)
2106 {
2107 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2108 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2109 		goto nla_put_failure;
2110 	return 0;
2111 
2112 nla_put_failure:
2113 	return -1;
2114 }
2115 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2116 
2117 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2118 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2119 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2120 };
2121 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2122 
2123 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2124 			       struct nf_conntrack_tuple *t,
2125 			       u_int32_t flags)
2126 {
2127 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2128 		if (!tb[CTA_PROTO_SRC_PORT])
2129 			return -EINVAL;
2130 
2131 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2132 	}
2133 
2134 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2135 		if (!tb[CTA_PROTO_DST_PORT])
2136 			return -EINVAL;
2137 
2138 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2139 	}
2140 
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2144 
2145 unsigned int nf_ct_port_nlattr_tuple_size(void)
2146 {
2147 	static unsigned int size __read_mostly;
2148 
2149 	if (!size)
2150 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2151 
2152 	return size;
2153 }
2154 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2155 #endif
2156 
2157 /* Used by ipt_REJECT and ip6t_REJECT. */
2158 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2159 {
2160 	struct nf_conn *ct;
2161 	enum ip_conntrack_info ctinfo;
2162 
2163 	/* This ICMP is in reverse direction to the packet which caused it */
2164 	ct = nf_ct_get(skb, &ctinfo);
2165 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2166 		ctinfo = IP_CT_RELATED_REPLY;
2167 	else
2168 		ctinfo = IP_CT_RELATED;
2169 
2170 	/* Attach to new skbuff, and increment count */
2171 	nf_ct_set(nskb, ct, ctinfo);
2172 	nf_conntrack_get(skb_nfct(nskb));
2173 }
2174 
2175 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2176 				 struct nf_conn *ct,
2177 				 enum ip_conntrack_info ctinfo)
2178 {
2179 	const struct nf_nat_hook *nat_hook;
2180 	struct nf_conntrack_tuple_hash *h;
2181 	struct nf_conntrack_tuple tuple;
2182 	unsigned int status;
2183 	int dataoff;
2184 	u16 l3num;
2185 	u8 l4num;
2186 
2187 	l3num = nf_ct_l3num(ct);
2188 
2189 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2190 	if (dataoff <= 0)
2191 		return -1;
2192 
2193 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2194 			     l4num, net, &tuple))
2195 		return -1;
2196 
2197 	if (ct->status & IPS_SRC_NAT) {
2198 		memcpy(tuple.src.u3.all,
2199 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2200 		       sizeof(tuple.src.u3.all));
2201 		tuple.src.u.all =
2202 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2203 	}
2204 
2205 	if (ct->status & IPS_DST_NAT) {
2206 		memcpy(tuple.dst.u3.all,
2207 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2208 		       sizeof(tuple.dst.u3.all));
2209 		tuple.dst.u.all =
2210 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2211 	}
2212 
2213 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2214 	if (!h)
2215 		return 0;
2216 
2217 	/* Store status bits of the conntrack that is clashing to re-do NAT
2218 	 * mangling according to what it has been done already to this packet.
2219 	 */
2220 	status = ct->status;
2221 
2222 	nf_ct_put(ct);
2223 	ct = nf_ct_tuplehash_to_ctrack(h);
2224 	nf_ct_set(skb, ct, ctinfo);
2225 
2226 	nat_hook = rcu_dereference(nf_nat_hook);
2227 	if (!nat_hook)
2228 		return 0;
2229 
2230 	if (status & IPS_SRC_NAT &&
2231 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2232 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2233 		return -1;
2234 
2235 	if (status & IPS_DST_NAT &&
2236 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2237 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2238 		return -1;
2239 
2240 	return 0;
2241 }
2242 
2243 /* This packet is coming from userspace via nf_queue, complete the packet
2244  * processing after the helper invocation in nf_confirm().
2245  */
2246 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2247 			       enum ip_conntrack_info ctinfo)
2248 {
2249 	const struct nf_conntrack_helper *helper;
2250 	const struct nf_conn_help *help;
2251 	int protoff;
2252 
2253 	help = nfct_help(ct);
2254 	if (!help)
2255 		return 0;
2256 
2257 	helper = rcu_dereference(help->helper);
2258 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2259 		return 0;
2260 
2261 	switch (nf_ct_l3num(ct)) {
2262 	case NFPROTO_IPV4:
2263 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2264 		break;
2265 #if IS_ENABLED(CONFIG_IPV6)
2266 	case NFPROTO_IPV6: {
2267 		__be16 frag_off;
2268 		u8 pnum;
2269 
2270 		pnum = ipv6_hdr(skb)->nexthdr;
2271 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2272 					   &frag_off);
2273 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2274 			return 0;
2275 		break;
2276 	}
2277 #endif
2278 	default:
2279 		return 0;
2280 	}
2281 
2282 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2283 	    !nf_is_loopback_packet(skb)) {
2284 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2285 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2286 			return -1;
2287 		}
2288 	}
2289 
2290 	/* We've seen it coming out the other side: confirm it */
2291 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2292 }
2293 
2294 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2295 {
2296 	enum ip_conntrack_info ctinfo;
2297 	struct nf_conn *ct;
2298 	int err;
2299 
2300 	ct = nf_ct_get(skb, &ctinfo);
2301 	if (!ct)
2302 		return 0;
2303 
2304 	if (!nf_ct_is_confirmed(ct)) {
2305 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2306 		if (err < 0)
2307 			return err;
2308 
2309 		ct = nf_ct_get(skb, &ctinfo);
2310 	}
2311 
2312 	return nf_confirm_cthelper(skb, ct, ctinfo);
2313 }
2314 
2315 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2316 				       const struct sk_buff *skb)
2317 {
2318 	const struct nf_conntrack_tuple *src_tuple;
2319 	const struct nf_conntrack_tuple_hash *hash;
2320 	struct nf_conntrack_tuple srctuple;
2321 	enum ip_conntrack_info ctinfo;
2322 	struct nf_conn *ct;
2323 
2324 	ct = nf_ct_get(skb, &ctinfo);
2325 	if (ct) {
2326 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2327 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2328 		return true;
2329 	}
2330 
2331 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2332 			       NFPROTO_IPV4, dev_net(skb->dev),
2333 			       &srctuple))
2334 		return false;
2335 
2336 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2337 				     &nf_ct_zone_dflt,
2338 				     &srctuple);
2339 	if (!hash)
2340 		return false;
2341 
2342 	ct = nf_ct_tuplehash_to_ctrack(hash);
2343 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2344 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2345 	nf_ct_put(ct);
2346 
2347 	return true;
2348 }
2349 
2350 /* Bring out ya dead! */
2351 static struct nf_conn *
2352 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2353 		const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2354 {
2355 	struct nf_conntrack_tuple_hash *h;
2356 	struct nf_conn *ct;
2357 	struct hlist_nulls_node *n;
2358 	spinlock_t *lockp;
2359 
2360 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2361 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2362 
2363 		if (hlist_nulls_empty(hslot))
2364 			continue;
2365 
2366 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2367 		local_bh_disable();
2368 		nf_conntrack_lock(lockp);
2369 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2370 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2371 				continue;
2372 			/* All nf_conn objects are added to hash table twice, one
2373 			 * for original direction tuple, once for the reply tuple.
2374 			 *
2375 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2376 			 * tuple is added (the original tuple already existed for
2377 			 * a different object).
2378 			 *
2379 			 * We only need to call the iterator once for each
2380 			 * conntrack, so we just use the 'reply' direction
2381 			 * tuple while iterating.
2382 			 */
2383 			ct = nf_ct_tuplehash_to_ctrack(h);
2384 
2385 			if (iter_data->net &&
2386 			    !net_eq(iter_data->net, nf_ct_net(ct)))
2387 				continue;
2388 
2389 			if (iter(ct, iter_data->data))
2390 				goto found;
2391 		}
2392 		spin_unlock(lockp);
2393 		local_bh_enable();
2394 		cond_resched();
2395 	}
2396 
2397 	return NULL;
2398 found:
2399 	refcount_inc(&ct->ct_general.use);
2400 	spin_unlock(lockp);
2401 	local_bh_enable();
2402 	return ct;
2403 }
2404 
2405 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2406 				  const struct nf_ct_iter_data *iter_data)
2407 {
2408 	unsigned int bucket = 0;
2409 	struct nf_conn *ct;
2410 
2411 	might_sleep();
2412 
2413 	mutex_lock(&nf_conntrack_mutex);
2414 	while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2415 		/* Time to push up daises... */
2416 
2417 		nf_ct_delete(ct, iter_data->portid, iter_data->report);
2418 		nf_ct_put(ct);
2419 		cond_resched();
2420 	}
2421 	mutex_unlock(&nf_conntrack_mutex);
2422 }
2423 
2424 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2425 			       const struct nf_ct_iter_data *iter_data)
2426 {
2427 	struct net *net = iter_data->net;
2428 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2429 
2430 	might_sleep();
2431 
2432 	if (atomic_read(&cnet->count) == 0)
2433 		return;
2434 
2435 	nf_ct_iterate_cleanup(iter, iter_data);
2436 }
2437 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2438 
2439 /**
2440  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2441  * @iter: callback to invoke for each conntrack
2442  * @data: data to pass to @iter
2443  *
2444  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2445  * unconfirmed list as dying (so they will not be inserted into
2446  * main table).
2447  *
2448  * Can only be called in module exit path.
2449  */
2450 void
2451 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2452 {
2453 	struct nf_ct_iter_data iter_data = {};
2454 	struct net *net;
2455 
2456 	down_read(&net_rwsem);
2457 	for_each_net(net) {
2458 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2459 
2460 		if (atomic_read(&cnet->count) == 0)
2461 			continue;
2462 		nf_queue_nf_hook_drop(net);
2463 	}
2464 	up_read(&net_rwsem);
2465 
2466 	/* Need to wait for netns cleanup worker to finish, if its
2467 	 * running -- it might have deleted a net namespace from
2468 	 * the global list, so hook drop above might not have
2469 	 * affected all namespaces.
2470 	 */
2471 	net_ns_barrier();
2472 
2473 	/* a skb w. unconfirmed conntrack could have been reinjected just
2474 	 * before we called nf_queue_nf_hook_drop().
2475 	 *
2476 	 * This makes sure its inserted into conntrack table.
2477 	 */
2478 	synchronize_net();
2479 
2480 	nf_ct_ext_bump_genid();
2481 	iter_data.data = data;
2482 	nf_ct_iterate_cleanup(iter, &iter_data);
2483 
2484 	/* Another cpu might be in a rcu read section with
2485 	 * rcu protected pointer cleared in iter callback
2486 	 * or hidden via nf_ct_ext_bump_genid() above.
2487 	 *
2488 	 * Wait until those are done.
2489 	 */
2490 	synchronize_rcu();
2491 }
2492 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2493 
2494 static int kill_all(struct nf_conn *i, void *data)
2495 {
2496 	return 1;
2497 }
2498 
2499 void nf_conntrack_cleanup_start(void)
2500 {
2501 	cleanup_nf_conntrack_bpf();
2502 	conntrack_gc_work.exiting = true;
2503 }
2504 
2505 void nf_conntrack_cleanup_end(void)
2506 {
2507 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2508 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2509 	kvfree(nf_conntrack_hash);
2510 
2511 	nf_conntrack_proto_fini();
2512 	nf_conntrack_helper_fini();
2513 	nf_conntrack_expect_fini();
2514 
2515 	kmem_cache_destroy(nf_conntrack_cachep);
2516 }
2517 
2518 /*
2519  * Mishearing the voices in his head, our hero wonders how he's
2520  * supposed to kill the mall.
2521  */
2522 void nf_conntrack_cleanup_net(struct net *net)
2523 {
2524 	LIST_HEAD(single);
2525 
2526 	list_add(&net->exit_list, &single);
2527 	nf_conntrack_cleanup_net_list(&single);
2528 }
2529 
2530 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2531 {
2532 	struct nf_ct_iter_data iter_data = {};
2533 	struct net *net;
2534 	int busy;
2535 
2536 	/*
2537 	 * This makes sure all current packets have passed through
2538 	 *  netfilter framework.  Roll on, two-stage module
2539 	 *  delete...
2540 	 */
2541 	synchronize_net();
2542 i_see_dead_people:
2543 	busy = 0;
2544 	list_for_each_entry(net, net_exit_list, exit_list) {
2545 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2546 
2547 		iter_data.net = net;
2548 		nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2549 		if (atomic_read(&cnet->count) != 0)
2550 			busy = 1;
2551 	}
2552 	if (busy) {
2553 		schedule();
2554 		goto i_see_dead_people;
2555 	}
2556 
2557 	list_for_each_entry(net, net_exit_list, exit_list) {
2558 		nf_conntrack_ecache_pernet_fini(net);
2559 		nf_conntrack_expect_pernet_fini(net);
2560 		free_percpu(net->ct.stat);
2561 	}
2562 }
2563 
2564 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2565 {
2566 	struct hlist_nulls_head *hash;
2567 	unsigned int nr_slots, i;
2568 
2569 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2570 		return NULL;
2571 
2572 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2573 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2574 
2575 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2576 
2577 	if (hash && nulls)
2578 		for (i = 0; i < nr_slots; i++)
2579 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2580 
2581 	return hash;
2582 }
2583 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2584 
2585 int nf_conntrack_hash_resize(unsigned int hashsize)
2586 {
2587 	int i, bucket;
2588 	unsigned int old_size;
2589 	struct hlist_nulls_head *hash, *old_hash;
2590 	struct nf_conntrack_tuple_hash *h;
2591 	struct nf_conn *ct;
2592 
2593 	if (!hashsize)
2594 		return -EINVAL;
2595 
2596 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2597 	if (!hash)
2598 		return -ENOMEM;
2599 
2600 	mutex_lock(&nf_conntrack_mutex);
2601 	old_size = nf_conntrack_htable_size;
2602 	if (old_size == hashsize) {
2603 		mutex_unlock(&nf_conntrack_mutex);
2604 		kvfree(hash);
2605 		return 0;
2606 	}
2607 
2608 	local_bh_disable();
2609 	nf_conntrack_all_lock();
2610 	write_seqcount_begin(&nf_conntrack_generation);
2611 
2612 	/* Lookups in the old hash might happen in parallel, which means we
2613 	 * might get false negatives during connection lookup. New connections
2614 	 * created because of a false negative won't make it into the hash
2615 	 * though since that required taking the locks.
2616 	 */
2617 
2618 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2619 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2620 			unsigned int zone_id;
2621 
2622 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2623 					      struct nf_conntrack_tuple_hash, hnnode);
2624 			ct = nf_ct_tuplehash_to_ctrack(h);
2625 			hlist_nulls_del_rcu(&h->hnnode);
2626 
2627 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2628 			bucket = __hash_conntrack(nf_ct_net(ct),
2629 						  &h->tuple, zone_id, hashsize);
2630 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2631 		}
2632 	}
2633 	old_hash = nf_conntrack_hash;
2634 
2635 	nf_conntrack_hash = hash;
2636 	nf_conntrack_htable_size = hashsize;
2637 
2638 	write_seqcount_end(&nf_conntrack_generation);
2639 	nf_conntrack_all_unlock();
2640 	local_bh_enable();
2641 
2642 	mutex_unlock(&nf_conntrack_mutex);
2643 
2644 	synchronize_net();
2645 	kvfree(old_hash);
2646 	return 0;
2647 }
2648 
2649 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2650 {
2651 	unsigned int hashsize;
2652 	int rc;
2653 
2654 	if (current->nsproxy->net_ns != &init_net)
2655 		return -EOPNOTSUPP;
2656 
2657 	/* On boot, we can set this without any fancy locking. */
2658 	if (!nf_conntrack_hash)
2659 		return param_set_uint(val, kp);
2660 
2661 	rc = kstrtouint(val, 0, &hashsize);
2662 	if (rc)
2663 		return rc;
2664 
2665 	return nf_conntrack_hash_resize(hashsize);
2666 }
2667 
2668 int nf_conntrack_init_start(void)
2669 {
2670 	unsigned long nr_pages = totalram_pages();
2671 	int max_factor = 8;
2672 	int ret = -ENOMEM;
2673 	int i;
2674 
2675 	seqcount_spinlock_init(&nf_conntrack_generation,
2676 			       &nf_conntrack_locks_all_lock);
2677 
2678 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2679 		spin_lock_init(&nf_conntrack_locks[i]);
2680 
2681 	if (!nf_conntrack_htable_size) {
2682 		nf_conntrack_htable_size
2683 			= (((nr_pages << PAGE_SHIFT) / 16384)
2684 			   / sizeof(struct hlist_head));
2685 		if (BITS_PER_LONG >= 64 &&
2686 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2687 			nf_conntrack_htable_size = 262144;
2688 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2689 			nf_conntrack_htable_size = 65536;
2690 
2691 		if (nf_conntrack_htable_size < 1024)
2692 			nf_conntrack_htable_size = 1024;
2693 		/* Use a max. factor of one by default to keep the average
2694 		 * hash chain length at 2 entries.  Each entry has to be added
2695 		 * twice (once for original direction, once for reply).
2696 		 * When a table size is given we use the old value of 8 to
2697 		 * avoid implicit reduction of the max entries setting.
2698 		 */
2699 		max_factor = 1;
2700 	}
2701 
2702 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2703 	if (!nf_conntrack_hash)
2704 		return -ENOMEM;
2705 
2706 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2707 
2708 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2709 						sizeof(struct nf_conn),
2710 						NFCT_INFOMASK + 1,
2711 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2712 	if (!nf_conntrack_cachep)
2713 		goto err_cachep;
2714 
2715 	ret = nf_conntrack_expect_init();
2716 	if (ret < 0)
2717 		goto err_expect;
2718 
2719 	ret = nf_conntrack_helper_init();
2720 	if (ret < 0)
2721 		goto err_helper;
2722 
2723 	ret = nf_conntrack_proto_init();
2724 	if (ret < 0)
2725 		goto err_proto;
2726 
2727 	conntrack_gc_work_init(&conntrack_gc_work);
2728 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2729 
2730 	ret = register_nf_conntrack_bpf();
2731 	if (ret < 0)
2732 		goto err_kfunc;
2733 
2734 	return 0;
2735 
2736 err_kfunc:
2737 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2738 	nf_conntrack_proto_fini();
2739 err_proto:
2740 	nf_conntrack_helper_fini();
2741 err_helper:
2742 	nf_conntrack_expect_fini();
2743 err_expect:
2744 	kmem_cache_destroy(nf_conntrack_cachep);
2745 err_cachep:
2746 	kvfree(nf_conntrack_hash);
2747 	return ret;
2748 }
2749 
2750 static const struct nf_ct_hook nf_conntrack_hook = {
2751 	.update		= nf_conntrack_update,
2752 	.destroy	= nf_ct_destroy,
2753 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2754 	.attach		= nf_conntrack_attach,
2755 };
2756 
2757 void nf_conntrack_init_end(void)
2758 {
2759 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2760 }
2761 
2762 /*
2763  * We need to use special "null" values, not used in hash table
2764  */
2765 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2766 
2767 int nf_conntrack_init_net(struct net *net)
2768 {
2769 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2770 	int ret = -ENOMEM;
2771 
2772 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2773 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2774 	atomic_set(&cnet->count, 0);
2775 
2776 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2777 	if (!net->ct.stat)
2778 		return ret;
2779 
2780 	ret = nf_conntrack_expect_pernet_init(net);
2781 	if (ret < 0)
2782 		goto err_expect;
2783 
2784 	nf_conntrack_acct_pernet_init(net);
2785 	nf_conntrack_tstamp_pernet_init(net);
2786 	nf_conntrack_ecache_pernet_init(net);
2787 	nf_conntrack_proto_pernet_init(net);
2788 
2789 	return 0;
2790 
2791 err_expect:
2792 	free_percpu(net->ct.stat);
2793 	return ret;
2794 }
2795 
2796 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2797 
2798 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2799 {
2800 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2801 		return -EPERM;
2802 
2803 	__nf_ct_set_timeout(ct, timeout);
2804 
2805 	if (test_bit(IPS_DYING_BIT, &ct->status))
2806 		return -ETIME;
2807 
2808 	return 0;
2809 }
2810 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2811 
2812 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2813 {
2814 	unsigned int bit;
2815 
2816 	/* Ignore these unchangable bits */
2817 	on &= ~IPS_UNCHANGEABLE_MASK;
2818 	off &= ~IPS_UNCHANGEABLE_MASK;
2819 
2820 	for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2821 		if (on & (1 << bit))
2822 			set_bit(bit, &ct->status);
2823 		else if (off & (1 << bit))
2824 			clear_bit(bit, &ct->status);
2825 	}
2826 }
2827 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2828 
2829 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2830 {
2831 	unsigned long d;
2832 
2833 	d = ct->status ^ status;
2834 
2835 	if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2836 		/* unchangeable */
2837 		return -EBUSY;
2838 
2839 	if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2840 		/* SEEN_REPLY bit can only be set */
2841 		return -EBUSY;
2842 
2843 	if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2844 		/* ASSURED bit can only be set */
2845 		return -EBUSY;
2846 
2847 	__nf_ct_change_status(ct, status, 0);
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2851