1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4 
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l3proto.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_nat.h>
48 #include <net/netfilter/nf_nat_core.h>
49 
50 #define NF_CONNTRACK_VERSION	"0.5.0"
51 
52 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
53 				      enum nf_nat_manip_type manip,
54 				      const struct nlattr *attr) __read_mostly;
55 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
56 
57 DEFINE_SPINLOCK(nf_conntrack_lock);
58 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
59 
60 unsigned int nf_conntrack_htable_size __read_mostly;
61 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
62 
63 unsigned int nf_conntrack_max __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_max);
65 
66 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
67 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
68 
69 unsigned int nf_conntrack_hash_rnd __read_mostly;
70 
71 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
72 {
73 	unsigned int n;
74 
75 	/* The direction must be ignored, so we hash everything up to the
76 	 * destination ports (which is a multiple of 4) and treat the last
77 	 * three bytes manually.
78 	 */
79 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
80 	return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
81 		      (((__force __u16)tuple->dst.u.all << 16) |
82 		      tuple->dst.protonum));
83 }
84 
85 static u32 __hash_bucket(u32 hash, unsigned int size)
86 {
87 	return ((u64)hash * size) >> 32;
88 }
89 
90 static u32 hash_bucket(u32 hash, const struct net *net)
91 {
92 	return __hash_bucket(hash, net->ct.htable_size);
93 }
94 
95 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
96 				  u16 zone, unsigned int size)
97 {
98 	return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
99 }
100 
101 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
102 				       const struct nf_conntrack_tuple *tuple)
103 {
104 	return __hash_conntrack(tuple, zone, net->ct.htable_size);
105 }
106 
107 bool
108 nf_ct_get_tuple(const struct sk_buff *skb,
109 		unsigned int nhoff,
110 		unsigned int dataoff,
111 		u_int16_t l3num,
112 		u_int8_t protonum,
113 		struct nf_conntrack_tuple *tuple,
114 		const struct nf_conntrack_l3proto *l3proto,
115 		const struct nf_conntrack_l4proto *l4proto)
116 {
117 	memset(tuple, 0, sizeof(*tuple));
118 
119 	tuple->src.l3num = l3num;
120 	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
121 		return false;
122 
123 	tuple->dst.protonum = protonum;
124 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
125 
126 	return l4proto->pkt_to_tuple(skb, dataoff, tuple);
127 }
128 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
129 
130 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
131 		       u_int16_t l3num, struct nf_conntrack_tuple *tuple)
132 {
133 	struct nf_conntrack_l3proto *l3proto;
134 	struct nf_conntrack_l4proto *l4proto;
135 	unsigned int protoff;
136 	u_int8_t protonum;
137 	int ret;
138 
139 	rcu_read_lock();
140 
141 	l3proto = __nf_ct_l3proto_find(l3num);
142 	ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
143 	if (ret != NF_ACCEPT) {
144 		rcu_read_unlock();
145 		return false;
146 	}
147 
148 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
149 
150 	ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
151 			      l3proto, l4proto);
152 
153 	rcu_read_unlock();
154 	return ret;
155 }
156 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
157 
158 bool
159 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
160 		   const struct nf_conntrack_tuple *orig,
161 		   const struct nf_conntrack_l3proto *l3proto,
162 		   const struct nf_conntrack_l4proto *l4proto)
163 {
164 	memset(inverse, 0, sizeof(*inverse));
165 
166 	inverse->src.l3num = orig->src.l3num;
167 	if (l3proto->invert_tuple(inverse, orig) == 0)
168 		return false;
169 
170 	inverse->dst.dir = !orig->dst.dir;
171 
172 	inverse->dst.protonum = orig->dst.protonum;
173 	return l4proto->invert_tuple(inverse, orig);
174 }
175 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
176 
177 static void
178 clean_from_lists(struct nf_conn *ct)
179 {
180 	pr_debug("clean_from_lists(%p)\n", ct);
181 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
182 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
183 
184 	/* Destroy all pending expectations */
185 	nf_ct_remove_expectations(ct);
186 }
187 
188 static void
189 destroy_conntrack(struct nf_conntrack *nfct)
190 {
191 	struct nf_conn *ct = (struct nf_conn *)nfct;
192 	struct net *net = nf_ct_net(ct);
193 	struct nf_conntrack_l4proto *l4proto;
194 
195 	pr_debug("destroy_conntrack(%p)\n", ct);
196 	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
197 	NF_CT_ASSERT(!timer_pending(&ct->timeout));
198 
199 	/* To make sure we don't get any weird locking issues here:
200 	 * destroy_conntrack() MUST NOT be called with a write lock
201 	 * to nf_conntrack_lock!!! -HW */
202 	rcu_read_lock();
203 	l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
204 	if (l4proto && l4proto->destroy)
205 		l4proto->destroy(ct);
206 
207 	rcu_read_unlock();
208 
209 	spin_lock_bh(&nf_conntrack_lock);
210 	/* Expectations will have been removed in clean_from_lists,
211 	 * except TFTP can create an expectation on the first packet,
212 	 * before connection is in the list, so we need to clean here,
213 	 * too. */
214 	nf_ct_remove_expectations(ct);
215 
216 	/* We overload first tuple to link into unconfirmed list. */
217 	if (!nf_ct_is_confirmed(ct)) {
218 		BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
219 		hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
220 	}
221 
222 	NF_CT_STAT_INC(net, delete);
223 	spin_unlock_bh(&nf_conntrack_lock);
224 
225 	if (ct->master)
226 		nf_ct_put(ct->master);
227 
228 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
229 	nf_conntrack_free(ct);
230 }
231 
232 void nf_ct_delete_from_lists(struct nf_conn *ct)
233 {
234 	struct net *net = nf_ct_net(ct);
235 
236 	nf_ct_helper_destroy(ct);
237 	spin_lock_bh(&nf_conntrack_lock);
238 	/* Inside lock so preempt is disabled on module removal path.
239 	 * Otherwise we can get spurious warnings. */
240 	NF_CT_STAT_INC(net, delete_list);
241 	clean_from_lists(ct);
242 	spin_unlock_bh(&nf_conntrack_lock);
243 }
244 EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
245 
246 static void death_by_event(unsigned long ul_conntrack)
247 {
248 	struct nf_conn *ct = (void *)ul_conntrack;
249 	struct net *net = nf_ct_net(ct);
250 
251 	if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
252 		/* bad luck, let's retry again */
253 		ct->timeout.expires = jiffies +
254 			(random32() % net->ct.sysctl_events_retry_timeout);
255 		add_timer(&ct->timeout);
256 		return;
257 	}
258 	/* we've got the event delivered, now it's dying */
259 	set_bit(IPS_DYING_BIT, &ct->status);
260 	spin_lock(&nf_conntrack_lock);
261 	hlist_nulls_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
262 	spin_unlock(&nf_conntrack_lock);
263 	nf_ct_put(ct);
264 }
265 
266 void nf_ct_insert_dying_list(struct nf_conn *ct)
267 {
268 	struct net *net = nf_ct_net(ct);
269 
270 	/* add this conntrack to the dying list */
271 	spin_lock_bh(&nf_conntrack_lock);
272 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
273 			     &net->ct.dying);
274 	spin_unlock_bh(&nf_conntrack_lock);
275 	/* set a new timer to retry event delivery */
276 	setup_timer(&ct->timeout, death_by_event, (unsigned long)ct);
277 	ct->timeout.expires = jiffies +
278 		(random32() % net->ct.sysctl_events_retry_timeout);
279 	add_timer(&ct->timeout);
280 }
281 EXPORT_SYMBOL_GPL(nf_ct_insert_dying_list);
282 
283 static void death_by_timeout(unsigned long ul_conntrack)
284 {
285 	struct nf_conn *ct = (void *)ul_conntrack;
286 	struct nf_conn_tstamp *tstamp;
287 
288 	tstamp = nf_conn_tstamp_find(ct);
289 	if (tstamp && tstamp->stop == 0)
290 		tstamp->stop = ktime_to_ns(ktime_get_real());
291 
292 	if (!test_bit(IPS_DYING_BIT, &ct->status) &&
293 	    unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
294 		/* destroy event was not delivered */
295 		nf_ct_delete_from_lists(ct);
296 		nf_ct_insert_dying_list(ct);
297 		return;
298 	}
299 	set_bit(IPS_DYING_BIT, &ct->status);
300 	nf_ct_delete_from_lists(ct);
301 	nf_ct_put(ct);
302 }
303 
304 /*
305  * Warning :
306  * - Caller must take a reference on returned object
307  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
308  * OR
309  * - Caller must lock nf_conntrack_lock before calling this function
310  */
311 static struct nf_conntrack_tuple_hash *
312 ____nf_conntrack_find(struct net *net, u16 zone,
313 		      const struct nf_conntrack_tuple *tuple, u32 hash)
314 {
315 	struct nf_conntrack_tuple_hash *h;
316 	struct hlist_nulls_node *n;
317 	unsigned int bucket = hash_bucket(hash, net);
318 
319 	/* Disable BHs the entire time since we normally need to disable them
320 	 * at least once for the stats anyway.
321 	 */
322 	local_bh_disable();
323 begin:
324 	hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
325 		if (nf_ct_tuple_equal(tuple, &h->tuple) &&
326 		    nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
327 			NF_CT_STAT_INC(net, found);
328 			local_bh_enable();
329 			return h;
330 		}
331 		NF_CT_STAT_INC(net, searched);
332 	}
333 	/*
334 	 * if the nulls value we got at the end of this lookup is
335 	 * not the expected one, we must restart lookup.
336 	 * We probably met an item that was moved to another chain.
337 	 */
338 	if (get_nulls_value(n) != bucket) {
339 		NF_CT_STAT_INC(net, search_restart);
340 		goto begin;
341 	}
342 	local_bh_enable();
343 
344 	return NULL;
345 }
346 
347 struct nf_conntrack_tuple_hash *
348 __nf_conntrack_find(struct net *net, u16 zone,
349 		    const struct nf_conntrack_tuple *tuple)
350 {
351 	return ____nf_conntrack_find(net, zone, tuple,
352 				     hash_conntrack_raw(tuple, zone));
353 }
354 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
355 
356 /* Find a connection corresponding to a tuple. */
357 static struct nf_conntrack_tuple_hash *
358 __nf_conntrack_find_get(struct net *net, u16 zone,
359 			const struct nf_conntrack_tuple *tuple, u32 hash)
360 {
361 	struct nf_conntrack_tuple_hash *h;
362 	struct nf_conn *ct;
363 
364 	rcu_read_lock();
365 begin:
366 	h = ____nf_conntrack_find(net, zone, tuple, hash);
367 	if (h) {
368 		ct = nf_ct_tuplehash_to_ctrack(h);
369 		if (unlikely(nf_ct_is_dying(ct) ||
370 			     !atomic_inc_not_zero(&ct->ct_general.use)))
371 			h = NULL;
372 		else {
373 			if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
374 				     nf_ct_zone(ct) != zone)) {
375 				nf_ct_put(ct);
376 				goto begin;
377 			}
378 		}
379 	}
380 	rcu_read_unlock();
381 
382 	return h;
383 }
384 
385 struct nf_conntrack_tuple_hash *
386 nf_conntrack_find_get(struct net *net, u16 zone,
387 		      const struct nf_conntrack_tuple *tuple)
388 {
389 	return __nf_conntrack_find_get(net, zone, tuple,
390 				       hash_conntrack_raw(tuple, zone));
391 }
392 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
393 
394 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
395 				       unsigned int hash,
396 				       unsigned int repl_hash)
397 {
398 	struct net *net = nf_ct_net(ct);
399 
400 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
401 			   &net->ct.hash[hash]);
402 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
403 			   &net->ct.hash[repl_hash]);
404 }
405 
406 void nf_conntrack_hash_insert(struct nf_conn *ct)
407 {
408 	struct net *net = nf_ct_net(ct);
409 	unsigned int hash, repl_hash;
410 	u16 zone;
411 
412 	zone = nf_ct_zone(ct);
413 	hash = hash_conntrack(net, zone, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
414 	repl_hash = hash_conntrack(net, zone, &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
415 
416 	__nf_conntrack_hash_insert(ct, hash, repl_hash);
417 }
418 EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
419 
420 /* Confirm a connection given skb; places it in hash table */
421 int
422 __nf_conntrack_confirm(struct sk_buff *skb)
423 {
424 	unsigned int hash, repl_hash;
425 	struct nf_conntrack_tuple_hash *h;
426 	struct nf_conn *ct;
427 	struct nf_conn_help *help;
428 	struct nf_conn_tstamp *tstamp;
429 	struct hlist_nulls_node *n;
430 	enum ip_conntrack_info ctinfo;
431 	struct net *net;
432 	u16 zone;
433 
434 	ct = nf_ct_get(skb, &ctinfo);
435 	net = nf_ct_net(ct);
436 
437 	/* ipt_REJECT uses nf_conntrack_attach to attach related
438 	   ICMP/TCP RST packets in other direction.  Actual packet
439 	   which created connection will be IP_CT_NEW or for an
440 	   expected connection, IP_CT_RELATED. */
441 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
442 		return NF_ACCEPT;
443 
444 	zone = nf_ct_zone(ct);
445 	/* reuse the hash saved before */
446 	hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
447 	hash = hash_bucket(hash, net);
448 	repl_hash = hash_conntrack(net, zone,
449 				   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
450 
451 	/* We're not in hash table, and we refuse to set up related
452 	   connections for unconfirmed conns.  But packet copies and
453 	   REJECT will give spurious warnings here. */
454 	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
455 
456 	/* No external references means no one else could have
457 	   confirmed us. */
458 	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
459 	pr_debug("Confirming conntrack %p\n", ct);
460 
461 	spin_lock_bh(&nf_conntrack_lock);
462 
463 	/* We have to check the DYING flag inside the lock to prevent
464 	   a race against nf_ct_get_next_corpse() possibly called from
465 	   user context, else we insert an already 'dead' hash, blocking
466 	   further use of that particular connection -JM */
467 
468 	if (unlikely(nf_ct_is_dying(ct))) {
469 		spin_unlock_bh(&nf_conntrack_lock);
470 		return NF_ACCEPT;
471 	}
472 
473 	/* See if there's one in the list already, including reverse:
474 	   NAT could have grabbed it without realizing, since we're
475 	   not in the hash.  If there is, we lost race. */
476 	hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
477 		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
478 				      &h->tuple) &&
479 		    zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
480 			goto out;
481 	hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
482 		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
483 				      &h->tuple) &&
484 		    zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
485 			goto out;
486 
487 	/* Remove from unconfirmed list */
488 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
489 
490 	/* Timer relative to confirmation time, not original
491 	   setting time, otherwise we'd get timer wrap in
492 	   weird delay cases. */
493 	ct->timeout.expires += jiffies;
494 	add_timer(&ct->timeout);
495 	atomic_inc(&ct->ct_general.use);
496 	ct->status |= IPS_CONFIRMED;
497 
498 	/* set conntrack timestamp, if enabled. */
499 	tstamp = nf_conn_tstamp_find(ct);
500 	if (tstamp) {
501 		if (skb->tstamp.tv64 == 0)
502 			__net_timestamp((struct sk_buff *)skb);
503 
504 		tstamp->start = ktime_to_ns(skb->tstamp);
505 	}
506 	/* Since the lookup is lockless, hash insertion must be done after
507 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
508 	 * guarantee that no other CPU can find the conntrack before the above
509 	 * stores are visible.
510 	 */
511 	__nf_conntrack_hash_insert(ct, hash, repl_hash);
512 	NF_CT_STAT_INC(net, insert);
513 	spin_unlock_bh(&nf_conntrack_lock);
514 
515 	help = nfct_help(ct);
516 	if (help && help->helper)
517 		nf_conntrack_event_cache(IPCT_HELPER, ct);
518 
519 	nf_conntrack_event_cache(master_ct(ct) ?
520 				 IPCT_RELATED : IPCT_NEW, ct);
521 	return NF_ACCEPT;
522 
523 out:
524 	NF_CT_STAT_INC(net, insert_failed);
525 	spin_unlock_bh(&nf_conntrack_lock);
526 	return NF_DROP;
527 }
528 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
529 
530 /* Returns true if a connection correspondings to the tuple (required
531    for NAT). */
532 int
533 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
534 			 const struct nf_conn *ignored_conntrack)
535 {
536 	struct net *net = nf_ct_net(ignored_conntrack);
537 	struct nf_conntrack_tuple_hash *h;
538 	struct hlist_nulls_node *n;
539 	struct nf_conn *ct;
540 	u16 zone = nf_ct_zone(ignored_conntrack);
541 	unsigned int hash = hash_conntrack(net, zone, tuple);
542 
543 	/* Disable BHs the entire time since we need to disable them at
544 	 * least once for the stats anyway.
545 	 */
546 	rcu_read_lock_bh();
547 	hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
548 		ct = nf_ct_tuplehash_to_ctrack(h);
549 		if (ct != ignored_conntrack &&
550 		    nf_ct_tuple_equal(tuple, &h->tuple) &&
551 		    nf_ct_zone(ct) == zone) {
552 			NF_CT_STAT_INC(net, found);
553 			rcu_read_unlock_bh();
554 			return 1;
555 		}
556 		NF_CT_STAT_INC(net, searched);
557 	}
558 	rcu_read_unlock_bh();
559 
560 	return 0;
561 }
562 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
563 
564 #define NF_CT_EVICTION_RANGE	8
565 
566 /* There's a small race here where we may free a just-assured
567    connection.  Too bad: we're in trouble anyway. */
568 static noinline int early_drop(struct net *net, unsigned int hash)
569 {
570 	/* Use oldest entry, which is roughly LRU */
571 	struct nf_conntrack_tuple_hash *h;
572 	struct nf_conn *ct = NULL, *tmp;
573 	struct hlist_nulls_node *n;
574 	unsigned int i, cnt = 0;
575 	int dropped = 0;
576 
577 	rcu_read_lock();
578 	for (i = 0; i < net->ct.htable_size; i++) {
579 		hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
580 					 hnnode) {
581 			tmp = nf_ct_tuplehash_to_ctrack(h);
582 			if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
583 				ct = tmp;
584 			cnt++;
585 		}
586 
587 		if (ct != NULL) {
588 			if (likely(!nf_ct_is_dying(ct) &&
589 				   atomic_inc_not_zero(&ct->ct_general.use)))
590 				break;
591 			else
592 				ct = NULL;
593 		}
594 
595 		if (cnt >= NF_CT_EVICTION_RANGE)
596 			break;
597 
598 		hash = (hash + 1) % net->ct.htable_size;
599 	}
600 	rcu_read_unlock();
601 
602 	if (!ct)
603 		return dropped;
604 
605 	if (del_timer(&ct->timeout)) {
606 		death_by_timeout((unsigned long)ct);
607 		dropped = 1;
608 		NF_CT_STAT_INC_ATOMIC(net, early_drop);
609 	}
610 	nf_ct_put(ct);
611 	return dropped;
612 }
613 
614 void init_nf_conntrack_hash_rnd(void)
615 {
616 	unsigned int rand;
617 
618 	/*
619 	 * Why not initialize nf_conntrack_rnd in a "init()" function ?
620 	 * Because there isn't enough entropy when system initializing,
621 	 * and we initialize it as late as possible.
622 	 */
623 	do {
624 		get_random_bytes(&rand, sizeof(rand));
625 	} while (!rand);
626 	cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
627 }
628 
629 static struct nf_conn *
630 __nf_conntrack_alloc(struct net *net, u16 zone,
631 		     const struct nf_conntrack_tuple *orig,
632 		     const struct nf_conntrack_tuple *repl,
633 		     gfp_t gfp, u32 hash)
634 {
635 	struct nf_conn *ct;
636 
637 	if (unlikely(!nf_conntrack_hash_rnd)) {
638 		init_nf_conntrack_hash_rnd();
639 		/* recompute the hash as nf_conntrack_hash_rnd is initialized */
640 		hash = hash_conntrack_raw(orig, zone);
641 	}
642 
643 	/* We don't want any race condition at early drop stage */
644 	atomic_inc(&net->ct.count);
645 
646 	if (nf_conntrack_max &&
647 	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
648 		if (!early_drop(net, hash_bucket(hash, net))) {
649 			atomic_dec(&net->ct.count);
650 			if (net_ratelimit())
651 				printk(KERN_WARNING
652 				       "nf_conntrack: table full, dropping"
653 				       " packet.\n");
654 			return ERR_PTR(-ENOMEM);
655 		}
656 	}
657 
658 	/*
659 	 * Do not use kmem_cache_zalloc(), as this cache uses
660 	 * SLAB_DESTROY_BY_RCU.
661 	 */
662 	ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
663 	if (ct == NULL) {
664 		pr_debug("nf_conntrack_alloc: Can't alloc conntrack.\n");
665 		atomic_dec(&net->ct.count);
666 		return ERR_PTR(-ENOMEM);
667 	}
668 	/*
669 	 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
670 	 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
671 	 */
672 	memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
673 	       offsetof(struct nf_conn, proto) -
674 	       offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
675 	spin_lock_init(&ct->lock);
676 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
677 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
678 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
679 	/* save hash for reusing when confirming */
680 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
681 	/* Don't set timer yet: wait for confirmation */
682 	setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
683 	write_pnet(&ct->ct_net, net);
684 #ifdef CONFIG_NF_CONNTRACK_ZONES
685 	if (zone) {
686 		struct nf_conntrack_zone *nf_ct_zone;
687 
688 		nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
689 		if (!nf_ct_zone)
690 			goto out_free;
691 		nf_ct_zone->id = zone;
692 	}
693 #endif
694 	/*
695 	 * changes to lookup keys must be done before setting refcnt to 1
696 	 */
697 	smp_wmb();
698 	atomic_set(&ct->ct_general.use, 1);
699 	return ct;
700 
701 #ifdef CONFIG_NF_CONNTRACK_ZONES
702 out_free:
703 	kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
704 	return ERR_PTR(-ENOMEM);
705 #endif
706 }
707 
708 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
709 				   const struct nf_conntrack_tuple *orig,
710 				   const struct nf_conntrack_tuple *repl,
711 				   gfp_t gfp)
712 {
713 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
714 }
715 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
716 
717 void nf_conntrack_free(struct nf_conn *ct)
718 {
719 	struct net *net = nf_ct_net(ct);
720 
721 	nf_ct_ext_destroy(ct);
722 	atomic_dec(&net->ct.count);
723 	nf_ct_ext_free(ct);
724 	kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
725 }
726 EXPORT_SYMBOL_GPL(nf_conntrack_free);
727 
728 /* Allocate a new conntrack: we return -ENOMEM if classification
729    failed due to stress.  Otherwise it really is unclassifiable. */
730 static struct nf_conntrack_tuple_hash *
731 init_conntrack(struct net *net, struct nf_conn *tmpl,
732 	       const struct nf_conntrack_tuple *tuple,
733 	       struct nf_conntrack_l3proto *l3proto,
734 	       struct nf_conntrack_l4proto *l4proto,
735 	       struct sk_buff *skb,
736 	       unsigned int dataoff, u32 hash)
737 {
738 	struct nf_conn *ct;
739 	struct nf_conn_help *help;
740 	struct nf_conntrack_tuple repl_tuple;
741 	struct nf_conntrack_ecache *ecache;
742 	struct nf_conntrack_expect *exp;
743 	u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
744 
745 	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
746 		pr_debug("Can't invert tuple.\n");
747 		return NULL;
748 	}
749 
750 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
751 				  hash);
752 	if (IS_ERR(ct)) {
753 		pr_debug("Can't allocate conntrack.\n");
754 		return (struct nf_conntrack_tuple_hash *)ct;
755 	}
756 
757 	if (!l4proto->new(ct, skb, dataoff)) {
758 		nf_conntrack_free(ct);
759 		pr_debug("init conntrack: can't track with proto module\n");
760 		return NULL;
761 	}
762 
763 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
764 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
765 
766 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
767 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
768 				 ecache ? ecache->expmask : 0,
769 			     GFP_ATOMIC);
770 
771 	spin_lock_bh(&nf_conntrack_lock);
772 	exp = nf_ct_find_expectation(net, zone, tuple);
773 	if (exp) {
774 		pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
775 			 ct, exp);
776 		/* Welcome, Mr. Bond.  We've been expecting you... */
777 		__set_bit(IPS_EXPECTED_BIT, &ct->status);
778 		ct->master = exp->master;
779 		if (exp->helper) {
780 			help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
781 			if (help)
782 				rcu_assign_pointer(help->helper, exp->helper);
783 		}
784 
785 #ifdef CONFIG_NF_CONNTRACK_MARK
786 		ct->mark = exp->master->mark;
787 #endif
788 #ifdef CONFIG_NF_CONNTRACK_SECMARK
789 		ct->secmark = exp->master->secmark;
790 #endif
791 		nf_conntrack_get(&ct->master->ct_general);
792 		NF_CT_STAT_INC(net, expect_new);
793 	} else {
794 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
795 		NF_CT_STAT_INC(net, new);
796 	}
797 
798 	/* Overload tuple linked list to put us in unconfirmed list. */
799 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
800 		       &net->ct.unconfirmed);
801 
802 	spin_unlock_bh(&nf_conntrack_lock);
803 
804 	if (exp) {
805 		if (exp->expectfn)
806 			exp->expectfn(ct, exp);
807 		nf_ct_expect_put(exp);
808 	}
809 
810 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
811 }
812 
813 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
814 static inline struct nf_conn *
815 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
816 		  struct sk_buff *skb,
817 		  unsigned int dataoff,
818 		  u_int16_t l3num,
819 		  u_int8_t protonum,
820 		  struct nf_conntrack_l3proto *l3proto,
821 		  struct nf_conntrack_l4proto *l4proto,
822 		  int *set_reply,
823 		  enum ip_conntrack_info *ctinfo)
824 {
825 	struct nf_conntrack_tuple tuple;
826 	struct nf_conntrack_tuple_hash *h;
827 	struct nf_conn *ct;
828 	u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
829 	u32 hash;
830 
831 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
832 			     dataoff, l3num, protonum, &tuple, l3proto,
833 			     l4proto)) {
834 		pr_debug("resolve_normal_ct: Can't get tuple\n");
835 		return NULL;
836 	}
837 
838 	/* look for tuple match */
839 	hash = hash_conntrack_raw(&tuple, zone);
840 	h = __nf_conntrack_find_get(net, zone, &tuple, hash);
841 	if (!h) {
842 		h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
843 				   skb, dataoff, hash);
844 		if (!h)
845 			return NULL;
846 		if (IS_ERR(h))
847 			return (void *)h;
848 	}
849 	ct = nf_ct_tuplehash_to_ctrack(h);
850 
851 	/* It exists; we have (non-exclusive) reference. */
852 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
853 		*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
854 		/* Please set reply bit if this packet OK */
855 		*set_reply = 1;
856 	} else {
857 		/* Once we've had two way comms, always ESTABLISHED. */
858 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
859 			pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
860 			*ctinfo = IP_CT_ESTABLISHED;
861 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
862 			pr_debug("nf_conntrack_in: related packet for %p\n",
863 				 ct);
864 			*ctinfo = IP_CT_RELATED;
865 		} else {
866 			pr_debug("nf_conntrack_in: new packet for %p\n", ct);
867 			*ctinfo = IP_CT_NEW;
868 		}
869 		*set_reply = 0;
870 	}
871 	skb->nfct = &ct->ct_general;
872 	skb->nfctinfo = *ctinfo;
873 	return ct;
874 }
875 
876 unsigned int
877 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
878 		struct sk_buff *skb)
879 {
880 	struct nf_conn *ct, *tmpl = NULL;
881 	enum ip_conntrack_info ctinfo;
882 	struct nf_conntrack_l3proto *l3proto;
883 	struct nf_conntrack_l4proto *l4proto;
884 	unsigned int dataoff;
885 	u_int8_t protonum;
886 	int set_reply = 0;
887 	int ret;
888 
889 	if (skb->nfct) {
890 		/* Previously seen (loopback or untracked)?  Ignore. */
891 		tmpl = (struct nf_conn *)skb->nfct;
892 		if (!nf_ct_is_template(tmpl)) {
893 			NF_CT_STAT_INC_ATOMIC(net, ignore);
894 			return NF_ACCEPT;
895 		}
896 		skb->nfct = NULL;
897 	}
898 
899 	/* rcu_read_lock()ed by nf_hook_slow */
900 	l3proto = __nf_ct_l3proto_find(pf);
901 	ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
902 				   &dataoff, &protonum);
903 	if (ret <= 0) {
904 		pr_debug("not prepared to track yet or error occurred\n");
905 		NF_CT_STAT_INC_ATOMIC(net, error);
906 		NF_CT_STAT_INC_ATOMIC(net, invalid);
907 		ret = -ret;
908 		goto out;
909 	}
910 
911 	l4proto = __nf_ct_l4proto_find(pf, protonum);
912 
913 	/* It may be an special packet, error, unclean...
914 	 * inverse of the return code tells to the netfilter
915 	 * core what to do with the packet. */
916 	if (l4proto->error != NULL) {
917 		ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
918 				     pf, hooknum);
919 		if (ret <= 0) {
920 			NF_CT_STAT_INC_ATOMIC(net, error);
921 			NF_CT_STAT_INC_ATOMIC(net, invalid);
922 			ret = -ret;
923 			goto out;
924 		}
925 	}
926 
927 	ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
928 			       l3proto, l4proto, &set_reply, &ctinfo);
929 	if (!ct) {
930 		/* Not valid part of a connection */
931 		NF_CT_STAT_INC_ATOMIC(net, invalid);
932 		ret = NF_ACCEPT;
933 		goto out;
934 	}
935 
936 	if (IS_ERR(ct)) {
937 		/* Too stressed to deal. */
938 		NF_CT_STAT_INC_ATOMIC(net, drop);
939 		ret = NF_DROP;
940 		goto out;
941 	}
942 
943 	NF_CT_ASSERT(skb->nfct);
944 
945 	ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum);
946 	if (ret <= 0) {
947 		/* Invalid: inverse of the return code tells
948 		 * the netfilter core what to do */
949 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
950 		nf_conntrack_put(skb->nfct);
951 		skb->nfct = NULL;
952 		NF_CT_STAT_INC_ATOMIC(net, invalid);
953 		if (ret == -NF_DROP)
954 			NF_CT_STAT_INC_ATOMIC(net, drop);
955 		ret = -ret;
956 		goto out;
957 	}
958 
959 	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
960 		nf_conntrack_event_cache(IPCT_REPLY, ct);
961 out:
962 	if (tmpl) {
963 		/* Special case: we have to repeat this hook, assign the
964 		 * template again to this packet. We assume that this packet
965 		 * has no conntrack assigned. This is used by nf_ct_tcp. */
966 		if (ret == NF_REPEAT)
967 			skb->nfct = (struct nf_conntrack *)tmpl;
968 		else
969 			nf_ct_put(tmpl);
970 	}
971 
972 	return ret;
973 }
974 EXPORT_SYMBOL_GPL(nf_conntrack_in);
975 
976 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
977 			  const struct nf_conntrack_tuple *orig)
978 {
979 	bool ret;
980 
981 	rcu_read_lock();
982 	ret = nf_ct_invert_tuple(inverse, orig,
983 				 __nf_ct_l3proto_find(orig->src.l3num),
984 				 __nf_ct_l4proto_find(orig->src.l3num,
985 						      orig->dst.protonum));
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
990 
991 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
992    implicitly racy: see __nf_conntrack_confirm */
993 void nf_conntrack_alter_reply(struct nf_conn *ct,
994 			      const struct nf_conntrack_tuple *newreply)
995 {
996 	struct nf_conn_help *help = nfct_help(ct);
997 
998 	/* Should be unconfirmed, so not in hash table yet */
999 	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1000 
1001 	pr_debug("Altering reply tuple of %p to ", ct);
1002 	nf_ct_dump_tuple(newreply);
1003 
1004 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1005 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1006 		return;
1007 
1008 	rcu_read_lock();
1009 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1010 	rcu_read_unlock();
1011 }
1012 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1013 
1014 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1015 void __nf_ct_refresh_acct(struct nf_conn *ct,
1016 			  enum ip_conntrack_info ctinfo,
1017 			  const struct sk_buff *skb,
1018 			  unsigned long extra_jiffies,
1019 			  int do_acct)
1020 {
1021 	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1022 	NF_CT_ASSERT(skb);
1023 
1024 	/* Only update if this is not a fixed timeout */
1025 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1026 		goto acct;
1027 
1028 	/* If not in hash table, timer will not be active yet */
1029 	if (!nf_ct_is_confirmed(ct)) {
1030 		ct->timeout.expires = extra_jiffies;
1031 	} else {
1032 		unsigned long newtime = jiffies + extra_jiffies;
1033 
1034 		/* Only update the timeout if the new timeout is at least
1035 		   HZ jiffies from the old timeout. Need del_timer for race
1036 		   avoidance (may already be dying). */
1037 		if (newtime - ct->timeout.expires >= HZ)
1038 			mod_timer_pending(&ct->timeout, newtime);
1039 	}
1040 
1041 acct:
1042 	if (do_acct) {
1043 		struct nf_conn_counter *acct;
1044 
1045 		acct = nf_conn_acct_find(ct);
1046 		if (acct) {
1047 			spin_lock_bh(&ct->lock);
1048 			acct[CTINFO2DIR(ctinfo)].packets++;
1049 			acct[CTINFO2DIR(ctinfo)].bytes += skb->len;
1050 			spin_unlock_bh(&ct->lock);
1051 		}
1052 	}
1053 }
1054 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1055 
1056 bool __nf_ct_kill_acct(struct nf_conn *ct,
1057 		       enum ip_conntrack_info ctinfo,
1058 		       const struct sk_buff *skb,
1059 		       int do_acct)
1060 {
1061 	if (do_acct) {
1062 		struct nf_conn_counter *acct;
1063 
1064 		acct = nf_conn_acct_find(ct);
1065 		if (acct) {
1066 			spin_lock_bh(&ct->lock);
1067 			acct[CTINFO2DIR(ctinfo)].packets++;
1068 			acct[CTINFO2DIR(ctinfo)].bytes +=
1069 				skb->len - skb_network_offset(skb);
1070 			spin_unlock_bh(&ct->lock);
1071 		}
1072 	}
1073 
1074 	if (del_timer(&ct->timeout)) {
1075 		ct->timeout.function((unsigned long)ct);
1076 		return true;
1077 	}
1078 	return false;
1079 }
1080 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1081 
1082 #ifdef CONFIG_NF_CONNTRACK_ZONES
1083 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1084 	.len	= sizeof(struct nf_conntrack_zone),
1085 	.align	= __alignof__(struct nf_conntrack_zone),
1086 	.id	= NF_CT_EXT_ZONE,
1087 };
1088 #endif
1089 
1090 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
1091 
1092 #include <linux/netfilter/nfnetlink.h>
1093 #include <linux/netfilter/nfnetlink_conntrack.h>
1094 #include <linux/mutex.h>
1095 
1096 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1097  * in ip_conntrack_core, since we don't want the protocols to autoload
1098  * or depend on ctnetlink */
1099 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1100 			       const struct nf_conntrack_tuple *tuple)
1101 {
1102 	NLA_PUT_BE16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port);
1103 	NLA_PUT_BE16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port);
1104 	return 0;
1105 
1106 nla_put_failure:
1107 	return -1;
1108 }
1109 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1110 
1111 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1112 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1113 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1114 };
1115 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1116 
1117 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1118 			       struct nf_conntrack_tuple *t)
1119 {
1120 	if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1121 		return -EINVAL;
1122 
1123 	t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1124 	t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1125 
1126 	return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1129 
1130 int nf_ct_port_nlattr_tuple_size(void)
1131 {
1132 	return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1133 }
1134 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1135 #endif
1136 
1137 /* Used by ipt_REJECT and ip6t_REJECT. */
1138 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1139 {
1140 	struct nf_conn *ct;
1141 	enum ip_conntrack_info ctinfo;
1142 
1143 	/* This ICMP is in reverse direction to the packet which caused it */
1144 	ct = nf_ct_get(skb, &ctinfo);
1145 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1146 		ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
1147 	else
1148 		ctinfo = IP_CT_RELATED;
1149 
1150 	/* Attach to new skbuff, and increment count */
1151 	nskb->nfct = &ct->ct_general;
1152 	nskb->nfctinfo = ctinfo;
1153 	nf_conntrack_get(nskb->nfct);
1154 }
1155 
1156 /* Bring out ya dead! */
1157 static struct nf_conn *
1158 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1159 		void *data, unsigned int *bucket)
1160 {
1161 	struct nf_conntrack_tuple_hash *h;
1162 	struct nf_conn *ct;
1163 	struct hlist_nulls_node *n;
1164 
1165 	spin_lock_bh(&nf_conntrack_lock);
1166 	for (; *bucket < net->ct.htable_size; (*bucket)++) {
1167 		hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1168 			ct = nf_ct_tuplehash_to_ctrack(h);
1169 			if (iter(ct, data))
1170 				goto found;
1171 		}
1172 	}
1173 	hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1174 		ct = nf_ct_tuplehash_to_ctrack(h);
1175 		if (iter(ct, data))
1176 			set_bit(IPS_DYING_BIT, &ct->status);
1177 	}
1178 	spin_unlock_bh(&nf_conntrack_lock);
1179 	return NULL;
1180 found:
1181 	atomic_inc(&ct->ct_general.use);
1182 	spin_unlock_bh(&nf_conntrack_lock);
1183 	return ct;
1184 }
1185 
1186 void nf_ct_iterate_cleanup(struct net *net,
1187 			   int (*iter)(struct nf_conn *i, void *data),
1188 			   void *data)
1189 {
1190 	struct nf_conn *ct;
1191 	unsigned int bucket = 0;
1192 
1193 	while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1194 		/* Time to push up daises... */
1195 		if (del_timer(&ct->timeout))
1196 			death_by_timeout((unsigned long)ct);
1197 		/* ... else the timer will get him soon. */
1198 
1199 		nf_ct_put(ct);
1200 	}
1201 }
1202 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1203 
1204 struct __nf_ct_flush_report {
1205 	u32 pid;
1206 	int report;
1207 };
1208 
1209 static int kill_report(struct nf_conn *i, void *data)
1210 {
1211 	struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1212 	struct nf_conn_tstamp *tstamp;
1213 
1214 	tstamp = nf_conn_tstamp_find(i);
1215 	if (tstamp && tstamp->stop == 0)
1216 		tstamp->stop = ktime_to_ns(ktime_get_real());
1217 
1218 	/* If we fail to deliver the event, death_by_timeout() will retry */
1219 	if (nf_conntrack_event_report(IPCT_DESTROY, i,
1220 				      fr->pid, fr->report) < 0)
1221 		return 1;
1222 
1223 	/* Avoid the delivery of the destroy event in death_by_timeout(). */
1224 	set_bit(IPS_DYING_BIT, &i->status);
1225 	return 1;
1226 }
1227 
1228 static int kill_all(struct nf_conn *i, void *data)
1229 {
1230 	return 1;
1231 }
1232 
1233 void nf_ct_free_hashtable(void *hash, unsigned int size)
1234 {
1235 	if (is_vmalloc_addr(hash))
1236 		vfree(hash);
1237 	else
1238 		free_pages((unsigned long)hash,
1239 			   get_order(sizeof(struct hlist_head) * size));
1240 }
1241 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1242 
1243 void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1244 {
1245 	struct __nf_ct_flush_report fr = {
1246 		.pid 	= pid,
1247 		.report = report,
1248 	};
1249 	nf_ct_iterate_cleanup(net, kill_report, &fr);
1250 }
1251 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1252 
1253 static void nf_ct_release_dying_list(struct net *net)
1254 {
1255 	struct nf_conntrack_tuple_hash *h;
1256 	struct nf_conn *ct;
1257 	struct hlist_nulls_node *n;
1258 
1259 	spin_lock_bh(&nf_conntrack_lock);
1260 	hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1261 		ct = nf_ct_tuplehash_to_ctrack(h);
1262 		/* never fails to remove them, no listeners at this point */
1263 		nf_ct_kill(ct);
1264 	}
1265 	spin_unlock_bh(&nf_conntrack_lock);
1266 }
1267 
1268 static int untrack_refs(void)
1269 {
1270 	int cnt = 0, cpu;
1271 
1272 	for_each_possible_cpu(cpu) {
1273 		struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1274 
1275 		cnt += atomic_read(&ct->ct_general.use) - 1;
1276 	}
1277 	return cnt;
1278 }
1279 
1280 static void nf_conntrack_cleanup_init_net(void)
1281 {
1282 	while (untrack_refs() > 0)
1283 		schedule();
1284 
1285 	nf_conntrack_helper_fini();
1286 	nf_conntrack_proto_fini();
1287 #ifdef CONFIG_NF_CONNTRACK_ZONES
1288 	nf_ct_extend_unregister(&nf_ct_zone_extend);
1289 #endif
1290 }
1291 
1292 static void nf_conntrack_cleanup_net(struct net *net)
1293 {
1294  i_see_dead_people:
1295 	nf_ct_iterate_cleanup(net, kill_all, NULL);
1296 	nf_ct_release_dying_list(net);
1297 	if (atomic_read(&net->ct.count) != 0) {
1298 		schedule();
1299 		goto i_see_dead_people;
1300 	}
1301 
1302 	nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1303 	nf_conntrack_ecache_fini(net);
1304 	nf_conntrack_tstamp_fini(net);
1305 	nf_conntrack_acct_fini(net);
1306 	nf_conntrack_expect_fini(net);
1307 	kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1308 	kfree(net->ct.slabname);
1309 	free_percpu(net->ct.stat);
1310 }
1311 
1312 /* Mishearing the voices in his head, our hero wonders how he's
1313    supposed to kill the mall. */
1314 void nf_conntrack_cleanup(struct net *net)
1315 {
1316 	if (net_eq(net, &init_net))
1317 		rcu_assign_pointer(ip_ct_attach, NULL);
1318 
1319 	/* This makes sure all current packets have passed through
1320 	   netfilter framework.  Roll on, two-stage module
1321 	   delete... */
1322 	synchronize_net();
1323 
1324 	nf_conntrack_cleanup_net(net);
1325 
1326 	if (net_eq(net, &init_net)) {
1327 		rcu_assign_pointer(nf_ct_destroy, NULL);
1328 		nf_conntrack_cleanup_init_net();
1329 	}
1330 }
1331 
1332 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1333 {
1334 	struct hlist_nulls_head *hash;
1335 	unsigned int nr_slots, i;
1336 	size_t sz;
1337 
1338 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1339 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1340 	sz = nr_slots * sizeof(struct hlist_nulls_head);
1341 	hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1342 					get_order(sz));
1343 	if (!hash) {
1344 		printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1345 		hash = __vmalloc(sz, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1346 				 PAGE_KERNEL);
1347 	}
1348 
1349 	if (hash && nulls)
1350 		for (i = 0; i < nr_slots; i++)
1351 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
1352 
1353 	return hash;
1354 }
1355 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1356 
1357 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1358 {
1359 	int i, bucket;
1360 	unsigned int hashsize, old_size;
1361 	struct hlist_nulls_head *hash, *old_hash;
1362 	struct nf_conntrack_tuple_hash *h;
1363 	struct nf_conn *ct;
1364 
1365 	if (current->nsproxy->net_ns != &init_net)
1366 		return -EOPNOTSUPP;
1367 
1368 	/* On boot, we can set this without any fancy locking. */
1369 	if (!nf_conntrack_htable_size)
1370 		return param_set_uint(val, kp);
1371 
1372 	hashsize = simple_strtoul(val, NULL, 0);
1373 	if (!hashsize)
1374 		return -EINVAL;
1375 
1376 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
1377 	if (!hash)
1378 		return -ENOMEM;
1379 
1380 	/* Lookups in the old hash might happen in parallel, which means we
1381 	 * might get false negatives during connection lookup. New connections
1382 	 * created because of a false negative won't make it into the hash
1383 	 * though since that required taking the lock.
1384 	 */
1385 	spin_lock_bh(&nf_conntrack_lock);
1386 	for (i = 0; i < init_net.ct.htable_size; i++) {
1387 		while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1388 			h = hlist_nulls_entry(init_net.ct.hash[i].first,
1389 					struct nf_conntrack_tuple_hash, hnnode);
1390 			ct = nf_ct_tuplehash_to_ctrack(h);
1391 			hlist_nulls_del_rcu(&h->hnnode);
1392 			bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1393 						  hashsize);
1394 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1395 		}
1396 	}
1397 	old_size = init_net.ct.htable_size;
1398 	old_hash = init_net.ct.hash;
1399 
1400 	init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1401 	init_net.ct.hash = hash;
1402 	spin_unlock_bh(&nf_conntrack_lock);
1403 
1404 	nf_ct_free_hashtable(old_hash, old_size);
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1408 
1409 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1410 		  &nf_conntrack_htable_size, 0600);
1411 
1412 void nf_ct_untracked_status_or(unsigned long bits)
1413 {
1414 	int cpu;
1415 
1416 	for_each_possible_cpu(cpu)
1417 		per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1418 }
1419 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1420 
1421 static int nf_conntrack_init_init_net(void)
1422 {
1423 	int max_factor = 8;
1424 	int ret, cpu;
1425 
1426 	/* Idea from tcp.c: use 1/16384 of memory.  On i386: 32MB
1427 	 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1428 	if (!nf_conntrack_htable_size) {
1429 		nf_conntrack_htable_size
1430 			= (((totalram_pages << PAGE_SHIFT) / 16384)
1431 			   / sizeof(struct hlist_head));
1432 		if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1433 			nf_conntrack_htable_size = 16384;
1434 		if (nf_conntrack_htable_size < 32)
1435 			nf_conntrack_htable_size = 32;
1436 
1437 		/* Use a max. factor of four by default to get the same max as
1438 		 * with the old struct list_heads. When a table size is given
1439 		 * we use the old value of 8 to avoid reducing the max.
1440 		 * entries. */
1441 		max_factor = 4;
1442 	}
1443 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1444 
1445 	printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1446 	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1447 	       nf_conntrack_max);
1448 
1449 	ret = nf_conntrack_proto_init();
1450 	if (ret < 0)
1451 		goto err_proto;
1452 
1453 	ret = nf_conntrack_helper_init();
1454 	if (ret < 0)
1455 		goto err_helper;
1456 
1457 #ifdef CONFIG_NF_CONNTRACK_ZONES
1458 	ret = nf_ct_extend_register(&nf_ct_zone_extend);
1459 	if (ret < 0)
1460 		goto err_extend;
1461 #endif
1462 	/* Set up fake conntrack: to never be deleted, not in any hashes */
1463 	for_each_possible_cpu(cpu) {
1464 		struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1465 		write_pnet(&ct->ct_net, &init_net);
1466 		atomic_set(&ct->ct_general.use, 1);
1467 	}
1468 	/*  - and look it like as a confirmed connection */
1469 	nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1470 	return 0;
1471 
1472 #ifdef CONFIG_NF_CONNTRACK_ZONES
1473 err_extend:
1474 	nf_conntrack_helper_fini();
1475 #endif
1476 err_helper:
1477 	nf_conntrack_proto_fini();
1478 err_proto:
1479 	return ret;
1480 }
1481 
1482 /*
1483  * We need to use special "null" values, not used in hash table
1484  */
1485 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
1486 #define DYING_NULLS_VAL		((1<<30)+1)
1487 
1488 static int nf_conntrack_init_net(struct net *net)
1489 {
1490 	int ret;
1491 
1492 	atomic_set(&net->ct.count, 0);
1493 	INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1494 	INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1495 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1496 	if (!net->ct.stat) {
1497 		ret = -ENOMEM;
1498 		goto err_stat;
1499 	}
1500 
1501 	net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1502 	if (!net->ct.slabname) {
1503 		ret = -ENOMEM;
1504 		goto err_slabname;
1505 	}
1506 
1507 	net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1508 							sizeof(struct nf_conn), 0,
1509 							SLAB_DESTROY_BY_RCU, NULL);
1510 	if (!net->ct.nf_conntrack_cachep) {
1511 		printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1512 		ret = -ENOMEM;
1513 		goto err_cache;
1514 	}
1515 
1516 	net->ct.htable_size = nf_conntrack_htable_size;
1517 	net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1518 	if (!net->ct.hash) {
1519 		ret = -ENOMEM;
1520 		printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1521 		goto err_hash;
1522 	}
1523 	ret = nf_conntrack_expect_init(net);
1524 	if (ret < 0)
1525 		goto err_expect;
1526 	ret = nf_conntrack_acct_init(net);
1527 	if (ret < 0)
1528 		goto err_acct;
1529 	ret = nf_conntrack_tstamp_init(net);
1530 	if (ret < 0)
1531 		goto err_tstamp;
1532 	ret = nf_conntrack_ecache_init(net);
1533 	if (ret < 0)
1534 		goto err_ecache;
1535 
1536 	return 0;
1537 
1538 err_ecache:
1539 	nf_conntrack_tstamp_fini(net);
1540 err_tstamp:
1541 	nf_conntrack_acct_fini(net);
1542 err_acct:
1543 	nf_conntrack_expect_fini(net);
1544 err_expect:
1545 	nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1546 err_hash:
1547 	kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1548 err_cache:
1549 	kfree(net->ct.slabname);
1550 err_slabname:
1551 	free_percpu(net->ct.stat);
1552 err_stat:
1553 	return ret;
1554 }
1555 
1556 s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1557 			enum ip_conntrack_dir dir,
1558 			u32 seq);
1559 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
1560 
1561 int nf_conntrack_init(struct net *net)
1562 {
1563 	int ret;
1564 
1565 	if (net_eq(net, &init_net)) {
1566 		ret = nf_conntrack_init_init_net();
1567 		if (ret < 0)
1568 			goto out_init_net;
1569 	}
1570 	ret = nf_conntrack_init_net(net);
1571 	if (ret < 0)
1572 		goto out_net;
1573 
1574 	if (net_eq(net, &init_net)) {
1575 		/* For use by REJECT target */
1576 		rcu_assign_pointer(ip_ct_attach, nf_conntrack_attach);
1577 		rcu_assign_pointer(nf_ct_destroy, destroy_conntrack);
1578 
1579 		/* Howto get NAT offsets */
1580 		rcu_assign_pointer(nf_ct_nat_offset, NULL);
1581 	}
1582 	return 0;
1583 
1584 out_net:
1585 	if (net_eq(net, &init_net))
1586 		nf_conntrack_cleanup_init_net();
1587 out_init_net:
1588 	return ret;
1589 }
1590