1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4 
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38 
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58 
59 #define NF_CONNTRACK_VERSION	"0.5.0"
60 
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 				      enum nf_nat_manip_type manip,
63 				      const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65 
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68 
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71 
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74 
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
77 static __read_mostly seqcount_t nf_conntrack_generation;
78 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
79 static __read_mostly bool nf_conntrack_locks_all;
80 
81 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
82 {
83 	spin_lock(lock);
84 	while (unlikely(nf_conntrack_locks_all)) {
85 		spin_unlock(lock);
86 		spin_unlock_wait(&nf_conntrack_locks_all_lock);
87 		spin_lock(lock);
88 	}
89 }
90 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
91 
92 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
93 {
94 	h1 %= CONNTRACK_LOCKS;
95 	h2 %= CONNTRACK_LOCKS;
96 	spin_unlock(&nf_conntrack_locks[h1]);
97 	if (h1 != h2)
98 		spin_unlock(&nf_conntrack_locks[h2]);
99 }
100 
101 /* return true if we need to recompute hashes (in case hash table was resized) */
102 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
103 				     unsigned int h2, unsigned int sequence)
104 {
105 	h1 %= CONNTRACK_LOCKS;
106 	h2 %= CONNTRACK_LOCKS;
107 	if (h1 <= h2) {
108 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
109 		if (h1 != h2)
110 			spin_lock_nested(&nf_conntrack_locks[h2],
111 					 SINGLE_DEPTH_NESTING);
112 	} else {
113 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
114 		spin_lock_nested(&nf_conntrack_locks[h1],
115 				 SINGLE_DEPTH_NESTING);
116 	}
117 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
118 		nf_conntrack_double_unlock(h1, h2);
119 		return true;
120 	}
121 	return false;
122 }
123 
124 static void nf_conntrack_all_lock(void)
125 {
126 	int i;
127 
128 	spin_lock(&nf_conntrack_locks_all_lock);
129 	nf_conntrack_locks_all = true;
130 
131 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
132 		spin_unlock_wait(&nf_conntrack_locks[i]);
133 	}
134 }
135 
136 static void nf_conntrack_all_unlock(void)
137 {
138 	nf_conntrack_locks_all = false;
139 	spin_unlock(&nf_conntrack_locks_all_lock);
140 }
141 
142 unsigned int nf_conntrack_htable_size __read_mostly;
143 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
144 
145 unsigned int nf_conntrack_max __read_mostly;
146 EXPORT_SYMBOL_GPL(nf_conntrack_max);
147 
148 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
149 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
150 
151 static unsigned int nf_conntrack_hash_rnd __read_mostly;
152 
153 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
154 			      const struct net *net)
155 {
156 	unsigned int n;
157 	u32 seed;
158 
159 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
160 
161 	/* The direction must be ignored, so we hash everything up to the
162 	 * destination ports (which is a multiple of 4) and treat the last
163 	 * three bytes manually.
164 	 */
165 	seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
166 	n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
167 	return jhash2((u32 *)tuple, n, seed ^
168 		      (((__force __u16)tuple->dst.u.all << 16) |
169 		      tuple->dst.protonum));
170 }
171 
172 static u32 scale_hash(u32 hash)
173 {
174 	return reciprocal_scale(hash, nf_conntrack_htable_size);
175 }
176 
177 static u32 __hash_conntrack(const struct net *net,
178 			    const struct nf_conntrack_tuple *tuple,
179 			    unsigned int size)
180 {
181 	return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
182 }
183 
184 static u32 hash_conntrack(const struct net *net,
185 			  const struct nf_conntrack_tuple *tuple)
186 {
187 	return scale_hash(hash_conntrack_raw(tuple, net));
188 }
189 
190 bool
191 nf_ct_get_tuple(const struct sk_buff *skb,
192 		unsigned int nhoff,
193 		unsigned int dataoff,
194 		u_int16_t l3num,
195 		u_int8_t protonum,
196 		struct net *net,
197 		struct nf_conntrack_tuple *tuple,
198 		const struct nf_conntrack_l3proto *l3proto,
199 		const struct nf_conntrack_l4proto *l4proto)
200 {
201 	memset(tuple, 0, sizeof(*tuple));
202 
203 	tuple->src.l3num = l3num;
204 	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
205 		return false;
206 
207 	tuple->dst.protonum = protonum;
208 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
209 
210 	return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
211 }
212 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
213 
214 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
215 		       u_int16_t l3num,
216 		       struct net *net, struct nf_conntrack_tuple *tuple)
217 {
218 	struct nf_conntrack_l3proto *l3proto;
219 	struct nf_conntrack_l4proto *l4proto;
220 	unsigned int protoff;
221 	u_int8_t protonum;
222 	int ret;
223 
224 	rcu_read_lock();
225 
226 	l3proto = __nf_ct_l3proto_find(l3num);
227 	ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
228 	if (ret != NF_ACCEPT) {
229 		rcu_read_unlock();
230 		return false;
231 	}
232 
233 	l4proto = __nf_ct_l4proto_find(l3num, protonum);
234 
235 	ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
236 			      l3proto, l4proto);
237 
238 	rcu_read_unlock();
239 	return ret;
240 }
241 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
242 
243 bool
244 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
245 		   const struct nf_conntrack_tuple *orig,
246 		   const struct nf_conntrack_l3proto *l3proto,
247 		   const struct nf_conntrack_l4proto *l4proto)
248 {
249 	memset(inverse, 0, sizeof(*inverse));
250 
251 	inverse->src.l3num = orig->src.l3num;
252 	if (l3proto->invert_tuple(inverse, orig) == 0)
253 		return false;
254 
255 	inverse->dst.dir = !orig->dst.dir;
256 
257 	inverse->dst.protonum = orig->dst.protonum;
258 	return l4proto->invert_tuple(inverse, orig);
259 }
260 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
261 
262 static void
263 clean_from_lists(struct nf_conn *ct)
264 {
265 	pr_debug("clean_from_lists(%p)\n", ct);
266 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
267 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
268 
269 	/* Destroy all pending expectations */
270 	nf_ct_remove_expectations(ct);
271 }
272 
273 /* must be called with local_bh_disable */
274 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
275 {
276 	struct ct_pcpu *pcpu;
277 
278 	/* add this conntrack to the (per cpu) dying list */
279 	ct->cpu = smp_processor_id();
280 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
281 
282 	spin_lock(&pcpu->lock);
283 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
284 			     &pcpu->dying);
285 	spin_unlock(&pcpu->lock);
286 }
287 
288 /* must be called with local_bh_disable */
289 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
290 {
291 	struct ct_pcpu *pcpu;
292 
293 	/* add this conntrack to the (per cpu) unconfirmed list */
294 	ct->cpu = smp_processor_id();
295 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
296 
297 	spin_lock(&pcpu->lock);
298 	hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
299 			     &pcpu->unconfirmed);
300 	spin_unlock(&pcpu->lock);
301 }
302 
303 /* must be called with local_bh_disable */
304 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
305 {
306 	struct ct_pcpu *pcpu;
307 
308 	/* We overload first tuple to link into unconfirmed or dying list.*/
309 	pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
310 
311 	spin_lock(&pcpu->lock);
312 	BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
313 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
314 	spin_unlock(&pcpu->lock);
315 }
316 
317 /* Released via destroy_conntrack() */
318 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
319 				 const struct nf_conntrack_zone *zone,
320 				 gfp_t flags)
321 {
322 	struct nf_conn *tmpl;
323 
324 	tmpl = kzalloc(sizeof(*tmpl), flags);
325 	if (tmpl == NULL)
326 		return NULL;
327 
328 	tmpl->status = IPS_TEMPLATE;
329 	write_pnet(&tmpl->ct_net, net);
330 
331 	if (nf_ct_zone_add(tmpl, flags, zone) < 0)
332 		goto out_free;
333 
334 	atomic_set(&tmpl->ct_general.use, 0);
335 
336 	return tmpl;
337 out_free:
338 	kfree(tmpl);
339 	return NULL;
340 }
341 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
342 
343 void nf_ct_tmpl_free(struct nf_conn *tmpl)
344 {
345 	nf_ct_ext_destroy(tmpl);
346 	nf_ct_ext_free(tmpl);
347 	kfree(tmpl);
348 }
349 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
350 
351 static void
352 destroy_conntrack(struct nf_conntrack *nfct)
353 {
354 	struct nf_conn *ct = (struct nf_conn *)nfct;
355 	struct net *net = nf_ct_net(ct);
356 	struct nf_conntrack_l4proto *l4proto;
357 
358 	pr_debug("destroy_conntrack(%p)\n", ct);
359 	NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
360 	NF_CT_ASSERT(!timer_pending(&ct->timeout));
361 
362 	if (unlikely(nf_ct_is_template(ct))) {
363 		nf_ct_tmpl_free(ct);
364 		return;
365 	}
366 	rcu_read_lock();
367 	l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
368 	if (l4proto->destroy)
369 		l4proto->destroy(ct);
370 
371 	rcu_read_unlock();
372 
373 	local_bh_disable();
374 	/* Expectations will have been removed in clean_from_lists,
375 	 * except TFTP can create an expectation on the first packet,
376 	 * before connection is in the list, so we need to clean here,
377 	 * too.
378 	 */
379 	nf_ct_remove_expectations(ct);
380 
381 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
382 
383 	NF_CT_STAT_INC(net, delete);
384 	local_bh_enable();
385 
386 	if (ct->master)
387 		nf_ct_put(ct->master);
388 
389 	pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
390 	nf_conntrack_free(ct);
391 }
392 
393 static void nf_ct_delete_from_lists(struct nf_conn *ct)
394 {
395 	struct net *net = nf_ct_net(ct);
396 	unsigned int hash, reply_hash;
397 	unsigned int sequence;
398 
399 	nf_ct_helper_destroy(ct);
400 
401 	local_bh_disable();
402 	do {
403 		sequence = read_seqcount_begin(&nf_conntrack_generation);
404 		hash = hash_conntrack(net,
405 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
406 		reply_hash = hash_conntrack(net,
407 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
408 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
409 
410 	clean_from_lists(ct);
411 	nf_conntrack_double_unlock(hash, reply_hash);
412 
413 	nf_ct_add_to_dying_list(ct);
414 
415 	NF_CT_STAT_INC(net, delete_list);
416 	local_bh_enable();
417 }
418 
419 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
420 {
421 	struct nf_conn_tstamp *tstamp;
422 
423 	tstamp = nf_conn_tstamp_find(ct);
424 	if (tstamp && tstamp->stop == 0)
425 		tstamp->stop = ktime_get_real_ns();
426 
427 	if (nf_ct_is_dying(ct))
428 		goto delete;
429 
430 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
431 				    portid, report) < 0) {
432 		/* destroy event was not delivered */
433 		nf_ct_delete_from_lists(ct);
434 		nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
435 		return false;
436 	}
437 
438 	nf_conntrack_ecache_work(nf_ct_net(ct));
439 	set_bit(IPS_DYING_BIT, &ct->status);
440  delete:
441 	nf_ct_delete_from_lists(ct);
442 	nf_ct_put(ct);
443 	return true;
444 }
445 EXPORT_SYMBOL_GPL(nf_ct_delete);
446 
447 static void death_by_timeout(unsigned long ul_conntrack)
448 {
449 	nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
450 }
451 
452 static inline bool
453 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
454 		const struct nf_conntrack_tuple *tuple,
455 		const struct nf_conntrack_zone *zone,
456 		const struct net *net)
457 {
458 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
459 
460 	/* A conntrack can be recreated with the equal tuple,
461 	 * so we need to check that the conntrack is confirmed
462 	 */
463 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
464 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
465 	       nf_ct_is_confirmed(ct) &&
466 	       net_eq(net, nf_ct_net(ct));
467 }
468 
469 /*
470  * Warning :
471  * - Caller must take a reference on returned object
472  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
473  */
474 static struct nf_conntrack_tuple_hash *
475 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
476 		      const struct nf_conntrack_tuple *tuple, u32 hash)
477 {
478 	struct nf_conntrack_tuple_hash *h;
479 	struct hlist_nulls_head *ct_hash;
480 	struct hlist_nulls_node *n;
481 	unsigned int bucket, sequence;
482 
483 begin:
484 	do {
485 		sequence = read_seqcount_begin(&nf_conntrack_generation);
486 		bucket = scale_hash(hash);
487 		ct_hash = nf_conntrack_hash;
488 	} while (read_seqcount_retry(&nf_conntrack_generation, sequence));
489 
490 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
491 		if (nf_ct_key_equal(h, tuple, zone, net)) {
492 			NF_CT_STAT_INC_ATOMIC(net, found);
493 			return h;
494 		}
495 		NF_CT_STAT_INC_ATOMIC(net, searched);
496 	}
497 	/*
498 	 * if the nulls value we got at the end of this lookup is
499 	 * not the expected one, we must restart lookup.
500 	 * We probably met an item that was moved to another chain.
501 	 */
502 	if (get_nulls_value(n) != bucket) {
503 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
504 		goto begin;
505 	}
506 
507 	return NULL;
508 }
509 
510 /* Find a connection corresponding to a tuple. */
511 static struct nf_conntrack_tuple_hash *
512 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
513 			const struct nf_conntrack_tuple *tuple, u32 hash)
514 {
515 	struct nf_conntrack_tuple_hash *h;
516 	struct nf_conn *ct;
517 
518 	rcu_read_lock();
519 begin:
520 	h = ____nf_conntrack_find(net, zone, tuple, hash);
521 	if (h) {
522 		ct = nf_ct_tuplehash_to_ctrack(h);
523 		if (unlikely(nf_ct_is_dying(ct) ||
524 			     !atomic_inc_not_zero(&ct->ct_general.use)))
525 			h = NULL;
526 		else {
527 			if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
528 				nf_ct_put(ct);
529 				goto begin;
530 			}
531 		}
532 	}
533 	rcu_read_unlock();
534 
535 	return h;
536 }
537 
538 struct nf_conntrack_tuple_hash *
539 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
540 		      const struct nf_conntrack_tuple *tuple)
541 {
542 	return __nf_conntrack_find_get(net, zone, tuple,
543 				       hash_conntrack_raw(tuple, net));
544 }
545 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
546 
547 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
548 				       unsigned int hash,
549 				       unsigned int reply_hash)
550 {
551 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
552 			   &nf_conntrack_hash[hash]);
553 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
554 			   &nf_conntrack_hash[reply_hash]);
555 }
556 
557 int
558 nf_conntrack_hash_check_insert(struct nf_conn *ct)
559 {
560 	const struct nf_conntrack_zone *zone;
561 	struct net *net = nf_ct_net(ct);
562 	unsigned int hash, reply_hash;
563 	struct nf_conntrack_tuple_hash *h;
564 	struct hlist_nulls_node *n;
565 	unsigned int sequence;
566 
567 	zone = nf_ct_zone(ct);
568 
569 	local_bh_disable();
570 	do {
571 		sequence = read_seqcount_begin(&nf_conntrack_generation);
572 		hash = hash_conntrack(net,
573 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
574 		reply_hash = hash_conntrack(net,
575 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
576 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
577 
578 	/* See if there's one in the list already, including reverse */
579 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
580 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
581 				    zone, net))
582 			goto out;
583 
584 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
585 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
586 				    zone, net))
587 			goto out;
588 
589 	add_timer(&ct->timeout);
590 	smp_wmb();
591 	/* The caller holds a reference to this object */
592 	atomic_set(&ct->ct_general.use, 2);
593 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
594 	nf_conntrack_double_unlock(hash, reply_hash);
595 	NF_CT_STAT_INC(net, insert);
596 	local_bh_enable();
597 	return 0;
598 
599 out:
600 	nf_conntrack_double_unlock(hash, reply_hash);
601 	NF_CT_STAT_INC(net, insert_failed);
602 	local_bh_enable();
603 	return -EEXIST;
604 }
605 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
606 
607 static inline void nf_ct_acct_update(struct nf_conn *ct,
608 				     enum ip_conntrack_info ctinfo,
609 				     unsigned int len)
610 {
611 	struct nf_conn_acct *acct;
612 
613 	acct = nf_conn_acct_find(ct);
614 	if (acct) {
615 		struct nf_conn_counter *counter = acct->counter;
616 
617 		atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
618 		atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
619 	}
620 }
621 
622 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
623 			     const struct nf_conn *loser_ct)
624 {
625 	struct nf_conn_acct *acct;
626 
627 	acct = nf_conn_acct_find(loser_ct);
628 	if (acct) {
629 		struct nf_conn_counter *counter = acct->counter;
630 		unsigned int bytes;
631 
632 		/* u32 should be fine since we must have seen one packet. */
633 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
634 		nf_ct_acct_update(ct, ctinfo, bytes);
635 	}
636 }
637 
638 /* Resolve race on insertion if this protocol allows this. */
639 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
640 			       enum ip_conntrack_info ctinfo,
641 			       struct nf_conntrack_tuple_hash *h)
642 {
643 	/* This is the conntrack entry already in hashes that won race. */
644 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
645 	struct nf_conntrack_l4proto *l4proto;
646 
647 	l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
648 	if (l4proto->allow_clash &&
649 	    !nfct_nat(ct) &&
650 	    !nf_ct_is_dying(ct) &&
651 	    atomic_inc_not_zero(&ct->ct_general.use)) {
652 		nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
653 		nf_conntrack_put(skb->nfct);
654 		/* Assign conntrack already in hashes to this skbuff. Don't
655 		 * modify skb->nfctinfo to ensure consistent stateful filtering.
656 		 */
657 		skb->nfct = &ct->ct_general;
658 		return NF_ACCEPT;
659 	}
660 	NF_CT_STAT_INC(net, drop);
661 	return NF_DROP;
662 }
663 
664 /* Confirm a connection given skb; places it in hash table */
665 int
666 __nf_conntrack_confirm(struct sk_buff *skb)
667 {
668 	const struct nf_conntrack_zone *zone;
669 	unsigned int hash, reply_hash;
670 	struct nf_conntrack_tuple_hash *h;
671 	struct nf_conn *ct;
672 	struct nf_conn_help *help;
673 	struct nf_conn_tstamp *tstamp;
674 	struct hlist_nulls_node *n;
675 	enum ip_conntrack_info ctinfo;
676 	struct net *net;
677 	unsigned int sequence;
678 	int ret = NF_DROP;
679 
680 	ct = nf_ct_get(skb, &ctinfo);
681 	net = nf_ct_net(ct);
682 
683 	/* ipt_REJECT uses nf_conntrack_attach to attach related
684 	   ICMP/TCP RST packets in other direction.  Actual packet
685 	   which created connection will be IP_CT_NEW or for an
686 	   expected connection, IP_CT_RELATED. */
687 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
688 		return NF_ACCEPT;
689 
690 	zone = nf_ct_zone(ct);
691 	local_bh_disable();
692 
693 	do {
694 		sequence = read_seqcount_begin(&nf_conntrack_generation);
695 		/* reuse the hash saved before */
696 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
697 		hash = scale_hash(hash);
698 		reply_hash = hash_conntrack(net,
699 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
700 
701 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
702 
703 	/* We're not in hash table, and we refuse to set up related
704 	 * connections for unconfirmed conns.  But packet copies and
705 	 * REJECT will give spurious warnings here.
706 	 */
707 	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
708 
709 	/* No external references means no one else could have
710 	 * confirmed us.
711 	 */
712 	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
713 	pr_debug("Confirming conntrack %p\n", ct);
714 	/* We have to check the DYING flag after unlink to prevent
715 	 * a race against nf_ct_get_next_corpse() possibly called from
716 	 * user context, else we insert an already 'dead' hash, blocking
717 	 * further use of that particular connection -JM.
718 	 */
719 	nf_ct_del_from_dying_or_unconfirmed_list(ct);
720 
721 	if (unlikely(nf_ct_is_dying(ct))) {
722 		nf_ct_add_to_dying_list(ct);
723 		goto dying;
724 	}
725 
726 	/* See if there's one in the list already, including reverse:
727 	   NAT could have grabbed it without realizing, since we're
728 	   not in the hash.  If there is, we lost race. */
729 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
730 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
731 				    zone, net))
732 			goto out;
733 
734 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
735 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
736 				    zone, net))
737 			goto out;
738 
739 	/* Timer relative to confirmation time, not original
740 	   setting time, otherwise we'd get timer wrap in
741 	   weird delay cases. */
742 	ct->timeout.expires += jiffies;
743 	add_timer(&ct->timeout);
744 	atomic_inc(&ct->ct_general.use);
745 	ct->status |= IPS_CONFIRMED;
746 
747 	/* set conntrack timestamp, if enabled. */
748 	tstamp = nf_conn_tstamp_find(ct);
749 	if (tstamp) {
750 		if (skb->tstamp.tv64 == 0)
751 			__net_timestamp(skb);
752 
753 		tstamp->start = ktime_to_ns(skb->tstamp);
754 	}
755 	/* Since the lookup is lockless, hash insertion must be done after
756 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
757 	 * guarantee that no other CPU can find the conntrack before the above
758 	 * stores are visible.
759 	 */
760 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
761 	nf_conntrack_double_unlock(hash, reply_hash);
762 	NF_CT_STAT_INC(net, insert);
763 	local_bh_enable();
764 
765 	help = nfct_help(ct);
766 	if (help && help->helper)
767 		nf_conntrack_event_cache(IPCT_HELPER, ct);
768 
769 	nf_conntrack_event_cache(master_ct(ct) ?
770 				 IPCT_RELATED : IPCT_NEW, ct);
771 	return NF_ACCEPT;
772 
773 out:
774 	nf_ct_add_to_dying_list(ct);
775 	ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
776 dying:
777 	nf_conntrack_double_unlock(hash, reply_hash);
778 	NF_CT_STAT_INC(net, insert_failed);
779 	local_bh_enable();
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
783 
784 /* Returns true if a connection correspondings to the tuple (required
785    for NAT). */
786 int
787 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
788 			 const struct nf_conn *ignored_conntrack)
789 {
790 	struct net *net = nf_ct_net(ignored_conntrack);
791 	const struct nf_conntrack_zone *zone;
792 	struct nf_conntrack_tuple_hash *h;
793 	struct hlist_nulls_head *ct_hash;
794 	unsigned int hash, sequence;
795 	struct hlist_nulls_node *n;
796 	struct nf_conn *ct;
797 
798 	zone = nf_ct_zone(ignored_conntrack);
799 
800 	rcu_read_lock();
801 	do {
802 		sequence = read_seqcount_begin(&nf_conntrack_generation);
803 		hash = hash_conntrack(net, tuple);
804 		ct_hash = nf_conntrack_hash;
805 	} while (read_seqcount_retry(&nf_conntrack_generation, sequence));
806 
807 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
808 		ct = nf_ct_tuplehash_to_ctrack(h);
809 		if (ct != ignored_conntrack &&
810 		    nf_ct_key_equal(h, tuple, zone, net)) {
811 			NF_CT_STAT_INC_ATOMIC(net, found);
812 			rcu_read_unlock();
813 			return 1;
814 		}
815 		NF_CT_STAT_INC_ATOMIC(net, searched);
816 	}
817 	rcu_read_unlock();
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
822 
823 #define NF_CT_EVICTION_RANGE	8
824 
825 /* There's a small race here where we may free a just-assured
826    connection.  Too bad: we're in trouble anyway. */
827 static noinline int early_drop(struct net *net, unsigned int _hash)
828 {
829 	/* Use oldest entry, which is roughly LRU */
830 	struct nf_conntrack_tuple_hash *h;
831 	struct nf_conn *tmp;
832 	struct hlist_nulls_node *n;
833 	unsigned int i, hash, sequence;
834 	struct nf_conn *ct = NULL;
835 	spinlock_t *lockp;
836 	bool ret = false;
837 
838 	i = 0;
839 
840 	local_bh_disable();
841 restart:
842 	sequence = read_seqcount_begin(&nf_conntrack_generation);
843 	for (; i < NF_CT_EVICTION_RANGE; i++) {
844 		hash = scale_hash(_hash++);
845 		lockp = &nf_conntrack_locks[hash % CONNTRACK_LOCKS];
846 		nf_conntrack_lock(lockp);
847 		if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
848 			spin_unlock(lockp);
849 			goto restart;
850 		}
851 		hlist_nulls_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash],
852 					       hnnode) {
853 			tmp = nf_ct_tuplehash_to_ctrack(h);
854 
855 			if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
856 			    !net_eq(nf_ct_net(tmp), net) ||
857 			    nf_ct_is_dying(tmp))
858 				continue;
859 
860 			if (atomic_inc_not_zero(&tmp->ct_general.use)) {
861 				ct = tmp;
862 				break;
863 			}
864 		}
865 
866 		spin_unlock(lockp);
867 		if (ct)
868 			break;
869 	}
870 
871 	local_bh_enable();
872 
873 	if (!ct)
874 		return false;
875 
876 	/* kill only if in same netns -- might have moved due to
877 	 * SLAB_DESTROY_BY_RCU rules
878 	 */
879 	if (net_eq(nf_ct_net(ct), net) && del_timer(&ct->timeout)) {
880 		if (nf_ct_delete(ct, 0, 0)) {
881 			NF_CT_STAT_INC_ATOMIC(net, early_drop);
882 			ret = true;
883 		}
884 	}
885 
886 	nf_ct_put(ct);
887 	return ret;
888 }
889 
890 static struct nf_conn *
891 __nf_conntrack_alloc(struct net *net,
892 		     const struct nf_conntrack_zone *zone,
893 		     const struct nf_conntrack_tuple *orig,
894 		     const struct nf_conntrack_tuple *repl,
895 		     gfp_t gfp, u32 hash)
896 {
897 	struct nf_conn *ct;
898 
899 	/* We don't want any race condition at early drop stage */
900 	atomic_inc(&net->ct.count);
901 
902 	if (nf_conntrack_max &&
903 	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
904 		if (!early_drop(net, hash)) {
905 			atomic_dec(&net->ct.count);
906 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
907 			return ERR_PTR(-ENOMEM);
908 		}
909 	}
910 
911 	/*
912 	 * Do not use kmem_cache_zalloc(), as this cache uses
913 	 * SLAB_DESTROY_BY_RCU.
914 	 */
915 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
916 	if (ct == NULL)
917 		goto out;
918 
919 	spin_lock_init(&ct->lock);
920 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
921 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
922 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
923 	/* save hash for reusing when confirming */
924 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
925 	ct->status = 0;
926 	/* Don't set timer yet: wait for confirmation */
927 	setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
928 	write_pnet(&ct->ct_net, net);
929 	memset(&ct->__nfct_init_offset[0], 0,
930 	       offsetof(struct nf_conn, proto) -
931 	       offsetof(struct nf_conn, __nfct_init_offset[0]));
932 
933 	if (zone && nf_ct_zone_add(ct, GFP_ATOMIC, zone) < 0)
934 		goto out_free;
935 
936 	/* Because we use RCU lookups, we set ct_general.use to zero before
937 	 * this is inserted in any list.
938 	 */
939 	atomic_set(&ct->ct_general.use, 0);
940 	return ct;
941 out_free:
942 	kmem_cache_free(nf_conntrack_cachep, ct);
943 out:
944 	atomic_dec(&net->ct.count);
945 	return ERR_PTR(-ENOMEM);
946 }
947 
948 struct nf_conn *nf_conntrack_alloc(struct net *net,
949 				   const struct nf_conntrack_zone *zone,
950 				   const struct nf_conntrack_tuple *orig,
951 				   const struct nf_conntrack_tuple *repl,
952 				   gfp_t gfp)
953 {
954 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
955 }
956 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
957 
958 void nf_conntrack_free(struct nf_conn *ct)
959 {
960 	struct net *net = nf_ct_net(ct);
961 
962 	/* A freed object has refcnt == 0, that's
963 	 * the golden rule for SLAB_DESTROY_BY_RCU
964 	 */
965 	NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
966 
967 	nf_ct_ext_destroy(ct);
968 	nf_ct_ext_free(ct);
969 	kmem_cache_free(nf_conntrack_cachep, ct);
970 	smp_mb__before_atomic();
971 	atomic_dec(&net->ct.count);
972 }
973 EXPORT_SYMBOL_GPL(nf_conntrack_free);
974 
975 
976 /* Allocate a new conntrack: we return -ENOMEM if classification
977    failed due to stress.  Otherwise it really is unclassifiable. */
978 static struct nf_conntrack_tuple_hash *
979 init_conntrack(struct net *net, struct nf_conn *tmpl,
980 	       const struct nf_conntrack_tuple *tuple,
981 	       struct nf_conntrack_l3proto *l3proto,
982 	       struct nf_conntrack_l4proto *l4proto,
983 	       struct sk_buff *skb,
984 	       unsigned int dataoff, u32 hash)
985 {
986 	struct nf_conn *ct;
987 	struct nf_conn_help *help;
988 	struct nf_conntrack_tuple repl_tuple;
989 	struct nf_conntrack_ecache *ecache;
990 	struct nf_conntrack_expect *exp = NULL;
991 	const struct nf_conntrack_zone *zone;
992 	struct nf_conn_timeout *timeout_ext;
993 	struct nf_conntrack_zone tmp;
994 	unsigned int *timeouts;
995 
996 	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
997 		pr_debug("Can't invert tuple.\n");
998 		return NULL;
999 	}
1000 
1001 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1002 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1003 				  hash);
1004 	if (IS_ERR(ct))
1005 		return (struct nf_conntrack_tuple_hash *)ct;
1006 
1007 	if (tmpl && nfct_synproxy(tmpl)) {
1008 		nfct_seqadj_ext_add(ct);
1009 		nfct_synproxy_ext_add(ct);
1010 	}
1011 
1012 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1013 	if (timeout_ext) {
1014 		timeouts = nf_ct_timeout_data(timeout_ext);
1015 		if (unlikely(!timeouts))
1016 			timeouts = l4proto->get_timeouts(net);
1017 	} else {
1018 		timeouts = l4proto->get_timeouts(net);
1019 	}
1020 
1021 	if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1022 		nf_conntrack_free(ct);
1023 		pr_debug("can't track with proto module\n");
1024 		return NULL;
1025 	}
1026 
1027 	if (timeout_ext)
1028 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1029 				      GFP_ATOMIC);
1030 
1031 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1032 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1033 	nf_ct_labels_ext_add(ct);
1034 
1035 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1036 	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1037 				 ecache ? ecache->expmask : 0,
1038 			     GFP_ATOMIC);
1039 
1040 	local_bh_disable();
1041 	if (net->ct.expect_count) {
1042 		spin_lock(&nf_conntrack_expect_lock);
1043 		exp = nf_ct_find_expectation(net, zone, tuple);
1044 		if (exp) {
1045 			pr_debug("expectation arrives ct=%p exp=%p\n",
1046 				 ct, exp);
1047 			/* Welcome, Mr. Bond.  We've been expecting you... */
1048 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1049 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1050 			ct->master = exp->master;
1051 			if (exp->helper) {
1052 				help = nf_ct_helper_ext_add(ct, exp->helper,
1053 							    GFP_ATOMIC);
1054 				if (help)
1055 					rcu_assign_pointer(help->helper, exp->helper);
1056 			}
1057 
1058 #ifdef CONFIG_NF_CONNTRACK_MARK
1059 			ct->mark = exp->master->mark;
1060 #endif
1061 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1062 			ct->secmark = exp->master->secmark;
1063 #endif
1064 			NF_CT_STAT_INC(net, expect_new);
1065 		}
1066 		spin_unlock(&nf_conntrack_expect_lock);
1067 	}
1068 	if (!exp) {
1069 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1070 		NF_CT_STAT_INC(net, new);
1071 	}
1072 
1073 	/* Now it is inserted into the unconfirmed list, bump refcount */
1074 	nf_conntrack_get(&ct->ct_general);
1075 	nf_ct_add_to_unconfirmed_list(ct);
1076 
1077 	local_bh_enable();
1078 
1079 	if (exp) {
1080 		if (exp->expectfn)
1081 			exp->expectfn(ct, exp);
1082 		nf_ct_expect_put(exp);
1083 	}
1084 
1085 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1086 }
1087 
1088 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1089 static inline struct nf_conn *
1090 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1091 		  struct sk_buff *skb,
1092 		  unsigned int dataoff,
1093 		  u_int16_t l3num,
1094 		  u_int8_t protonum,
1095 		  struct nf_conntrack_l3proto *l3proto,
1096 		  struct nf_conntrack_l4proto *l4proto,
1097 		  int *set_reply,
1098 		  enum ip_conntrack_info *ctinfo)
1099 {
1100 	const struct nf_conntrack_zone *zone;
1101 	struct nf_conntrack_tuple tuple;
1102 	struct nf_conntrack_tuple_hash *h;
1103 	struct nf_conntrack_zone tmp;
1104 	struct nf_conn *ct;
1105 	u32 hash;
1106 
1107 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1108 			     dataoff, l3num, protonum, net, &tuple, l3proto,
1109 			     l4proto)) {
1110 		pr_debug("Can't get tuple\n");
1111 		return NULL;
1112 	}
1113 
1114 	/* look for tuple match */
1115 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1116 	hash = hash_conntrack_raw(&tuple, net);
1117 	h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1118 	if (!h) {
1119 		h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1120 				   skb, dataoff, hash);
1121 		if (!h)
1122 			return NULL;
1123 		if (IS_ERR(h))
1124 			return (void *)h;
1125 	}
1126 	ct = nf_ct_tuplehash_to_ctrack(h);
1127 
1128 	/* It exists; we have (non-exclusive) reference. */
1129 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1130 		*ctinfo = IP_CT_ESTABLISHED_REPLY;
1131 		/* Please set reply bit if this packet OK */
1132 		*set_reply = 1;
1133 	} else {
1134 		/* Once we've had two way comms, always ESTABLISHED. */
1135 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1136 			pr_debug("normal packet for %p\n", ct);
1137 			*ctinfo = IP_CT_ESTABLISHED;
1138 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1139 			pr_debug("related packet for %p\n", ct);
1140 			*ctinfo = IP_CT_RELATED;
1141 		} else {
1142 			pr_debug("new packet for %p\n", ct);
1143 			*ctinfo = IP_CT_NEW;
1144 		}
1145 		*set_reply = 0;
1146 	}
1147 	skb->nfct = &ct->ct_general;
1148 	skb->nfctinfo = *ctinfo;
1149 	return ct;
1150 }
1151 
1152 unsigned int
1153 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1154 		struct sk_buff *skb)
1155 {
1156 	struct nf_conn *ct, *tmpl = NULL;
1157 	enum ip_conntrack_info ctinfo;
1158 	struct nf_conntrack_l3proto *l3proto;
1159 	struct nf_conntrack_l4proto *l4proto;
1160 	unsigned int *timeouts;
1161 	unsigned int dataoff;
1162 	u_int8_t protonum;
1163 	int set_reply = 0;
1164 	int ret;
1165 
1166 	if (skb->nfct) {
1167 		/* Previously seen (loopback or untracked)?  Ignore. */
1168 		tmpl = (struct nf_conn *)skb->nfct;
1169 		if (!nf_ct_is_template(tmpl)) {
1170 			NF_CT_STAT_INC_ATOMIC(net, ignore);
1171 			return NF_ACCEPT;
1172 		}
1173 		skb->nfct = NULL;
1174 	}
1175 
1176 	/* rcu_read_lock()ed by nf_hook_slow */
1177 	l3proto = __nf_ct_l3proto_find(pf);
1178 	ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1179 				   &dataoff, &protonum);
1180 	if (ret <= 0) {
1181 		pr_debug("not prepared to track yet or error occurred\n");
1182 		NF_CT_STAT_INC_ATOMIC(net, error);
1183 		NF_CT_STAT_INC_ATOMIC(net, invalid);
1184 		ret = -ret;
1185 		goto out;
1186 	}
1187 
1188 	l4proto = __nf_ct_l4proto_find(pf, protonum);
1189 
1190 	/* It may be an special packet, error, unclean...
1191 	 * inverse of the return code tells to the netfilter
1192 	 * core what to do with the packet. */
1193 	if (l4proto->error != NULL) {
1194 		ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1195 				     pf, hooknum);
1196 		if (ret <= 0) {
1197 			NF_CT_STAT_INC_ATOMIC(net, error);
1198 			NF_CT_STAT_INC_ATOMIC(net, invalid);
1199 			ret = -ret;
1200 			goto out;
1201 		}
1202 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1203 		if (skb->nfct)
1204 			goto out;
1205 	}
1206 
1207 	ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1208 			       l3proto, l4proto, &set_reply, &ctinfo);
1209 	if (!ct) {
1210 		/* Not valid part of a connection */
1211 		NF_CT_STAT_INC_ATOMIC(net, invalid);
1212 		ret = NF_ACCEPT;
1213 		goto out;
1214 	}
1215 
1216 	if (IS_ERR(ct)) {
1217 		/* Too stressed to deal. */
1218 		NF_CT_STAT_INC_ATOMIC(net, drop);
1219 		ret = NF_DROP;
1220 		goto out;
1221 	}
1222 
1223 	NF_CT_ASSERT(skb->nfct);
1224 
1225 	/* Decide what timeout policy we want to apply to this flow. */
1226 	timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1227 
1228 	ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1229 	if (ret <= 0) {
1230 		/* Invalid: inverse of the return code tells
1231 		 * the netfilter core what to do */
1232 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
1233 		nf_conntrack_put(skb->nfct);
1234 		skb->nfct = NULL;
1235 		NF_CT_STAT_INC_ATOMIC(net, invalid);
1236 		if (ret == -NF_DROP)
1237 			NF_CT_STAT_INC_ATOMIC(net, drop);
1238 		ret = -ret;
1239 		goto out;
1240 	}
1241 
1242 	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1243 		nf_conntrack_event_cache(IPCT_REPLY, ct);
1244 out:
1245 	if (tmpl) {
1246 		/* Special case: we have to repeat this hook, assign the
1247 		 * template again to this packet. We assume that this packet
1248 		 * has no conntrack assigned. This is used by nf_ct_tcp. */
1249 		if (ret == NF_REPEAT)
1250 			skb->nfct = (struct nf_conntrack *)tmpl;
1251 		else
1252 			nf_ct_put(tmpl);
1253 	}
1254 
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1258 
1259 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1260 			  const struct nf_conntrack_tuple *orig)
1261 {
1262 	bool ret;
1263 
1264 	rcu_read_lock();
1265 	ret = nf_ct_invert_tuple(inverse, orig,
1266 				 __nf_ct_l3proto_find(orig->src.l3num),
1267 				 __nf_ct_l4proto_find(orig->src.l3num,
1268 						      orig->dst.protonum));
1269 	rcu_read_unlock();
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1273 
1274 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1275    implicitly racy: see __nf_conntrack_confirm */
1276 void nf_conntrack_alter_reply(struct nf_conn *ct,
1277 			      const struct nf_conntrack_tuple *newreply)
1278 {
1279 	struct nf_conn_help *help = nfct_help(ct);
1280 
1281 	/* Should be unconfirmed, so not in hash table yet */
1282 	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1283 
1284 	pr_debug("Altering reply tuple of %p to ", ct);
1285 	nf_ct_dump_tuple(newreply);
1286 
1287 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1288 	if (ct->master || (help && !hlist_empty(&help->expectations)))
1289 		return;
1290 
1291 	rcu_read_lock();
1292 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1293 	rcu_read_unlock();
1294 }
1295 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1296 
1297 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1298 void __nf_ct_refresh_acct(struct nf_conn *ct,
1299 			  enum ip_conntrack_info ctinfo,
1300 			  const struct sk_buff *skb,
1301 			  unsigned long extra_jiffies,
1302 			  int do_acct)
1303 {
1304 	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1305 	NF_CT_ASSERT(skb);
1306 
1307 	/* Only update if this is not a fixed timeout */
1308 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1309 		goto acct;
1310 
1311 	/* If not in hash table, timer will not be active yet */
1312 	if (!nf_ct_is_confirmed(ct)) {
1313 		ct->timeout.expires = extra_jiffies;
1314 	} else {
1315 		unsigned long newtime = jiffies + extra_jiffies;
1316 
1317 		/* Only update the timeout if the new timeout is at least
1318 		   HZ jiffies from the old timeout. Need del_timer for race
1319 		   avoidance (may already be dying). */
1320 		if (newtime - ct->timeout.expires >= HZ)
1321 			mod_timer_pending(&ct->timeout, newtime);
1322 	}
1323 
1324 acct:
1325 	if (do_acct)
1326 		nf_ct_acct_update(ct, ctinfo, skb->len);
1327 }
1328 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1329 
1330 bool __nf_ct_kill_acct(struct nf_conn *ct,
1331 		       enum ip_conntrack_info ctinfo,
1332 		       const struct sk_buff *skb,
1333 		       int do_acct)
1334 {
1335 	if (do_acct)
1336 		nf_ct_acct_update(ct, ctinfo, skb->len);
1337 
1338 	if (del_timer(&ct->timeout)) {
1339 		ct->timeout.function((unsigned long)ct);
1340 		return true;
1341 	}
1342 	return false;
1343 }
1344 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1345 
1346 #ifdef CONFIG_NF_CONNTRACK_ZONES
1347 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1348 	.len	= sizeof(struct nf_conntrack_zone),
1349 	.align	= __alignof__(struct nf_conntrack_zone),
1350 	.id	= NF_CT_EXT_ZONE,
1351 };
1352 #endif
1353 
1354 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1355 
1356 #include <linux/netfilter/nfnetlink.h>
1357 #include <linux/netfilter/nfnetlink_conntrack.h>
1358 #include <linux/mutex.h>
1359 
1360 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1361  * in ip_conntrack_core, since we don't want the protocols to autoload
1362  * or depend on ctnetlink */
1363 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1364 			       const struct nf_conntrack_tuple *tuple)
1365 {
1366 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1367 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1368 		goto nla_put_failure;
1369 	return 0;
1370 
1371 nla_put_failure:
1372 	return -1;
1373 }
1374 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1375 
1376 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1377 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1378 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1379 };
1380 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1381 
1382 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1383 			       struct nf_conntrack_tuple *t)
1384 {
1385 	if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1386 		return -EINVAL;
1387 
1388 	t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1389 	t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1390 
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1394 
1395 int nf_ct_port_nlattr_tuple_size(void)
1396 {
1397 	return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1398 }
1399 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1400 #endif
1401 
1402 /* Used by ipt_REJECT and ip6t_REJECT. */
1403 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1404 {
1405 	struct nf_conn *ct;
1406 	enum ip_conntrack_info ctinfo;
1407 
1408 	/* This ICMP is in reverse direction to the packet which caused it */
1409 	ct = nf_ct_get(skb, &ctinfo);
1410 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1411 		ctinfo = IP_CT_RELATED_REPLY;
1412 	else
1413 		ctinfo = IP_CT_RELATED;
1414 
1415 	/* Attach to new skbuff, and increment count */
1416 	nskb->nfct = &ct->ct_general;
1417 	nskb->nfctinfo = ctinfo;
1418 	nf_conntrack_get(nskb->nfct);
1419 }
1420 
1421 /* Bring out ya dead! */
1422 static struct nf_conn *
1423 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1424 		void *data, unsigned int *bucket)
1425 {
1426 	struct nf_conntrack_tuple_hash *h;
1427 	struct nf_conn *ct;
1428 	struct hlist_nulls_node *n;
1429 	int cpu;
1430 	spinlock_t *lockp;
1431 
1432 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1433 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1434 		local_bh_disable();
1435 		nf_conntrack_lock(lockp);
1436 		if (*bucket < nf_conntrack_htable_size) {
1437 			hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1438 				if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1439 					continue;
1440 				ct = nf_ct_tuplehash_to_ctrack(h);
1441 				if (net_eq(nf_ct_net(ct), net) &&
1442 				    iter(ct, data))
1443 					goto found;
1444 			}
1445 		}
1446 		spin_unlock(lockp);
1447 		local_bh_enable();
1448 		cond_resched();
1449 	}
1450 
1451 	for_each_possible_cpu(cpu) {
1452 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1453 
1454 		spin_lock_bh(&pcpu->lock);
1455 		hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1456 			ct = nf_ct_tuplehash_to_ctrack(h);
1457 			if (iter(ct, data))
1458 				set_bit(IPS_DYING_BIT, &ct->status);
1459 		}
1460 		spin_unlock_bh(&pcpu->lock);
1461 		cond_resched();
1462 	}
1463 	return NULL;
1464 found:
1465 	atomic_inc(&ct->ct_general.use);
1466 	spin_unlock(lockp);
1467 	local_bh_enable();
1468 	return ct;
1469 }
1470 
1471 void nf_ct_iterate_cleanup(struct net *net,
1472 			   int (*iter)(struct nf_conn *i, void *data),
1473 			   void *data, u32 portid, int report)
1474 {
1475 	struct nf_conn *ct;
1476 	unsigned int bucket = 0;
1477 
1478 	might_sleep();
1479 
1480 	if (atomic_read(&net->ct.count) == 0)
1481 		return;
1482 
1483 	while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1484 		/* Time to push up daises... */
1485 		if (del_timer(&ct->timeout))
1486 			nf_ct_delete(ct, portid, report);
1487 
1488 		/* ... else the timer will get him soon. */
1489 
1490 		nf_ct_put(ct);
1491 		cond_resched();
1492 	}
1493 }
1494 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1495 
1496 static int kill_all(struct nf_conn *i, void *data)
1497 {
1498 	return 1;
1499 }
1500 
1501 void nf_ct_free_hashtable(void *hash, unsigned int size)
1502 {
1503 	if (is_vmalloc_addr(hash))
1504 		vfree(hash);
1505 	else
1506 		free_pages((unsigned long)hash,
1507 			   get_order(sizeof(struct hlist_head) * size));
1508 }
1509 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1510 
1511 static int untrack_refs(void)
1512 {
1513 	int cnt = 0, cpu;
1514 
1515 	for_each_possible_cpu(cpu) {
1516 		struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1517 
1518 		cnt += atomic_read(&ct->ct_general.use) - 1;
1519 	}
1520 	return cnt;
1521 }
1522 
1523 void nf_conntrack_cleanup_start(void)
1524 {
1525 	RCU_INIT_POINTER(ip_ct_attach, NULL);
1526 }
1527 
1528 void nf_conntrack_cleanup_end(void)
1529 {
1530 	RCU_INIT_POINTER(nf_ct_destroy, NULL);
1531 	while (untrack_refs() > 0)
1532 		schedule();
1533 
1534 	nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1535 
1536 #ifdef CONFIG_NF_CONNTRACK_ZONES
1537 	nf_ct_extend_unregister(&nf_ct_zone_extend);
1538 #endif
1539 	nf_conntrack_proto_fini();
1540 	nf_conntrack_seqadj_fini();
1541 	nf_conntrack_labels_fini();
1542 	nf_conntrack_helper_fini();
1543 	nf_conntrack_timeout_fini();
1544 	nf_conntrack_ecache_fini();
1545 	nf_conntrack_tstamp_fini();
1546 	nf_conntrack_acct_fini();
1547 	nf_conntrack_expect_fini();
1548 
1549 	kmem_cache_destroy(nf_conntrack_cachep);
1550 }
1551 
1552 /*
1553  * Mishearing the voices in his head, our hero wonders how he's
1554  * supposed to kill the mall.
1555  */
1556 void nf_conntrack_cleanup_net(struct net *net)
1557 {
1558 	LIST_HEAD(single);
1559 
1560 	list_add(&net->exit_list, &single);
1561 	nf_conntrack_cleanup_net_list(&single);
1562 }
1563 
1564 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1565 {
1566 	int busy;
1567 	struct net *net;
1568 
1569 	/*
1570 	 * This makes sure all current packets have passed through
1571 	 *  netfilter framework.  Roll on, two-stage module
1572 	 *  delete...
1573 	 */
1574 	synchronize_net();
1575 i_see_dead_people:
1576 	busy = 0;
1577 	list_for_each_entry(net, net_exit_list, exit_list) {
1578 		nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1579 		if (atomic_read(&net->ct.count) != 0)
1580 			busy = 1;
1581 	}
1582 	if (busy) {
1583 		schedule();
1584 		goto i_see_dead_people;
1585 	}
1586 
1587 	list_for_each_entry(net, net_exit_list, exit_list) {
1588 		nf_conntrack_proto_pernet_fini(net);
1589 		nf_conntrack_helper_pernet_fini(net);
1590 		nf_conntrack_ecache_pernet_fini(net);
1591 		nf_conntrack_tstamp_pernet_fini(net);
1592 		nf_conntrack_acct_pernet_fini(net);
1593 		nf_conntrack_expect_pernet_fini(net);
1594 		free_percpu(net->ct.stat);
1595 		free_percpu(net->ct.pcpu_lists);
1596 	}
1597 }
1598 
1599 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1600 {
1601 	struct hlist_nulls_head *hash;
1602 	unsigned int nr_slots, i;
1603 	size_t sz;
1604 
1605 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1606 		return NULL;
1607 
1608 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1609 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1610 
1611 	if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1612 		return NULL;
1613 
1614 	sz = nr_slots * sizeof(struct hlist_nulls_head);
1615 	hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1616 					get_order(sz));
1617 	if (!hash)
1618 		hash = vzalloc(sz);
1619 
1620 	if (hash && nulls)
1621 		for (i = 0; i < nr_slots; i++)
1622 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
1623 
1624 	return hash;
1625 }
1626 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1627 
1628 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1629 {
1630 	int i, bucket, rc;
1631 	unsigned int hashsize, old_size;
1632 	struct hlist_nulls_head *hash, *old_hash;
1633 	struct nf_conntrack_tuple_hash *h;
1634 	struct nf_conn *ct;
1635 
1636 	if (current->nsproxy->net_ns != &init_net)
1637 		return -EOPNOTSUPP;
1638 
1639 	/* On boot, we can set this without any fancy locking. */
1640 	if (!nf_conntrack_htable_size)
1641 		return param_set_uint(val, kp);
1642 
1643 	rc = kstrtouint(val, 0, &hashsize);
1644 	if (rc)
1645 		return rc;
1646 	if (!hashsize)
1647 		return -EINVAL;
1648 
1649 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
1650 	if (!hash)
1651 		return -ENOMEM;
1652 
1653 	local_bh_disable();
1654 	nf_conntrack_all_lock();
1655 	write_seqcount_begin(&nf_conntrack_generation);
1656 
1657 	/* Lookups in the old hash might happen in parallel, which means we
1658 	 * might get false negatives during connection lookup. New connections
1659 	 * created because of a false negative won't make it into the hash
1660 	 * though since that required taking the locks.
1661 	 */
1662 
1663 	for (i = 0; i < nf_conntrack_htable_size; i++) {
1664 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1665 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1666 					      struct nf_conntrack_tuple_hash, hnnode);
1667 			ct = nf_ct_tuplehash_to_ctrack(h);
1668 			hlist_nulls_del_rcu(&h->hnnode);
1669 			bucket = __hash_conntrack(nf_ct_net(ct),
1670 						  &h->tuple, hashsize);
1671 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1672 		}
1673 	}
1674 	old_size = nf_conntrack_htable_size;
1675 	old_hash = nf_conntrack_hash;
1676 
1677 	nf_conntrack_hash = hash;
1678 	nf_conntrack_htable_size = hashsize;
1679 
1680 	write_seqcount_end(&nf_conntrack_generation);
1681 	nf_conntrack_all_unlock();
1682 	local_bh_enable();
1683 
1684 	synchronize_net();
1685 	nf_ct_free_hashtable(old_hash, old_size);
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1689 
1690 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1691 		  &nf_conntrack_htable_size, 0600);
1692 
1693 void nf_ct_untracked_status_or(unsigned long bits)
1694 {
1695 	int cpu;
1696 
1697 	for_each_possible_cpu(cpu)
1698 		per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1699 }
1700 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1701 
1702 int nf_conntrack_init_start(void)
1703 {
1704 	int max_factor = 8;
1705 	int ret = -ENOMEM;
1706 	int i, cpu;
1707 
1708 	seqcount_init(&nf_conntrack_generation);
1709 
1710 	for (i = 0; i < CONNTRACK_LOCKS; i++)
1711 		spin_lock_init(&nf_conntrack_locks[i]);
1712 
1713 	if (!nf_conntrack_htable_size) {
1714 		/* Idea from tcp.c: use 1/16384 of memory.
1715 		 * On i386: 32MB machine has 512 buckets.
1716 		 * >= 1GB machines have 16384 buckets.
1717 		 * >= 4GB machines have 65536 buckets.
1718 		 */
1719 		nf_conntrack_htable_size
1720 			= (((totalram_pages << PAGE_SHIFT) / 16384)
1721 			   / sizeof(struct hlist_head));
1722 		if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1723 			nf_conntrack_htable_size = 65536;
1724 		else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1725 			nf_conntrack_htable_size = 16384;
1726 		if (nf_conntrack_htable_size < 32)
1727 			nf_conntrack_htable_size = 32;
1728 
1729 		/* Use a max. factor of four by default to get the same max as
1730 		 * with the old struct list_heads. When a table size is given
1731 		 * we use the old value of 8 to avoid reducing the max.
1732 		 * entries. */
1733 		max_factor = 4;
1734 	}
1735 
1736 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1737 	if (!nf_conntrack_hash)
1738 		return -ENOMEM;
1739 
1740 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1741 
1742 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1743 						sizeof(struct nf_conn), 0,
1744 						SLAB_DESTROY_BY_RCU, NULL);
1745 	if (!nf_conntrack_cachep)
1746 		goto err_cachep;
1747 
1748 	printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1749 	       NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1750 	       nf_conntrack_max);
1751 
1752 	ret = nf_conntrack_expect_init();
1753 	if (ret < 0)
1754 		goto err_expect;
1755 
1756 	ret = nf_conntrack_acct_init();
1757 	if (ret < 0)
1758 		goto err_acct;
1759 
1760 	ret = nf_conntrack_tstamp_init();
1761 	if (ret < 0)
1762 		goto err_tstamp;
1763 
1764 	ret = nf_conntrack_ecache_init();
1765 	if (ret < 0)
1766 		goto err_ecache;
1767 
1768 	ret = nf_conntrack_timeout_init();
1769 	if (ret < 0)
1770 		goto err_timeout;
1771 
1772 	ret = nf_conntrack_helper_init();
1773 	if (ret < 0)
1774 		goto err_helper;
1775 
1776 	ret = nf_conntrack_labels_init();
1777 	if (ret < 0)
1778 		goto err_labels;
1779 
1780 	ret = nf_conntrack_seqadj_init();
1781 	if (ret < 0)
1782 		goto err_seqadj;
1783 
1784 #ifdef CONFIG_NF_CONNTRACK_ZONES
1785 	ret = nf_ct_extend_register(&nf_ct_zone_extend);
1786 	if (ret < 0)
1787 		goto err_extend;
1788 #endif
1789 	ret = nf_conntrack_proto_init();
1790 	if (ret < 0)
1791 		goto err_proto;
1792 
1793 	/* Set up fake conntrack: to never be deleted, not in any hashes */
1794 	for_each_possible_cpu(cpu) {
1795 		struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1796 		write_pnet(&ct->ct_net, &init_net);
1797 		atomic_set(&ct->ct_general.use, 1);
1798 	}
1799 	/*  - and look it like as a confirmed connection */
1800 	nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1801 	return 0;
1802 
1803 err_proto:
1804 #ifdef CONFIG_NF_CONNTRACK_ZONES
1805 	nf_ct_extend_unregister(&nf_ct_zone_extend);
1806 err_extend:
1807 #endif
1808 	nf_conntrack_seqadj_fini();
1809 err_seqadj:
1810 	nf_conntrack_labels_fini();
1811 err_labels:
1812 	nf_conntrack_helper_fini();
1813 err_helper:
1814 	nf_conntrack_timeout_fini();
1815 err_timeout:
1816 	nf_conntrack_ecache_fini();
1817 err_ecache:
1818 	nf_conntrack_tstamp_fini();
1819 err_tstamp:
1820 	nf_conntrack_acct_fini();
1821 err_acct:
1822 	nf_conntrack_expect_fini();
1823 err_expect:
1824 	kmem_cache_destroy(nf_conntrack_cachep);
1825 err_cachep:
1826 	nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1827 	return ret;
1828 }
1829 
1830 void nf_conntrack_init_end(void)
1831 {
1832 	/* For use by REJECT target */
1833 	RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1834 	RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1835 }
1836 
1837 /*
1838  * We need to use special "null" values, not used in hash table
1839  */
1840 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
1841 #define DYING_NULLS_VAL		((1<<30)+1)
1842 #define TEMPLATE_NULLS_VAL	((1<<30)+2)
1843 
1844 int nf_conntrack_init_net(struct net *net)
1845 {
1846 	int ret = -ENOMEM;
1847 	int cpu;
1848 
1849 	atomic_set(&net->ct.count, 0);
1850 
1851 	net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1852 	if (!net->ct.pcpu_lists)
1853 		goto err_stat;
1854 
1855 	for_each_possible_cpu(cpu) {
1856 		struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1857 
1858 		spin_lock_init(&pcpu->lock);
1859 		INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1860 		INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1861 	}
1862 
1863 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1864 	if (!net->ct.stat)
1865 		goto err_pcpu_lists;
1866 
1867 	ret = nf_conntrack_expect_pernet_init(net);
1868 	if (ret < 0)
1869 		goto err_expect;
1870 	ret = nf_conntrack_acct_pernet_init(net);
1871 	if (ret < 0)
1872 		goto err_acct;
1873 	ret = nf_conntrack_tstamp_pernet_init(net);
1874 	if (ret < 0)
1875 		goto err_tstamp;
1876 	ret = nf_conntrack_ecache_pernet_init(net);
1877 	if (ret < 0)
1878 		goto err_ecache;
1879 	ret = nf_conntrack_helper_pernet_init(net);
1880 	if (ret < 0)
1881 		goto err_helper;
1882 	ret = nf_conntrack_proto_pernet_init(net);
1883 	if (ret < 0)
1884 		goto err_proto;
1885 	return 0;
1886 
1887 err_proto:
1888 	nf_conntrack_helper_pernet_fini(net);
1889 err_helper:
1890 	nf_conntrack_ecache_pernet_fini(net);
1891 err_ecache:
1892 	nf_conntrack_tstamp_pernet_fini(net);
1893 err_tstamp:
1894 	nf_conntrack_acct_pernet_fini(net);
1895 err_acct:
1896 	nf_conntrack_expect_pernet_fini(net);
1897 err_expect:
1898 	free_percpu(net->ct.stat);
1899 err_pcpu_lists:
1900 	free_percpu(net->ct.pcpu_lists);
1901 err_stat:
1902 	return ret;
1903 }
1904