xref: /openbmc/linux/net/netfilter/nf_conncount.c (revision 4bf3bd0f)
1 /*
2  * count the number of connections matching an arbitrary key.
3  *
4  * (C) 2017 Red Hat GmbH
5  * Author: Florian Westphal <fw@strlen.de>
6  *
7  * split from xt_connlimit.c:
8  *   (c) 2000 Gerd Knorr <kraxel@bytesex.org>
9  *   Nov 2002: Martin Bene <martin.bene@icomedias.com>:
10  *		only ignore TIME_WAIT or gone connections
11  *   (C) CC Computer Consultants GmbH, 2007
12  */
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/in.h>
15 #include <linux/in6.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/jhash.h>
19 #include <linux/slab.h>
20 #include <linux/list.h>
21 #include <linux/rbtree.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/skbuff.h>
25 #include <linux/spinlock.h>
26 #include <linux/netfilter/nf_conntrack_tcp.h>
27 #include <linux/netfilter/x_tables.h>
28 #include <net/netfilter/nf_conntrack.h>
29 #include <net/netfilter/nf_conntrack_count.h>
30 #include <net/netfilter/nf_conntrack_core.h>
31 #include <net/netfilter/nf_conntrack_tuple.h>
32 #include <net/netfilter/nf_conntrack_zones.h>
33 
34 #define CONNCOUNT_SLOTS		256U
35 
36 #ifdef CONFIG_LOCKDEP
37 #define CONNCOUNT_LOCK_SLOTS	8U
38 #else
39 #define CONNCOUNT_LOCK_SLOTS	256U
40 #endif
41 
42 #define CONNCOUNT_GC_MAX_NODES	8
43 #define MAX_KEYLEN		5
44 
45 /* we will save the tuples of all connections we care about */
46 struct nf_conncount_tuple {
47 	struct list_head		node;
48 	struct nf_conntrack_tuple	tuple;
49 	struct nf_conntrack_zone	zone;
50 	int				cpu;
51 	u32				jiffies32;
52 	struct rcu_head			rcu_head;
53 };
54 
55 struct nf_conncount_rb {
56 	struct rb_node node;
57 	struct nf_conncount_list list;
58 	u32 key[MAX_KEYLEN];
59 	struct rcu_head rcu_head;
60 };
61 
62 static spinlock_t nf_conncount_locks[CONNCOUNT_LOCK_SLOTS] __cacheline_aligned_in_smp;
63 
64 struct nf_conncount_data {
65 	unsigned int keylen;
66 	struct rb_root root[CONNCOUNT_SLOTS];
67 	struct net *net;
68 	struct work_struct gc_work;
69 	unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)];
70 	unsigned int gc_tree;
71 };
72 
73 static u_int32_t conncount_rnd __read_mostly;
74 static struct kmem_cache *conncount_rb_cachep __read_mostly;
75 static struct kmem_cache *conncount_conn_cachep __read_mostly;
76 
77 static inline bool already_closed(const struct nf_conn *conn)
78 {
79 	if (nf_ct_protonum(conn) == IPPROTO_TCP)
80 		return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT ||
81 		       conn->proto.tcp.state == TCP_CONNTRACK_CLOSE;
82 	else
83 		return false;
84 }
85 
86 static int key_diff(const u32 *a, const u32 *b, unsigned int klen)
87 {
88 	return memcmp(a, b, klen * sizeof(u32));
89 }
90 
91 enum nf_conncount_list_add
92 nf_conncount_add(struct nf_conncount_list *list,
93 		 const struct nf_conntrack_tuple *tuple,
94 		 const struct nf_conntrack_zone *zone)
95 {
96 	struct nf_conncount_tuple *conn;
97 
98 	if (WARN_ON_ONCE(list->count > INT_MAX))
99 		return NF_CONNCOUNT_ERR;
100 
101 	conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
102 	if (conn == NULL)
103 		return NF_CONNCOUNT_ERR;
104 
105 	conn->tuple = *tuple;
106 	conn->zone = *zone;
107 	conn->cpu = raw_smp_processor_id();
108 	conn->jiffies32 = (u32)jiffies;
109 	spin_lock(&list->list_lock);
110 	if (list->dead == true) {
111 		kmem_cache_free(conncount_conn_cachep, conn);
112 		spin_unlock(&list->list_lock);
113 		return NF_CONNCOUNT_SKIP;
114 	}
115 	list_add_tail(&conn->node, &list->head);
116 	list->count++;
117 	spin_unlock(&list->list_lock);
118 	return NF_CONNCOUNT_ADDED;
119 }
120 EXPORT_SYMBOL_GPL(nf_conncount_add);
121 
122 static void __conn_free(struct rcu_head *h)
123 {
124 	struct nf_conncount_tuple *conn;
125 
126 	conn = container_of(h, struct nf_conncount_tuple, rcu_head);
127 	kmem_cache_free(conncount_conn_cachep, conn);
128 }
129 
130 static bool conn_free(struct nf_conncount_list *list,
131 		      struct nf_conncount_tuple *conn)
132 {
133 	bool free_entry = false;
134 
135 	spin_lock(&list->list_lock);
136 
137 	if (list->count == 0) {
138 		spin_unlock(&list->list_lock);
139                 return free_entry;
140 	}
141 
142 	list->count--;
143 	list_del_rcu(&conn->node);
144 	if (list->count == 0)
145 		free_entry = true;
146 
147 	spin_unlock(&list->list_lock);
148 	call_rcu(&conn->rcu_head, __conn_free);
149 	return free_entry;
150 }
151 
152 static const struct nf_conntrack_tuple_hash *
153 find_or_evict(struct net *net, struct nf_conncount_list *list,
154 	      struct nf_conncount_tuple *conn, bool *free_entry)
155 {
156 	const struct nf_conntrack_tuple_hash *found;
157 	unsigned long a, b;
158 	int cpu = raw_smp_processor_id();
159 	__s32 age;
160 
161 	found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple);
162 	if (found)
163 		return found;
164 	b = conn->jiffies32;
165 	a = (u32)jiffies;
166 
167 	/* conn might have been added just before by another cpu and
168 	 * might still be unconfirmed.  In this case, nf_conntrack_find()
169 	 * returns no result.  Thus only evict if this cpu added the
170 	 * stale entry or if the entry is older than two jiffies.
171 	 */
172 	age = a - b;
173 	if (conn->cpu == cpu || age >= 2) {
174 		*free_entry = conn_free(list, conn);
175 		return ERR_PTR(-ENOENT);
176 	}
177 
178 	return ERR_PTR(-EAGAIN);
179 }
180 
181 void nf_conncount_lookup(struct net *net,
182 			 struct nf_conncount_list *list,
183 			 const struct nf_conntrack_tuple *tuple,
184 			 const struct nf_conntrack_zone *zone,
185 			 bool *addit)
186 {
187 	const struct nf_conntrack_tuple_hash *found;
188 	struct nf_conncount_tuple *conn, *conn_n;
189 	struct nf_conn *found_ct;
190 	unsigned int collect = 0;
191 	bool free_entry = false;
192 
193 	/* best effort only */
194 	*addit = tuple ? true : false;
195 
196 	/* check the saved connections */
197 	list_for_each_entry_safe(conn, conn_n, &list->head, node) {
198 		if (collect > CONNCOUNT_GC_MAX_NODES)
199 			break;
200 
201 		found = find_or_evict(net, list, conn, &free_entry);
202 		if (IS_ERR(found)) {
203 			/* Not found, but might be about to be confirmed */
204 			if (PTR_ERR(found) == -EAGAIN) {
205 				if (!tuple)
206 					continue;
207 
208 				if (nf_ct_tuple_equal(&conn->tuple, tuple) &&
209 				    nf_ct_zone_id(&conn->zone, conn->zone.dir) ==
210 				    nf_ct_zone_id(zone, zone->dir))
211 					*addit = false;
212 			} else if (PTR_ERR(found) == -ENOENT)
213 				collect++;
214 			continue;
215 		}
216 
217 		found_ct = nf_ct_tuplehash_to_ctrack(found);
218 
219 		if (tuple && nf_ct_tuple_equal(&conn->tuple, tuple) &&
220 		    nf_ct_zone_equal(found_ct, zone, zone->dir)) {
221 			/*
222 			 * We should not see tuples twice unless someone hooks
223 			 * this into a table without "-p tcp --syn".
224 			 *
225 			 * Attempt to avoid a re-add in this case.
226 			 */
227 			*addit = false;
228 		} else if (already_closed(found_ct)) {
229 			/*
230 			 * we do not care about connections which are
231 			 * closed already -> ditch it
232 			 */
233 			nf_ct_put(found_ct);
234 			conn_free(list, conn);
235 			collect++;
236 			continue;
237 		}
238 
239 		nf_ct_put(found_ct);
240 	}
241 }
242 EXPORT_SYMBOL_GPL(nf_conncount_lookup);
243 
244 void nf_conncount_list_init(struct nf_conncount_list *list)
245 {
246 	spin_lock_init(&list->list_lock);
247 	INIT_LIST_HEAD(&list->head);
248 	list->count = 1;
249 	list->dead = false;
250 }
251 EXPORT_SYMBOL_GPL(nf_conncount_list_init);
252 
253 /* Return true if the list is empty */
254 bool nf_conncount_gc_list(struct net *net,
255 			  struct nf_conncount_list *list)
256 {
257 	const struct nf_conntrack_tuple_hash *found;
258 	struct nf_conncount_tuple *conn, *conn_n;
259 	struct nf_conn *found_ct;
260 	unsigned int collected = 0;
261 	bool free_entry = false;
262 
263 	list_for_each_entry_safe(conn, conn_n, &list->head, node) {
264 		found = find_or_evict(net, list, conn, &free_entry);
265 		if (IS_ERR(found)) {
266 			if (PTR_ERR(found) == -ENOENT)  {
267 				if (free_entry)
268 					return true;
269 				collected++;
270 			}
271 			continue;
272 		}
273 
274 		found_ct = nf_ct_tuplehash_to_ctrack(found);
275 		if (already_closed(found_ct)) {
276 			/*
277 			 * we do not care about connections which are
278 			 * closed already -> ditch it
279 			 */
280 			nf_ct_put(found_ct);
281 			if (conn_free(list, conn))
282 				return true;
283 			collected++;
284 			continue;
285 		}
286 
287 		nf_ct_put(found_ct);
288 		if (collected > CONNCOUNT_GC_MAX_NODES)
289 			return false;
290 	}
291 	return false;
292 }
293 EXPORT_SYMBOL_GPL(nf_conncount_gc_list);
294 
295 static void __tree_nodes_free(struct rcu_head *h)
296 {
297 	struct nf_conncount_rb *rbconn;
298 
299 	rbconn = container_of(h, struct nf_conncount_rb, rcu_head);
300 	kmem_cache_free(conncount_rb_cachep, rbconn);
301 }
302 
303 static void tree_nodes_free(struct rb_root *root,
304 			    struct nf_conncount_rb *gc_nodes[],
305 			    unsigned int gc_count)
306 {
307 	struct nf_conncount_rb *rbconn;
308 
309 	while (gc_count) {
310 		rbconn = gc_nodes[--gc_count];
311 		spin_lock(&rbconn->list.list_lock);
312 		if (rbconn->list.count == 0 && rbconn->list.dead == false) {
313 			rbconn->list.dead = true;
314 			rb_erase(&rbconn->node, root);
315 			call_rcu(&rbconn->rcu_head, __tree_nodes_free);
316 		}
317 		spin_unlock(&rbconn->list.list_lock);
318 	}
319 }
320 
321 static void schedule_gc_worker(struct nf_conncount_data *data, int tree)
322 {
323 	set_bit(tree, data->pending_trees);
324 	schedule_work(&data->gc_work);
325 }
326 
327 static unsigned int
328 insert_tree(struct net *net,
329 	    struct nf_conncount_data *data,
330 	    struct rb_root *root,
331 	    unsigned int hash,
332 	    const u32 *key,
333 	    u8 keylen,
334 	    const struct nf_conntrack_tuple *tuple,
335 	    const struct nf_conntrack_zone *zone)
336 {
337 	enum nf_conncount_list_add ret;
338 	struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES];
339 	struct rb_node **rbnode, *parent;
340 	struct nf_conncount_rb *rbconn;
341 	struct nf_conncount_tuple *conn;
342 	unsigned int count = 0, gc_count = 0;
343 	bool node_found = false;
344 
345 	spin_lock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]);
346 
347 	parent = NULL;
348 	rbnode = &(root->rb_node);
349 	while (*rbnode) {
350 		int diff;
351 		rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node);
352 
353 		parent = *rbnode;
354 		diff = key_diff(key, rbconn->key, keylen);
355 		if (diff < 0) {
356 			rbnode = &((*rbnode)->rb_left);
357 		} else if (diff > 0) {
358 			rbnode = &((*rbnode)->rb_right);
359 		} else {
360 			/* unlikely: other cpu added node already */
361 			node_found = true;
362 			ret = nf_conncount_add(&rbconn->list, tuple, zone);
363 			if (ret == NF_CONNCOUNT_ERR) {
364 				count = 0; /* hotdrop */
365 			} else if (ret == NF_CONNCOUNT_ADDED) {
366 				count = rbconn->list.count;
367 			} else {
368 				/* NF_CONNCOUNT_SKIP, rbconn is already
369 				 * reclaimed by gc, insert a new tree node
370 				 */
371 				node_found = false;
372 			}
373 			break;
374 		}
375 
376 		if (gc_count >= ARRAY_SIZE(gc_nodes))
377 			continue;
378 
379 		if (nf_conncount_gc_list(net, &rbconn->list))
380 			gc_nodes[gc_count++] = rbconn;
381 	}
382 
383 	if (gc_count) {
384 		tree_nodes_free(root, gc_nodes, gc_count);
385 		/* tree_node_free before new allocation permits
386 		 * allocator to re-use newly free'd object.
387 		 *
388 		 * This is a rare event; in most cases we will find
389 		 * existing node to re-use. (or gc_count is 0).
390 		 */
391 
392 		if (gc_count >= ARRAY_SIZE(gc_nodes))
393 			schedule_gc_worker(data, hash);
394 	}
395 
396 	if (node_found)
397 		goto out_unlock;
398 
399 	/* expected case: match, insert new node */
400 	rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC);
401 	if (rbconn == NULL)
402 		goto out_unlock;
403 
404 	conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
405 	if (conn == NULL) {
406 		kmem_cache_free(conncount_rb_cachep, rbconn);
407 		goto out_unlock;
408 	}
409 
410 	conn->tuple = *tuple;
411 	conn->zone = *zone;
412 	memcpy(rbconn->key, key, sizeof(u32) * keylen);
413 
414 	nf_conncount_list_init(&rbconn->list);
415 	list_add(&conn->node, &rbconn->list.head);
416 	count = 1;
417 
418 	rb_link_node(&rbconn->node, parent, rbnode);
419 	rb_insert_color(&rbconn->node, root);
420 out_unlock:
421 	spin_unlock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]);
422 	return count;
423 }
424 
425 static unsigned int
426 count_tree(struct net *net,
427 	   struct nf_conncount_data *data,
428 	   const u32 *key,
429 	   const struct nf_conntrack_tuple *tuple,
430 	   const struct nf_conntrack_zone *zone)
431 {
432 	enum nf_conncount_list_add ret;
433 	struct rb_root *root;
434 	struct rb_node *parent;
435 	struct nf_conncount_rb *rbconn;
436 	unsigned int hash;
437 	u8 keylen = data->keylen;
438 
439 	hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS;
440 	root = &data->root[hash];
441 
442 	parent = rcu_dereference_raw(root->rb_node);
443 	while (parent) {
444 		int diff;
445 		bool addit;
446 
447 		rbconn = rb_entry(parent, struct nf_conncount_rb, node);
448 
449 		diff = key_diff(key, rbconn->key, keylen);
450 		if (diff < 0) {
451 			parent = rcu_dereference_raw(parent->rb_left);
452 		} else if (diff > 0) {
453 			parent = rcu_dereference_raw(parent->rb_right);
454 		} else {
455 			/* same source network -> be counted! */
456 			nf_conncount_lookup(net, &rbconn->list, tuple, zone,
457 					    &addit);
458 
459 			if (!addit)
460 				return rbconn->list.count;
461 
462 			ret = nf_conncount_add(&rbconn->list, tuple, zone);
463 			if (ret == NF_CONNCOUNT_ERR) {
464 				return 0; /* hotdrop */
465 			} else if (ret == NF_CONNCOUNT_ADDED) {
466 				return rbconn->list.count;
467 			} else {
468 				/* NF_CONNCOUNT_SKIP, rbconn is already
469 				 * reclaimed by gc, insert a new tree node
470 				 */
471 				break;
472 			}
473 		}
474 	}
475 
476 	if (!tuple)
477 		return 0;
478 
479 	return insert_tree(net, data, root, hash, key, keylen, tuple, zone);
480 }
481 
482 static void tree_gc_worker(struct work_struct *work)
483 {
484 	struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work);
485 	struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn;
486 	struct rb_root *root;
487 	struct rb_node *node;
488 	unsigned int tree, next_tree, gc_count = 0;
489 
490 	tree = data->gc_tree % CONNCOUNT_LOCK_SLOTS;
491 	root = &data->root[tree];
492 
493 	rcu_read_lock();
494 	for (node = rb_first(root); node != NULL; node = rb_next(node)) {
495 		rbconn = rb_entry(node, struct nf_conncount_rb, node);
496 		if (nf_conncount_gc_list(data->net, &rbconn->list))
497 			gc_nodes[gc_count++] = rbconn;
498 	}
499 	rcu_read_unlock();
500 
501 	spin_lock_bh(&nf_conncount_locks[tree]);
502 
503 	if (gc_count) {
504 		tree_nodes_free(root, gc_nodes, gc_count);
505 	}
506 
507 	clear_bit(tree, data->pending_trees);
508 
509 	next_tree = (tree + 1) % CONNCOUNT_SLOTS;
510 	next_tree = find_next_bit(data->pending_trees, next_tree, CONNCOUNT_SLOTS);
511 
512 	if (next_tree < CONNCOUNT_SLOTS) {
513 		data->gc_tree = next_tree;
514 		schedule_work(work);
515 	}
516 
517 	spin_unlock_bh(&nf_conncount_locks[tree]);
518 }
519 
520 /* Count and return number of conntrack entries in 'net' with particular 'key'.
521  * If 'tuple' is not null, insert it into the accounting data structure.
522  * Call with RCU read lock.
523  */
524 unsigned int nf_conncount_count(struct net *net,
525 				struct nf_conncount_data *data,
526 				const u32 *key,
527 				const struct nf_conntrack_tuple *tuple,
528 				const struct nf_conntrack_zone *zone)
529 {
530 	return count_tree(net, data, key, tuple, zone);
531 }
532 EXPORT_SYMBOL_GPL(nf_conncount_count);
533 
534 struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family,
535 					    unsigned int keylen)
536 {
537 	struct nf_conncount_data *data;
538 	int ret, i;
539 
540 	if (keylen % sizeof(u32) ||
541 	    keylen / sizeof(u32) > MAX_KEYLEN ||
542 	    keylen == 0)
543 		return ERR_PTR(-EINVAL);
544 
545 	net_get_random_once(&conncount_rnd, sizeof(conncount_rnd));
546 
547 	data = kmalloc(sizeof(*data), GFP_KERNEL);
548 	if (!data)
549 		return ERR_PTR(-ENOMEM);
550 
551 	ret = nf_ct_netns_get(net, family);
552 	if (ret < 0) {
553 		kfree(data);
554 		return ERR_PTR(ret);
555 	}
556 
557 	for (i = 0; i < ARRAY_SIZE(data->root); ++i)
558 		data->root[i] = RB_ROOT;
559 
560 	data->keylen = keylen / sizeof(u32);
561 	data->net = net;
562 	INIT_WORK(&data->gc_work, tree_gc_worker);
563 
564 	return data;
565 }
566 EXPORT_SYMBOL_GPL(nf_conncount_init);
567 
568 void nf_conncount_cache_free(struct nf_conncount_list *list)
569 {
570 	struct nf_conncount_tuple *conn, *conn_n;
571 
572 	list_for_each_entry_safe(conn, conn_n, &list->head, node)
573 		kmem_cache_free(conncount_conn_cachep, conn);
574 }
575 EXPORT_SYMBOL_GPL(nf_conncount_cache_free);
576 
577 static void destroy_tree(struct rb_root *r)
578 {
579 	struct nf_conncount_rb *rbconn;
580 	struct rb_node *node;
581 
582 	while ((node = rb_first(r)) != NULL) {
583 		rbconn = rb_entry(node, struct nf_conncount_rb, node);
584 
585 		rb_erase(node, r);
586 
587 		nf_conncount_cache_free(&rbconn->list);
588 
589 		kmem_cache_free(conncount_rb_cachep, rbconn);
590 	}
591 }
592 
593 void nf_conncount_destroy(struct net *net, unsigned int family,
594 			  struct nf_conncount_data *data)
595 {
596 	unsigned int i;
597 
598 	cancel_work_sync(&data->gc_work);
599 	nf_ct_netns_put(net, family);
600 
601 	for (i = 0; i < ARRAY_SIZE(data->root); ++i)
602 		destroy_tree(&data->root[i]);
603 
604 	kfree(data);
605 }
606 EXPORT_SYMBOL_GPL(nf_conncount_destroy);
607 
608 static int __init nf_conncount_modinit(void)
609 {
610 	int i;
611 
612 	BUILD_BUG_ON(CONNCOUNT_LOCK_SLOTS > CONNCOUNT_SLOTS);
613 	BUILD_BUG_ON((CONNCOUNT_SLOTS % CONNCOUNT_LOCK_SLOTS) != 0);
614 
615 	for (i = 0; i < CONNCOUNT_LOCK_SLOTS; ++i)
616 		spin_lock_init(&nf_conncount_locks[i]);
617 
618 	conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple",
619 					   sizeof(struct nf_conncount_tuple),
620 					   0, 0, NULL);
621 	if (!conncount_conn_cachep)
622 		return -ENOMEM;
623 
624 	conncount_rb_cachep = kmem_cache_create("nf_conncount_rb",
625 					   sizeof(struct nf_conncount_rb),
626 					   0, 0, NULL);
627 	if (!conncount_rb_cachep) {
628 		kmem_cache_destroy(conncount_conn_cachep);
629 		return -ENOMEM;
630 	}
631 
632 	return 0;
633 }
634 
635 static void __exit nf_conncount_modexit(void)
636 {
637 	kmem_cache_destroy(conncount_conn_cachep);
638 	kmem_cache_destroy(conncount_rb_cachep);
639 }
640 
641 module_init(nf_conncount_modinit);
642 module_exit(nf_conncount_modexit);
643 MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>");
644 MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
645 MODULE_DESCRIPTION("netfilter: count number of connections matching a key");
646 MODULE_LICENSE("GPL");
647