xref: /openbmc/linux/net/mptcp/protocol.c (revision fc772314)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include "protocol.h"
25 #include "mib.h"
26 
27 #define MPTCP_SAME_STATE TCP_MAX_STATES
28 
29 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
30 struct mptcp6_sock {
31 	struct mptcp_sock msk;
32 	struct ipv6_pinfo np;
33 };
34 #endif
35 
36 struct mptcp_skb_cb {
37 	u32 offset;
38 };
39 
40 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
41 
42 static struct percpu_counter mptcp_sockets_allocated;
43 
44 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
45  * completed yet or has failed, return the subflow socket.
46  * Otherwise return NULL.
47  */
48 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
49 {
50 	if (!msk->subflow || READ_ONCE(msk->can_ack))
51 		return NULL;
52 
53 	return msk->subflow;
54 }
55 
56 static bool mptcp_is_tcpsk(struct sock *sk)
57 {
58 	struct socket *sock = sk->sk_socket;
59 
60 	if (unlikely(sk->sk_prot == &tcp_prot)) {
61 		/* we are being invoked after mptcp_accept() has
62 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
63 		 * not an mptcp one.
64 		 *
65 		 * Hand the socket over to tcp so all further socket ops
66 		 * bypass mptcp.
67 		 */
68 		sock->ops = &inet_stream_ops;
69 		return true;
70 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
71 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
72 		sock->ops = &inet6_stream_ops;
73 		return true;
74 #endif
75 	}
76 
77 	return false;
78 }
79 
80 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
81 {
82 	sock_owned_by_me((const struct sock *)msk);
83 
84 	if (likely(!__mptcp_check_fallback(msk)))
85 		return NULL;
86 
87 	return msk->first;
88 }
89 
90 static int __mptcp_socket_create(struct mptcp_sock *msk)
91 {
92 	struct mptcp_subflow_context *subflow;
93 	struct sock *sk = (struct sock *)msk;
94 	struct socket *ssock;
95 	int err;
96 
97 	err = mptcp_subflow_create_socket(sk, &ssock);
98 	if (err)
99 		return err;
100 
101 	msk->first = ssock->sk;
102 	msk->subflow = ssock;
103 	subflow = mptcp_subflow_ctx(ssock->sk);
104 	list_add(&subflow->node, &msk->conn_list);
105 	subflow->request_mptcp = 1;
106 
107 	/* accept() will wait on first subflow sk_wq, and we always wakes up
108 	 * via msk->sk_socket
109 	 */
110 	RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq);
111 
112 	return 0;
113 }
114 
115 static void __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
116 			     struct sk_buff *skb,
117 			     unsigned int offset, size_t copy_len)
118 {
119 	struct sock *sk = (struct sock *)msk;
120 	struct sk_buff *tail;
121 
122 	__skb_unlink(skb, &ssk->sk_receive_queue);
123 
124 	skb_ext_reset(skb);
125 	skb_orphan(skb);
126 	msk->ack_seq += copy_len;
127 
128 	tail = skb_peek_tail(&sk->sk_receive_queue);
129 	if (offset == 0 && tail) {
130 		bool fragstolen;
131 		int delta;
132 
133 		if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
134 			kfree_skb_partial(skb, fragstolen);
135 			atomic_add(delta, &sk->sk_rmem_alloc);
136 			sk_mem_charge(sk, delta);
137 			return;
138 		}
139 	}
140 
141 	skb_set_owner_r(skb, sk);
142 	__skb_queue_tail(&sk->sk_receive_queue, skb);
143 	MPTCP_SKB_CB(skb)->offset = offset;
144 }
145 
146 static void mptcp_stop_timer(struct sock *sk)
147 {
148 	struct inet_connection_sock *icsk = inet_csk(sk);
149 
150 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
151 	mptcp_sk(sk)->timer_ival = 0;
152 }
153 
154 /* both sockets must be locked */
155 static bool mptcp_subflow_dsn_valid(const struct mptcp_sock *msk,
156 				    struct sock *ssk)
157 {
158 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
159 	u64 dsn = mptcp_subflow_get_mapped_dsn(subflow);
160 
161 	/* revalidate data sequence number.
162 	 *
163 	 * mptcp_subflow_data_available() is usually called
164 	 * without msk lock.  Its unlikely (but possible)
165 	 * that msk->ack_seq has been advanced since the last
166 	 * call found in-sequence data.
167 	 */
168 	if (likely(dsn == msk->ack_seq))
169 		return true;
170 
171 	subflow->data_avail = 0;
172 	return mptcp_subflow_data_available(ssk);
173 }
174 
175 static void mptcp_check_data_fin_ack(struct sock *sk)
176 {
177 	struct mptcp_sock *msk = mptcp_sk(sk);
178 
179 	if (__mptcp_check_fallback(msk))
180 		return;
181 
182 	/* Look for an acknowledged DATA_FIN */
183 	if (((1 << sk->sk_state) &
184 	     (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
185 	    msk->write_seq == atomic64_read(&msk->snd_una)) {
186 		mptcp_stop_timer(sk);
187 
188 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
189 
190 		switch (sk->sk_state) {
191 		case TCP_FIN_WAIT1:
192 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
193 			sk->sk_state_change(sk);
194 			break;
195 		case TCP_CLOSING:
196 		case TCP_LAST_ACK:
197 			inet_sk_state_store(sk, TCP_CLOSE);
198 			sk->sk_state_change(sk);
199 			break;
200 		}
201 
202 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
203 		    sk->sk_state == TCP_CLOSE)
204 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
205 		else
206 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
207 	}
208 }
209 
210 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
211 {
212 	struct mptcp_sock *msk = mptcp_sk(sk);
213 
214 	if (READ_ONCE(msk->rcv_data_fin) &&
215 	    ((1 << sk->sk_state) &
216 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
217 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
218 
219 		if (msk->ack_seq == rcv_data_fin_seq) {
220 			if (seq)
221 				*seq = rcv_data_fin_seq;
222 
223 			return true;
224 		}
225 	}
226 
227 	return false;
228 }
229 
230 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
231 {
232 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
233 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
234 
235 	if (tout <= 0)
236 		tout = mptcp_sk(sk)->timer_ival;
237 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
238 }
239 
240 static void mptcp_check_data_fin(struct sock *sk)
241 {
242 	struct mptcp_sock *msk = mptcp_sk(sk);
243 	u64 rcv_data_fin_seq;
244 
245 	if (__mptcp_check_fallback(msk) || !msk->first)
246 		return;
247 
248 	/* Need to ack a DATA_FIN received from a peer while this side
249 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
250 	 * msk->rcv_data_fin was set when parsing the incoming options
251 	 * at the subflow level and the msk lock was not held, so this
252 	 * is the first opportunity to act on the DATA_FIN and change
253 	 * the msk state.
254 	 *
255 	 * If we are caught up to the sequence number of the incoming
256 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
257 	 * not caught up, do nothing and let the recv code send DATA_ACK
258 	 * when catching up.
259 	 */
260 
261 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
262 		struct mptcp_subflow_context *subflow;
263 
264 		msk->ack_seq++;
265 		WRITE_ONCE(msk->rcv_data_fin, 0);
266 
267 		sk->sk_shutdown |= RCV_SHUTDOWN;
268 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
269 		set_bit(MPTCP_DATA_READY, &msk->flags);
270 
271 		switch (sk->sk_state) {
272 		case TCP_ESTABLISHED:
273 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
274 			break;
275 		case TCP_FIN_WAIT1:
276 			inet_sk_state_store(sk, TCP_CLOSING);
277 			break;
278 		case TCP_FIN_WAIT2:
279 			inet_sk_state_store(sk, TCP_CLOSE);
280 			// @@ Close subflows now?
281 			break;
282 		default:
283 			/* Other states not expected */
284 			WARN_ON_ONCE(1);
285 			break;
286 		}
287 
288 		mptcp_set_timeout(sk, NULL);
289 		mptcp_for_each_subflow(msk, subflow) {
290 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
291 
292 			lock_sock(ssk);
293 			tcp_send_ack(ssk);
294 			release_sock(ssk);
295 		}
296 
297 		sk->sk_state_change(sk);
298 
299 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
300 		    sk->sk_state == TCP_CLOSE)
301 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
302 		else
303 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
304 	}
305 }
306 
307 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
308 					   struct sock *ssk,
309 					   unsigned int *bytes)
310 {
311 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
312 	struct sock *sk = (struct sock *)msk;
313 	unsigned int moved = 0;
314 	bool more_data_avail;
315 	struct tcp_sock *tp;
316 	bool done = false;
317 
318 	if (!mptcp_subflow_dsn_valid(msk, ssk)) {
319 		*bytes = 0;
320 		return false;
321 	}
322 
323 	tp = tcp_sk(ssk);
324 	do {
325 		u32 map_remaining, offset;
326 		u32 seq = tp->copied_seq;
327 		struct sk_buff *skb;
328 		bool fin;
329 
330 		/* try to move as much data as available */
331 		map_remaining = subflow->map_data_len -
332 				mptcp_subflow_get_map_offset(subflow);
333 
334 		skb = skb_peek(&ssk->sk_receive_queue);
335 		if (!skb)
336 			break;
337 
338 		if (__mptcp_check_fallback(msk)) {
339 			/* if we are running under the workqueue, TCP could have
340 			 * collapsed skbs between dummy map creation and now
341 			 * be sure to adjust the size
342 			 */
343 			map_remaining = skb->len;
344 			subflow->map_data_len = skb->len;
345 		}
346 
347 		offset = seq - TCP_SKB_CB(skb)->seq;
348 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
349 		if (fin) {
350 			done = true;
351 			seq++;
352 		}
353 
354 		if (offset < skb->len) {
355 			size_t len = skb->len - offset;
356 
357 			if (tp->urg_data)
358 				done = true;
359 
360 			__mptcp_move_skb(msk, ssk, skb, offset, len);
361 			seq += len;
362 			moved += len;
363 
364 			if (WARN_ON_ONCE(map_remaining < len))
365 				break;
366 		} else {
367 			WARN_ON_ONCE(!fin);
368 			sk_eat_skb(ssk, skb);
369 			done = true;
370 		}
371 
372 		WRITE_ONCE(tp->copied_seq, seq);
373 		more_data_avail = mptcp_subflow_data_available(ssk);
374 
375 		if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) {
376 			done = true;
377 			break;
378 		}
379 	} while (more_data_avail);
380 
381 	*bytes = moved;
382 
383 	/* If the moves have caught up with the DATA_FIN sequence number
384 	 * it's time to ack the DATA_FIN and change socket state, but
385 	 * this is not a good place to change state. Let the workqueue
386 	 * do it.
387 	 */
388 	if (mptcp_pending_data_fin(sk, NULL) &&
389 	    schedule_work(&msk->work))
390 		sock_hold(sk);
391 
392 	return done;
393 }
394 
395 /* In most cases we will be able to lock the mptcp socket.  If its already
396  * owned, we need to defer to the work queue to avoid ABBA deadlock.
397  */
398 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
399 {
400 	struct sock *sk = (struct sock *)msk;
401 	unsigned int moved = 0;
402 
403 	if (READ_ONCE(sk->sk_lock.owned))
404 		return false;
405 
406 	if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock)))
407 		return false;
408 
409 	/* must re-check after taking the lock */
410 	if (!READ_ONCE(sk->sk_lock.owned))
411 		__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
412 
413 	spin_unlock_bh(&sk->sk_lock.slock);
414 
415 	return moved > 0;
416 }
417 
418 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
419 {
420 	struct mptcp_sock *msk = mptcp_sk(sk);
421 
422 	set_bit(MPTCP_DATA_READY, &msk->flags);
423 
424 	if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) &&
425 	    move_skbs_to_msk(msk, ssk))
426 		goto wake;
427 
428 	/* don't schedule if mptcp sk is (still) over limit */
429 	if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf))
430 		goto wake;
431 
432 	/* mptcp socket is owned, release_cb should retry */
433 	if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED,
434 			      &sk->sk_tsq_flags)) {
435 		sock_hold(sk);
436 
437 		/* need to try again, its possible release_cb() has already
438 		 * been called after the test_and_set_bit() above.
439 		 */
440 		move_skbs_to_msk(msk, ssk);
441 	}
442 wake:
443 	sk->sk_data_ready(sk);
444 }
445 
446 static void __mptcp_flush_join_list(struct mptcp_sock *msk)
447 {
448 	if (likely(list_empty(&msk->join_list)))
449 		return;
450 
451 	spin_lock_bh(&msk->join_list_lock);
452 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
453 	spin_unlock_bh(&msk->join_list_lock);
454 }
455 
456 static bool mptcp_timer_pending(struct sock *sk)
457 {
458 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
459 }
460 
461 static void mptcp_reset_timer(struct sock *sk)
462 {
463 	struct inet_connection_sock *icsk = inet_csk(sk);
464 	unsigned long tout;
465 
466 	/* should never be called with mptcp level timer cleared */
467 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
468 	if (WARN_ON_ONCE(!tout))
469 		tout = TCP_RTO_MIN;
470 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
471 }
472 
473 void mptcp_data_acked(struct sock *sk)
474 {
475 	mptcp_reset_timer(sk);
476 
477 	if ((!sk_stream_is_writeable(sk) ||
478 	     (inet_sk_state_load(sk) != TCP_ESTABLISHED)) &&
479 	    schedule_work(&mptcp_sk(sk)->work))
480 		sock_hold(sk);
481 }
482 
483 void mptcp_subflow_eof(struct sock *sk)
484 {
485 	struct mptcp_sock *msk = mptcp_sk(sk);
486 
487 	if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) &&
488 	    schedule_work(&msk->work))
489 		sock_hold(sk);
490 }
491 
492 static void mptcp_check_for_eof(struct mptcp_sock *msk)
493 {
494 	struct mptcp_subflow_context *subflow;
495 	struct sock *sk = (struct sock *)msk;
496 	int receivers = 0;
497 
498 	mptcp_for_each_subflow(msk, subflow)
499 		receivers += !subflow->rx_eof;
500 
501 	if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
502 		/* hopefully temporary hack: propagate shutdown status
503 		 * to msk, when all subflows agree on it
504 		 */
505 		sk->sk_shutdown |= RCV_SHUTDOWN;
506 
507 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
508 		set_bit(MPTCP_DATA_READY, &msk->flags);
509 		sk->sk_data_ready(sk);
510 	}
511 }
512 
513 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk)
514 {
515 	const struct sock *sk = (const struct sock *)msk;
516 
517 	if (!msk->cached_ext)
518 		msk->cached_ext = __skb_ext_alloc(sk->sk_allocation);
519 
520 	return !!msk->cached_ext;
521 }
522 
523 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
524 {
525 	struct mptcp_subflow_context *subflow;
526 	struct sock *sk = (struct sock *)msk;
527 
528 	sock_owned_by_me(sk);
529 
530 	mptcp_for_each_subflow(msk, subflow) {
531 		if (subflow->data_avail)
532 			return mptcp_subflow_tcp_sock(subflow);
533 	}
534 
535 	return NULL;
536 }
537 
538 static bool mptcp_skb_can_collapse_to(u64 write_seq,
539 				      const struct sk_buff *skb,
540 				      const struct mptcp_ext *mpext)
541 {
542 	if (!tcp_skb_can_collapse_to(skb))
543 		return false;
544 
545 	/* can collapse only if MPTCP level sequence is in order */
546 	return mpext && mpext->data_seq + mpext->data_len == write_seq;
547 }
548 
549 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
550 				       const struct page_frag *pfrag,
551 				       const struct mptcp_data_frag *df)
552 {
553 	return df && pfrag->page == df->page &&
554 		df->data_seq + df->data_len == msk->write_seq;
555 }
556 
557 static void dfrag_uncharge(struct sock *sk, int len)
558 {
559 	sk_mem_uncharge(sk, len);
560 	sk_wmem_queued_add(sk, -len);
561 }
562 
563 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
564 {
565 	int len = dfrag->data_len + dfrag->overhead;
566 
567 	list_del(&dfrag->list);
568 	dfrag_uncharge(sk, len);
569 	put_page(dfrag->page);
570 }
571 
572 static void mptcp_clean_una(struct sock *sk)
573 {
574 	struct mptcp_sock *msk = mptcp_sk(sk);
575 	struct mptcp_data_frag *dtmp, *dfrag;
576 	bool cleaned = false;
577 	u64 snd_una;
578 
579 	/* on fallback we just need to ignore snd_una, as this is really
580 	 * plain TCP
581 	 */
582 	if (__mptcp_check_fallback(msk))
583 		atomic64_set(&msk->snd_una, msk->write_seq);
584 	snd_una = atomic64_read(&msk->snd_una);
585 
586 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
587 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
588 			break;
589 
590 		dfrag_clear(sk, dfrag);
591 		cleaned = true;
592 	}
593 
594 	dfrag = mptcp_rtx_head(sk);
595 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
596 		u64 delta = snd_una - dfrag->data_seq;
597 
598 		if (WARN_ON_ONCE(delta > dfrag->data_len))
599 			goto out;
600 
601 		dfrag->data_seq += delta;
602 		dfrag->offset += delta;
603 		dfrag->data_len -= delta;
604 
605 		dfrag_uncharge(sk, delta);
606 		cleaned = true;
607 	}
608 
609 out:
610 	if (cleaned) {
611 		sk_mem_reclaim_partial(sk);
612 
613 		/* Only wake up writers if a subflow is ready */
614 		if (test_bit(MPTCP_SEND_SPACE, &msk->flags))
615 			sk_stream_write_space(sk);
616 	}
617 }
618 
619 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
620  * data
621  */
622 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
623 {
624 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
625 					pfrag, sk->sk_allocation)))
626 		return true;
627 
628 	sk->sk_prot->enter_memory_pressure(sk);
629 	sk_stream_moderate_sndbuf(sk);
630 	return false;
631 }
632 
633 static struct mptcp_data_frag *
634 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
635 		      int orig_offset)
636 {
637 	int offset = ALIGN(orig_offset, sizeof(long));
638 	struct mptcp_data_frag *dfrag;
639 
640 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
641 	dfrag->data_len = 0;
642 	dfrag->data_seq = msk->write_seq;
643 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
644 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
645 	dfrag->page = pfrag->page;
646 
647 	return dfrag;
648 }
649 
650 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
651 			      struct msghdr *msg, struct mptcp_data_frag *dfrag,
652 			      long *timeo, int *pmss_now,
653 			      int *ps_goal)
654 {
655 	int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0;
656 	bool dfrag_collapsed, can_collapse = false;
657 	struct mptcp_sock *msk = mptcp_sk(sk);
658 	struct mptcp_ext *mpext = NULL;
659 	bool retransmission = !!dfrag;
660 	struct sk_buff *skb, *tail;
661 	struct page_frag *pfrag;
662 	struct page *page;
663 	u64 *write_seq;
664 	size_t psize;
665 
666 	/* use the mptcp page cache so that we can easily move the data
667 	 * from one substream to another, but do per subflow memory accounting
668 	 * Note: pfrag is used only !retransmission, but the compiler if
669 	 * fooled into a warning if we don't init here
670 	 */
671 	pfrag = sk_page_frag(sk);
672 	if (!retransmission) {
673 		write_seq = &msk->write_seq;
674 		page = pfrag->page;
675 	} else {
676 		write_seq = &dfrag->data_seq;
677 		page = dfrag->page;
678 	}
679 
680 	/* compute copy limit */
681 	mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags);
682 	*pmss_now = mss_now;
683 	*ps_goal = size_goal;
684 	avail_size = size_goal;
685 	skb = tcp_write_queue_tail(ssk);
686 	if (skb) {
687 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
688 
689 		/* Limit the write to the size available in the
690 		 * current skb, if any, so that we create at most a new skb.
691 		 * Explicitly tells TCP internals to avoid collapsing on later
692 		 * queue management operation, to avoid breaking the ext <->
693 		 * SSN association set here
694 		 */
695 		can_collapse = (size_goal - skb->len > 0) &&
696 			      mptcp_skb_can_collapse_to(*write_seq, skb, mpext);
697 		if (!can_collapse)
698 			TCP_SKB_CB(skb)->eor = 1;
699 		else
700 			avail_size = size_goal - skb->len;
701 	}
702 
703 	if (!retransmission) {
704 		/* reuse tail pfrag, if possible, or carve a new one from the
705 		 * page allocator
706 		 */
707 		dfrag = mptcp_rtx_tail(sk);
708 		offset = pfrag->offset;
709 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
710 		if (!dfrag_collapsed) {
711 			dfrag = mptcp_carve_data_frag(msk, pfrag, offset);
712 			offset = dfrag->offset;
713 			frag_truesize = dfrag->overhead;
714 		}
715 		psize = min_t(size_t, pfrag->size - offset, avail_size);
716 
717 		/* Copy to page */
718 		pr_debug("left=%zu", msg_data_left(msg));
719 		psize = copy_page_from_iter(pfrag->page, offset,
720 					    min_t(size_t, msg_data_left(msg),
721 						  psize),
722 					    &msg->msg_iter);
723 		pr_debug("left=%zu", msg_data_left(msg));
724 		if (!psize)
725 			return -EINVAL;
726 
727 		if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) {
728 			iov_iter_revert(&msg->msg_iter, psize);
729 			return -ENOMEM;
730 		}
731 	} else {
732 		offset = dfrag->offset;
733 		psize = min_t(size_t, dfrag->data_len, avail_size);
734 	}
735 
736 	/* tell the TCP stack to delay the push so that we can safely
737 	 * access the skb after the sendpages call
738 	 */
739 	ret = do_tcp_sendpages(ssk, page, offset, psize,
740 			       msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT);
741 	if (ret <= 0) {
742 		if (!retransmission)
743 			iov_iter_revert(&msg->msg_iter, psize);
744 		return ret;
745 	}
746 
747 	frag_truesize += ret;
748 	if (!retransmission) {
749 		if (unlikely(ret < psize))
750 			iov_iter_revert(&msg->msg_iter, psize - ret);
751 
752 		/* send successful, keep track of sent data for mptcp-level
753 		 * retransmission
754 		 */
755 		dfrag->data_len += ret;
756 		if (!dfrag_collapsed) {
757 			get_page(dfrag->page);
758 			list_add_tail(&dfrag->list, &msk->rtx_queue);
759 			sk_wmem_queued_add(sk, frag_truesize);
760 		} else {
761 			sk_wmem_queued_add(sk, ret);
762 		}
763 
764 		/* charge data on mptcp rtx queue to the master socket
765 		 * Note: we charge such data both to sk and ssk
766 		 */
767 		sk->sk_forward_alloc -= frag_truesize;
768 	}
769 
770 	/* if the tail skb extension is still the cached one, collapsing
771 	 * really happened. Note: we can't check for 'same skb' as the sk_buff
772 	 * hdr on tail can be transmitted, freed and re-allocated by the
773 	 * do_tcp_sendpages() call
774 	 */
775 	tail = tcp_write_queue_tail(ssk);
776 	if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) {
777 		WARN_ON_ONCE(!can_collapse);
778 		mpext->data_len += ret;
779 		goto out;
780 	}
781 
782 	skb = tcp_write_queue_tail(ssk);
783 	mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext);
784 	msk->cached_ext = NULL;
785 
786 	memset(mpext, 0, sizeof(*mpext));
787 	mpext->data_seq = *write_seq;
788 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
789 	mpext->data_len = ret;
790 	mpext->use_map = 1;
791 	mpext->dsn64 = 1;
792 
793 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
794 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
795 		 mpext->dsn64);
796 
797 out:
798 	if (!retransmission)
799 		pfrag->offset += frag_truesize;
800 	WRITE_ONCE(*write_seq, *write_seq + ret);
801 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
802 
803 	return ret;
804 }
805 
806 static void mptcp_nospace(struct mptcp_sock *msk, struct socket *sock)
807 {
808 	clear_bit(MPTCP_SEND_SPACE, &msk->flags);
809 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
810 
811 	/* enables sk->write_space() callbacks */
812 	set_bit(SOCK_NOSPACE, &sock->flags);
813 }
814 
815 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
816 {
817 	struct mptcp_subflow_context *subflow;
818 	struct sock *backup = NULL;
819 
820 	sock_owned_by_me((const struct sock *)msk);
821 
822 	if (!mptcp_ext_cache_refill(msk))
823 		return NULL;
824 
825 	mptcp_for_each_subflow(msk, subflow) {
826 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
827 
828 		if (!sk_stream_memory_free(ssk)) {
829 			struct socket *sock = ssk->sk_socket;
830 
831 			if (sock)
832 				mptcp_nospace(msk, sock);
833 
834 			return NULL;
835 		}
836 
837 		if (subflow->backup) {
838 			if (!backup)
839 				backup = ssk;
840 
841 			continue;
842 		}
843 
844 		return ssk;
845 	}
846 
847 	return backup;
848 }
849 
850 static void ssk_check_wmem(struct mptcp_sock *msk, struct sock *ssk)
851 {
852 	struct socket *sock;
853 
854 	if (likely(sk_stream_is_writeable(ssk)))
855 		return;
856 
857 	sock = READ_ONCE(ssk->sk_socket);
858 	if (sock)
859 		mptcp_nospace(msk, sock);
860 }
861 
862 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
863 {
864 	int mss_now = 0, size_goal = 0, ret = 0;
865 	struct mptcp_sock *msk = mptcp_sk(sk);
866 	struct page_frag *pfrag;
867 	size_t copied = 0;
868 	struct sock *ssk;
869 	bool tx_ok;
870 	long timeo;
871 
872 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
873 		return -EOPNOTSUPP;
874 
875 	lock_sock(sk);
876 
877 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
878 
879 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
880 		ret = sk_stream_wait_connect(sk, &timeo);
881 		if (ret)
882 			goto out;
883 	}
884 
885 	pfrag = sk_page_frag(sk);
886 restart:
887 	mptcp_clean_una(sk);
888 
889 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
890 		ret = -EPIPE;
891 		goto out;
892 	}
893 
894 wait_for_sndbuf:
895 	__mptcp_flush_join_list(msk);
896 	ssk = mptcp_subflow_get_send(msk);
897 	while (!sk_stream_memory_free(sk) ||
898 	       !ssk ||
899 	       !mptcp_page_frag_refill(ssk, pfrag)) {
900 		if (ssk) {
901 			/* make sure retransmit timer is
902 			 * running before we wait for memory.
903 			 *
904 			 * The retransmit timer might be needed
905 			 * to make the peer send an up-to-date
906 			 * MPTCP Ack.
907 			 */
908 			mptcp_set_timeout(sk, ssk);
909 			if (!mptcp_timer_pending(sk))
910 				mptcp_reset_timer(sk);
911 		}
912 
913 		ret = sk_stream_wait_memory(sk, &timeo);
914 		if (ret)
915 			goto out;
916 
917 		mptcp_clean_una(sk);
918 
919 		ssk = mptcp_subflow_get_send(msk);
920 		if (list_empty(&msk->conn_list)) {
921 			ret = -ENOTCONN;
922 			goto out;
923 		}
924 	}
925 
926 	pr_debug("conn_list->subflow=%p", ssk);
927 
928 	lock_sock(ssk);
929 	tx_ok = msg_data_left(msg);
930 	while (tx_ok) {
931 		ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now,
932 					 &size_goal);
933 		if (ret < 0) {
934 			if (ret == -EAGAIN && timeo > 0) {
935 				mptcp_set_timeout(sk, ssk);
936 				release_sock(ssk);
937 				goto restart;
938 			}
939 			break;
940 		}
941 
942 		copied += ret;
943 
944 		tx_ok = msg_data_left(msg);
945 		if (!tx_ok)
946 			break;
947 
948 		if (!sk_stream_memory_free(ssk) ||
949 		    !mptcp_page_frag_refill(ssk, pfrag) ||
950 		    !mptcp_ext_cache_refill(msk)) {
951 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
952 			tcp_push(ssk, msg->msg_flags, mss_now,
953 				 tcp_sk(ssk)->nonagle, size_goal);
954 			mptcp_set_timeout(sk, ssk);
955 			release_sock(ssk);
956 			goto restart;
957 		}
958 
959 		/* memory is charged to mptcp level socket as well, i.e.
960 		 * if msg is very large, mptcp socket may run out of buffer
961 		 * space.  mptcp_clean_una() will release data that has
962 		 * been acked at mptcp level in the mean time, so there is
963 		 * a good chance we can continue sending data right away.
964 		 *
965 		 * Normally, when the tcp subflow can accept more data, then
966 		 * so can the MPTCP socket.  However, we need to cope with
967 		 * peers that might lag behind in their MPTCP-level
968 		 * acknowledgements, i.e.  data might have been acked at
969 		 * tcp level only.  So, we must also check the MPTCP socket
970 		 * limits before we send more data.
971 		 */
972 		if (unlikely(!sk_stream_memory_free(sk))) {
973 			tcp_push(ssk, msg->msg_flags, mss_now,
974 				 tcp_sk(ssk)->nonagle, size_goal);
975 			mptcp_clean_una(sk);
976 			if (!sk_stream_memory_free(sk)) {
977 				/* can't send more for now, need to wait for
978 				 * MPTCP-level ACKs from peer.
979 				 *
980 				 * Wakeup will happen via mptcp_clean_una().
981 				 */
982 				mptcp_set_timeout(sk, ssk);
983 				release_sock(ssk);
984 				goto wait_for_sndbuf;
985 			}
986 		}
987 	}
988 
989 	mptcp_set_timeout(sk, ssk);
990 	if (copied) {
991 		tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle,
992 			 size_goal);
993 
994 		/* start the timer, if it's not pending */
995 		if (!mptcp_timer_pending(sk))
996 			mptcp_reset_timer(sk);
997 	}
998 
999 	ssk_check_wmem(msk, ssk);
1000 	release_sock(ssk);
1001 out:
1002 	release_sock(sk);
1003 	return copied ? : ret;
1004 }
1005 
1006 static void mptcp_wait_data(struct sock *sk, long *timeo)
1007 {
1008 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1009 	struct mptcp_sock *msk = mptcp_sk(sk);
1010 
1011 	add_wait_queue(sk_sleep(sk), &wait);
1012 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1013 
1014 	sk_wait_event(sk, timeo,
1015 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1016 
1017 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1018 	remove_wait_queue(sk_sleep(sk), &wait);
1019 }
1020 
1021 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1022 				struct msghdr *msg,
1023 				size_t len)
1024 {
1025 	struct sock *sk = (struct sock *)msk;
1026 	struct sk_buff *skb;
1027 	int copied = 0;
1028 
1029 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1030 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1031 		u32 data_len = skb->len - offset;
1032 		u32 count = min_t(size_t, len - copied, data_len);
1033 		int err;
1034 
1035 		err = skb_copy_datagram_msg(skb, offset, msg, count);
1036 		if (unlikely(err < 0)) {
1037 			if (!copied)
1038 				return err;
1039 			break;
1040 		}
1041 
1042 		copied += count;
1043 
1044 		if (count < data_len) {
1045 			MPTCP_SKB_CB(skb)->offset += count;
1046 			break;
1047 		}
1048 
1049 		__skb_unlink(skb, &sk->sk_receive_queue);
1050 		__kfree_skb(skb);
1051 
1052 		if (copied >= len)
1053 			break;
1054 	}
1055 
1056 	return copied;
1057 }
1058 
1059 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1060  *
1061  * Only difference: Use highest rtt estimate of the subflows in use.
1062  */
1063 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1064 {
1065 	struct mptcp_subflow_context *subflow;
1066 	struct sock *sk = (struct sock *)msk;
1067 	u32 time, advmss = 1;
1068 	u64 rtt_us, mstamp;
1069 
1070 	sock_owned_by_me(sk);
1071 
1072 	if (copied <= 0)
1073 		return;
1074 
1075 	msk->rcvq_space.copied += copied;
1076 
1077 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1078 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1079 
1080 	rtt_us = msk->rcvq_space.rtt_us;
1081 	if (rtt_us && time < (rtt_us >> 3))
1082 		return;
1083 
1084 	rtt_us = 0;
1085 	mptcp_for_each_subflow(msk, subflow) {
1086 		const struct tcp_sock *tp;
1087 		u64 sf_rtt_us;
1088 		u32 sf_advmss;
1089 
1090 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1091 
1092 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1093 		sf_advmss = READ_ONCE(tp->advmss);
1094 
1095 		rtt_us = max(sf_rtt_us, rtt_us);
1096 		advmss = max(sf_advmss, advmss);
1097 	}
1098 
1099 	msk->rcvq_space.rtt_us = rtt_us;
1100 	if (time < (rtt_us >> 3) || rtt_us == 0)
1101 		return;
1102 
1103 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1104 		goto new_measure;
1105 
1106 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1107 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1108 		int rcvmem, rcvbuf;
1109 		u64 rcvwin, grow;
1110 
1111 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1112 
1113 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1114 
1115 		do_div(grow, msk->rcvq_space.space);
1116 		rcvwin += (grow << 1);
1117 
1118 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1119 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1120 			rcvmem += 128;
1121 
1122 		do_div(rcvwin, advmss);
1123 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1124 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1125 
1126 		if (rcvbuf > sk->sk_rcvbuf) {
1127 			u32 window_clamp;
1128 
1129 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1130 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1131 
1132 			/* Make subflows follow along.  If we do not do this, we
1133 			 * get drops at subflow level if skbs can't be moved to
1134 			 * the mptcp rx queue fast enough (announced rcv_win can
1135 			 * exceed ssk->sk_rcvbuf).
1136 			 */
1137 			mptcp_for_each_subflow(msk, subflow) {
1138 				struct sock *ssk;
1139 
1140 				ssk = mptcp_subflow_tcp_sock(subflow);
1141 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1142 				tcp_sk(ssk)->window_clamp = window_clamp;
1143 			}
1144 		}
1145 	}
1146 
1147 	msk->rcvq_space.space = msk->rcvq_space.copied;
1148 new_measure:
1149 	msk->rcvq_space.copied = 0;
1150 	msk->rcvq_space.time = mstamp;
1151 }
1152 
1153 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1154 {
1155 	unsigned int moved = 0;
1156 	bool done;
1157 
1158 	do {
1159 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1160 
1161 		if (!ssk)
1162 			break;
1163 
1164 		lock_sock(ssk);
1165 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1166 		release_sock(ssk);
1167 	} while (!done);
1168 
1169 	return moved > 0;
1170 }
1171 
1172 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1173 			 int nonblock, int flags, int *addr_len)
1174 {
1175 	struct mptcp_sock *msk = mptcp_sk(sk);
1176 	int copied = 0;
1177 	int target;
1178 	long timeo;
1179 
1180 	if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
1181 		return -EOPNOTSUPP;
1182 
1183 	lock_sock(sk);
1184 	timeo = sock_rcvtimeo(sk, nonblock);
1185 
1186 	len = min_t(size_t, len, INT_MAX);
1187 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1188 	__mptcp_flush_join_list(msk);
1189 
1190 	while (len > (size_t)copied) {
1191 		int bytes_read;
1192 
1193 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
1194 		if (unlikely(bytes_read < 0)) {
1195 			if (!copied)
1196 				copied = bytes_read;
1197 			goto out_err;
1198 		}
1199 
1200 		copied += bytes_read;
1201 
1202 		if (skb_queue_empty(&sk->sk_receive_queue) &&
1203 		    __mptcp_move_skbs(msk))
1204 			continue;
1205 
1206 		/* only the master socket status is relevant here. The exit
1207 		 * conditions mirror closely tcp_recvmsg()
1208 		 */
1209 		if (copied >= target)
1210 			break;
1211 
1212 		if (copied) {
1213 			if (sk->sk_err ||
1214 			    sk->sk_state == TCP_CLOSE ||
1215 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1216 			    !timeo ||
1217 			    signal_pending(current))
1218 				break;
1219 		} else {
1220 			if (sk->sk_err) {
1221 				copied = sock_error(sk);
1222 				break;
1223 			}
1224 
1225 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1226 				mptcp_check_for_eof(msk);
1227 
1228 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1229 				break;
1230 
1231 			if (sk->sk_state == TCP_CLOSE) {
1232 				copied = -ENOTCONN;
1233 				break;
1234 			}
1235 
1236 			if (!timeo) {
1237 				copied = -EAGAIN;
1238 				break;
1239 			}
1240 
1241 			if (signal_pending(current)) {
1242 				copied = sock_intr_errno(timeo);
1243 				break;
1244 			}
1245 		}
1246 
1247 		pr_debug("block timeout %ld", timeo);
1248 		mptcp_wait_data(sk, &timeo);
1249 	}
1250 
1251 	if (skb_queue_empty(&sk->sk_receive_queue)) {
1252 		/* entire backlog drained, clear DATA_READY. */
1253 		clear_bit(MPTCP_DATA_READY, &msk->flags);
1254 
1255 		/* .. race-breaker: ssk might have gotten new data
1256 		 * after last __mptcp_move_skbs() returned false.
1257 		 */
1258 		if (unlikely(__mptcp_move_skbs(msk)))
1259 			set_bit(MPTCP_DATA_READY, &msk->flags);
1260 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
1261 		/* data to read but mptcp_wait_data() cleared DATA_READY */
1262 		set_bit(MPTCP_DATA_READY, &msk->flags);
1263 	}
1264 out_err:
1265 	mptcp_rcv_space_adjust(msk, copied);
1266 
1267 	release_sock(sk);
1268 	return copied;
1269 }
1270 
1271 static void mptcp_retransmit_handler(struct sock *sk)
1272 {
1273 	struct mptcp_sock *msk = mptcp_sk(sk);
1274 
1275 	if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) {
1276 		mptcp_stop_timer(sk);
1277 	} else {
1278 		set_bit(MPTCP_WORK_RTX, &msk->flags);
1279 		if (schedule_work(&msk->work))
1280 			sock_hold(sk);
1281 	}
1282 }
1283 
1284 static void mptcp_retransmit_timer(struct timer_list *t)
1285 {
1286 	struct inet_connection_sock *icsk = from_timer(icsk, t,
1287 						       icsk_retransmit_timer);
1288 	struct sock *sk = &icsk->icsk_inet.sk;
1289 
1290 	bh_lock_sock(sk);
1291 	if (!sock_owned_by_user(sk)) {
1292 		mptcp_retransmit_handler(sk);
1293 	} else {
1294 		/* delegate our work to tcp_release_cb() */
1295 		if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
1296 				      &sk->sk_tsq_flags))
1297 			sock_hold(sk);
1298 	}
1299 	bh_unlock_sock(sk);
1300 	sock_put(sk);
1301 }
1302 
1303 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
1304  * level.
1305  *
1306  * A backup subflow is returned only if that is the only kind available.
1307  */
1308 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
1309 {
1310 	struct mptcp_subflow_context *subflow;
1311 	struct sock *backup = NULL;
1312 
1313 	sock_owned_by_me((const struct sock *)msk);
1314 
1315 	mptcp_for_each_subflow(msk, subflow) {
1316 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1317 
1318 		/* still data outstanding at TCP level?  Don't retransmit. */
1319 		if (!tcp_write_queue_empty(ssk))
1320 			return NULL;
1321 
1322 		if (subflow->backup) {
1323 			if (!backup)
1324 				backup = ssk;
1325 			continue;
1326 		}
1327 
1328 		return ssk;
1329 	}
1330 
1331 	return backup;
1332 }
1333 
1334 /* subflow sockets can be either outgoing (connect) or incoming
1335  * (accept).
1336  *
1337  * Outgoing subflows use in-kernel sockets.
1338  * Incoming subflows do not have their own 'struct socket' allocated,
1339  * so we need to use tcp_close() after detaching them from the mptcp
1340  * parent socket.
1341  */
1342 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
1343 			      struct mptcp_subflow_context *subflow,
1344 			      long timeout)
1345 {
1346 	struct socket *sock = READ_ONCE(ssk->sk_socket);
1347 
1348 	list_del(&subflow->node);
1349 
1350 	if (sock && sock != sk->sk_socket) {
1351 		/* outgoing subflow */
1352 		sock_release(sock);
1353 	} else {
1354 		/* incoming subflow */
1355 		tcp_close(ssk, timeout);
1356 	}
1357 }
1358 
1359 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
1360 {
1361 	return 0;
1362 }
1363 
1364 static void pm_work(struct mptcp_sock *msk)
1365 {
1366 	struct mptcp_pm_data *pm = &msk->pm;
1367 
1368 	spin_lock_bh(&msk->pm.lock);
1369 
1370 	pr_debug("msk=%p status=%x", msk, pm->status);
1371 	if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
1372 		pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
1373 		mptcp_pm_nl_add_addr_received(msk);
1374 	}
1375 	if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
1376 		pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
1377 		mptcp_pm_nl_fully_established(msk);
1378 	}
1379 	if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
1380 		pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
1381 		mptcp_pm_nl_subflow_established(msk);
1382 	}
1383 
1384 	spin_unlock_bh(&msk->pm.lock);
1385 }
1386 
1387 static void mptcp_worker(struct work_struct *work)
1388 {
1389 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
1390 	struct sock *ssk, *sk = &msk->sk.icsk_inet.sk;
1391 	int orig_len, orig_offset, mss_now = 0, size_goal = 0;
1392 	struct mptcp_data_frag *dfrag;
1393 	u64 orig_write_seq;
1394 	size_t copied = 0;
1395 	struct msghdr msg = {
1396 		.msg_flags = MSG_DONTWAIT,
1397 	};
1398 	long timeo = 0;
1399 
1400 	lock_sock(sk);
1401 	mptcp_clean_una(sk);
1402 	mptcp_check_data_fin_ack(sk);
1403 	__mptcp_flush_join_list(msk);
1404 	__mptcp_move_skbs(msk);
1405 
1406 	if (msk->pm.status)
1407 		pm_work(msk);
1408 
1409 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1410 		mptcp_check_for_eof(msk);
1411 
1412 	mptcp_check_data_fin(sk);
1413 
1414 	if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
1415 		goto unlock;
1416 
1417 	dfrag = mptcp_rtx_head(sk);
1418 	if (!dfrag)
1419 		goto unlock;
1420 
1421 	if (!mptcp_ext_cache_refill(msk))
1422 		goto reset_unlock;
1423 
1424 	ssk = mptcp_subflow_get_retrans(msk);
1425 	if (!ssk)
1426 		goto reset_unlock;
1427 
1428 	lock_sock(ssk);
1429 
1430 	orig_len = dfrag->data_len;
1431 	orig_offset = dfrag->offset;
1432 	orig_write_seq = dfrag->data_seq;
1433 	while (dfrag->data_len > 0) {
1434 		int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo,
1435 					     &mss_now, &size_goal);
1436 		if (ret < 0)
1437 			break;
1438 
1439 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
1440 		copied += ret;
1441 		dfrag->data_len -= ret;
1442 		dfrag->offset += ret;
1443 
1444 		if (!mptcp_ext_cache_refill(msk))
1445 			break;
1446 	}
1447 	if (copied)
1448 		tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle,
1449 			 size_goal);
1450 
1451 	dfrag->data_seq = orig_write_seq;
1452 	dfrag->offset = orig_offset;
1453 	dfrag->data_len = orig_len;
1454 
1455 	mptcp_set_timeout(sk, ssk);
1456 	release_sock(ssk);
1457 
1458 reset_unlock:
1459 	if (!mptcp_timer_pending(sk))
1460 		mptcp_reset_timer(sk);
1461 
1462 unlock:
1463 	release_sock(sk);
1464 	sock_put(sk);
1465 }
1466 
1467 static int __mptcp_init_sock(struct sock *sk)
1468 {
1469 	struct mptcp_sock *msk = mptcp_sk(sk);
1470 
1471 	spin_lock_init(&msk->join_list_lock);
1472 
1473 	INIT_LIST_HEAD(&msk->conn_list);
1474 	INIT_LIST_HEAD(&msk->join_list);
1475 	INIT_LIST_HEAD(&msk->rtx_queue);
1476 	__set_bit(MPTCP_SEND_SPACE, &msk->flags);
1477 	INIT_WORK(&msk->work, mptcp_worker);
1478 
1479 	msk->first = NULL;
1480 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
1481 
1482 	mptcp_pm_data_init(msk);
1483 
1484 	/* re-use the csk retrans timer for MPTCP-level retrans */
1485 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
1486 
1487 	return 0;
1488 }
1489 
1490 static int mptcp_init_sock(struct sock *sk)
1491 {
1492 	struct net *net = sock_net(sk);
1493 	int ret;
1494 
1495 	if (!mptcp_is_enabled(net))
1496 		return -ENOPROTOOPT;
1497 
1498 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
1499 		return -ENOMEM;
1500 
1501 	ret = __mptcp_init_sock(sk);
1502 	if (ret)
1503 		return ret;
1504 
1505 	ret = __mptcp_socket_create(mptcp_sk(sk));
1506 	if (ret)
1507 		return ret;
1508 
1509 	sk_sockets_allocated_inc(sk);
1510 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
1511 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[2];
1512 
1513 	return 0;
1514 }
1515 
1516 static void __mptcp_clear_xmit(struct sock *sk)
1517 {
1518 	struct mptcp_sock *msk = mptcp_sk(sk);
1519 	struct mptcp_data_frag *dtmp, *dfrag;
1520 
1521 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
1522 
1523 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
1524 		dfrag_clear(sk, dfrag);
1525 }
1526 
1527 static void mptcp_cancel_work(struct sock *sk)
1528 {
1529 	struct mptcp_sock *msk = mptcp_sk(sk);
1530 
1531 	if (cancel_work_sync(&msk->work))
1532 		sock_put(sk);
1533 }
1534 
1535 static void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
1536 {
1537 	lock_sock(ssk);
1538 
1539 	switch (ssk->sk_state) {
1540 	case TCP_LISTEN:
1541 		if (!(how & RCV_SHUTDOWN))
1542 			break;
1543 		fallthrough;
1544 	case TCP_SYN_SENT:
1545 		tcp_disconnect(ssk, O_NONBLOCK);
1546 		break;
1547 	default:
1548 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
1549 			pr_debug("Fallback");
1550 			ssk->sk_shutdown |= how;
1551 			tcp_shutdown(ssk, how);
1552 		} else {
1553 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
1554 			mptcp_set_timeout(sk, ssk);
1555 			tcp_send_ack(ssk);
1556 		}
1557 		break;
1558 	}
1559 
1560 	release_sock(ssk);
1561 }
1562 
1563 static const unsigned char new_state[16] = {
1564 	/* current state:     new state:      action:	*/
1565 	[0 /* (Invalid) */] = TCP_CLOSE,
1566 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1567 	[TCP_SYN_SENT]      = TCP_CLOSE,
1568 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1569 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
1570 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
1571 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
1572 	[TCP_CLOSE]         = TCP_CLOSE,
1573 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
1574 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
1575 	[TCP_LISTEN]        = TCP_CLOSE,
1576 	[TCP_CLOSING]       = TCP_CLOSING,
1577 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
1578 };
1579 
1580 static int mptcp_close_state(struct sock *sk)
1581 {
1582 	int next = (int)new_state[sk->sk_state];
1583 	int ns = next & TCP_STATE_MASK;
1584 
1585 	inet_sk_state_store(sk, ns);
1586 
1587 	return next & TCP_ACTION_FIN;
1588 }
1589 
1590 static void mptcp_close(struct sock *sk, long timeout)
1591 {
1592 	struct mptcp_subflow_context *subflow, *tmp;
1593 	struct mptcp_sock *msk = mptcp_sk(sk);
1594 	LIST_HEAD(conn_list);
1595 
1596 	lock_sock(sk);
1597 	sk->sk_shutdown = SHUTDOWN_MASK;
1598 
1599 	if (sk->sk_state == TCP_LISTEN) {
1600 		inet_sk_state_store(sk, TCP_CLOSE);
1601 		goto cleanup;
1602 	} else if (sk->sk_state == TCP_CLOSE) {
1603 		goto cleanup;
1604 	}
1605 
1606 	if (__mptcp_check_fallback(msk)) {
1607 		goto update_state;
1608 	} else if (mptcp_close_state(sk)) {
1609 		pr_debug("Sending DATA_FIN sk=%p", sk);
1610 		WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
1611 		WRITE_ONCE(msk->snd_data_fin_enable, 1);
1612 
1613 		mptcp_for_each_subflow(msk, subflow) {
1614 			struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
1615 
1616 			mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK);
1617 		}
1618 	}
1619 
1620 	sk_stream_wait_close(sk, timeout);
1621 
1622 update_state:
1623 	inet_sk_state_store(sk, TCP_CLOSE);
1624 
1625 cleanup:
1626 	/* be sure to always acquire the join list lock, to sync vs
1627 	 * mptcp_finish_join().
1628 	 */
1629 	spin_lock_bh(&msk->join_list_lock);
1630 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
1631 	spin_unlock_bh(&msk->join_list_lock);
1632 	list_splice_init(&msk->conn_list, &conn_list);
1633 
1634 	__mptcp_clear_xmit(sk);
1635 
1636 	release_sock(sk);
1637 
1638 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
1639 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1640 		__mptcp_close_ssk(sk, ssk, subflow, timeout);
1641 	}
1642 
1643 	mptcp_cancel_work(sk);
1644 
1645 	__skb_queue_purge(&sk->sk_receive_queue);
1646 
1647 	sk_common_release(sk);
1648 }
1649 
1650 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
1651 {
1652 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1653 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
1654 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
1655 
1656 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
1657 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
1658 
1659 	if (msk6 && ssk6) {
1660 		msk6->saddr = ssk6->saddr;
1661 		msk6->flow_label = ssk6->flow_label;
1662 	}
1663 #endif
1664 
1665 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
1666 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
1667 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
1668 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
1669 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
1670 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
1671 }
1672 
1673 static int mptcp_disconnect(struct sock *sk, int flags)
1674 {
1675 	/* Should never be called.
1676 	 * inet_stream_connect() calls ->disconnect, but that
1677 	 * refers to the subflow socket, not the mptcp one.
1678 	 */
1679 	WARN_ON_ONCE(1);
1680 	return 0;
1681 }
1682 
1683 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1684 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
1685 {
1686 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
1687 
1688 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
1689 }
1690 #endif
1691 
1692 struct sock *mptcp_sk_clone(const struct sock *sk,
1693 			    const struct mptcp_options_received *mp_opt,
1694 			    struct request_sock *req)
1695 {
1696 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
1697 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
1698 	struct mptcp_sock *msk;
1699 	u64 ack_seq;
1700 
1701 	if (!nsk)
1702 		return NULL;
1703 
1704 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1705 	if (nsk->sk_family == AF_INET6)
1706 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
1707 #endif
1708 
1709 	__mptcp_init_sock(nsk);
1710 
1711 	msk = mptcp_sk(nsk);
1712 	msk->local_key = subflow_req->local_key;
1713 	msk->token = subflow_req->token;
1714 	msk->subflow = NULL;
1715 	WRITE_ONCE(msk->fully_established, false);
1716 
1717 	msk->write_seq = subflow_req->idsn + 1;
1718 	atomic64_set(&msk->snd_una, msk->write_seq);
1719 	if (mp_opt->mp_capable) {
1720 		msk->can_ack = true;
1721 		msk->remote_key = mp_opt->sndr_key;
1722 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
1723 		ack_seq++;
1724 		msk->ack_seq = ack_seq;
1725 	}
1726 
1727 	sock_reset_flag(nsk, SOCK_RCU_FREE);
1728 	/* will be fully established after successful MPC subflow creation */
1729 	inet_sk_state_store(nsk, TCP_SYN_RECV);
1730 	bh_unlock_sock(nsk);
1731 
1732 	/* keep a single reference */
1733 	__sock_put(nsk);
1734 	return nsk;
1735 }
1736 
1737 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
1738 {
1739 	const struct tcp_sock *tp = tcp_sk(ssk);
1740 
1741 	msk->rcvq_space.copied = 0;
1742 	msk->rcvq_space.rtt_us = 0;
1743 
1744 	msk->rcvq_space.time = tp->tcp_mstamp;
1745 
1746 	/* initial rcv_space offering made to peer */
1747 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
1748 				      TCP_INIT_CWND * tp->advmss);
1749 	if (msk->rcvq_space.space == 0)
1750 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
1751 }
1752 
1753 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
1754 				 bool kern)
1755 {
1756 	struct mptcp_sock *msk = mptcp_sk(sk);
1757 	struct socket *listener;
1758 	struct sock *newsk;
1759 
1760 	listener = __mptcp_nmpc_socket(msk);
1761 	if (WARN_ON_ONCE(!listener)) {
1762 		*err = -EINVAL;
1763 		return NULL;
1764 	}
1765 
1766 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
1767 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
1768 	if (!newsk)
1769 		return NULL;
1770 
1771 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
1772 	if (sk_is_mptcp(newsk)) {
1773 		struct mptcp_subflow_context *subflow;
1774 		struct sock *new_mptcp_sock;
1775 		struct sock *ssk = newsk;
1776 
1777 		subflow = mptcp_subflow_ctx(newsk);
1778 		new_mptcp_sock = subflow->conn;
1779 
1780 		/* is_mptcp should be false if subflow->conn is missing, see
1781 		 * subflow_syn_recv_sock()
1782 		 */
1783 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
1784 			tcp_sk(newsk)->is_mptcp = 0;
1785 			return newsk;
1786 		}
1787 
1788 		/* acquire the 2nd reference for the owning socket */
1789 		sock_hold(new_mptcp_sock);
1790 
1791 		local_bh_disable();
1792 		bh_lock_sock(new_mptcp_sock);
1793 		msk = mptcp_sk(new_mptcp_sock);
1794 		msk->first = newsk;
1795 
1796 		newsk = new_mptcp_sock;
1797 		mptcp_copy_inaddrs(newsk, ssk);
1798 		list_add(&subflow->node, &msk->conn_list);
1799 
1800 		mptcp_rcv_space_init(msk, ssk);
1801 		bh_unlock_sock(new_mptcp_sock);
1802 
1803 		__MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
1804 		local_bh_enable();
1805 	} else {
1806 		MPTCP_INC_STATS(sock_net(sk),
1807 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
1808 	}
1809 
1810 	return newsk;
1811 }
1812 
1813 static void mptcp_destroy(struct sock *sk)
1814 {
1815 	struct mptcp_sock *msk = mptcp_sk(sk);
1816 
1817 	mptcp_token_destroy(msk);
1818 	if (msk->cached_ext)
1819 		__skb_ext_put(msk->cached_ext);
1820 
1821 	sk_sockets_allocated_dec(sk);
1822 }
1823 
1824 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
1825 				       sockptr_t optval, unsigned int optlen)
1826 {
1827 	struct sock *sk = (struct sock *)msk;
1828 	struct socket *ssock;
1829 	int ret;
1830 
1831 	switch (optname) {
1832 	case SO_REUSEPORT:
1833 	case SO_REUSEADDR:
1834 		lock_sock(sk);
1835 		ssock = __mptcp_nmpc_socket(msk);
1836 		if (!ssock) {
1837 			release_sock(sk);
1838 			return -EINVAL;
1839 		}
1840 
1841 		ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
1842 		if (ret == 0) {
1843 			if (optname == SO_REUSEPORT)
1844 				sk->sk_reuseport = ssock->sk->sk_reuseport;
1845 			else if (optname == SO_REUSEADDR)
1846 				sk->sk_reuse = ssock->sk->sk_reuse;
1847 		}
1848 		release_sock(sk);
1849 		return ret;
1850 	}
1851 
1852 	return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
1853 }
1854 
1855 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
1856 			       sockptr_t optval, unsigned int optlen)
1857 {
1858 	struct sock *sk = (struct sock *)msk;
1859 	int ret = -EOPNOTSUPP;
1860 	struct socket *ssock;
1861 
1862 	switch (optname) {
1863 	case IPV6_V6ONLY:
1864 		lock_sock(sk);
1865 		ssock = __mptcp_nmpc_socket(msk);
1866 		if (!ssock) {
1867 			release_sock(sk);
1868 			return -EINVAL;
1869 		}
1870 
1871 		ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
1872 		if (ret == 0)
1873 			sk->sk_ipv6only = ssock->sk->sk_ipv6only;
1874 
1875 		release_sock(sk);
1876 		break;
1877 	}
1878 
1879 	return ret;
1880 }
1881 
1882 static int mptcp_setsockopt(struct sock *sk, int level, int optname,
1883 			    sockptr_t optval, unsigned int optlen)
1884 {
1885 	struct mptcp_sock *msk = mptcp_sk(sk);
1886 	struct sock *ssk;
1887 
1888 	pr_debug("msk=%p", msk);
1889 
1890 	if (level == SOL_SOCKET)
1891 		return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
1892 
1893 	/* @@ the meaning of setsockopt() when the socket is connected and
1894 	 * there are multiple subflows is not yet defined. It is up to the
1895 	 * MPTCP-level socket to configure the subflows until the subflow
1896 	 * is in TCP fallback, when TCP socket options are passed through
1897 	 * to the one remaining subflow.
1898 	 */
1899 	lock_sock(sk);
1900 	ssk = __mptcp_tcp_fallback(msk);
1901 	release_sock(sk);
1902 	if (ssk)
1903 		return tcp_setsockopt(ssk, level, optname, optval, optlen);
1904 
1905 	if (level == SOL_IPV6)
1906 		return mptcp_setsockopt_v6(msk, optname, optval, optlen);
1907 
1908 	return -EOPNOTSUPP;
1909 }
1910 
1911 static int mptcp_getsockopt(struct sock *sk, int level, int optname,
1912 			    char __user *optval, int __user *option)
1913 {
1914 	struct mptcp_sock *msk = mptcp_sk(sk);
1915 	struct sock *ssk;
1916 
1917 	pr_debug("msk=%p", msk);
1918 
1919 	/* @@ the meaning of setsockopt() when the socket is connected and
1920 	 * there are multiple subflows is not yet defined. It is up to the
1921 	 * MPTCP-level socket to configure the subflows until the subflow
1922 	 * is in TCP fallback, when socket options are passed through
1923 	 * to the one remaining subflow.
1924 	 */
1925 	lock_sock(sk);
1926 	ssk = __mptcp_tcp_fallback(msk);
1927 	release_sock(sk);
1928 	if (ssk)
1929 		return tcp_getsockopt(ssk, level, optname, optval, option);
1930 
1931 	return -EOPNOTSUPP;
1932 }
1933 
1934 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \
1935 			    TCPF_WRITE_TIMER_DEFERRED)
1936 
1937 /* this is very alike tcp_release_cb() but we must handle differently a
1938  * different set of events
1939  */
1940 static void mptcp_release_cb(struct sock *sk)
1941 {
1942 	unsigned long flags, nflags;
1943 
1944 	do {
1945 		flags = sk->sk_tsq_flags;
1946 		if (!(flags & MPTCP_DEFERRED_ALL))
1947 			return;
1948 		nflags = flags & ~MPTCP_DEFERRED_ALL;
1949 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1950 
1951 	sock_release_ownership(sk);
1952 
1953 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1954 		struct mptcp_sock *msk = mptcp_sk(sk);
1955 		struct sock *ssk;
1956 
1957 		ssk = mptcp_subflow_recv_lookup(msk);
1958 		if (!ssk || !schedule_work(&msk->work))
1959 			__sock_put(sk);
1960 	}
1961 
1962 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1963 		mptcp_retransmit_handler(sk);
1964 		__sock_put(sk);
1965 	}
1966 }
1967 
1968 static int mptcp_hash(struct sock *sk)
1969 {
1970 	/* should never be called,
1971 	 * we hash the TCP subflows not the master socket
1972 	 */
1973 	WARN_ON_ONCE(1);
1974 	return 0;
1975 }
1976 
1977 static void mptcp_unhash(struct sock *sk)
1978 {
1979 	/* called from sk_common_release(), but nothing to do here */
1980 }
1981 
1982 static int mptcp_get_port(struct sock *sk, unsigned short snum)
1983 {
1984 	struct mptcp_sock *msk = mptcp_sk(sk);
1985 	struct socket *ssock;
1986 
1987 	ssock = __mptcp_nmpc_socket(msk);
1988 	pr_debug("msk=%p, subflow=%p", msk, ssock);
1989 	if (WARN_ON_ONCE(!ssock))
1990 		return -EINVAL;
1991 
1992 	return inet_csk_get_port(ssock->sk, snum);
1993 }
1994 
1995 void mptcp_finish_connect(struct sock *ssk)
1996 {
1997 	struct mptcp_subflow_context *subflow;
1998 	struct mptcp_sock *msk;
1999 	struct sock *sk;
2000 	u64 ack_seq;
2001 
2002 	subflow = mptcp_subflow_ctx(ssk);
2003 	sk = subflow->conn;
2004 	msk = mptcp_sk(sk);
2005 
2006 	pr_debug("msk=%p, token=%u", sk, subflow->token);
2007 
2008 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2009 	ack_seq++;
2010 	subflow->map_seq = ack_seq;
2011 	subflow->map_subflow_seq = 1;
2012 
2013 	/* the socket is not connected yet, no msk/subflow ops can access/race
2014 	 * accessing the field below
2015 	 */
2016 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
2017 	WRITE_ONCE(msk->local_key, subflow->local_key);
2018 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
2019 	WRITE_ONCE(msk->ack_seq, ack_seq);
2020 	WRITE_ONCE(msk->can_ack, 1);
2021 	atomic64_set(&msk->snd_una, msk->write_seq);
2022 
2023 	mptcp_pm_new_connection(msk, 0);
2024 
2025 	mptcp_rcv_space_init(msk, ssk);
2026 }
2027 
2028 static void mptcp_sock_graft(struct sock *sk, struct socket *parent)
2029 {
2030 	write_lock_bh(&sk->sk_callback_lock);
2031 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2032 	sk_set_socket(sk, parent);
2033 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2034 	write_unlock_bh(&sk->sk_callback_lock);
2035 }
2036 
2037 bool mptcp_finish_join(struct sock *sk)
2038 {
2039 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
2040 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
2041 	struct sock *parent = (void *)msk;
2042 	struct socket *parent_sock;
2043 	bool ret;
2044 
2045 	pr_debug("msk=%p, subflow=%p", msk, subflow);
2046 
2047 	/* mptcp socket already closing? */
2048 	if (!mptcp_is_fully_established(parent))
2049 		return false;
2050 
2051 	if (!msk->pm.server_side)
2052 		return true;
2053 
2054 	if (!mptcp_pm_allow_new_subflow(msk))
2055 		return false;
2056 
2057 	/* active connections are already on conn_list, and we can't acquire
2058 	 * msk lock here.
2059 	 * use the join list lock as synchronization point and double-check
2060 	 * msk status to avoid racing with mptcp_close()
2061 	 */
2062 	spin_lock_bh(&msk->join_list_lock);
2063 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
2064 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node)))
2065 		list_add_tail(&subflow->node, &msk->join_list);
2066 	spin_unlock_bh(&msk->join_list_lock);
2067 	if (!ret)
2068 		return false;
2069 
2070 	/* attach to msk socket only after we are sure he will deal with us
2071 	 * at close time
2072 	 */
2073 	parent_sock = READ_ONCE(parent->sk_socket);
2074 	if (parent_sock && !sk->sk_socket)
2075 		mptcp_sock_graft(sk, parent_sock);
2076 	subflow->map_seq = msk->ack_seq;
2077 	return true;
2078 }
2079 
2080 static bool mptcp_memory_free(const struct sock *sk, int wake)
2081 {
2082 	struct mptcp_sock *msk = mptcp_sk(sk);
2083 
2084 	return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true;
2085 }
2086 
2087 static struct proto mptcp_prot = {
2088 	.name		= "MPTCP",
2089 	.owner		= THIS_MODULE,
2090 	.init		= mptcp_init_sock,
2091 	.disconnect	= mptcp_disconnect,
2092 	.close		= mptcp_close,
2093 	.accept		= mptcp_accept,
2094 	.setsockopt	= mptcp_setsockopt,
2095 	.getsockopt	= mptcp_getsockopt,
2096 	.shutdown	= tcp_shutdown,
2097 	.destroy	= mptcp_destroy,
2098 	.sendmsg	= mptcp_sendmsg,
2099 	.recvmsg	= mptcp_recvmsg,
2100 	.release_cb	= mptcp_release_cb,
2101 	.hash		= mptcp_hash,
2102 	.unhash		= mptcp_unhash,
2103 	.get_port	= mptcp_get_port,
2104 	.sockets_allocated	= &mptcp_sockets_allocated,
2105 	.memory_allocated	= &tcp_memory_allocated,
2106 	.memory_pressure	= &tcp_memory_pressure,
2107 	.stream_memory_free	= mptcp_memory_free,
2108 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2109 	.sysctl_mem	= sysctl_tcp_mem,
2110 	.obj_size	= sizeof(struct mptcp_sock),
2111 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
2112 	.no_autobind	= true,
2113 };
2114 
2115 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2116 {
2117 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2118 	struct socket *ssock;
2119 	int err;
2120 
2121 	lock_sock(sock->sk);
2122 	ssock = __mptcp_nmpc_socket(msk);
2123 	if (!ssock) {
2124 		err = -EINVAL;
2125 		goto unlock;
2126 	}
2127 
2128 	err = ssock->ops->bind(ssock, uaddr, addr_len);
2129 	if (!err)
2130 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2131 
2132 unlock:
2133 	release_sock(sock->sk);
2134 	return err;
2135 }
2136 
2137 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
2138 					 struct mptcp_subflow_context *subflow)
2139 {
2140 	subflow->request_mptcp = 0;
2141 	__mptcp_do_fallback(msk);
2142 }
2143 
2144 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
2145 				int addr_len, int flags)
2146 {
2147 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2148 	struct mptcp_subflow_context *subflow;
2149 	struct socket *ssock;
2150 	int err;
2151 
2152 	lock_sock(sock->sk);
2153 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
2154 		/* pending connection or invalid state, let existing subflow
2155 		 * cope with that
2156 		 */
2157 		ssock = msk->subflow;
2158 		goto do_connect;
2159 	}
2160 
2161 	ssock = __mptcp_nmpc_socket(msk);
2162 	if (!ssock) {
2163 		err = -EINVAL;
2164 		goto unlock;
2165 	}
2166 
2167 	mptcp_token_destroy(msk);
2168 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
2169 	subflow = mptcp_subflow_ctx(ssock->sk);
2170 #ifdef CONFIG_TCP_MD5SIG
2171 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
2172 	 * TCP option space.
2173 	 */
2174 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
2175 		mptcp_subflow_early_fallback(msk, subflow);
2176 #endif
2177 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
2178 		mptcp_subflow_early_fallback(msk, subflow);
2179 
2180 do_connect:
2181 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
2182 	sock->state = ssock->state;
2183 
2184 	/* on successful connect, the msk state will be moved to established by
2185 	 * subflow_finish_connect()
2186 	 */
2187 	if (!err || err == -EINPROGRESS)
2188 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2189 	else
2190 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2191 
2192 unlock:
2193 	release_sock(sock->sk);
2194 	return err;
2195 }
2196 
2197 static int mptcp_listen(struct socket *sock, int backlog)
2198 {
2199 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2200 	struct socket *ssock;
2201 	int err;
2202 
2203 	pr_debug("msk=%p", msk);
2204 
2205 	lock_sock(sock->sk);
2206 	ssock = __mptcp_nmpc_socket(msk);
2207 	if (!ssock) {
2208 		err = -EINVAL;
2209 		goto unlock;
2210 	}
2211 
2212 	mptcp_token_destroy(msk);
2213 	inet_sk_state_store(sock->sk, TCP_LISTEN);
2214 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
2215 
2216 	err = ssock->ops->listen(ssock, backlog);
2217 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2218 	if (!err)
2219 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2220 
2221 unlock:
2222 	release_sock(sock->sk);
2223 	return err;
2224 }
2225 
2226 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
2227 			       int flags, bool kern)
2228 {
2229 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2230 	struct socket *ssock;
2231 	int err;
2232 
2233 	pr_debug("msk=%p", msk);
2234 
2235 	lock_sock(sock->sk);
2236 	if (sock->sk->sk_state != TCP_LISTEN)
2237 		goto unlock_fail;
2238 
2239 	ssock = __mptcp_nmpc_socket(msk);
2240 	if (!ssock)
2241 		goto unlock_fail;
2242 
2243 	clear_bit(MPTCP_DATA_READY, &msk->flags);
2244 	sock_hold(ssock->sk);
2245 	release_sock(sock->sk);
2246 
2247 	err = ssock->ops->accept(sock, newsock, flags, kern);
2248 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
2249 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
2250 		struct mptcp_subflow_context *subflow;
2251 
2252 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
2253 		 * This is needed so NOSPACE flag can be set from tcp stack.
2254 		 */
2255 		__mptcp_flush_join_list(msk);
2256 		mptcp_for_each_subflow(msk, subflow) {
2257 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2258 
2259 			if (!ssk->sk_socket)
2260 				mptcp_sock_graft(ssk, newsock);
2261 		}
2262 	}
2263 
2264 	if (inet_csk_listen_poll(ssock->sk))
2265 		set_bit(MPTCP_DATA_READY, &msk->flags);
2266 	sock_put(ssock->sk);
2267 	return err;
2268 
2269 unlock_fail:
2270 	release_sock(sock->sk);
2271 	return -EINVAL;
2272 }
2273 
2274 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2275 {
2276 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
2277 	       0;
2278 }
2279 
2280 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
2281 			   struct poll_table_struct *wait)
2282 {
2283 	struct sock *sk = sock->sk;
2284 	struct mptcp_sock *msk;
2285 	__poll_t mask = 0;
2286 	int state;
2287 
2288 	msk = mptcp_sk(sk);
2289 	sock_poll_wait(file, sock, wait);
2290 
2291 	state = inet_sk_state_load(sk);
2292 	if (state == TCP_LISTEN)
2293 		return mptcp_check_readable(msk);
2294 
2295 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
2296 		mask |= mptcp_check_readable(msk);
2297 		if (sk_stream_is_writeable(sk) &&
2298 		    test_bit(MPTCP_SEND_SPACE, &msk->flags))
2299 			mask |= EPOLLOUT | EPOLLWRNORM;
2300 	}
2301 	if (sk->sk_shutdown & RCV_SHUTDOWN)
2302 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
2303 
2304 	return mask;
2305 }
2306 
2307 static int mptcp_shutdown(struct socket *sock, int how)
2308 {
2309 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2310 	struct mptcp_subflow_context *subflow;
2311 	int ret = 0;
2312 
2313 	pr_debug("sk=%p, how=%d", msk, how);
2314 
2315 	lock_sock(sock->sk);
2316 
2317 	how++;
2318 	if ((how & ~SHUTDOWN_MASK) || !how) {
2319 		ret = -EINVAL;
2320 		goto out_unlock;
2321 	}
2322 
2323 	if (sock->state == SS_CONNECTING) {
2324 		if ((1 << sock->sk->sk_state) &
2325 		    (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
2326 			sock->state = SS_DISCONNECTING;
2327 		else
2328 			sock->state = SS_CONNECTED;
2329 	}
2330 
2331 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2332 	if (__mptcp_check_fallback(msk)) {
2333 		if (how == SHUT_WR || how == SHUT_RDWR)
2334 			inet_sk_state_store(sock->sk, TCP_FIN_WAIT1);
2335 
2336 		mptcp_for_each_subflow(msk, subflow) {
2337 			struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2338 
2339 			mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
2340 		}
2341 	} else if ((how & SEND_SHUTDOWN) &&
2342 		   ((1 << sock->sk->sk_state) &
2343 		    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2344 		     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) &&
2345 		   mptcp_close_state(sock->sk)) {
2346 		__mptcp_flush_join_list(msk);
2347 
2348 		WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2349 		WRITE_ONCE(msk->snd_data_fin_enable, 1);
2350 
2351 		mptcp_for_each_subflow(msk, subflow) {
2352 			struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2353 
2354 			mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
2355 		}
2356 	}
2357 
2358 	/* Wake up anyone sleeping in poll. */
2359 	sock->sk->sk_state_change(sock->sk);
2360 
2361 out_unlock:
2362 	release_sock(sock->sk);
2363 
2364 	return ret;
2365 }
2366 
2367 static const struct proto_ops mptcp_stream_ops = {
2368 	.family		   = PF_INET,
2369 	.owner		   = THIS_MODULE,
2370 	.release	   = inet_release,
2371 	.bind		   = mptcp_bind,
2372 	.connect	   = mptcp_stream_connect,
2373 	.socketpair	   = sock_no_socketpair,
2374 	.accept		   = mptcp_stream_accept,
2375 	.getname	   = inet_getname,
2376 	.poll		   = mptcp_poll,
2377 	.ioctl		   = inet_ioctl,
2378 	.gettstamp	   = sock_gettstamp,
2379 	.listen		   = mptcp_listen,
2380 	.shutdown	   = mptcp_shutdown,
2381 	.setsockopt	   = sock_common_setsockopt,
2382 	.getsockopt	   = sock_common_getsockopt,
2383 	.sendmsg	   = inet_sendmsg,
2384 	.recvmsg	   = inet_recvmsg,
2385 	.mmap		   = sock_no_mmap,
2386 	.sendpage	   = inet_sendpage,
2387 };
2388 
2389 static struct inet_protosw mptcp_protosw = {
2390 	.type		= SOCK_STREAM,
2391 	.protocol	= IPPROTO_MPTCP,
2392 	.prot		= &mptcp_prot,
2393 	.ops		= &mptcp_stream_ops,
2394 	.flags		= INET_PROTOSW_ICSK,
2395 };
2396 
2397 void __init mptcp_proto_init(void)
2398 {
2399 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
2400 
2401 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
2402 		panic("Failed to allocate MPTCP pcpu counter\n");
2403 
2404 	mptcp_subflow_init();
2405 	mptcp_pm_init();
2406 	mptcp_token_init();
2407 
2408 	if (proto_register(&mptcp_prot, 1) != 0)
2409 		panic("Failed to register MPTCP proto.\n");
2410 
2411 	inet_register_protosw(&mptcp_protosw);
2412 
2413 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
2414 }
2415 
2416 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2417 static const struct proto_ops mptcp_v6_stream_ops = {
2418 	.family		   = PF_INET6,
2419 	.owner		   = THIS_MODULE,
2420 	.release	   = inet6_release,
2421 	.bind		   = mptcp_bind,
2422 	.connect	   = mptcp_stream_connect,
2423 	.socketpair	   = sock_no_socketpair,
2424 	.accept		   = mptcp_stream_accept,
2425 	.getname	   = inet6_getname,
2426 	.poll		   = mptcp_poll,
2427 	.ioctl		   = inet6_ioctl,
2428 	.gettstamp	   = sock_gettstamp,
2429 	.listen		   = mptcp_listen,
2430 	.shutdown	   = mptcp_shutdown,
2431 	.setsockopt	   = sock_common_setsockopt,
2432 	.getsockopt	   = sock_common_getsockopt,
2433 	.sendmsg	   = inet6_sendmsg,
2434 	.recvmsg	   = inet6_recvmsg,
2435 	.mmap		   = sock_no_mmap,
2436 	.sendpage	   = inet_sendpage,
2437 #ifdef CONFIG_COMPAT
2438 	.compat_ioctl	   = inet6_compat_ioctl,
2439 #endif
2440 };
2441 
2442 static struct proto mptcp_v6_prot;
2443 
2444 static void mptcp_v6_destroy(struct sock *sk)
2445 {
2446 	mptcp_destroy(sk);
2447 	inet6_destroy_sock(sk);
2448 }
2449 
2450 static struct inet_protosw mptcp_v6_protosw = {
2451 	.type		= SOCK_STREAM,
2452 	.protocol	= IPPROTO_MPTCP,
2453 	.prot		= &mptcp_v6_prot,
2454 	.ops		= &mptcp_v6_stream_ops,
2455 	.flags		= INET_PROTOSW_ICSK,
2456 };
2457 
2458 int __init mptcp_proto_v6_init(void)
2459 {
2460 	int err;
2461 
2462 	mptcp_v6_prot = mptcp_prot;
2463 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
2464 	mptcp_v6_prot.slab = NULL;
2465 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
2466 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
2467 
2468 	err = proto_register(&mptcp_v6_prot, 1);
2469 	if (err)
2470 		return err;
2471 
2472 	err = inet6_register_protosw(&mptcp_v6_protosw);
2473 	if (err)
2474 		proto_unregister(&mptcp_v6_prot);
2475 
2476 	return err;
2477 }
2478 #endif
2479