1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void __mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 sock->ops = &inet_stream_ops; 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 sock->ops = &inet6_stream_ops; 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->first = ssock->sk; 94 msk->subflow = ssock; 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 100 /* This is the first subflow, always with id 0 */ 101 subflow->local_id_valid = 1; 102 mptcp_sock_graft(msk->first, sk->sk_socket); 103 104 return 0; 105 } 106 107 /* If the MPC handshake is not started, returns the first subflow, 108 * eventually allocating it. 109 */ 110 struct socket *__mptcp_nmpc_socket(struct mptcp_sock *msk) 111 { 112 struct sock *sk = (struct sock *)msk; 113 int ret; 114 115 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 116 return ERR_PTR(-EINVAL); 117 118 if (!msk->subflow) { 119 if (msk->first) 120 return ERR_PTR(-EINVAL); 121 122 ret = __mptcp_socket_create(msk); 123 if (ret) 124 return ERR_PTR(ret); 125 126 mptcp_sockopt_sync(msk, msk->first); 127 } 128 129 return msk->subflow; 130 } 131 132 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 133 { 134 sk_drops_add(sk, skb); 135 __kfree_skb(skb); 136 } 137 138 static void mptcp_rmem_charge(struct sock *sk, int size) 139 { 140 mptcp_sk(sk)->rmem_fwd_alloc -= size; 141 } 142 143 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 144 struct sk_buff *from) 145 { 146 bool fragstolen; 147 int delta; 148 149 if (MPTCP_SKB_CB(from)->offset || 150 !skb_try_coalesce(to, from, &fragstolen, &delta)) 151 return false; 152 153 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 154 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 155 to->len, MPTCP_SKB_CB(from)->end_seq); 156 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 157 158 /* note the fwd memory can reach a negative value after accounting 159 * for the delta, but the later skb free will restore a non 160 * negative one 161 */ 162 atomic_add(delta, &sk->sk_rmem_alloc); 163 mptcp_rmem_charge(sk, delta); 164 kfree_skb_partial(from, fragstolen); 165 166 return true; 167 } 168 169 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 170 struct sk_buff *from) 171 { 172 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 173 return false; 174 175 return mptcp_try_coalesce((struct sock *)msk, to, from); 176 } 177 178 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 179 { 180 amount >>= PAGE_SHIFT; 181 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 182 __sk_mem_reduce_allocated(sk, amount); 183 } 184 185 static void mptcp_rmem_uncharge(struct sock *sk, int size) 186 { 187 struct mptcp_sock *msk = mptcp_sk(sk); 188 int reclaimable; 189 190 msk->rmem_fwd_alloc += size; 191 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 192 193 /* see sk_mem_uncharge() for the rationale behind the following schema */ 194 if (unlikely(reclaimable >= PAGE_SIZE)) 195 __mptcp_rmem_reclaim(sk, reclaimable); 196 } 197 198 static void mptcp_rfree(struct sk_buff *skb) 199 { 200 unsigned int len = skb->truesize; 201 struct sock *sk = skb->sk; 202 203 atomic_sub(len, &sk->sk_rmem_alloc); 204 mptcp_rmem_uncharge(sk, len); 205 } 206 207 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 208 { 209 skb_orphan(skb); 210 skb->sk = sk; 211 skb->destructor = mptcp_rfree; 212 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 213 mptcp_rmem_charge(sk, skb->truesize); 214 } 215 216 /* "inspired" by tcp_data_queue_ofo(), main differences: 217 * - use mptcp seqs 218 * - don't cope with sacks 219 */ 220 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 221 { 222 struct sock *sk = (struct sock *)msk; 223 struct rb_node **p, *parent; 224 u64 seq, end_seq, max_seq; 225 struct sk_buff *skb1; 226 227 seq = MPTCP_SKB_CB(skb)->map_seq; 228 end_seq = MPTCP_SKB_CB(skb)->end_seq; 229 max_seq = atomic64_read(&msk->rcv_wnd_sent); 230 231 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 232 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 233 if (after64(end_seq, max_seq)) { 234 /* out of window */ 235 mptcp_drop(sk, skb); 236 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 237 (unsigned long long)end_seq - (unsigned long)max_seq, 238 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 239 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 240 return; 241 } 242 243 p = &msk->out_of_order_queue.rb_node; 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 245 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 246 rb_link_node(&skb->rbnode, NULL, p); 247 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 248 msk->ooo_last_skb = skb; 249 goto end; 250 } 251 252 /* with 2 subflows, adding at end of ooo queue is quite likely 253 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 254 */ 255 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 256 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 257 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 258 return; 259 } 260 261 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 262 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 264 parent = &msk->ooo_last_skb->rbnode; 265 p = &parent->rb_right; 266 goto insert; 267 } 268 269 /* Find place to insert this segment. Handle overlaps on the way. */ 270 parent = NULL; 271 while (*p) { 272 parent = *p; 273 skb1 = rb_to_skb(parent); 274 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 p = &parent->rb_left; 276 continue; 277 } 278 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 279 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 280 /* All the bits are present. Drop. */ 281 mptcp_drop(sk, skb); 282 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 283 return; 284 } 285 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 286 /* partial overlap: 287 * | skb | 288 * | skb1 | 289 * continue traversing 290 */ 291 } else { 292 /* skb's seq == skb1's seq and skb covers skb1. 293 * Replace skb1 with skb. 294 */ 295 rb_replace_node(&skb1->rbnode, &skb->rbnode, 296 &msk->out_of_order_queue); 297 mptcp_drop(sk, skb1); 298 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 299 goto merge_right; 300 } 301 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 302 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 303 return; 304 } 305 p = &parent->rb_right; 306 } 307 308 insert: 309 /* Insert segment into RB tree. */ 310 rb_link_node(&skb->rbnode, parent, p); 311 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 312 313 merge_right: 314 /* Remove other segments covered by skb. */ 315 while ((skb1 = skb_rb_next(skb)) != NULL) { 316 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 317 break; 318 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 319 mptcp_drop(sk, skb1); 320 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 321 } 322 /* If there is no skb after us, we are the last_skb ! */ 323 if (!skb1) 324 msk->ooo_last_skb = skb; 325 326 end: 327 skb_condense(skb); 328 mptcp_set_owner_r(skb, sk); 329 } 330 331 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 332 { 333 struct mptcp_sock *msk = mptcp_sk(sk); 334 int amt, amount; 335 336 if (size <= msk->rmem_fwd_alloc) 337 return true; 338 339 size -= msk->rmem_fwd_alloc; 340 amt = sk_mem_pages(size); 341 amount = amt << PAGE_SHIFT; 342 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 343 return false; 344 345 msk->rmem_fwd_alloc += amount; 346 return true; 347 } 348 349 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 350 struct sk_buff *skb, unsigned int offset, 351 size_t copy_len) 352 { 353 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 354 struct sock *sk = (struct sock *)msk; 355 struct sk_buff *tail; 356 bool has_rxtstamp; 357 358 __skb_unlink(skb, &ssk->sk_receive_queue); 359 360 skb_ext_reset(skb); 361 skb_orphan(skb); 362 363 /* try to fetch required memory from subflow */ 364 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 365 goto drop; 366 367 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 368 369 /* the skb map_seq accounts for the skb offset: 370 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 371 * value 372 */ 373 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 374 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 375 MPTCP_SKB_CB(skb)->offset = offset; 376 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 377 378 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 379 /* in sequence */ 380 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 381 tail = skb_peek_tail(&sk->sk_receive_queue); 382 if (tail && mptcp_try_coalesce(sk, tail, skb)) 383 return true; 384 385 mptcp_set_owner_r(skb, sk); 386 __skb_queue_tail(&sk->sk_receive_queue, skb); 387 return true; 388 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 389 mptcp_data_queue_ofo(msk, skb); 390 return false; 391 } 392 393 /* old data, keep it simple and drop the whole pkt, sender 394 * will retransmit as needed, if needed. 395 */ 396 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 397 drop: 398 mptcp_drop(sk, skb); 399 return false; 400 } 401 402 static void mptcp_stop_timer(struct sock *sk) 403 { 404 struct inet_connection_sock *icsk = inet_csk(sk); 405 406 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 407 mptcp_sk(sk)->timer_ival = 0; 408 } 409 410 static void mptcp_close_wake_up(struct sock *sk) 411 { 412 if (sock_flag(sk, SOCK_DEAD)) 413 return; 414 415 sk->sk_state_change(sk); 416 if (sk->sk_shutdown == SHUTDOWN_MASK || 417 sk->sk_state == TCP_CLOSE) 418 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 419 else 420 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 421 } 422 423 static bool mptcp_pending_data_fin_ack(struct sock *sk) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 return !__mptcp_check_fallback(msk) && 428 ((1 << sk->sk_state) & 429 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 430 msk->write_seq == READ_ONCE(msk->snd_una); 431 } 432 433 static void mptcp_check_data_fin_ack(struct sock *sk) 434 { 435 struct mptcp_sock *msk = mptcp_sk(sk); 436 437 /* Look for an acknowledged DATA_FIN */ 438 if (mptcp_pending_data_fin_ack(sk)) { 439 WRITE_ONCE(msk->snd_data_fin_enable, 0); 440 441 switch (sk->sk_state) { 442 case TCP_FIN_WAIT1: 443 inet_sk_state_store(sk, TCP_FIN_WAIT2); 444 break; 445 case TCP_CLOSING: 446 case TCP_LAST_ACK: 447 inet_sk_state_store(sk, TCP_CLOSE); 448 break; 449 } 450 451 mptcp_close_wake_up(sk); 452 } 453 } 454 455 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 456 { 457 struct mptcp_sock *msk = mptcp_sk(sk); 458 459 if (READ_ONCE(msk->rcv_data_fin) && 460 ((1 << sk->sk_state) & 461 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 462 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 463 464 if (msk->ack_seq == rcv_data_fin_seq) { 465 if (seq) 466 *seq = rcv_data_fin_seq; 467 468 return true; 469 } 470 } 471 472 return false; 473 } 474 475 static void mptcp_set_datafin_timeout(struct sock *sk) 476 { 477 struct inet_connection_sock *icsk = inet_csk(sk); 478 u32 retransmits; 479 480 retransmits = min_t(u32, icsk->icsk_retransmits, 481 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 482 483 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 484 } 485 486 static void __mptcp_set_timeout(struct sock *sk, long tout) 487 { 488 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 489 } 490 491 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 492 { 493 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 494 495 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 496 inet_csk(ssk)->icsk_timeout - jiffies : 0; 497 } 498 499 static void mptcp_set_timeout(struct sock *sk) 500 { 501 struct mptcp_subflow_context *subflow; 502 long tout = 0; 503 504 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 505 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 506 __mptcp_set_timeout(sk, tout); 507 } 508 509 static inline bool tcp_can_send_ack(const struct sock *ssk) 510 { 511 return !((1 << inet_sk_state_load(ssk)) & 512 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 513 } 514 515 void __mptcp_subflow_send_ack(struct sock *ssk) 516 { 517 if (tcp_can_send_ack(ssk)) 518 tcp_send_ack(ssk); 519 } 520 521 static void mptcp_subflow_send_ack(struct sock *ssk) 522 { 523 bool slow; 524 525 slow = lock_sock_fast(ssk); 526 __mptcp_subflow_send_ack(ssk); 527 unlock_sock_fast(ssk, slow); 528 } 529 530 static void mptcp_send_ack(struct mptcp_sock *msk) 531 { 532 struct mptcp_subflow_context *subflow; 533 534 mptcp_for_each_subflow(msk, subflow) 535 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 536 } 537 538 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 539 { 540 bool slow; 541 542 slow = lock_sock_fast(ssk); 543 if (tcp_can_send_ack(ssk)) 544 tcp_cleanup_rbuf(ssk, 1); 545 unlock_sock_fast(ssk, slow); 546 } 547 548 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 549 { 550 const struct inet_connection_sock *icsk = inet_csk(ssk); 551 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 552 const struct tcp_sock *tp = tcp_sk(ssk); 553 554 return (ack_pending & ICSK_ACK_SCHED) && 555 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 556 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 557 (rx_empty && ack_pending & 558 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 559 } 560 561 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 562 { 563 int old_space = READ_ONCE(msk->old_wspace); 564 struct mptcp_subflow_context *subflow; 565 struct sock *sk = (struct sock *)msk; 566 int space = __mptcp_space(sk); 567 bool cleanup, rx_empty; 568 569 cleanup = (space > 0) && (space >= (old_space << 1)); 570 rx_empty = !__mptcp_rmem(sk); 571 572 mptcp_for_each_subflow(msk, subflow) { 573 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 574 575 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 576 mptcp_subflow_cleanup_rbuf(ssk); 577 } 578 } 579 580 static bool mptcp_check_data_fin(struct sock *sk) 581 { 582 struct mptcp_sock *msk = mptcp_sk(sk); 583 u64 rcv_data_fin_seq; 584 bool ret = false; 585 586 if (__mptcp_check_fallback(msk)) 587 return ret; 588 589 /* Need to ack a DATA_FIN received from a peer while this side 590 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 591 * msk->rcv_data_fin was set when parsing the incoming options 592 * at the subflow level and the msk lock was not held, so this 593 * is the first opportunity to act on the DATA_FIN and change 594 * the msk state. 595 * 596 * If we are caught up to the sequence number of the incoming 597 * DATA_FIN, send the DATA_ACK now and do state transition. If 598 * not caught up, do nothing and let the recv code send DATA_ACK 599 * when catching up. 600 */ 601 602 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 603 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 604 WRITE_ONCE(msk->rcv_data_fin, 0); 605 606 sk->sk_shutdown |= RCV_SHUTDOWN; 607 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 608 609 switch (sk->sk_state) { 610 case TCP_ESTABLISHED: 611 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 612 break; 613 case TCP_FIN_WAIT1: 614 inet_sk_state_store(sk, TCP_CLOSING); 615 break; 616 case TCP_FIN_WAIT2: 617 inet_sk_state_store(sk, TCP_CLOSE); 618 break; 619 default: 620 /* Other states not expected */ 621 WARN_ON_ONCE(1); 622 break; 623 } 624 625 ret = true; 626 mptcp_send_ack(msk); 627 mptcp_close_wake_up(sk); 628 } 629 return ret; 630 } 631 632 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 633 struct sock *ssk, 634 unsigned int *bytes) 635 { 636 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 637 struct sock *sk = (struct sock *)msk; 638 unsigned int moved = 0; 639 bool more_data_avail; 640 struct tcp_sock *tp; 641 bool done = false; 642 int sk_rbuf; 643 644 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 645 646 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 647 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 648 649 if (unlikely(ssk_rbuf > sk_rbuf)) { 650 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 651 sk_rbuf = ssk_rbuf; 652 } 653 } 654 655 pr_debug("msk=%p ssk=%p", msk, ssk); 656 tp = tcp_sk(ssk); 657 do { 658 u32 map_remaining, offset; 659 u32 seq = tp->copied_seq; 660 struct sk_buff *skb; 661 bool fin; 662 663 /* try to move as much data as available */ 664 map_remaining = subflow->map_data_len - 665 mptcp_subflow_get_map_offset(subflow); 666 667 skb = skb_peek(&ssk->sk_receive_queue); 668 if (!skb) { 669 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 670 * a different CPU can have already processed the pending 671 * data, stop here or we can enter an infinite loop 672 */ 673 if (!moved) 674 done = true; 675 break; 676 } 677 678 if (__mptcp_check_fallback(msk)) { 679 /* Under fallback skbs have no MPTCP extension and TCP could 680 * collapse them between the dummy map creation and the 681 * current dequeue. Be sure to adjust the map size. 682 */ 683 map_remaining = skb->len; 684 subflow->map_data_len = skb->len; 685 } 686 687 offset = seq - TCP_SKB_CB(skb)->seq; 688 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 689 if (fin) { 690 done = true; 691 seq++; 692 } 693 694 if (offset < skb->len) { 695 size_t len = skb->len - offset; 696 697 if (tp->urg_data) 698 done = true; 699 700 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 701 moved += len; 702 seq += len; 703 704 if (WARN_ON_ONCE(map_remaining < len)) 705 break; 706 } else { 707 WARN_ON_ONCE(!fin); 708 sk_eat_skb(ssk, skb); 709 done = true; 710 } 711 712 WRITE_ONCE(tp->copied_seq, seq); 713 more_data_avail = mptcp_subflow_data_available(ssk); 714 715 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 716 done = true; 717 break; 718 } 719 } while (more_data_avail); 720 721 *bytes += moved; 722 return done; 723 } 724 725 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 726 { 727 struct sock *sk = (struct sock *)msk; 728 struct sk_buff *skb, *tail; 729 bool moved = false; 730 struct rb_node *p; 731 u64 end_seq; 732 733 p = rb_first(&msk->out_of_order_queue); 734 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 735 while (p) { 736 skb = rb_to_skb(p); 737 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 738 break; 739 740 p = rb_next(p); 741 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 742 743 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 744 msk->ack_seq))) { 745 mptcp_drop(sk, skb); 746 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 747 continue; 748 } 749 750 end_seq = MPTCP_SKB_CB(skb)->end_seq; 751 tail = skb_peek_tail(&sk->sk_receive_queue); 752 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 753 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 754 755 /* skip overlapping data, if any */ 756 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 757 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 758 delta); 759 MPTCP_SKB_CB(skb)->offset += delta; 760 MPTCP_SKB_CB(skb)->map_seq += delta; 761 __skb_queue_tail(&sk->sk_receive_queue, skb); 762 } 763 msk->ack_seq = end_seq; 764 moved = true; 765 } 766 return moved; 767 } 768 769 /* In most cases we will be able to lock the mptcp socket. If its already 770 * owned, we need to defer to the work queue to avoid ABBA deadlock. 771 */ 772 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 773 { 774 struct sock *sk = (struct sock *)msk; 775 unsigned int moved = 0; 776 777 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 778 __mptcp_ofo_queue(msk); 779 if (unlikely(ssk->sk_err)) { 780 if (!sock_owned_by_user(sk)) 781 __mptcp_error_report(sk); 782 else 783 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 784 } 785 786 /* If the moves have caught up with the DATA_FIN sequence number 787 * it's time to ack the DATA_FIN and change socket state, but 788 * this is not a good place to change state. Let the workqueue 789 * do it. 790 */ 791 if (mptcp_pending_data_fin(sk, NULL)) 792 mptcp_schedule_work(sk); 793 return moved > 0; 794 } 795 796 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 797 { 798 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 799 struct mptcp_sock *msk = mptcp_sk(sk); 800 int sk_rbuf, ssk_rbuf; 801 802 /* The peer can send data while we are shutting down this 803 * subflow at msk destruction time, but we must avoid enqueuing 804 * more data to the msk receive queue 805 */ 806 if (unlikely(subflow->disposable)) 807 return; 808 809 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 810 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 811 if (unlikely(ssk_rbuf > sk_rbuf)) 812 sk_rbuf = ssk_rbuf; 813 814 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 815 if (__mptcp_rmem(sk) > sk_rbuf) { 816 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 817 return; 818 } 819 820 /* Wake-up the reader only for in-sequence data */ 821 mptcp_data_lock(sk); 822 if (move_skbs_to_msk(msk, ssk)) 823 sk->sk_data_ready(sk); 824 825 mptcp_data_unlock(sk); 826 } 827 828 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 829 { 830 struct sock *sk = (struct sock *)msk; 831 832 if (sk->sk_state != TCP_ESTABLISHED) 833 return false; 834 835 /* attach to msk socket only after we are sure we will deal with it 836 * at close time 837 */ 838 if (sk->sk_socket && !ssk->sk_socket) 839 mptcp_sock_graft(ssk, sk->sk_socket); 840 841 mptcp_sockopt_sync_locked(msk, ssk); 842 return true; 843 } 844 845 static void __mptcp_flush_join_list(struct sock *sk) 846 { 847 struct mptcp_subflow_context *tmp, *subflow; 848 struct mptcp_sock *msk = mptcp_sk(sk); 849 850 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 851 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 852 bool slow = lock_sock_fast(ssk); 853 854 list_move_tail(&subflow->node, &msk->conn_list); 855 if (!__mptcp_finish_join(msk, ssk)) 856 mptcp_subflow_reset(ssk); 857 unlock_sock_fast(ssk, slow); 858 } 859 } 860 861 static bool mptcp_timer_pending(struct sock *sk) 862 { 863 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 864 } 865 866 static void mptcp_reset_timer(struct sock *sk) 867 { 868 struct inet_connection_sock *icsk = inet_csk(sk); 869 unsigned long tout; 870 871 /* prevent rescheduling on close */ 872 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 873 return; 874 875 tout = mptcp_sk(sk)->timer_ival; 876 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 877 } 878 879 bool mptcp_schedule_work(struct sock *sk) 880 { 881 if (inet_sk_state_load(sk) != TCP_CLOSE && 882 schedule_work(&mptcp_sk(sk)->work)) { 883 /* each subflow already holds a reference to the sk, and the 884 * workqueue is invoked by a subflow, so sk can't go away here. 885 */ 886 sock_hold(sk); 887 return true; 888 } 889 return false; 890 } 891 892 void mptcp_subflow_eof(struct sock *sk) 893 { 894 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 895 mptcp_schedule_work(sk); 896 } 897 898 static void mptcp_check_for_eof(struct mptcp_sock *msk) 899 { 900 struct mptcp_subflow_context *subflow; 901 struct sock *sk = (struct sock *)msk; 902 int receivers = 0; 903 904 mptcp_for_each_subflow(msk, subflow) 905 receivers += !subflow->rx_eof; 906 if (receivers) 907 return; 908 909 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 910 /* hopefully temporary hack: propagate shutdown status 911 * to msk, when all subflows agree on it 912 */ 913 sk->sk_shutdown |= RCV_SHUTDOWN; 914 915 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 916 sk->sk_data_ready(sk); 917 } 918 919 switch (sk->sk_state) { 920 case TCP_ESTABLISHED: 921 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 922 break; 923 case TCP_FIN_WAIT1: 924 inet_sk_state_store(sk, TCP_CLOSING); 925 break; 926 case TCP_FIN_WAIT2: 927 inet_sk_state_store(sk, TCP_CLOSE); 928 break; 929 default: 930 return; 931 } 932 mptcp_close_wake_up(sk); 933 } 934 935 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 936 { 937 struct mptcp_subflow_context *subflow; 938 939 msk_owned_by_me(msk); 940 941 mptcp_for_each_subflow(msk, subflow) { 942 if (READ_ONCE(subflow->data_avail)) 943 return mptcp_subflow_tcp_sock(subflow); 944 } 945 946 return NULL; 947 } 948 949 static bool mptcp_skb_can_collapse_to(u64 write_seq, 950 const struct sk_buff *skb, 951 const struct mptcp_ext *mpext) 952 { 953 if (!tcp_skb_can_collapse_to(skb)) 954 return false; 955 956 /* can collapse only if MPTCP level sequence is in order and this 957 * mapping has not been xmitted yet 958 */ 959 return mpext && mpext->data_seq + mpext->data_len == write_seq && 960 !mpext->frozen; 961 } 962 963 /* we can append data to the given data frag if: 964 * - there is space available in the backing page_frag 965 * - the data frag tail matches the current page_frag free offset 966 * - the data frag end sequence number matches the current write seq 967 */ 968 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 969 const struct page_frag *pfrag, 970 const struct mptcp_data_frag *df) 971 { 972 return df && pfrag->page == df->page && 973 pfrag->size - pfrag->offset > 0 && 974 pfrag->offset == (df->offset + df->data_len) && 975 df->data_seq + df->data_len == msk->write_seq; 976 } 977 978 static void dfrag_uncharge(struct sock *sk, int len) 979 { 980 sk_mem_uncharge(sk, len); 981 sk_wmem_queued_add(sk, -len); 982 } 983 984 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 985 { 986 int len = dfrag->data_len + dfrag->overhead; 987 988 list_del(&dfrag->list); 989 dfrag_uncharge(sk, len); 990 put_page(dfrag->page); 991 } 992 993 static void __mptcp_clean_una(struct sock *sk) 994 { 995 struct mptcp_sock *msk = mptcp_sk(sk); 996 struct mptcp_data_frag *dtmp, *dfrag; 997 u64 snd_una; 998 999 /* on fallback we just need to ignore snd_una, as this is really 1000 * plain TCP 1001 */ 1002 if (__mptcp_check_fallback(msk)) 1003 msk->snd_una = READ_ONCE(msk->snd_nxt); 1004 1005 snd_una = msk->snd_una; 1006 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1007 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1008 break; 1009 1010 if (unlikely(dfrag == msk->first_pending)) { 1011 /* in recovery mode can see ack after the current snd head */ 1012 if (WARN_ON_ONCE(!msk->recovery)) 1013 break; 1014 1015 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1016 } 1017 1018 dfrag_clear(sk, dfrag); 1019 } 1020 1021 dfrag = mptcp_rtx_head(sk); 1022 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1023 u64 delta = snd_una - dfrag->data_seq; 1024 1025 /* prevent wrap around in recovery mode */ 1026 if (unlikely(delta > dfrag->already_sent)) { 1027 if (WARN_ON_ONCE(!msk->recovery)) 1028 goto out; 1029 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1030 goto out; 1031 dfrag->already_sent += delta - dfrag->already_sent; 1032 } 1033 1034 dfrag->data_seq += delta; 1035 dfrag->offset += delta; 1036 dfrag->data_len -= delta; 1037 dfrag->already_sent -= delta; 1038 1039 dfrag_uncharge(sk, delta); 1040 } 1041 1042 /* all retransmitted data acked, recovery completed */ 1043 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1044 msk->recovery = false; 1045 1046 out: 1047 if (snd_una == READ_ONCE(msk->snd_nxt) && 1048 snd_una == READ_ONCE(msk->write_seq)) { 1049 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1050 mptcp_stop_timer(sk); 1051 } else { 1052 mptcp_reset_timer(sk); 1053 } 1054 } 1055 1056 static void __mptcp_clean_una_wakeup(struct sock *sk) 1057 { 1058 lockdep_assert_held_once(&sk->sk_lock.slock); 1059 1060 __mptcp_clean_una(sk); 1061 mptcp_write_space(sk); 1062 } 1063 1064 static void mptcp_clean_una_wakeup(struct sock *sk) 1065 { 1066 mptcp_data_lock(sk); 1067 __mptcp_clean_una_wakeup(sk); 1068 mptcp_data_unlock(sk); 1069 } 1070 1071 static void mptcp_enter_memory_pressure(struct sock *sk) 1072 { 1073 struct mptcp_subflow_context *subflow; 1074 struct mptcp_sock *msk = mptcp_sk(sk); 1075 bool first = true; 1076 1077 sk_stream_moderate_sndbuf(sk); 1078 mptcp_for_each_subflow(msk, subflow) { 1079 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1080 1081 if (first) 1082 tcp_enter_memory_pressure(ssk); 1083 sk_stream_moderate_sndbuf(ssk); 1084 first = false; 1085 } 1086 } 1087 1088 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1089 * data 1090 */ 1091 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1092 { 1093 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1094 pfrag, sk->sk_allocation))) 1095 return true; 1096 1097 mptcp_enter_memory_pressure(sk); 1098 return false; 1099 } 1100 1101 static struct mptcp_data_frag * 1102 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1103 int orig_offset) 1104 { 1105 int offset = ALIGN(orig_offset, sizeof(long)); 1106 struct mptcp_data_frag *dfrag; 1107 1108 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1109 dfrag->data_len = 0; 1110 dfrag->data_seq = msk->write_seq; 1111 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1112 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1113 dfrag->already_sent = 0; 1114 dfrag->page = pfrag->page; 1115 1116 return dfrag; 1117 } 1118 1119 struct mptcp_sendmsg_info { 1120 int mss_now; 1121 int size_goal; 1122 u16 limit; 1123 u16 sent; 1124 unsigned int flags; 1125 bool data_lock_held; 1126 }; 1127 1128 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1129 u64 data_seq, int avail_size) 1130 { 1131 u64 window_end = mptcp_wnd_end(msk); 1132 u64 mptcp_snd_wnd; 1133 1134 if (__mptcp_check_fallback(msk)) 1135 return avail_size; 1136 1137 mptcp_snd_wnd = window_end - data_seq; 1138 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1139 1140 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1141 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1142 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1143 } 1144 1145 return avail_size; 1146 } 1147 1148 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1149 { 1150 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1151 1152 if (!mpext) 1153 return false; 1154 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1155 return true; 1156 } 1157 1158 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1159 { 1160 struct sk_buff *skb; 1161 1162 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1163 if (likely(skb)) { 1164 if (likely(__mptcp_add_ext(skb, gfp))) { 1165 skb_reserve(skb, MAX_TCP_HEADER); 1166 skb->ip_summed = CHECKSUM_PARTIAL; 1167 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1168 return skb; 1169 } 1170 __kfree_skb(skb); 1171 } else { 1172 mptcp_enter_memory_pressure(sk); 1173 } 1174 return NULL; 1175 } 1176 1177 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1178 { 1179 struct sk_buff *skb; 1180 1181 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1182 if (!skb) 1183 return NULL; 1184 1185 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1186 tcp_skb_entail(ssk, skb); 1187 return skb; 1188 } 1189 tcp_skb_tsorted_anchor_cleanup(skb); 1190 kfree_skb(skb); 1191 return NULL; 1192 } 1193 1194 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1195 { 1196 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1197 1198 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1199 } 1200 1201 /* note: this always recompute the csum on the whole skb, even 1202 * if we just appended a single frag. More status info needed 1203 */ 1204 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1205 { 1206 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1207 __wsum csum = ~csum_unfold(mpext->csum); 1208 int offset = skb->len - added; 1209 1210 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1211 } 1212 1213 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1214 struct sock *ssk, 1215 struct mptcp_ext *mpext) 1216 { 1217 if (!mpext) 1218 return; 1219 1220 mpext->infinite_map = 1; 1221 mpext->data_len = 0; 1222 1223 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1224 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1225 pr_fallback(msk); 1226 mptcp_do_fallback(ssk); 1227 } 1228 1229 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1230 struct mptcp_data_frag *dfrag, 1231 struct mptcp_sendmsg_info *info) 1232 { 1233 u64 data_seq = dfrag->data_seq + info->sent; 1234 int offset = dfrag->offset + info->sent; 1235 struct mptcp_sock *msk = mptcp_sk(sk); 1236 bool zero_window_probe = false; 1237 struct mptcp_ext *mpext = NULL; 1238 bool can_coalesce = false; 1239 bool reuse_skb = true; 1240 struct sk_buff *skb; 1241 size_t copy; 1242 int i; 1243 1244 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1245 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1246 1247 if (WARN_ON_ONCE(info->sent > info->limit || 1248 info->limit > dfrag->data_len)) 1249 return 0; 1250 1251 if (unlikely(!__tcp_can_send(ssk))) 1252 return -EAGAIN; 1253 1254 /* compute send limit */ 1255 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1256 copy = info->size_goal; 1257 1258 skb = tcp_write_queue_tail(ssk); 1259 if (skb && copy > skb->len) { 1260 /* Limit the write to the size available in the 1261 * current skb, if any, so that we create at most a new skb. 1262 * Explicitly tells TCP internals to avoid collapsing on later 1263 * queue management operation, to avoid breaking the ext <-> 1264 * SSN association set here 1265 */ 1266 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1267 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1268 TCP_SKB_CB(skb)->eor = 1; 1269 goto alloc_skb; 1270 } 1271 1272 i = skb_shinfo(skb)->nr_frags; 1273 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1274 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1275 tcp_mark_push(tcp_sk(ssk), skb); 1276 goto alloc_skb; 1277 } 1278 1279 copy -= skb->len; 1280 } else { 1281 alloc_skb: 1282 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1283 if (!skb) 1284 return -ENOMEM; 1285 1286 i = skb_shinfo(skb)->nr_frags; 1287 reuse_skb = false; 1288 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1289 } 1290 1291 /* Zero window and all data acked? Probe. */ 1292 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1293 if (copy == 0) { 1294 u64 snd_una = READ_ONCE(msk->snd_una); 1295 1296 if (snd_una != msk->snd_nxt) { 1297 tcp_remove_empty_skb(ssk); 1298 return 0; 1299 } 1300 1301 zero_window_probe = true; 1302 data_seq = snd_una - 1; 1303 copy = 1; 1304 1305 /* all mptcp-level data is acked, no skbs should be present into the 1306 * ssk write queue 1307 */ 1308 WARN_ON_ONCE(reuse_skb); 1309 } 1310 1311 copy = min_t(size_t, copy, info->limit - info->sent); 1312 if (!sk_wmem_schedule(ssk, copy)) { 1313 tcp_remove_empty_skb(ssk); 1314 return -ENOMEM; 1315 } 1316 1317 if (can_coalesce) { 1318 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1319 } else { 1320 get_page(dfrag->page); 1321 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1322 } 1323 1324 skb->len += copy; 1325 skb->data_len += copy; 1326 skb->truesize += copy; 1327 sk_wmem_queued_add(ssk, copy); 1328 sk_mem_charge(ssk, copy); 1329 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1330 TCP_SKB_CB(skb)->end_seq += copy; 1331 tcp_skb_pcount_set(skb, 0); 1332 1333 /* on skb reuse we just need to update the DSS len */ 1334 if (reuse_skb) { 1335 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1336 mpext->data_len += copy; 1337 WARN_ON_ONCE(zero_window_probe); 1338 goto out; 1339 } 1340 1341 memset(mpext, 0, sizeof(*mpext)); 1342 mpext->data_seq = data_seq; 1343 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1344 mpext->data_len = copy; 1345 mpext->use_map = 1; 1346 mpext->dsn64 = 1; 1347 1348 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1349 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1350 mpext->dsn64); 1351 1352 if (zero_window_probe) { 1353 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1354 mpext->frozen = 1; 1355 if (READ_ONCE(msk->csum_enabled)) 1356 mptcp_update_data_checksum(skb, copy); 1357 tcp_push_pending_frames(ssk); 1358 return 0; 1359 } 1360 out: 1361 if (READ_ONCE(msk->csum_enabled)) 1362 mptcp_update_data_checksum(skb, copy); 1363 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1364 mptcp_update_infinite_map(msk, ssk, mpext); 1365 trace_mptcp_sendmsg_frag(mpext); 1366 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1367 return copy; 1368 } 1369 1370 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1371 sizeof(struct tcphdr) - \ 1372 MAX_TCP_OPTION_SPACE - \ 1373 sizeof(struct ipv6hdr) - \ 1374 sizeof(struct frag_hdr)) 1375 1376 struct subflow_send_info { 1377 struct sock *ssk; 1378 u64 linger_time; 1379 }; 1380 1381 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1382 { 1383 if (!subflow->stale) 1384 return; 1385 1386 subflow->stale = 0; 1387 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1388 } 1389 1390 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1391 { 1392 if (unlikely(subflow->stale)) { 1393 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1394 1395 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1396 return false; 1397 1398 mptcp_subflow_set_active(subflow); 1399 } 1400 return __mptcp_subflow_active(subflow); 1401 } 1402 1403 #define SSK_MODE_ACTIVE 0 1404 #define SSK_MODE_BACKUP 1 1405 #define SSK_MODE_MAX 2 1406 1407 /* implement the mptcp packet scheduler; 1408 * returns the subflow that will transmit the next DSS 1409 * additionally updates the rtx timeout 1410 */ 1411 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1412 { 1413 struct subflow_send_info send_info[SSK_MODE_MAX]; 1414 struct mptcp_subflow_context *subflow; 1415 struct sock *sk = (struct sock *)msk; 1416 u32 pace, burst, wmem; 1417 int i, nr_active = 0; 1418 struct sock *ssk; 1419 u64 linger_time; 1420 long tout = 0; 1421 1422 msk_owned_by_me(msk); 1423 1424 if (__mptcp_check_fallback(msk)) { 1425 if (!msk->first) 1426 return NULL; 1427 return __tcp_can_send(msk->first) && 1428 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1429 } 1430 1431 /* re-use last subflow, if the burst allow that */ 1432 if (msk->last_snd && msk->snd_burst > 0 && 1433 sk_stream_memory_free(msk->last_snd) && 1434 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1435 mptcp_set_timeout(sk); 1436 return msk->last_snd; 1437 } 1438 1439 /* pick the subflow with the lower wmem/wspace ratio */ 1440 for (i = 0; i < SSK_MODE_MAX; ++i) { 1441 send_info[i].ssk = NULL; 1442 send_info[i].linger_time = -1; 1443 } 1444 1445 mptcp_for_each_subflow(msk, subflow) { 1446 trace_mptcp_subflow_get_send(subflow); 1447 ssk = mptcp_subflow_tcp_sock(subflow); 1448 if (!mptcp_subflow_active(subflow)) 1449 continue; 1450 1451 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1452 nr_active += !subflow->backup; 1453 pace = subflow->avg_pacing_rate; 1454 if (unlikely(!pace)) { 1455 /* init pacing rate from socket */ 1456 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1457 pace = subflow->avg_pacing_rate; 1458 if (!pace) 1459 continue; 1460 } 1461 1462 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1463 if (linger_time < send_info[subflow->backup].linger_time) { 1464 send_info[subflow->backup].ssk = ssk; 1465 send_info[subflow->backup].linger_time = linger_time; 1466 } 1467 } 1468 __mptcp_set_timeout(sk, tout); 1469 1470 /* pick the best backup if no other subflow is active */ 1471 if (!nr_active) 1472 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1473 1474 /* According to the blest algorithm, to avoid HoL blocking for the 1475 * faster flow, we need to: 1476 * - estimate the faster flow linger time 1477 * - use the above to estimate the amount of byte transferred 1478 * by the faster flow 1479 * - check that the amount of queued data is greter than the above, 1480 * otherwise do not use the picked, slower, subflow 1481 * We select the subflow with the shorter estimated time to flush 1482 * the queued mem, which basically ensure the above. We just need 1483 * to check that subflow has a non empty cwin. 1484 */ 1485 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1486 if (!ssk || !sk_stream_memory_free(ssk)) 1487 return NULL; 1488 1489 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1490 wmem = READ_ONCE(ssk->sk_wmem_queued); 1491 if (!burst) { 1492 msk->last_snd = NULL; 1493 return ssk; 1494 } 1495 1496 subflow = mptcp_subflow_ctx(ssk); 1497 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1498 READ_ONCE(ssk->sk_pacing_rate) * burst, 1499 burst + wmem); 1500 msk->last_snd = ssk; 1501 msk->snd_burst = burst; 1502 return ssk; 1503 } 1504 1505 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1506 { 1507 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1508 release_sock(ssk); 1509 } 1510 1511 static void mptcp_update_post_push(struct mptcp_sock *msk, 1512 struct mptcp_data_frag *dfrag, 1513 u32 sent) 1514 { 1515 u64 snd_nxt_new = dfrag->data_seq; 1516 1517 dfrag->already_sent += sent; 1518 1519 msk->snd_burst -= sent; 1520 1521 snd_nxt_new += dfrag->already_sent; 1522 1523 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1524 * is recovering after a failover. In that event, this re-sends 1525 * old segments. 1526 * 1527 * Thus compute snd_nxt_new candidate based on 1528 * the dfrag->data_seq that was sent and the data 1529 * that has been handed to the subflow for transmission 1530 * and skip update in case it was old dfrag. 1531 */ 1532 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1533 msk->snd_nxt = snd_nxt_new; 1534 } 1535 1536 void mptcp_check_and_set_pending(struct sock *sk) 1537 { 1538 if (mptcp_send_head(sk)) 1539 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1540 } 1541 1542 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1543 { 1544 struct sock *prev_ssk = NULL, *ssk = NULL; 1545 struct mptcp_sock *msk = mptcp_sk(sk); 1546 struct mptcp_sendmsg_info info = { 1547 .flags = flags, 1548 }; 1549 bool do_check_data_fin = false; 1550 struct mptcp_data_frag *dfrag; 1551 int len; 1552 1553 while ((dfrag = mptcp_send_head(sk))) { 1554 info.sent = dfrag->already_sent; 1555 info.limit = dfrag->data_len; 1556 len = dfrag->data_len - dfrag->already_sent; 1557 while (len > 0) { 1558 int ret = 0; 1559 1560 prev_ssk = ssk; 1561 ssk = mptcp_subflow_get_send(msk); 1562 1563 /* First check. If the ssk has changed since 1564 * the last round, release prev_ssk 1565 */ 1566 if (ssk != prev_ssk && prev_ssk) 1567 mptcp_push_release(prev_ssk, &info); 1568 if (!ssk) 1569 goto out; 1570 1571 /* Need to lock the new subflow only if different 1572 * from the previous one, otherwise we are still 1573 * helding the relevant lock 1574 */ 1575 if (ssk != prev_ssk) 1576 lock_sock(ssk); 1577 1578 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1579 if (ret <= 0) { 1580 if (ret == -EAGAIN) 1581 continue; 1582 mptcp_push_release(ssk, &info); 1583 goto out; 1584 } 1585 1586 do_check_data_fin = true; 1587 info.sent += ret; 1588 len -= ret; 1589 1590 mptcp_update_post_push(msk, dfrag, ret); 1591 } 1592 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1593 } 1594 1595 /* at this point we held the socket lock for the last subflow we used */ 1596 if (ssk) 1597 mptcp_push_release(ssk, &info); 1598 1599 out: 1600 /* ensure the rtx timer is running */ 1601 if (!mptcp_timer_pending(sk)) 1602 mptcp_reset_timer(sk); 1603 if (do_check_data_fin) 1604 __mptcp_check_send_data_fin(sk); 1605 } 1606 1607 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1608 { 1609 struct mptcp_sock *msk = mptcp_sk(sk); 1610 struct mptcp_sendmsg_info info = { 1611 .data_lock_held = true, 1612 }; 1613 struct mptcp_data_frag *dfrag; 1614 struct sock *xmit_ssk; 1615 int len, copied = 0; 1616 1617 info.flags = 0; 1618 while ((dfrag = mptcp_send_head(sk))) { 1619 info.sent = dfrag->already_sent; 1620 info.limit = dfrag->data_len; 1621 len = dfrag->data_len - dfrag->already_sent; 1622 while (len > 0) { 1623 int ret = 0; 1624 1625 /* check for a different subflow usage only after 1626 * spooling the first chunk of data 1627 */ 1628 xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk); 1629 if (!xmit_ssk) 1630 goto out; 1631 if (xmit_ssk != ssk) { 1632 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1633 MPTCP_DELEGATE_SEND); 1634 goto out; 1635 } 1636 1637 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1638 if (ret <= 0) 1639 goto out; 1640 1641 info.sent += ret; 1642 copied += ret; 1643 len -= ret; 1644 first = false; 1645 1646 mptcp_update_post_push(msk, dfrag, ret); 1647 } 1648 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1649 } 1650 1651 out: 1652 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1653 * not going to flush it via release_sock() 1654 */ 1655 if (copied) { 1656 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1657 info.size_goal); 1658 if (!mptcp_timer_pending(sk)) 1659 mptcp_reset_timer(sk); 1660 1661 if (msk->snd_data_fin_enable && 1662 msk->snd_nxt + 1 == msk->write_seq) 1663 mptcp_schedule_work(sk); 1664 } 1665 } 1666 1667 static void mptcp_set_nospace(struct sock *sk) 1668 { 1669 /* enable autotune */ 1670 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1671 1672 /* will be cleared on avail space */ 1673 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1674 } 1675 1676 static int mptcp_disconnect(struct sock *sk, int flags); 1677 1678 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1679 size_t len, int *copied_syn) 1680 { 1681 unsigned int saved_flags = msg->msg_flags; 1682 struct mptcp_sock *msk = mptcp_sk(sk); 1683 struct socket *ssock; 1684 struct sock *ssk; 1685 int ret; 1686 1687 /* on flags based fastopen the mptcp is supposed to create the 1688 * first subflow right now. Otherwise we are in the defer_connect 1689 * path, and the first subflow must be already present. 1690 * Since the defer_connect flag is cleared after the first succsful 1691 * fastopen attempt, no need to check for additional subflow status. 1692 */ 1693 if (msg->msg_flags & MSG_FASTOPEN) { 1694 ssock = __mptcp_nmpc_socket(msk); 1695 if (IS_ERR(ssock)) 1696 return PTR_ERR(ssock); 1697 } 1698 if (!msk->first) 1699 return -EINVAL; 1700 1701 ssk = msk->first; 1702 1703 lock_sock(ssk); 1704 msg->msg_flags |= MSG_DONTWAIT; 1705 msk->connect_flags = O_NONBLOCK; 1706 msk->fastopening = 1; 1707 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1708 msk->fastopening = 0; 1709 msg->msg_flags = saved_flags; 1710 release_sock(ssk); 1711 1712 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1713 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1714 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1715 msg->msg_namelen, msg->msg_flags, 1); 1716 1717 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1718 * case of any error, except timeout or signal 1719 */ 1720 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1721 *copied_syn = 0; 1722 } else if (ret && ret != -EINPROGRESS) { 1723 mptcp_disconnect(sk, 0); 1724 } 1725 inet_sk(sk)->defer_connect = 0; 1726 1727 return ret; 1728 } 1729 1730 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1731 { 1732 struct mptcp_sock *msk = mptcp_sk(sk); 1733 struct page_frag *pfrag; 1734 size_t copied = 0; 1735 int ret = 0; 1736 long timeo; 1737 1738 /* silently ignore everything else */ 1739 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1740 1741 lock_sock(sk); 1742 1743 if (unlikely(inet_sk(sk)->defer_connect || msg->msg_flags & MSG_FASTOPEN)) { 1744 int copied_syn = 0; 1745 1746 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1747 copied += copied_syn; 1748 if (ret == -EINPROGRESS && copied_syn > 0) 1749 goto out; 1750 else if (ret) 1751 goto do_error; 1752 } 1753 1754 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1755 1756 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1757 ret = sk_stream_wait_connect(sk, &timeo); 1758 if (ret) 1759 goto do_error; 1760 } 1761 1762 ret = -EPIPE; 1763 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1764 goto do_error; 1765 1766 pfrag = sk_page_frag(sk); 1767 1768 while (msg_data_left(msg)) { 1769 int total_ts, frag_truesize = 0; 1770 struct mptcp_data_frag *dfrag; 1771 bool dfrag_collapsed; 1772 size_t psize, offset; 1773 1774 /* reuse tail pfrag, if possible, or carve a new one from the 1775 * page allocator 1776 */ 1777 dfrag = mptcp_pending_tail(sk); 1778 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1779 if (!dfrag_collapsed) { 1780 if (!sk_stream_memory_free(sk)) 1781 goto wait_for_memory; 1782 1783 if (!mptcp_page_frag_refill(sk, pfrag)) 1784 goto wait_for_memory; 1785 1786 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1787 frag_truesize = dfrag->overhead; 1788 } 1789 1790 /* we do not bound vs wspace, to allow a single packet. 1791 * memory accounting will prevent execessive memory usage 1792 * anyway 1793 */ 1794 offset = dfrag->offset + dfrag->data_len; 1795 psize = pfrag->size - offset; 1796 psize = min_t(size_t, psize, msg_data_left(msg)); 1797 total_ts = psize + frag_truesize; 1798 1799 if (!sk_wmem_schedule(sk, total_ts)) 1800 goto wait_for_memory; 1801 1802 if (copy_page_from_iter(dfrag->page, offset, psize, 1803 &msg->msg_iter) != psize) { 1804 ret = -EFAULT; 1805 goto do_error; 1806 } 1807 1808 /* data successfully copied into the write queue */ 1809 sk->sk_forward_alloc -= total_ts; 1810 copied += psize; 1811 dfrag->data_len += psize; 1812 frag_truesize += psize; 1813 pfrag->offset += frag_truesize; 1814 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1815 1816 /* charge data on mptcp pending queue to the msk socket 1817 * Note: we charge such data both to sk and ssk 1818 */ 1819 sk_wmem_queued_add(sk, frag_truesize); 1820 if (!dfrag_collapsed) { 1821 get_page(dfrag->page); 1822 list_add_tail(&dfrag->list, &msk->rtx_queue); 1823 if (!msk->first_pending) 1824 WRITE_ONCE(msk->first_pending, dfrag); 1825 } 1826 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1827 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1828 !dfrag_collapsed); 1829 1830 continue; 1831 1832 wait_for_memory: 1833 mptcp_set_nospace(sk); 1834 __mptcp_push_pending(sk, msg->msg_flags); 1835 ret = sk_stream_wait_memory(sk, &timeo); 1836 if (ret) 1837 goto do_error; 1838 } 1839 1840 if (copied) 1841 __mptcp_push_pending(sk, msg->msg_flags); 1842 1843 out: 1844 release_sock(sk); 1845 return copied; 1846 1847 do_error: 1848 if (copied) 1849 goto out; 1850 1851 copied = sk_stream_error(sk, msg->msg_flags, ret); 1852 goto out; 1853 } 1854 1855 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1856 struct msghdr *msg, 1857 size_t len, int flags, 1858 struct scm_timestamping_internal *tss, 1859 int *cmsg_flags) 1860 { 1861 struct sk_buff *skb, *tmp; 1862 int copied = 0; 1863 1864 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1865 u32 offset = MPTCP_SKB_CB(skb)->offset; 1866 u32 data_len = skb->len - offset; 1867 u32 count = min_t(size_t, len - copied, data_len); 1868 int err; 1869 1870 if (!(flags & MSG_TRUNC)) { 1871 err = skb_copy_datagram_msg(skb, offset, msg, count); 1872 if (unlikely(err < 0)) { 1873 if (!copied) 1874 return err; 1875 break; 1876 } 1877 } 1878 1879 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1880 tcp_update_recv_tstamps(skb, tss); 1881 *cmsg_flags |= MPTCP_CMSG_TS; 1882 } 1883 1884 copied += count; 1885 1886 if (count < data_len) { 1887 if (!(flags & MSG_PEEK)) { 1888 MPTCP_SKB_CB(skb)->offset += count; 1889 MPTCP_SKB_CB(skb)->map_seq += count; 1890 } 1891 break; 1892 } 1893 1894 if (!(flags & MSG_PEEK)) { 1895 /* we will bulk release the skb memory later */ 1896 skb->destructor = NULL; 1897 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1898 __skb_unlink(skb, &msk->receive_queue); 1899 __kfree_skb(skb); 1900 } 1901 1902 if (copied >= len) 1903 break; 1904 } 1905 1906 return copied; 1907 } 1908 1909 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1910 * 1911 * Only difference: Use highest rtt estimate of the subflows in use. 1912 */ 1913 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1914 { 1915 struct mptcp_subflow_context *subflow; 1916 struct sock *sk = (struct sock *)msk; 1917 u32 time, advmss = 1; 1918 u64 rtt_us, mstamp; 1919 1920 msk_owned_by_me(msk); 1921 1922 if (copied <= 0) 1923 return; 1924 1925 msk->rcvq_space.copied += copied; 1926 1927 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1928 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1929 1930 rtt_us = msk->rcvq_space.rtt_us; 1931 if (rtt_us && time < (rtt_us >> 3)) 1932 return; 1933 1934 rtt_us = 0; 1935 mptcp_for_each_subflow(msk, subflow) { 1936 const struct tcp_sock *tp; 1937 u64 sf_rtt_us; 1938 u32 sf_advmss; 1939 1940 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1941 1942 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1943 sf_advmss = READ_ONCE(tp->advmss); 1944 1945 rtt_us = max(sf_rtt_us, rtt_us); 1946 advmss = max(sf_advmss, advmss); 1947 } 1948 1949 msk->rcvq_space.rtt_us = rtt_us; 1950 if (time < (rtt_us >> 3) || rtt_us == 0) 1951 return; 1952 1953 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1954 goto new_measure; 1955 1956 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1957 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1958 int rcvmem, rcvbuf; 1959 u64 rcvwin, grow; 1960 1961 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1962 1963 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1964 1965 do_div(grow, msk->rcvq_space.space); 1966 rcvwin += (grow << 1); 1967 1968 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1969 while (tcp_win_from_space(sk, rcvmem) < advmss) 1970 rcvmem += 128; 1971 1972 do_div(rcvwin, advmss); 1973 rcvbuf = min_t(u64, rcvwin * rcvmem, 1974 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1975 1976 if (rcvbuf > sk->sk_rcvbuf) { 1977 u32 window_clamp; 1978 1979 window_clamp = tcp_win_from_space(sk, rcvbuf); 1980 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1981 1982 /* Make subflows follow along. If we do not do this, we 1983 * get drops at subflow level if skbs can't be moved to 1984 * the mptcp rx queue fast enough (announced rcv_win can 1985 * exceed ssk->sk_rcvbuf). 1986 */ 1987 mptcp_for_each_subflow(msk, subflow) { 1988 struct sock *ssk; 1989 bool slow; 1990 1991 ssk = mptcp_subflow_tcp_sock(subflow); 1992 slow = lock_sock_fast(ssk); 1993 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1994 tcp_sk(ssk)->window_clamp = window_clamp; 1995 tcp_cleanup_rbuf(ssk, 1); 1996 unlock_sock_fast(ssk, slow); 1997 } 1998 } 1999 } 2000 2001 msk->rcvq_space.space = msk->rcvq_space.copied; 2002 new_measure: 2003 msk->rcvq_space.copied = 0; 2004 msk->rcvq_space.time = mstamp; 2005 } 2006 2007 static void __mptcp_update_rmem(struct sock *sk) 2008 { 2009 struct mptcp_sock *msk = mptcp_sk(sk); 2010 2011 if (!msk->rmem_released) 2012 return; 2013 2014 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2015 mptcp_rmem_uncharge(sk, msk->rmem_released); 2016 WRITE_ONCE(msk->rmem_released, 0); 2017 } 2018 2019 static void __mptcp_splice_receive_queue(struct sock *sk) 2020 { 2021 struct mptcp_sock *msk = mptcp_sk(sk); 2022 2023 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2024 } 2025 2026 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2027 { 2028 struct sock *sk = (struct sock *)msk; 2029 unsigned int moved = 0; 2030 bool ret, done; 2031 2032 do { 2033 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2034 bool slowpath; 2035 2036 /* we can have data pending in the subflows only if the msk 2037 * receive buffer was full at subflow_data_ready() time, 2038 * that is an unlikely slow path. 2039 */ 2040 if (likely(!ssk)) 2041 break; 2042 2043 slowpath = lock_sock_fast(ssk); 2044 mptcp_data_lock(sk); 2045 __mptcp_update_rmem(sk); 2046 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2047 mptcp_data_unlock(sk); 2048 2049 if (unlikely(ssk->sk_err)) 2050 __mptcp_error_report(sk); 2051 unlock_sock_fast(ssk, slowpath); 2052 } while (!done); 2053 2054 /* acquire the data lock only if some input data is pending */ 2055 ret = moved > 0; 2056 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2057 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2058 mptcp_data_lock(sk); 2059 __mptcp_update_rmem(sk); 2060 ret |= __mptcp_ofo_queue(msk); 2061 __mptcp_splice_receive_queue(sk); 2062 mptcp_data_unlock(sk); 2063 } 2064 if (ret) 2065 mptcp_check_data_fin((struct sock *)msk); 2066 return !skb_queue_empty(&msk->receive_queue); 2067 } 2068 2069 static unsigned int mptcp_inq_hint(const struct sock *sk) 2070 { 2071 const struct mptcp_sock *msk = mptcp_sk(sk); 2072 const struct sk_buff *skb; 2073 2074 skb = skb_peek(&msk->receive_queue); 2075 if (skb) { 2076 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2077 2078 if (hint_val >= INT_MAX) 2079 return INT_MAX; 2080 2081 return (unsigned int)hint_val; 2082 } 2083 2084 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2085 return 1; 2086 2087 return 0; 2088 } 2089 2090 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2091 int flags, int *addr_len) 2092 { 2093 struct mptcp_sock *msk = mptcp_sk(sk); 2094 struct scm_timestamping_internal tss; 2095 int copied = 0, cmsg_flags = 0; 2096 int target; 2097 long timeo; 2098 2099 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2100 if (unlikely(flags & MSG_ERRQUEUE)) 2101 return inet_recv_error(sk, msg, len, addr_len); 2102 2103 lock_sock(sk); 2104 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2105 copied = -ENOTCONN; 2106 goto out_err; 2107 } 2108 2109 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2110 2111 len = min_t(size_t, len, INT_MAX); 2112 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2113 2114 if (unlikely(msk->recvmsg_inq)) 2115 cmsg_flags = MPTCP_CMSG_INQ; 2116 2117 while (copied < len) { 2118 int bytes_read; 2119 2120 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2121 if (unlikely(bytes_read < 0)) { 2122 if (!copied) 2123 copied = bytes_read; 2124 goto out_err; 2125 } 2126 2127 copied += bytes_read; 2128 2129 /* be sure to advertise window change */ 2130 mptcp_cleanup_rbuf(msk); 2131 2132 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2133 continue; 2134 2135 /* only the master socket status is relevant here. The exit 2136 * conditions mirror closely tcp_recvmsg() 2137 */ 2138 if (copied >= target) 2139 break; 2140 2141 if (copied) { 2142 if (sk->sk_err || 2143 sk->sk_state == TCP_CLOSE || 2144 (sk->sk_shutdown & RCV_SHUTDOWN) || 2145 !timeo || 2146 signal_pending(current)) 2147 break; 2148 } else { 2149 if (sk->sk_err) { 2150 copied = sock_error(sk); 2151 break; 2152 } 2153 2154 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2155 mptcp_check_for_eof(msk); 2156 2157 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2158 /* race breaker: the shutdown could be after the 2159 * previous receive queue check 2160 */ 2161 if (__mptcp_move_skbs(msk)) 2162 continue; 2163 break; 2164 } 2165 2166 if (sk->sk_state == TCP_CLOSE) { 2167 copied = -ENOTCONN; 2168 break; 2169 } 2170 2171 if (!timeo) { 2172 copied = -EAGAIN; 2173 break; 2174 } 2175 2176 if (signal_pending(current)) { 2177 copied = sock_intr_errno(timeo); 2178 break; 2179 } 2180 } 2181 2182 pr_debug("block timeout %ld", timeo); 2183 sk_wait_data(sk, &timeo, NULL); 2184 } 2185 2186 out_err: 2187 if (cmsg_flags && copied >= 0) { 2188 if (cmsg_flags & MPTCP_CMSG_TS) 2189 tcp_recv_timestamp(msg, sk, &tss); 2190 2191 if (cmsg_flags & MPTCP_CMSG_INQ) { 2192 unsigned int inq = mptcp_inq_hint(sk); 2193 2194 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2195 } 2196 } 2197 2198 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2199 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2200 skb_queue_empty(&msk->receive_queue), copied); 2201 if (!(flags & MSG_PEEK)) 2202 mptcp_rcv_space_adjust(msk, copied); 2203 2204 release_sock(sk); 2205 return copied; 2206 } 2207 2208 static void mptcp_retransmit_timer(struct timer_list *t) 2209 { 2210 struct inet_connection_sock *icsk = from_timer(icsk, t, 2211 icsk_retransmit_timer); 2212 struct sock *sk = &icsk->icsk_inet.sk; 2213 struct mptcp_sock *msk = mptcp_sk(sk); 2214 2215 bh_lock_sock(sk); 2216 if (!sock_owned_by_user(sk)) { 2217 /* we need a process context to retransmit */ 2218 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2219 mptcp_schedule_work(sk); 2220 } else { 2221 /* delegate our work to tcp_release_cb() */ 2222 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2223 } 2224 bh_unlock_sock(sk); 2225 sock_put(sk); 2226 } 2227 2228 static void mptcp_timeout_timer(struct timer_list *t) 2229 { 2230 struct sock *sk = from_timer(sk, t, sk_timer); 2231 2232 mptcp_schedule_work(sk); 2233 sock_put(sk); 2234 } 2235 2236 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2237 * level. 2238 * 2239 * A backup subflow is returned only if that is the only kind available. 2240 */ 2241 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2242 { 2243 struct sock *backup = NULL, *pick = NULL; 2244 struct mptcp_subflow_context *subflow; 2245 int min_stale_count = INT_MAX; 2246 2247 msk_owned_by_me(msk); 2248 2249 if (__mptcp_check_fallback(msk)) 2250 return NULL; 2251 2252 mptcp_for_each_subflow(msk, subflow) { 2253 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2254 2255 if (!__mptcp_subflow_active(subflow)) 2256 continue; 2257 2258 /* still data outstanding at TCP level? skip this */ 2259 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2260 mptcp_pm_subflow_chk_stale(msk, ssk); 2261 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2262 continue; 2263 } 2264 2265 if (subflow->backup) { 2266 if (!backup) 2267 backup = ssk; 2268 continue; 2269 } 2270 2271 if (!pick) 2272 pick = ssk; 2273 } 2274 2275 if (pick) 2276 return pick; 2277 2278 /* use backup only if there are no progresses anywhere */ 2279 return min_stale_count > 1 ? backup : NULL; 2280 } 2281 2282 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2283 { 2284 if (msk->subflow) { 2285 iput(SOCK_INODE(msk->subflow)); 2286 msk->subflow = NULL; 2287 } 2288 } 2289 2290 bool __mptcp_retransmit_pending_data(struct sock *sk) 2291 { 2292 struct mptcp_data_frag *cur, *rtx_head; 2293 struct mptcp_sock *msk = mptcp_sk(sk); 2294 2295 if (__mptcp_check_fallback(msk)) 2296 return false; 2297 2298 if (tcp_rtx_and_write_queues_empty(sk)) 2299 return false; 2300 2301 /* the closing socket has some data untransmitted and/or unacked: 2302 * some data in the mptcp rtx queue has not really xmitted yet. 2303 * keep it simple and re-inject the whole mptcp level rtx queue 2304 */ 2305 mptcp_data_lock(sk); 2306 __mptcp_clean_una_wakeup(sk); 2307 rtx_head = mptcp_rtx_head(sk); 2308 if (!rtx_head) { 2309 mptcp_data_unlock(sk); 2310 return false; 2311 } 2312 2313 msk->recovery_snd_nxt = msk->snd_nxt; 2314 msk->recovery = true; 2315 mptcp_data_unlock(sk); 2316 2317 msk->first_pending = rtx_head; 2318 msk->snd_burst = 0; 2319 2320 /* be sure to clear the "sent status" on all re-injected fragments */ 2321 list_for_each_entry(cur, &msk->rtx_queue, list) { 2322 if (!cur->already_sent) 2323 break; 2324 cur->already_sent = 0; 2325 } 2326 2327 return true; 2328 } 2329 2330 /* flags for __mptcp_close_ssk() */ 2331 #define MPTCP_CF_PUSH BIT(1) 2332 #define MPTCP_CF_FASTCLOSE BIT(2) 2333 2334 /* subflow sockets can be either outgoing (connect) or incoming 2335 * (accept). 2336 * 2337 * Outgoing subflows use in-kernel sockets. 2338 * Incoming subflows do not have their own 'struct socket' allocated, 2339 * so we need to use tcp_close() after detaching them from the mptcp 2340 * parent socket. 2341 */ 2342 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2343 struct mptcp_subflow_context *subflow, 2344 unsigned int flags) 2345 { 2346 struct mptcp_sock *msk = mptcp_sk(sk); 2347 bool dispose_it, need_push = false; 2348 2349 /* If the first subflow moved to a close state before accept, e.g. due 2350 * to an incoming reset, mptcp either: 2351 * - if either the subflow or the msk are dead, destroy the context 2352 * (the subflow socket is deleted by inet_child_forget) and the msk 2353 * - otherwise do nothing at the moment and take action at accept and/or 2354 * listener shutdown - user-space must be able to accept() the closed 2355 * socket. 2356 */ 2357 if (msk->in_accept_queue && msk->first == ssk) { 2358 if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD)) 2359 return; 2360 2361 /* ensure later check in mptcp_worker() will dispose the msk */ 2362 sock_set_flag(sk, SOCK_DEAD); 2363 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2364 mptcp_subflow_drop_ctx(ssk); 2365 goto out_release; 2366 } 2367 2368 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2369 if (dispose_it) 2370 list_del(&subflow->node); 2371 2372 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2373 2374 if (flags & MPTCP_CF_FASTCLOSE) { 2375 /* be sure to force the tcp_disconnect() path, 2376 * to generate the egress reset 2377 */ 2378 ssk->sk_lingertime = 0; 2379 sock_set_flag(ssk, SOCK_LINGER); 2380 subflow->send_fastclose = 1; 2381 } 2382 2383 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2384 if (!dispose_it) { 2385 tcp_disconnect(ssk, 0); 2386 msk->subflow->state = SS_UNCONNECTED; 2387 mptcp_subflow_ctx_reset(subflow); 2388 release_sock(ssk); 2389 2390 goto out; 2391 } 2392 2393 subflow->disposable = 1; 2394 2395 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2396 * the ssk has been already destroyed, we just need to release the 2397 * reference owned by msk; 2398 */ 2399 if (!inet_csk(ssk)->icsk_ulp_ops) { 2400 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2401 kfree_rcu(subflow, rcu); 2402 } else { 2403 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2404 if (ssk->sk_state == TCP_LISTEN) { 2405 tcp_set_state(ssk, TCP_CLOSE); 2406 mptcp_subflow_queue_clean(sk, ssk); 2407 inet_csk_listen_stop(ssk); 2408 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2409 } 2410 2411 __tcp_close(ssk, 0); 2412 2413 /* close acquired an extra ref */ 2414 __sock_put(ssk); 2415 } 2416 2417 out_release: 2418 release_sock(ssk); 2419 2420 sock_put(ssk); 2421 2422 if (ssk == msk->first) 2423 msk->first = NULL; 2424 2425 out: 2426 if (ssk == msk->last_snd) 2427 msk->last_snd = NULL; 2428 2429 if (need_push) 2430 __mptcp_push_pending(sk, 0); 2431 } 2432 2433 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2434 struct mptcp_subflow_context *subflow) 2435 { 2436 if (sk->sk_state == TCP_ESTABLISHED) 2437 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2438 2439 /* subflow aborted before reaching the fully_established status 2440 * attempt the creation of the next subflow 2441 */ 2442 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2443 2444 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2445 } 2446 2447 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2448 { 2449 return 0; 2450 } 2451 2452 static void __mptcp_close_subflow(struct sock *sk) 2453 { 2454 struct mptcp_subflow_context *subflow, *tmp; 2455 struct mptcp_sock *msk = mptcp_sk(sk); 2456 2457 might_sleep(); 2458 2459 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2460 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2461 2462 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2463 continue; 2464 2465 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2466 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2467 continue; 2468 2469 mptcp_close_ssk(sk, ssk, subflow); 2470 } 2471 2472 } 2473 2474 static bool mptcp_should_close(const struct sock *sk) 2475 { 2476 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2477 struct mptcp_subflow_context *subflow; 2478 2479 if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue) 2480 return true; 2481 2482 /* if all subflows are in closed status don't bother with additional 2483 * timeout 2484 */ 2485 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2486 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2487 TCP_CLOSE) 2488 return false; 2489 } 2490 return true; 2491 } 2492 2493 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2494 { 2495 struct mptcp_subflow_context *subflow, *tmp; 2496 struct sock *sk = (struct sock *)msk; 2497 2498 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2499 return; 2500 2501 mptcp_token_destroy(msk); 2502 2503 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2504 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2505 bool slow; 2506 2507 slow = lock_sock_fast(tcp_sk); 2508 if (tcp_sk->sk_state != TCP_CLOSE) { 2509 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2510 tcp_set_state(tcp_sk, TCP_CLOSE); 2511 } 2512 unlock_sock_fast(tcp_sk, slow); 2513 } 2514 2515 /* Mirror the tcp_reset() error propagation */ 2516 switch (sk->sk_state) { 2517 case TCP_SYN_SENT: 2518 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2519 break; 2520 case TCP_CLOSE_WAIT: 2521 WRITE_ONCE(sk->sk_err, EPIPE); 2522 break; 2523 case TCP_CLOSE: 2524 return; 2525 default: 2526 WRITE_ONCE(sk->sk_err, ECONNRESET); 2527 } 2528 2529 inet_sk_state_store(sk, TCP_CLOSE); 2530 sk->sk_shutdown = SHUTDOWN_MASK; 2531 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2532 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2533 2534 /* the calling mptcp_worker will properly destroy the socket */ 2535 if (sock_flag(sk, SOCK_DEAD)) 2536 return; 2537 2538 sk->sk_state_change(sk); 2539 sk_error_report(sk); 2540 } 2541 2542 static void __mptcp_retrans(struct sock *sk) 2543 { 2544 struct mptcp_sock *msk = mptcp_sk(sk); 2545 struct mptcp_sendmsg_info info = {}; 2546 struct mptcp_data_frag *dfrag; 2547 size_t copied = 0; 2548 struct sock *ssk; 2549 int ret; 2550 2551 mptcp_clean_una_wakeup(sk); 2552 2553 /* first check ssk: need to kick "stale" logic */ 2554 ssk = mptcp_subflow_get_retrans(msk); 2555 dfrag = mptcp_rtx_head(sk); 2556 if (!dfrag) { 2557 if (mptcp_data_fin_enabled(msk)) { 2558 struct inet_connection_sock *icsk = inet_csk(sk); 2559 2560 icsk->icsk_retransmits++; 2561 mptcp_set_datafin_timeout(sk); 2562 mptcp_send_ack(msk); 2563 2564 goto reset_timer; 2565 } 2566 2567 if (!mptcp_send_head(sk)) 2568 return; 2569 2570 goto reset_timer; 2571 } 2572 2573 if (!ssk) 2574 goto reset_timer; 2575 2576 lock_sock(ssk); 2577 2578 /* limit retransmission to the bytes already sent on some subflows */ 2579 info.sent = 0; 2580 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2581 while (info.sent < info.limit) { 2582 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2583 if (ret <= 0) 2584 break; 2585 2586 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2587 copied += ret; 2588 info.sent += ret; 2589 } 2590 if (copied) { 2591 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2592 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2593 info.size_goal); 2594 WRITE_ONCE(msk->allow_infinite_fallback, false); 2595 } 2596 2597 release_sock(ssk); 2598 2599 reset_timer: 2600 mptcp_check_and_set_pending(sk); 2601 2602 if (!mptcp_timer_pending(sk)) 2603 mptcp_reset_timer(sk); 2604 } 2605 2606 /* schedule the timeout timer for the relevant event: either close timeout 2607 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2608 */ 2609 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2610 { 2611 struct sock *sk = (struct sock *)msk; 2612 unsigned long timeout, close_timeout; 2613 2614 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2615 return; 2616 2617 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2618 2619 /* the close timeout takes precedence on the fail one, and here at least one of 2620 * them is active 2621 */ 2622 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2623 2624 sk_reset_timer(sk, &sk->sk_timer, timeout); 2625 } 2626 2627 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2628 { 2629 struct sock *ssk = msk->first; 2630 bool slow; 2631 2632 if (!ssk) 2633 return; 2634 2635 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2636 2637 slow = lock_sock_fast(ssk); 2638 mptcp_subflow_reset(ssk); 2639 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2640 unlock_sock_fast(ssk, slow); 2641 2642 mptcp_reset_timeout(msk, 0); 2643 } 2644 2645 static void mptcp_do_fastclose(struct sock *sk) 2646 { 2647 struct mptcp_subflow_context *subflow, *tmp; 2648 struct mptcp_sock *msk = mptcp_sk(sk); 2649 2650 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2651 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2652 subflow, MPTCP_CF_FASTCLOSE); 2653 } 2654 2655 static void mptcp_worker(struct work_struct *work) 2656 { 2657 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2658 struct sock *sk = (struct sock *)msk; 2659 unsigned long fail_tout; 2660 int state; 2661 2662 lock_sock(sk); 2663 state = sk->sk_state; 2664 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2665 goto unlock; 2666 2667 mptcp_check_data_fin_ack(sk); 2668 2669 mptcp_check_fastclose(msk); 2670 2671 mptcp_pm_nl_work(msk); 2672 2673 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2674 mptcp_check_for_eof(msk); 2675 2676 __mptcp_check_send_data_fin(sk); 2677 mptcp_check_data_fin(sk); 2678 2679 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2680 __mptcp_close_subflow(sk); 2681 2682 /* There is no point in keeping around an orphaned sk timedout or 2683 * closed, but we need the msk around to reply to incoming DATA_FIN, 2684 * even if it is orphaned and in FIN_WAIT2 state 2685 */ 2686 if (sock_flag(sk, SOCK_DEAD)) { 2687 if (mptcp_should_close(sk)) { 2688 inet_sk_state_store(sk, TCP_CLOSE); 2689 mptcp_do_fastclose(sk); 2690 } 2691 if (sk->sk_state == TCP_CLOSE) { 2692 __mptcp_destroy_sock(sk); 2693 goto unlock; 2694 } 2695 } 2696 2697 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2698 __mptcp_retrans(sk); 2699 2700 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2701 if (fail_tout && time_after(jiffies, fail_tout)) 2702 mptcp_mp_fail_no_response(msk); 2703 2704 unlock: 2705 release_sock(sk); 2706 sock_put(sk); 2707 } 2708 2709 static int __mptcp_init_sock(struct sock *sk) 2710 { 2711 struct mptcp_sock *msk = mptcp_sk(sk); 2712 2713 INIT_LIST_HEAD(&msk->conn_list); 2714 INIT_LIST_HEAD(&msk->join_list); 2715 INIT_LIST_HEAD(&msk->rtx_queue); 2716 INIT_WORK(&msk->work, mptcp_worker); 2717 __skb_queue_head_init(&msk->receive_queue); 2718 msk->out_of_order_queue = RB_ROOT; 2719 msk->first_pending = NULL; 2720 msk->rmem_fwd_alloc = 0; 2721 WRITE_ONCE(msk->rmem_released, 0); 2722 msk->timer_ival = TCP_RTO_MIN; 2723 2724 msk->first = NULL; 2725 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2726 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2727 WRITE_ONCE(msk->allow_infinite_fallback, true); 2728 msk->recovery = false; 2729 2730 mptcp_pm_data_init(msk); 2731 2732 /* re-use the csk retrans timer for MPTCP-level retrans */ 2733 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2734 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2735 2736 return 0; 2737 } 2738 2739 static void mptcp_ca_reset(struct sock *sk) 2740 { 2741 struct inet_connection_sock *icsk = inet_csk(sk); 2742 2743 tcp_assign_congestion_control(sk); 2744 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2745 2746 /* no need to keep a reference to the ops, the name will suffice */ 2747 tcp_cleanup_congestion_control(sk); 2748 icsk->icsk_ca_ops = NULL; 2749 } 2750 2751 static int mptcp_init_sock(struct sock *sk) 2752 { 2753 struct net *net = sock_net(sk); 2754 int ret; 2755 2756 ret = __mptcp_init_sock(sk); 2757 if (ret) 2758 return ret; 2759 2760 if (!mptcp_is_enabled(net)) 2761 return -ENOPROTOOPT; 2762 2763 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2764 return -ENOMEM; 2765 2766 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2767 2768 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2769 * propagate the correct value 2770 */ 2771 mptcp_ca_reset(sk); 2772 2773 sk_sockets_allocated_inc(sk); 2774 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2775 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2776 2777 return 0; 2778 } 2779 2780 static void __mptcp_clear_xmit(struct sock *sk) 2781 { 2782 struct mptcp_sock *msk = mptcp_sk(sk); 2783 struct mptcp_data_frag *dtmp, *dfrag; 2784 2785 WRITE_ONCE(msk->first_pending, NULL); 2786 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2787 dfrag_clear(sk, dfrag); 2788 } 2789 2790 void mptcp_cancel_work(struct sock *sk) 2791 { 2792 struct mptcp_sock *msk = mptcp_sk(sk); 2793 2794 if (cancel_work_sync(&msk->work)) 2795 __sock_put(sk); 2796 } 2797 2798 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2799 { 2800 lock_sock(ssk); 2801 2802 switch (ssk->sk_state) { 2803 case TCP_LISTEN: 2804 if (!(how & RCV_SHUTDOWN)) 2805 break; 2806 fallthrough; 2807 case TCP_SYN_SENT: 2808 tcp_disconnect(ssk, O_NONBLOCK); 2809 break; 2810 default: 2811 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2812 pr_debug("Fallback"); 2813 ssk->sk_shutdown |= how; 2814 tcp_shutdown(ssk, how); 2815 } else { 2816 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2817 tcp_send_ack(ssk); 2818 if (!mptcp_timer_pending(sk)) 2819 mptcp_reset_timer(sk); 2820 } 2821 break; 2822 } 2823 2824 release_sock(ssk); 2825 } 2826 2827 static const unsigned char new_state[16] = { 2828 /* current state: new state: action: */ 2829 [0 /* (Invalid) */] = TCP_CLOSE, 2830 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2831 [TCP_SYN_SENT] = TCP_CLOSE, 2832 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2833 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2834 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2835 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2836 [TCP_CLOSE] = TCP_CLOSE, 2837 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2838 [TCP_LAST_ACK] = TCP_LAST_ACK, 2839 [TCP_LISTEN] = TCP_CLOSE, 2840 [TCP_CLOSING] = TCP_CLOSING, 2841 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2842 }; 2843 2844 static int mptcp_close_state(struct sock *sk) 2845 { 2846 int next = (int)new_state[sk->sk_state]; 2847 int ns = next & TCP_STATE_MASK; 2848 2849 inet_sk_state_store(sk, ns); 2850 2851 return next & TCP_ACTION_FIN; 2852 } 2853 2854 static void __mptcp_check_send_data_fin(struct sock *sk) 2855 { 2856 struct mptcp_subflow_context *subflow; 2857 struct mptcp_sock *msk = mptcp_sk(sk); 2858 2859 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2860 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2861 msk->snd_nxt, msk->write_seq); 2862 2863 /* we still need to enqueue subflows or not really shutting down, 2864 * skip this 2865 */ 2866 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2867 mptcp_send_head(sk)) 2868 return; 2869 2870 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2871 2872 /* fallback socket will not get data_fin/ack, can move to the next 2873 * state now 2874 */ 2875 if (__mptcp_check_fallback(msk)) { 2876 WRITE_ONCE(msk->snd_una, msk->write_seq); 2877 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2878 inet_sk_state_store(sk, TCP_CLOSE); 2879 mptcp_close_wake_up(sk); 2880 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2881 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2882 } 2883 } 2884 2885 mptcp_for_each_subflow(msk, subflow) { 2886 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2887 2888 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2889 } 2890 } 2891 2892 static void __mptcp_wr_shutdown(struct sock *sk) 2893 { 2894 struct mptcp_sock *msk = mptcp_sk(sk); 2895 2896 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2897 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2898 !!mptcp_send_head(sk)); 2899 2900 /* will be ignored by fallback sockets */ 2901 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2902 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2903 2904 __mptcp_check_send_data_fin(sk); 2905 } 2906 2907 static void __mptcp_destroy_sock(struct sock *sk) 2908 { 2909 struct mptcp_sock *msk = mptcp_sk(sk); 2910 2911 pr_debug("msk=%p", msk); 2912 2913 might_sleep(); 2914 2915 mptcp_stop_timer(sk); 2916 sk_stop_timer(sk, &sk->sk_timer); 2917 msk->pm.status = 0; 2918 2919 sk->sk_prot->destroy(sk); 2920 2921 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2922 WARN_ON_ONCE(msk->rmem_released); 2923 sk_stream_kill_queues(sk); 2924 xfrm_sk_free_policy(sk); 2925 2926 sock_put(sk); 2927 } 2928 2929 void __mptcp_unaccepted_force_close(struct sock *sk) 2930 { 2931 sock_set_flag(sk, SOCK_DEAD); 2932 inet_sk_state_store(sk, TCP_CLOSE); 2933 mptcp_do_fastclose(sk); 2934 __mptcp_destroy_sock(sk); 2935 } 2936 2937 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2938 { 2939 /* Concurrent splices from sk_receive_queue into receive_queue will 2940 * always show at least one non-empty queue when checked in this order. 2941 */ 2942 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2943 skb_queue_empty_lockless(&msk->receive_queue)) 2944 return 0; 2945 2946 return EPOLLIN | EPOLLRDNORM; 2947 } 2948 2949 static void mptcp_listen_inuse_dec(struct sock *sk) 2950 { 2951 if (inet_sk_state_load(sk) == TCP_LISTEN) 2952 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2953 } 2954 2955 bool __mptcp_close(struct sock *sk, long timeout) 2956 { 2957 struct mptcp_subflow_context *subflow; 2958 struct mptcp_sock *msk = mptcp_sk(sk); 2959 bool do_cancel_work = false; 2960 int subflows_alive = 0; 2961 2962 sk->sk_shutdown = SHUTDOWN_MASK; 2963 2964 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2965 mptcp_listen_inuse_dec(sk); 2966 inet_sk_state_store(sk, TCP_CLOSE); 2967 goto cleanup; 2968 } 2969 2970 if (mptcp_check_readable(msk) || timeout < 0) { 2971 /* If the msk has read data, or the caller explicitly ask it, 2972 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 2973 */ 2974 inet_sk_state_store(sk, TCP_CLOSE); 2975 mptcp_do_fastclose(sk); 2976 timeout = 0; 2977 } else if (mptcp_close_state(sk)) { 2978 __mptcp_wr_shutdown(sk); 2979 } 2980 2981 sk_stream_wait_close(sk, timeout); 2982 2983 cleanup: 2984 /* orphan all the subflows */ 2985 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2986 mptcp_for_each_subflow(msk, subflow) { 2987 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2988 bool slow = lock_sock_fast_nested(ssk); 2989 2990 subflows_alive += ssk->sk_state != TCP_CLOSE; 2991 2992 /* since the close timeout takes precedence on the fail one, 2993 * cancel the latter 2994 */ 2995 if (ssk == msk->first) 2996 subflow->fail_tout = 0; 2997 2998 /* detach from the parent socket, but allow data_ready to 2999 * push incoming data into the mptcp stack, to properly ack it 3000 */ 3001 ssk->sk_socket = NULL; 3002 ssk->sk_wq = NULL; 3003 unlock_sock_fast(ssk, slow); 3004 } 3005 sock_orphan(sk); 3006 3007 /* all the subflows are closed, only timeout can change the msk 3008 * state, let's not keep resources busy for no reasons 3009 */ 3010 if (subflows_alive == 0) 3011 inet_sk_state_store(sk, TCP_CLOSE); 3012 3013 sock_hold(sk); 3014 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3015 if (msk->token) 3016 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3017 3018 if (sk->sk_state == TCP_CLOSE) { 3019 __mptcp_destroy_sock(sk); 3020 do_cancel_work = true; 3021 } else { 3022 mptcp_reset_timeout(msk, 0); 3023 } 3024 3025 return do_cancel_work; 3026 } 3027 3028 static void mptcp_close(struct sock *sk, long timeout) 3029 { 3030 bool do_cancel_work; 3031 3032 lock_sock(sk); 3033 3034 do_cancel_work = __mptcp_close(sk, timeout); 3035 release_sock(sk); 3036 if (do_cancel_work) 3037 mptcp_cancel_work(sk); 3038 3039 sock_put(sk); 3040 } 3041 3042 void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3043 { 3044 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3045 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3046 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3047 3048 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3049 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3050 3051 if (msk6 && ssk6) { 3052 msk6->saddr = ssk6->saddr; 3053 msk6->flow_label = ssk6->flow_label; 3054 } 3055 #endif 3056 3057 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3058 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3059 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3060 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3061 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3062 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3063 } 3064 3065 static int mptcp_disconnect(struct sock *sk, int flags) 3066 { 3067 struct mptcp_sock *msk = mptcp_sk(sk); 3068 3069 /* We are on the fastopen error path. We can't call straight into the 3070 * subflows cleanup code due to lock nesting (we are already under 3071 * msk->firstsocket lock). Do nothing and leave the cleanup to the 3072 * caller. 3073 */ 3074 if (msk->fastopening) 3075 return 0; 3076 3077 mptcp_listen_inuse_dec(sk); 3078 inet_sk_state_store(sk, TCP_CLOSE); 3079 3080 mptcp_stop_timer(sk); 3081 sk_stop_timer(sk, &sk->sk_timer); 3082 3083 if (msk->token) 3084 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3085 3086 /* msk->subflow is still intact, the following will not free the first 3087 * subflow 3088 */ 3089 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3090 msk->last_snd = NULL; 3091 WRITE_ONCE(msk->flags, 0); 3092 msk->cb_flags = 0; 3093 msk->push_pending = 0; 3094 msk->recovery = false; 3095 msk->can_ack = false; 3096 msk->fully_established = false; 3097 msk->rcv_data_fin = false; 3098 msk->snd_data_fin_enable = false; 3099 msk->rcv_fastclose = false; 3100 msk->use_64bit_ack = false; 3101 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3102 mptcp_pm_data_reset(msk); 3103 mptcp_ca_reset(sk); 3104 3105 sk->sk_shutdown = 0; 3106 sk_error_report(sk); 3107 return 0; 3108 } 3109 3110 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3111 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3112 { 3113 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3114 3115 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3116 } 3117 #endif 3118 3119 struct sock *mptcp_sk_clone(const struct sock *sk, 3120 const struct mptcp_options_received *mp_opt, 3121 struct request_sock *req) 3122 { 3123 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3124 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3125 struct mptcp_sock *msk; 3126 3127 if (!nsk) 3128 return NULL; 3129 3130 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3131 if (nsk->sk_family == AF_INET6) 3132 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3133 #endif 3134 3135 __mptcp_init_sock(nsk); 3136 3137 msk = mptcp_sk(nsk); 3138 msk->local_key = subflow_req->local_key; 3139 msk->token = subflow_req->token; 3140 msk->subflow = NULL; 3141 msk->in_accept_queue = 1; 3142 WRITE_ONCE(msk->fully_established, false); 3143 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3144 WRITE_ONCE(msk->csum_enabled, true); 3145 3146 msk->write_seq = subflow_req->idsn + 1; 3147 msk->snd_nxt = msk->write_seq; 3148 msk->snd_una = msk->write_seq; 3149 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3150 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3151 3152 sock_reset_flag(nsk, SOCK_RCU_FREE); 3153 /* will be fully established after successful MPC subflow creation */ 3154 inet_sk_state_store(nsk, TCP_SYN_RECV); 3155 3156 security_inet_csk_clone(nsk, req); 3157 bh_unlock_sock(nsk); 3158 3159 /* note: the newly allocated socket refcount is 2 now */ 3160 return nsk; 3161 } 3162 3163 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3164 { 3165 const struct tcp_sock *tp = tcp_sk(ssk); 3166 3167 msk->rcvq_space.copied = 0; 3168 msk->rcvq_space.rtt_us = 0; 3169 3170 msk->rcvq_space.time = tp->tcp_mstamp; 3171 3172 /* initial rcv_space offering made to peer */ 3173 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3174 TCP_INIT_CWND * tp->advmss); 3175 if (msk->rcvq_space.space == 0) 3176 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3177 3178 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3179 } 3180 3181 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3182 bool kern) 3183 { 3184 struct mptcp_sock *msk = mptcp_sk(sk); 3185 struct socket *listener; 3186 struct sock *newsk; 3187 3188 listener = msk->subflow; 3189 if (WARN_ON_ONCE(!listener)) { 3190 *err = -EINVAL; 3191 return NULL; 3192 } 3193 3194 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3195 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3196 if (!newsk) 3197 return NULL; 3198 3199 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3200 if (sk_is_mptcp(newsk)) { 3201 struct mptcp_subflow_context *subflow; 3202 struct sock *new_mptcp_sock; 3203 3204 subflow = mptcp_subflow_ctx(newsk); 3205 new_mptcp_sock = subflow->conn; 3206 3207 /* is_mptcp should be false if subflow->conn is missing, see 3208 * subflow_syn_recv_sock() 3209 */ 3210 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3211 tcp_sk(newsk)->is_mptcp = 0; 3212 goto out; 3213 } 3214 3215 newsk = new_mptcp_sock; 3216 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3217 } else { 3218 MPTCP_INC_STATS(sock_net(sk), 3219 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3220 } 3221 3222 out: 3223 newsk->sk_kern_sock = kern; 3224 return newsk; 3225 } 3226 3227 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3228 { 3229 struct mptcp_subflow_context *subflow, *tmp; 3230 struct sock *sk = (struct sock *)msk; 3231 3232 __mptcp_clear_xmit(sk); 3233 3234 /* join list will be eventually flushed (with rst) at sock lock release time */ 3235 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3236 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3237 3238 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3239 mptcp_data_lock(sk); 3240 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3241 __skb_queue_purge(&sk->sk_receive_queue); 3242 skb_rbtree_purge(&msk->out_of_order_queue); 3243 mptcp_data_unlock(sk); 3244 3245 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3246 * inet_sock_destruct() will dispose it 3247 */ 3248 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3249 msk->rmem_fwd_alloc = 0; 3250 mptcp_token_destroy(msk); 3251 mptcp_pm_free_anno_list(msk); 3252 mptcp_free_local_addr_list(msk); 3253 } 3254 3255 static void mptcp_destroy(struct sock *sk) 3256 { 3257 struct mptcp_sock *msk = mptcp_sk(sk); 3258 3259 /* clears msk->subflow, allowing the following to close 3260 * even the initial subflow 3261 */ 3262 mptcp_dispose_initial_subflow(msk); 3263 mptcp_destroy_common(msk, 0); 3264 sk_sockets_allocated_dec(sk); 3265 } 3266 3267 void __mptcp_data_acked(struct sock *sk) 3268 { 3269 if (!sock_owned_by_user(sk)) 3270 __mptcp_clean_una(sk); 3271 else 3272 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3273 3274 if (mptcp_pending_data_fin_ack(sk)) 3275 mptcp_schedule_work(sk); 3276 } 3277 3278 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3279 { 3280 if (!mptcp_send_head(sk)) 3281 return; 3282 3283 if (!sock_owned_by_user(sk)) 3284 __mptcp_subflow_push_pending(sk, ssk, false); 3285 else 3286 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3287 } 3288 3289 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3290 BIT(MPTCP_RETRANSMIT) | \ 3291 BIT(MPTCP_FLUSH_JOIN_LIST)) 3292 3293 /* processes deferred events and flush wmem */ 3294 static void mptcp_release_cb(struct sock *sk) 3295 __must_hold(&sk->sk_lock.slock) 3296 { 3297 struct mptcp_sock *msk = mptcp_sk(sk); 3298 3299 for (;;) { 3300 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3301 msk->push_pending; 3302 if (!flags) 3303 break; 3304 3305 /* the following actions acquire the subflow socket lock 3306 * 3307 * 1) can't be invoked in atomic scope 3308 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3309 * datapath acquires the msk socket spinlock while helding 3310 * the subflow socket lock 3311 */ 3312 msk->push_pending = 0; 3313 msk->cb_flags &= ~flags; 3314 spin_unlock_bh(&sk->sk_lock.slock); 3315 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3316 __mptcp_flush_join_list(sk); 3317 if (flags & BIT(MPTCP_PUSH_PENDING)) 3318 __mptcp_push_pending(sk, 0); 3319 if (flags & BIT(MPTCP_RETRANSMIT)) 3320 __mptcp_retrans(sk); 3321 3322 cond_resched(); 3323 spin_lock_bh(&sk->sk_lock.slock); 3324 } 3325 3326 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3327 __mptcp_clean_una_wakeup(sk); 3328 if (unlikely(&msk->cb_flags)) { 3329 /* be sure to set the current sk state before tacking actions 3330 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3331 */ 3332 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3333 __mptcp_set_connected(sk); 3334 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3335 __mptcp_error_report(sk); 3336 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3337 msk->last_snd = NULL; 3338 } 3339 3340 __mptcp_update_rmem(sk); 3341 } 3342 3343 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3344 * TCP can't schedule delack timer before the subflow is fully established. 3345 * MPTCP uses the delack timer to do 3rd ack retransmissions 3346 */ 3347 static void schedule_3rdack_retransmission(struct sock *ssk) 3348 { 3349 struct inet_connection_sock *icsk = inet_csk(ssk); 3350 struct tcp_sock *tp = tcp_sk(ssk); 3351 unsigned long timeout; 3352 3353 if (mptcp_subflow_ctx(ssk)->fully_established) 3354 return; 3355 3356 /* reschedule with a timeout above RTT, as we must look only for drop */ 3357 if (tp->srtt_us) 3358 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3359 else 3360 timeout = TCP_TIMEOUT_INIT; 3361 timeout += jiffies; 3362 3363 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3364 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3365 icsk->icsk_ack.timeout = timeout; 3366 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3367 } 3368 3369 void mptcp_subflow_process_delegated(struct sock *ssk) 3370 { 3371 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3372 struct sock *sk = subflow->conn; 3373 3374 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3375 mptcp_data_lock(sk); 3376 if (!sock_owned_by_user(sk)) 3377 __mptcp_subflow_push_pending(sk, ssk, true); 3378 else 3379 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3380 mptcp_data_unlock(sk); 3381 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3382 } 3383 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3384 schedule_3rdack_retransmission(ssk); 3385 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3386 } 3387 } 3388 3389 static int mptcp_hash(struct sock *sk) 3390 { 3391 /* should never be called, 3392 * we hash the TCP subflows not the master socket 3393 */ 3394 WARN_ON_ONCE(1); 3395 return 0; 3396 } 3397 3398 static void mptcp_unhash(struct sock *sk) 3399 { 3400 /* called from sk_common_release(), but nothing to do here */ 3401 } 3402 3403 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3404 { 3405 struct mptcp_sock *msk = mptcp_sk(sk); 3406 struct socket *ssock; 3407 3408 ssock = msk->subflow; 3409 pr_debug("msk=%p, subflow=%p", msk, ssock); 3410 if (WARN_ON_ONCE(!ssock)) 3411 return -EINVAL; 3412 3413 return inet_csk_get_port(ssock->sk, snum); 3414 } 3415 3416 void mptcp_finish_connect(struct sock *ssk) 3417 { 3418 struct mptcp_subflow_context *subflow; 3419 struct mptcp_sock *msk; 3420 struct sock *sk; 3421 3422 subflow = mptcp_subflow_ctx(ssk); 3423 sk = subflow->conn; 3424 msk = mptcp_sk(sk); 3425 3426 pr_debug("msk=%p, token=%u", sk, subflow->token); 3427 3428 subflow->map_seq = subflow->iasn; 3429 subflow->map_subflow_seq = 1; 3430 3431 /* the socket is not connected yet, no msk/subflow ops can access/race 3432 * accessing the field below 3433 */ 3434 WRITE_ONCE(msk->local_key, subflow->local_key); 3435 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3436 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3437 WRITE_ONCE(msk->snd_una, msk->write_seq); 3438 3439 mptcp_pm_new_connection(msk, ssk, 0); 3440 3441 mptcp_rcv_space_init(msk, ssk); 3442 } 3443 3444 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3445 { 3446 write_lock_bh(&sk->sk_callback_lock); 3447 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3448 sk_set_socket(sk, parent); 3449 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3450 write_unlock_bh(&sk->sk_callback_lock); 3451 } 3452 3453 bool mptcp_finish_join(struct sock *ssk) 3454 { 3455 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3456 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3457 struct sock *parent = (void *)msk; 3458 bool ret = true; 3459 3460 pr_debug("msk=%p, subflow=%p", msk, subflow); 3461 3462 /* mptcp socket already closing? */ 3463 if (!mptcp_is_fully_established(parent)) { 3464 subflow->reset_reason = MPTCP_RST_EMPTCP; 3465 return false; 3466 } 3467 3468 if (!list_empty(&subflow->node)) 3469 goto out; 3470 3471 if (!mptcp_pm_allow_new_subflow(msk)) 3472 goto err_prohibited; 3473 3474 /* active connections are already on conn_list. 3475 * If we can't acquire msk socket lock here, let the release callback 3476 * handle it 3477 */ 3478 mptcp_data_lock(parent); 3479 if (!sock_owned_by_user(parent)) { 3480 ret = __mptcp_finish_join(msk, ssk); 3481 if (ret) { 3482 sock_hold(ssk); 3483 list_add_tail(&subflow->node, &msk->conn_list); 3484 } 3485 } else { 3486 sock_hold(ssk); 3487 list_add_tail(&subflow->node, &msk->join_list); 3488 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3489 } 3490 mptcp_data_unlock(parent); 3491 3492 if (!ret) { 3493 err_prohibited: 3494 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3495 return false; 3496 } 3497 3498 subflow->map_seq = READ_ONCE(msk->ack_seq); 3499 WRITE_ONCE(msk->allow_infinite_fallback, false); 3500 3501 out: 3502 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3503 return true; 3504 } 3505 3506 static void mptcp_shutdown(struct sock *sk, int how) 3507 { 3508 pr_debug("sk=%p, how=%d", sk, how); 3509 3510 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3511 __mptcp_wr_shutdown(sk); 3512 } 3513 3514 static int mptcp_forward_alloc_get(const struct sock *sk) 3515 { 3516 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3517 } 3518 3519 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3520 { 3521 const struct sock *sk = (void *)msk; 3522 u64 delta; 3523 3524 if (sk->sk_state == TCP_LISTEN) 3525 return -EINVAL; 3526 3527 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3528 return 0; 3529 3530 delta = msk->write_seq - v; 3531 if (__mptcp_check_fallback(msk) && msk->first) { 3532 struct tcp_sock *tp = tcp_sk(msk->first); 3533 3534 /* the first subflow is disconnected after close - see 3535 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3536 * so ignore that status, too. 3537 */ 3538 if (!((1 << msk->first->sk_state) & 3539 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3540 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3541 } 3542 if (delta > INT_MAX) 3543 delta = INT_MAX; 3544 3545 return (int)delta; 3546 } 3547 3548 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3549 { 3550 struct mptcp_sock *msk = mptcp_sk(sk); 3551 bool slow; 3552 int answ; 3553 3554 switch (cmd) { 3555 case SIOCINQ: 3556 if (sk->sk_state == TCP_LISTEN) 3557 return -EINVAL; 3558 3559 lock_sock(sk); 3560 __mptcp_move_skbs(msk); 3561 answ = mptcp_inq_hint(sk); 3562 release_sock(sk); 3563 break; 3564 case SIOCOUTQ: 3565 slow = lock_sock_fast(sk); 3566 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3567 unlock_sock_fast(sk, slow); 3568 break; 3569 case SIOCOUTQNSD: 3570 slow = lock_sock_fast(sk); 3571 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3572 unlock_sock_fast(sk, slow); 3573 break; 3574 default: 3575 return -ENOIOCTLCMD; 3576 } 3577 3578 return put_user(answ, (int __user *)arg); 3579 } 3580 3581 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3582 struct mptcp_subflow_context *subflow) 3583 { 3584 subflow->request_mptcp = 0; 3585 __mptcp_do_fallback(msk); 3586 } 3587 3588 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3589 { 3590 struct mptcp_subflow_context *subflow; 3591 struct mptcp_sock *msk = mptcp_sk(sk); 3592 struct socket *ssock; 3593 int err = -EINVAL; 3594 3595 ssock = __mptcp_nmpc_socket(msk); 3596 if (IS_ERR(ssock)) 3597 return PTR_ERR(ssock); 3598 3599 mptcp_token_destroy(msk); 3600 inet_sk_state_store(sk, TCP_SYN_SENT); 3601 subflow = mptcp_subflow_ctx(ssock->sk); 3602 #ifdef CONFIG_TCP_MD5SIG 3603 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3604 * TCP option space. 3605 */ 3606 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3607 mptcp_subflow_early_fallback(msk, subflow); 3608 #endif 3609 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3610 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3611 mptcp_subflow_early_fallback(msk, subflow); 3612 } 3613 if (likely(!__mptcp_check_fallback(msk))) 3614 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3615 3616 /* if reaching here via the fastopen/sendmsg path, the caller already 3617 * acquired the subflow socket lock, too. 3618 */ 3619 if (msk->fastopening) 3620 err = __inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags, 1); 3621 else 3622 err = inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags); 3623 inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect; 3624 3625 /* on successful connect, the msk state will be moved to established by 3626 * subflow_finish_connect() 3627 */ 3628 if (unlikely(err && err != -EINPROGRESS)) { 3629 inet_sk_state_store(sk, inet_sk_state_load(ssock->sk)); 3630 return err; 3631 } 3632 3633 mptcp_copy_inaddrs(sk, ssock->sk); 3634 3635 /* unblocking connect, mptcp-level inet_stream_connect will error out 3636 * without changing the socket state, update it here. 3637 */ 3638 if (err == -EINPROGRESS) 3639 sk->sk_socket->state = ssock->state; 3640 return err; 3641 } 3642 3643 static struct proto mptcp_prot = { 3644 .name = "MPTCP", 3645 .owner = THIS_MODULE, 3646 .init = mptcp_init_sock, 3647 .connect = mptcp_connect, 3648 .disconnect = mptcp_disconnect, 3649 .close = mptcp_close, 3650 .accept = mptcp_accept, 3651 .setsockopt = mptcp_setsockopt, 3652 .getsockopt = mptcp_getsockopt, 3653 .shutdown = mptcp_shutdown, 3654 .destroy = mptcp_destroy, 3655 .sendmsg = mptcp_sendmsg, 3656 .ioctl = mptcp_ioctl, 3657 .recvmsg = mptcp_recvmsg, 3658 .release_cb = mptcp_release_cb, 3659 .hash = mptcp_hash, 3660 .unhash = mptcp_unhash, 3661 .get_port = mptcp_get_port, 3662 .forward_alloc_get = mptcp_forward_alloc_get, 3663 .sockets_allocated = &mptcp_sockets_allocated, 3664 3665 .memory_allocated = &tcp_memory_allocated, 3666 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3667 3668 .memory_pressure = &tcp_memory_pressure, 3669 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3670 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3671 .sysctl_mem = sysctl_tcp_mem, 3672 .obj_size = sizeof(struct mptcp_sock), 3673 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3674 .no_autobind = true, 3675 }; 3676 3677 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3678 { 3679 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3680 struct socket *ssock; 3681 int err; 3682 3683 lock_sock(sock->sk); 3684 ssock = __mptcp_nmpc_socket(msk); 3685 if (IS_ERR(ssock)) { 3686 err = PTR_ERR(ssock); 3687 goto unlock; 3688 } 3689 3690 err = ssock->ops->bind(ssock, uaddr, addr_len); 3691 if (!err) 3692 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3693 3694 unlock: 3695 release_sock(sock->sk); 3696 return err; 3697 } 3698 3699 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3700 int addr_len, int flags) 3701 { 3702 int ret; 3703 3704 lock_sock(sock->sk); 3705 mptcp_sk(sock->sk)->connect_flags = flags; 3706 ret = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 3707 release_sock(sock->sk); 3708 return ret; 3709 } 3710 3711 static int mptcp_listen(struct socket *sock, int backlog) 3712 { 3713 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3714 struct sock *sk = sock->sk; 3715 struct socket *ssock; 3716 int err; 3717 3718 pr_debug("msk=%p", msk); 3719 3720 lock_sock(sk); 3721 ssock = __mptcp_nmpc_socket(msk); 3722 if (IS_ERR(ssock)) { 3723 err = PTR_ERR(ssock); 3724 goto unlock; 3725 } 3726 3727 mptcp_token_destroy(msk); 3728 inet_sk_state_store(sk, TCP_LISTEN); 3729 sock_set_flag(sk, SOCK_RCU_FREE); 3730 3731 err = ssock->ops->listen(ssock, backlog); 3732 inet_sk_state_store(sk, inet_sk_state_load(ssock->sk)); 3733 if (!err) { 3734 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3735 mptcp_copy_inaddrs(sk, ssock->sk); 3736 } 3737 3738 mptcp_event_pm_listener(ssock->sk, MPTCP_EVENT_LISTENER_CREATED); 3739 3740 unlock: 3741 release_sock(sk); 3742 return err; 3743 } 3744 3745 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3746 int flags, bool kern) 3747 { 3748 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3749 struct socket *ssock; 3750 struct sock *newsk; 3751 int err; 3752 3753 pr_debug("msk=%p", msk); 3754 3755 /* buggy applications can call accept on socket states other then LISTEN 3756 * but no need to allocate the first subflow just to error out. 3757 */ 3758 ssock = msk->subflow; 3759 if (!ssock) 3760 return -EINVAL; 3761 3762 newsk = mptcp_accept(sock->sk, flags, &err, kern); 3763 if (!newsk) 3764 return err; 3765 3766 lock_sock(newsk); 3767 3768 __inet_accept(sock, newsock, newsk); 3769 if (!mptcp_is_tcpsk(newsock->sk)) { 3770 struct mptcp_sock *msk = mptcp_sk(newsk); 3771 struct mptcp_subflow_context *subflow; 3772 3773 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3774 msk->in_accept_queue = 0; 3775 3776 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3777 * This is needed so NOSPACE flag can be set from tcp stack. 3778 */ 3779 mptcp_for_each_subflow(msk, subflow) { 3780 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3781 3782 if (!ssk->sk_socket) 3783 mptcp_sock_graft(ssk, newsock); 3784 } 3785 3786 /* Do late cleanup for the first subflow as necessary. Also 3787 * deal with bad peers not doing a complete shutdown. 3788 */ 3789 if (msk->first && 3790 unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3791 __mptcp_close_ssk(newsk, msk->first, 3792 mptcp_subflow_ctx(msk->first), 0); 3793 if (unlikely(list_empty(&msk->conn_list))) 3794 inet_sk_state_store(newsk, TCP_CLOSE); 3795 } 3796 } 3797 release_sock(newsk); 3798 3799 return 0; 3800 } 3801 3802 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3803 { 3804 struct sock *sk = (struct sock *)msk; 3805 3806 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3807 return EPOLLOUT | EPOLLWRNORM; 3808 3809 if (sk_stream_is_writeable(sk)) 3810 return EPOLLOUT | EPOLLWRNORM; 3811 3812 mptcp_set_nospace(sk); 3813 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3814 if (sk_stream_is_writeable(sk)) 3815 return EPOLLOUT | EPOLLWRNORM; 3816 3817 return 0; 3818 } 3819 3820 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3821 struct poll_table_struct *wait) 3822 { 3823 struct sock *sk = sock->sk; 3824 struct mptcp_sock *msk; 3825 __poll_t mask = 0; 3826 int state; 3827 3828 msk = mptcp_sk(sk); 3829 sock_poll_wait(file, sock, wait); 3830 3831 state = inet_sk_state_load(sk); 3832 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3833 if (state == TCP_LISTEN) { 3834 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3835 return 0; 3836 3837 return inet_csk_listen_poll(msk->subflow->sk); 3838 } 3839 3840 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3841 mask |= mptcp_check_readable(msk); 3842 mask |= mptcp_check_writeable(msk); 3843 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 3844 /* cf tcp_poll() note about TFO */ 3845 mask |= EPOLLOUT | EPOLLWRNORM; 3846 } 3847 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3848 mask |= EPOLLHUP; 3849 if (sk->sk_shutdown & RCV_SHUTDOWN) 3850 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3851 3852 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3853 smp_rmb(); 3854 if (READ_ONCE(sk->sk_err)) 3855 mask |= EPOLLERR; 3856 3857 return mask; 3858 } 3859 3860 static const struct proto_ops mptcp_stream_ops = { 3861 .family = PF_INET, 3862 .owner = THIS_MODULE, 3863 .release = inet_release, 3864 .bind = mptcp_bind, 3865 .connect = mptcp_stream_connect, 3866 .socketpair = sock_no_socketpair, 3867 .accept = mptcp_stream_accept, 3868 .getname = inet_getname, 3869 .poll = mptcp_poll, 3870 .ioctl = inet_ioctl, 3871 .gettstamp = sock_gettstamp, 3872 .listen = mptcp_listen, 3873 .shutdown = inet_shutdown, 3874 .setsockopt = sock_common_setsockopt, 3875 .getsockopt = sock_common_getsockopt, 3876 .sendmsg = inet_sendmsg, 3877 .recvmsg = inet_recvmsg, 3878 .mmap = sock_no_mmap, 3879 .sendpage = inet_sendpage, 3880 }; 3881 3882 static struct inet_protosw mptcp_protosw = { 3883 .type = SOCK_STREAM, 3884 .protocol = IPPROTO_MPTCP, 3885 .prot = &mptcp_prot, 3886 .ops = &mptcp_stream_ops, 3887 .flags = INET_PROTOSW_ICSK, 3888 }; 3889 3890 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3891 { 3892 struct mptcp_delegated_action *delegated; 3893 struct mptcp_subflow_context *subflow; 3894 int work_done = 0; 3895 3896 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3897 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3898 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3899 3900 bh_lock_sock_nested(ssk); 3901 if (!sock_owned_by_user(ssk) && 3902 mptcp_subflow_has_delegated_action(subflow)) 3903 mptcp_subflow_process_delegated(ssk); 3904 /* ... elsewhere tcp_release_cb_override already processed 3905 * the action or will do at next release_sock(). 3906 * In both case must dequeue the subflow here - on the same 3907 * CPU that scheduled it. 3908 */ 3909 bh_unlock_sock(ssk); 3910 sock_put(ssk); 3911 3912 if (++work_done == budget) 3913 return budget; 3914 } 3915 3916 /* always provide a 0 'work_done' argument, so that napi_complete_done 3917 * will not try accessing the NULL napi->dev ptr 3918 */ 3919 napi_complete_done(napi, 0); 3920 return work_done; 3921 } 3922 3923 void __init mptcp_proto_init(void) 3924 { 3925 struct mptcp_delegated_action *delegated; 3926 int cpu; 3927 3928 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3929 3930 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3931 panic("Failed to allocate MPTCP pcpu counter\n"); 3932 3933 init_dummy_netdev(&mptcp_napi_dev); 3934 for_each_possible_cpu(cpu) { 3935 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3936 INIT_LIST_HEAD(&delegated->head); 3937 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3938 mptcp_napi_poll); 3939 napi_enable(&delegated->napi); 3940 } 3941 3942 mptcp_subflow_init(); 3943 mptcp_pm_init(); 3944 mptcp_token_init(); 3945 3946 if (proto_register(&mptcp_prot, 1) != 0) 3947 panic("Failed to register MPTCP proto.\n"); 3948 3949 inet_register_protosw(&mptcp_protosw); 3950 3951 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3952 } 3953 3954 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3955 static const struct proto_ops mptcp_v6_stream_ops = { 3956 .family = PF_INET6, 3957 .owner = THIS_MODULE, 3958 .release = inet6_release, 3959 .bind = mptcp_bind, 3960 .connect = mptcp_stream_connect, 3961 .socketpair = sock_no_socketpair, 3962 .accept = mptcp_stream_accept, 3963 .getname = inet6_getname, 3964 .poll = mptcp_poll, 3965 .ioctl = inet6_ioctl, 3966 .gettstamp = sock_gettstamp, 3967 .listen = mptcp_listen, 3968 .shutdown = inet_shutdown, 3969 .setsockopt = sock_common_setsockopt, 3970 .getsockopt = sock_common_getsockopt, 3971 .sendmsg = inet6_sendmsg, 3972 .recvmsg = inet6_recvmsg, 3973 .mmap = sock_no_mmap, 3974 .sendpage = inet_sendpage, 3975 #ifdef CONFIG_COMPAT 3976 .compat_ioctl = inet6_compat_ioctl, 3977 #endif 3978 }; 3979 3980 static struct proto mptcp_v6_prot; 3981 3982 static struct inet_protosw mptcp_v6_protosw = { 3983 .type = SOCK_STREAM, 3984 .protocol = IPPROTO_MPTCP, 3985 .prot = &mptcp_v6_prot, 3986 .ops = &mptcp_v6_stream_ops, 3987 .flags = INET_PROTOSW_ICSK, 3988 }; 3989 3990 int __init mptcp_proto_v6_init(void) 3991 { 3992 int err; 3993 3994 mptcp_v6_prot = mptcp_prot; 3995 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3996 mptcp_v6_prot.slab = NULL; 3997 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3998 3999 err = proto_register(&mptcp_v6_prot, 1); 4000 if (err) 4001 return err; 4002 4003 err = inet6_register_protosw(&mptcp_v6_protosw); 4004 if (err) 4005 proto_unregister(&mptcp_v6_prot); 4006 4007 return err; 4008 } 4009 #endif 4010