xref: /openbmc/linux/net/mptcp/protocol.c (revision f3956ebb)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 	u8  has_rxtstamp:1;
43 };
44 
45 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46 
47 enum {
48 	MPTCP_CMSG_TS = BIT(0),
49 };
50 
51 static struct percpu_counter mptcp_sockets_allocated;
52 
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void __mptcp_check_send_data_fin(struct sock *sk);
55 
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58 
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60  * completed yet or has failed, return the subflow socket.
61  * Otherwise return NULL.
62  */
63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 	if (!msk->subflow || READ_ONCE(msk->can_ack))
66 		return NULL;
67 
68 	return msk->subflow;
69 }
70 
71 /* Returns end sequence number of the receiver's advertised window */
72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 	return READ_ONCE(msk->wnd_end);
75 }
76 
77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 	struct socket *sock = sk->sk_socket;
80 
81 	if (unlikely(sk->sk_prot == &tcp_prot)) {
82 		/* we are being invoked after mptcp_accept() has
83 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 		 * not an mptcp one.
85 		 *
86 		 * Hand the socket over to tcp so all further socket ops
87 		 * bypass mptcp.
88 		 */
89 		sock->ops = &inet_stream_ops;
90 		return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 		sock->ops = &inet6_stream_ops;
94 		return true;
95 #endif
96 	}
97 
98 	return false;
99 }
100 
101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->first = ssock->sk;
113 	msk->subflow = ssock;
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	mptcp_sock_graft(msk->first, sk->sk_socket);
119 
120 	return 0;
121 }
122 
123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 	sk_drops_add(sk, skb);
126 	__kfree_skb(skb);
127 }
128 
129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 			       struct sk_buff *from)
131 {
132 	bool fragstolen;
133 	int delta;
134 
135 	if (MPTCP_SKB_CB(from)->offset ||
136 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
137 		return false;
138 
139 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 		 to->len, MPTCP_SKB_CB(from)->end_seq);
142 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 	kfree_skb_partial(from, fragstolen);
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	return true;
147 }
148 
149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)msk->rcv_wnd_sent);
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290 
291 		if (ssk->sk_forward_alloc < amount)
292 			goto drop;
293 
294 		ssk->sk_forward_alloc -= amount;
295 		sk->sk_forward_alloc += amount;
296 	}
297 
298 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299 
300 	/* the skb map_seq accounts for the skb offset:
301 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 	 * value
303 	 */
304 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 	MPTCP_SKB_CB(skb)->offset = offset;
307 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308 
309 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 		/* in sequence */
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
333 static void mptcp_stop_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return !__mptcp_check_fallback(msk) &&
359 	       ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			inet_sk_state_store(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << sk->sk_state) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (msk->ack_seq == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
406 static void mptcp_set_datafin_timeout(const struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 
410 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
411 				       TCP_RTO_MIN << icsk->icsk_retransmits);
412 }
413 
414 static void __mptcp_set_timeout(struct sock *sk, long tout)
415 {
416 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
417 }
418 
419 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
420 {
421 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
422 
423 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
424 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
425 }
426 
427 static void mptcp_set_timeout(struct sock *sk)
428 {
429 	struct mptcp_subflow_context *subflow;
430 	long tout = 0;
431 
432 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
433 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
434 	__mptcp_set_timeout(sk, tout);
435 }
436 
437 static bool tcp_can_send_ack(const struct sock *ssk)
438 {
439 	return !((1 << inet_sk_state_load(ssk)) &
440 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
441 }
442 
443 void mptcp_subflow_send_ack(struct sock *ssk)
444 {
445 	bool slow;
446 
447 	slow = lock_sock_fast(ssk);
448 	if (tcp_can_send_ack(ssk))
449 		tcp_send_ack(ssk);
450 	unlock_sock_fast(ssk, slow);
451 }
452 
453 static void mptcp_send_ack(struct mptcp_sock *msk)
454 {
455 	struct mptcp_subflow_context *subflow;
456 
457 	mptcp_for_each_subflow(msk, subflow)
458 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
459 }
460 
461 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
462 {
463 	bool slow;
464 
465 	slow = lock_sock_fast(ssk);
466 	if (tcp_can_send_ack(ssk))
467 		tcp_cleanup_rbuf(ssk, 1);
468 	unlock_sock_fast(ssk, slow);
469 }
470 
471 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
472 {
473 	const struct inet_connection_sock *icsk = inet_csk(ssk);
474 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
475 	const struct tcp_sock *tp = tcp_sk(ssk);
476 
477 	return (ack_pending & ICSK_ACK_SCHED) &&
478 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
479 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
480 		 (rx_empty && ack_pending &
481 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
482 }
483 
484 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
485 {
486 	int old_space = READ_ONCE(msk->old_wspace);
487 	struct mptcp_subflow_context *subflow;
488 	struct sock *sk = (struct sock *)msk;
489 	int space =  __mptcp_space(sk);
490 	bool cleanup, rx_empty;
491 
492 	cleanup = (space > 0) && (space >= (old_space << 1));
493 	rx_empty = !__mptcp_rmem(sk);
494 
495 	mptcp_for_each_subflow(msk, subflow) {
496 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
497 
498 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
499 			mptcp_subflow_cleanup_rbuf(ssk);
500 	}
501 }
502 
503 static bool mptcp_check_data_fin(struct sock *sk)
504 {
505 	struct mptcp_sock *msk = mptcp_sk(sk);
506 	u64 rcv_data_fin_seq;
507 	bool ret = false;
508 
509 	if (__mptcp_check_fallback(msk))
510 		return ret;
511 
512 	/* Need to ack a DATA_FIN received from a peer while this side
513 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
514 	 * msk->rcv_data_fin was set when parsing the incoming options
515 	 * at the subflow level and the msk lock was not held, so this
516 	 * is the first opportunity to act on the DATA_FIN and change
517 	 * the msk state.
518 	 *
519 	 * If we are caught up to the sequence number of the incoming
520 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
521 	 * not caught up, do nothing and let the recv code send DATA_ACK
522 	 * when catching up.
523 	 */
524 
525 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
526 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
527 		WRITE_ONCE(msk->rcv_data_fin, 0);
528 
529 		sk->sk_shutdown |= RCV_SHUTDOWN;
530 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
531 		set_bit(MPTCP_DATA_READY, &msk->flags);
532 
533 		switch (sk->sk_state) {
534 		case TCP_ESTABLISHED:
535 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
536 			break;
537 		case TCP_FIN_WAIT1:
538 			inet_sk_state_store(sk, TCP_CLOSING);
539 			break;
540 		case TCP_FIN_WAIT2:
541 			inet_sk_state_store(sk, TCP_CLOSE);
542 			break;
543 		default:
544 			/* Other states not expected */
545 			WARN_ON_ONCE(1);
546 			break;
547 		}
548 
549 		ret = true;
550 		mptcp_send_ack(msk);
551 		mptcp_close_wake_up(sk);
552 	}
553 	return ret;
554 }
555 
556 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
557 					   struct sock *ssk,
558 					   unsigned int *bytes)
559 {
560 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
561 	struct sock *sk = (struct sock *)msk;
562 	unsigned int moved = 0;
563 	bool more_data_avail;
564 	struct tcp_sock *tp;
565 	bool done = false;
566 	int sk_rbuf;
567 
568 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
569 
570 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
571 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
572 
573 		if (unlikely(ssk_rbuf > sk_rbuf)) {
574 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
575 			sk_rbuf = ssk_rbuf;
576 		}
577 	}
578 
579 	pr_debug("msk=%p ssk=%p", msk, ssk);
580 	tp = tcp_sk(ssk);
581 	do {
582 		u32 map_remaining, offset;
583 		u32 seq = tp->copied_seq;
584 		struct sk_buff *skb;
585 		bool fin;
586 
587 		/* try to move as much data as available */
588 		map_remaining = subflow->map_data_len -
589 				mptcp_subflow_get_map_offset(subflow);
590 
591 		skb = skb_peek(&ssk->sk_receive_queue);
592 		if (!skb) {
593 			/* if no data is found, a racing workqueue/recvmsg
594 			 * already processed the new data, stop here or we
595 			 * can enter an infinite loop
596 			 */
597 			if (!moved)
598 				done = true;
599 			break;
600 		}
601 
602 		if (__mptcp_check_fallback(msk)) {
603 			/* if we are running under the workqueue, TCP could have
604 			 * collapsed skbs between dummy map creation and now
605 			 * be sure to adjust the size
606 			 */
607 			map_remaining = skb->len;
608 			subflow->map_data_len = skb->len;
609 		}
610 
611 		offset = seq - TCP_SKB_CB(skb)->seq;
612 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
613 		if (fin) {
614 			done = true;
615 			seq++;
616 		}
617 
618 		if (offset < skb->len) {
619 			size_t len = skb->len - offset;
620 
621 			if (tp->urg_data)
622 				done = true;
623 
624 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
625 				moved += len;
626 			seq += len;
627 
628 			if (WARN_ON_ONCE(map_remaining < len))
629 				break;
630 		} else {
631 			WARN_ON_ONCE(!fin);
632 			sk_eat_skb(ssk, skb);
633 			done = true;
634 		}
635 
636 		WRITE_ONCE(tp->copied_seq, seq);
637 		more_data_avail = mptcp_subflow_data_available(ssk);
638 
639 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
640 			done = true;
641 			break;
642 		}
643 	} while (more_data_avail);
644 
645 	*bytes += moved;
646 	return done;
647 }
648 
649 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
650 {
651 	struct sock *sk = (struct sock *)msk;
652 	struct sk_buff *skb, *tail;
653 	bool moved = false;
654 	struct rb_node *p;
655 	u64 end_seq;
656 
657 	p = rb_first(&msk->out_of_order_queue);
658 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
659 	while (p) {
660 		skb = rb_to_skb(p);
661 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
662 			break;
663 
664 		p = rb_next(p);
665 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
666 
667 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
668 				      msk->ack_seq))) {
669 			mptcp_drop(sk, skb);
670 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
671 			continue;
672 		}
673 
674 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
675 		tail = skb_peek_tail(&sk->sk_receive_queue);
676 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
677 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
678 
679 			/* skip overlapping data, if any */
680 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
681 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
682 				 delta);
683 			MPTCP_SKB_CB(skb)->offset += delta;
684 			__skb_queue_tail(&sk->sk_receive_queue, skb);
685 		}
686 		msk->ack_seq = end_seq;
687 		moved = true;
688 	}
689 	return moved;
690 }
691 
692 /* In most cases we will be able to lock the mptcp socket.  If its already
693  * owned, we need to defer to the work queue to avoid ABBA deadlock.
694  */
695 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
696 {
697 	struct sock *sk = (struct sock *)msk;
698 	unsigned int moved = 0;
699 
700 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
701 	__mptcp_ofo_queue(msk);
702 	if (unlikely(ssk->sk_err)) {
703 		if (!sock_owned_by_user(sk))
704 			__mptcp_error_report(sk);
705 		else
706 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
707 	}
708 
709 	/* If the moves have caught up with the DATA_FIN sequence number
710 	 * it's time to ack the DATA_FIN and change socket state, but
711 	 * this is not a good place to change state. Let the workqueue
712 	 * do it.
713 	 */
714 	if (mptcp_pending_data_fin(sk, NULL))
715 		mptcp_schedule_work(sk);
716 	return moved > 0;
717 }
718 
719 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
720 {
721 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
722 	struct mptcp_sock *msk = mptcp_sk(sk);
723 	int sk_rbuf, ssk_rbuf;
724 
725 	/* The peer can send data while we are shutting down this
726 	 * subflow at msk destruction time, but we must avoid enqueuing
727 	 * more data to the msk receive queue
728 	 */
729 	if (unlikely(subflow->disposable))
730 		return;
731 
732 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
733 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
734 	if (unlikely(ssk_rbuf > sk_rbuf))
735 		sk_rbuf = ssk_rbuf;
736 
737 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
738 	if (__mptcp_rmem(sk) > sk_rbuf) {
739 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
740 		return;
741 	}
742 
743 	/* Wake-up the reader only for in-sequence data */
744 	mptcp_data_lock(sk);
745 	if (move_skbs_to_msk(msk, ssk)) {
746 		set_bit(MPTCP_DATA_READY, &msk->flags);
747 		sk->sk_data_ready(sk);
748 	}
749 	mptcp_data_unlock(sk);
750 }
751 
752 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
753 {
754 	struct mptcp_subflow_context *subflow;
755 	bool ret = false;
756 
757 	if (likely(list_empty(&msk->join_list)))
758 		return false;
759 
760 	spin_lock_bh(&msk->join_list_lock);
761 	list_for_each_entry(subflow, &msk->join_list, node) {
762 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
763 
764 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
765 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
766 			ret = true;
767 	}
768 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
769 	spin_unlock_bh(&msk->join_list_lock);
770 
771 	return ret;
772 }
773 
774 void __mptcp_flush_join_list(struct mptcp_sock *msk)
775 {
776 	if (likely(!mptcp_do_flush_join_list(msk)))
777 		return;
778 
779 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
780 		mptcp_schedule_work((struct sock *)msk);
781 }
782 
783 static void mptcp_flush_join_list(struct mptcp_sock *msk)
784 {
785 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
786 
787 	might_sleep();
788 
789 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
790 		return;
791 
792 	mptcp_sockopt_sync_all(msk);
793 }
794 
795 static bool mptcp_timer_pending(struct sock *sk)
796 {
797 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
798 }
799 
800 static void mptcp_reset_timer(struct sock *sk)
801 {
802 	struct inet_connection_sock *icsk = inet_csk(sk);
803 	unsigned long tout;
804 
805 	/* prevent rescheduling on close */
806 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
807 		return;
808 
809 	tout = mptcp_sk(sk)->timer_ival;
810 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
811 }
812 
813 bool mptcp_schedule_work(struct sock *sk)
814 {
815 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
816 	    schedule_work(&mptcp_sk(sk)->work)) {
817 		/* each subflow already holds a reference to the sk, and the
818 		 * workqueue is invoked by a subflow, so sk can't go away here.
819 		 */
820 		sock_hold(sk);
821 		return true;
822 	}
823 	return false;
824 }
825 
826 void mptcp_subflow_eof(struct sock *sk)
827 {
828 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
829 		mptcp_schedule_work(sk);
830 }
831 
832 static void mptcp_check_for_eof(struct mptcp_sock *msk)
833 {
834 	struct mptcp_subflow_context *subflow;
835 	struct sock *sk = (struct sock *)msk;
836 	int receivers = 0;
837 
838 	mptcp_for_each_subflow(msk, subflow)
839 		receivers += !subflow->rx_eof;
840 	if (receivers)
841 		return;
842 
843 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
844 		/* hopefully temporary hack: propagate shutdown status
845 		 * to msk, when all subflows agree on it
846 		 */
847 		sk->sk_shutdown |= RCV_SHUTDOWN;
848 
849 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
850 		set_bit(MPTCP_DATA_READY, &msk->flags);
851 		sk->sk_data_ready(sk);
852 	}
853 
854 	switch (sk->sk_state) {
855 	case TCP_ESTABLISHED:
856 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
857 		break;
858 	case TCP_FIN_WAIT1:
859 		inet_sk_state_store(sk, TCP_CLOSING);
860 		break;
861 	case TCP_FIN_WAIT2:
862 		inet_sk_state_store(sk, TCP_CLOSE);
863 		break;
864 	default:
865 		return;
866 	}
867 	mptcp_close_wake_up(sk);
868 }
869 
870 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
871 {
872 	struct mptcp_subflow_context *subflow;
873 	struct sock *sk = (struct sock *)msk;
874 
875 	sock_owned_by_me(sk);
876 
877 	mptcp_for_each_subflow(msk, subflow) {
878 		if (READ_ONCE(subflow->data_avail))
879 			return mptcp_subflow_tcp_sock(subflow);
880 	}
881 
882 	return NULL;
883 }
884 
885 static bool mptcp_skb_can_collapse_to(u64 write_seq,
886 				      const struct sk_buff *skb,
887 				      const struct mptcp_ext *mpext)
888 {
889 	if (!tcp_skb_can_collapse_to(skb))
890 		return false;
891 
892 	/* can collapse only if MPTCP level sequence is in order and this
893 	 * mapping has not been xmitted yet
894 	 */
895 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
896 	       !mpext->frozen;
897 }
898 
899 /* we can append data to the given data frag if:
900  * - there is space available in the backing page_frag
901  * - the data frag tail matches the current page_frag free offset
902  * - the data frag end sequence number matches the current write seq
903  */
904 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
905 				       const struct page_frag *pfrag,
906 				       const struct mptcp_data_frag *df)
907 {
908 	return df && pfrag->page == df->page &&
909 		pfrag->size - pfrag->offset > 0 &&
910 		pfrag->offset == (df->offset + df->data_len) &&
911 		df->data_seq + df->data_len == msk->write_seq;
912 }
913 
914 static int mptcp_wmem_with_overhead(int size)
915 {
916 	return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
917 }
918 
919 static void __mptcp_wmem_reserve(struct sock *sk, int size)
920 {
921 	int amount = mptcp_wmem_with_overhead(size);
922 	struct mptcp_sock *msk = mptcp_sk(sk);
923 
924 	WARN_ON_ONCE(msk->wmem_reserved);
925 	if (WARN_ON_ONCE(amount < 0))
926 		amount = 0;
927 
928 	if (amount <= sk->sk_forward_alloc)
929 		goto reserve;
930 
931 	/* under memory pressure try to reserve at most a single page
932 	 * otherwise try to reserve the full estimate and fallback
933 	 * to a single page before entering the error path
934 	 */
935 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
936 	    !sk_wmem_schedule(sk, amount)) {
937 		if (amount <= PAGE_SIZE)
938 			goto nomem;
939 
940 		amount = PAGE_SIZE;
941 		if (!sk_wmem_schedule(sk, amount))
942 			goto nomem;
943 	}
944 
945 reserve:
946 	msk->wmem_reserved = amount;
947 	sk->sk_forward_alloc -= amount;
948 	return;
949 
950 nomem:
951 	/* we will wait for memory on next allocation */
952 	msk->wmem_reserved = -1;
953 }
954 
955 static void __mptcp_update_wmem(struct sock *sk)
956 {
957 	struct mptcp_sock *msk = mptcp_sk(sk);
958 
959 	lockdep_assert_held_once(&sk->sk_lock.slock);
960 
961 	if (!msk->wmem_reserved)
962 		return;
963 
964 	if (msk->wmem_reserved < 0)
965 		msk->wmem_reserved = 0;
966 	if (msk->wmem_reserved > 0) {
967 		sk->sk_forward_alloc += msk->wmem_reserved;
968 		msk->wmem_reserved = 0;
969 	}
970 }
971 
972 static bool mptcp_wmem_alloc(struct sock *sk, int size)
973 {
974 	struct mptcp_sock *msk = mptcp_sk(sk);
975 
976 	/* check for pre-existing error condition */
977 	if (msk->wmem_reserved < 0)
978 		return false;
979 
980 	if (msk->wmem_reserved >= size)
981 		goto account;
982 
983 	mptcp_data_lock(sk);
984 	if (!sk_wmem_schedule(sk, size)) {
985 		mptcp_data_unlock(sk);
986 		return false;
987 	}
988 
989 	sk->sk_forward_alloc -= size;
990 	msk->wmem_reserved += size;
991 	mptcp_data_unlock(sk);
992 
993 account:
994 	msk->wmem_reserved -= size;
995 	return true;
996 }
997 
998 static void mptcp_wmem_uncharge(struct sock *sk, int size)
999 {
1000 	struct mptcp_sock *msk = mptcp_sk(sk);
1001 
1002 	if (msk->wmem_reserved < 0)
1003 		msk->wmem_reserved = 0;
1004 	msk->wmem_reserved += size;
1005 }
1006 
1007 static void __mptcp_mem_reclaim_partial(struct sock *sk)
1008 {
1009 	lockdep_assert_held_once(&sk->sk_lock.slock);
1010 	__mptcp_update_wmem(sk);
1011 	sk_mem_reclaim_partial(sk);
1012 }
1013 
1014 static void mptcp_mem_reclaim_partial(struct sock *sk)
1015 {
1016 	struct mptcp_sock *msk = mptcp_sk(sk);
1017 
1018 	/* if we are experiencing a transint allocation error,
1019 	 * the forward allocation memory has been already
1020 	 * released
1021 	 */
1022 	if (msk->wmem_reserved < 0)
1023 		return;
1024 
1025 	mptcp_data_lock(sk);
1026 	sk->sk_forward_alloc += msk->wmem_reserved;
1027 	sk_mem_reclaim_partial(sk);
1028 	msk->wmem_reserved = sk->sk_forward_alloc;
1029 	sk->sk_forward_alloc = 0;
1030 	mptcp_data_unlock(sk);
1031 }
1032 
1033 static void dfrag_uncharge(struct sock *sk, int len)
1034 {
1035 	sk_mem_uncharge(sk, len);
1036 	sk_wmem_queued_add(sk, -len);
1037 }
1038 
1039 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1040 {
1041 	int len = dfrag->data_len + dfrag->overhead;
1042 
1043 	list_del(&dfrag->list);
1044 	dfrag_uncharge(sk, len);
1045 	put_page(dfrag->page);
1046 }
1047 
1048 static void __mptcp_clean_una(struct sock *sk)
1049 {
1050 	struct mptcp_sock *msk = mptcp_sk(sk);
1051 	struct mptcp_data_frag *dtmp, *dfrag;
1052 	bool cleaned = false;
1053 	u64 snd_una;
1054 
1055 	/* on fallback we just need to ignore snd_una, as this is really
1056 	 * plain TCP
1057 	 */
1058 	if (__mptcp_check_fallback(msk))
1059 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1060 
1061 	snd_una = msk->snd_una;
1062 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1063 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1064 			break;
1065 
1066 		if (unlikely(dfrag == msk->first_pending)) {
1067 			/* in recovery mode can see ack after the current snd head */
1068 			if (WARN_ON_ONCE(!msk->recovery))
1069 				break;
1070 
1071 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1072 		}
1073 
1074 		dfrag_clear(sk, dfrag);
1075 		cleaned = true;
1076 	}
1077 
1078 	dfrag = mptcp_rtx_head(sk);
1079 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1080 		u64 delta = snd_una - dfrag->data_seq;
1081 
1082 		/* prevent wrap around in recovery mode */
1083 		if (unlikely(delta > dfrag->already_sent)) {
1084 			if (WARN_ON_ONCE(!msk->recovery))
1085 				goto out;
1086 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1087 				goto out;
1088 			dfrag->already_sent += delta - dfrag->already_sent;
1089 		}
1090 
1091 		dfrag->data_seq += delta;
1092 		dfrag->offset += delta;
1093 		dfrag->data_len -= delta;
1094 		dfrag->already_sent -= delta;
1095 
1096 		dfrag_uncharge(sk, delta);
1097 		cleaned = true;
1098 	}
1099 
1100 	/* all retransmitted data acked, recovery completed */
1101 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1102 		msk->recovery = false;
1103 
1104 out:
1105 	if (cleaned && tcp_under_memory_pressure(sk))
1106 		__mptcp_mem_reclaim_partial(sk);
1107 
1108 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1109 	    snd_una == READ_ONCE(msk->write_seq)) {
1110 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1111 			mptcp_stop_timer(sk);
1112 	} else {
1113 		mptcp_reset_timer(sk);
1114 	}
1115 }
1116 
1117 static void __mptcp_clean_una_wakeup(struct sock *sk)
1118 {
1119 	lockdep_assert_held_once(&sk->sk_lock.slock);
1120 
1121 	__mptcp_clean_una(sk);
1122 	mptcp_write_space(sk);
1123 }
1124 
1125 static void mptcp_clean_una_wakeup(struct sock *sk)
1126 {
1127 	mptcp_data_lock(sk);
1128 	__mptcp_clean_una_wakeup(sk);
1129 	mptcp_data_unlock(sk);
1130 }
1131 
1132 static void mptcp_enter_memory_pressure(struct sock *sk)
1133 {
1134 	struct mptcp_subflow_context *subflow;
1135 	struct mptcp_sock *msk = mptcp_sk(sk);
1136 	bool first = true;
1137 
1138 	sk_stream_moderate_sndbuf(sk);
1139 	mptcp_for_each_subflow(msk, subflow) {
1140 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1141 
1142 		if (first)
1143 			tcp_enter_memory_pressure(ssk);
1144 		sk_stream_moderate_sndbuf(ssk);
1145 		first = false;
1146 	}
1147 }
1148 
1149 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1150  * data
1151  */
1152 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1153 {
1154 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1155 					pfrag, sk->sk_allocation)))
1156 		return true;
1157 
1158 	mptcp_enter_memory_pressure(sk);
1159 	return false;
1160 }
1161 
1162 static struct mptcp_data_frag *
1163 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1164 		      int orig_offset)
1165 {
1166 	int offset = ALIGN(orig_offset, sizeof(long));
1167 	struct mptcp_data_frag *dfrag;
1168 
1169 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1170 	dfrag->data_len = 0;
1171 	dfrag->data_seq = msk->write_seq;
1172 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1173 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1174 	dfrag->already_sent = 0;
1175 	dfrag->page = pfrag->page;
1176 
1177 	return dfrag;
1178 }
1179 
1180 struct mptcp_sendmsg_info {
1181 	int mss_now;
1182 	int size_goal;
1183 	u16 limit;
1184 	u16 sent;
1185 	unsigned int flags;
1186 	bool data_lock_held;
1187 };
1188 
1189 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1190 				    int avail_size)
1191 {
1192 	u64 window_end = mptcp_wnd_end(msk);
1193 
1194 	if (__mptcp_check_fallback(msk))
1195 		return avail_size;
1196 
1197 	if (!before64(data_seq + avail_size, window_end)) {
1198 		u64 allowed_size = window_end - data_seq;
1199 
1200 		return min_t(unsigned int, allowed_size, avail_size);
1201 	}
1202 
1203 	return avail_size;
1204 }
1205 
1206 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1207 {
1208 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1209 
1210 	if (!mpext)
1211 		return false;
1212 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1213 	return true;
1214 }
1215 
1216 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1217 {
1218 	struct sk_buff *skb;
1219 
1220 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1221 	if (likely(skb)) {
1222 		if (likely(__mptcp_add_ext(skb, gfp))) {
1223 			skb_reserve(skb, MAX_TCP_HEADER);
1224 			skb->reserved_tailroom = skb->end - skb->tail;
1225 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1226 			return skb;
1227 		}
1228 		__kfree_skb(skb);
1229 	} else {
1230 		mptcp_enter_memory_pressure(sk);
1231 	}
1232 	return NULL;
1233 }
1234 
1235 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1236 {
1237 	struct sk_buff *skb;
1238 
1239 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1240 	if (!skb)
1241 		return NULL;
1242 
1243 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1244 		tcp_skb_entail(ssk, skb);
1245 		return skb;
1246 	}
1247 	kfree_skb(skb);
1248 	return NULL;
1249 }
1250 
1251 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1252 {
1253 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1254 
1255 	if (unlikely(tcp_under_memory_pressure(sk))) {
1256 		if (data_lock_held)
1257 			__mptcp_mem_reclaim_partial(sk);
1258 		else
1259 			mptcp_mem_reclaim_partial(sk);
1260 	}
1261 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1262 }
1263 
1264 /* note: this always recompute the csum on the whole skb, even
1265  * if we just appended a single frag. More status info needed
1266  */
1267 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1268 {
1269 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1270 	__wsum csum = ~csum_unfold(mpext->csum);
1271 	int offset = skb->len - added;
1272 
1273 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1274 }
1275 
1276 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1277 			      struct mptcp_data_frag *dfrag,
1278 			      struct mptcp_sendmsg_info *info)
1279 {
1280 	u64 data_seq = dfrag->data_seq + info->sent;
1281 	int offset = dfrag->offset + info->sent;
1282 	struct mptcp_sock *msk = mptcp_sk(sk);
1283 	bool zero_window_probe = false;
1284 	struct mptcp_ext *mpext = NULL;
1285 	bool can_coalesce = false;
1286 	bool reuse_skb = true;
1287 	struct sk_buff *skb;
1288 	size_t copy;
1289 	int i;
1290 
1291 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1292 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1293 
1294 	if (WARN_ON_ONCE(info->sent > info->limit ||
1295 			 info->limit > dfrag->data_len))
1296 		return 0;
1297 
1298 	/* compute send limit */
1299 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1300 	copy = info->size_goal;
1301 
1302 	skb = tcp_write_queue_tail(ssk);
1303 	if (skb && copy > skb->len) {
1304 		/* Limit the write to the size available in the
1305 		 * current skb, if any, so that we create at most a new skb.
1306 		 * Explicitly tells TCP internals to avoid collapsing on later
1307 		 * queue management operation, to avoid breaking the ext <->
1308 		 * SSN association set here
1309 		 */
1310 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1311 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1312 			TCP_SKB_CB(skb)->eor = 1;
1313 			goto alloc_skb;
1314 		}
1315 
1316 		i = skb_shinfo(skb)->nr_frags;
1317 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1318 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1319 			tcp_mark_push(tcp_sk(ssk), skb);
1320 			goto alloc_skb;
1321 		}
1322 
1323 		copy -= skb->len;
1324 	} else {
1325 alloc_skb:
1326 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1327 		if (!skb)
1328 			return -ENOMEM;
1329 
1330 		i = skb_shinfo(skb)->nr_frags;
1331 		reuse_skb = false;
1332 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1333 	}
1334 
1335 	/* Zero window and all data acked? Probe. */
1336 	copy = mptcp_check_allowed_size(msk, data_seq, copy);
1337 	if (copy == 0) {
1338 		u64 snd_una = READ_ONCE(msk->snd_una);
1339 
1340 		if (snd_una != msk->snd_nxt) {
1341 			tcp_remove_empty_skb(ssk, tcp_write_queue_tail(ssk));
1342 			return 0;
1343 		}
1344 
1345 		zero_window_probe = true;
1346 		data_seq = snd_una - 1;
1347 		copy = 1;
1348 
1349 		/* all mptcp-level data is acked, no skbs should be present into the
1350 		 * ssk write queue
1351 		 */
1352 		WARN_ON_ONCE(reuse_skb);
1353 	}
1354 
1355 	copy = min_t(size_t, copy, info->limit - info->sent);
1356 	if (!sk_wmem_schedule(ssk, copy)) {
1357 		tcp_remove_empty_skb(ssk, tcp_write_queue_tail(ssk));
1358 		return -ENOMEM;
1359 	}
1360 
1361 	if (can_coalesce) {
1362 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1363 	} else {
1364 		get_page(dfrag->page);
1365 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1366 	}
1367 
1368 	skb->len += copy;
1369 	skb->data_len += copy;
1370 	skb->truesize += copy;
1371 	sk_wmem_queued_add(ssk, copy);
1372 	sk_mem_charge(ssk, copy);
1373 	skb->ip_summed = CHECKSUM_PARTIAL;
1374 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1375 	TCP_SKB_CB(skb)->end_seq += copy;
1376 	tcp_skb_pcount_set(skb, 0);
1377 
1378 	/* on skb reuse we just need to update the DSS len */
1379 	if (reuse_skb) {
1380 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1381 		mpext->data_len += copy;
1382 		WARN_ON_ONCE(zero_window_probe);
1383 		goto out;
1384 	}
1385 
1386 	memset(mpext, 0, sizeof(*mpext));
1387 	mpext->data_seq = data_seq;
1388 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1389 	mpext->data_len = copy;
1390 	mpext->use_map = 1;
1391 	mpext->dsn64 = 1;
1392 
1393 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1394 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1395 		 mpext->dsn64);
1396 
1397 	if (zero_window_probe) {
1398 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1399 		mpext->frozen = 1;
1400 		if (READ_ONCE(msk->csum_enabled))
1401 			mptcp_update_data_checksum(skb, copy);
1402 		tcp_push_pending_frames(ssk);
1403 		return 0;
1404 	}
1405 out:
1406 	if (READ_ONCE(msk->csum_enabled))
1407 		mptcp_update_data_checksum(skb, copy);
1408 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1409 	return copy;
1410 }
1411 
1412 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1413 					 sizeof(struct tcphdr) - \
1414 					 MAX_TCP_OPTION_SPACE - \
1415 					 sizeof(struct ipv6hdr) - \
1416 					 sizeof(struct frag_hdr))
1417 
1418 struct subflow_send_info {
1419 	struct sock *ssk;
1420 	u64 ratio;
1421 };
1422 
1423 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1424 {
1425 	if (!subflow->stale)
1426 		return;
1427 
1428 	subflow->stale = 0;
1429 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1430 }
1431 
1432 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1433 {
1434 	if (unlikely(subflow->stale)) {
1435 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1436 
1437 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1438 			return false;
1439 
1440 		mptcp_subflow_set_active(subflow);
1441 	}
1442 	return __mptcp_subflow_active(subflow);
1443 }
1444 
1445 /* implement the mptcp packet scheduler;
1446  * returns the subflow that will transmit the next DSS
1447  * additionally updates the rtx timeout
1448  */
1449 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1450 {
1451 	struct subflow_send_info send_info[2];
1452 	struct mptcp_subflow_context *subflow;
1453 	struct sock *sk = (struct sock *)msk;
1454 	int i, nr_active = 0;
1455 	struct sock *ssk;
1456 	long tout = 0;
1457 	u64 ratio;
1458 	u32 pace;
1459 
1460 	sock_owned_by_me(sk);
1461 
1462 	if (__mptcp_check_fallback(msk)) {
1463 		if (!msk->first)
1464 			return NULL;
1465 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1466 	}
1467 
1468 	/* re-use last subflow, if the burst allow that */
1469 	if (msk->last_snd && msk->snd_burst > 0 &&
1470 	    sk_stream_memory_free(msk->last_snd) &&
1471 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1472 		mptcp_set_timeout(sk);
1473 		return msk->last_snd;
1474 	}
1475 
1476 	/* pick the subflow with the lower wmem/wspace ratio */
1477 	for (i = 0; i < 2; ++i) {
1478 		send_info[i].ssk = NULL;
1479 		send_info[i].ratio = -1;
1480 	}
1481 	mptcp_for_each_subflow(msk, subflow) {
1482 		trace_mptcp_subflow_get_send(subflow);
1483 		ssk =  mptcp_subflow_tcp_sock(subflow);
1484 		if (!mptcp_subflow_active(subflow))
1485 			continue;
1486 
1487 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1488 		nr_active += !subflow->backup;
1489 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1490 			continue;
1491 
1492 		pace = READ_ONCE(ssk->sk_pacing_rate);
1493 		if (!pace)
1494 			continue;
1495 
1496 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1497 				pace);
1498 		if (ratio < send_info[subflow->backup].ratio) {
1499 			send_info[subflow->backup].ssk = ssk;
1500 			send_info[subflow->backup].ratio = ratio;
1501 		}
1502 	}
1503 	__mptcp_set_timeout(sk, tout);
1504 
1505 	/* pick the best backup if no other subflow is active */
1506 	if (!nr_active)
1507 		send_info[0].ssk = send_info[1].ssk;
1508 
1509 	if (send_info[0].ssk) {
1510 		msk->last_snd = send_info[0].ssk;
1511 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1512 				       tcp_sk(msk->last_snd)->snd_wnd);
1513 		return msk->last_snd;
1514 	}
1515 
1516 	return NULL;
1517 }
1518 
1519 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1520 			       struct mptcp_sendmsg_info *info)
1521 {
1522 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1523 	release_sock(ssk);
1524 }
1525 
1526 static void mptcp_update_post_push(struct mptcp_sock *msk,
1527 				   struct mptcp_data_frag *dfrag,
1528 				   u32 sent)
1529 {
1530 	u64 snd_nxt_new = dfrag->data_seq;
1531 
1532 	dfrag->already_sent += sent;
1533 
1534 	msk->snd_burst -= sent;
1535 
1536 	snd_nxt_new += dfrag->already_sent;
1537 
1538 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1539 	 * is recovering after a failover. In that event, this re-sends
1540 	 * old segments.
1541 	 *
1542 	 * Thus compute snd_nxt_new candidate based on
1543 	 * the dfrag->data_seq that was sent and the data
1544 	 * that has been handed to the subflow for transmission
1545 	 * and skip update in case it was old dfrag.
1546 	 */
1547 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1548 		msk->snd_nxt = snd_nxt_new;
1549 }
1550 
1551 static void mptcp_check_and_set_pending(struct sock *sk)
1552 {
1553 	if (mptcp_send_head(sk) &&
1554 	    !test_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
1555 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
1556 }
1557 
1558 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1559 {
1560 	struct sock *prev_ssk = NULL, *ssk = NULL;
1561 	struct mptcp_sock *msk = mptcp_sk(sk);
1562 	struct mptcp_sendmsg_info info = {
1563 				.flags = flags,
1564 	};
1565 	struct mptcp_data_frag *dfrag;
1566 	int len, copied = 0;
1567 
1568 	while ((dfrag = mptcp_send_head(sk))) {
1569 		info.sent = dfrag->already_sent;
1570 		info.limit = dfrag->data_len;
1571 		len = dfrag->data_len - dfrag->already_sent;
1572 		while (len > 0) {
1573 			int ret = 0;
1574 
1575 			prev_ssk = ssk;
1576 			mptcp_flush_join_list(msk);
1577 			ssk = mptcp_subflow_get_send(msk);
1578 
1579 			/* First check. If the ssk has changed since
1580 			 * the last round, release prev_ssk
1581 			 */
1582 			if (ssk != prev_ssk && prev_ssk)
1583 				mptcp_push_release(sk, prev_ssk, &info);
1584 			if (!ssk)
1585 				goto out;
1586 
1587 			/* Need to lock the new subflow only if different
1588 			 * from the previous one, otherwise we are still
1589 			 * helding the relevant lock
1590 			 */
1591 			if (ssk != prev_ssk)
1592 				lock_sock(ssk);
1593 
1594 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1595 			if (ret <= 0) {
1596 				mptcp_push_release(sk, ssk, &info);
1597 				goto out;
1598 			}
1599 
1600 			info.sent += ret;
1601 			copied += ret;
1602 			len -= ret;
1603 
1604 			mptcp_update_post_push(msk, dfrag, ret);
1605 		}
1606 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1607 	}
1608 
1609 	/* at this point we held the socket lock for the last subflow we used */
1610 	if (ssk)
1611 		mptcp_push_release(sk, ssk, &info);
1612 
1613 out:
1614 	/* ensure the rtx timer is running */
1615 	if (!mptcp_timer_pending(sk))
1616 		mptcp_reset_timer(sk);
1617 	if (copied)
1618 		__mptcp_check_send_data_fin(sk);
1619 }
1620 
1621 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1622 {
1623 	struct mptcp_sock *msk = mptcp_sk(sk);
1624 	struct mptcp_sendmsg_info info = {
1625 		.data_lock_held = true,
1626 	};
1627 	struct mptcp_data_frag *dfrag;
1628 	struct sock *xmit_ssk;
1629 	int len, copied = 0;
1630 	bool first = true;
1631 
1632 	info.flags = 0;
1633 	while ((dfrag = mptcp_send_head(sk))) {
1634 		info.sent = dfrag->already_sent;
1635 		info.limit = dfrag->data_len;
1636 		len = dfrag->data_len - dfrag->already_sent;
1637 		while (len > 0) {
1638 			int ret = 0;
1639 
1640 			/* the caller already invoked the packet scheduler,
1641 			 * check for a different subflow usage only after
1642 			 * spooling the first chunk of data
1643 			 */
1644 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1645 			if (!xmit_ssk)
1646 				goto out;
1647 			if (xmit_ssk != ssk) {
1648 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1649 				goto out;
1650 			}
1651 
1652 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1653 			if (ret <= 0)
1654 				goto out;
1655 
1656 			info.sent += ret;
1657 			copied += ret;
1658 			len -= ret;
1659 			first = false;
1660 
1661 			mptcp_update_post_push(msk, dfrag, ret);
1662 		}
1663 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1664 	}
1665 
1666 out:
1667 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1668 	 * not going to flush it via release_sock()
1669 	 */
1670 	__mptcp_update_wmem(sk);
1671 	if (copied) {
1672 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1673 			 info.size_goal);
1674 		if (!mptcp_timer_pending(sk))
1675 			mptcp_reset_timer(sk);
1676 
1677 		if (msk->snd_data_fin_enable &&
1678 		    msk->snd_nxt + 1 == msk->write_seq)
1679 			mptcp_schedule_work(sk);
1680 	}
1681 }
1682 
1683 static void mptcp_set_nospace(struct sock *sk)
1684 {
1685 	/* enable autotune */
1686 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1687 
1688 	/* will be cleared on avail space */
1689 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1690 }
1691 
1692 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1693 {
1694 	struct mptcp_sock *msk = mptcp_sk(sk);
1695 	struct page_frag *pfrag;
1696 	size_t copied = 0;
1697 	int ret = 0;
1698 	long timeo;
1699 
1700 	/* we don't support FASTOPEN yet */
1701 	if (msg->msg_flags & MSG_FASTOPEN)
1702 		return -EOPNOTSUPP;
1703 
1704 	/* silently ignore everything else */
1705 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1706 
1707 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1708 
1709 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1710 
1711 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1712 		ret = sk_stream_wait_connect(sk, &timeo);
1713 		if (ret)
1714 			goto out;
1715 	}
1716 
1717 	pfrag = sk_page_frag(sk);
1718 
1719 	while (msg_data_left(msg)) {
1720 		int total_ts, frag_truesize = 0;
1721 		struct mptcp_data_frag *dfrag;
1722 		bool dfrag_collapsed;
1723 		size_t psize, offset;
1724 
1725 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1726 			ret = -EPIPE;
1727 			goto out;
1728 		}
1729 
1730 		/* reuse tail pfrag, if possible, or carve a new one from the
1731 		 * page allocator
1732 		 */
1733 		dfrag = mptcp_pending_tail(sk);
1734 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1735 		if (!dfrag_collapsed) {
1736 			if (!sk_stream_memory_free(sk))
1737 				goto wait_for_memory;
1738 
1739 			if (!mptcp_page_frag_refill(sk, pfrag))
1740 				goto wait_for_memory;
1741 
1742 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1743 			frag_truesize = dfrag->overhead;
1744 		}
1745 
1746 		/* we do not bound vs wspace, to allow a single packet.
1747 		 * memory accounting will prevent execessive memory usage
1748 		 * anyway
1749 		 */
1750 		offset = dfrag->offset + dfrag->data_len;
1751 		psize = pfrag->size - offset;
1752 		psize = min_t(size_t, psize, msg_data_left(msg));
1753 		total_ts = psize + frag_truesize;
1754 
1755 		if (!mptcp_wmem_alloc(sk, total_ts))
1756 			goto wait_for_memory;
1757 
1758 		if (copy_page_from_iter(dfrag->page, offset, psize,
1759 					&msg->msg_iter) != psize) {
1760 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1761 			ret = -EFAULT;
1762 			goto out;
1763 		}
1764 
1765 		/* data successfully copied into the write queue */
1766 		copied += psize;
1767 		dfrag->data_len += psize;
1768 		frag_truesize += psize;
1769 		pfrag->offset += frag_truesize;
1770 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1771 
1772 		/* charge data on mptcp pending queue to the msk socket
1773 		 * Note: we charge such data both to sk and ssk
1774 		 */
1775 		sk_wmem_queued_add(sk, frag_truesize);
1776 		if (!dfrag_collapsed) {
1777 			get_page(dfrag->page);
1778 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1779 			if (!msk->first_pending)
1780 				WRITE_ONCE(msk->first_pending, dfrag);
1781 		}
1782 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1783 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1784 			 !dfrag_collapsed);
1785 
1786 		continue;
1787 
1788 wait_for_memory:
1789 		mptcp_set_nospace(sk);
1790 		__mptcp_push_pending(sk, msg->msg_flags);
1791 		ret = sk_stream_wait_memory(sk, &timeo);
1792 		if (ret)
1793 			goto out;
1794 	}
1795 
1796 	if (copied)
1797 		__mptcp_push_pending(sk, msg->msg_flags);
1798 
1799 out:
1800 	release_sock(sk);
1801 	return copied ? : ret;
1802 }
1803 
1804 static void mptcp_wait_data(struct sock *sk, long *timeo)
1805 {
1806 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1807 	struct mptcp_sock *msk = mptcp_sk(sk);
1808 
1809 	add_wait_queue(sk_sleep(sk), &wait);
1810 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1811 
1812 	sk_wait_event(sk, timeo,
1813 		      test_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1814 
1815 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1816 	remove_wait_queue(sk_sleep(sk), &wait);
1817 }
1818 
1819 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1820 				struct msghdr *msg,
1821 				size_t len, int flags,
1822 				struct scm_timestamping_internal *tss,
1823 				int *cmsg_flags)
1824 {
1825 	struct sk_buff *skb, *tmp;
1826 	int copied = 0;
1827 
1828 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1829 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1830 		u32 data_len = skb->len - offset;
1831 		u32 count = min_t(size_t, len - copied, data_len);
1832 		int err;
1833 
1834 		if (!(flags & MSG_TRUNC)) {
1835 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1836 			if (unlikely(err < 0)) {
1837 				if (!copied)
1838 					return err;
1839 				break;
1840 			}
1841 		}
1842 
1843 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1844 			tcp_update_recv_tstamps(skb, tss);
1845 			*cmsg_flags |= MPTCP_CMSG_TS;
1846 		}
1847 
1848 		copied += count;
1849 
1850 		if (count < data_len) {
1851 			if (!(flags & MSG_PEEK))
1852 				MPTCP_SKB_CB(skb)->offset += count;
1853 			break;
1854 		}
1855 
1856 		if (!(flags & MSG_PEEK)) {
1857 			/* we will bulk release the skb memory later */
1858 			skb->destructor = NULL;
1859 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1860 			__skb_unlink(skb, &msk->receive_queue);
1861 			__kfree_skb(skb);
1862 		}
1863 
1864 		if (copied >= len)
1865 			break;
1866 	}
1867 
1868 	return copied;
1869 }
1870 
1871 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1872  *
1873  * Only difference: Use highest rtt estimate of the subflows in use.
1874  */
1875 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1876 {
1877 	struct mptcp_subflow_context *subflow;
1878 	struct sock *sk = (struct sock *)msk;
1879 	u32 time, advmss = 1;
1880 	u64 rtt_us, mstamp;
1881 
1882 	sock_owned_by_me(sk);
1883 
1884 	if (copied <= 0)
1885 		return;
1886 
1887 	msk->rcvq_space.copied += copied;
1888 
1889 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1890 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1891 
1892 	rtt_us = msk->rcvq_space.rtt_us;
1893 	if (rtt_us && time < (rtt_us >> 3))
1894 		return;
1895 
1896 	rtt_us = 0;
1897 	mptcp_for_each_subflow(msk, subflow) {
1898 		const struct tcp_sock *tp;
1899 		u64 sf_rtt_us;
1900 		u32 sf_advmss;
1901 
1902 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1903 
1904 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1905 		sf_advmss = READ_ONCE(tp->advmss);
1906 
1907 		rtt_us = max(sf_rtt_us, rtt_us);
1908 		advmss = max(sf_advmss, advmss);
1909 	}
1910 
1911 	msk->rcvq_space.rtt_us = rtt_us;
1912 	if (time < (rtt_us >> 3) || rtt_us == 0)
1913 		return;
1914 
1915 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1916 		goto new_measure;
1917 
1918 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1919 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1920 		int rcvmem, rcvbuf;
1921 		u64 rcvwin, grow;
1922 
1923 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1924 
1925 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1926 
1927 		do_div(grow, msk->rcvq_space.space);
1928 		rcvwin += (grow << 1);
1929 
1930 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1931 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1932 			rcvmem += 128;
1933 
1934 		do_div(rcvwin, advmss);
1935 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1936 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1937 
1938 		if (rcvbuf > sk->sk_rcvbuf) {
1939 			u32 window_clamp;
1940 
1941 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1942 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1943 
1944 			/* Make subflows follow along.  If we do not do this, we
1945 			 * get drops at subflow level if skbs can't be moved to
1946 			 * the mptcp rx queue fast enough (announced rcv_win can
1947 			 * exceed ssk->sk_rcvbuf).
1948 			 */
1949 			mptcp_for_each_subflow(msk, subflow) {
1950 				struct sock *ssk;
1951 				bool slow;
1952 
1953 				ssk = mptcp_subflow_tcp_sock(subflow);
1954 				slow = lock_sock_fast(ssk);
1955 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1956 				tcp_sk(ssk)->window_clamp = window_clamp;
1957 				tcp_cleanup_rbuf(ssk, 1);
1958 				unlock_sock_fast(ssk, slow);
1959 			}
1960 		}
1961 	}
1962 
1963 	msk->rcvq_space.space = msk->rcvq_space.copied;
1964 new_measure:
1965 	msk->rcvq_space.copied = 0;
1966 	msk->rcvq_space.time = mstamp;
1967 }
1968 
1969 static void __mptcp_update_rmem(struct sock *sk)
1970 {
1971 	struct mptcp_sock *msk = mptcp_sk(sk);
1972 
1973 	if (!msk->rmem_released)
1974 		return;
1975 
1976 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1977 	sk_mem_uncharge(sk, msk->rmem_released);
1978 	WRITE_ONCE(msk->rmem_released, 0);
1979 }
1980 
1981 static void __mptcp_splice_receive_queue(struct sock *sk)
1982 {
1983 	struct mptcp_sock *msk = mptcp_sk(sk);
1984 
1985 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1986 }
1987 
1988 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1989 {
1990 	struct sock *sk = (struct sock *)msk;
1991 	unsigned int moved = 0;
1992 	bool ret, done;
1993 
1994 	mptcp_flush_join_list(msk);
1995 	do {
1996 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1997 		bool slowpath;
1998 
1999 		/* we can have data pending in the subflows only if the msk
2000 		 * receive buffer was full at subflow_data_ready() time,
2001 		 * that is an unlikely slow path.
2002 		 */
2003 		if (likely(!ssk))
2004 			break;
2005 
2006 		slowpath = lock_sock_fast(ssk);
2007 		mptcp_data_lock(sk);
2008 		__mptcp_update_rmem(sk);
2009 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2010 		mptcp_data_unlock(sk);
2011 
2012 		if (unlikely(ssk->sk_err))
2013 			__mptcp_error_report(sk);
2014 		unlock_sock_fast(ssk, slowpath);
2015 	} while (!done);
2016 
2017 	/* acquire the data lock only if some input data is pending */
2018 	ret = moved > 0;
2019 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2020 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2021 		mptcp_data_lock(sk);
2022 		__mptcp_update_rmem(sk);
2023 		ret |= __mptcp_ofo_queue(msk);
2024 		__mptcp_splice_receive_queue(sk);
2025 		mptcp_data_unlock(sk);
2026 	}
2027 	if (ret)
2028 		mptcp_check_data_fin((struct sock *)msk);
2029 	return !skb_queue_empty(&msk->receive_queue);
2030 }
2031 
2032 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2033 			 int nonblock, int flags, int *addr_len)
2034 {
2035 	struct mptcp_sock *msk = mptcp_sk(sk);
2036 	struct scm_timestamping_internal tss;
2037 	int copied = 0, cmsg_flags = 0;
2038 	int target;
2039 	long timeo;
2040 
2041 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2042 	if (unlikely(flags & MSG_ERRQUEUE))
2043 		return inet_recv_error(sk, msg, len, addr_len);
2044 
2045 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
2046 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2047 		copied = -ENOTCONN;
2048 		goto out_err;
2049 	}
2050 
2051 	timeo = sock_rcvtimeo(sk, nonblock);
2052 
2053 	len = min_t(size_t, len, INT_MAX);
2054 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2055 
2056 	while (copied < len) {
2057 		int bytes_read;
2058 
2059 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2060 		if (unlikely(bytes_read < 0)) {
2061 			if (!copied)
2062 				copied = bytes_read;
2063 			goto out_err;
2064 		}
2065 
2066 		copied += bytes_read;
2067 
2068 		/* be sure to advertise window change */
2069 		mptcp_cleanup_rbuf(msk);
2070 
2071 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2072 			continue;
2073 
2074 		/* only the master socket status is relevant here. The exit
2075 		 * conditions mirror closely tcp_recvmsg()
2076 		 */
2077 		if (copied >= target)
2078 			break;
2079 
2080 		if (copied) {
2081 			if (sk->sk_err ||
2082 			    sk->sk_state == TCP_CLOSE ||
2083 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2084 			    !timeo ||
2085 			    signal_pending(current))
2086 				break;
2087 		} else {
2088 			if (sk->sk_err) {
2089 				copied = sock_error(sk);
2090 				break;
2091 			}
2092 
2093 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2094 				mptcp_check_for_eof(msk);
2095 
2096 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2097 				/* race breaker: the shutdown could be after the
2098 				 * previous receive queue check
2099 				 */
2100 				if (__mptcp_move_skbs(msk))
2101 					continue;
2102 				break;
2103 			}
2104 
2105 			if (sk->sk_state == TCP_CLOSE) {
2106 				copied = -ENOTCONN;
2107 				break;
2108 			}
2109 
2110 			if (!timeo) {
2111 				copied = -EAGAIN;
2112 				break;
2113 			}
2114 
2115 			if (signal_pending(current)) {
2116 				copied = sock_intr_errno(timeo);
2117 				break;
2118 			}
2119 		}
2120 
2121 		pr_debug("block timeout %ld", timeo);
2122 		mptcp_wait_data(sk, &timeo);
2123 	}
2124 
2125 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2126 	    skb_queue_empty(&msk->receive_queue)) {
2127 		/* entire backlog drained, clear DATA_READY. */
2128 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2129 
2130 		/* .. race-breaker: ssk might have gotten new data
2131 		 * after last __mptcp_move_skbs() returned false.
2132 		 */
2133 		if (unlikely(__mptcp_move_skbs(msk)))
2134 			set_bit(MPTCP_DATA_READY, &msk->flags);
2135 	}
2136 
2137 out_err:
2138 	if (cmsg_flags && copied >= 0) {
2139 		if (cmsg_flags & MPTCP_CMSG_TS)
2140 			tcp_recv_timestamp(msg, sk, &tss);
2141 	}
2142 
2143 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2144 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2145 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2146 	if (!(flags & MSG_PEEK))
2147 		mptcp_rcv_space_adjust(msk, copied);
2148 
2149 	release_sock(sk);
2150 	return copied;
2151 }
2152 
2153 static void mptcp_retransmit_timer(struct timer_list *t)
2154 {
2155 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2156 						       icsk_retransmit_timer);
2157 	struct sock *sk = &icsk->icsk_inet.sk;
2158 	struct mptcp_sock *msk = mptcp_sk(sk);
2159 
2160 	bh_lock_sock(sk);
2161 	if (!sock_owned_by_user(sk)) {
2162 		/* we need a process context to retransmit */
2163 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2164 			mptcp_schedule_work(sk);
2165 	} else {
2166 		/* delegate our work to tcp_release_cb() */
2167 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2168 	}
2169 	bh_unlock_sock(sk);
2170 	sock_put(sk);
2171 }
2172 
2173 static void mptcp_timeout_timer(struct timer_list *t)
2174 {
2175 	struct sock *sk = from_timer(sk, t, sk_timer);
2176 
2177 	mptcp_schedule_work(sk);
2178 	sock_put(sk);
2179 }
2180 
2181 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2182  * level.
2183  *
2184  * A backup subflow is returned only if that is the only kind available.
2185  */
2186 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2187 {
2188 	struct sock *backup = NULL, *pick = NULL;
2189 	struct mptcp_subflow_context *subflow;
2190 	int min_stale_count = INT_MAX;
2191 
2192 	sock_owned_by_me((const struct sock *)msk);
2193 
2194 	if (__mptcp_check_fallback(msk))
2195 		return NULL;
2196 
2197 	mptcp_for_each_subflow(msk, subflow) {
2198 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2199 
2200 		if (!__mptcp_subflow_active(subflow))
2201 			continue;
2202 
2203 		/* still data outstanding at TCP level? skip this */
2204 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2205 			mptcp_pm_subflow_chk_stale(msk, ssk);
2206 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2207 			continue;
2208 		}
2209 
2210 		if (subflow->backup) {
2211 			if (!backup)
2212 				backup = ssk;
2213 			continue;
2214 		}
2215 
2216 		if (!pick)
2217 			pick = ssk;
2218 	}
2219 
2220 	if (pick)
2221 		return pick;
2222 
2223 	/* use backup only if there are no progresses anywhere */
2224 	return min_stale_count > 1 ? backup : NULL;
2225 }
2226 
2227 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2228 {
2229 	if (msk->subflow) {
2230 		iput(SOCK_INODE(msk->subflow));
2231 		msk->subflow = NULL;
2232 	}
2233 }
2234 
2235 bool __mptcp_retransmit_pending_data(struct sock *sk)
2236 {
2237 	struct mptcp_data_frag *cur, *rtx_head;
2238 	struct mptcp_sock *msk = mptcp_sk(sk);
2239 
2240 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2241 		return false;
2242 
2243 	if (tcp_rtx_and_write_queues_empty(sk))
2244 		return false;
2245 
2246 	/* the closing socket has some data untransmitted and/or unacked:
2247 	 * some data in the mptcp rtx queue has not really xmitted yet.
2248 	 * keep it simple and re-inject the whole mptcp level rtx queue
2249 	 */
2250 	mptcp_data_lock(sk);
2251 	__mptcp_clean_una_wakeup(sk);
2252 	rtx_head = mptcp_rtx_head(sk);
2253 	if (!rtx_head) {
2254 		mptcp_data_unlock(sk);
2255 		return false;
2256 	}
2257 
2258 	msk->recovery_snd_nxt = msk->snd_nxt;
2259 	msk->recovery = true;
2260 	mptcp_data_unlock(sk);
2261 
2262 	msk->first_pending = rtx_head;
2263 	msk->snd_burst = 0;
2264 
2265 	/* be sure to clear the "sent status" on all re-injected fragments */
2266 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2267 		if (!cur->already_sent)
2268 			break;
2269 		cur->already_sent = 0;
2270 	}
2271 
2272 	return true;
2273 }
2274 
2275 /* subflow sockets can be either outgoing (connect) or incoming
2276  * (accept).
2277  *
2278  * Outgoing subflows use in-kernel sockets.
2279  * Incoming subflows do not have their own 'struct socket' allocated,
2280  * so we need to use tcp_close() after detaching them from the mptcp
2281  * parent socket.
2282  */
2283 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2284 			      struct mptcp_subflow_context *subflow)
2285 {
2286 	struct mptcp_sock *msk = mptcp_sk(sk);
2287 	bool need_push;
2288 
2289 	list_del(&subflow->node);
2290 
2291 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2292 
2293 	/* if we are invoked by the msk cleanup code, the subflow is
2294 	 * already orphaned
2295 	 */
2296 	if (ssk->sk_socket)
2297 		sock_orphan(ssk);
2298 
2299 	need_push = __mptcp_retransmit_pending_data(sk);
2300 	subflow->disposable = 1;
2301 
2302 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2303 	 * the ssk has been already destroyed, we just need to release the
2304 	 * reference owned by msk;
2305 	 */
2306 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2307 		kfree_rcu(subflow, rcu);
2308 	} else {
2309 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2310 		__tcp_close(ssk, 0);
2311 
2312 		/* close acquired an extra ref */
2313 		__sock_put(ssk);
2314 	}
2315 	release_sock(ssk);
2316 
2317 	sock_put(ssk);
2318 
2319 	if (ssk == msk->last_snd)
2320 		msk->last_snd = NULL;
2321 
2322 	if (ssk == msk->first)
2323 		msk->first = NULL;
2324 
2325 	if (msk->subflow && ssk == msk->subflow->sk)
2326 		mptcp_dispose_initial_subflow(msk);
2327 
2328 	if (need_push)
2329 		__mptcp_push_pending(sk, 0);
2330 }
2331 
2332 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2333 		     struct mptcp_subflow_context *subflow)
2334 {
2335 	if (sk->sk_state == TCP_ESTABLISHED)
2336 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2337 	__mptcp_close_ssk(sk, ssk, subflow);
2338 }
2339 
2340 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2341 {
2342 	return 0;
2343 }
2344 
2345 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2346 {
2347 	struct mptcp_subflow_context *subflow, *tmp;
2348 
2349 	might_sleep();
2350 
2351 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2352 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2353 
2354 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2355 			continue;
2356 
2357 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2358 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2359 			continue;
2360 
2361 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2362 	}
2363 }
2364 
2365 static bool mptcp_check_close_timeout(const struct sock *sk)
2366 {
2367 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2368 	struct mptcp_subflow_context *subflow;
2369 
2370 	if (delta >= TCP_TIMEWAIT_LEN)
2371 		return true;
2372 
2373 	/* if all subflows are in closed status don't bother with additional
2374 	 * timeout
2375 	 */
2376 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2377 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2378 		    TCP_CLOSE)
2379 			return false;
2380 	}
2381 	return true;
2382 }
2383 
2384 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2385 {
2386 	struct mptcp_subflow_context *subflow, *tmp;
2387 	struct sock *sk = &msk->sk.icsk_inet.sk;
2388 
2389 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2390 		return;
2391 
2392 	mptcp_token_destroy(msk);
2393 
2394 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2395 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2396 		bool slow;
2397 
2398 		slow = lock_sock_fast(tcp_sk);
2399 		if (tcp_sk->sk_state != TCP_CLOSE) {
2400 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2401 			tcp_set_state(tcp_sk, TCP_CLOSE);
2402 		}
2403 		unlock_sock_fast(tcp_sk, slow);
2404 	}
2405 
2406 	inet_sk_state_store(sk, TCP_CLOSE);
2407 	sk->sk_shutdown = SHUTDOWN_MASK;
2408 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2409 	set_bit(MPTCP_DATA_READY, &msk->flags);
2410 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2411 
2412 	mptcp_close_wake_up(sk);
2413 }
2414 
2415 static void __mptcp_retrans(struct sock *sk)
2416 {
2417 	struct mptcp_sock *msk = mptcp_sk(sk);
2418 	struct mptcp_sendmsg_info info = {};
2419 	struct mptcp_data_frag *dfrag;
2420 	size_t copied = 0;
2421 	struct sock *ssk;
2422 	int ret;
2423 
2424 	mptcp_clean_una_wakeup(sk);
2425 
2426 	/* first check ssk: need to kick "stale" logic */
2427 	ssk = mptcp_subflow_get_retrans(msk);
2428 	dfrag = mptcp_rtx_head(sk);
2429 	if (!dfrag) {
2430 		if (mptcp_data_fin_enabled(msk)) {
2431 			struct inet_connection_sock *icsk = inet_csk(sk);
2432 
2433 			icsk->icsk_retransmits++;
2434 			mptcp_set_datafin_timeout(sk);
2435 			mptcp_send_ack(msk);
2436 
2437 			goto reset_timer;
2438 		}
2439 
2440 		if (!mptcp_send_head(sk))
2441 			return;
2442 
2443 		goto reset_timer;
2444 	}
2445 
2446 	if (!ssk)
2447 		goto reset_timer;
2448 
2449 	lock_sock(ssk);
2450 
2451 	/* limit retransmission to the bytes already sent on some subflows */
2452 	info.sent = 0;
2453 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2454 	while (info.sent < info.limit) {
2455 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2456 		if (ret <= 0)
2457 			break;
2458 
2459 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2460 		copied += ret;
2461 		info.sent += ret;
2462 	}
2463 	if (copied) {
2464 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2465 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2466 			 info.size_goal);
2467 	}
2468 
2469 	release_sock(ssk);
2470 
2471 reset_timer:
2472 	mptcp_check_and_set_pending(sk);
2473 
2474 	if (!mptcp_timer_pending(sk))
2475 		mptcp_reset_timer(sk);
2476 }
2477 
2478 static void mptcp_worker(struct work_struct *work)
2479 {
2480 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2481 	struct sock *sk = &msk->sk.icsk_inet.sk;
2482 	int state;
2483 
2484 	lock_sock(sk);
2485 	state = sk->sk_state;
2486 	if (unlikely(state == TCP_CLOSE))
2487 		goto unlock;
2488 
2489 	mptcp_check_data_fin_ack(sk);
2490 	mptcp_flush_join_list(msk);
2491 
2492 	mptcp_check_fastclose(msk);
2493 
2494 	if (msk->pm.status)
2495 		mptcp_pm_nl_work(msk);
2496 
2497 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2498 		mptcp_check_for_eof(msk);
2499 
2500 	__mptcp_check_send_data_fin(sk);
2501 	mptcp_check_data_fin(sk);
2502 
2503 	/* There is no point in keeping around an orphaned sk timedout or
2504 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2505 	 * even if it is orphaned and in FIN_WAIT2 state
2506 	 */
2507 	if (sock_flag(sk, SOCK_DEAD) &&
2508 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2509 		inet_sk_state_store(sk, TCP_CLOSE);
2510 		__mptcp_destroy_sock(sk);
2511 		goto unlock;
2512 	}
2513 
2514 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2515 		__mptcp_close_subflow(msk);
2516 
2517 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2518 		__mptcp_retrans(sk);
2519 
2520 unlock:
2521 	release_sock(sk);
2522 	sock_put(sk);
2523 }
2524 
2525 static int __mptcp_init_sock(struct sock *sk)
2526 {
2527 	struct mptcp_sock *msk = mptcp_sk(sk);
2528 
2529 	spin_lock_init(&msk->join_list_lock);
2530 
2531 	INIT_LIST_HEAD(&msk->conn_list);
2532 	INIT_LIST_HEAD(&msk->join_list);
2533 	INIT_LIST_HEAD(&msk->rtx_queue);
2534 	INIT_WORK(&msk->work, mptcp_worker);
2535 	__skb_queue_head_init(&msk->receive_queue);
2536 	msk->out_of_order_queue = RB_ROOT;
2537 	msk->first_pending = NULL;
2538 	msk->wmem_reserved = 0;
2539 	WRITE_ONCE(msk->rmem_released, 0);
2540 	msk->timer_ival = TCP_RTO_MIN;
2541 
2542 	msk->first = NULL;
2543 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2544 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2545 	msk->recovery = false;
2546 
2547 	mptcp_pm_data_init(msk);
2548 
2549 	/* re-use the csk retrans timer for MPTCP-level retrans */
2550 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2551 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2552 
2553 	return 0;
2554 }
2555 
2556 static int mptcp_init_sock(struct sock *sk)
2557 {
2558 	struct inet_connection_sock *icsk = inet_csk(sk);
2559 	struct net *net = sock_net(sk);
2560 	int ret;
2561 
2562 	ret = __mptcp_init_sock(sk);
2563 	if (ret)
2564 		return ret;
2565 
2566 	if (!mptcp_is_enabled(net))
2567 		return -ENOPROTOOPT;
2568 
2569 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2570 		return -ENOMEM;
2571 
2572 	ret = __mptcp_socket_create(mptcp_sk(sk));
2573 	if (ret)
2574 		return ret;
2575 
2576 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2577 	 * propagate the correct value
2578 	 */
2579 	tcp_assign_congestion_control(sk);
2580 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2581 
2582 	/* no need to keep a reference to the ops, the name will suffice */
2583 	tcp_cleanup_congestion_control(sk);
2584 	icsk->icsk_ca_ops = NULL;
2585 
2586 	sk_sockets_allocated_inc(sk);
2587 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2588 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2589 
2590 	return 0;
2591 }
2592 
2593 static void __mptcp_clear_xmit(struct sock *sk)
2594 {
2595 	struct mptcp_sock *msk = mptcp_sk(sk);
2596 	struct mptcp_data_frag *dtmp, *dfrag;
2597 
2598 	WRITE_ONCE(msk->first_pending, NULL);
2599 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2600 		dfrag_clear(sk, dfrag);
2601 }
2602 
2603 static void mptcp_cancel_work(struct sock *sk)
2604 {
2605 	struct mptcp_sock *msk = mptcp_sk(sk);
2606 
2607 	if (cancel_work_sync(&msk->work))
2608 		__sock_put(sk);
2609 }
2610 
2611 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2612 {
2613 	lock_sock(ssk);
2614 
2615 	switch (ssk->sk_state) {
2616 	case TCP_LISTEN:
2617 		if (!(how & RCV_SHUTDOWN))
2618 			break;
2619 		fallthrough;
2620 	case TCP_SYN_SENT:
2621 		tcp_disconnect(ssk, O_NONBLOCK);
2622 		break;
2623 	default:
2624 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2625 			pr_debug("Fallback");
2626 			ssk->sk_shutdown |= how;
2627 			tcp_shutdown(ssk, how);
2628 		} else {
2629 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2630 			tcp_send_ack(ssk);
2631 			if (!mptcp_timer_pending(sk))
2632 				mptcp_reset_timer(sk);
2633 		}
2634 		break;
2635 	}
2636 
2637 	release_sock(ssk);
2638 }
2639 
2640 static const unsigned char new_state[16] = {
2641 	/* current state:     new state:      action:	*/
2642 	[0 /* (Invalid) */] = TCP_CLOSE,
2643 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2644 	[TCP_SYN_SENT]      = TCP_CLOSE,
2645 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2646 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2647 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2648 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2649 	[TCP_CLOSE]         = TCP_CLOSE,
2650 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2651 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2652 	[TCP_LISTEN]        = TCP_CLOSE,
2653 	[TCP_CLOSING]       = TCP_CLOSING,
2654 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2655 };
2656 
2657 static int mptcp_close_state(struct sock *sk)
2658 {
2659 	int next = (int)new_state[sk->sk_state];
2660 	int ns = next & TCP_STATE_MASK;
2661 
2662 	inet_sk_state_store(sk, ns);
2663 
2664 	return next & TCP_ACTION_FIN;
2665 }
2666 
2667 static void __mptcp_check_send_data_fin(struct sock *sk)
2668 {
2669 	struct mptcp_subflow_context *subflow;
2670 	struct mptcp_sock *msk = mptcp_sk(sk);
2671 
2672 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2673 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2674 		 msk->snd_nxt, msk->write_seq);
2675 
2676 	/* we still need to enqueue subflows or not really shutting down,
2677 	 * skip this
2678 	 */
2679 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2680 	    mptcp_send_head(sk))
2681 		return;
2682 
2683 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2684 
2685 	/* fallback socket will not get data_fin/ack, can move to the next
2686 	 * state now
2687 	 */
2688 	if (__mptcp_check_fallback(msk)) {
2689 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2690 			inet_sk_state_store(sk, TCP_CLOSE);
2691 			mptcp_close_wake_up(sk);
2692 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2693 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2694 		}
2695 	}
2696 
2697 	mptcp_flush_join_list(msk);
2698 	mptcp_for_each_subflow(msk, subflow) {
2699 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2700 
2701 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2702 	}
2703 }
2704 
2705 static void __mptcp_wr_shutdown(struct sock *sk)
2706 {
2707 	struct mptcp_sock *msk = mptcp_sk(sk);
2708 
2709 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2710 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2711 		 !!mptcp_send_head(sk));
2712 
2713 	/* will be ignored by fallback sockets */
2714 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2715 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2716 
2717 	__mptcp_check_send_data_fin(sk);
2718 }
2719 
2720 static void __mptcp_destroy_sock(struct sock *sk)
2721 {
2722 	struct mptcp_subflow_context *subflow, *tmp;
2723 	struct mptcp_sock *msk = mptcp_sk(sk);
2724 	LIST_HEAD(conn_list);
2725 
2726 	pr_debug("msk=%p", msk);
2727 
2728 	might_sleep();
2729 
2730 	/* be sure to always acquire the join list lock, to sync vs
2731 	 * mptcp_finish_join().
2732 	 */
2733 	spin_lock_bh(&msk->join_list_lock);
2734 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2735 	spin_unlock_bh(&msk->join_list_lock);
2736 	list_splice_init(&msk->conn_list, &conn_list);
2737 
2738 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2739 	sk_stop_timer(sk, &sk->sk_timer);
2740 	msk->pm.status = 0;
2741 
2742 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2743 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2744 		__mptcp_close_ssk(sk, ssk, subflow);
2745 	}
2746 
2747 	sk->sk_prot->destroy(sk);
2748 
2749 	WARN_ON_ONCE(msk->wmem_reserved);
2750 	WARN_ON_ONCE(msk->rmem_released);
2751 	sk_stream_kill_queues(sk);
2752 	xfrm_sk_free_policy(sk);
2753 
2754 	sk_refcnt_debug_release(sk);
2755 	mptcp_dispose_initial_subflow(msk);
2756 	sock_put(sk);
2757 }
2758 
2759 static void mptcp_close(struct sock *sk, long timeout)
2760 {
2761 	struct mptcp_subflow_context *subflow;
2762 	bool do_cancel_work = false;
2763 
2764 	lock_sock(sk);
2765 	sk->sk_shutdown = SHUTDOWN_MASK;
2766 
2767 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2768 		inet_sk_state_store(sk, TCP_CLOSE);
2769 		goto cleanup;
2770 	}
2771 
2772 	if (mptcp_close_state(sk))
2773 		__mptcp_wr_shutdown(sk);
2774 
2775 	sk_stream_wait_close(sk, timeout);
2776 
2777 cleanup:
2778 	/* orphan all the subflows */
2779 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2780 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2781 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2782 		bool slow = lock_sock_fast_nested(ssk);
2783 
2784 		sock_orphan(ssk);
2785 		unlock_sock_fast(ssk, slow);
2786 	}
2787 	sock_orphan(sk);
2788 
2789 	sock_hold(sk);
2790 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2791 	if (sk->sk_state == TCP_CLOSE) {
2792 		__mptcp_destroy_sock(sk);
2793 		do_cancel_work = true;
2794 	} else {
2795 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2796 	}
2797 	release_sock(sk);
2798 	if (do_cancel_work)
2799 		mptcp_cancel_work(sk);
2800 
2801 	if (mptcp_sk(sk)->token)
2802 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2803 
2804 	sock_put(sk);
2805 }
2806 
2807 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2808 {
2809 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2810 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2811 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2812 
2813 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2814 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2815 
2816 	if (msk6 && ssk6) {
2817 		msk6->saddr = ssk6->saddr;
2818 		msk6->flow_label = ssk6->flow_label;
2819 	}
2820 #endif
2821 
2822 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2823 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2824 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2825 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2826 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2827 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2828 }
2829 
2830 static int mptcp_disconnect(struct sock *sk, int flags)
2831 {
2832 	struct mptcp_subflow_context *subflow;
2833 	struct mptcp_sock *msk = mptcp_sk(sk);
2834 
2835 	mptcp_do_flush_join_list(msk);
2836 
2837 	mptcp_for_each_subflow(msk, subflow) {
2838 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2839 
2840 		lock_sock(ssk);
2841 		tcp_disconnect(ssk, flags);
2842 		release_sock(ssk);
2843 	}
2844 	return 0;
2845 }
2846 
2847 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2848 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2849 {
2850 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2851 
2852 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2853 }
2854 #endif
2855 
2856 struct sock *mptcp_sk_clone(const struct sock *sk,
2857 			    const struct mptcp_options_received *mp_opt,
2858 			    struct request_sock *req)
2859 {
2860 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2861 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2862 	struct mptcp_sock *msk;
2863 	u64 ack_seq;
2864 
2865 	if (!nsk)
2866 		return NULL;
2867 
2868 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2869 	if (nsk->sk_family == AF_INET6)
2870 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2871 #endif
2872 
2873 	__mptcp_init_sock(nsk);
2874 
2875 	msk = mptcp_sk(nsk);
2876 	msk->local_key = subflow_req->local_key;
2877 	msk->token = subflow_req->token;
2878 	msk->subflow = NULL;
2879 	WRITE_ONCE(msk->fully_established, false);
2880 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2881 		WRITE_ONCE(msk->csum_enabled, true);
2882 
2883 	msk->write_seq = subflow_req->idsn + 1;
2884 	msk->snd_nxt = msk->write_seq;
2885 	msk->snd_una = msk->write_seq;
2886 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2887 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2888 
2889 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2890 		msk->can_ack = true;
2891 		msk->remote_key = mp_opt->sndr_key;
2892 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2893 		ack_seq++;
2894 		WRITE_ONCE(msk->ack_seq, ack_seq);
2895 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2896 	}
2897 
2898 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2899 	/* will be fully established after successful MPC subflow creation */
2900 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2901 
2902 	security_inet_csk_clone(nsk, req);
2903 	bh_unlock_sock(nsk);
2904 
2905 	/* keep a single reference */
2906 	__sock_put(nsk);
2907 	return nsk;
2908 }
2909 
2910 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2911 {
2912 	const struct tcp_sock *tp = tcp_sk(ssk);
2913 
2914 	msk->rcvq_space.copied = 0;
2915 	msk->rcvq_space.rtt_us = 0;
2916 
2917 	msk->rcvq_space.time = tp->tcp_mstamp;
2918 
2919 	/* initial rcv_space offering made to peer */
2920 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2921 				      TCP_INIT_CWND * tp->advmss);
2922 	if (msk->rcvq_space.space == 0)
2923 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2924 
2925 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2926 }
2927 
2928 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2929 				 bool kern)
2930 {
2931 	struct mptcp_sock *msk = mptcp_sk(sk);
2932 	struct socket *listener;
2933 	struct sock *newsk;
2934 
2935 	listener = __mptcp_nmpc_socket(msk);
2936 	if (WARN_ON_ONCE(!listener)) {
2937 		*err = -EINVAL;
2938 		return NULL;
2939 	}
2940 
2941 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2942 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2943 	if (!newsk)
2944 		return NULL;
2945 
2946 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2947 	if (sk_is_mptcp(newsk)) {
2948 		struct mptcp_subflow_context *subflow;
2949 		struct sock *new_mptcp_sock;
2950 
2951 		subflow = mptcp_subflow_ctx(newsk);
2952 		new_mptcp_sock = subflow->conn;
2953 
2954 		/* is_mptcp should be false if subflow->conn is missing, see
2955 		 * subflow_syn_recv_sock()
2956 		 */
2957 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2958 			tcp_sk(newsk)->is_mptcp = 0;
2959 			return newsk;
2960 		}
2961 
2962 		/* acquire the 2nd reference for the owning socket */
2963 		sock_hold(new_mptcp_sock);
2964 		newsk = new_mptcp_sock;
2965 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2966 	} else {
2967 		MPTCP_INC_STATS(sock_net(sk),
2968 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2969 	}
2970 
2971 	return newsk;
2972 }
2973 
2974 void mptcp_destroy_common(struct mptcp_sock *msk)
2975 {
2976 	struct sock *sk = (struct sock *)msk;
2977 
2978 	__mptcp_clear_xmit(sk);
2979 
2980 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2981 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2982 
2983 	skb_rbtree_purge(&msk->out_of_order_queue);
2984 	mptcp_token_destroy(msk);
2985 	mptcp_pm_free_anno_list(msk);
2986 }
2987 
2988 static void mptcp_destroy(struct sock *sk)
2989 {
2990 	struct mptcp_sock *msk = mptcp_sk(sk);
2991 
2992 	mptcp_destroy_common(msk);
2993 	sk_sockets_allocated_dec(sk);
2994 }
2995 
2996 void __mptcp_data_acked(struct sock *sk)
2997 {
2998 	if (!sock_owned_by_user(sk))
2999 		__mptcp_clean_una(sk);
3000 	else
3001 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
3002 
3003 	if (mptcp_pending_data_fin_ack(sk))
3004 		mptcp_schedule_work(sk);
3005 }
3006 
3007 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3008 {
3009 	if (!mptcp_send_head(sk))
3010 		return;
3011 
3012 	if (!sock_owned_by_user(sk)) {
3013 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3014 
3015 		if (xmit_ssk == ssk)
3016 			__mptcp_subflow_push_pending(sk, ssk);
3017 		else if (xmit_ssk)
3018 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
3019 	} else {
3020 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3021 	}
3022 }
3023 
3024 /* processes deferred events and flush wmem */
3025 static void mptcp_release_cb(struct sock *sk)
3026 {
3027 	for (;;) {
3028 		unsigned long flags = 0;
3029 
3030 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
3031 			flags |= BIT(MPTCP_PUSH_PENDING);
3032 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
3033 			flags |= BIT(MPTCP_RETRANSMIT);
3034 		if (!flags)
3035 			break;
3036 
3037 		/* the following actions acquire the subflow socket lock
3038 		 *
3039 		 * 1) can't be invoked in atomic scope
3040 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3041 		 *    datapath acquires the msk socket spinlock while helding
3042 		 *    the subflow socket lock
3043 		 */
3044 
3045 		spin_unlock_bh(&sk->sk_lock.slock);
3046 		if (flags & BIT(MPTCP_PUSH_PENDING))
3047 			__mptcp_push_pending(sk, 0);
3048 		if (flags & BIT(MPTCP_RETRANSMIT))
3049 			__mptcp_retrans(sk);
3050 
3051 		cond_resched();
3052 		spin_lock_bh(&sk->sk_lock.slock);
3053 	}
3054 
3055 	/* be sure to set the current sk state before tacking actions
3056 	 * depending on sk_state
3057 	 */
3058 	if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
3059 		__mptcp_set_connected(sk);
3060 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
3061 		__mptcp_clean_una_wakeup(sk);
3062 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
3063 		__mptcp_error_report(sk);
3064 
3065 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
3066 	 * later
3067 	 */
3068 	__mptcp_update_wmem(sk);
3069 	__mptcp_update_rmem(sk);
3070 }
3071 
3072 void mptcp_subflow_process_delegated(struct sock *ssk)
3073 {
3074 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3075 	struct sock *sk = subflow->conn;
3076 
3077 	mptcp_data_lock(sk);
3078 	if (!sock_owned_by_user(sk))
3079 		__mptcp_subflow_push_pending(sk, ssk);
3080 	else
3081 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3082 	mptcp_data_unlock(sk);
3083 	mptcp_subflow_delegated_done(subflow);
3084 }
3085 
3086 static int mptcp_hash(struct sock *sk)
3087 {
3088 	/* should never be called,
3089 	 * we hash the TCP subflows not the master socket
3090 	 */
3091 	WARN_ON_ONCE(1);
3092 	return 0;
3093 }
3094 
3095 static void mptcp_unhash(struct sock *sk)
3096 {
3097 	/* called from sk_common_release(), but nothing to do here */
3098 }
3099 
3100 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3101 {
3102 	struct mptcp_sock *msk = mptcp_sk(sk);
3103 	struct socket *ssock;
3104 
3105 	ssock = __mptcp_nmpc_socket(msk);
3106 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3107 	if (WARN_ON_ONCE(!ssock))
3108 		return -EINVAL;
3109 
3110 	return inet_csk_get_port(ssock->sk, snum);
3111 }
3112 
3113 void mptcp_finish_connect(struct sock *ssk)
3114 {
3115 	struct mptcp_subflow_context *subflow;
3116 	struct mptcp_sock *msk;
3117 	struct sock *sk;
3118 	u64 ack_seq;
3119 
3120 	subflow = mptcp_subflow_ctx(ssk);
3121 	sk = subflow->conn;
3122 	msk = mptcp_sk(sk);
3123 
3124 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3125 
3126 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3127 	ack_seq++;
3128 	subflow->map_seq = ack_seq;
3129 	subflow->map_subflow_seq = 1;
3130 
3131 	/* the socket is not connected yet, no msk/subflow ops can access/race
3132 	 * accessing the field below
3133 	 */
3134 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3135 	WRITE_ONCE(msk->local_key, subflow->local_key);
3136 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3137 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3138 	WRITE_ONCE(msk->ack_seq, ack_seq);
3139 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3140 	WRITE_ONCE(msk->can_ack, 1);
3141 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3142 
3143 	mptcp_pm_new_connection(msk, ssk, 0);
3144 
3145 	mptcp_rcv_space_init(msk, ssk);
3146 }
3147 
3148 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3149 {
3150 	write_lock_bh(&sk->sk_callback_lock);
3151 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3152 	sk_set_socket(sk, parent);
3153 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3154 	write_unlock_bh(&sk->sk_callback_lock);
3155 }
3156 
3157 bool mptcp_finish_join(struct sock *ssk)
3158 {
3159 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3160 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3161 	struct sock *parent = (void *)msk;
3162 	struct socket *parent_sock;
3163 	bool ret;
3164 
3165 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3166 
3167 	/* mptcp socket already closing? */
3168 	if (!mptcp_is_fully_established(parent)) {
3169 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3170 		return false;
3171 	}
3172 
3173 	if (!msk->pm.server_side)
3174 		goto out;
3175 
3176 	if (!mptcp_pm_allow_new_subflow(msk)) {
3177 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3178 		return false;
3179 	}
3180 
3181 	/* active connections are already on conn_list, and we can't acquire
3182 	 * msk lock here.
3183 	 * use the join list lock as synchronization point and double-check
3184 	 * msk status to avoid racing with __mptcp_destroy_sock()
3185 	 */
3186 	spin_lock_bh(&msk->join_list_lock);
3187 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3188 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3189 		list_add_tail(&subflow->node, &msk->join_list);
3190 		sock_hold(ssk);
3191 	}
3192 	spin_unlock_bh(&msk->join_list_lock);
3193 	if (!ret) {
3194 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3195 		return false;
3196 	}
3197 
3198 	/* attach to msk socket only after we are sure he will deal with us
3199 	 * at close time
3200 	 */
3201 	parent_sock = READ_ONCE(parent->sk_socket);
3202 	if (parent_sock && !ssk->sk_socket)
3203 		mptcp_sock_graft(ssk, parent_sock);
3204 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3205 out:
3206 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3207 	return true;
3208 }
3209 
3210 static void mptcp_shutdown(struct sock *sk, int how)
3211 {
3212 	pr_debug("sk=%p, how=%d", sk, how);
3213 
3214 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3215 		__mptcp_wr_shutdown(sk);
3216 }
3217 
3218 static struct proto mptcp_prot = {
3219 	.name		= "MPTCP",
3220 	.owner		= THIS_MODULE,
3221 	.init		= mptcp_init_sock,
3222 	.disconnect	= mptcp_disconnect,
3223 	.close		= mptcp_close,
3224 	.accept		= mptcp_accept,
3225 	.setsockopt	= mptcp_setsockopt,
3226 	.getsockopt	= mptcp_getsockopt,
3227 	.shutdown	= mptcp_shutdown,
3228 	.destroy	= mptcp_destroy,
3229 	.sendmsg	= mptcp_sendmsg,
3230 	.recvmsg	= mptcp_recvmsg,
3231 	.release_cb	= mptcp_release_cb,
3232 	.hash		= mptcp_hash,
3233 	.unhash		= mptcp_unhash,
3234 	.get_port	= mptcp_get_port,
3235 	.sockets_allocated	= &mptcp_sockets_allocated,
3236 	.memory_allocated	= &tcp_memory_allocated,
3237 	.memory_pressure	= &tcp_memory_pressure,
3238 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3239 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3240 	.sysctl_mem	= sysctl_tcp_mem,
3241 	.obj_size	= sizeof(struct mptcp_sock),
3242 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3243 	.no_autobind	= true,
3244 };
3245 
3246 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3247 {
3248 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3249 	struct socket *ssock;
3250 	int err;
3251 
3252 	lock_sock(sock->sk);
3253 	ssock = __mptcp_nmpc_socket(msk);
3254 	if (!ssock) {
3255 		err = -EINVAL;
3256 		goto unlock;
3257 	}
3258 
3259 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3260 	if (!err)
3261 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3262 
3263 unlock:
3264 	release_sock(sock->sk);
3265 	return err;
3266 }
3267 
3268 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3269 					 struct mptcp_subflow_context *subflow)
3270 {
3271 	subflow->request_mptcp = 0;
3272 	__mptcp_do_fallback(msk);
3273 }
3274 
3275 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3276 				int addr_len, int flags)
3277 {
3278 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3279 	struct mptcp_subflow_context *subflow;
3280 	struct socket *ssock;
3281 	int err;
3282 
3283 	lock_sock(sock->sk);
3284 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3285 		/* pending connection or invalid state, let existing subflow
3286 		 * cope with that
3287 		 */
3288 		ssock = msk->subflow;
3289 		goto do_connect;
3290 	}
3291 
3292 	ssock = __mptcp_nmpc_socket(msk);
3293 	if (!ssock) {
3294 		err = -EINVAL;
3295 		goto unlock;
3296 	}
3297 
3298 	mptcp_token_destroy(msk);
3299 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3300 	subflow = mptcp_subflow_ctx(ssock->sk);
3301 #ifdef CONFIG_TCP_MD5SIG
3302 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3303 	 * TCP option space.
3304 	 */
3305 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3306 		mptcp_subflow_early_fallback(msk, subflow);
3307 #endif
3308 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3309 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3310 		mptcp_subflow_early_fallback(msk, subflow);
3311 	}
3312 	if (likely(!__mptcp_check_fallback(msk)))
3313 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3314 
3315 do_connect:
3316 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3317 	sock->state = ssock->state;
3318 
3319 	/* on successful connect, the msk state will be moved to established by
3320 	 * subflow_finish_connect()
3321 	 */
3322 	if (!err || err == -EINPROGRESS)
3323 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3324 	else
3325 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3326 
3327 unlock:
3328 	release_sock(sock->sk);
3329 	return err;
3330 }
3331 
3332 static int mptcp_listen(struct socket *sock, int backlog)
3333 {
3334 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3335 	struct socket *ssock;
3336 	int err;
3337 
3338 	pr_debug("msk=%p", msk);
3339 
3340 	lock_sock(sock->sk);
3341 	ssock = __mptcp_nmpc_socket(msk);
3342 	if (!ssock) {
3343 		err = -EINVAL;
3344 		goto unlock;
3345 	}
3346 
3347 	mptcp_token_destroy(msk);
3348 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3349 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3350 
3351 	err = ssock->ops->listen(ssock, backlog);
3352 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3353 	if (!err)
3354 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3355 
3356 unlock:
3357 	release_sock(sock->sk);
3358 	return err;
3359 }
3360 
3361 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3362 			       int flags, bool kern)
3363 {
3364 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3365 	struct socket *ssock;
3366 	int err;
3367 
3368 	pr_debug("msk=%p", msk);
3369 
3370 	lock_sock(sock->sk);
3371 	if (sock->sk->sk_state != TCP_LISTEN)
3372 		goto unlock_fail;
3373 
3374 	ssock = __mptcp_nmpc_socket(msk);
3375 	if (!ssock)
3376 		goto unlock_fail;
3377 
3378 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3379 	sock_hold(ssock->sk);
3380 	release_sock(sock->sk);
3381 
3382 	err = ssock->ops->accept(sock, newsock, flags, kern);
3383 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3384 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3385 		struct mptcp_subflow_context *subflow;
3386 		struct sock *newsk = newsock->sk;
3387 
3388 		lock_sock(newsk);
3389 
3390 		/* PM/worker can now acquire the first subflow socket
3391 		 * lock without racing with listener queue cleanup,
3392 		 * we can notify it, if needed.
3393 		 *
3394 		 * Even if remote has reset the initial subflow by now
3395 		 * the refcnt is still at least one.
3396 		 */
3397 		subflow = mptcp_subflow_ctx(msk->first);
3398 		list_add(&subflow->node, &msk->conn_list);
3399 		sock_hold(msk->first);
3400 		if (mptcp_is_fully_established(newsk))
3401 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3402 
3403 		mptcp_copy_inaddrs(newsk, msk->first);
3404 		mptcp_rcv_space_init(msk, msk->first);
3405 		mptcp_propagate_sndbuf(newsk, msk->first);
3406 
3407 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3408 		 * This is needed so NOSPACE flag can be set from tcp stack.
3409 		 */
3410 		mptcp_flush_join_list(msk);
3411 		mptcp_for_each_subflow(msk, subflow) {
3412 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3413 
3414 			if (!ssk->sk_socket)
3415 				mptcp_sock_graft(ssk, newsock);
3416 		}
3417 		release_sock(newsk);
3418 	}
3419 
3420 	if (inet_csk_listen_poll(ssock->sk))
3421 		set_bit(MPTCP_DATA_READY, &msk->flags);
3422 	sock_put(ssock->sk);
3423 	return err;
3424 
3425 unlock_fail:
3426 	release_sock(sock->sk);
3427 	return -EINVAL;
3428 }
3429 
3430 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3431 {
3432 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3433 	       0;
3434 }
3435 
3436 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3437 {
3438 	struct sock *sk = (struct sock *)msk;
3439 
3440 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3441 		return EPOLLOUT | EPOLLWRNORM;
3442 
3443 	if (sk_stream_is_writeable(sk))
3444 		return EPOLLOUT | EPOLLWRNORM;
3445 
3446 	mptcp_set_nospace(sk);
3447 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3448 	if (sk_stream_is_writeable(sk))
3449 		return EPOLLOUT | EPOLLWRNORM;
3450 
3451 	return 0;
3452 }
3453 
3454 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3455 			   struct poll_table_struct *wait)
3456 {
3457 	struct sock *sk = sock->sk;
3458 	struct mptcp_sock *msk;
3459 	__poll_t mask = 0;
3460 	int state;
3461 
3462 	msk = mptcp_sk(sk);
3463 	sock_poll_wait(file, sock, wait);
3464 
3465 	state = inet_sk_state_load(sk);
3466 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3467 	if (state == TCP_LISTEN)
3468 		return mptcp_check_readable(msk);
3469 
3470 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3471 		mask |= mptcp_check_readable(msk);
3472 		mask |= mptcp_check_writeable(msk);
3473 	}
3474 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3475 		mask |= EPOLLHUP;
3476 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3477 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3478 
3479 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3480 	smp_rmb();
3481 	if (sk->sk_err)
3482 		mask |= EPOLLERR;
3483 
3484 	return mask;
3485 }
3486 
3487 static const struct proto_ops mptcp_stream_ops = {
3488 	.family		   = PF_INET,
3489 	.owner		   = THIS_MODULE,
3490 	.release	   = inet_release,
3491 	.bind		   = mptcp_bind,
3492 	.connect	   = mptcp_stream_connect,
3493 	.socketpair	   = sock_no_socketpair,
3494 	.accept		   = mptcp_stream_accept,
3495 	.getname	   = inet_getname,
3496 	.poll		   = mptcp_poll,
3497 	.ioctl		   = inet_ioctl,
3498 	.gettstamp	   = sock_gettstamp,
3499 	.listen		   = mptcp_listen,
3500 	.shutdown	   = inet_shutdown,
3501 	.setsockopt	   = sock_common_setsockopt,
3502 	.getsockopt	   = sock_common_getsockopt,
3503 	.sendmsg	   = inet_sendmsg,
3504 	.recvmsg	   = inet_recvmsg,
3505 	.mmap		   = sock_no_mmap,
3506 	.sendpage	   = inet_sendpage,
3507 };
3508 
3509 static struct inet_protosw mptcp_protosw = {
3510 	.type		= SOCK_STREAM,
3511 	.protocol	= IPPROTO_MPTCP,
3512 	.prot		= &mptcp_prot,
3513 	.ops		= &mptcp_stream_ops,
3514 	.flags		= INET_PROTOSW_ICSK,
3515 };
3516 
3517 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3518 {
3519 	struct mptcp_delegated_action *delegated;
3520 	struct mptcp_subflow_context *subflow;
3521 	int work_done = 0;
3522 
3523 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3524 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3525 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3526 
3527 		bh_lock_sock_nested(ssk);
3528 		if (!sock_owned_by_user(ssk) &&
3529 		    mptcp_subflow_has_delegated_action(subflow))
3530 			mptcp_subflow_process_delegated(ssk);
3531 		/* ... elsewhere tcp_release_cb_override already processed
3532 		 * the action or will do at next release_sock().
3533 		 * In both case must dequeue the subflow here - on the same
3534 		 * CPU that scheduled it.
3535 		 */
3536 		bh_unlock_sock(ssk);
3537 		sock_put(ssk);
3538 
3539 		if (++work_done == budget)
3540 			return budget;
3541 	}
3542 
3543 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3544 	 * will not try accessing the NULL napi->dev ptr
3545 	 */
3546 	napi_complete_done(napi, 0);
3547 	return work_done;
3548 }
3549 
3550 void __init mptcp_proto_init(void)
3551 {
3552 	struct mptcp_delegated_action *delegated;
3553 	int cpu;
3554 
3555 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3556 
3557 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3558 		panic("Failed to allocate MPTCP pcpu counter\n");
3559 
3560 	init_dummy_netdev(&mptcp_napi_dev);
3561 	for_each_possible_cpu(cpu) {
3562 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3563 		INIT_LIST_HEAD(&delegated->head);
3564 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3565 				  NAPI_POLL_WEIGHT);
3566 		napi_enable(&delegated->napi);
3567 	}
3568 
3569 	mptcp_subflow_init();
3570 	mptcp_pm_init();
3571 	mptcp_token_init();
3572 
3573 	if (proto_register(&mptcp_prot, 1) != 0)
3574 		panic("Failed to register MPTCP proto.\n");
3575 
3576 	inet_register_protosw(&mptcp_protosw);
3577 
3578 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3579 }
3580 
3581 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3582 static const struct proto_ops mptcp_v6_stream_ops = {
3583 	.family		   = PF_INET6,
3584 	.owner		   = THIS_MODULE,
3585 	.release	   = inet6_release,
3586 	.bind		   = mptcp_bind,
3587 	.connect	   = mptcp_stream_connect,
3588 	.socketpair	   = sock_no_socketpair,
3589 	.accept		   = mptcp_stream_accept,
3590 	.getname	   = inet6_getname,
3591 	.poll		   = mptcp_poll,
3592 	.ioctl		   = inet6_ioctl,
3593 	.gettstamp	   = sock_gettstamp,
3594 	.listen		   = mptcp_listen,
3595 	.shutdown	   = inet_shutdown,
3596 	.setsockopt	   = sock_common_setsockopt,
3597 	.getsockopt	   = sock_common_getsockopt,
3598 	.sendmsg	   = inet6_sendmsg,
3599 	.recvmsg	   = inet6_recvmsg,
3600 	.mmap		   = sock_no_mmap,
3601 	.sendpage	   = inet_sendpage,
3602 #ifdef CONFIG_COMPAT
3603 	.compat_ioctl	   = inet6_compat_ioctl,
3604 #endif
3605 };
3606 
3607 static struct proto mptcp_v6_prot;
3608 
3609 static void mptcp_v6_destroy(struct sock *sk)
3610 {
3611 	mptcp_destroy(sk);
3612 	inet6_destroy_sock(sk);
3613 }
3614 
3615 static struct inet_protosw mptcp_v6_protosw = {
3616 	.type		= SOCK_STREAM,
3617 	.protocol	= IPPROTO_MPTCP,
3618 	.prot		= &mptcp_v6_prot,
3619 	.ops		= &mptcp_v6_stream_ops,
3620 	.flags		= INET_PROTOSW_ICSK,
3621 };
3622 
3623 int __init mptcp_proto_v6_init(void)
3624 {
3625 	int err;
3626 
3627 	mptcp_v6_prot = mptcp_prot;
3628 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3629 	mptcp_v6_prot.slab = NULL;
3630 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3631 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3632 
3633 	err = proto_register(&mptcp_v6_prot, 1);
3634 	if (err)
3635 		return err;
3636 
3637 	err = inet6_register_protosw(&mptcp_v6_protosw);
3638 	if (err)
3639 		proto_unregister(&mptcp_v6_prot);
3640 
3641 	return err;
3642 }
3643 #endif
3644