1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 WRITE_ONCE(subflow->local_id, 0); 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 125 mptcp_sockopt_sync(msk, msk->first); 126 } 127 128 return msk->first; 129 } 130 131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 132 { 133 sk_drops_add(sk, skb); 134 __kfree_skb(skb); 135 } 136 137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 138 { 139 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 140 mptcp_sk(sk)->rmem_fwd_alloc + size); 141 } 142 143 static void mptcp_rmem_charge(struct sock *sk, int size) 144 { 145 mptcp_rmem_fwd_alloc_add(sk, -size); 146 } 147 148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 149 struct sk_buff *from) 150 { 151 bool fragstolen; 152 int delta; 153 154 if (MPTCP_SKB_CB(from)->offset || 155 !skb_try_coalesce(to, from, &fragstolen, &delta)) 156 return false; 157 158 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 159 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 160 to->len, MPTCP_SKB_CB(from)->end_seq); 161 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 162 163 /* note the fwd memory can reach a negative value after accounting 164 * for the delta, but the later skb free will restore a non 165 * negative one 166 */ 167 atomic_add(delta, &sk->sk_rmem_alloc); 168 mptcp_rmem_charge(sk, delta); 169 kfree_skb_partial(from, fragstolen); 170 171 return true; 172 } 173 174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 175 struct sk_buff *from) 176 { 177 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 178 return false; 179 180 return mptcp_try_coalesce((struct sock *)msk, to, from); 181 } 182 183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 184 { 185 amount >>= PAGE_SHIFT; 186 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 187 __sk_mem_reduce_allocated(sk, amount); 188 } 189 190 static void mptcp_rmem_uncharge(struct sock *sk, int size) 191 { 192 struct mptcp_sock *msk = mptcp_sk(sk); 193 int reclaimable; 194 195 mptcp_rmem_fwd_alloc_add(sk, size); 196 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 197 198 /* see sk_mem_uncharge() for the rationale behind the following schema */ 199 if (unlikely(reclaimable >= PAGE_SIZE)) 200 __mptcp_rmem_reclaim(sk, reclaimable); 201 } 202 203 static void mptcp_rfree(struct sk_buff *skb) 204 { 205 unsigned int len = skb->truesize; 206 struct sock *sk = skb->sk; 207 208 atomic_sub(len, &sk->sk_rmem_alloc); 209 mptcp_rmem_uncharge(sk, len); 210 } 211 212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 213 { 214 skb_orphan(skb); 215 skb->sk = sk; 216 skb->destructor = mptcp_rfree; 217 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 218 mptcp_rmem_charge(sk, skb->truesize); 219 } 220 221 /* "inspired" by tcp_data_queue_ofo(), main differences: 222 * - use mptcp seqs 223 * - don't cope with sacks 224 */ 225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 226 { 227 struct sock *sk = (struct sock *)msk; 228 struct rb_node **p, *parent; 229 u64 seq, end_seq, max_seq; 230 struct sk_buff *skb1; 231 232 seq = MPTCP_SKB_CB(skb)->map_seq; 233 end_seq = MPTCP_SKB_CB(skb)->end_seq; 234 max_seq = atomic64_read(&msk->rcv_wnd_sent); 235 236 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 237 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 238 if (after64(end_seq, max_seq)) { 239 /* out of window */ 240 mptcp_drop(sk, skb); 241 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 242 (unsigned long long)end_seq - (unsigned long)max_seq, 243 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 245 return; 246 } 247 248 p = &msk->out_of_order_queue.rb_node; 249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 250 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 251 rb_link_node(&skb->rbnode, NULL, p); 252 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 253 msk->ooo_last_skb = skb; 254 goto end; 255 } 256 257 /* with 2 subflows, adding at end of ooo queue is quite likely 258 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 259 */ 260 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 261 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 263 return; 264 } 265 266 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 267 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 269 parent = &msk->ooo_last_skb->rbnode; 270 p = &parent->rb_right; 271 goto insert; 272 } 273 274 /* Find place to insert this segment. Handle overlaps on the way. */ 275 parent = NULL; 276 while (*p) { 277 parent = *p; 278 skb1 = rb_to_skb(parent); 279 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 280 p = &parent->rb_left; 281 continue; 282 } 283 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 284 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 285 /* All the bits are present. Drop. */ 286 mptcp_drop(sk, skb); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 return; 289 } 290 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 291 /* partial overlap: 292 * | skb | 293 * | skb1 | 294 * continue traversing 295 */ 296 } else { 297 /* skb's seq == skb1's seq and skb covers skb1. 298 * Replace skb1 with skb. 299 */ 300 rb_replace_node(&skb1->rbnode, &skb->rbnode, 301 &msk->out_of_order_queue); 302 mptcp_drop(sk, skb1); 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 304 goto merge_right; 305 } 306 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 308 return; 309 } 310 p = &parent->rb_right; 311 } 312 313 insert: 314 /* Insert segment into RB tree. */ 315 rb_link_node(&skb->rbnode, parent, p); 316 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 317 318 merge_right: 319 /* Remove other segments covered by skb. */ 320 while ((skb1 = skb_rb_next(skb)) != NULL) { 321 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 322 break; 323 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 324 mptcp_drop(sk, skb1); 325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 326 } 327 /* If there is no skb after us, we are the last_skb ! */ 328 if (!skb1) 329 msk->ooo_last_skb = skb; 330 331 end: 332 skb_condense(skb); 333 mptcp_set_owner_r(skb, sk); 334 } 335 336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 337 { 338 struct mptcp_sock *msk = mptcp_sk(sk); 339 int amt, amount; 340 341 if (size <= msk->rmem_fwd_alloc) 342 return true; 343 344 size -= msk->rmem_fwd_alloc; 345 amt = sk_mem_pages(size); 346 amount = amt << PAGE_SHIFT; 347 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 348 return false; 349 350 mptcp_rmem_fwd_alloc_add(sk, amount); 351 return true; 352 } 353 354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 355 struct sk_buff *skb, unsigned int offset, 356 size_t copy_len) 357 { 358 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 359 struct sock *sk = (struct sock *)msk; 360 struct sk_buff *tail; 361 bool has_rxtstamp; 362 363 __skb_unlink(skb, &ssk->sk_receive_queue); 364 365 skb_ext_reset(skb); 366 skb_orphan(skb); 367 368 /* try to fetch required memory from subflow */ 369 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 370 goto drop; 371 372 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 373 374 /* the skb map_seq accounts for the skb offset: 375 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 376 * value 377 */ 378 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 379 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 380 MPTCP_SKB_CB(skb)->offset = offset; 381 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 mptcp_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static bool mptcp_pending_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 return ((1 << sk->sk_state) & 434 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 435 msk->write_seq == READ_ONCE(msk->snd_una); 436 } 437 438 static void mptcp_check_data_fin_ack(struct sock *sk) 439 { 440 struct mptcp_sock *msk = mptcp_sk(sk); 441 442 /* Look for an acknowledged DATA_FIN */ 443 if (mptcp_pending_data_fin_ack(sk)) { 444 WRITE_ONCE(msk->snd_data_fin_enable, 0); 445 446 switch (sk->sk_state) { 447 case TCP_FIN_WAIT1: 448 mptcp_set_state(sk, TCP_FIN_WAIT2); 449 break; 450 case TCP_CLOSING: 451 case TCP_LAST_ACK: 452 mptcp_set_state(sk, TCP_CLOSE); 453 break; 454 } 455 456 mptcp_close_wake_up(sk); 457 } 458 } 459 460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 461 { 462 struct mptcp_sock *msk = mptcp_sk(sk); 463 464 if (READ_ONCE(msk->rcv_data_fin) && 465 ((1 << sk->sk_state) & 466 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 467 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 468 469 if (msk->ack_seq == rcv_data_fin_seq) { 470 if (seq) 471 *seq = rcv_data_fin_seq; 472 473 return true; 474 } 475 } 476 477 return false; 478 } 479 480 static void mptcp_set_datafin_timeout(struct sock *sk) 481 { 482 struct inet_connection_sock *icsk = inet_csk(sk); 483 u32 retransmits; 484 485 retransmits = min_t(u32, icsk->icsk_retransmits, 486 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 487 488 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 489 } 490 491 static void __mptcp_set_timeout(struct sock *sk, long tout) 492 { 493 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 494 } 495 496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 497 { 498 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 499 500 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 501 inet_csk(ssk)->icsk_timeout - jiffies : 0; 502 } 503 504 static void mptcp_set_timeout(struct sock *sk) 505 { 506 struct mptcp_subflow_context *subflow; 507 long tout = 0; 508 509 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 510 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 511 __mptcp_set_timeout(sk, tout); 512 } 513 514 static inline bool tcp_can_send_ack(const struct sock *ssk) 515 { 516 return !((1 << inet_sk_state_load(ssk)) & 517 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 518 } 519 520 void __mptcp_subflow_send_ack(struct sock *ssk) 521 { 522 if (tcp_can_send_ack(ssk)) 523 tcp_send_ack(ssk); 524 } 525 526 static void mptcp_subflow_send_ack(struct sock *ssk) 527 { 528 bool slow; 529 530 slow = lock_sock_fast(ssk); 531 __mptcp_subflow_send_ack(ssk); 532 unlock_sock_fast(ssk, slow); 533 } 534 535 static void mptcp_send_ack(struct mptcp_sock *msk) 536 { 537 struct mptcp_subflow_context *subflow; 538 539 mptcp_for_each_subflow(msk, subflow) 540 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 541 } 542 543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 if (tcp_can_send_ack(ssk)) 549 tcp_cleanup_rbuf(ssk, 1); 550 unlock_sock_fast(ssk, slow); 551 } 552 553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 554 { 555 const struct inet_connection_sock *icsk = inet_csk(ssk); 556 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 557 const struct tcp_sock *tp = tcp_sk(ssk); 558 559 return (ack_pending & ICSK_ACK_SCHED) && 560 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 561 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 562 (rx_empty && ack_pending & 563 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 564 } 565 566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 567 { 568 int old_space = READ_ONCE(msk->old_wspace); 569 struct mptcp_subflow_context *subflow; 570 struct sock *sk = (struct sock *)msk; 571 int space = __mptcp_space(sk); 572 bool cleanup, rx_empty; 573 574 cleanup = (space > 0) && (space >= (old_space << 1)); 575 rx_empty = !__mptcp_rmem(sk); 576 577 mptcp_for_each_subflow(msk, subflow) { 578 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 579 580 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 581 mptcp_subflow_cleanup_rbuf(ssk); 582 } 583 } 584 585 static bool mptcp_check_data_fin(struct sock *sk) 586 { 587 struct mptcp_sock *msk = mptcp_sk(sk); 588 u64 rcv_data_fin_seq; 589 bool ret = false; 590 591 /* Need to ack a DATA_FIN received from a peer while this side 592 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 593 * msk->rcv_data_fin was set when parsing the incoming options 594 * at the subflow level and the msk lock was not held, so this 595 * is the first opportunity to act on the DATA_FIN and change 596 * the msk state. 597 * 598 * If we are caught up to the sequence number of the incoming 599 * DATA_FIN, send the DATA_ACK now and do state transition. If 600 * not caught up, do nothing and let the recv code send DATA_ACK 601 * when catching up. 602 */ 603 604 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 605 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 606 WRITE_ONCE(msk->rcv_data_fin, 0); 607 608 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 609 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 610 611 switch (sk->sk_state) { 612 case TCP_ESTABLISHED: 613 mptcp_set_state(sk, TCP_CLOSE_WAIT); 614 break; 615 case TCP_FIN_WAIT1: 616 mptcp_set_state(sk, TCP_CLOSING); 617 break; 618 case TCP_FIN_WAIT2: 619 mptcp_set_state(sk, TCP_CLOSE); 620 break; 621 default: 622 /* Other states not expected */ 623 WARN_ON_ONCE(1); 624 break; 625 } 626 627 ret = true; 628 if (!__mptcp_check_fallback(msk)) 629 mptcp_send_ack(msk); 630 mptcp_close_wake_up(sk); 631 } 632 return ret; 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (WARN_ON_ONCE(map_remaining < len)) 708 break; 709 } else { 710 WARN_ON_ONCE(!fin); 711 sk_eat_skb(ssk, skb); 712 done = true; 713 } 714 715 WRITE_ONCE(tp->copied_seq, seq); 716 more_data_avail = mptcp_subflow_data_available(ssk); 717 718 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 719 done = true; 720 break; 721 } 722 } while (more_data_avail); 723 724 *bytes += moved; 725 return done; 726 } 727 728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 729 { 730 struct sock *sk = (struct sock *)msk; 731 struct sk_buff *skb, *tail; 732 bool moved = false; 733 struct rb_node *p; 734 u64 end_seq; 735 736 p = rb_first(&msk->out_of_order_queue); 737 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 738 while (p) { 739 skb = rb_to_skb(p); 740 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 741 break; 742 743 p = rb_next(p); 744 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 745 746 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 747 msk->ack_seq))) { 748 mptcp_drop(sk, skb); 749 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 750 continue; 751 } 752 753 end_seq = MPTCP_SKB_CB(skb)->end_seq; 754 tail = skb_peek_tail(&sk->sk_receive_queue); 755 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 756 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 757 758 /* skip overlapping data, if any */ 759 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 760 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 761 delta); 762 MPTCP_SKB_CB(skb)->offset += delta; 763 MPTCP_SKB_CB(skb)->map_seq += delta; 764 __skb_queue_tail(&sk->sk_receive_queue, skb); 765 } 766 msk->bytes_received += end_seq - msk->ack_seq; 767 msk->ack_seq = end_seq; 768 moved = true; 769 } 770 return moved; 771 } 772 773 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 774 { 775 int err = sock_error(ssk); 776 int ssk_state; 777 778 if (!err) 779 return false; 780 781 /* only propagate errors on fallen-back sockets or 782 * on MPC connect 783 */ 784 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 785 return false; 786 787 /* We need to propagate only transition to CLOSE state. 788 * Orphaned socket will see such state change via 789 * subflow_sched_work_if_closed() and that path will properly 790 * destroy the msk as needed. 791 */ 792 ssk_state = inet_sk_state_load(ssk); 793 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 794 mptcp_set_state(sk, ssk_state); 795 WRITE_ONCE(sk->sk_err, -err); 796 797 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 798 smp_wmb(); 799 sk_error_report(sk); 800 return true; 801 } 802 803 void __mptcp_error_report(struct sock *sk) 804 { 805 struct mptcp_subflow_context *subflow; 806 struct mptcp_sock *msk = mptcp_sk(sk); 807 808 mptcp_for_each_subflow(msk, subflow) 809 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 810 break; 811 } 812 813 /* In most cases we will be able to lock the mptcp socket. If its already 814 * owned, we need to defer to the work queue to avoid ABBA deadlock. 815 */ 816 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 817 { 818 struct sock *sk = (struct sock *)msk; 819 unsigned int moved = 0; 820 821 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 822 __mptcp_ofo_queue(msk); 823 if (unlikely(ssk->sk_err)) { 824 if (!sock_owned_by_user(sk)) 825 __mptcp_error_report(sk); 826 else 827 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 828 } 829 830 /* If the moves have caught up with the DATA_FIN sequence number 831 * it's time to ack the DATA_FIN and change socket state, but 832 * this is not a good place to change state. Let the workqueue 833 * do it. 834 */ 835 if (mptcp_pending_data_fin(sk, NULL)) 836 mptcp_schedule_work(sk); 837 return moved > 0; 838 } 839 840 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 841 { 842 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 843 struct mptcp_sock *msk = mptcp_sk(sk); 844 int sk_rbuf, ssk_rbuf; 845 846 /* The peer can send data while we are shutting down this 847 * subflow at msk destruction time, but we must avoid enqueuing 848 * more data to the msk receive queue 849 */ 850 if (unlikely(subflow->disposable)) 851 return; 852 853 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 854 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 855 if (unlikely(ssk_rbuf > sk_rbuf)) 856 sk_rbuf = ssk_rbuf; 857 858 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 859 if (__mptcp_rmem(sk) > sk_rbuf) { 860 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 861 return; 862 } 863 864 /* Wake-up the reader only for in-sequence data */ 865 mptcp_data_lock(sk); 866 if (move_skbs_to_msk(msk, ssk)) 867 sk->sk_data_ready(sk); 868 869 mptcp_data_unlock(sk); 870 } 871 872 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 873 { 874 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 875 WRITE_ONCE(msk->allow_infinite_fallback, false); 876 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 877 } 878 879 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 880 { 881 struct sock *sk = (struct sock *)msk; 882 883 if (sk->sk_state != TCP_ESTABLISHED) 884 return false; 885 886 /* attach to msk socket only after we are sure we will deal with it 887 * at close time 888 */ 889 if (sk->sk_socket && !ssk->sk_socket) 890 mptcp_sock_graft(ssk, sk->sk_socket); 891 892 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 893 mptcp_sockopt_sync_locked(msk, ssk); 894 mptcp_subflow_joined(msk, ssk); 895 mptcp_stop_tout_timer(sk); 896 __mptcp_propagate_sndbuf(sk, ssk); 897 return true; 898 } 899 900 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 901 { 902 struct mptcp_subflow_context *tmp, *subflow; 903 struct mptcp_sock *msk = mptcp_sk(sk); 904 905 list_for_each_entry_safe(subflow, tmp, join_list, node) { 906 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 907 bool slow = lock_sock_fast(ssk); 908 909 list_move_tail(&subflow->node, &msk->conn_list); 910 if (!__mptcp_finish_join(msk, ssk)) 911 mptcp_subflow_reset(ssk); 912 unlock_sock_fast(ssk, slow); 913 } 914 } 915 916 static bool mptcp_rtx_timer_pending(struct sock *sk) 917 { 918 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 919 } 920 921 static void mptcp_reset_rtx_timer(struct sock *sk) 922 { 923 struct inet_connection_sock *icsk = inet_csk(sk); 924 unsigned long tout; 925 926 /* prevent rescheduling on close */ 927 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 928 return; 929 930 tout = mptcp_sk(sk)->timer_ival; 931 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 932 } 933 934 bool mptcp_schedule_work(struct sock *sk) 935 { 936 if (inet_sk_state_load(sk) != TCP_CLOSE && 937 schedule_work(&mptcp_sk(sk)->work)) { 938 /* each subflow already holds a reference to the sk, and the 939 * workqueue is invoked by a subflow, so sk can't go away here. 940 */ 941 sock_hold(sk); 942 return true; 943 } 944 return false; 945 } 946 947 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 948 { 949 struct mptcp_subflow_context *subflow; 950 951 msk_owned_by_me(msk); 952 953 mptcp_for_each_subflow(msk, subflow) { 954 if (READ_ONCE(subflow->data_avail)) 955 return mptcp_subflow_tcp_sock(subflow); 956 } 957 958 return NULL; 959 } 960 961 static bool mptcp_skb_can_collapse_to(u64 write_seq, 962 const struct sk_buff *skb, 963 const struct mptcp_ext *mpext) 964 { 965 if (!tcp_skb_can_collapse_to(skb)) 966 return false; 967 968 /* can collapse only if MPTCP level sequence is in order and this 969 * mapping has not been xmitted yet 970 */ 971 return mpext && mpext->data_seq + mpext->data_len == write_seq && 972 !mpext->frozen; 973 } 974 975 /* we can append data to the given data frag if: 976 * - there is space available in the backing page_frag 977 * - the data frag tail matches the current page_frag free offset 978 * - the data frag end sequence number matches the current write seq 979 */ 980 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 981 const struct page_frag *pfrag, 982 const struct mptcp_data_frag *df) 983 { 984 return df && pfrag->page == df->page && 985 pfrag->size - pfrag->offset > 0 && 986 pfrag->offset == (df->offset + df->data_len) && 987 df->data_seq + df->data_len == msk->write_seq; 988 } 989 990 static void dfrag_uncharge(struct sock *sk, int len) 991 { 992 sk_mem_uncharge(sk, len); 993 sk_wmem_queued_add(sk, -len); 994 } 995 996 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 997 { 998 int len = dfrag->data_len + dfrag->overhead; 999 1000 list_del(&dfrag->list); 1001 dfrag_uncharge(sk, len); 1002 put_page(dfrag->page); 1003 } 1004 1005 static void __mptcp_clean_una(struct sock *sk) 1006 { 1007 struct mptcp_sock *msk = mptcp_sk(sk); 1008 struct mptcp_data_frag *dtmp, *dfrag; 1009 u64 snd_una; 1010 1011 snd_una = msk->snd_una; 1012 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1013 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1014 break; 1015 1016 if (unlikely(dfrag == msk->first_pending)) { 1017 /* in recovery mode can see ack after the current snd head */ 1018 if (WARN_ON_ONCE(!msk->recovery)) 1019 break; 1020 1021 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1022 } 1023 1024 dfrag_clear(sk, dfrag); 1025 } 1026 1027 dfrag = mptcp_rtx_head(sk); 1028 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1029 u64 delta = snd_una - dfrag->data_seq; 1030 1031 /* prevent wrap around in recovery mode */ 1032 if (unlikely(delta > dfrag->already_sent)) { 1033 if (WARN_ON_ONCE(!msk->recovery)) 1034 goto out; 1035 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1036 goto out; 1037 dfrag->already_sent += delta - dfrag->already_sent; 1038 } 1039 1040 dfrag->data_seq += delta; 1041 dfrag->offset += delta; 1042 dfrag->data_len -= delta; 1043 dfrag->already_sent -= delta; 1044 1045 dfrag_uncharge(sk, delta); 1046 } 1047 1048 /* all retransmitted data acked, recovery completed */ 1049 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1050 msk->recovery = false; 1051 1052 out: 1053 if (snd_una == READ_ONCE(msk->snd_nxt) && 1054 snd_una == READ_ONCE(msk->write_seq)) { 1055 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1056 mptcp_stop_rtx_timer(sk); 1057 } else { 1058 mptcp_reset_rtx_timer(sk); 1059 } 1060 } 1061 1062 static void __mptcp_clean_una_wakeup(struct sock *sk) 1063 { 1064 lockdep_assert_held_once(&sk->sk_lock.slock); 1065 1066 __mptcp_clean_una(sk); 1067 mptcp_write_space(sk); 1068 } 1069 1070 static void mptcp_clean_una_wakeup(struct sock *sk) 1071 { 1072 mptcp_data_lock(sk); 1073 __mptcp_clean_una_wakeup(sk); 1074 mptcp_data_unlock(sk); 1075 } 1076 1077 static void mptcp_enter_memory_pressure(struct sock *sk) 1078 { 1079 struct mptcp_subflow_context *subflow; 1080 struct mptcp_sock *msk = mptcp_sk(sk); 1081 bool first = true; 1082 1083 mptcp_for_each_subflow(msk, subflow) { 1084 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1085 1086 if (first) 1087 tcp_enter_memory_pressure(ssk); 1088 sk_stream_moderate_sndbuf(ssk); 1089 1090 first = false; 1091 } 1092 __mptcp_sync_sndbuf(sk); 1093 } 1094 1095 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1096 * data 1097 */ 1098 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1099 { 1100 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1101 pfrag, sk->sk_allocation))) 1102 return true; 1103 1104 mptcp_enter_memory_pressure(sk); 1105 return false; 1106 } 1107 1108 static struct mptcp_data_frag * 1109 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1110 int orig_offset) 1111 { 1112 int offset = ALIGN(orig_offset, sizeof(long)); 1113 struct mptcp_data_frag *dfrag; 1114 1115 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1116 dfrag->data_len = 0; 1117 dfrag->data_seq = msk->write_seq; 1118 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1119 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1120 dfrag->already_sent = 0; 1121 dfrag->page = pfrag->page; 1122 1123 return dfrag; 1124 } 1125 1126 struct mptcp_sendmsg_info { 1127 int mss_now; 1128 int size_goal; 1129 u16 limit; 1130 u16 sent; 1131 unsigned int flags; 1132 bool data_lock_held; 1133 }; 1134 1135 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1136 u64 data_seq, int avail_size) 1137 { 1138 u64 window_end = mptcp_wnd_end(msk); 1139 u64 mptcp_snd_wnd; 1140 1141 if (__mptcp_check_fallback(msk)) 1142 return avail_size; 1143 1144 mptcp_snd_wnd = window_end - data_seq; 1145 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1146 1147 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1148 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1149 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1150 } 1151 1152 return avail_size; 1153 } 1154 1155 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1156 { 1157 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1158 1159 if (!mpext) 1160 return false; 1161 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1162 return true; 1163 } 1164 1165 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1166 { 1167 struct sk_buff *skb; 1168 1169 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1170 if (likely(skb)) { 1171 if (likely(__mptcp_add_ext(skb, gfp))) { 1172 skb_reserve(skb, MAX_TCP_HEADER); 1173 skb->ip_summed = CHECKSUM_PARTIAL; 1174 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1175 return skb; 1176 } 1177 __kfree_skb(skb); 1178 } else { 1179 mptcp_enter_memory_pressure(sk); 1180 } 1181 return NULL; 1182 } 1183 1184 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1185 { 1186 struct sk_buff *skb; 1187 1188 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1189 if (!skb) 1190 return NULL; 1191 1192 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1193 tcp_skb_entail(ssk, skb); 1194 return skb; 1195 } 1196 tcp_skb_tsorted_anchor_cleanup(skb); 1197 kfree_skb(skb); 1198 return NULL; 1199 } 1200 1201 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1202 { 1203 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1204 1205 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1206 } 1207 1208 /* note: this always recompute the csum on the whole skb, even 1209 * if we just appended a single frag. More status info needed 1210 */ 1211 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1212 { 1213 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1214 __wsum csum = ~csum_unfold(mpext->csum); 1215 int offset = skb->len - added; 1216 1217 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1218 } 1219 1220 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1221 struct sock *ssk, 1222 struct mptcp_ext *mpext) 1223 { 1224 if (!mpext) 1225 return; 1226 1227 mpext->infinite_map = 1; 1228 mpext->data_len = 0; 1229 1230 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1231 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1232 pr_fallback(msk); 1233 mptcp_do_fallback(ssk); 1234 } 1235 1236 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1237 1238 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1239 struct mptcp_data_frag *dfrag, 1240 struct mptcp_sendmsg_info *info) 1241 { 1242 u64 data_seq = dfrag->data_seq + info->sent; 1243 int offset = dfrag->offset + info->sent; 1244 struct mptcp_sock *msk = mptcp_sk(sk); 1245 bool zero_window_probe = false; 1246 struct mptcp_ext *mpext = NULL; 1247 bool can_coalesce = false; 1248 bool reuse_skb = true; 1249 struct sk_buff *skb; 1250 size_t copy; 1251 int i; 1252 1253 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1254 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1255 1256 if (WARN_ON_ONCE(info->sent > info->limit || 1257 info->limit > dfrag->data_len)) 1258 return 0; 1259 1260 if (unlikely(!__tcp_can_send(ssk))) 1261 return -EAGAIN; 1262 1263 /* compute send limit */ 1264 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1265 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1266 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1267 copy = info->size_goal; 1268 1269 skb = tcp_write_queue_tail(ssk); 1270 if (skb && copy > skb->len) { 1271 /* Limit the write to the size available in the 1272 * current skb, if any, so that we create at most a new skb. 1273 * Explicitly tells TCP internals to avoid collapsing on later 1274 * queue management operation, to avoid breaking the ext <-> 1275 * SSN association set here 1276 */ 1277 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1278 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1279 TCP_SKB_CB(skb)->eor = 1; 1280 tcp_mark_push(tcp_sk(ssk), skb); 1281 goto alloc_skb; 1282 } 1283 1284 i = skb_shinfo(skb)->nr_frags; 1285 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1286 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1287 tcp_mark_push(tcp_sk(ssk), skb); 1288 goto alloc_skb; 1289 } 1290 1291 copy -= skb->len; 1292 } else { 1293 alloc_skb: 1294 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1295 if (!skb) 1296 return -ENOMEM; 1297 1298 i = skb_shinfo(skb)->nr_frags; 1299 reuse_skb = false; 1300 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1301 } 1302 1303 /* Zero window and all data acked? Probe. */ 1304 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1305 if (copy == 0) { 1306 u64 snd_una = READ_ONCE(msk->snd_una); 1307 1308 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1309 tcp_remove_empty_skb(ssk); 1310 return 0; 1311 } 1312 1313 zero_window_probe = true; 1314 data_seq = snd_una - 1; 1315 copy = 1; 1316 } 1317 1318 copy = min_t(size_t, copy, info->limit - info->sent); 1319 if (!sk_wmem_schedule(ssk, copy)) { 1320 tcp_remove_empty_skb(ssk); 1321 return -ENOMEM; 1322 } 1323 1324 if (can_coalesce) { 1325 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1326 } else { 1327 get_page(dfrag->page); 1328 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1329 } 1330 1331 skb->len += copy; 1332 skb->data_len += copy; 1333 skb->truesize += copy; 1334 sk_wmem_queued_add(ssk, copy); 1335 sk_mem_charge(ssk, copy); 1336 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1337 TCP_SKB_CB(skb)->end_seq += copy; 1338 tcp_skb_pcount_set(skb, 0); 1339 1340 /* on skb reuse we just need to update the DSS len */ 1341 if (reuse_skb) { 1342 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1343 mpext->data_len += copy; 1344 goto out; 1345 } 1346 1347 memset(mpext, 0, sizeof(*mpext)); 1348 mpext->data_seq = data_seq; 1349 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1350 mpext->data_len = copy; 1351 mpext->use_map = 1; 1352 mpext->dsn64 = 1; 1353 1354 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1355 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1356 mpext->dsn64); 1357 1358 if (zero_window_probe) { 1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1360 mpext->frozen = 1; 1361 if (READ_ONCE(msk->csum_enabled)) 1362 mptcp_update_data_checksum(skb, copy); 1363 tcp_push_pending_frames(ssk); 1364 return 0; 1365 } 1366 out: 1367 if (READ_ONCE(msk->csum_enabled)) 1368 mptcp_update_data_checksum(skb, copy); 1369 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1370 mptcp_update_infinite_map(msk, ssk, mpext); 1371 trace_mptcp_sendmsg_frag(mpext); 1372 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1373 return copy; 1374 } 1375 1376 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1377 sizeof(struct tcphdr) - \ 1378 MAX_TCP_OPTION_SPACE - \ 1379 sizeof(struct ipv6hdr) - \ 1380 sizeof(struct frag_hdr)) 1381 1382 struct subflow_send_info { 1383 struct sock *ssk; 1384 u64 linger_time; 1385 }; 1386 1387 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1388 { 1389 if (!subflow->stale) 1390 return; 1391 1392 subflow->stale = 0; 1393 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1394 } 1395 1396 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1397 { 1398 if (unlikely(subflow->stale)) { 1399 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1400 1401 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1402 return false; 1403 1404 mptcp_subflow_set_active(subflow); 1405 } 1406 return __mptcp_subflow_active(subflow); 1407 } 1408 1409 #define SSK_MODE_ACTIVE 0 1410 #define SSK_MODE_BACKUP 1 1411 #define SSK_MODE_MAX 2 1412 1413 /* implement the mptcp packet scheduler; 1414 * returns the subflow that will transmit the next DSS 1415 * additionally updates the rtx timeout 1416 */ 1417 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1418 { 1419 struct subflow_send_info send_info[SSK_MODE_MAX]; 1420 struct mptcp_subflow_context *subflow; 1421 struct sock *sk = (struct sock *)msk; 1422 u32 pace, burst, wmem; 1423 int i, nr_active = 0; 1424 struct sock *ssk; 1425 u64 linger_time; 1426 long tout = 0; 1427 1428 /* pick the subflow with the lower wmem/wspace ratio */ 1429 for (i = 0; i < SSK_MODE_MAX; ++i) { 1430 send_info[i].ssk = NULL; 1431 send_info[i].linger_time = -1; 1432 } 1433 1434 mptcp_for_each_subflow(msk, subflow) { 1435 trace_mptcp_subflow_get_send(subflow); 1436 ssk = mptcp_subflow_tcp_sock(subflow); 1437 if (!mptcp_subflow_active(subflow)) 1438 continue; 1439 1440 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1441 nr_active += !subflow->backup; 1442 pace = subflow->avg_pacing_rate; 1443 if (unlikely(!pace)) { 1444 /* init pacing rate from socket */ 1445 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1446 pace = subflow->avg_pacing_rate; 1447 if (!pace) 1448 continue; 1449 } 1450 1451 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1452 if (linger_time < send_info[subflow->backup].linger_time) { 1453 send_info[subflow->backup].ssk = ssk; 1454 send_info[subflow->backup].linger_time = linger_time; 1455 } 1456 } 1457 __mptcp_set_timeout(sk, tout); 1458 1459 /* pick the best backup if no other subflow is active */ 1460 if (!nr_active) 1461 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1462 1463 /* According to the blest algorithm, to avoid HoL blocking for the 1464 * faster flow, we need to: 1465 * - estimate the faster flow linger time 1466 * - use the above to estimate the amount of byte transferred 1467 * by the faster flow 1468 * - check that the amount of queued data is greter than the above, 1469 * otherwise do not use the picked, slower, subflow 1470 * We select the subflow with the shorter estimated time to flush 1471 * the queued mem, which basically ensure the above. We just need 1472 * to check that subflow has a non empty cwin. 1473 */ 1474 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1475 if (!ssk || !sk_stream_memory_free(ssk)) 1476 return NULL; 1477 1478 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1479 wmem = READ_ONCE(ssk->sk_wmem_queued); 1480 if (!burst) 1481 return ssk; 1482 1483 subflow = mptcp_subflow_ctx(ssk); 1484 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1485 READ_ONCE(ssk->sk_pacing_rate) * burst, 1486 burst + wmem); 1487 msk->snd_burst = burst; 1488 return ssk; 1489 } 1490 1491 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1492 { 1493 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1494 release_sock(ssk); 1495 } 1496 1497 static void mptcp_update_post_push(struct mptcp_sock *msk, 1498 struct mptcp_data_frag *dfrag, 1499 u32 sent) 1500 { 1501 u64 snd_nxt_new = dfrag->data_seq; 1502 1503 dfrag->already_sent += sent; 1504 1505 msk->snd_burst -= sent; 1506 1507 snd_nxt_new += dfrag->already_sent; 1508 1509 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1510 * is recovering after a failover. In that event, this re-sends 1511 * old segments. 1512 * 1513 * Thus compute snd_nxt_new candidate based on 1514 * the dfrag->data_seq that was sent and the data 1515 * that has been handed to the subflow for transmission 1516 * and skip update in case it was old dfrag. 1517 */ 1518 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1519 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1520 msk->snd_nxt = snd_nxt_new; 1521 } 1522 } 1523 1524 void mptcp_check_and_set_pending(struct sock *sk) 1525 { 1526 if (mptcp_send_head(sk)) { 1527 mptcp_data_lock(sk); 1528 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1529 mptcp_data_unlock(sk); 1530 } 1531 } 1532 1533 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1534 struct mptcp_sendmsg_info *info) 1535 { 1536 struct mptcp_sock *msk = mptcp_sk(sk); 1537 struct mptcp_data_frag *dfrag; 1538 int len, copied = 0, err = 0; 1539 1540 while ((dfrag = mptcp_send_head(sk))) { 1541 info->sent = dfrag->already_sent; 1542 info->limit = dfrag->data_len; 1543 len = dfrag->data_len - dfrag->already_sent; 1544 while (len > 0) { 1545 int ret = 0; 1546 1547 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1548 if (ret <= 0) { 1549 err = copied ? : ret; 1550 goto out; 1551 } 1552 1553 info->sent += ret; 1554 copied += ret; 1555 len -= ret; 1556 1557 mptcp_update_post_push(msk, dfrag, ret); 1558 } 1559 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1560 1561 if (msk->snd_burst <= 0 || 1562 !sk_stream_memory_free(ssk) || 1563 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1564 err = copied; 1565 goto out; 1566 } 1567 mptcp_set_timeout(sk); 1568 } 1569 err = copied; 1570 1571 out: 1572 return err; 1573 } 1574 1575 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1576 { 1577 struct sock *prev_ssk = NULL, *ssk = NULL; 1578 struct mptcp_sock *msk = mptcp_sk(sk); 1579 struct mptcp_sendmsg_info info = { 1580 .flags = flags, 1581 }; 1582 bool do_check_data_fin = false; 1583 int push_count = 1; 1584 1585 while (mptcp_send_head(sk) && (push_count > 0)) { 1586 struct mptcp_subflow_context *subflow; 1587 int ret = 0; 1588 1589 if (mptcp_sched_get_send(msk)) 1590 break; 1591 1592 push_count = 0; 1593 1594 mptcp_for_each_subflow(msk, subflow) { 1595 if (READ_ONCE(subflow->scheduled)) { 1596 mptcp_subflow_set_scheduled(subflow, false); 1597 1598 prev_ssk = ssk; 1599 ssk = mptcp_subflow_tcp_sock(subflow); 1600 if (ssk != prev_ssk) { 1601 /* First check. If the ssk has changed since 1602 * the last round, release prev_ssk 1603 */ 1604 if (prev_ssk) 1605 mptcp_push_release(prev_ssk, &info); 1606 1607 /* Need to lock the new subflow only if different 1608 * from the previous one, otherwise we are still 1609 * helding the relevant lock 1610 */ 1611 lock_sock(ssk); 1612 } 1613 1614 push_count++; 1615 1616 ret = __subflow_push_pending(sk, ssk, &info); 1617 if (ret <= 0) { 1618 if (ret != -EAGAIN || 1619 (1 << ssk->sk_state) & 1620 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1621 push_count--; 1622 continue; 1623 } 1624 do_check_data_fin = true; 1625 } 1626 } 1627 } 1628 1629 /* at this point we held the socket lock for the last subflow we used */ 1630 if (ssk) 1631 mptcp_push_release(ssk, &info); 1632 1633 /* ensure the rtx timer is running */ 1634 if (!mptcp_rtx_timer_pending(sk)) 1635 mptcp_reset_rtx_timer(sk); 1636 if (do_check_data_fin) 1637 mptcp_check_send_data_fin(sk); 1638 } 1639 1640 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1641 { 1642 struct mptcp_sock *msk = mptcp_sk(sk); 1643 struct mptcp_sendmsg_info info = { 1644 .data_lock_held = true, 1645 }; 1646 bool keep_pushing = true; 1647 struct sock *xmit_ssk; 1648 int copied = 0; 1649 1650 info.flags = 0; 1651 while (mptcp_send_head(sk) && keep_pushing) { 1652 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1653 int ret = 0; 1654 1655 /* check for a different subflow usage only after 1656 * spooling the first chunk of data 1657 */ 1658 if (first) { 1659 mptcp_subflow_set_scheduled(subflow, false); 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 first = false; 1662 if (ret <= 0) 1663 break; 1664 copied += ret; 1665 continue; 1666 } 1667 1668 if (mptcp_sched_get_send(msk)) 1669 goto out; 1670 1671 if (READ_ONCE(subflow->scheduled)) { 1672 mptcp_subflow_set_scheduled(subflow, false); 1673 ret = __subflow_push_pending(sk, ssk, &info); 1674 if (ret <= 0) 1675 keep_pushing = false; 1676 copied += ret; 1677 } 1678 1679 mptcp_for_each_subflow(msk, subflow) { 1680 if (READ_ONCE(subflow->scheduled)) { 1681 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1682 if (xmit_ssk != ssk) { 1683 mptcp_subflow_delegate(subflow, 1684 MPTCP_DELEGATE_SEND); 1685 keep_pushing = false; 1686 } 1687 } 1688 } 1689 } 1690 1691 out: 1692 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1693 * not going to flush it via release_sock() 1694 */ 1695 if (copied) { 1696 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1697 info.size_goal); 1698 if (!mptcp_rtx_timer_pending(sk)) 1699 mptcp_reset_rtx_timer(sk); 1700 1701 if (msk->snd_data_fin_enable && 1702 msk->snd_nxt + 1 == msk->write_seq) 1703 mptcp_schedule_work(sk); 1704 } 1705 } 1706 1707 static void mptcp_set_nospace(struct sock *sk) 1708 { 1709 /* enable autotune */ 1710 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1711 1712 /* will be cleared on avail space */ 1713 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1714 } 1715 1716 static int mptcp_disconnect(struct sock *sk, int flags); 1717 1718 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1719 size_t len, int *copied_syn) 1720 { 1721 unsigned int saved_flags = msg->msg_flags; 1722 struct mptcp_sock *msk = mptcp_sk(sk); 1723 struct sock *ssk; 1724 int ret; 1725 1726 /* on flags based fastopen the mptcp is supposed to create the 1727 * first subflow right now. Otherwise we are in the defer_connect 1728 * path, and the first subflow must be already present. 1729 * Since the defer_connect flag is cleared after the first succsful 1730 * fastopen attempt, no need to check for additional subflow status. 1731 */ 1732 if (msg->msg_flags & MSG_FASTOPEN) { 1733 ssk = __mptcp_nmpc_sk(msk); 1734 if (IS_ERR(ssk)) 1735 return PTR_ERR(ssk); 1736 } 1737 if (!msk->first) 1738 return -EINVAL; 1739 1740 ssk = msk->first; 1741 1742 lock_sock(ssk); 1743 msg->msg_flags |= MSG_DONTWAIT; 1744 msk->fastopening = 1; 1745 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1746 msk->fastopening = 0; 1747 msg->msg_flags = saved_flags; 1748 release_sock(ssk); 1749 1750 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1751 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1752 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1753 msg->msg_namelen, msg->msg_flags, 1); 1754 1755 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1756 * case of any error, except timeout or signal 1757 */ 1758 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1759 *copied_syn = 0; 1760 } else if (ret && ret != -EINPROGRESS) { 1761 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1762 * __inet_stream_connect() can fail, due to looking check, 1763 * see mptcp_disconnect(). 1764 * Attempt it again outside the problematic scope. 1765 */ 1766 if (!mptcp_disconnect(sk, 0)) 1767 sk->sk_socket->state = SS_UNCONNECTED; 1768 } 1769 inet_clear_bit(DEFER_CONNECT, sk); 1770 1771 return ret; 1772 } 1773 1774 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1775 { 1776 struct mptcp_sock *msk = mptcp_sk(sk); 1777 struct page_frag *pfrag; 1778 size_t copied = 0; 1779 int ret = 0; 1780 long timeo; 1781 1782 /* silently ignore everything else */ 1783 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1784 1785 lock_sock(sk); 1786 1787 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1788 msg->msg_flags & MSG_FASTOPEN)) { 1789 int copied_syn = 0; 1790 1791 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1792 copied += copied_syn; 1793 if (ret == -EINPROGRESS && copied_syn > 0) 1794 goto out; 1795 else if (ret) 1796 goto do_error; 1797 } 1798 1799 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1800 1801 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1802 ret = sk_stream_wait_connect(sk, &timeo); 1803 if (ret) 1804 goto do_error; 1805 } 1806 1807 ret = -EPIPE; 1808 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1809 goto do_error; 1810 1811 pfrag = sk_page_frag(sk); 1812 1813 while (msg_data_left(msg)) { 1814 int total_ts, frag_truesize = 0; 1815 struct mptcp_data_frag *dfrag; 1816 bool dfrag_collapsed; 1817 size_t psize, offset; 1818 1819 /* reuse tail pfrag, if possible, or carve a new one from the 1820 * page allocator 1821 */ 1822 dfrag = mptcp_pending_tail(sk); 1823 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1824 if (!dfrag_collapsed) { 1825 if (!sk_stream_memory_free(sk)) 1826 goto wait_for_memory; 1827 1828 if (!mptcp_page_frag_refill(sk, pfrag)) 1829 goto wait_for_memory; 1830 1831 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1832 frag_truesize = dfrag->overhead; 1833 } 1834 1835 /* we do not bound vs wspace, to allow a single packet. 1836 * memory accounting will prevent execessive memory usage 1837 * anyway 1838 */ 1839 offset = dfrag->offset + dfrag->data_len; 1840 psize = pfrag->size - offset; 1841 psize = min_t(size_t, psize, msg_data_left(msg)); 1842 total_ts = psize + frag_truesize; 1843 1844 if (!sk_wmem_schedule(sk, total_ts)) 1845 goto wait_for_memory; 1846 1847 if (copy_page_from_iter(dfrag->page, offset, psize, 1848 &msg->msg_iter) != psize) { 1849 ret = -EFAULT; 1850 goto do_error; 1851 } 1852 1853 /* data successfully copied into the write queue */ 1854 sk_forward_alloc_add(sk, -total_ts); 1855 copied += psize; 1856 dfrag->data_len += psize; 1857 frag_truesize += psize; 1858 pfrag->offset += frag_truesize; 1859 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1860 1861 /* charge data on mptcp pending queue to the msk socket 1862 * Note: we charge such data both to sk and ssk 1863 */ 1864 sk_wmem_queued_add(sk, frag_truesize); 1865 if (!dfrag_collapsed) { 1866 get_page(dfrag->page); 1867 list_add_tail(&dfrag->list, &msk->rtx_queue); 1868 if (!msk->first_pending) 1869 WRITE_ONCE(msk->first_pending, dfrag); 1870 } 1871 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1872 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1873 !dfrag_collapsed); 1874 1875 continue; 1876 1877 wait_for_memory: 1878 mptcp_set_nospace(sk); 1879 __mptcp_push_pending(sk, msg->msg_flags); 1880 ret = sk_stream_wait_memory(sk, &timeo); 1881 if (ret) 1882 goto do_error; 1883 } 1884 1885 if (copied) 1886 __mptcp_push_pending(sk, msg->msg_flags); 1887 1888 out: 1889 release_sock(sk); 1890 return copied; 1891 1892 do_error: 1893 if (copied) 1894 goto out; 1895 1896 copied = sk_stream_error(sk, msg->msg_flags, ret); 1897 goto out; 1898 } 1899 1900 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1901 struct msghdr *msg, 1902 size_t len, int flags, 1903 struct scm_timestamping_internal *tss, 1904 int *cmsg_flags) 1905 { 1906 struct sk_buff *skb, *tmp; 1907 int copied = 0; 1908 1909 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1910 u32 offset = MPTCP_SKB_CB(skb)->offset; 1911 u32 data_len = skb->len - offset; 1912 u32 count = min_t(size_t, len - copied, data_len); 1913 int err; 1914 1915 if (!(flags & MSG_TRUNC)) { 1916 err = skb_copy_datagram_msg(skb, offset, msg, count); 1917 if (unlikely(err < 0)) { 1918 if (!copied) 1919 return err; 1920 break; 1921 } 1922 } 1923 1924 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1925 tcp_update_recv_tstamps(skb, tss); 1926 *cmsg_flags |= MPTCP_CMSG_TS; 1927 } 1928 1929 copied += count; 1930 1931 if (count < data_len) { 1932 if (!(flags & MSG_PEEK)) { 1933 MPTCP_SKB_CB(skb)->offset += count; 1934 MPTCP_SKB_CB(skb)->map_seq += count; 1935 } 1936 break; 1937 } 1938 1939 if (!(flags & MSG_PEEK)) { 1940 /* we will bulk release the skb memory later */ 1941 skb->destructor = NULL; 1942 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1943 __skb_unlink(skb, &msk->receive_queue); 1944 __kfree_skb(skb); 1945 } 1946 1947 if (copied >= len) 1948 break; 1949 } 1950 1951 return copied; 1952 } 1953 1954 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1955 * 1956 * Only difference: Use highest rtt estimate of the subflows in use. 1957 */ 1958 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1959 { 1960 struct mptcp_subflow_context *subflow; 1961 struct sock *sk = (struct sock *)msk; 1962 u8 scaling_ratio = U8_MAX; 1963 u32 time, advmss = 1; 1964 u64 rtt_us, mstamp; 1965 1966 msk_owned_by_me(msk); 1967 1968 if (copied <= 0) 1969 return; 1970 1971 if (!msk->rcvspace_init) 1972 mptcp_rcv_space_init(msk, msk->first); 1973 1974 msk->rcvq_space.copied += copied; 1975 1976 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1977 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1978 1979 rtt_us = msk->rcvq_space.rtt_us; 1980 if (rtt_us && time < (rtt_us >> 3)) 1981 return; 1982 1983 rtt_us = 0; 1984 mptcp_for_each_subflow(msk, subflow) { 1985 const struct tcp_sock *tp; 1986 u64 sf_rtt_us; 1987 u32 sf_advmss; 1988 1989 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1990 1991 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1992 sf_advmss = READ_ONCE(tp->advmss); 1993 1994 rtt_us = max(sf_rtt_us, rtt_us); 1995 advmss = max(sf_advmss, advmss); 1996 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1997 } 1998 1999 msk->rcvq_space.rtt_us = rtt_us; 2000 msk->scaling_ratio = scaling_ratio; 2001 if (time < (rtt_us >> 3) || rtt_us == 0) 2002 return; 2003 2004 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2005 goto new_measure; 2006 2007 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2008 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2009 u64 rcvwin, grow; 2010 int rcvbuf; 2011 2012 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2013 2014 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2015 2016 do_div(grow, msk->rcvq_space.space); 2017 rcvwin += (grow << 1); 2018 2019 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2020 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2021 2022 if (rcvbuf > sk->sk_rcvbuf) { 2023 u32 window_clamp; 2024 2025 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2026 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2027 2028 /* Make subflows follow along. If we do not do this, we 2029 * get drops at subflow level if skbs can't be moved to 2030 * the mptcp rx queue fast enough (announced rcv_win can 2031 * exceed ssk->sk_rcvbuf). 2032 */ 2033 mptcp_for_each_subflow(msk, subflow) { 2034 struct sock *ssk; 2035 bool slow; 2036 2037 ssk = mptcp_subflow_tcp_sock(subflow); 2038 slow = lock_sock_fast(ssk); 2039 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2040 tcp_sk(ssk)->window_clamp = window_clamp; 2041 tcp_cleanup_rbuf(ssk, 1); 2042 unlock_sock_fast(ssk, slow); 2043 } 2044 } 2045 } 2046 2047 msk->rcvq_space.space = msk->rcvq_space.copied; 2048 new_measure: 2049 msk->rcvq_space.copied = 0; 2050 msk->rcvq_space.time = mstamp; 2051 } 2052 2053 static void __mptcp_update_rmem(struct sock *sk) 2054 { 2055 struct mptcp_sock *msk = mptcp_sk(sk); 2056 2057 if (!msk->rmem_released) 2058 return; 2059 2060 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2061 mptcp_rmem_uncharge(sk, msk->rmem_released); 2062 WRITE_ONCE(msk->rmem_released, 0); 2063 } 2064 2065 static void __mptcp_splice_receive_queue(struct sock *sk) 2066 { 2067 struct mptcp_sock *msk = mptcp_sk(sk); 2068 2069 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2070 } 2071 2072 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2073 { 2074 struct sock *sk = (struct sock *)msk; 2075 unsigned int moved = 0; 2076 bool ret, done; 2077 2078 do { 2079 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2080 bool slowpath; 2081 2082 /* we can have data pending in the subflows only if the msk 2083 * receive buffer was full at subflow_data_ready() time, 2084 * that is an unlikely slow path. 2085 */ 2086 if (likely(!ssk)) 2087 break; 2088 2089 slowpath = lock_sock_fast(ssk); 2090 mptcp_data_lock(sk); 2091 __mptcp_update_rmem(sk); 2092 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2093 mptcp_data_unlock(sk); 2094 2095 if (unlikely(ssk->sk_err)) 2096 __mptcp_error_report(sk); 2097 unlock_sock_fast(ssk, slowpath); 2098 } while (!done); 2099 2100 /* acquire the data lock only if some input data is pending */ 2101 ret = moved > 0; 2102 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2103 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2104 mptcp_data_lock(sk); 2105 __mptcp_update_rmem(sk); 2106 ret |= __mptcp_ofo_queue(msk); 2107 __mptcp_splice_receive_queue(sk); 2108 mptcp_data_unlock(sk); 2109 } 2110 if (ret) 2111 mptcp_check_data_fin((struct sock *)msk); 2112 return !skb_queue_empty(&msk->receive_queue); 2113 } 2114 2115 static unsigned int mptcp_inq_hint(const struct sock *sk) 2116 { 2117 const struct mptcp_sock *msk = mptcp_sk(sk); 2118 const struct sk_buff *skb; 2119 2120 skb = skb_peek(&msk->receive_queue); 2121 if (skb) { 2122 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2123 2124 if (hint_val >= INT_MAX) 2125 return INT_MAX; 2126 2127 return (unsigned int)hint_val; 2128 } 2129 2130 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2131 return 1; 2132 2133 return 0; 2134 } 2135 2136 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2137 int flags, int *addr_len) 2138 { 2139 struct mptcp_sock *msk = mptcp_sk(sk); 2140 struct scm_timestamping_internal tss; 2141 int copied = 0, cmsg_flags = 0; 2142 int target; 2143 long timeo; 2144 2145 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2146 if (unlikely(flags & MSG_ERRQUEUE)) 2147 return inet_recv_error(sk, msg, len, addr_len); 2148 2149 lock_sock(sk); 2150 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2151 copied = -ENOTCONN; 2152 goto out_err; 2153 } 2154 2155 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2156 2157 len = min_t(size_t, len, INT_MAX); 2158 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2159 2160 if (unlikely(msk->recvmsg_inq)) 2161 cmsg_flags = MPTCP_CMSG_INQ; 2162 2163 while (copied < len) { 2164 int bytes_read; 2165 2166 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2167 if (unlikely(bytes_read < 0)) { 2168 if (!copied) 2169 copied = bytes_read; 2170 goto out_err; 2171 } 2172 2173 copied += bytes_read; 2174 2175 /* be sure to advertise window change */ 2176 mptcp_cleanup_rbuf(msk); 2177 2178 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2179 continue; 2180 2181 /* only the master socket status is relevant here. The exit 2182 * conditions mirror closely tcp_recvmsg() 2183 */ 2184 if (copied >= target) 2185 break; 2186 2187 if (copied) { 2188 if (sk->sk_err || 2189 sk->sk_state == TCP_CLOSE || 2190 (sk->sk_shutdown & RCV_SHUTDOWN) || 2191 !timeo || 2192 signal_pending(current)) 2193 break; 2194 } else { 2195 if (sk->sk_err) { 2196 copied = sock_error(sk); 2197 break; 2198 } 2199 2200 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2201 /* race breaker: the shutdown could be after the 2202 * previous receive queue check 2203 */ 2204 if (__mptcp_move_skbs(msk)) 2205 continue; 2206 break; 2207 } 2208 2209 if (sk->sk_state == TCP_CLOSE) { 2210 copied = -ENOTCONN; 2211 break; 2212 } 2213 2214 if (!timeo) { 2215 copied = -EAGAIN; 2216 break; 2217 } 2218 2219 if (signal_pending(current)) { 2220 copied = sock_intr_errno(timeo); 2221 break; 2222 } 2223 } 2224 2225 pr_debug("block timeout %ld", timeo); 2226 sk_wait_data(sk, &timeo, NULL); 2227 } 2228 2229 out_err: 2230 if (cmsg_flags && copied >= 0) { 2231 if (cmsg_flags & MPTCP_CMSG_TS) 2232 tcp_recv_timestamp(msg, sk, &tss); 2233 2234 if (cmsg_flags & MPTCP_CMSG_INQ) { 2235 unsigned int inq = mptcp_inq_hint(sk); 2236 2237 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2238 } 2239 } 2240 2241 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2242 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2243 skb_queue_empty(&msk->receive_queue), copied); 2244 if (!(flags & MSG_PEEK)) 2245 mptcp_rcv_space_adjust(msk, copied); 2246 2247 release_sock(sk); 2248 return copied; 2249 } 2250 2251 static void mptcp_retransmit_timer(struct timer_list *t) 2252 { 2253 struct inet_connection_sock *icsk = from_timer(icsk, t, 2254 icsk_retransmit_timer); 2255 struct sock *sk = &icsk->icsk_inet.sk; 2256 struct mptcp_sock *msk = mptcp_sk(sk); 2257 2258 bh_lock_sock(sk); 2259 if (!sock_owned_by_user(sk)) { 2260 /* we need a process context to retransmit */ 2261 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2262 mptcp_schedule_work(sk); 2263 } else { 2264 /* delegate our work to tcp_release_cb() */ 2265 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2266 } 2267 bh_unlock_sock(sk); 2268 sock_put(sk); 2269 } 2270 2271 static void mptcp_tout_timer(struct timer_list *t) 2272 { 2273 struct sock *sk = from_timer(sk, t, sk_timer); 2274 2275 mptcp_schedule_work(sk); 2276 sock_put(sk); 2277 } 2278 2279 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2280 * level. 2281 * 2282 * A backup subflow is returned only if that is the only kind available. 2283 */ 2284 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2285 { 2286 struct sock *backup = NULL, *pick = NULL; 2287 struct mptcp_subflow_context *subflow; 2288 int min_stale_count = INT_MAX; 2289 2290 mptcp_for_each_subflow(msk, subflow) { 2291 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2292 2293 if (!__mptcp_subflow_active(subflow)) 2294 continue; 2295 2296 /* still data outstanding at TCP level? skip this */ 2297 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2298 mptcp_pm_subflow_chk_stale(msk, ssk); 2299 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2300 continue; 2301 } 2302 2303 if (subflow->backup) { 2304 if (!backup) 2305 backup = ssk; 2306 continue; 2307 } 2308 2309 if (!pick) 2310 pick = ssk; 2311 } 2312 2313 if (pick) 2314 return pick; 2315 2316 /* use backup only if there are no progresses anywhere */ 2317 return min_stale_count > 1 ? backup : NULL; 2318 } 2319 2320 bool __mptcp_retransmit_pending_data(struct sock *sk) 2321 { 2322 struct mptcp_data_frag *cur, *rtx_head; 2323 struct mptcp_sock *msk = mptcp_sk(sk); 2324 2325 if (__mptcp_check_fallback(msk)) 2326 return false; 2327 2328 /* the closing socket has some data untransmitted and/or unacked: 2329 * some data in the mptcp rtx queue has not really xmitted yet. 2330 * keep it simple and re-inject the whole mptcp level rtx queue 2331 */ 2332 mptcp_data_lock(sk); 2333 __mptcp_clean_una_wakeup(sk); 2334 rtx_head = mptcp_rtx_head(sk); 2335 if (!rtx_head) { 2336 mptcp_data_unlock(sk); 2337 return false; 2338 } 2339 2340 msk->recovery_snd_nxt = msk->snd_nxt; 2341 msk->recovery = true; 2342 mptcp_data_unlock(sk); 2343 2344 msk->first_pending = rtx_head; 2345 msk->snd_burst = 0; 2346 2347 /* be sure to clear the "sent status" on all re-injected fragments */ 2348 list_for_each_entry(cur, &msk->rtx_queue, list) { 2349 if (!cur->already_sent) 2350 break; 2351 cur->already_sent = 0; 2352 } 2353 2354 return true; 2355 } 2356 2357 /* flags for __mptcp_close_ssk() */ 2358 #define MPTCP_CF_PUSH BIT(1) 2359 #define MPTCP_CF_FASTCLOSE BIT(2) 2360 2361 /* be sure to send a reset only if the caller asked for it, also 2362 * clean completely the subflow status when the subflow reaches 2363 * TCP_CLOSE state 2364 */ 2365 static void __mptcp_subflow_disconnect(struct sock *ssk, 2366 struct mptcp_subflow_context *subflow, 2367 unsigned int flags) 2368 { 2369 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2370 (flags & MPTCP_CF_FASTCLOSE)) { 2371 /* The MPTCP code never wait on the subflow sockets, TCP-level 2372 * disconnect should never fail 2373 */ 2374 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2375 mptcp_subflow_ctx_reset(subflow); 2376 } else { 2377 tcp_shutdown(ssk, SEND_SHUTDOWN); 2378 } 2379 } 2380 2381 /* subflow sockets can be either outgoing (connect) or incoming 2382 * (accept). 2383 * 2384 * Outgoing subflows use in-kernel sockets. 2385 * Incoming subflows do not have their own 'struct socket' allocated, 2386 * so we need to use tcp_close() after detaching them from the mptcp 2387 * parent socket. 2388 */ 2389 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2390 struct mptcp_subflow_context *subflow, 2391 unsigned int flags) 2392 { 2393 struct mptcp_sock *msk = mptcp_sk(sk); 2394 bool dispose_it, need_push = false; 2395 2396 /* If the first subflow moved to a close state before accept, e.g. due 2397 * to an incoming reset or listener shutdown, the subflow socket is 2398 * already deleted by inet_child_forget() and the mptcp socket can't 2399 * survive too. 2400 */ 2401 if (msk->in_accept_queue && msk->first == ssk && 2402 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2403 /* ensure later check in mptcp_worker() will dispose the msk */ 2404 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2405 sock_set_flag(sk, SOCK_DEAD); 2406 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2407 mptcp_subflow_drop_ctx(ssk); 2408 goto out_release; 2409 } 2410 2411 dispose_it = msk->free_first || ssk != msk->first; 2412 if (dispose_it) 2413 list_del(&subflow->node); 2414 2415 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2416 2417 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2418 /* be sure to force the tcp_close path 2419 * to generate the egress reset 2420 */ 2421 ssk->sk_lingertime = 0; 2422 sock_set_flag(ssk, SOCK_LINGER); 2423 subflow->send_fastclose = 1; 2424 } 2425 2426 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2427 if (!dispose_it) { 2428 __mptcp_subflow_disconnect(ssk, subflow, flags); 2429 release_sock(ssk); 2430 2431 goto out; 2432 } 2433 2434 subflow->disposable = 1; 2435 2436 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2437 * the ssk has been already destroyed, we just need to release the 2438 * reference owned by msk; 2439 */ 2440 if (!inet_csk(ssk)->icsk_ulp_ops) { 2441 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2442 kfree_rcu(subflow, rcu); 2443 } else { 2444 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2445 __tcp_close(ssk, 0); 2446 2447 /* close acquired an extra ref */ 2448 __sock_put(ssk); 2449 } 2450 2451 out_release: 2452 __mptcp_subflow_error_report(sk, ssk); 2453 release_sock(ssk); 2454 2455 sock_put(ssk); 2456 2457 if (ssk == msk->first) 2458 WRITE_ONCE(msk->first, NULL); 2459 2460 out: 2461 __mptcp_sync_sndbuf(sk); 2462 if (need_push) 2463 __mptcp_push_pending(sk, 0); 2464 2465 /* Catch every 'all subflows closed' scenario, including peers silently 2466 * closing them, e.g. due to timeout. 2467 * For established sockets, allow an additional timeout before closing, 2468 * as the protocol can still create more subflows. 2469 */ 2470 if (list_is_singular(&msk->conn_list) && msk->first && 2471 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2472 if (sk->sk_state != TCP_ESTABLISHED || 2473 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2474 mptcp_set_state(sk, TCP_CLOSE); 2475 mptcp_close_wake_up(sk); 2476 } else { 2477 mptcp_start_tout_timer(sk); 2478 } 2479 } 2480 } 2481 2482 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2483 struct mptcp_subflow_context *subflow) 2484 { 2485 if (sk->sk_state == TCP_ESTABLISHED) 2486 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2487 2488 /* subflow aborted before reaching the fully_established status 2489 * attempt the creation of the next subflow 2490 */ 2491 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2492 2493 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2494 } 2495 2496 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2497 { 2498 return 0; 2499 } 2500 2501 static void __mptcp_close_subflow(struct sock *sk) 2502 { 2503 struct mptcp_subflow_context *subflow, *tmp; 2504 struct mptcp_sock *msk = mptcp_sk(sk); 2505 2506 might_sleep(); 2507 2508 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2509 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2510 2511 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2512 continue; 2513 2514 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2515 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2516 continue; 2517 2518 mptcp_close_ssk(sk, ssk, subflow); 2519 } 2520 2521 } 2522 2523 static bool mptcp_close_tout_expired(const struct sock *sk) 2524 { 2525 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2526 sk->sk_state == TCP_CLOSE) 2527 return false; 2528 2529 return time_after32(tcp_jiffies32, 2530 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2531 } 2532 2533 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2534 { 2535 struct mptcp_subflow_context *subflow, *tmp; 2536 struct sock *sk = (struct sock *)msk; 2537 2538 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2539 return; 2540 2541 mptcp_token_destroy(msk); 2542 2543 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2544 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2545 bool slow; 2546 2547 slow = lock_sock_fast(tcp_sk); 2548 if (tcp_sk->sk_state != TCP_CLOSE) { 2549 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2550 tcp_set_state(tcp_sk, TCP_CLOSE); 2551 } 2552 unlock_sock_fast(tcp_sk, slow); 2553 } 2554 2555 /* Mirror the tcp_reset() error propagation */ 2556 switch (sk->sk_state) { 2557 case TCP_SYN_SENT: 2558 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2559 break; 2560 case TCP_CLOSE_WAIT: 2561 WRITE_ONCE(sk->sk_err, EPIPE); 2562 break; 2563 case TCP_CLOSE: 2564 return; 2565 default: 2566 WRITE_ONCE(sk->sk_err, ECONNRESET); 2567 } 2568 2569 mptcp_set_state(sk, TCP_CLOSE); 2570 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2571 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2572 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2573 2574 /* the calling mptcp_worker will properly destroy the socket */ 2575 if (sock_flag(sk, SOCK_DEAD)) 2576 return; 2577 2578 sk->sk_state_change(sk); 2579 sk_error_report(sk); 2580 } 2581 2582 static void __mptcp_retrans(struct sock *sk) 2583 { 2584 struct mptcp_sock *msk = mptcp_sk(sk); 2585 struct mptcp_subflow_context *subflow; 2586 struct mptcp_sendmsg_info info = {}; 2587 struct mptcp_data_frag *dfrag; 2588 struct sock *ssk; 2589 int ret, err; 2590 u16 len = 0; 2591 2592 mptcp_clean_una_wakeup(sk); 2593 2594 /* first check ssk: need to kick "stale" logic */ 2595 err = mptcp_sched_get_retrans(msk); 2596 dfrag = mptcp_rtx_head(sk); 2597 if (!dfrag) { 2598 if (mptcp_data_fin_enabled(msk)) { 2599 struct inet_connection_sock *icsk = inet_csk(sk); 2600 2601 icsk->icsk_retransmits++; 2602 mptcp_set_datafin_timeout(sk); 2603 mptcp_send_ack(msk); 2604 2605 goto reset_timer; 2606 } 2607 2608 if (!mptcp_send_head(sk)) 2609 return; 2610 2611 goto reset_timer; 2612 } 2613 2614 if (err) 2615 goto reset_timer; 2616 2617 mptcp_for_each_subflow(msk, subflow) { 2618 if (READ_ONCE(subflow->scheduled)) { 2619 u16 copied = 0; 2620 2621 mptcp_subflow_set_scheduled(subflow, false); 2622 2623 ssk = mptcp_subflow_tcp_sock(subflow); 2624 2625 lock_sock(ssk); 2626 2627 /* limit retransmission to the bytes already sent on some subflows */ 2628 info.sent = 0; 2629 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2630 dfrag->already_sent; 2631 while (info.sent < info.limit) { 2632 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2633 if (ret <= 0) 2634 break; 2635 2636 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2637 copied += ret; 2638 info.sent += ret; 2639 } 2640 if (copied) { 2641 len = max(copied, len); 2642 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2643 info.size_goal); 2644 WRITE_ONCE(msk->allow_infinite_fallback, false); 2645 } 2646 2647 release_sock(ssk); 2648 } 2649 } 2650 2651 msk->bytes_retrans += len; 2652 dfrag->already_sent = max(dfrag->already_sent, len); 2653 2654 reset_timer: 2655 mptcp_check_and_set_pending(sk); 2656 2657 if (!mptcp_rtx_timer_pending(sk)) 2658 mptcp_reset_rtx_timer(sk); 2659 } 2660 2661 /* schedule the timeout timer for the relevant event: either close timeout 2662 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2663 */ 2664 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2665 { 2666 struct sock *sk = (struct sock *)msk; 2667 unsigned long timeout, close_timeout; 2668 2669 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2670 return; 2671 2672 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2673 TCP_TIMEWAIT_LEN; 2674 2675 /* the close timeout takes precedence on the fail one, and here at least one of 2676 * them is active 2677 */ 2678 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2679 2680 sk_reset_timer(sk, &sk->sk_timer, timeout); 2681 } 2682 2683 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2684 { 2685 struct sock *ssk = msk->first; 2686 bool slow; 2687 2688 if (!ssk) 2689 return; 2690 2691 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2692 2693 slow = lock_sock_fast(ssk); 2694 mptcp_subflow_reset(ssk); 2695 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2696 unlock_sock_fast(ssk, slow); 2697 } 2698 2699 static void mptcp_do_fastclose(struct sock *sk) 2700 { 2701 struct mptcp_subflow_context *subflow, *tmp; 2702 struct mptcp_sock *msk = mptcp_sk(sk); 2703 2704 mptcp_set_state(sk, TCP_CLOSE); 2705 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2706 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2707 subflow, MPTCP_CF_FASTCLOSE); 2708 } 2709 2710 static void mptcp_worker(struct work_struct *work) 2711 { 2712 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2713 struct sock *sk = (struct sock *)msk; 2714 unsigned long fail_tout; 2715 int state; 2716 2717 lock_sock(sk); 2718 state = sk->sk_state; 2719 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2720 goto unlock; 2721 2722 mptcp_check_fastclose(msk); 2723 2724 mptcp_pm_nl_work(msk); 2725 2726 mptcp_check_send_data_fin(sk); 2727 mptcp_check_data_fin_ack(sk); 2728 mptcp_check_data_fin(sk); 2729 2730 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2731 __mptcp_close_subflow(sk); 2732 2733 if (mptcp_close_tout_expired(sk)) { 2734 mptcp_do_fastclose(sk); 2735 mptcp_close_wake_up(sk); 2736 } 2737 2738 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2739 __mptcp_destroy_sock(sk); 2740 goto unlock; 2741 } 2742 2743 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2744 __mptcp_retrans(sk); 2745 2746 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2747 if (fail_tout && time_after(jiffies, fail_tout)) 2748 mptcp_mp_fail_no_response(msk); 2749 2750 unlock: 2751 release_sock(sk); 2752 sock_put(sk); 2753 } 2754 2755 static void __mptcp_init_sock(struct sock *sk) 2756 { 2757 struct mptcp_sock *msk = mptcp_sk(sk); 2758 2759 INIT_LIST_HEAD(&msk->conn_list); 2760 INIT_LIST_HEAD(&msk->join_list); 2761 INIT_LIST_HEAD(&msk->rtx_queue); 2762 INIT_WORK(&msk->work, mptcp_worker); 2763 __skb_queue_head_init(&msk->receive_queue); 2764 msk->out_of_order_queue = RB_ROOT; 2765 msk->first_pending = NULL; 2766 msk->rmem_fwd_alloc = 0; 2767 WRITE_ONCE(msk->rmem_released, 0); 2768 msk->timer_ival = TCP_RTO_MIN; 2769 2770 WRITE_ONCE(msk->first, NULL); 2771 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2772 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2773 WRITE_ONCE(msk->allow_infinite_fallback, true); 2774 msk->recovery = false; 2775 msk->subflow_id = 1; 2776 2777 mptcp_pm_data_init(msk); 2778 2779 /* re-use the csk retrans timer for MPTCP-level retrans */ 2780 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2781 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2782 } 2783 2784 static void mptcp_ca_reset(struct sock *sk) 2785 { 2786 struct inet_connection_sock *icsk = inet_csk(sk); 2787 2788 tcp_assign_congestion_control(sk); 2789 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2790 2791 /* no need to keep a reference to the ops, the name will suffice */ 2792 tcp_cleanup_congestion_control(sk); 2793 icsk->icsk_ca_ops = NULL; 2794 } 2795 2796 static int mptcp_init_sock(struct sock *sk) 2797 { 2798 struct net *net = sock_net(sk); 2799 int ret; 2800 2801 __mptcp_init_sock(sk); 2802 2803 if (!mptcp_is_enabled(net)) 2804 return -ENOPROTOOPT; 2805 2806 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2807 return -ENOMEM; 2808 2809 ret = mptcp_init_sched(mptcp_sk(sk), 2810 mptcp_sched_find(mptcp_get_scheduler(net))); 2811 if (ret) 2812 return ret; 2813 2814 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2815 2816 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2817 * propagate the correct value 2818 */ 2819 mptcp_ca_reset(sk); 2820 2821 sk_sockets_allocated_inc(sk); 2822 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2823 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2824 2825 return 0; 2826 } 2827 2828 static void __mptcp_clear_xmit(struct sock *sk) 2829 { 2830 struct mptcp_sock *msk = mptcp_sk(sk); 2831 struct mptcp_data_frag *dtmp, *dfrag; 2832 2833 WRITE_ONCE(msk->first_pending, NULL); 2834 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2835 dfrag_clear(sk, dfrag); 2836 } 2837 2838 void mptcp_cancel_work(struct sock *sk) 2839 { 2840 struct mptcp_sock *msk = mptcp_sk(sk); 2841 2842 if (cancel_work_sync(&msk->work)) 2843 __sock_put(sk); 2844 } 2845 2846 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2847 { 2848 lock_sock(ssk); 2849 2850 switch (ssk->sk_state) { 2851 case TCP_LISTEN: 2852 if (!(how & RCV_SHUTDOWN)) 2853 break; 2854 fallthrough; 2855 case TCP_SYN_SENT: 2856 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2857 break; 2858 default: 2859 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2860 pr_debug("Fallback"); 2861 ssk->sk_shutdown |= how; 2862 tcp_shutdown(ssk, how); 2863 2864 /* simulate the data_fin ack reception to let the state 2865 * machine move forward 2866 */ 2867 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2868 mptcp_schedule_work(sk); 2869 } else { 2870 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2871 tcp_send_ack(ssk); 2872 if (!mptcp_rtx_timer_pending(sk)) 2873 mptcp_reset_rtx_timer(sk); 2874 } 2875 break; 2876 } 2877 2878 release_sock(ssk); 2879 } 2880 2881 void mptcp_set_state(struct sock *sk, int state) 2882 { 2883 int oldstate = sk->sk_state; 2884 2885 switch (state) { 2886 case TCP_ESTABLISHED: 2887 if (oldstate != TCP_ESTABLISHED) 2888 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2889 break; 2890 2891 default: 2892 if (oldstate == TCP_ESTABLISHED) 2893 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2894 } 2895 2896 inet_sk_state_store(sk, state); 2897 } 2898 2899 static const unsigned char new_state[16] = { 2900 /* current state: new state: action: */ 2901 [0 /* (Invalid) */] = TCP_CLOSE, 2902 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2903 [TCP_SYN_SENT] = TCP_CLOSE, 2904 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2905 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2906 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2907 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2908 [TCP_CLOSE] = TCP_CLOSE, 2909 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2910 [TCP_LAST_ACK] = TCP_LAST_ACK, 2911 [TCP_LISTEN] = TCP_CLOSE, 2912 [TCP_CLOSING] = TCP_CLOSING, 2913 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2914 }; 2915 2916 static int mptcp_close_state(struct sock *sk) 2917 { 2918 int next = (int)new_state[sk->sk_state]; 2919 int ns = next & TCP_STATE_MASK; 2920 2921 mptcp_set_state(sk, ns); 2922 2923 return next & TCP_ACTION_FIN; 2924 } 2925 2926 static void mptcp_check_send_data_fin(struct sock *sk) 2927 { 2928 struct mptcp_subflow_context *subflow; 2929 struct mptcp_sock *msk = mptcp_sk(sk); 2930 2931 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2932 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2933 msk->snd_nxt, msk->write_seq); 2934 2935 /* we still need to enqueue subflows or not really shutting down, 2936 * skip this 2937 */ 2938 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2939 mptcp_send_head(sk)) 2940 return; 2941 2942 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2943 2944 mptcp_for_each_subflow(msk, subflow) { 2945 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2946 2947 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2948 } 2949 } 2950 2951 static void __mptcp_wr_shutdown(struct sock *sk) 2952 { 2953 struct mptcp_sock *msk = mptcp_sk(sk); 2954 2955 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2956 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2957 !!mptcp_send_head(sk)); 2958 2959 /* will be ignored by fallback sockets */ 2960 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2961 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2962 2963 mptcp_check_send_data_fin(sk); 2964 } 2965 2966 static void __mptcp_destroy_sock(struct sock *sk) 2967 { 2968 struct mptcp_sock *msk = mptcp_sk(sk); 2969 2970 pr_debug("msk=%p", msk); 2971 2972 might_sleep(); 2973 2974 mptcp_stop_rtx_timer(sk); 2975 sk_stop_timer(sk, &sk->sk_timer); 2976 msk->pm.status = 0; 2977 mptcp_release_sched(msk); 2978 2979 sk->sk_prot->destroy(sk); 2980 2981 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2982 WARN_ON_ONCE(msk->rmem_released); 2983 sk_stream_kill_queues(sk); 2984 xfrm_sk_free_policy(sk); 2985 2986 sock_put(sk); 2987 } 2988 2989 void __mptcp_unaccepted_force_close(struct sock *sk) 2990 { 2991 sock_set_flag(sk, SOCK_DEAD); 2992 mptcp_do_fastclose(sk); 2993 __mptcp_destroy_sock(sk); 2994 } 2995 2996 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2997 { 2998 /* Concurrent splices from sk_receive_queue into receive_queue will 2999 * always show at least one non-empty queue when checked in this order. 3000 */ 3001 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3002 skb_queue_empty_lockless(&msk->receive_queue)) 3003 return 0; 3004 3005 return EPOLLIN | EPOLLRDNORM; 3006 } 3007 3008 static void mptcp_check_listen_stop(struct sock *sk) 3009 { 3010 struct sock *ssk; 3011 3012 if (inet_sk_state_load(sk) != TCP_LISTEN) 3013 return; 3014 3015 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3016 ssk = mptcp_sk(sk)->first; 3017 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3018 return; 3019 3020 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3021 tcp_set_state(ssk, TCP_CLOSE); 3022 mptcp_subflow_queue_clean(sk, ssk); 3023 inet_csk_listen_stop(ssk); 3024 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3025 release_sock(ssk); 3026 } 3027 3028 bool __mptcp_close(struct sock *sk, long timeout) 3029 { 3030 struct mptcp_subflow_context *subflow; 3031 struct mptcp_sock *msk = mptcp_sk(sk); 3032 bool do_cancel_work = false; 3033 int subflows_alive = 0; 3034 3035 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3036 3037 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3038 mptcp_check_listen_stop(sk); 3039 mptcp_set_state(sk, TCP_CLOSE); 3040 goto cleanup; 3041 } 3042 3043 if (mptcp_check_readable(msk) || timeout < 0) { 3044 /* If the msk has read data, or the caller explicitly ask it, 3045 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3046 */ 3047 mptcp_do_fastclose(sk); 3048 timeout = 0; 3049 } else if (mptcp_close_state(sk)) { 3050 __mptcp_wr_shutdown(sk); 3051 } 3052 3053 sk_stream_wait_close(sk, timeout); 3054 3055 cleanup: 3056 /* orphan all the subflows */ 3057 mptcp_for_each_subflow(msk, subflow) { 3058 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3059 bool slow = lock_sock_fast_nested(ssk); 3060 3061 subflows_alive += ssk->sk_state != TCP_CLOSE; 3062 3063 /* since the close timeout takes precedence on the fail one, 3064 * cancel the latter 3065 */ 3066 if (ssk == msk->first) 3067 subflow->fail_tout = 0; 3068 3069 /* detach from the parent socket, but allow data_ready to 3070 * push incoming data into the mptcp stack, to properly ack it 3071 */ 3072 ssk->sk_socket = NULL; 3073 ssk->sk_wq = NULL; 3074 unlock_sock_fast(ssk, slow); 3075 } 3076 sock_orphan(sk); 3077 3078 /* all the subflows are closed, only timeout can change the msk 3079 * state, let's not keep resources busy for no reasons 3080 */ 3081 if (subflows_alive == 0) 3082 mptcp_set_state(sk, TCP_CLOSE); 3083 3084 sock_hold(sk); 3085 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3086 if (msk->token) 3087 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3088 3089 if (sk->sk_state == TCP_CLOSE) { 3090 __mptcp_destroy_sock(sk); 3091 do_cancel_work = true; 3092 } else { 3093 mptcp_start_tout_timer(sk); 3094 } 3095 3096 return do_cancel_work; 3097 } 3098 3099 static void mptcp_close(struct sock *sk, long timeout) 3100 { 3101 bool do_cancel_work; 3102 3103 lock_sock(sk); 3104 3105 do_cancel_work = __mptcp_close(sk, timeout); 3106 release_sock(sk); 3107 if (do_cancel_work) 3108 mptcp_cancel_work(sk); 3109 3110 sock_put(sk); 3111 } 3112 3113 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3114 { 3115 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3116 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3117 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3118 3119 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3120 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3121 3122 if (msk6 && ssk6) { 3123 msk6->saddr = ssk6->saddr; 3124 msk6->flow_label = ssk6->flow_label; 3125 } 3126 #endif 3127 3128 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3129 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3130 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3131 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3132 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3133 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3134 } 3135 3136 static int mptcp_disconnect(struct sock *sk, int flags) 3137 { 3138 struct mptcp_sock *msk = mptcp_sk(sk); 3139 3140 /* We are on the fastopen error path. We can't call straight into the 3141 * subflows cleanup code due to lock nesting (we are already under 3142 * msk->firstsocket lock). 3143 */ 3144 if (msk->fastopening) 3145 return -EBUSY; 3146 3147 mptcp_check_listen_stop(sk); 3148 mptcp_set_state(sk, TCP_CLOSE); 3149 3150 mptcp_stop_rtx_timer(sk); 3151 mptcp_stop_tout_timer(sk); 3152 3153 if (msk->token) 3154 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3155 3156 /* msk->subflow is still intact, the following will not free the first 3157 * subflow 3158 */ 3159 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3160 WRITE_ONCE(msk->flags, 0); 3161 msk->cb_flags = 0; 3162 msk->recovery = false; 3163 msk->can_ack = false; 3164 msk->fully_established = false; 3165 msk->rcv_data_fin = false; 3166 msk->snd_data_fin_enable = false; 3167 msk->rcv_fastclose = false; 3168 msk->use_64bit_ack = false; 3169 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3170 mptcp_pm_data_reset(msk); 3171 mptcp_ca_reset(sk); 3172 msk->bytes_acked = 0; 3173 msk->bytes_received = 0; 3174 msk->bytes_sent = 0; 3175 msk->bytes_retrans = 0; 3176 msk->rcvspace_init = 0; 3177 3178 WRITE_ONCE(sk->sk_shutdown, 0); 3179 sk_error_report(sk); 3180 return 0; 3181 } 3182 3183 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3184 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3185 { 3186 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3187 3188 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3189 } 3190 3191 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3192 { 3193 const struct ipv6_pinfo *np = inet6_sk(sk); 3194 struct ipv6_txoptions *opt; 3195 struct ipv6_pinfo *newnp; 3196 3197 newnp = inet6_sk(newsk); 3198 3199 rcu_read_lock(); 3200 opt = rcu_dereference(np->opt); 3201 if (opt) { 3202 opt = ipv6_dup_options(newsk, opt); 3203 if (!opt) 3204 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3205 } 3206 RCU_INIT_POINTER(newnp->opt, opt); 3207 rcu_read_unlock(); 3208 } 3209 #endif 3210 3211 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3212 { 3213 struct ip_options_rcu *inet_opt, *newopt = NULL; 3214 const struct inet_sock *inet = inet_sk(sk); 3215 struct inet_sock *newinet; 3216 3217 newinet = inet_sk(newsk); 3218 3219 rcu_read_lock(); 3220 inet_opt = rcu_dereference(inet->inet_opt); 3221 if (inet_opt) { 3222 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3223 inet_opt->opt.optlen, GFP_ATOMIC); 3224 if (newopt) 3225 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3226 inet_opt->opt.optlen); 3227 else 3228 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3229 } 3230 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3231 rcu_read_unlock(); 3232 } 3233 3234 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3235 const struct mptcp_options_received *mp_opt, 3236 struct sock *ssk, 3237 struct request_sock *req) 3238 { 3239 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3240 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3241 struct mptcp_subflow_context *subflow; 3242 struct mptcp_sock *msk; 3243 3244 if (!nsk) 3245 return NULL; 3246 3247 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3248 if (nsk->sk_family == AF_INET6) 3249 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3250 #endif 3251 3252 __mptcp_init_sock(nsk); 3253 3254 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3255 if (nsk->sk_family == AF_INET6) 3256 mptcp_copy_ip6_options(nsk, sk); 3257 else 3258 #endif 3259 mptcp_copy_ip_options(nsk, sk); 3260 3261 msk = mptcp_sk(nsk); 3262 msk->local_key = subflow_req->local_key; 3263 msk->token = subflow_req->token; 3264 msk->in_accept_queue = 1; 3265 WRITE_ONCE(msk->fully_established, false); 3266 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3267 WRITE_ONCE(msk->csum_enabled, true); 3268 3269 msk->write_seq = subflow_req->idsn + 1; 3270 msk->snd_nxt = msk->write_seq; 3271 msk->snd_una = msk->write_seq; 3272 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3273 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3274 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3275 3276 /* passive msk is created after the first/MPC subflow */ 3277 msk->subflow_id = 2; 3278 3279 sock_reset_flag(nsk, SOCK_RCU_FREE); 3280 security_inet_csk_clone(nsk, req); 3281 3282 /* this can't race with mptcp_close(), as the msk is 3283 * not yet exposted to user-space 3284 */ 3285 mptcp_set_state(nsk, TCP_ESTABLISHED); 3286 3287 /* The msk maintain a ref to each subflow in the connections list */ 3288 WRITE_ONCE(msk->first, ssk); 3289 subflow = mptcp_subflow_ctx(ssk); 3290 list_add(&subflow->node, &msk->conn_list); 3291 sock_hold(ssk); 3292 3293 /* new mpc subflow takes ownership of the newly 3294 * created mptcp socket 3295 */ 3296 mptcp_token_accept(subflow_req, msk); 3297 3298 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3299 * uses the correct data 3300 */ 3301 mptcp_copy_inaddrs(nsk, ssk); 3302 __mptcp_propagate_sndbuf(nsk, ssk); 3303 3304 mptcp_rcv_space_init(msk, ssk); 3305 3306 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3307 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3308 bh_unlock_sock(nsk); 3309 3310 /* note: the newly allocated socket refcount is 2 now */ 3311 return nsk; 3312 } 3313 3314 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3315 { 3316 const struct tcp_sock *tp = tcp_sk(ssk); 3317 3318 msk->rcvspace_init = 1; 3319 msk->rcvq_space.copied = 0; 3320 msk->rcvq_space.rtt_us = 0; 3321 3322 msk->rcvq_space.time = tp->tcp_mstamp; 3323 3324 /* initial rcv_space offering made to peer */ 3325 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3326 TCP_INIT_CWND * tp->advmss); 3327 if (msk->rcvq_space.space == 0) 3328 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3329 } 3330 3331 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3332 bool kern) 3333 { 3334 struct sock *newsk; 3335 3336 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3337 newsk = inet_csk_accept(ssk, flags, err, kern); 3338 if (!newsk) 3339 return NULL; 3340 3341 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3342 if (sk_is_mptcp(newsk)) { 3343 struct mptcp_subflow_context *subflow; 3344 struct sock *new_mptcp_sock; 3345 3346 subflow = mptcp_subflow_ctx(newsk); 3347 new_mptcp_sock = subflow->conn; 3348 3349 /* is_mptcp should be false if subflow->conn is missing, see 3350 * subflow_syn_recv_sock() 3351 */ 3352 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3353 tcp_sk(newsk)->is_mptcp = 0; 3354 goto out; 3355 } 3356 3357 newsk = new_mptcp_sock; 3358 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3359 } else { 3360 MPTCP_INC_STATS(sock_net(ssk), 3361 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3362 } 3363 3364 out: 3365 newsk->sk_kern_sock = kern; 3366 return newsk; 3367 } 3368 3369 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3370 { 3371 struct mptcp_subflow_context *subflow, *tmp; 3372 struct sock *sk = (struct sock *)msk; 3373 3374 __mptcp_clear_xmit(sk); 3375 3376 /* join list will be eventually flushed (with rst) at sock lock release time */ 3377 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3378 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3379 3380 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3381 mptcp_data_lock(sk); 3382 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3383 __skb_queue_purge(&sk->sk_receive_queue); 3384 skb_rbtree_purge(&msk->out_of_order_queue); 3385 mptcp_data_unlock(sk); 3386 3387 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3388 * inet_sock_destruct() will dispose it 3389 */ 3390 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3391 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3392 mptcp_token_destroy(msk); 3393 mptcp_pm_free_anno_list(msk); 3394 mptcp_free_local_addr_list(msk); 3395 } 3396 3397 static void mptcp_destroy(struct sock *sk) 3398 { 3399 struct mptcp_sock *msk = mptcp_sk(sk); 3400 3401 /* allow the following to close even the initial subflow */ 3402 msk->free_first = 1; 3403 mptcp_destroy_common(msk, 0); 3404 sk_sockets_allocated_dec(sk); 3405 } 3406 3407 void __mptcp_data_acked(struct sock *sk) 3408 { 3409 if (!sock_owned_by_user(sk)) 3410 __mptcp_clean_una(sk); 3411 else 3412 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3413 3414 if (mptcp_pending_data_fin_ack(sk)) 3415 mptcp_schedule_work(sk); 3416 } 3417 3418 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3419 { 3420 if (!mptcp_send_head(sk)) 3421 return; 3422 3423 if (!sock_owned_by_user(sk)) 3424 __mptcp_subflow_push_pending(sk, ssk, false); 3425 else 3426 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3427 } 3428 3429 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3430 BIT(MPTCP_RETRANSMIT) | \ 3431 BIT(MPTCP_FLUSH_JOIN_LIST)) 3432 3433 /* processes deferred events and flush wmem */ 3434 static void mptcp_release_cb(struct sock *sk) 3435 __must_hold(&sk->sk_lock.slock) 3436 { 3437 struct mptcp_sock *msk = mptcp_sk(sk); 3438 3439 for (;;) { 3440 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3441 struct list_head join_list; 3442 3443 if (!flags) 3444 break; 3445 3446 INIT_LIST_HEAD(&join_list); 3447 list_splice_init(&msk->join_list, &join_list); 3448 3449 /* the following actions acquire the subflow socket lock 3450 * 3451 * 1) can't be invoked in atomic scope 3452 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3453 * datapath acquires the msk socket spinlock while helding 3454 * the subflow socket lock 3455 */ 3456 msk->cb_flags &= ~flags; 3457 spin_unlock_bh(&sk->sk_lock.slock); 3458 3459 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3460 __mptcp_flush_join_list(sk, &join_list); 3461 if (flags & BIT(MPTCP_PUSH_PENDING)) 3462 __mptcp_push_pending(sk, 0); 3463 if (flags & BIT(MPTCP_RETRANSMIT)) 3464 __mptcp_retrans(sk); 3465 3466 cond_resched(); 3467 spin_lock_bh(&sk->sk_lock.slock); 3468 } 3469 3470 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3471 __mptcp_clean_una_wakeup(sk); 3472 if (unlikely(msk->cb_flags)) { 3473 /* be sure to sync the msk state before taking actions 3474 * depending on sk_state (MPTCP_ERROR_REPORT) 3475 * On sk release avoid actions depending on the first subflow 3476 */ 3477 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3478 __mptcp_sync_state(sk, msk->pending_state); 3479 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3480 __mptcp_error_report(sk); 3481 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3482 __mptcp_sync_sndbuf(sk); 3483 } 3484 3485 __mptcp_update_rmem(sk); 3486 } 3487 3488 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3489 * TCP can't schedule delack timer before the subflow is fully established. 3490 * MPTCP uses the delack timer to do 3rd ack retransmissions 3491 */ 3492 static void schedule_3rdack_retransmission(struct sock *ssk) 3493 { 3494 struct inet_connection_sock *icsk = inet_csk(ssk); 3495 struct tcp_sock *tp = tcp_sk(ssk); 3496 unsigned long timeout; 3497 3498 if (mptcp_subflow_ctx(ssk)->fully_established) 3499 return; 3500 3501 /* reschedule with a timeout above RTT, as we must look only for drop */ 3502 if (tp->srtt_us) 3503 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3504 else 3505 timeout = TCP_TIMEOUT_INIT; 3506 timeout += jiffies; 3507 3508 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3509 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3510 icsk->icsk_ack.timeout = timeout; 3511 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3512 } 3513 3514 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3515 { 3516 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3517 struct sock *sk = subflow->conn; 3518 3519 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3520 mptcp_data_lock(sk); 3521 if (!sock_owned_by_user(sk)) 3522 __mptcp_subflow_push_pending(sk, ssk, true); 3523 else 3524 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3525 mptcp_data_unlock(sk); 3526 } 3527 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3528 mptcp_data_lock(sk); 3529 if (!sock_owned_by_user(sk)) 3530 __mptcp_sync_sndbuf(sk); 3531 else 3532 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3533 mptcp_data_unlock(sk); 3534 } 3535 if (status & BIT(MPTCP_DELEGATE_ACK)) 3536 schedule_3rdack_retransmission(ssk); 3537 } 3538 3539 static int mptcp_hash(struct sock *sk) 3540 { 3541 /* should never be called, 3542 * we hash the TCP subflows not the master socket 3543 */ 3544 WARN_ON_ONCE(1); 3545 return 0; 3546 } 3547 3548 static void mptcp_unhash(struct sock *sk) 3549 { 3550 /* called from sk_common_release(), but nothing to do here */ 3551 } 3552 3553 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3554 { 3555 struct mptcp_sock *msk = mptcp_sk(sk); 3556 3557 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3558 if (WARN_ON_ONCE(!msk->first)) 3559 return -EINVAL; 3560 3561 return inet_csk_get_port(msk->first, snum); 3562 } 3563 3564 void mptcp_finish_connect(struct sock *ssk) 3565 { 3566 struct mptcp_subflow_context *subflow; 3567 struct mptcp_sock *msk; 3568 struct sock *sk; 3569 3570 subflow = mptcp_subflow_ctx(ssk); 3571 sk = subflow->conn; 3572 msk = mptcp_sk(sk); 3573 3574 pr_debug("msk=%p, token=%u", sk, subflow->token); 3575 3576 subflow->map_seq = subflow->iasn; 3577 subflow->map_subflow_seq = 1; 3578 3579 /* the socket is not connected yet, no msk/subflow ops can access/race 3580 * accessing the field below 3581 */ 3582 WRITE_ONCE(msk->local_key, subflow->local_key); 3583 3584 mptcp_pm_new_connection(msk, ssk, 0); 3585 } 3586 3587 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3588 { 3589 write_lock_bh(&sk->sk_callback_lock); 3590 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3591 sk_set_socket(sk, parent); 3592 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3593 write_unlock_bh(&sk->sk_callback_lock); 3594 } 3595 3596 bool mptcp_finish_join(struct sock *ssk) 3597 { 3598 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3599 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3600 struct sock *parent = (void *)msk; 3601 bool ret = true; 3602 3603 pr_debug("msk=%p, subflow=%p", msk, subflow); 3604 3605 /* mptcp socket already closing? */ 3606 if (!mptcp_is_fully_established(parent)) { 3607 subflow->reset_reason = MPTCP_RST_EMPTCP; 3608 return false; 3609 } 3610 3611 /* active subflow, already present inside the conn_list */ 3612 if (!list_empty(&subflow->node)) { 3613 mptcp_subflow_joined(msk, ssk); 3614 mptcp_propagate_sndbuf(parent, ssk); 3615 return true; 3616 } 3617 3618 if (!mptcp_pm_allow_new_subflow(msk)) 3619 goto err_prohibited; 3620 3621 /* If we can't acquire msk socket lock here, let the release callback 3622 * handle it 3623 */ 3624 mptcp_data_lock(parent); 3625 if (!sock_owned_by_user(parent)) { 3626 ret = __mptcp_finish_join(msk, ssk); 3627 if (ret) { 3628 sock_hold(ssk); 3629 list_add_tail(&subflow->node, &msk->conn_list); 3630 } 3631 } else { 3632 sock_hold(ssk); 3633 list_add_tail(&subflow->node, &msk->join_list); 3634 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3635 } 3636 mptcp_data_unlock(parent); 3637 3638 if (!ret) { 3639 err_prohibited: 3640 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3641 return false; 3642 } 3643 3644 return true; 3645 } 3646 3647 static void mptcp_shutdown(struct sock *sk, int how) 3648 { 3649 pr_debug("sk=%p, how=%d", sk, how); 3650 3651 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3652 __mptcp_wr_shutdown(sk); 3653 } 3654 3655 static int mptcp_forward_alloc_get(const struct sock *sk) 3656 { 3657 return READ_ONCE(sk->sk_forward_alloc) + 3658 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3659 } 3660 3661 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3662 { 3663 const struct sock *sk = (void *)msk; 3664 u64 delta; 3665 3666 if (sk->sk_state == TCP_LISTEN) 3667 return -EINVAL; 3668 3669 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3670 return 0; 3671 3672 delta = msk->write_seq - v; 3673 if (__mptcp_check_fallback(msk) && msk->first) { 3674 struct tcp_sock *tp = tcp_sk(msk->first); 3675 3676 /* the first subflow is disconnected after close - see 3677 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3678 * so ignore that status, too. 3679 */ 3680 if (!((1 << msk->first->sk_state) & 3681 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3682 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3683 } 3684 if (delta > INT_MAX) 3685 delta = INT_MAX; 3686 3687 return (int)delta; 3688 } 3689 3690 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3691 { 3692 struct mptcp_sock *msk = mptcp_sk(sk); 3693 bool slow; 3694 3695 switch (cmd) { 3696 case SIOCINQ: 3697 if (sk->sk_state == TCP_LISTEN) 3698 return -EINVAL; 3699 3700 lock_sock(sk); 3701 __mptcp_move_skbs(msk); 3702 *karg = mptcp_inq_hint(sk); 3703 release_sock(sk); 3704 break; 3705 case SIOCOUTQ: 3706 slow = lock_sock_fast(sk); 3707 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3708 unlock_sock_fast(sk, slow); 3709 break; 3710 case SIOCOUTQNSD: 3711 slow = lock_sock_fast(sk); 3712 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3713 unlock_sock_fast(sk, slow); 3714 break; 3715 default: 3716 return -ENOIOCTLCMD; 3717 } 3718 3719 return 0; 3720 } 3721 3722 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3723 struct mptcp_subflow_context *subflow) 3724 { 3725 subflow->request_mptcp = 0; 3726 __mptcp_do_fallback(msk); 3727 } 3728 3729 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3730 { 3731 struct mptcp_subflow_context *subflow; 3732 struct mptcp_sock *msk = mptcp_sk(sk); 3733 int err = -EINVAL; 3734 struct sock *ssk; 3735 3736 ssk = __mptcp_nmpc_sk(msk); 3737 if (IS_ERR(ssk)) 3738 return PTR_ERR(ssk); 3739 3740 mptcp_set_state(sk, TCP_SYN_SENT); 3741 subflow = mptcp_subflow_ctx(ssk); 3742 #ifdef CONFIG_TCP_MD5SIG 3743 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3744 * TCP option space. 3745 */ 3746 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3747 mptcp_subflow_early_fallback(msk, subflow); 3748 #endif 3749 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3750 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3751 mptcp_subflow_early_fallback(msk, subflow); 3752 } 3753 if (likely(!__mptcp_check_fallback(msk))) 3754 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3755 3756 /* if reaching here via the fastopen/sendmsg path, the caller already 3757 * acquired the subflow socket lock, too. 3758 */ 3759 if (!msk->fastopening) 3760 lock_sock(ssk); 3761 3762 /* the following mirrors closely a very small chunk of code from 3763 * __inet_stream_connect() 3764 */ 3765 if (ssk->sk_state != TCP_CLOSE) 3766 goto out; 3767 3768 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3769 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3770 if (err) 3771 goto out; 3772 } 3773 3774 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3775 if (err < 0) 3776 goto out; 3777 3778 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3779 3780 out: 3781 if (!msk->fastopening) 3782 release_sock(ssk); 3783 3784 /* on successful connect, the msk state will be moved to established by 3785 * subflow_finish_connect() 3786 */ 3787 if (unlikely(err)) { 3788 /* avoid leaving a dangling token in an unconnected socket */ 3789 mptcp_token_destroy(msk); 3790 mptcp_set_state(sk, TCP_CLOSE); 3791 return err; 3792 } 3793 3794 mptcp_copy_inaddrs(sk, ssk); 3795 return 0; 3796 } 3797 3798 static struct proto mptcp_prot = { 3799 .name = "MPTCP", 3800 .owner = THIS_MODULE, 3801 .init = mptcp_init_sock, 3802 .connect = mptcp_connect, 3803 .disconnect = mptcp_disconnect, 3804 .close = mptcp_close, 3805 .accept = mptcp_accept, 3806 .setsockopt = mptcp_setsockopt, 3807 .getsockopt = mptcp_getsockopt, 3808 .shutdown = mptcp_shutdown, 3809 .destroy = mptcp_destroy, 3810 .sendmsg = mptcp_sendmsg, 3811 .ioctl = mptcp_ioctl, 3812 .recvmsg = mptcp_recvmsg, 3813 .release_cb = mptcp_release_cb, 3814 .hash = mptcp_hash, 3815 .unhash = mptcp_unhash, 3816 .get_port = mptcp_get_port, 3817 .forward_alloc_get = mptcp_forward_alloc_get, 3818 .sockets_allocated = &mptcp_sockets_allocated, 3819 3820 .memory_allocated = &tcp_memory_allocated, 3821 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3822 3823 .memory_pressure = &tcp_memory_pressure, 3824 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3825 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3826 .sysctl_mem = sysctl_tcp_mem, 3827 .obj_size = sizeof(struct mptcp_sock), 3828 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3829 .no_autobind = true, 3830 }; 3831 3832 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3833 { 3834 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3835 struct sock *ssk, *sk = sock->sk; 3836 int err = -EINVAL; 3837 3838 lock_sock(sk); 3839 ssk = __mptcp_nmpc_sk(msk); 3840 if (IS_ERR(ssk)) { 3841 err = PTR_ERR(ssk); 3842 goto unlock; 3843 } 3844 3845 if (sk->sk_family == AF_INET) 3846 err = inet_bind_sk(ssk, uaddr, addr_len); 3847 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3848 else if (sk->sk_family == AF_INET6) 3849 err = inet6_bind_sk(ssk, uaddr, addr_len); 3850 #endif 3851 if (!err) 3852 mptcp_copy_inaddrs(sk, ssk); 3853 3854 unlock: 3855 release_sock(sk); 3856 return err; 3857 } 3858 3859 static int mptcp_listen(struct socket *sock, int backlog) 3860 { 3861 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3862 struct sock *sk = sock->sk; 3863 struct sock *ssk; 3864 int err; 3865 3866 pr_debug("msk=%p", msk); 3867 3868 lock_sock(sk); 3869 3870 err = -EINVAL; 3871 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3872 goto unlock; 3873 3874 ssk = __mptcp_nmpc_sk(msk); 3875 if (IS_ERR(ssk)) { 3876 err = PTR_ERR(ssk); 3877 goto unlock; 3878 } 3879 3880 mptcp_set_state(sk, TCP_LISTEN); 3881 sock_set_flag(sk, SOCK_RCU_FREE); 3882 3883 lock_sock(ssk); 3884 err = __inet_listen_sk(ssk, backlog); 3885 release_sock(ssk); 3886 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3887 3888 if (!err) { 3889 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3890 mptcp_copy_inaddrs(sk, ssk); 3891 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3892 } 3893 3894 unlock: 3895 release_sock(sk); 3896 return err; 3897 } 3898 3899 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3900 int flags, bool kern) 3901 { 3902 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3903 struct sock *ssk, *newsk; 3904 int err; 3905 3906 pr_debug("msk=%p", msk); 3907 3908 /* Buggy applications can call accept on socket states other then LISTEN 3909 * but no need to allocate the first subflow just to error out. 3910 */ 3911 ssk = READ_ONCE(msk->first); 3912 if (!ssk) 3913 return -EINVAL; 3914 3915 newsk = mptcp_accept(ssk, flags, &err, kern); 3916 if (!newsk) 3917 return err; 3918 3919 lock_sock(newsk); 3920 3921 __inet_accept(sock, newsock, newsk); 3922 if (!mptcp_is_tcpsk(newsock->sk)) { 3923 struct mptcp_sock *msk = mptcp_sk(newsk); 3924 struct mptcp_subflow_context *subflow; 3925 3926 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3927 msk->in_accept_queue = 0; 3928 3929 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3930 * This is needed so NOSPACE flag can be set from tcp stack. 3931 */ 3932 mptcp_for_each_subflow(msk, subflow) { 3933 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3934 3935 if (!ssk->sk_socket) 3936 mptcp_sock_graft(ssk, newsock); 3937 } 3938 3939 /* Do late cleanup for the first subflow as necessary. Also 3940 * deal with bad peers not doing a complete shutdown. 3941 */ 3942 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3943 __mptcp_close_ssk(newsk, msk->first, 3944 mptcp_subflow_ctx(msk->first), 0); 3945 if (unlikely(list_is_singular(&msk->conn_list))) 3946 mptcp_set_state(newsk, TCP_CLOSE); 3947 } 3948 } 3949 release_sock(newsk); 3950 3951 return 0; 3952 } 3953 3954 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3955 { 3956 struct sock *sk = (struct sock *)msk; 3957 3958 if (sk_stream_is_writeable(sk)) 3959 return EPOLLOUT | EPOLLWRNORM; 3960 3961 mptcp_set_nospace(sk); 3962 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3963 if (sk_stream_is_writeable(sk)) 3964 return EPOLLOUT | EPOLLWRNORM; 3965 3966 return 0; 3967 } 3968 3969 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3970 struct poll_table_struct *wait) 3971 { 3972 struct sock *sk = sock->sk; 3973 struct mptcp_sock *msk; 3974 __poll_t mask = 0; 3975 u8 shutdown; 3976 int state; 3977 3978 msk = mptcp_sk(sk); 3979 sock_poll_wait(file, sock, wait); 3980 3981 state = inet_sk_state_load(sk); 3982 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3983 if (state == TCP_LISTEN) { 3984 struct sock *ssk = READ_ONCE(msk->first); 3985 3986 if (WARN_ON_ONCE(!ssk)) 3987 return 0; 3988 3989 return inet_csk_listen_poll(ssk); 3990 } 3991 3992 shutdown = READ_ONCE(sk->sk_shutdown); 3993 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3994 mask |= EPOLLHUP; 3995 if (shutdown & RCV_SHUTDOWN) 3996 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3997 3998 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3999 mask |= mptcp_check_readable(msk); 4000 if (shutdown & SEND_SHUTDOWN) 4001 mask |= EPOLLOUT | EPOLLWRNORM; 4002 else 4003 mask |= mptcp_check_writeable(msk); 4004 } else if (state == TCP_SYN_SENT && 4005 inet_test_bit(DEFER_CONNECT, sk)) { 4006 /* cf tcp_poll() note about TFO */ 4007 mask |= EPOLLOUT | EPOLLWRNORM; 4008 } 4009 4010 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4011 smp_rmb(); 4012 if (READ_ONCE(sk->sk_err)) 4013 mask |= EPOLLERR; 4014 4015 return mask; 4016 } 4017 4018 static const struct proto_ops mptcp_stream_ops = { 4019 .family = PF_INET, 4020 .owner = THIS_MODULE, 4021 .release = inet_release, 4022 .bind = mptcp_bind, 4023 .connect = inet_stream_connect, 4024 .socketpair = sock_no_socketpair, 4025 .accept = mptcp_stream_accept, 4026 .getname = inet_getname, 4027 .poll = mptcp_poll, 4028 .ioctl = inet_ioctl, 4029 .gettstamp = sock_gettstamp, 4030 .listen = mptcp_listen, 4031 .shutdown = inet_shutdown, 4032 .setsockopt = sock_common_setsockopt, 4033 .getsockopt = sock_common_getsockopt, 4034 .sendmsg = inet_sendmsg, 4035 .recvmsg = inet_recvmsg, 4036 .mmap = sock_no_mmap, 4037 }; 4038 4039 static struct inet_protosw mptcp_protosw = { 4040 .type = SOCK_STREAM, 4041 .protocol = IPPROTO_MPTCP, 4042 .prot = &mptcp_prot, 4043 .ops = &mptcp_stream_ops, 4044 .flags = INET_PROTOSW_ICSK, 4045 }; 4046 4047 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4048 { 4049 struct mptcp_delegated_action *delegated; 4050 struct mptcp_subflow_context *subflow; 4051 int work_done = 0; 4052 4053 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4054 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4055 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4056 4057 bh_lock_sock_nested(ssk); 4058 if (!sock_owned_by_user(ssk)) { 4059 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4060 } else { 4061 /* tcp_release_cb_override already processed 4062 * the action or will do at next release_sock(). 4063 * In both case must dequeue the subflow here - on the same 4064 * CPU that scheduled it. 4065 */ 4066 smp_wmb(); 4067 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4068 } 4069 bh_unlock_sock(ssk); 4070 sock_put(ssk); 4071 4072 if (++work_done == budget) 4073 return budget; 4074 } 4075 4076 /* always provide a 0 'work_done' argument, so that napi_complete_done 4077 * will not try accessing the NULL napi->dev ptr 4078 */ 4079 napi_complete_done(napi, 0); 4080 return work_done; 4081 } 4082 4083 void __init mptcp_proto_init(void) 4084 { 4085 struct mptcp_delegated_action *delegated; 4086 int cpu; 4087 4088 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4089 4090 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4091 panic("Failed to allocate MPTCP pcpu counter\n"); 4092 4093 init_dummy_netdev(&mptcp_napi_dev); 4094 for_each_possible_cpu(cpu) { 4095 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4096 INIT_LIST_HEAD(&delegated->head); 4097 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4098 mptcp_napi_poll); 4099 napi_enable(&delegated->napi); 4100 } 4101 4102 mptcp_subflow_init(); 4103 mptcp_pm_init(); 4104 mptcp_sched_init(); 4105 mptcp_token_init(); 4106 4107 if (proto_register(&mptcp_prot, 1) != 0) 4108 panic("Failed to register MPTCP proto.\n"); 4109 4110 inet_register_protosw(&mptcp_protosw); 4111 4112 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4113 } 4114 4115 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4116 static const struct proto_ops mptcp_v6_stream_ops = { 4117 .family = PF_INET6, 4118 .owner = THIS_MODULE, 4119 .release = inet6_release, 4120 .bind = mptcp_bind, 4121 .connect = inet_stream_connect, 4122 .socketpair = sock_no_socketpair, 4123 .accept = mptcp_stream_accept, 4124 .getname = inet6_getname, 4125 .poll = mptcp_poll, 4126 .ioctl = inet6_ioctl, 4127 .gettstamp = sock_gettstamp, 4128 .listen = mptcp_listen, 4129 .shutdown = inet_shutdown, 4130 .setsockopt = sock_common_setsockopt, 4131 .getsockopt = sock_common_getsockopt, 4132 .sendmsg = inet6_sendmsg, 4133 .recvmsg = inet6_recvmsg, 4134 .mmap = sock_no_mmap, 4135 #ifdef CONFIG_COMPAT 4136 .compat_ioctl = inet6_compat_ioctl, 4137 #endif 4138 }; 4139 4140 static struct proto mptcp_v6_prot; 4141 4142 static struct inet_protosw mptcp_v6_protosw = { 4143 .type = SOCK_STREAM, 4144 .protocol = IPPROTO_MPTCP, 4145 .prot = &mptcp_v6_prot, 4146 .ops = &mptcp_v6_stream_ops, 4147 .flags = INET_PROTOSW_ICSK, 4148 }; 4149 4150 int __init mptcp_proto_v6_init(void) 4151 { 4152 int err; 4153 4154 mptcp_v6_prot = mptcp_prot; 4155 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4156 mptcp_v6_prot.slab = NULL; 4157 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4158 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4159 4160 err = proto_register(&mptcp_v6_prot, 1); 4161 if (err) 4162 return err; 4163 4164 err = inet6_register_protosw(&mptcp_v6_protosw); 4165 if (err) 4166 proto_unregister(&mptcp_v6_prot); 4167 4168 return err; 4169 } 4170 #endif 4171