xref: /openbmc/linux/net/mptcp/protocol.c (revision f066af882b3755c5cdd2574e860433750c6bce1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <linux/igmp.h>
15 #include <net/sock.h>
16 #include <net/inet_common.h>
17 #include <net/inet_hashtables.h>
18 #include <net/protocol.h>
19 #include <net/tcp.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #include <net/addrconf.h>
24 #endif
25 #include <net/mptcp.h>
26 #include <net/xfrm.h>
27 #include "protocol.h"
28 #include "mib.h"
29 
30 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
31 struct mptcp6_sock {
32 	struct mptcp_sock msk;
33 	struct ipv6_pinfo np;
34 };
35 #endif
36 
37 struct mptcp_skb_cb {
38 	u64 map_seq;
39 	u64 end_seq;
40 	u32 offset;
41 };
42 
43 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
44 
45 static struct percpu_counter mptcp_sockets_allocated;
46 
47 static void __mptcp_destroy_sock(struct sock *sk);
48 static void __mptcp_check_send_data_fin(struct sock *sk);
49 
50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
51 static struct net_device mptcp_napi_dev;
52 
53 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
54  * completed yet or has failed, return the subflow socket.
55  * Otherwise return NULL.
56  */
57 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
58 {
59 	if (!msk->subflow || READ_ONCE(msk->can_ack))
60 		return NULL;
61 
62 	return msk->subflow;
63 }
64 
65 /* Returns end sequence number of the receiver's advertised window */
66 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
67 {
68 	return READ_ONCE(msk->wnd_end);
69 }
70 
71 static bool mptcp_is_tcpsk(struct sock *sk)
72 {
73 	struct socket *sock = sk->sk_socket;
74 
75 	if (unlikely(sk->sk_prot == &tcp_prot)) {
76 		/* we are being invoked after mptcp_accept() has
77 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
78 		 * not an mptcp one.
79 		 *
80 		 * Hand the socket over to tcp so all further socket ops
81 		 * bypass mptcp.
82 		 */
83 		sock->ops = &inet_stream_ops;
84 		return true;
85 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
86 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
87 		sock->ops = &inet6_stream_ops;
88 		return true;
89 #endif
90 	}
91 
92 	return false;
93 }
94 
95 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
96 {
97 	sock_owned_by_me((const struct sock *)msk);
98 
99 	if (likely(!__mptcp_check_fallback(msk)))
100 		return NULL;
101 
102 	return msk->first;
103 }
104 
105 static int __mptcp_socket_create(struct mptcp_sock *msk)
106 {
107 	struct mptcp_subflow_context *subflow;
108 	struct sock *sk = (struct sock *)msk;
109 	struct socket *ssock;
110 	int err;
111 
112 	err = mptcp_subflow_create_socket(sk, &ssock);
113 	if (err)
114 		return err;
115 
116 	msk->first = ssock->sk;
117 	msk->subflow = ssock;
118 	subflow = mptcp_subflow_ctx(ssock->sk);
119 	list_add(&subflow->node, &msk->conn_list);
120 	sock_hold(ssock->sk);
121 	subflow->request_mptcp = 1;
122 	mptcp_sock_graft(msk->first, sk->sk_socket);
123 
124 	return 0;
125 }
126 
127 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
128 {
129 	sk_drops_add(sk, skb);
130 	__kfree_skb(skb);
131 }
132 
133 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
134 			       struct sk_buff *from)
135 {
136 	bool fragstolen;
137 	int delta;
138 
139 	if (MPTCP_SKB_CB(from)->offset ||
140 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
141 		return false;
142 
143 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
144 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
145 		 to->len, MPTCP_SKB_CB(from)->end_seq);
146 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
147 	kfree_skb_partial(from, fragstolen);
148 	atomic_add(delta, &sk->sk_rmem_alloc);
149 	sk_mem_charge(sk, delta);
150 	return true;
151 }
152 
153 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
154 				   struct sk_buff *from)
155 {
156 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
157 		return false;
158 
159 	return mptcp_try_coalesce((struct sock *)msk, to, from);
160 }
161 
162 /* "inspired" by tcp_data_queue_ofo(), main differences:
163  * - use mptcp seqs
164  * - don't cope with sacks
165  */
166 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
167 {
168 	struct sock *sk = (struct sock *)msk;
169 	struct rb_node **p, *parent;
170 	u64 seq, end_seq, max_seq;
171 	struct sk_buff *skb1;
172 
173 	seq = MPTCP_SKB_CB(skb)->map_seq;
174 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
175 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
176 
177 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
178 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
179 	if (after64(end_seq, max_seq)) {
180 		/* out of window */
181 		mptcp_drop(sk, skb);
182 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
183 			 (unsigned long long)end_seq - (unsigned long)max_seq,
184 			 (unsigned long long)msk->rcv_wnd_sent);
185 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
186 		return;
187 	}
188 
189 	p = &msk->out_of_order_queue.rb_node;
190 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
191 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
192 		rb_link_node(&skb->rbnode, NULL, p);
193 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
194 		msk->ooo_last_skb = skb;
195 		goto end;
196 	}
197 
198 	/* with 2 subflows, adding at end of ooo queue is quite likely
199 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
200 	 */
201 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
202 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
203 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
204 		return;
205 	}
206 
207 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
208 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
209 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
210 		parent = &msk->ooo_last_skb->rbnode;
211 		p = &parent->rb_right;
212 		goto insert;
213 	}
214 
215 	/* Find place to insert this segment. Handle overlaps on the way. */
216 	parent = NULL;
217 	while (*p) {
218 		parent = *p;
219 		skb1 = rb_to_skb(parent);
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
221 			p = &parent->rb_left;
222 			continue;
223 		}
224 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
225 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
226 				/* All the bits are present. Drop. */
227 				mptcp_drop(sk, skb);
228 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
229 				return;
230 			}
231 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
232 				/* partial overlap:
233 				 *     |     skb      |
234 				 *  |     skb1    |
235 				 * continue traversing
236 				 */
237 			} else {
238 				/* skb's seq == skb1's seq and skb covers skb1.
239 				 * Replace skb1 with skb.
240 				 */
241 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
242 						&msk->out_of_order_queue);
243 				mptcp_drop(sk, skb1);
244 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
245 				goto merge_right;
246 			}
247 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
248 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
249 			return;
250 		}
251 		p = &parent->rb_right;
252 	}
253 
254 insert:
255 	/* Insert segment into RB tree. */
256 	rb_link_node(&skb->rbnode, parent, p);
257 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
258 
259 merge_right:
260 	/* Remove other segments covered by skb. */
261 	while ((skb1 = skb_rb_next(skb)) != NULL) {
262 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
263 			break;
264 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
265 		mptcp_drop(sk, skb1);
266 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
267 	}
268 	/* If there is no skb after us, we are the last_skb ! */
269 	if (!skb1)
270 		msk->ooo_last_skb = skb;
271 
272 end:
273 	skb_condense(skb);
274 	skb_set_owner_r(skb, sk);
275 }
276 
277 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
278 			     struct sk_buff *skb, unsigned int offset,
279 			     size_t copy_len)
280 {
281 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
282 	struct sock *sk = (struct sock *)msk;
283 	struct sk_buff *tail;
284 
285 	__skb_unlink(skb, &ssk->sk_receive_queue);
286 
287 	skb_ext_reset(skb);
288 	skb_orphan(skb);
289 
290 	/* try to fetch required memory from subflow */
291 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
292 		if (ssk->sk_forward_alloc < skb->truesize)
293 			goto drop;
294 		__sk_mem_reclaim(ssk, skb->truesize);
295 		if (!sk_rmem_schedule(sk, skb, skb->truesize))
296 			goto drop;
297 	}
298 
299 	/* the skb map_seq accounts for the skb offset:
300 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
301 	 * value
302 	 */
303 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
304 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
305 	MPTCP_SKB_CB(skb)->offset = offset;
306 
307 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
308 		/* in sequence */
309 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
310 		tail = skb_peek_tail(&sk->sk_receive_queue);
311 		if (tail && mptcp_try_coalesce(sk, tail, skb))
312 			return true;
313 
314 		skb_set_owner_r(skb, sk);
315 		__skb_queue_tail(&sk->sk_receive_queue, skb);
316 		return true;
317 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
318 		mptcp_data_queue_ofo(msk, skb);
319 		return false;
320 	}
321 
322 	/* old data, keep it simple and drop the whole pkt, sender
323 	 * will retransmit as needed, if needed.
324 	 */
325 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
326 drop:
327 	mptcp_drop(sk, skb);
328 	return false;
329 }
330 
331 static void mptcp_stop_timer(struct sock *sk)
332 {
333 	struct inet_connection_sock *icsk = inet_csk(sk);
334 
335 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
336 	mptcp_sk(sk)->timer_ival = 0;
337 }
338 
339 static void mptcp_close_wake_up(struct sock *sk)
340 {
341 	if (sock_flag(sk, SOCK_DEAD))
342 		return;
343 
344 	sk->sk_state_change(sk);
345 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
346 	    sk->sk_state == TCP_CLOSE)
347 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
348 	else
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
350 }
351 
352 static bool mptcp_pending_data_fin_ack(struct sock *sk)
353 {
354 	struct mptcp_sock *msk = mptcp_sk(sk);
355 
356 	return !__mptcp_check_fallback(msk) &&
357 	       ((1 << sk->sk_state) &
358 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
359 	       msk->write_seq == READ_ONCE(msk->snd_una);
360 }
361 
362 static void mptcp_check_data_fin_ack(struct sock *sk)
363 {
364 	struct mptcp_sock *msk = mptcp_sk(sk);
365 
366 	/* Look for an acknowledged DATA_FIN */
367 	if (mptcp_pending_data_fin_ack(sk)) {
368 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
369 
370 		switch (sk->sk_state) {
371 		case TCP_FIN_WAIT1:
372 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
373 			break;
374 		case TCP_CLOSING:
375 		case TCP_LAST_ACK:
376 			inet_sk_state_store(sk, TCP_CLOSE);
377 			break;
378 		}
379 
380 		mptcp_close_wake_up(sk);
381 	}
382 }
383 
384 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
385 {
386 	struct mptcp_sock *msk = mptcp_sk(sk);
387 
388 	if (READ_ONCE(msk->rcv_data_fin) &&
389 	    ((1 << sk->sk_state) &
390 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
391 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
392 
393 		if (msk->ack_seq == rcv_data_fin_seq) {
394 			if (seq)
395 				*seq = rcv_data_fin_seq;
396 
397 			return true;
398 		}
399 	}
400 
401 	return false;
402 }
403 
404 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
405 {
406 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
407 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
408 
409 	if (tout <= 0)
410 		tout = mptcp_sk(sk)->timer_ival;
411 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
412 }
413 
414 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
415 {
416 	struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
417 
418 	/* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */
419 	if (subflow->request_join && !subflow->fully_established)
420 		return false;
421 
422 	/* only send if our side has not closed yet */
423 	return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT));
424 }
425 
426 static bool tcp_can_send_ack(const struct sock *ssk)
427 {
428 	return !((1 << inet_sk_state_load(ssk)) &
429 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
430 }
431 
432 static void mptcp_send_ack(struct mptcp_sock *msk)
433 {
434 	struct mptcp_subflow_context *subflow;
435 
436 	mptcp_for_each_subflow(msk, subflow) {
437 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
438 
439 		lock_sock(ssk);
440 		if (tcp_can_send_ack(ssk))
441 			tcp_send_ack(ssk);
442 		release_sock(ssk);
443 	}
444 }
445 
446 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk)
447 {
448 	int ret;
449 
450 	lock_sock(ssk);
451 	ret = tcp_can_send_ack(ssk);
452 	if (ret)
453 		tcp_cleanup_rbuf(ssk, 1);
454 	release_sock(ssk);
455 	return ret;
456 }
457 
458 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
459 {
460 	struct sock *ack_hint = READ_ONCE(msk->ack_hint);
461 	int old_space = READ_ONCE(msk->old_wspace);
462 	struct mptcp_subflow_context *subflow;
463 	struct sock *sk = (struct sock *)msk;
464 	bool cleanup;
465 
466 	/* this is a simple superset of what tcp_cleanup_rbuf() implements
467 	 * so that we don't have to acquire the ssk socket lock most of the time
468 	 * to do actually nothing
469 	 */
470 	cleanup = __mptcp_space(sk) - old_space >= max(0, old_space);
471 	if (!cleanup)
472 		return;
473 
474 	/* if the hinted ssk is still active, try to use it */
475 	if (likely(ack_hint)) {
476 		mptcp_for_each_subflow(msk, subflow) {
477 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
478 
479 			if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk))
480 				return;
481 		}
482 	}
483 
484 	/* otherwise pick the first active subflow */
485 	mptcp_for_each_subflow(msk, subflow)
486 		if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow)))
487 			return;
488 }
489 
490 static bool mptcp_check_data_fin(struct sock *sk)
491 {
492 	struct mptcp_sock *msk = mptcp_sk(sk);
493 	u64 rcv_data_fin_seq;
494 	bool ret = false;
495 
496 	if (__mptcp_check_fallback(msk) || !msk->first)
497 		return ret;
498 
499 	/* Need to ack a DATA_FIN received from a peer while this side
500 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
501 	 * msk->rcv_data_fin was set when parsing the incoming options
502 	 * at the subflow level and the msk lock was not held, so this
503 	 * is the first opportunity to act on the DATA_FIN and change
504 	 * the msk state.
505 	 *
506 	 * If we are caught up to the sequence number of the incoming
507 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
508 	 * not caught up, do nothing and let the recv code send DATA_ACK
509 	 * when catching up.
510 	 */
511 
512 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
513 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
514 		WRITE_ONCE(msk->rcv_data_fin, 0);
515 
516 		sk->sk_shutdown |= RCV_SHUTDOWN;
517 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
518 		set_bit(MPTCP_DATA_READY, &msk->flags);
519 
520 		switch (sk->sk_state) {
521 		case TCP_ESTABLISHED:
522 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
523 			break;
524 		case TCP_FIN_WAIT1:
525 			inet_sk_state_store(sk, TCP_CLOSING);
526 			break;
527 		case TCP_FIN_WAIT2:
528 			inet_sk_state_store(sk, TCP_CLOSE);
529 			break;
530 		default:
531 			/* Other states not expected */
532 			WARN_ON_ONCE(1);
533 			break;
534 		}
535 
536 		ret = true;
537 		mptcp_set_timeout(sk, NULL);
538 		mptcp_send_ack(msk);
539 		mptcp_close_wake_up(sk);
540 	}
541 	return ret;
542 }
543 
544 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
545 					   struct sock *ssk,
546 					   unsigned int *bytes)
547 {
548 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
549 	struct sock *sk = (struct sock *)msk;
550 	unsigned int moved = 0;
551 	bool more_data_avail;
552 	struct tcp_sock *tp;
553 	bool done = false;
554 	int sk_rbuf;
555 
556 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
557 
558 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
559 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
560 
561 		if (unlikely(ssk_rbuf > sk_rbuf)) {
562 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
563 			sk_rbuf = ssk_rbuf;
564 		}
565 	}
566 
567 	pr_debug("msk=%p ssk=%p", msk, ssk);
568 	tp = tcp_sk(ssk);
569 	do {
570 		u32 map_remaining, offset;
571 		u32 seq = tp->copied_seq;
572 		struct sk_buff *skb;
573 		bool fin;
574 
575 		/* try to move as much data as available */
576 		map_remaining = subflow->map_data_len -
577 				mptcp_subflow_get_map_offset(subflow);
578 
579 		skb = skb_peek(&ssk->sk_receive_queue);
580 		if (!skb) {
581 			/* if no data is found, a racing workqueue/recvmsg
582 			 * already processed the new data, stop here or we
583 			 * can enter an infinite loop
584 			 */
585 			if (!moved)
586 				done = true;
587 			break;
588 		}
589 
590 		if (__mptcp_check_fallback(msk)) {
591 			/* if we are running under the workqueue, TCP could have
592 			 * collapsed skbs between dummy map creation and now
593 			 * be sure to adjust the size
594 			 */
595 			map_remaining = skb->len;
596 			subflow->map_data_len = skb->len;
597 		}
598 
599 		offset = seq - TCP_SKB_CB(skb)->seq;
600 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
601 		if (fin) {
602 			done = true;
603 			seq++;
604 		}
605 
606 		if (offset < skb->len) {
607 			size_t len = skb->len - offset;
608 
609 			if (tp->urg_data)
610 				done = true;
611 
612 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
613 				moved += len;
614 			seq += len;
615 
616 			if (WARN_ON_ONCE(map_remaining < len))
617 				break;
618 		} else {
619 			WARN_ON_ONCE(!fin);
620 			sk_eat_skb(ssk, skb);
621 			done = true;
622 		}
623 
624 		WRITE_ONCE(tp->copied_seq, seq);
625 		more_data_avail = mptcp_subflow_data_available(ssk);
626 
627 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
628 			done = true;
629 			break;
630 		}
631 	} while (more_data_avail);
632 	WRITE_ONCE(msk->ack_hint, ssk);
633 
634 	*bytes += moved;
635 	return done;
636 }
637 
638 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
639 {
640 	struct sock *sk = (struct sock *)msk;
641 	struct sk_buff *skb, *tail;
642 	bool moved = false;
643 	struct rb_node *p;
644 	u64 end_seq;
645 
646 	p = rb_first(&msk->out_of_order_queue);
647 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
648 	while (p) {
649 		skb = rb_to_skb(p);
650 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
651 			break;
652 
653 		p = rb_next(p);
654 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
655 
656 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
657 				      msk->ack_seq))) {
658 			mptcp_drop(sk, skb);
659 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
660 			continue;
661 		}
662 
663 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
664 		tail = skb_peek_tail(&sk->sk_receive_queue);
665 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
666 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
667 
668 			/* skip overlapping data, if any */
669 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
670 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
671 				 delta);
672 			MPTCP_SKB_CB(skb)->offset += delta;
673 			__skb_queue_tail(&sk->sk_receive_queue, skb);
674 		}
675 		msk->ack_seq = end_seq;
676 		moved = true;
677 	}
678 	return moved;
679 }
680 
681 /* In most cases we will be able to lock the mptcp socket.  If its already
682  * owned, we need to defer to the work queue to avoid ABBA deadlock.
683  */
684 static void move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
685 {
686 	struct sock *sk = (struct sock *)msk;
687 	unsigned int moved = 0;
688 
689 	if (inet_sk_state_load(sk) == TCP_CLOSE)
690 		return;
691 
692 	mptcp_data_lock(sk);
693 
694 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
695 	__mptcp_ofo_queue(msk);
696 
697 	/* If the moves have caught up with the DATA_FIN sequence number
698 	 * it's time to ack the DATA_FIN and change socket state, but
699 	 * this is not a good place to change state. Let the workqueue
700 	 * do it.
701 	 */
702 	if (mptcp_pending_data_fin(sk, NULL))
703 		mptcp_schedule_work(sk);
704 	mptcp_data_unlock(sk);
705 }
706 
707 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
708 {
709 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
710 	struct mptcp_sock *msk = mptcp_sk(sk);
711 	int sk_rbuf, ssk_rbuf;
712 	bool wake;
713 
714 	/* The peer can send data while we are shutting down this
715 	 * subflow at msk destruction time, but we must avoid enqueuing
716 	 * more data to the msk receive queue
717 	 */
718 	if (unlikely(subflow->disposable))
719 		return;
720 
721 	/* move_skbs_to_msk below can legitly clear the data_avail flag,
722 	 * but we will need later to properly woke the reader, cache its
723 	 * value
724 	 */
725 	wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL;
726 	if (wake)
727 		set_bit(MPTCP_DATA_READY, &msk->flags);
728 
729 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
730 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
731 	if (unlikely(ssk_rbuf > sk_rbuf))
732 		sk_rbuf = ssk_rbuf;
733 
734 	/* over limit? can't append more skbs to msk */
735 	if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
736 		goto wake;
737 
738 	move_skbs_to_msk(msk, ssk);
739 
740 wake:
741 	if (wake)
742 		sk->sk_data_ready(sk);
743 }
744 
745 void __mptcp_flush_join_list(struct mptcp_sock *msk)
746 {
747 	struct mptcp_subflow_context *subflow;
748 
749 	if (likely(list_empty(&msk->join_list)))
750 		return;
751 
752 	spin_lock_bh(&msk->join_list_lock);
753 	list_for_each_entry(subflow, &msk->join_list, node)
754 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
755 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
756 	spin_unlock_bh(&msk->join_list_lock);
757 }
758 
759 static bool mptcp_timer_pending(struct sock *sk)
760 {
761 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
762 }
763 
764 static void mptcp_reset_timer(struct sock *sk)
765 {
766 	struct inet_connection_sock *icsk = inet_csk(sk);
767 	unsigned long tout;
768 
769 	/* prevent rescheduling on close */
770 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
771 		return;
772 
773 	/* should never be called with mptcp level timer cleared */
774 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
775 	if (WARN_ON_ONCE(!tout))
776 		tout = TCP_RTO_MIN;
777 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
778 }
779 
780 bool mptcp_schedule_work(struct sock *sk)
781 {
782 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
783 	    schedule_work(&mptcp_sk(sk)->work)) {
784 		/* each subflow already holds a reference to the sk, and the
785 		 * workqueue is invoked by a subflow, so sk can't go away here.
786 		 */
787 		sock_hold(sk);
788 		return true;
789 	}
790 	return false;
791 }
792 
793 void mptcp_subflow_eof(struct sock *sk)
794 {
795 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
796 		mptcp_schedule_work(sk);
797 }
798 
799 static void mptcp_check_for_eof(struct mptcp_sock *msk)
800 {
801 	struct mptcp_subflow_context *subflow;
802 	struct sock *sk = (struct sock *)msk;
803 	int receivers = 0;
804 
805 	mptcp_for_each_subflow(msk, subflow)
806 		receivers += !subflow->rx_eof;
807 	if (receivers)
808 		return;
809 
810 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
811 		/* hopefully temporary hack: propagate shutdown status
812 		 * to msk, when all subflows agree on it
813 		 */
814 		sk->sk_shutdown |= RCV_SHUTDOWN;
815 
816 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
817 		set_bit(MPTCP_DATA_READY, &msk->flags);
818 		sk->sk_data_ready(sk);
819 	}
820 
821 	switch (sk->sk_state) {
822 	case TCP_ESTABLISHED:
823 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
824 		break;
825 	case TCP_FIN_WAIT1:
826 		inet_sk_state_store(sk, TCP_CLOSING);
827 		break;
828 	case TCP_FIN_WAIT2:
829 		inet_sk_state_store(sk, TCP_CLOSE);
830 		break;
831 	default:
832 		return;
833 	}
834 	mptcp_close_wake_up(sk);
835 }
836 
837 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
838 {
839 	struct mptcp_subflow_context *subflow;
840 	struct sock *sk = (struct sock *)msk;
841 
842 	sock_owned_by_me(sk);
843 
844 	mptcp_for_each_subflow(msk, subflow) {
845 		if (subflow->data_avail)
846 			return mptcp_subflow_tcp_sock(subflow);
847 	}
848 
849 	return NULL;
850 }
851 
852 static bool mptcp_skb_can_collapse_to(u64 write_seq,
853 				      const struct sk_buff *skb,
854 				      const struct mptcp_ext *mpext)
855 {
856 	if (!tcp_skb_can_collapse_to(skb))
857 		return false;
858 
859 	/* can collapse only if MPTCP level sequence is in order and this
860 	 * mapping has not been xmitted yet
861 	 */
862 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
863 	       !mpext->frozen;
864 }
865 
866 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
867 				       const struct page_frag *pfrag,
868 				       const struct mptcp_data_frag *df)
869 {
870 	return df && pfrag->page == df->page &&
871 		pfrag->size - pfrag->offset > 0 &&
872 		df->data_seq + df->data_len == msk->write_seq;
873 }
874 
875 static int mptcp_wmem_with_overhead(struct sock *sk, int size)
876 {
877 	struct mptcp_sock *msk = mptcp_sk(sk);
878 	int ret, skbs;
879 
880 	ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
881 	skbs = (msk->tx_pending_data + size) / msk->size_goal_cache;
882 	if (skbs < msk->skb_tx_cache.qlen)
883 		return ret;
884 
885 	return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER);
886 }
887 
888 static void __mptcp_wmem_reserve(struct sock *sk, int size)
889 {
890 	int amount = mptcp_wmem_with_overhead(sk, size);
891 	struct mptcp_sock *msk = mptcp_sk(sk);
892 
893 	WARN_ON_ONCE(msk->wmem_reserved);
894 	if (WARN_ON_ONCE(amount < 0))
895 		amount = 0;
896 
897 	if (amount <= sk->sk_forward_alloc)
898 		goto reserve;
899 
900 	/* under memory pressure try to reserve at most a single page
901 	 * otherwise try to reserve the full estimate and fallback
902 	 * to a single page before entering the error path
903 	 */
904 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
905 	    !sk_wmem_schedule(sk, amount)) {
906 		if (amount <= PAGE_SIZE)
907 			goto nomem;
908 
909 		amount = PAGE_SIZE;
910 		if (!sk_wmem_schedule(sk, amount))
911 			goto nomem;
912 	}
913 
914 reserve:
915 	msk->wmem_reserved = amount;
916 	sk->sk_forward_alloc -= amount;
917 	return;
918 
919 nomem:
920 	/* we will wait for memory on next allocation */
921 	msk->wmem_reserved = -1;
922 }
923 
924 static void __mptcp_update_wmem(struct sock *sk)
925 {
926 	struct mptcp_sock *msk = mptcp_sk(sk);
927 
928 	if (!msk->wmem_reserved)
929 		return;
930 
931 	if (msk->wmem_reserved < 0)
932 		msk->wmem_reserved = 0;
933 	if (msk->wmem_reserved > 0) {
934 		sk->sk_forward_alloc += msk->wmem_reserved;
935 		msk->wmem_reserved = 0;
936 	}
937 }
938 
939 static bool mptcp_wmem_alloc(struct sock *sk, int size)
940 {
941 	struct mptcp_sock *msk = mptcp_sk(sk);
942 
943 	/* check for pre-existing error condition */
944 	if (msk->wmem_reserved < 0)
945 		return false;
946 
947 	if (msk->wmem_reserved >= size)
948 		goto account;
949 
950 	mptcp_data_lock(sk);
951 	if (!sk_wmem_schedule(sk, size)) {
952 		mptcp_data_unlock(sk);
953 		return false;
954 	}
955 
956 	sk->sk_forward_alloc -= size;
957 	msk->wmem_reserved += size;
958 	mptcp_data_unlock(sk);
959 
960 account:
961 	msk->wmem_reserved -= size;
962 	return true;
963 }
964 
965 static void mptcp_wmem_uncharge(struct sock *sk, int size)
966 {
967 	struct mptcp_sock *msk = mptcp_sk(sk);
968 
969 	if (msk->wmem_reserved < 0)
970 		msk->wmem_reserved = 0;
971 	msk->wmem_reserved += size;
972 }
973 
974 static void mptcp_mem_reclaim_partial(struct sock *sk)
975 {
976 	struct mptcp_sock *msk = mptcp_sk(sk);
977 
978 	/* if we are experiencing a transint allocation error,
979 	 * the forward allocation memory has been already
980 	 * released
981 	 */
982 	if (msk->wmem_reserved < 0)
983 		return;
984 
985 	mptcp_data_lock(sk);
986 	sk->sk_forward_alloc += msk->wmem_reserved;
987 	sk_mem_reclaim_partial(sk);
988 	msk->wmem_reserved = sk->sk_forward_alloc;
989 	sk->sk_forward_alloc = 0;
990 	mptcp_data_unlock(sk);
991 }
992 
993 static void dfrag_uncharge(struct sock *sk, int len)
994 {
995 	sk_mem_uncharge(sk, len);
996 	sk_wmem_queued_add(sk, -len);
997 }
998 
999 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1000 {
1001 	int len = dfrag->data_len + dfrag->overhead;
1002 
1003 	list_del(&dfrag->list);
1004 	dfrag_uncharge(sk, len);
1005 	put_page(dfrag->page);
1006 }
1007 
1008 static void __mptcp_clean_una(struct sock *sk)
1009 {
1010 	struct mptcp_sock *msk = mptcp_sk(sk);
1011 	struct mptcp_data_frag *dtmp, *dfrag;
1012 	bool cleaned = false;
1013 	u64 snd_una;
1014 
1015 	/* on fallback we just need to ignore snd_una, as this is really
1016 	 * plain TCP
1017 	 */
1018 	if (__mptcp_check_fallback(msk))
1019 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1020 
1021 	snd_una = msk->snd_una;
1022 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1023 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1024 			break;
1025 
1026 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1027 			break;
1028 		dfrag_clear(sk, dfrag);
1029 		cleaned = true;
1030 	}
1031 
1032 	dfrag = mptcp_rtx_head(sk);
1033 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1034 		u64 delta = snd_una - dfrag->data_seq;
1035 
1036 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1037 			goto out;
1038 
1039 		dfrag->data_seq += delta;
1040 		dfrag->offset += delta;
1041 		dfrag->data_len -= delta;
1042 		dfrag->already_sent -= delta;
1043 
1044 		dfrag_uncharge(sk, delta);
1045 		cleaned = true;
1046 	}
1047 
1048 out:
1049 	if (cleaned) {
1050 		if (tcp_under_memory_pressure(sk)) {
1051 			__mptcp_update_wmem(sk);
1052 			sk_mem_reclaim_partial(sk);
1053 		}
1054 	}
1055 
1056 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1057 		if (msk->timer_ival)
1058 			mptcp_stop_timer(sk);
1059 	} else {
1060 		mptcp_reset_timer(sk);
1061 	}
1062 }
1063 
1064 static void __mptcp_clean_una_wakeup(struct sock *sk)
1065 {
1066 	__mptcp_clean_una(sk);
1067 	mptcp_write_space(sk);
1068 }
1069 
1070 static void mptcp_enter_memory_pressure(struct sock *sk)
1071 {
1072 	struct mptcp_subflow_context *subflow;
1073 	struct mptcp_sock *msk = mptcp_sk(sk);
1074 	bool first = true;
1075 
1076 	sk_stream_moderate_sndbuf(sk);
1077 	mptcp_for_each_subflow(msk, subflow) {
1078 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1079 
1080 		if (first)
1081 			tcp_enter_memory_pressure(ssk);
1082 		sk_stream_moderate_sndbuf(ssk);
1083 		first = false;
1084 	}
1085 }
1086 
1087 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1088  * data
1089  */
1090 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1091 {
1092 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1093 					pfrag, sk->sk_allocation)))
1094 		return true;
1095 
1096 	mptcp_enter_memory_pressure(sk);
1097 	return false;
1098 }
1099 
1100 static struct mptcp_data_frag *
1101 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1102 		      int orig_offset)
1103 {
1104 	int offset = ALIGN(orig_offset, sizeof(long));
1105 	struct mptcp_data_frag *dfrag;
1106 
1107 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1108 	dfrag->data_len = 0;
1109 	dfrag->data_seq = msk->write_seq;
1110 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1111 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1112 	dfrag->already_sent = 0;
1113 	dfrag->page = pfrag->page;
1114 
1115 	return dfrag;
1116 }
1117 
1118 struct mptcp_sendmsg_info {
1119 	int mss_now;
1120 	int size_goal;
1121 	u16 limit;
1122 	u16 sent;
1123 	unsigned int flags;
1124 };
1125 
1126 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1127 				    int avail_size)
1128 {
1129 	u64 window_end = mptcp_wnd_end(msk);
1130 
1131 	if (__mptcp_check_fallback(msk))
1132 		return avail_size;
1133 
1134 	if (!before64(data_seq + avail_size, window_end)) {
1135 		u64 allowed_size = window_end - data_seq;
1136 
1137 		return min_t(unsigned int, allowed_size, avail_size);
1138 	}
1139 
1140 	return avail_size;
1141 }
1142 
1143 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1144 {
1145 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1146 
1147 	if (!mpext)
1148 		return false;
1149 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1150 	return true;
1151 }
1152 
1153 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1154 {
1155 	struct sk_buff *skb;
1156 
1157 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1158 	if (likely(skb)) {
1159 		if (likely(__mptcp_add_ext(skb, gfp))) {
1160 			skb_reserve(skb, MAX_TCP_HEADER);
1161 			skb->reserved_tailroom = skb->end - skb->tail;
1162 			return skb;
1163 		}
1164 		__kfree_skb(skb);
1165 	} else {
1166 		mptcp_enter_memory_pressure(sk);
1167 	}
1168 	return NULL;
1169 }
1170 
1171 static bool mptcp_tx_cache_refill(struct sock *sk, int size,
1172 				  struct sk_buff_head *skbs, int *total_ts)
1173 {
1174 	struct mptcp_sock *msk = mptcp_sk(sk);
1175 	struct sk_buff *skb;
1176 	int space_needed;
1177 
1178 	if (unlikely(tcp_under_memory_pressure(sk))) {
1179 		mptcp_mem_reclaim_partial(sk);
1180 
1181 		/* under pressure pre-allocate at most a single skb */
1182 		if (msk->skb_tx_cache.qlen)
1183 			return true;
1184 		space_needed = msk->size_goal_cache;
1185 	} else {
1186 		space_needed = msk->tx_pending_data + size -
1187 			       msk->skb_tx_cache.qlen * msk->size_goal_cache;
1188 	}
1189 
1190 	while (space_needed > 0) {
1191 		skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation);
1192 		if (unlikely(!skb)) {
1193 			/* under memory pressure, try to pass the caller a
1194 			 * single skb to allow forward progress
1195 			 */
1196 			while (skbs->qlen > 1) {
1197 				skb = __skb_dequeue_tail(skbs);
1198 				*total_ts -= skb->truesize;
1199 				__kfree_skb(skb);
1200 			}
1201 			return skbs->qlen > 0;
1202 		}
1203 
1204 		*total_ts += skb->truesize;
1205 		__skb_queue_tail(skbs, skb);
1206 		space_needed -= msk->size_goal_cache;
1207 	}
1208 	return true;
1209 }
1210 
1211 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1212 {
1213 	struct mptcp_sock *msk = mptcp_sk(sk);
1214 	struct sk_buff *skb;
1215 
1216 	if (ssk->sk_tx_skb_cache) {
1217 		skb = ssk->sk_tx_skb_cache;
1218 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1219 			     !__mptcp_add_ext(skb, gfp)))
1220 			return false;
1221 		return true;
1222 	}
1223 
1224 	skb = skb_peek(&msk->skb_tx_cache);
1225 	if (skb) {
1226 		if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1227 			skb = __skb_dequeue(&msk->skb_tx_cache);
1228 			if (WARN_ON_ONCE(!skb))
1229 				return false;
1230 
1231 			mptcp_wmem_uncharge(sk, skb->truesize);
1232 			ssk->sk_tx_skb_cache = skb;
1233 			return true;
1234 		}
1235 
1236 		/* over memory limit, no point to try to allocate a new skb */
1237 		return false;
1238 	}
1239 
1240 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1241 	if (!skb)
1242 		return false;
1243 
1244 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1245 		ssk->sk_tx_skb_cache = skb;
1246 		return true;
1247 	}
1248 	kfree_skb(skb);
1249 	return false;
1250 }
1251 
1252 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1253 {
1254 	return !ssk->sk_tx_skb_cache &&
1255 	       !skb_peek(&mptcp_sk(sk)->skb_tx_cache) &&
1256 	       tcp_under_memory_pressure(sk);
1257 }
1258 
1259 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1260 {
1261 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1262 		mptcp_mem_reclaim_partial(sk);
1263 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1264 }
1265 
1266 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1267 			      struct mptcp_data_frag *dfrag,
1268 			      struct mptcp_sendmsg_info *info)
1269 {
1270 	u64 data_seq = dfrag->data_seq + info->sent;
1271 	struct mptcp_sock *msk = mptcp_sk(sk);
1272 	bool zero_window_probe = false;
1273 	struct mptcp_ext *mpext = NULL;
1274 	struct sk_buff *skb, *tail;
1275 	bool can_collapse = false;
1276 	int size_bias = 0;
1277 	int avail_size;
1278 	size_t ret = 0;
1279 
1280 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%lld len=%d already sent=%d",
1281 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1282 
1283 	/* compute send limit */
1284 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1285 	avail_size = info->size_goal;
1286 	msk->size_goal_cache = info->size_goal;
1287 	skb = tcp_write_queue_tail(ssk);
1288 	if (skb) {
1289 		/* Limit the write to the size available in the
1290 		 * current skb, if any, so that we create at most a new skb.
1291 		 * Explicitly tells TCP internals to avoid collapsing on later
1292 		 * queue management operation, to avoid breaking the ext <->
1293 		 * SSN association set here
1294 		 */
1295 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1296 		can_collapse = (info->size_goal - skb->len > 0) &&
1297 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1298 		if (!can_collapse) {
1299 			TCP_SKB_CB(skb)->eor = 1;
1300 		} else {
1301 			size_bias = skb->len;
1302 			avail_size = info->size_goal - skb->len;
1303 		}
1304 	}
1305 
1306 	/* Zero window and all data acked? Probe. */
1307 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1308 	if (avail_size == 0) {
1309 		u64 snd_una = READ_ONCE(msk->snd_una);
1310 
1311 		if (skb || snd_una != msk->snd_nxt)
1312 			return 0;
1313 		zero_window_probe = true;
1314 		data_seq = snd_una - 1;
1315 		avail_size = 1;
1316 	}
1317 
1318 	if (WARN_ON_ONCE(info->sent > info->limit ||
1319 			 info->limit > dfrag->data_len))
1320 		return 0;
1321 
1322 	ret = info->limit - info->sent;
1323 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1324 			      dfrag->page, dfrag->offset + info->sent, &ret);
1325 	if (!tail) {
1326 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1327 		return -ENOMEM;
1328 	}
1329 
1330 	/* if the tail skb is still the cached one, collapsing really happened.
1331 	 */
1332 	if (skb == tail) {
1333 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1334 		mpext->data_len += ret;
1335 		WARN_ON_ONCE(!can_collapse);
1336 		WARN_ON_ONCE(zero_window_probe);
1337 		goto out;
1338 	}
1339 
1340 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1341 	if (WARN_ON_ONCE(!mpext)) {
1342 		/* should never reach here, stream corrupted */
1343 		return -EINVAL;
1344 	}
1345 
1346 	memset(mpext, 0, sizeof(*mpext));
1347 	mpext->data_seq = data_seq;
1348 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1349 	mpext->data_len = ret;
1350 	mpext->use_map = 1;
1351 	mpext->dsn64 = 1;
1352 
1353 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1354 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1355 		 mpext->dsn64);
1356 
1357 	if (zero_window_probe) {
1358 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1359 		mpext->frozen = 1;
1360 		ret = 0;
1361 		tcp_push_pending_frames(ssk);
1362 	}
1363 out:
1364 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1365 	return ret;
1366 }
1367 
1368 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1369 					 sizeof(struct tcphdr) - \
1370 					 MAX_TCP_OPTION_SPACE - \
1371 					 sizeof(struct ipv6hdr) - \
1372 					 sizeof(struct frag_hdr))
1373 
1374 struct subflow_send_info {
1375 	struct sock *ssk;
1376 	u64 ratio;
1377 };
1378 
1379 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1380 {
1381 	struct subflow_send_info send_info[2];
1382 	struct mptcp_subflow_context *subflow;
1383 	int i, nr_active = 0;
1384 	struct sock *ssk;
1385 	u64 ratio;
1386 	u32 pace;
1387 
1388 	sock_owned_by_me((struct sock *)msk);
1389 
1390 	if (__mptcp_check_fallback(msk)) {
1391 		if (!msk->first)
1392 			return NULL;
1393 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1394 	}
1395 
1396 	/* re-use last subflow, if the burst allow that */
1397 	if (msk->last_snd && msk->snd_burst > 0 &&
1398 	    sk_stream_memory_free(msk->last_snd) &&
1399 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1400 		return msk->last_snd;
1401 
1402 	/* pick the subflow with the lower wmem/wspace ratio */
1403 	for (i = 0; i < 2; ++i) {
1404 		send_info[i].ssk = NULL;
1405 		send_info[i].ratio = -1;
1406 	}
1407 	mptcp_for_each_subflow(msk, subflow) {
1408 		ssk =  mptcp_subflow_tcp_sock(subflow);
1409 		if (!mptcp_subflow_active(subflow))
1410 			continue;
1411 
1412 		nr_active += !subflow->backup;
1413 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1414 			continue;
1415 
1416 		pace = READ_ONCE(ssk->sk_pacing_rate);
1417 		if (!pace)
1418 			continue;
1419 
1420 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1421 				pace);
1422 		if (ratio < send_info[subflow->backup].ratio) {
1423 			send_info[subflow->backup].ssk = ssk;
1424 			send_info[subflow->backup].ratio = ratio;
1425 		}
1426 	}
1427 
1428 	pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld",
1429 		 msk, nr_active, send_info[0].ssk, send_info[0].ratio,
1430 		 send_info[1].ssk, send_info[1].ratio);
1431 
1432 	/* pick the best backup if no other subflow is active */
1433 	if (!nr_active)
1434 		send_info[0].ssk = send_info[1].ssk;
1435 
1436 	if (send_info[0].ssk) {
1437 		msk->last_snd = send_info[0].ssk;
1438 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1439 				       tcp_sk(msk->last_snd)->snd_wnd);
1440 		return msk->last_snd;
1441 	}
1442 
1443 	return NULL;
1444 }
1445 
1446 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1447 			       struct mptcp_sendmsg_info *info)
1448 {
1449 	mptcp_set_timeout(sk, ssk);
1450 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1451 	release_sock(ssk);
1452 }
1453 
1454 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1455 {
1456 	struct sock *prev_ssk = NULL, *ssk = NULL;
1457 	struct mptcp_sock *msk = mptcp_sk(sk);
1458 	struct mptcp_sendmsg_info info = {
1459 				.flags = flags,
1460 	};
1461 	struct mptcp_data_frag *dfrag;
1462 	int len, copied = 0;
1463 
1464 	while ((dfrag = mptcp_send_head(sk))) {
1465 		info.sent = dfrag->already_sent;
1466 		info.limit = dfrag->data_len;
1467 		len = dfrag->data_len - dfrag->already_sent;
1468 		while (len > 0) {
1469 			int ret = 0;
1470 
1471 			prev_ssk = ssk;
1472 			__mptcp_flush_join_list(msk);
1473 			ssk = mptcp_subflow_get_send(msk);
1474 
1475 			/* try to keep the subflow socket lock across
1476 			 * consecutive xmit on the same socket
1477 			 */
1478 			if (ssk != prev_ssk && prev_ssk)
1479 				mptcp_push_release(sk, prev_ssk, &info);
1480 			if (!ssk)
1481 				goto out;
1482 
1483 			if (ssk != prev_ssk || !prev_ssk)
1484 				lock_sock(ssk);
1485 
1486 			/* keep it simple and always provide a new skb for the
1487 			 * subflow, even if we will not use it when collapsing
1488 			 * on the pending one
1489 			 */
1490 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1491 				mptcp_push_release(sk, ssk, &info);
1492 				goto out;
1493 			}
1494 
1495 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1496 			if (ret <= 0) {
1497 				mptcp_push_release(sk, ssk, &info);
1498 				goto out;
1499 			}
1500 
1501 			info.sent += ret;
1502 			dfrag->already_sent += ret;
1503 			msk->snd_nxt += ret;
1504 			msk->snd_burst -= ret;
1505 			msk->tx_pending_data -= ret;
1506 			copied += ret;
1507 			len -= ret;
1508 		}
1509 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1510 	}
1511 
1512 	/* at this point we held the socket lock for the last subflow we used */
1513 	if (ssk)
1514 		mptcp_push_release(sk, ssk, &info);
1515 
1516 out:
1517 	if (copied) {
1518 		/* start the timer, if it's not pending */
1519 		if (!mptcp_timer_pending(sk))
1520 			mptcp_reset_timer(sk);
1521 		__mptcp_check_send_data_fin(sk);
1522 	}
1523 }
1524 
1525 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1526 {
1527 	struct mptcp_sock *msk = mptcp_sk(sk);
1528 	struct mptcp_sendmsg_info info;
1529 	struct mptcp_data_frag *dfrag;
1530 	struct sock *xmit_ssk;
1531 	int len, copied = 0;
1532 	bool first = true;
1533 
1534 	info.flags = 0;
1535 	while ((dfrag = mptcp_send_head(sk))) {
1536 		info.sent = dfrag->already_sent;
1537 		info.limit = dfrag->data_len;
1538 		len = dfrag->data_len - dfrag->already_sent;
1539 		while (len > 0) {
1540 			int ret = 0;
1541 
1542 			/* the caller already invoked the packet scheduler,
1543 			 * check for a different subflow usage only after
1544 			 * spooling the first chunk of data
1545 			 */
1546 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1547 			if (!xmit_ssk)
1548 				goto out;
1549 			if (xmit_ssk != ssk) {
1550 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1551 				goto out;
1552 			}
1553 
1554 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1555 				__mptcp_update_wmem(sk);
1556 				sk_mem_reclaim_partial(sk);
1557 			}
1558 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1559 				goto out;
1560 
1561 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1562 			if (ret <= 0)
1563 				goto out;
1564 
1565 			info.sent += ret;
1566 			dfrag->already_sent += ret;
1567 			msk->snd_nxt += ret;
1568 			msk->snd_burst -= ret;
1569 			msk->tx_pending_data -= ret;
1570 			copied += ret;
1571 			len -= ret;
1572 			first = false;
1573 		}
1574 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1575 	}
1576 
1577 out:
1578 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1579 	 * not going to flush it via release_sock()
1580 	 */
1581 	__mptcp_update_wmem(sk);
1582 	if (copied) {
1583 		mptcp_set_timeout(sk, ssk);
1584 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1585 			 info.size_goal);
1586 		if (!mptcp_timer_pending(sk))
1587 			mptcp_reset_timer(sk);
1588 
1589 		if (msk->snd_data_fin_enable &&
1590 		    msk->snd_nxt + 1 == msk->write_seq)
1591 			mptcp_schedule_work(sk);
1592 	}
1593 }
1594 
1595 static void mptcp_set_nospace(struct sock *sk)
1596 {
1597 	/* enable autotune */
1598 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1599 
1600 	/* will be cleared on avail space */
1601 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1602 }
1603 
1604 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1605 {
1606 	struct mptcp_sock *msk = mptcp_sk(sk);
1607 	struct page_frag *pfrag;
1608 	size_t copied = 0;
1609 	int ret = 0;
1610 	long timeo;
1611 
1612 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
1613 		return -EOPNOTSUPP;
1614 
1615 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1616 
1617 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1618 
1619 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1620 		ret = sk_stream_wait_connect(sk, &timeo);
1621 		if (ret)
1622 			goto out;
1623 	}
1624 
1625 	pfrag = sk_page_frag(sk);
1626 
1627 	while (msg_data_left(msg)) {
1628 		int total_ts, frag_truesize = 0;
1629 		struct mptcp_data_frag *dfrag;
1630 		struct sk_buff_head skbs;
1631 		bool dfrag_collapsed;
1632 		size_t psize, offset;
1633 
1634 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1635 			ret = -EPIPE;
1636 			goto out;
1637 		}
1638 
1639 		/* reuse tail pfrag, if possible, or carve a new one from the
1640 		 * page allocator
1641 		 */
1642 		dfrag = mptcp_pending_tail(sk);
1643 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1644 		if (!dfrag_collapsed) {
1645 			if (!sk_stream_memory_free(sk))
1646 				goto wait_for_memory;
1647 
1648 			if (!mptcp_page_frag_refill(sk, pfrag))
1649 				goto wait_for_memory;
1650 
1651 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1652 			frag_truesize = dfrag->overhead;
1653 		}
1654 
1655 		/* we do not bound vs wspace, to allow a single packet.
1656 		 * memory accounting will prevent execessive memory usage
1657 		 * anyway
1658 		 */
1659 		offset = dfrag->offset + dfrag->data_len;
1660 		psize = pfrag->size - offset;
1661 		psize = min_t(size_t, psize, msg_data_left(msg));
1662 		total_ts = psize + frag_truesize;
1663 		__skb_queue_head_init(&skbs);
1664 		if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts))
1665 			goto wait_for_memory;
1666 
1667 		if (!mptcp_wmem_alloc(sk, total_ts)) {
1668 			__skb_queue_purge(&skbs);
1669 			goto wait_for_memory;
1670 		}
1671 
1672 		skb_queue_splice_tail(&skbs, &msk->skb_tx_cache);
1673 		if (copy_page_from_iter(dfrag->page, offset, psize,
1674 					&msg->msg_iter) != psize) {
1675 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1676 			ret = -EFAULT;
1677 			goto out;
1678 		}
1679 
1680 		/* data successfully copied into the write queue */
1681 		copied += psize;
1682 		dfrag->data_len += psize;
1683 		frag_truesize += psize;
1684 		pfrag->offset += frag_truesize;
1685 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1686 		msk->tx_pending_data += psize;
1687 
1688 		/* charge data on mptcp pending queue to the msk socket
1689 		 * Note: we charge such data both to sk and ssk
1690 		 */
1691 		sk_wmem_queued_add(sk, frag_truesize);
1692 		if (!dfrag_collapsed) {
1693 			get_page(dfrag->page);
1694 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1695 			if (!msk->first_pending)
1696 				WRITE_ONCE(msk->first_pending, dfrag);
1697 		}
1698 		pr_debug("msk=%p dfrag at seq=%lld len=%d sent=%d new=%d", msk,
1699 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1700 			 !dfrag_collapsed);
1701 
1702 		continue;
1703 
1704 wait_for_memory:
1705 		mptcp_set_nospace(sk);
1706 		__mptcp_push_pending(sk, msg->msg_flags);
1707 		ret = sk_stream_wait_memory(sk, &timeo);
1708 		if (ret)
1709 			goto out;
1710 	}
1711 
1712 	if (copied)
1713 		__mptcp_push_pending(sk, msg->msg_flags);
1714 
1715 out:
1716 	release_sock(sk);
1717 	return copied ? : ret;
1718 }
1719 
1720 static void mptcp_wait_data(struct sock *sk, long *timeo)
1721 {
1722 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1723 	struct mptcp_sock *msk = mptcp_sk(sk);
1724 
1725 	add_wait_queue(sk_sleep(sk), &wait);
1726 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1727 
1728 	sk_wait_event(sk, timeo,
1729 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1730 
1731 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1732 	remove_wait_queue(sk_sleep(sk), &wait);
1733 }
1734 
1735 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1736 				struct msghdr *msg,
1737 				size_t len)
1738 {
1739 	struct sk_buff *skb;
1740 	int copied = 0;
1741 
1742 	while ((skb = skb_peek(&msk->receive_queue)) != NULL) {
1743 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1744 		u32 data_len = skb->len - offset;
1745 		u32 count = min_t(size_t, len - copied, data_len);
1746 		int err;
1747 
1748 		err = skb_copy_datagram_msg(skb, offset, msg, count);
1749 		if (unlikely(err < 0)) {
1750 			if (!copied)
1751 				return err;
1752 			break;
1753 		}
1754 
1755 		copied += count;
1756 
1757 		if (count < data_len) {
1758 			MPTCP_SKB_CB(skb)->offset += count;
1759 			break;
1760 		}
1761 
1762 		/* we will bulk release the skb memory later */
1763 		skb->destructor = NULL;
1764 		msk->rmem_released += skb->truesize;
1765 		__skb_unlink(skb, &msk->receive_queue);
1766 		__kfree_skb(skb);
1767 
1768 		if (copied >= len)
1769 			break;
1770 	}
1771 
1772 	return copied;
1773 }
1774 
1775 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1776  *
1777  * Only difference: Use highest rtt estimate of the subflows in use.
1778  */
1779 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1780 {
1781 	struct mptcp_subflow_context *subflow;
1782 	struct sock *sk = (struct sock *)msk;
1783 	u32 time, advmss = 1;
1784 	u64 rtt_us, mstamp;
1785 
1786 	sock_owned_by_me(sk);
1787 
1788 	if (copied <= 0)
1789 		return;
1790 
1791 	msk->rcvq_space.copied += copied;
1792 
1793 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1794 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1795 
1796 	rtt_us = msk->rcvq_space.rtt_us;
1797 	if (rtt_us && time < (rtt_us >> 3))
1798 		return;
1799 
1800 	rtt_us = 0;
1801 	mptcp_for_each_subflow(msk, subflow) {
1802 		const struct tcp_sock *tp;
1803 		u64 sf_rtt_us;
1804 		u32 sf_advmss;
1805 
1806 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1807 
1808 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1809 		sf_advmss = READ_ONCE(tp->advmss);
1810 
1811 		rtt_us = max(sf_rtt_us, rtt_us);
1812 		advmss = max(sf_advmss, advmss);
1813 	}
1814 
1815 	msk->rcvq_space.rtt_us = rtt_us;
1816 	if (time < (rtt_us >> 3) || rtt_us == 0)
1817 		return;
1818 
1819 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1820 		goto new_measure;
1821 
1822 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1823 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1824 		int rcvmem, rcvbuf;
1825 		u64 rcvwin, grow;
1826 
1827 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1828 
1829 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1830 
1831 		do_div(grow, msk->rcvq_space.space);
1832 		rcvwin += (grow << 1);
1833 
1834 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1835 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1836 			rcvmem += 128;
1837 
1838 		do_div(rcvwin, advmss);
1839 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1840 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1841 
1842 		if (rcvbuf > sk->sk_rcvbuf) {
1843 			u32 window_clamp;
1844 
1845 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1846 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1847 
1848 			/* Make subflows follow along.  If we do not do this, we
1849 			 * get drops at subflow level if skbs can't be moved to
1850 			 * the mptcp rx queue fast enough (announced rcv_win can
1851 			 * exceed ssk->sk_rcvbuf).
1852 			 */
1853 			mptcp_for_each_subflow(msk, subflow) {
1854 				struct sock *ssk;
1855 				bool slow;
1856 
1857 				ssk = mptcp_subflow_tcp_sock(subflow);
1858 				slow = lock_sock_fast(ssk);
1859 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1860 				tcp_sk(ssk)->window_clamp = window_clamp;
1861 				tcp_cleanup_rbuf(ssk, 1);
1862 				unlock_sock_fast(ssk, slow);
1863 			}
1864 		}
1865 	}
1866 
1867 	msk->rcvq_space.space = msk->rcvq_space.copied;
1868 new_measure:
1869 	msk->rcvq_space.copied = 0;
1870 	msk->rcvq_space.time = mstamp;
1871 }
1872 
1873 static void __mptcp_update_rmem(struct sock *sk)
1874 {
1875 	struct mptcp_sock *msk = mptcp_sk(sk);
1876 
1877 	if (!msk->rmem_released)
1878 		return;
1879 
1880 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1881 	sk_mem_uncharge(sk, msk->rmem_released);
1882 	msk->rmem_released = 0;
1883 }
1884 
1885 static void __mptcp_splice_receive_queue(struct sock *sk)
1886 {
1887 	struct mptcp_sock *msk = mptcp_sk(sk);
1888 
1889 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1890 }
1891 
1892 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1893 {
1894 	struct sock *sk = (struct sock *)msk;
1895 	unsigned int moved = 0;
1896 	bool ret, done;
1897 
1898 	__mptcp_flush_join_list(msk);
1899 	do {
1900 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1901 		bool slowpath;
1902 
1903 		/* we can have data pending in the subflows only if the msk
1904 		 * receive buffer was full at subflow_data_ready() time,
1905 		 * that is an unlikely slow path.
1906 		 */
1907 		if (likely(!ssk))
1908 			break;
1909 
1910 		slowpath = lock_sock_fast(ssk);
1911 		mptcp_data_lock(sk);
1912 		__mptcp_update_rmem(sk);
1913 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1914 		mptcp_data_unlock(sk);
1915 		tcp_cleanup_rbuf(ssk, moved);
1916 		unlock_sock_fast(ssk, slowpath);
1917 	} while (!done);
1918 
1919 	/* acquire the data lock only if some input data is pending */
1920 	ret = moved > 0;
1921 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1922 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1923 		mptcp_data_lock(sk);
1924 		__mptcp_update_rmem(sk);
1925 		ret |= __mptcp_ofo_queue(msk);
1926 		__mptcp_splice_receive_queue(sk);
1927 		mptcp_data_unlock(sk);
1928 		mptcp_cleanup_rbuf(msk);
1929 	}
1930 	if (ret)
1931 		mptcp_check_data_fin((struct sock *)msk);
1932 	return !skb_queue_empty(&msk->receive_queue);
1933 }
1934 
1935 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1936 			 int nonblock, int flags, int *addr_len)
1937 {
1938 	struct mptcp_sock *msk = mptcp_sk(sk);
1939 	int copied = 0;
1940 	int target;
1941 	long timeo;
1942 
1943 	if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
1944 		return -EOPNOTSUPP;
1945 
1946 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1947 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1948 		copied = -ENOTCONN;
1949 		goto out_err;
1950 	}
1951 
1952 	timeo = sock_rcvtimeo(sk, nonblock);
1953 
1954 	len = min_t(size_t, len, INT_MAX);
1955 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1956 
1957 	while (copied < len) {
1958 		int bytes_read;
1959 
1960 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
1961 		if (unlikely(bytes_read < 0)) {
1962 			if (!copied)
1963 				copied = bytes_read;
1964 			goto out_err;
1965 		}
1966 
1967 		copied += bytes_read;
1968 
1969 		/* be sure to advertise window change */
1970 		mptcp_cleanup_rbuf(msk);
1971 
1972 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
1973 			continue;
1974 
1975 		/* only the master socket status is relevant here. The exit
1976 		 * conditions mirror closely tcp_recvmsg()
1977 		 */
1978 		if (copied >= target)
1979 			break;
1980 
1981 		if (copied) {
1982 			if (sk->sk_err ||
1983 			    sk->sk_state == TCP_CLOSE ||
1984 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1985 			    !timeo ||
1986 			    signal_pending(current))
1987 				break;
1988 		} else {
1989 			if (sk->sk_err) {
1990 				copied = sock_error(sk);
1991 				break;
1992 			}
1993 
1994 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1995 				mptcp_check_for_eof(msk);
1996 
1997 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
1998 				/* race breaker: the shutdown could be after the
1999 				 * previous receive queue check
2000 				 */
2001 				if (__mptcp_move_skbs(msk))
2002 					continue;
2003 				break;
2004 			}
2005 
2006 			if (sk->sk_state == TCP_CLOSE) {
2007 				copied = -ENOTCONN;
2008 				break;
2009 			}
2010 
2011 			if (!timeo) {
2012 				copied = -EAGAIN;
2013 				break;
2014 			}
2015 
2016 			if (signal_pending(current)) {
2017 				copied = sock_intr_errno(timeo);
2018 				break;
2019 			}
2020 		}
2021 
2022 		pr_debug("block timeout %ld", timeo);
2023 		mptcp_wait_data(sk, &timeo);
2024 	}
2025 
2026 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2027 	    skb_queue_empty(&msk->receive_queue)) {
2028 		/* entire backlog drained, clear DATA_READY. */
2029 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2030 
2031 		/* .. race-breaker: ssk might have gotten new data
2032 		 * after last __mptcp_move_skbs() returned false.
2033 		 */
2034 		if (unlikely(__mptcp_move_skbs(msk)))
2035 			set_bit(MPTCP_DATA_READY, &msk->flags);
2036 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
2037 		/* data to read but mptcp_wait_data() cleared DATA_READY */
2038 		set_bit(MPTCP_DATA_READY, &msk->flags);
2039 	}
2040 out_err:
2041 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2042 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2043 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2044 	mptcp_rcv_space_adjust(msk, copied);
2045 
2046 	release_sock(sk);
2047 	return copied;
2048 }
2049 
2050 static void mptcp_retransmit_handler(struct sock *sk)
2051 {
2052 	struct mptcp_sock *msk = mptcp_sk(sk);
2053 
2054 	set_bit(MPTCP_WORK_RTX, &msk->flags);
2055 	mptcp_schedule_work(sk);
2056 }
2057 
2058 static void mptcp_retransmit_timer(struct timer_list *t)
2059 {
2060 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2061 						       icsk_retransmit_timer);
2062 	struct sock *sk = &icsk->icsk_inet.sk;
2063 
2064 	bh_lock_sock(sk);
2065 	if (!sock_owned_by_user(sk)) {
2066 		mptcp_retransmit_handler(sk);
2067 	} else {
2068 		/* delegate our work to tcp_release_cb() */
2069 		if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
2070 				      &sk->sk_tsq_flags))
2071 			sock_hold(sk);
2072 	}
2073 	bh_unlock_sock(sk);
2074 	sock_put(sk);
2075 }
2076 
2077 static void mptcp_timeout_timer(struct timer_list *t)
2078 {
2079 	struct sock *sk = from_timer(sk, t, sk_timer);
2080 
2081 	mptcp_schedule_work(sk);
2082 	sock_put(sk);
2083 }
2084 
2085 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2086  * level.
2087  *
2088  * A backup subflow is returned only if that is the only kind available.
2089  */
2090 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2091 {
2092 	struct mptcp_subflow_context *subflow;
2093 	struct sock *backup = NULL;
2094 
2095 	sock_owned_by_me((const struct sock *)msk);
2096 
2097 	if (__mptcp_check_fallback(msk))
2098 		return NULL;
2099 
2100 	mptcp_for_each_subflow(msk, subflow) {
2101 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2102 
2103 		if (!mptcp_subflow_active(subflow))
2104 			continue;
2105 
2106 		/* still data outstanding at TCP level?  Don't retransmit. */
2107 		if (!tcp_write_queue_empty(ssk)) {
2108 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2109 				continue;
2110 			return NULL;
2111 		}
2112 
2113 		if (subflow->backup) {
2114 			if (!backup)
2115 				backup = ssk;
2116 			continue;
2117 		}
2118 
2119 		return ssk;
2120 	}
2121 
2122 	return backup;
2123 }
2124 
2125 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2126 {
2127 	if (msk->subflow) {
2128 		iput(SOCK_INODE(msk->subflow));
2129 		msk->subflow = NULL;
2130 	}
2131 }
2132 
2133 /* subflow sockets can be either outgoing (connect) or incoming
2134  * (accept).
2135  *
2136  * Outgoing subflows use in-kernel sockets.
2137  * Incoming subflows do not have their own 'struct socket' allocated,
2138  * so we need to use tcp_close() after detaching them from the mptcp
2139  * parent socket.
2140  */
2141 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2142 			      struct mptcp_subflow_context *subflow)
2143 {
2144 	struct mptcp_sock *msk = mptcp_sk(sk);
2145 
2146 	list_del(&subflow->node);
2147 
2148 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2149 
2150 	/* if we are invoked by the msk cleanup code, the subflow is
2151 	 * already orphaned
2152 	 */
2153 	if (ssk->sk_socket)
2154 		sock_orphan(ssk);
2155 
2156 	subflow->disposable = 1;
2157 
2158 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2159 	 * the ssk has been already destroyed, we just need to release the
2160 	 * reference owned by msk;
2161 	 */
2162 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2163 		kfree_rcu(subflow, rcu);
2164 	} else {
2165 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2166 		__tcp_close(ssk, 0);
2167 
2168 		/* close acquired an extra ref */
2169 		__sock_put(ssk);
2170 	}
2171 	release_sock(ssk);
2172 
2173 	sock_put(ssk);
2174 
2175 	if (ssk == msk->last_snd)
2176 		msk->last_snd = NULL;
2177 
2178 	if (ssk == msk->ack_hint)
2179 		msk->ack_hint = NULL;
2180 
2181 	if (ssk == msk->first)
2182 		msk->first = NULL;
2183 
2184 	if (msk->subflow && ssk == msk->subflow->sk)
2185 		mptcp_dispose_initial_subflow(msk);
2186 }
2187 
2188 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2189 		     struct mptcp_subflow_context *subflow)
2190 {
2191 	if (sk->sk_state == TCP_ESTABLISHED)
2192 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2193 	__mptcp_close_ssk(sk, ssk, subflow);
2194 }
2195 
2196 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2197 {
2198 	return 0;
2199 }
2200 
2201 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2202 {
2203 	struct mptcp_subflow_context *subflow, *tmp;
2204 
2205 	might_sleep();
2206 
2207 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2208 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2209 
2210 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2211 			continue;
2212 
2213 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2214 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2215 			continue;
2216 
2217 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2218 	}
2219 }
2220 
2221 static bool mptcp_check_close_timeout(const struct sock *sk)
2222 {
2223 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2224 	struct mptcp_subflow_context *subflow;
2225 
2226 	if (delta >= TCP_TIMEWAIT_LEN)
2227 		return true;
2228 
2229 	/* if all subflows are in closed status don't bother with additional
2230 	 * timeout
2231 	 */
2232 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2233 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2234 		    TCP_CLOSE)
2235 			return false;
2236 	}
2237 	return true;
2238 }
2239 
2240 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2241 {
2242 	struct mptcp_subflow_context *subflow, *tmp;
2243 	struct sock *sk = &msk->sk.icsk_inet.sk;
2244 
2245 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2246 		return;
2247 
2248 	mptcp_token_destroy(msk);
2249 
2250 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2251 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2252 
2253 		lock_sock(tcp_sk);
2254 		if (tcp_sk->sk_state != TCP_CLOSE) {
2255 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2256 			tcp_set_state(tcp_sk, TCP_CLOSE);
2257 		}
2258 		release_sock(tcp_sk);
2259 	}
2260 
2261 	inet_sk_state_store(sk, TCP_CLOSE);
2262 	sk->sk_shutdown = SHUTDOWN_MASK;
2263 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2264 	set_bit(MPTCP_DATA_READY, &msk->flags);
2265 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2266 
2267 	mptcp_close_wake_up(sk);
2268 }
2269 
2270 static void __mptcp_retrans(struct sock *sk)
2271 {
2272 	struct mptcp_sock *msk = mptcp_sk(sk);
2273 	struct mptcp_sendmsg_info info = {};
2274 	struct mptcp_data_frag *dfrag;
2275 	size_t copied = 0;
2276 	struct sock *ssk;
2277 	int ret;
2278 
2279 	__mptcp_clean_una_wakeup(sk);
2280 	dfrag = mptcp_rtx_head(sk);
2281 	if (!dfrag)
2282 		return;
2283 
2284 	ssk = mptcp_subflow_get_retrans(msk);
2285 	if (!ssk)
2286 		goto reset_timer;
2287 
2288 	lock_sock(ssk);
2289 
2290 	/* limit retransmission to the bytes already sent on some subflows */
2291 	info.sent = 0;
2292 	info.limit = dfrag->already_sent;
2293 	while (info.sent < dfrag->already_sent) {
2294 		if (!mptcp_alloc_tx_skb(sk, ssk))
2295 			break;
2296 
2297 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2298 		if (ret <= 0)
2299 			break;
2300 
2301 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2302 		copied += ret;
2303 		info.sent += ret;
2304 	}
2305 	if (copied)
2306 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2307 			 info.size_goal);
2308 
2309 	mptcp_set_timeout(sk, ssk);
2310 	release_sock(ssk);
2311 
2312 reset_timer:
2313 	if (!mptcp_timer_pending(sk))
2314 		mptcp_reset_timer(sk);
2315 }
2316 
2317 static void mptcp_worker(struct work_struct *work)
2318 {
2319 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2320 	struct sock *sk = &msk->sk.icsk_inet.sk;
2321 	int state;
2322 
2323 	lock_sock(sk);
2324 	state = sk->sk_state;
2325 	if (unlikely(state == TCP_CLOSE))
2326 		goto unlock;
2327 
2328 	mptcp_check_data_fin_ack(sk);
2329 	__mptcp_flush_join_list(msk);
2330 
2331 	mptcp_check_fastclose(msk);
2332 
2333 	if (msk->pm.status)
2334 		mptcp_pm_nl_work(msk);
2335 
2336 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2337 		mptcp_check_for_eof(msk);
2338 
2339 	__mptcp_check_send_data_fin(sk);
2340 	mptcp_check_data_fin(sk);
2341 
2342 	/* There is no point in keeping around an orphaned sk timedout or
2343 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2344 	 * even if it is orphaned and in FIN_WAIT2 state
2345 	 */
2346 	if (sock_flag(sk, SOCK_DEAD) &&
2347 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2348 		inet_sk_state_store(sk, TCP_CLOSE);
2349 		__mptcp_destroy_sock(sk);
2350 		goto unlock;
2351 	}
2352 
2353 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2354 		__mptcp_close_subflow(msk);
2355 
2356 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2357 		__mptcp_retrans(sk);
2358 
2359 unlock:
2360 	release_sock(sk);
2361 	sock_put(sk);
2362 }
2363 
2364 static int __mptcp_init_sock(struct sock *sk)
2365 {
2366 	struct mptcp_sock *msk = mptcp_sk(sk);
2367 
2368 	spin_lock_init(&msk->join_list_lock);
2369 
2370 	INIT_LIST_HEAD(&msk->conn_list);
2371 	INIT_LIST_HEAD(&msk->join_list);
2372 	INIT_LIST_HEAD(&msk->rtx_queue);
2373 	INIT_WORK(&msk->work, mptcp_worker);
2374 	__skb_queue_head_init(&msk->receive_queue);
2375 	__skb_queue_head_init(&msk->skb_tx_cache);
2376 	msk->out_of_order_queue = RB_ROOT;
2377 	msk->first_pending = NULL;
2378 	msk->wmem_reserved = 0;
2379 	msk->rmem_released = 0;
2380 	msk->tx_pending_data = 0;
2381 	msk->size_goal_cache = TCP_BASE_MSS;
2382 
2383 	msk->ack_hint = NULL;
2384 	msk->first = NULL;
2385 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2386 
2387 	mptcp_pm_data_init(msk);
2388 
2389 	/* re-use the csk retrans timer for MPTCP-level retrans */
2390 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2391 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2392 	return 0;
2393 }
2394 
2395 static int mptcp_init_sock(struct sock *sk)
2396 {
2397 	struct net *net = sock_net(sk);
2398 	int ret;
2399 
2400 	ret = __mptcp_init_sock(sk);
2401 	if (ret)
2402 		return ret;
2403 
2404 	if (!mptcp_is_enabled(net))
2405 		return -ENOPROTOOPT;
2406 
2407 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2408 		return -ENOMEM;
2409 
2410 	ret = __mptcp_socket_create(mptcp_sk(sk));
2411 	if (ret)
2412 		return ret;
2413 
2414 	sk_sockets_allocated_inc(sk);
2415 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2416 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2417 
2418 	return 0;
2419 }
2420 
2421 static void __mptcp_clear_xmit(struct sock *sk)
2422 {
2423 	struct mptcp_sock *msk = mptcp_sk(sk);
2424 	struct mptcp_data_frag *dtmp, *dfrag;
2425 	struct sk_buff *skb;
2426 
2427 	WRITE_ONCE(msk->first_pending, NULL);
2428 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2429 		dfrag_clear(sk, dfrag);
2430 	while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) {
2431 		sk->sk_forward_alloc += skb->truesize;
2432 		kfree_skb(skb);
2433 	}
2434 }
2435 
2436 static void mptcp_cancel_work(struct sock *sk)
2437 {
2438 	struct mptcp_sock *msk = mptcp_sk(sk);
2439 
2440 	if (cancel_work_sync(&msk->work))
2441 		__sock_put(sk);
2442 }
2443 
2444 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2445 {
2446 	lock_sock(ssk);
2447 
2448 	switch (ssk->sk_state) {
2449 	case TCP_LISTEN:
2450 		if (!(how & RCV_SHUTDOWN))
2451 			break;
2452 		fallthrough;
2453 	case TCP_SYN_SENT:
2454 		tcp_disconnect(ssk, O_NONBLOCK);
2455 		break;
2456 	default:
2457 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2458 			pr_debug("Fallback");
2459 			ssk->sk_shutdown |= how;
2460 			tcp_shutdown(ssk, how);
2461 		} else {
2462 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2463 			mptcp_set_timeout(sk, ssk);
2464 			tcp_send_ack(ssk);
2465 		}
2466 		break;
2467 	}
2468 
2469 	release_sock(ssk);
2470 }
2471 
2472 static const unsigned char new_state[16] = {
2473 	/* current state:     new state:      action:	*/
2474 	[0 /* (Invalid) */] = TCP_CLOSE,
2475 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2476 	[TCP_SYN_SENT]      = TCP_CLOSE,
2477 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2478 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2479 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2480 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2481 	[TCP_CLOSE]         = TCP_CLOSE,
2482 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2483 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2484 	[TCP_LISTEN]        = TCP_CLOSE,
2485 	[TCP_CLOSING]       = TCP_CLOSING,
2486 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2487 };
2488 
2489 static int mptcp_close_state(struct sock *sk)
2490 {
2491 	int next = (int)new_state[sk->sk_state];
2492 	int ns = next & TCP_STATE_MASK;
2493 
2494 	inet_sk_state_store(sk, ns);
2495 
2496 	return next & TCP_ACTION_FIN;
2497 }
2498 
2499 static void __mptcp_check_send_data_fin(struct sock *sk)
2500 {
2501 	struct mptcp_subflow_context *subflow;
2502 	struct mptcp_sock *msk = mptcp_sk(sk);
2503 
2504 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2505 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2506 		 msk->snd_nxt, msk->write_seq);
2507 
2508 	/* we still need to enqueue subflows or not really shutting down,
2509 	 * skip this
2510 	 */
2511 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2512 	    mptcp_send_head(sk))
2513 		return;
2514 
2515 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2516 
2517 	/* fallback socket will not get data_fin/ack, can move to the next
2518 	 * state now
2519 	 */
2520 	if (__mptcp_check_fallback(msk)) {
2521 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2522 			inet_sk_state_store(sk, TCP_CLOSE);
2523 			mptcp_close_wake_up(sk);
2524 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2525 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2526 		}
2527 	}
2528 
2529 	__mptcp_flush_join_list(msk);
2530 	mptcp_for_each_subflow(msk, subflow) {
2531 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2532 
2533 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2534 	}
2535 }
2536 
2537 static void __mptcp_wr_shutdown(struct sock *sk)
2538 {
2539 	struct mptcp_sock *msk = mptcp_sk(sk);
2540 
2541 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2542 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2543 		 !!mptcp_send_head(sk));
2544 
2545 	/* will be ignored by fallback sockets */
2546 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2547 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2548 
2549 	__mptcp_check_send_data_fin(sk);
2550 }
2551 
2552 static void __mptcp_destroy_sock(struct sock *sk)
2553 {
2554 	struct mptcp_subflow_context *subflow, *tmp;
2555 	struct mptcp_sock *msk = mptcp_sk(sk);
2556 	LIST_HEAD(conn_list);
2557 
2558 	pr_debug("msk=%p", msk);
2559 
2560 	might_sleep();
2561 
2562 	/* be sure to always acquire the join list lock, to sync vs
2563 	 * mptcp_finish_join().
2564 	 */
2565 	spin_lock_bh(&msk->join_list_lock);
2566 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2567 	spin_unlock_bh(&msk->join_list_lock);
2568 	list_splice_init(&msk->conn_list, &conn_list);
2569 
2570 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2571 	sk_stop_timer(sk, &sk->sk_timer);
2572 	msk->pm.status = 0;
2573 
2574 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2575 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2576 		__mptcp_close_ssk(sk, ssk, subflow);
2577 	}
2578 
2579 	sk->sk_prot->destroy(sk);
2580 
2581 	WARN_ON_ONCE(msk->wmem_reserved);
2582 	WARN_ON_ONCE(msk->rmem_released);
2583 	sk_stream_kill_queues(sk);
2584 	xfrm_sk_free_policy(sk);
2585 	sk_refcnt_debug_release(sk);
2586 	mptcp_dispose_initial_subflow(msk);
2587 	sock_put(sk);
2588 }
2589 
2590 static void mptcp_close(struct sock *sk, long timeout)
2591 {
2592 	struct mptcp_subflow_context *subflow;
2593 	bool do_cancel_work = false;
2594 
2595 	lock_sock(sk);
2596 	sk->sk_shutdown = SHUTDOWN_MASK;
2597 
2598 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2599 		inet_sk_state_store(sk, TCP_CLOSE);
2600 		goto cleanup;
2601 	}
2602 
2603 	if (mptcp_close_state(sk))
2604 		__mptcp_wr_shutdown(sk);
2605 
2606 	sk_stream_wait_close(sk, timeout);
2607 
2608 cleanup:
2609 	/* orphan all the subflows */
2610 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2611 	list_for_each_entry(subflow, &mptcp_sk(sk)->conn_list, node) {
2612 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2613 		bool slow = lock_sock_fast(ssk);
2614 
2615 		sock_orphan(ssk);
2616 		unlock_sock_fast(ssk, slow);
2617 	}
2618 	sock_orphan(sk);
2619 
2620 	sock_hold(sk);
2621 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2622 	if (sk->sk_state == TCP_CLOSE) {
2623 		__mptcp_destroy_sock(sk);
2624 		do_cancel_work = true;
2625 	} else {
2626 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2627 	}
2628 	release_sock(sk);
2629 	if (do_cancel_work)
2630 		mptcp_cancel_work(sk);
2631 
2632 	if (mptcp_sk(sk)->token)
2633 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2634 
2635 	sock_put(sk);
2636 }
2637 
2638 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2639 {
2640 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2641 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2642 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2643 
2644 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2645 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2646 
2647 	if (msk6 && ssk6) {
2648 		msk6->saddr = ssk6->saddr;
2649 		msk6->flow_label = ssk6->flow_label;
2650 	}
2651 #endif
2652 
2653 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2654 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2655 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2656 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2657 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2658 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2659 }
2660 
2661 static int mptcp_disconnect(struct sock *sk, int flags)
2662 {
2663 	struct mptcp_subflow_context *subflow;
2664 	struct mptcp_sock *msk = mptcp_sk(sk);
2665 
2666 	__mptcp_flush_join_list(msk);
2667 	mptcp_for_each_subflow(msk, subflow) {
2668 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2669 
2670 		lock_sock(ssk);
2671 		tcp_disconnect(ssk, flags);
2672 		release_sock(ssk);
2673 	}
2674 	return 0;
2675 }
2676 
2677 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2678 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2679 {
2680 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2681 
2682 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2683 }
2684 #endif
2685 
2686 struct sock *mptcp_sk_clone(const struct sock *sk,
2687 			    const struct mptcp_options_received *mp_opt,
2688 			    struct request_sock *req)
2689 {
2690 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2691 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2692 	struct mptcp_sock *msk;
2693 	u64 ack_seq;
2694 
2695 	if (!nsk)
2696 		return NULL;
2697 
2698 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2699 	if (nsk->sk_family == AF_INET6)
2700 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2701 #endif
2702 
2703 	__mptcp_init_sock(nsk);
2704 
2705 	msk = mptcp_sk(nsk);
2706 	msk->local_key = subflow_req->local_key;
2707 	msk->token = subflow_req->token;
2708 	msk->subflow = NULL;
2709 	WRITE_ONCE(msk->fully_established, false);
2710 
2711 	msk->write_seq = subflow_req->idsn + 1;
2712 	msk->snd_nxt = msk->write_seq;
2713 	msk->snd_una = msk->write_seq;
2714 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2715 
2716 	if (mp_opt->mp_capable) {
2717 		msk->can_ack = true;
2718 		msk->remote_key = mp_opt->sndr_key;
2719 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2720 		ack_seq++;
2721 		WRITE_ONCE(msk->ack_seq, ack_seq);
2722 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2723 	}
2724 
2725 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2726 	/* will be fully established after successful MPC subflow creation */
2727 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2728 
2729 	security_inet_csk_clone(nsk, req);
2730 	bh_unlock_sock(nsk);
2731 
2732 	/* keep a single reference */
2733 	__sock_put(nsk);
2734 	return nsk;
2735 }
2736 
2737 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2738 {
2739 	const struct tcp_sock *tp = tcp_sk(ssk);
2740 
2741 	msk->rcvq_space.copied = 0;
2742 	msk->rcvq_space.rtt_us = 0;
2743 
2744 	msk->rcvq_space.time = tp->tcp_mstamp;
2745 
2746 	/* initial rcv_space offering made to peer */
2747 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2748 				      TCP_INIT_CWND * tp->advmss);
2749 	if (msk->rcvq_space.space == 0)
2750 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2751 
2752 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2753 }
2754 
2755 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2756 				 bool kern)
2757 {
2758 	struct mptcp_sock *msk = mptcp_sk(sk);
2759 	struct socket *listener;
2760 	struct sock *newsk;
2761 
2762 	listener = __mptcp_nmpc_socket(msk);
2763 	if (WARN_ON_ONCE(!listener)) {
2764 		*err = -EINVAL;
2765 		return NULL;
2766 	}
2767 
2768 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2769 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2770 	if (!newsk)
2771 		return NULL;
2772 
2773 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2774 	if (sk_is_mptcp(newsk)) {
2775 		struct mptcp_subflow_context *subflow;
2776 		struct sock *new_mptcp_sock;
2777 
2778 		subflow = mptcp_subflow_ctx(newsk);
2779 		new_mptcp_sock = subflow->conn;
2780 
2781 		/* is_mptcp should be false if subflow->conn is missing, see
2782 		 * subflow_syn_recv_sock()
2783 		 */
2784 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2785 			tcp_sk(newsk)->is_mptcp = 0;
2786 			return newsk;
2787 		}
2788 
2789 		/* acquire the 2nd reference for the owning socket */
2790 		sock_hold(new_mptcp_sock);
2791 		newsk = new_mptcp_sock;
2792 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2793 	} else {
2794 		MPTCP_INC_STATS(sock_net(sk),
2795 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2796 	}
2797 
2798 	return newsk;
2799 }
2800 
2801 void mptcp_destroy_common(struct mptcp_sock *msk)
2802 {
2803 	struct sock *sk = (struct sock *)msk;
2804 
2805 	__mptcp_clear_xmit(sk);
2806 
2807 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2808 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2809 
2810 	skb_rbtree_purge(&msk->out_of_order_queue);
2811 	mptcp_token_destroy(msk);
2812 	mptcp_pm_free_anno_list(msk);
2813 }
2814 
2815 static void mptcp_destroy(struct sock *sk)
2816 {
2817 	struct mptcp_sock *msk = mptcp_sk(sk);
2818 
2819 	mptcp_destroy_common(msk);
2820 	sk_sockets_allocated_dec(sk);
2821 }
2822 
2823 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
2824 				       sockptr_t optval, unsigned int optlen)
2825 {
2826 	struct sock *sk = (struct sock *)msk;
2827 	struct socket *ssock;
2828 	int ret;
2829 
2830 	switch (optname) {
2831 	case SO_REUSEPORT:
2832 	case SO_REUSEADDR:
2833 		lock_sock(sk);
2834 		ssock = __mptcp_nmpc_socket(msk);
2835 		if (!ssock) {
2836 			release_sock(sk);
2837 			return -EINVAL;
2838 		}
2839 
2840 		ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
2841 		if (ret == 0) {
2842 			if (optname == SO_REUSEPORT)
2843 				sk->sk_reuseport = ssock->sk->sk_reuseport;
2844 			else if (optname == SO_REUSEADDR)
2845 				sk->sk_reuse = ssock->sk->sk_reuse;
2846 		}
2847 		release_sock(sk);
2848 		return ret;
2849 	}
2850 
2851 	return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
2852 }
2853 
2854 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
2855 			       sockptr_t optval, unsigned int optlen)
2856 {
2857 	struct sock *sk = (struct sock *)msk;
2858 	int ret = -EOPNOTSUPP;
2859 	struct socket *ssock;
2860 
2861 	switch (optname) {
2862 	case IPV6_V6ONLY:
2863 		lock_sock(sk);
2864 		ssock = __mptcp_nmpc_socket(msk);
2865 		if (!ssock) {
2866 			release_sock(sk);
2867 			return -EINVAL;
2868 		}
2869 
2870 		ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
2871 		if (ret == 0)
2872 			sk->sk_ipv6only = ssock->sk->sk_ipv6only;
2873 
2874 		release_sock(sk);
2875 		break;
2876 	}
2877 
2878 	return ret;
2879 }
2880 
2881 static int mptcp_setsockopt(struct sock *sk, int level, int optname,
2882 			    sockptr_t optval, unsigned int optlen)
2883 {
2884 	struct mptcp_sock *msk = mptcp_sk(sk);
2885 	struct sock *ssk;
2886 
2887 	pr_debug("msk=%p", msk);
2888 
2889 	if (level == SOL_SOCKET)
2890 		return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
2891 
2892 	/* @@ the meaning of setsockopt() when the socket is connected and
2893 	 * there are multiple subflows is not yet defined. It is up to the
2894 	 * MPTCP-level socket to configure the subflows until the subflow
2895 	 * is in TCP fallback, when TCP socket options are passed through
2896 	 * to the one remaining subflow.
2897 	 */
2898 	lock_sock(sk);
2899 	ssk = __mptcp_tcp_fallback(msk);
2900 	release_sock(sk);
2901 	if (ssk)
2902 		return tcp_setsockopt(ssk, level, optname, optval, optlen);
2903 
2904 	if (level == SOL_IPV6)
2905 		return mptcp_setsockopt_v6(msk, optname, optval, optlen);
2906 
2907 	return -EOPNOTSUPP;
2908 }
2909 
2910 static int mptcp_getsockopt(struct sock *sk, int level, int optname,
2911 			    char __user *optval, int __user *option)
2912 {
2913 	struct mptcp_sock *msk = mptcp_sk(sk);
2914 	struct sock *ssk;
2915 
2916 	pr_debug("msk=%p", msk);
2917 
2918 	/* @@ the meaning of setsockopt() when the socket is connected and
2919 	 * there are multiple subflows is not yet defined. It is up to the
2920 	 * MPTCP-level socket to configure the subflows until the subflow
2921 	 * is in TCP fallback, when socket options are passed through
2922 	 * to the one remaining subflow.
2923 	 */
2924 	lock_sock(sk);
2925 	ssk = __mptcp_tcp_fallback(msk);
2926 	release_sock(sk);
2927 	if (ssk)
2928 		return tcp_getsockopt(ssk, level, optname, optval, option);
2929 
2930 	return -EOPNOTSUPP;
2931 }
2932 
2933 void __mptcp_data_acked(struct sock *sk)
2934 {
2935 	if (!sock_owned_by_user(sk))
2936 		__mptcp_clean_una(sk);
2937 	else
2938 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2939 
2940 	if (mptcp_pending_data_fin_ack(sk))
2941 		mptcp_schedule_work(sk);
2942 }
2943 
2944 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2945 {
2946 	if (!mptcp_send_head(sk))
2947 		return;
2948 
2949 	if (!sock_owned_by_user(sk)) {
2950 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2951 
2952 		if (xmit_ssk == ssk)
2953 			__mptcp_subflow_push_pending(sk, ssk);
2954 		else if (xmit_ssk)
2955 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2956 	} else {
2957 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2958 	}
2959 }
2960 
2961 #define MPTCP_DEFERRED_ALL (TCPF_WRITE_TIMER_DEFERRED)
2962 
2963 /* processes deferred events and flush wmem */
2964 static void mptcp_release_cb(struct sock *sk)
2965 {
2966 	unsigned long flags, nflags;
2967 
2968 	for (;;) {
2969 		flags = 0;
2970 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2971 			flags |= MPTCP_PUSH_PENDING;
2972 		if (!flags)
2973 			break;
2974 
2975 		/* the following actions acquire the subflow socket lock
2976 		 *
2977 		 * 1) can't be invoked in atomic scope
2978 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2979 		 *    datapath acquires the msk socket spinlock while helding
2980 		 *    the subflow socket lock
2981 		 */
2982 
2983 		spin_unlock_bh(&sk->sk_lock.slock);
2984 		if (flags & MPTCP_PUSH_PENDING)
2985 			__mptcp_push_pending(sk, 0);
2986 
2987 		cond_resched();
2988 		spin_lock_bh(&sk->sk_lock.slock);
2989 	}
2990 
2991 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2992 		__mptcp_clean_una_wakeup(sk);
2993 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2994 		__mptcp_error_report(sk);
2995 
2996 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2997 	 * later
2998 	 */
2999 	__mptcp_update_wmem(sk);
3000 	__mptcp_update_rmem(sk);
3001 
3002 	do {
3003 		flags = sk->sk_tsq_flags;
3004 		if (!(flags & MPTCP_DEFERRED_ALL))
3005 			return;
3006 		nflags = flags & ~MPTCP_DEFERRED_ALL;
3007 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
3008 
3009 	sock_release_ownership(sk);
3010 
3011 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
3012 		mptcp_retransmit_handler(sk);
3013 		__sock_put(sk);
3014 	}
3015 }
3016 
3017 void mptcp_subflow_process_delegated(struct sock *ssk)
3018 {
3019 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3020 	struct sock *sk = subflow->conn;
3021 
3022 	mptcp_data_lock(sk);
3023 	if (!sock_owned_by_user(sk))
3024 		__mptcp_subflow_push_pending(sk, ssk);
3025 	else
3026 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3027 	mptcp_data_unlock(sk);
3028 	mptcp_subflow_delegated_done(subflow);
3029 }
3030 
3031 static int mptcp_hash(struct sock *sk)
3032 {
3033 	/* should never be called,
3034 	 * we hash the TCP subflows not the master socket
3035 	 */
3036 	WARN_ON_ONCE(1);
3037 	return 0;
3038 }
3039 
3040 static void mptcp_unhash(struct sock *sk)
3041 {
3042 	/* called from sk_common_release(), but nothing to do here */
3043 }
3044 
3045 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3046 {
3047 	struct mptcp_sock *msk = mptcp_sk(sk);
3048 	struct socket *ssock;
3049 
3050 	ssock = __mptcp_nmpc_socket(msk);
3051 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3052 	if (WARN_ON_ONCE(!ssock))
3053 		return -EINVAL;
3054 
3055 	return inet_csk_get_port(ssock->sk, snum);
3056 }
3057 
3058 void mptcp_finish_connect(struct sock *ssk)
3059 {
3060 	struct mptcp_subflow_context *subflow;
3061 	struct mptcp_sock *msk;
3062 	struct sock *sk;
3063 	u64 ack_seq;
3064 
3065 	subflow = mptcp_subflow_ctx(ssk);
3066 	sk = subflow->conn;
3067 	msk = mptcp_sk(sk);
3068 
3069 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3070 
3071 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3072 	ack_seq++;
3073 	subflow->map_seq = ack_seq;
3074 	subflow->map_subflow_seq = 1;
3075 
3076 	/* the socket is not connected yet, no msk/subflow ops can access/race
3077 	 * accessing the field below
3078 	 */
3079 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3080 	WRITE_ONCE(msk->local_key, subflow->local_key);
3081 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3082 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3083 	WRITE_ONCE(msk->ack_seq, ack_seq);
3084 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3085 	WRITE_ONCE(msk->can_ack, 1);
3086 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3087 
3088 	mptcp_pm_new_connection(msk, ssk, 0);
3089 
3090 	mptcp_rcv_space_init(msk, ssk);
3091 }
3092 
3093 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3094 {
3095 	write_lock_bh(&sk->sk_callback_lock);
3096 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3097 	sk_set_socket(sk, parent);
3098 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3099 	write_unlock_bh(&sk->sk_callback_lock);
3100 }
3101 
3102 bool mptcp_finish_join(struct sock *ssk)
3103 {
3104 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3105 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3106 	struct sock *parent = (void *)msk;
3107 	struct socket *parent_sock;
3108 	bool ret;
3109 
3110 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3111 
3112 	/* mptcp socket already closing? */
3113 	if (!mptcp_is_fully_established(parent))
3114 		return false;
3115 
3116 	if (!msk->pm.server_side)
3117 		goto out;
3118 
3119 	if (!mptcp_pm_allow_new_subflow(msk))
3120 		return false;
3121 
3122 	/* active connections are already on conn_list, and we can't acquire
3123 	 * msk lock here.
3124 	 * use the join list lock as synchronization point and double-check
3125 	 * msk status to avoid racing with __mptcp_destroy_sock()
3126 	 */
3127 	spin_lock_bh(&msk->join_list_lock);
3128 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3129 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3130 		list_add_tail(&subflow->node, &msk->join_list);
3131 		sock_hold(ssk);
3132 	}
3133 	spin_unlock_bh(&msk->join_list_lock);
3134 	if (!ret)
3135 		return false;
3136 
3137 	/* attach to msk socket only after we are sure he will deal with us
3138 	 * at close time
3139 	 */
3140 	parent_sock = READ_ONCE(parent->sk_socket);
3141 	if (parent_sock && !ssk->sk_socket)
3142 		mptcp_sock_graft(ssk, parent_sock);
3143 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3144 out:
3145 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3146 	return true;
3147 }
3148 
3149 static void mptcp_shutdown(struct sock *sk, int how)
3150 {
3151 	pr_debug("sk=%p, how=%d", sk, how);
3152 
3153 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3154 		__mptcp_wr_shutdown(sk);
3155 }
3156 
3157 static struct proto mptcp_prot = {
3158 	.name		= "MPTCP",
3159 	.owner		= THIS_MODULE,
3160 	.init		= mptcp_init_sock,
3161 	.disconnect	= mptcp_disconnect,
3162 	.close		= mptcp_close,
3163 	.accept		= mptcp_accept,
3164 	.setsockopt	= mptcp_setsockopt,
3165 	.getsockopt	= mptcp_getsockopt,
3166 	.shutdown	= mptcp_shutdown,
3167 	.destroy	= mptcp_destroy,
3168 	.sendmsg	= mptcp_sendmsg,
3169 	.recvmsg	= mptcp_recvmsg,
3170 	.release_cb	= mptcp_release_cb,
3171 	.hash		= mptcp_hash,
3172 	.unhash		= mptcp_unhash,
3173 	.get_port	= mptcp_get_port,
3174 	.sockets_allocated	= &mptcp_sockets_allocated,
3175 	.memory_allocated	= &tcp_memory_allocated,
3176 	.memory_pressure	= &tcp_memory_pressure,
3177 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3178 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3179 	.sysctl_mem	= sysctl_tcp_mem,
3180 	.obj_size	= sizeof(struct mptcp_sock),
3181 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3182 	.no_autobind	= true,
3183 };
3184 
3185 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3186 {
3187 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3188 	struct socket *ssock;
3189 	int err;
3190 
3191 	lock_sock(sock->sk);
3192 	ssock = __mptcp_nmpc_socket(msk);
3193 	if (!ssock) {
3194 		err = -EINVAL;
3195 		goto unlock;
3196 	}
3197 
3198 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3199 	if (!err)
3200 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3201 
3202 unlock:
3203 	release_sock(sock->sk);
3204 	return err;
3205 }
3206 
3207 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3208 					 struct mptcp_subflow_context *subflow)
3209 {
3210 	subflow->request_mptcp = 0;
3211 	__mptcp_do_fallback(msk);
3212 }
3213 
3214 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3215 				int addr_len, int flags)
3216 {
3217 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3218 	struct mptcp_subflow_context *subflow;
3219 	struct socket *ssock;
3220 	int err;
3221 
3222 	lock_sock(sock->sk);
3223 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3224 		/* pending connection or invalid state, let existing subflow
3225 		 * cope with that
3226 		 */
3227 		ssock = msk->subflow;
3228 		goto do_connect;
3229 	}
3230 
3231 	ssock = __mptcp_nmpc_socket(msk);
3232 	if (!ssock) {
3233 		err = -EINVAL;
3234 		goto unlock;
3235 	}
3236 
3237 	mptcp_token_destroy(msk);
3238 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3239 	subflow = mptcp_subflow_ctx(ssock->sk);
3240 #ifdef CONFIG_TCP_MD5SIG
3241 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3242 	 * TCP option space.
3243 	 */
3244 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3245 		mptcp_subflow_early_fallback(msk, subflow);
3246 #endif
3247 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
3248 		mptcp_subflow_early_fallback(msk, subflow);
3249 
3250 do_connect:
3251 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3252 	sock->state = ssock->state;
3253 
3254 	/* on successful connect, the msk state will be moved to established by
3255 	 * subflow_finish_connect()
3256 	 */
3257 	if (!err || err == -EINPROGRESS)
3258 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3259 	else
3260 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3261 
3262 unlock:
3263 	release_sock(sock->sk);
3264 	return err;
3265 }
3266 
3267 static int mptcp_listen(struct socket *sock, int backlog)
3268 {
3269 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3270 	struct socket *ssock;
3271 	int err;
3272 
3273 	pr_debug("msk=%p", msk);
3274 
3275 	lock_sock(sock->sk);
3276 	ssock = __mptcp_nmpc_socket(msk);
3277 	if (!ssock) {
3278 		err = -EINVAL;
3279 		goto unlock;
3280 	}
3281 
3282 	mptcp_token_destroy(msk);
3283 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3284 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3285 
3286 	err = ssock->ops->listen(ssock, backlog);
3287 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3288 	if (!err)
3289 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3290 
3291 unlock:
3292 	release_sock(sock->sk);
3293 	return err;
3294 }
3295 
3296 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3297 			       int flags, bool kern)
3298 {
3299 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3300 	struct socket *ssock;
3301 	int err;
3302 
3303 	pr_debug("msk=%p", msk);
3304 
3305 	lock_sock(sock->sk);
3306 	if (sock->sk->sk_state != TCP_LISTEN)
3307 		goto unlock_fail;
3308 
3309 	ssock = __mptcp_nmpc_socket(msk);
3310 	if (!ssock)
3311 		goto unlock_fail;
3312 
3313 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3314 	sock_hold(ssock->sk);
3315 	release_sock(sock->sk);
3316 
3317 	err = ssock->ops->accept(sock, newsock, flags, kern);
3318 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3319 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3320 		struct mptcp_subflow_context *subflow;
3321 		struct sock *newsk = newsock->sk;
3322 
3323 		lock_sock(newsk);
3324 
3325 		/* PM/worker can now acquire the first subflow socket
3326 		 * lock without racing with listener queue cleanup,
3327 		 * we can notify it, if needed.
3328 		 *
3329 		 * Even if remote has reset the initial subflow by now
3330 		 * the refcnt is still at least one.
3331 		 */
3332 		subflow = mptcp_subflow_ctx(msk->first);
3333 		list_add(&subflow->node, &msk->conn_list);
3334 		sock_hold(msk->first);
3335 		if (mptcp_is_fully_established(newsk))
3336 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3337 
3338 		mptcp_copy_inaddrs(newsk, msk->first);
3339 		mptcp_rcv_space_init(msk, msk->first);
3340 		mptcp_propagate_sndbuf(newsk, msk->first);
3341 
3342 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3343 		 * This is needed so NOSPACE flag can be set from tcp stack.
3344 		 */
3345 		__mptcp_flush_join_list(msk);
3346 		mptcp_for_each_subflow(msk, subflow) {
3347 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3348 
3349 			if (!ssk->sk_socket)
3350 				mptcp_sock_graft(ssk, newsock);
3351 		}
3352 		release_sock(newsk);
3353 	}
3354 
3355 	if (inet_csk_listen_poll(ssock->sk))
3356 		set_bit(MPTCP_DATA_READY, &msk->flags);
3357 	sock_put(ssock->sk);
3358 	return err;
3359 
3360 unlock_fail:
3361 	release_sock(sock->sk);
3362 	return -EINVAL;
3363 }
3364 
3365 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3366 {
3367 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3368 	       0;
3369 }
3370 
3371 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3372 {
3373 	struct sock *sk = (struct sock *)msk;
3374 
3375 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3376 		return EPOLLOUT | EPOLLWRNORM;
3377 
3378 	if (sk_stream_is_writeable(sk))
3379 		return EPOLLOUT | EPOLLWRNORM;
3380 
3381 	mptcp_set_nospace(sk);
3382 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3383 	if (sk_stream_is_writeable(sk))
3384 		return EPOLLOUT | EPOLLWRNORM;
3385 
3386 	return 0;
3387 }
3388 
3389 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3390 			   struct poll_table_struct *wait)
3391 {
3392 	struct sock *sk = sock->sk;
3393 	struct mptcp_sock *msk;
3394 	__poll_t mask = 0;
3395 	int state;
3396 
3397 	msk = mptcp_sk(sk);
3398 	sock_poll_wait(file, sock, wait);
3399 
3400 	state = inet_sk_state_load(sk);
3401 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3402 	if (state == TCP_LISTEN)
3403 		return mptcp_check_readable(msk);
3404 
3405 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3406 		mask |= mptcp_check_readable(msk);
3407 		mask |= mptcp_check_writeable(msk);
3408 	}
3409 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3410 		mask |= EPOLLHUP;
3411 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3412 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3413 
3414 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3415 	smp_rmb();
3416 	if (sk->sk_err)
3417 		mask |= EPOLLERR;
3418 
3419 	return mask;
3420 }
3421 
3422 static int mptcp_release(struct socket *sock)
3423 {
3424 	struct mptcp_subflow_context *subflow;
3425 	struct sock *sk = sock->sk;
3426 	struct mptcp_sock *msk;
3427 
3428 	if (!sk)
3429 		return 0;
3430 
3431 	lock_sock(sk);
3432 
3433 	msk = mptcp_sk(sk);
3434 
3435 	mptcp_for_each_subflow(msk, subflow) {
3436 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3437 
3438 		ip_mc_drop_socket(ssk);
3439 	}
3440 
3441 	release_sock(sk);
3442 
3443 	return inet_release(sock);
3444 }
3445 
3446 static const struct proto_ops mptcp_stream_ops = {
3447 	.family		   = PF_INET,
3448 	.owner		   = THIS_MODULE,
3449 	.release	   = mptcp_release,
3450 	.bind		   = mptcp_bind,
3451 	.connect	   = mptcp_stream_connect,
3452 	.socketpair	   = sock_no_socketpair,
3453 	.accept		   = mptcp_stream_accept,
3454 	.getname	   = inet_getname,
3455 	.poll		   = mptcp_poll,
3456 	.ioctl		   = inet_ioctl,
3457 	.gettstamp	   = sock_gettstamp,
3458 	.listen		   = mptcp_listen,
3459 	.shutdown	   = inet_shutdown,
3460 	.setsockopt	   = sock_common_setsockopt,
3461 	.getsockopt	   = sock_common_getsockopt,
3462 	.sendmsg	   = inet_sendmsg,
3463 	.recvmsg	   = inet_recvmsg,
3464 	.mmap		   = sock_no_mmap,
3465 	.sendpage	   = inet_sendpage,
3466 };
3467 
3468 static struct inet_protosw mptcp_protosw = {
3469 	.type		= SOCK_STREAM,
3470 	.protocol	= IPPROTO_MPTCP,
3471 	.prot		= &mptcp_prot,
3472 	.ops		= &mptcp_stream_ops,
3473 	.flags		= INET_PROTOSW_ICSK,
3474 };
3475 
3476 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3477 {
3478 	struct mptcp_delegated_action *delegated;
3479 	struct mptcp_subflow_context *subflow;
3480 	int work_done = 0;
3481 
3482 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3483 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3484 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3485 
3486 		bh_lock_sock_nested(ssk);
3487 		if (!sock_owned_by_user(ssk) &&
3488 		    mptcp_subflow_has_delegated_action(subflow))
3489 			mptcp_subflow_process_delegated(ssk);
3490 		/* ... elsewhere tcp_release_cb_override already processed
3491 		 * the action or will do at next release_sock().
3492 		 * In both case must dequeue the subflow here - on the same
3493 		 * CPU that scheduled it.
3494 		 */
3495 		bh_unlock_sock(ssk);
3496 		sock_put(ssk);
3497 
3498 		if (++work_done == budget)
3499 			return budget;
3500 	}
3501 
3502 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3503 	 * will not try accessing the NULL napi->dev ptr
3504 	 */
3505 	napi_complete_done(napi, 0);
3506 	return work_done;
3507 }
3508 
3509 void __init mptcp_proto_init(void)
3510 {
3511 	struct mptcp_delegated_action *delegated;
3512 	int cpu;
3513 
3514 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3515 
3516 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3517 		panic("Failed to allocate MPTCP pcpu counter\n");
3518 
3519 	init_dummy_netdev(&mptcp_napi_dev);
3520 	for_each_possible_cpu(cpu) {
3521 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3522 		INIT_LIST_HEAD(&delegated->head);
3523 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3524 				  NAPI_POLL_WEIGHT);
3525 		napi_enable(&delegated->napi);
3526 	}
3527 
3528 	mptcp_subflow_init();
3529 	mptcp_pm_init();
3530 	mptcp_token_init();
3531 
3532 	if (proto_register(&mptcp_prot, 1) != 0)
3533 		panic("Failed to register MPTCP proto.\n");
3534 
3535 	inet_register_protosw(&mptcp_protosw);
3536 
3537 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3538 }
3539 
3540 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3541 static int mptcp6_release(struct socket *sock)
3542 {
3543 	struct mptcp_subflow_context *subflow;
3544 	struct mptcp_sock *msk;
3545 	struct sock *sk = sock->sk;
3546 
3547 	if (!sk)
3548 		return 0;
3549 
3550 	lock_sock(sk);
3551 
3552 	msk = mptcp_sk(sk);
3553 
3554 	mptcp_for_each_subflow(msk, subflow) {
3555 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3556 
3557 		ip_mc_drop_socket(ssk);
3558 		ipv6_sock_mc_close(ssk);
3559 		ipv6_sock_ac_close(ssk);
3560 	}
3561 
3562 	release_sock(sk);
3563 	return inet6_release(sock);
3564 }
3565 
3566 static const struct proto_ops mptcp_v6_stream_ops = {
3567 	.family		   = PF_INET6,
3568 	.owner		   = THIS_MODULE,
3569 	.release	   = mptcp6_release,
3570 	.bind		   = mptcp_bind,
3571 	.connect	   = mptcp_stream_connect,
3572 	.socketpair	   = sock_no_socketpair,
3573 	.accept		   = mptcp_stream_accept,
3574 	.getname	   = inet6_getname,
3575 	.poll		   = mptcp_poll,
3576 	.ioctl		   = inet6_ioctl,
3577 	.gettstamp	   = sock_gettstamp,
3578 	.listen		   = mptcp_listen,
3579 	.shutdown	   = inet_shutdown,
3580 	.setsockopt	   = sock_common_setsockopt,
3581 	.getsockopt	   = sock_common_getsockopt,
3582 	.sendmsg	   = inet6_sendmsg,
3583 	.recvmsg	   = inet6_recvmsg,
3584 	.mmap		   = sock_no_mmap,
3585 	.sendpage	   = inet_sendpage,
3586 #ifdef CONFIG_COMPAT
3587 	.compat_ioctl	   = inet6_compat_ioctl,
3588 #endif
3589 };
3590 
3591 static struct proto mptcp_v6_prot;
3592 
3593 static void mptcp_v6_destroy(struct sock *sk)
3594 {
3595 	mptcp_destroy(sk);
3596 	inet6_destroy_sock(sk);
3597 }
3598 
3599 static struct inet_protosw mptcp_v6_protosw = {
3600 	.type		= SOCK_STREAM,
3601 	.protocol	= IPPROTO_MPTCP,
3602 	.prot		= &mptcp_v6_prot,
3603 	.ops		= &mptcp_v6_stream_ops,
3604 	.flags		= INET_PROTOSW_ICSK,
3605 };
3606 
3607 int __init mptcp_proto_v6_init(void)
3608 {
3609 	int err;
3610 
3611 	mptcp_v6_prot = mptcp_prot;
3612 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3613 	mptcp_v6_prot.slab = NULL;
3614 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3615 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3616 
3617 	err = proto_register(&mptcp_v6_prot, 1);
3618 	if (err)
3619 		return err;
3620 
3621 	err = inet6_register_protosw(&mptcp_v6_protosw);
3622 	if (err)
3623 		proto_unregister(&mptcp_v6_prot);
3624 
3625 	return err;
3626 }
3627 #endif
3628