xref: /openbmc/linux/net/mptcp/protocol.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 struct mptcp_skb_cb {
40 	u64 map_seq;
41 	u64 end_seq;
42 	u32 offset;
43 	u8  has_rxtstamp:1;
44 };
45 
46 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
47 
48 enum {
49 	MPTCP_CMSG_TS = BIT(0),
50 	MPTCP_CMSG_INQ = BIT(1),
51 };
52 
53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
54 
55 static void __mptcp_destroy_sock(struct sock *sk);
56 static void __mptcp_check_send_data_fin(struct sock *sk);
57 
58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
59 static struct net_device mptcp_napi_dev;
60 
61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
62  * completed yet or has failed, return the subflow socket.
63  * Otherwise return NULL.
64  */
65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
66 {
67 	if (!msk->subflow || READ_ONCE(msk->can_ack))
68 		return NULL;
69 
70 	return msk->subflow;
71 }
72 
73 /* Returns end sequence number of the receiver's advertised window */
74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
75 {
76 	return READ_ONCE(msk->wnd_end);
77 }
78 
79 static bool mptcp_is_tcpsk(struct sock *sk)
80 {
81 	struct socket *sock = sk->sk_socket;
82 
83 	if (unlikely(sk->sk_prot == &tcp_prot)) {
84 		/* we are being invoked after mptcp_accept() has
85 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
86 		 * not an mptcp one.
87 		 *
88 		 * Hand the socket over to tcp so all further socket ops
89 		 * bypass mptcp.
90 		 */
91 		sock->ops = &inet_stream_ops;
92 		return true;
93 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
94 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
95 		sock->ops = &inet6_stream_ops;
96 		return true;
97 #endif
98 	}
99 
100 	return false;
101 }
102 
103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, &ssock);
111 	if (err)
112 		return err;
113 
114 	msk->first = ssock->sk;
115 	msk->subflow = ssock;
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 
121 	/* This is the first subflow, always with id 0 */
122 	subflow->local_id_valid = 1;
123 	mptcp_sock_graft(msk->first, sk->sk_socket);
124 
125 	return 0;
126 }
127 
128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
129 {
130 	sk_drops_add(sk, skb);
131 	__kfree_skb(skb);
132 }
133 
134 static void mptcp_rmem_charge(struct sock *sk, int size)
135 {
136 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
137 }
138 
139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
140 			       struct sk_buff *from)
141 {
142 	bool fragstolen;
143 	int delta;
144 
145 	if (MPTCP_SKB_CB(from)->offset ||
146 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
147 		return false;
148 
149 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
150 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
151 		 to->len, MPTCP_SKB_CB(from)->end_seq);
152 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
153 	kfree_skb_partial(from, fragstolen);
154 	atomic_add(delta, &sk->sk_rmem_alloc);
155 	mptcp_rmem_charge(sk, delta);
156 	return true;
157 }
158 
159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
160 				   struct sk_buff *from)
161 {
162 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
163 		return false;
164 
165 	return mptcp_try_coalesce((struct sock *)msk, to, from);
166 }
167 
168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
169 {
170 	amount >>= PAGE_SHIFT;
171 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
172 	__sk_mem_reduce_allocated(sk, amount);
173 }
174 
175 static void mptcp_rmem_uncharge(struct sock *sk, int size)
176 {
177 	struct mptcp_sock *msk = mptcp_sk(sk);
178 	int reclaimable;
179 
180 	msk->rmem_fwd_alloc += size;
181 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
182 
183 	/* see sk_mem_uncharge() for the rationale behind the following schema */
184 	if (unlikely(reclaimable >= PAGE_SIZE))
185 		__mptcp_rmem_reclaim(sk, reclaimable);
186 }
187 
188 static void mptcp_rfree(struct sk_buff *skb)
189 {
190 	unsigned int len = skb->truesize;
191 	struct sock *sk = skb->sk;
192 
193 	atomic_sub(len, &sk->sk_rmem_alloc);
194 	mptcp_rmem_uncharge(sk, len);
195 }
196 
197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
198 {
199 	skb_orphan(skb);
200 	skb->sk = sk;
201 	skb->destructor = mptcp_rfree;
202 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
203 	mptcp_rmem_charge(sk, skb->truesize);
204 }
205 
206 /* "inspired" by tcp_data_queue_ofo(), main differences:
207  * - use mptcp seqs
208  * - don't cope with sacks
209  */
210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
211 {
212 	struct sock *sk = (struct sock *)msk;
213 	struct rb_node **p, *parent;
214 	u64 seq, end_seq, max_seq;
215 	struct sk_buff *skb1;
216 
217 	seq = MPTCP_SKB_CB(skb)->map_seq;
218 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
219 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
220 
221 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
222 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
223 	if (after64(end_seq, max_seq)) {
224 		/* out of window */
225 		mptcp_drop(sk, skb);
226 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
227 			 (unsigned long long)end_seq - (unsigned long)max_seq,
228 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
230 		return;
231 	}
232 
233 	p = &msk->out_of_order_queue.rb_node;
234 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
235 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
236 		rb_link_node(&skb->rbnode, NULL, p);
237 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
238 		msk->ooo_last_skb = skb;
239 		goto end;
240 	}
241 
242 	/* with 2 subflows, adding at end of ooo queue is quite likely
243 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
244 	 */
245 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
248 		return;
249 	}
250 
251 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
252 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
253 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 		parent = &msk->ooo_last_skb->rbnode;
255 		p = &parent->rb_right;
256 		goto insert;
257 	}
258 
259 	/* Find place to insert this segment. Handle overlaps on the way. */
260 	parent = NULL;
261 	while (*p) {
262 		parent = *p;
263 		skb1 = rb_to_skb(parent);
264 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
265 			p = &parent->rb_left;
266 			continue;
267 		}
268 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 				/* All the bits are present. Drop. */
271 				mptcp_drop(sk, skb);
272 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
273 				return;
274 			}
275 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
276 				/* partial overlap:
277 				 *     |     skb      |
278 				 *  |     skb1    |
279 				 * continue traversing
280 				 */
281 			} else {
282 				/* skb's seq == skb1's seq and skb covers skb1.
283 				 * Replace skb1 with skb.
284 				 */
285 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
286 						&msk->out_of_order_queue);
287 				mptcp_drop(sk, skb1);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				goto merge_right;
290 			}
291 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
292 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
293 			return;
294 		}
295 		p = &parent->rb_right;
296 	}
297 
298 insert:
299 	/* Insert segment into RB tree. */
300 	rb_link_node(&skb->rbnode, parent, p);
301 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
302 
303 merge_right:
304 	/* Remove other segments covered by skb. */
305 	while ((skb1 = skb_rb_next(skb)) != NULL) {
306 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
307 			break;
308 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
309 		mptcp_drop(sk, skb1);
310 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
311 	}
312 	/* If there is no skb after us, we are the last_skb ! */
313 	if (!skb1)
314 		msk->ooo_last_skb = skb;
315 
316 end:
317 	skb_condense(skb);
318 	mptcp_set_owner_r(skb, sk);
319 }
320 
321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
322 {
323 	struct mptcp_sock *msk = mptcp_sk(sk);
324 	int amt, amount;
325 
326 	if (size <= msk->rmem_fwd_alloc)
327 		return true;
328 
329 	size -= msk->rmem_fwd_alloc;
330 	amt = sk_mem_pages(size);
331 	amount = amt << PAGE_SHIFT;
332 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
333 		return false;
334 
335 	msk->rmem_fwd_alloc += amount;
336 	return true;
337 }
338 
339 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
340 			     struct sk_buff *skb, unsigned int offset,
341 			     size_t copy_len)
342 {
343 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344 	struct sock *sk = (struct sock *)msk;
345 	struct sk_buff *tail;
346 	bool has_rxtstamp;
347 
348 	__skb_unlink(skb, &ssk->sk_receive_queue);
349 
350 	skb_ext_reset(skb);
351 	skb_orphan(skb);
352 
353 	/* try to fetch required memory from subflow */
354 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
355 		goto drop;
356 
357 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
358 
359 	/* the skb map_seq accounts for the skb offset:
360 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
361 	 * value
362 	 */
363 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
364 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
365 	MPTCP_SKB_CB(skb)->offset = offset;
366 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
367 
368 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
369 		/* in sequence */
370 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
371 		tail = skb_peek_tail(&sk->sk_receive_queue);
372 		if (tail && mptcp_try_coalesce(sk, tail, skb))
373 			return true;
374 
375 		mptcp_set_owner_r(skb, sk);
376 		__skb_queue_tail(&sk->sk_receive_queue, skb);
377 		return true;
378 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
379 		mptcp_data_queue_ofo(msk, skb);
380 		return false;
381 	}
382 
383 	/* old data, keep it simple and drop the whole pkt, sender
384 	 * will retransmit as needed, if needed.
385 	 */
386 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
387 drop:
388 	mptcp_drop(sk, skb);
389 	return false;
390 }
391 
392 static void mptcp_stop_timer(struct sock *sk)
393 {
394 	struct inet_connection_sock *icsk = inet_csk(sk);
395 
396 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
397 	mptcp_sk(sk)->timer_ival = 0;
398 }
399 
400 static void mptcp_close_wake_up(struct sock *sk)
401 {
402 	if (sock_flag(sk, SOCK_DEAD))
403 		return;
404 
405 	sk->sk_state_change(sk);
406 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
407 	    sk->sk_state == TCP_CLOSE)
408 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
409 	else
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
411 }
412 
413 static bool mptcp_pending_data_fin_ack(struct sock *sk)
414 {
415 	struct mptcp_sock *msk = mptcp_sk(sk);
416 
417 	return !__mptcp_check_fallback(msk) &&
418 	       ((1 << sk->sk_state) &
419 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
420 	       msk->write_seq == READ_ONCE(msk->snd_una);
421 }
422 
423 static void mptcp_check_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	/* Look for an acknowledged DATA_FIN */
428 	if (mptcp_pending_data_fin_ack(sk)) {
429 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
430 
431 		switch (sk->sk_state) {
432 		case TCP_FIN_WAIT1:
433 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
434 			break;
435 		case TCP_CLOSING:
436 		case TCP_LAST_ACK:
437 			inet_sk_state_store(sk, TCP_CLOSE);
438 			break;
439 		}
440 
441 		mptcp_close_wake_up(sk);
442 	}
443 }
444 
445 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
446 {
447 	struct mptcp_sock *msk = mptcp_sk(sk);
448 
449 	if (READ_ONCE(msk->rcv_data_fin) &&
450 	    ((1 << sk->sk_state) &
451 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
452 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
453 
454 		if (msk->ack_seq == rcv_data_fin_seq) {
455 			if (seq)
456 				*seq = rcv_data_fin_seq;
457 
458 			return true;
459 		}
460 	}
461 
462 	return false;
463 }
464 
465 static void mptcp_set_datafin_timeout(const struct sock *sk)
466 {
467 	struct inet_connection_sock *icsk = inet_csk(sk);
468 	u32 retransmits;
469 
470 	retransmits = min_t(u32, icsk->icsk_retransmits,
471 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
472 
473 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
474 }
475 
476 static void __mptcp_set_timeout(struct sock *sk, long tout)
477 {
478 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
479 }
480 
481 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
482 {
483 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
484 
485 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
486 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
487 }
488 
489 static void mptcp_set_timeout(struct sock *sk)
490 {
491 	struct mptcp_subflow_context *subflow;
492 	long tout = 0;
493 
494 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
495 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
496 	__mptcp_set_timeout(sk, tout);
497 }
498 
499 static inline bool tcp_can_send_ack(const struct sock *ssk)
500 {
501 	return !((1 << inet_sk_state_load(ssk)) &
502 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
503 }
504 
505 void mptcp_subflow_send_ack(struct sock *ssk)
506 {
507 	bool slow;
508 
509 	slow = lock_sock_fast(ssk);
510 	if (tcp_can_send_ack(ssk))
511 		tcp_send_ack(ssk);
512 	unlock_sock_fast(ssk, slow);
513 }
514 
515 static void mptcp_send_ack(struct mptcp_sock *msk)
516 {
517 	struct mptcp_subflow_context *subflow;
518 
519 	mptcp_for_each_subflow(msk, subflow)
520 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
521 }
522 
523 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
524 {
525 	bool slow;
526 
527 	slow = lock_sock_fast(ssk);
528 	if (tcp_can_send_ack(ssk))
529 		tcp_cleanup_rbuf(ssk, 1);
530 	unlock_sock_fast(ssk, slow);
531 }
532 
533 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
534 {
535 	const struct inet_connection_sock *icsk = inet_csk(ssk);
536 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
537 	const struct tcp_sock *tp = tcp_sk(ssk);
538 
539 	return (ack_pending & ICSK_ACK_SCHED) &&
540 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
541 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
542 		 (rx_empty && ack_pending &
543 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
544 }
545 
546 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
547 {
548 	int old_space = READ_ONCE(msk->old_wspace);
549 	struct mptcp_subflow_context *subflow;
550 	struct sock *sk = (struct sock *)msk;
551 	int space =  __mptcp_space(sk);
552 	bool cleanup, rx_empty;
553 
554 	cleanup = (space > 0) && (space >= (old_space << 1));
555 	rx_empty = !__mptcp_rmem(sk);
556 
557 	mptcp_for_each_subflow(msk, subflow) {
558 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
559 
560 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
561 			mptcp_subflow_cleanup_rbuf(ssk);
562 	}
563 }
564 
565 static bool mptcp_check_data_fin(struct sock *sk)
566 {
567 	struct mptcp_sock *msk = mptcp_sk(sk);
568 	u64 rcv_data_fin_seq;
569 	bool ret = false;
570 
571 	if (__mptcp_check_fallback(msk))
572 		return ret;
573 
574 	/* Need to ack a DATA_FIN received from a peer while this side
575 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
576 	 * msk->rcv_data_fin was set when parsing the incoming options
577 	 * at the subflow level and the msk lock was not held, so this
578 	 * is the first opportunity to act on the DATA_FIN and change
579 	 * the msk state.
580 	 *
581 	 * If we are caught up to the sequence number of the incoming
582 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
583 	 * not caught up, do nothing and let the recv code send DATA_ACK
584 	 * when catching up.
585 	 */
586 
587 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
588 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
589 		WRITE_ONCE(msk->rcv_data_fin, 0);
590 
591 		sk->sk_shutdown |= RCV_SHUTDOWN;
592 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
593 
594 		switch (sk->sk_state) {
595 		case TCP_ESTABLISHED:
596 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
597 			break;
598 		case TCP_FIN_WAIT1:
599 			inet_sk_state_store(sk, TCP_CLOSING);
600 			break;
601 		case TCP_FIN_WAIT2:
602 			inet_sk_state_store(sk, TCP_CLOSE);
603 			break;
604 		default:
605 			/* Other states not expected */
606 			WARN_ON_ONCE(1);
607 			break;
608 		}
609 
610 		ret = true;
611 		mptcp_send_ack(msk);
612 		mptcp_close_wake_up(sk);
613 	}
614 	return ret;
615 }
616 
617 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
618 					   struct sock *ssk,
619 					   unsigned int *bytes)
620 {
621 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
622 	struct sock *sk = (struct sock *)msk;
623 	unsigned int moved = 0;
624 	bool more_data_avail;
625 	struct tcp_sock *tp;
626 	bool done = false;
627 	int sk_rbuf;
628 
629 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
630 
631 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
633 
634 		if (unlikely(ssk_rbuf > sk_rbuf)) {
635 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
636 			sk_rbuf = ssk_rbuf;
637 		}
638 	}
639 
640 	pr_debug("msk=%p ssk=%p", msk, ssk);
641 	tp = tcp_sk(ssk);
642 	do {
643 		u32 map_remaining, offset;
644 		u32 seq = tp->copied_seq;
645 		struct sk_buff *skb;
646 		bool fin;
647 
648 		/* try to move as much data as available */
649 		map_remaining = subflow->map_data_len -
650 				mptcp_subflow_get_map_offset(subflow);
651 
652 		skb = skb_peek(&ssk->sk_receive_queue);
653 		if (!skb) {
654 			/* if no data is found, a racing workqueue/recvmsg
655 			 * already processed the new data, stop here or we
656 			 * can enter an infinite loop
657 			 */
658 			if (!moved)
659 				done = true;
660 			break;
661 		}
662 
663 		if (__mptcp_check_fallback(msk)) {
664 			/* if we are running under the workqueue, TCP could have
665 			 * collapsed skbs between dummy map creation and now
666 			 * be sure to adjust the size
667 			 */
668 			map_remaining = skb->len;
669 			subflow->map_data_len = skb->len;
670 		}
671 
672 		offset = seq - TCP_SKB_CB(skb)->seq;
673 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
674 		if (fin) {
675 			done = true;
676 			seq++;
677 		}
678 
679 		if (offset < skb->len) {
680 			size_t len = skb->len - offset;
681 
682 			if (tp->urg_data)
683 				done = true;
684 
685 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
686 				moved += len;
687 			seq += len;
688 
689 			if (WARN_ON_ONCE(map_remaining < len))
690 				break;
691 		} else {
692 			WARN_ON_ONCE(!fin);
693 			sk_eat_skb(ssk, skb);
694 			done = true;
695 		}
696 
697 		WRITE_ONCE(tp->copied_seq, seq);
698 		more_data_avail = mptcp_subflow_data_available(ssk);
699 
700 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
701 			done = true;
702 			break;
703 		}
704 	} while (more_data_avail);
705 
706 	*bytes += moved;
707 	return done;
708 }
709 
710 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
711 {
712 	struct sock *sk = (struct sock *)msk;
713 	struct sk_buff *skb, *tail;
714 	bool moved = false;
715 	struct rb_node *p;
716 	u64 end_seq;
717 
718 	p = rb_first(&msk->out_of_order_queue);
719 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
720 	while (p) {
721 		skb = rb_to_skb(p);
722 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
723 			break;
724 
725 		p = rb_next(p);
726 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
727 
728 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
729 				      msk->ack_seq))) {
730 			mptcp_drop(sk, skb);
731 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
732 			continue;
733 		}
734 
735 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
736 		tail = skb_peek_tail(&sk->sk_receive_queue);
737 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
738 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
739 
740 			/* skip overlapping data, if any */
741 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
742 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
743 				 delta);
744 			MPTCP_SKB_CB(skb)->offset += delta;
745 			MPTCP_SKB_CB(skb)->map_seq += delta;
746 			__skb_queue_tail(&sk->sk_receive_queue, skb);
747 		}
748 		msk->ack_seq = end_seq;
749 		moved = true;
750 	}
751 	return moved;
752 }
753 
754 /* In most cases we will be able to lock the mptcp socket.  If its already
755  * owned, we need to defer to the work queue to avoid ABBA deadlock.
756  */
757 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
758 {
759 	struct sock *sk = (struct sock *)msk;
760 	unsigned int moved = 0;
761 
762 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
763 	__mptcp_ofo_queue(msk);
764 	if (unlikely(ssk->sk_err)) {
765 		if (!sock_owned_by_user(sk))
766 			__mptcp_error_report(sk);
767 		else
768 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
769 	}
770 
771 	/* If the moves have caught up with the DATA_FIN sequence number
772 	 * it's time to ack the DATA_FIN and change socket state, but
773 	 * this is not a good place to change state. Let the workqueue
774 	 * do it.
775 	 */
776 	if (mptcp_pending_data_fin(sk, NULL))
777 		mptcp_schedule_work(sk);
778 	return moved > 0;
779 }
780 
781 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
782 {
783 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
784 	struct mptcp_sock *msk = mptcp_sk(sk);
785 	int sk_rbuf, ssk_rbuf;
786 
787 	/* The peer can send data while we are shutting down this
788 	 * subflow at msk destruction time, but we must avoid enqueuing
789 	 * more data to the msk receive queue
790 	 */
791 	if (unlikely(subflow->disposable))
792 		return;
793 
794 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
795 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
796 	if (unlikely(ssk_rbuf > sk_rbuf))
797 		sk_rbuf = ssk_rbuf;
798 
799 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
800 	if (__mptcp_rmem(sk) > sk_rbuf) {
801 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
802 		return;
803 	}
804 
805 	/* Wake-up the reader only for in-sequence data */
806 	mptcp_data_lock(sk);
807 	if (move_skbs_to_msk(msk, ssk))
808 		sk->sk_data_ready(sk);
809 
810 	mptcp_data_unlock(sk);
811 }
812 
813 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
814 {
815 	struct sock *sk = (struct sock *)msk;
816 
817 	if (sk->sk_state != TCP_ESTABLISHED)
818 		return false;
819 
820 	/* attach to msk socket only after we are sure we will deal with it
821 	 * at close time
822 	 */
823 	if (sk->sk_socket && !ssk->sk_socket)
824 		mptcp_sock_graft(ssk, sk->sk_socket);
825 
826 	mptcp_propagate_sndbuf((struct sock *)msk, ssk);
827 	mptcp_sockopt_sync_locked(msk, ssk);
828 	return true;
829 }
830 
831 static void __mptcp_flush_join_list(struct sock *sk)
832 {
833 	struct mptcp_subflow_context *tmp, *subflow;
834 	struct mptcp_sock *msk = mptcp_sk(sk);
835 
836 	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
837 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
838 		bool slow = lock_sock_fast(ssk);
839 
840 		list_move_tail(&subflow->node, &msk->conn_list);
841 		if (!__mptcp_finish_join(msk, ssk))
842 			mptcp_subflow_reset(ssk);
843 		unlock_sock_fast(ssk, slow);
844 	}
845 }
846 
847 static bool mptcp_timer_pending(struct sock *sk)
848 {
849 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
850 }
851 
852 static void mptcp_reset_timer(struct sock *sk)
853 {
854 	struct inet_connection_sock *icsk = inet_csk(sk);
855 	unsigned long tout;
856 
857 	/* prevent rescheduling on close */
858 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
859 		return;
860 
861 	tout = mptcp_sk(sk)->timer_ival;
862 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
863 }
864 
865 bool mptcp_schedule_work(struct sock *sk)
866 {
867 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
868 	    schedule_work(&mptcp_sk(sk)->work)) {
869 		/* each subflow already holds a reference to the sk, and the
870 		 * workqueue is invoked by a subflow, so sk can't go away here.
871 		 */
872 		sock_hold(sk);
873 		return true;
874 	}
875 	return false;
876 }
877 
878 void mptcp_subflow_eof(struct sock *sk)
879 {
880 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
881 		mptcp_schedule_work(sk);
882 }
883 
884 static void mptcp_check_for_eof(struct mptcp_sock *msk)
885 {
886 	struct mptcp_subflow_context *subflow;
887 	struct sock *sk = (struct sock *)msk;
888 	int receivers = 0;
889 
890 	mptcp_for_each_subflow(msk, subflow)
891 		receivers += !subflow->rx_eof;
892 	if (receivers)
893 		return;
894 
895 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
896 		/* hopefully temporary hack: propagate shutdown status
897 		 * to msk, when all subflows agree on it
898 		 */
899 		sk->sk_shutdown |= RCV_SHUTDOWN;
900 
901 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
902 		sk->sk_data_ready(sk);
903 	}
904 
905 	switch (sk->sk_state) {
906 	case TCP_ESTABLISHED:
907 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
908 		break;
909 	case TCP_FIN_WAIT1:
910 		inet_sk_state_store(sk, TCP_CLOSING);
911 		break;
912 	case TCP_FIN_WAIT2:
913 		inet_sk_state_store(sk, TCP_CLOSE);
914 		break;
915 	default:
916 		return;
917 	}
918 	mptcp_close_wake_up(sk);
919 }
920 
921 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
922 {
923 	struct mptcp_subflow_context *subflow;
924 	struct sock *sk = (struct sock *)msk;
925 
926 	sock_owned_by_me(sk);
927 
928 	mptcp_for_each_subflow(msk, subflow) {
929 		if (READ_ONCE(subflow->data_avail))
930 			return mptcp_subflow_tcp_sock(subflow);
931 	}
932 
933 	return NULL;
934 }
935 
936 static bool mptcp_skb_can_collapse_to(u64 write_seq,
937 				      const struct sk_buff *skb,
938 				      const struct mptcp_ext *mpext)
939 {
940 	if (!tcp_skb_can_collapse_to(skb))
941 		return false;
942 
943 	/* can collapse only if MPTCP level sequence is in order and this
944 	 * mapping has not been xmitted yet
945 	 */
946 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
947 	       !mpext->frozen;
948 }
949 
950 /* we can append data to the given data frag if:
951  * - there is space available in the backing page_frag
952  * - the data frag tail matches the current page_frag free offset
953  * - the data frag end sequence number matches the current write seq
954  */
955 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
956 				       const struct page_frag *pfrag,
957 				       const struct mptcp_data_frag *df)
958 {
959 	return df && pfrag->page == df->page &&
960 		pfrag->size - pfrag->offset > 0 &&
961 		pfrag->offset == (df->offset + df->data_len) &&
962 		df->data_seq + df->data_len == msk->write_seq;
963 }
964 
965 static void dfrag_uncharge(struct sock *sk, int len)
966 {
967 	sk_mem_uncharge(sk, len);
968 	sk_wmem_queued_add(sk, -len);
969 }
970 
971 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
972 {
973 	int len = dfrag->data_len + dfrag->overhead;
974 
975 	list_del(&dfrag->list);
976 	dfrag_uncharge(sk, len);
977 	put_page(dfrag->page);
978 }
979 
980 static void __mptcp_clean_una(struct sock *sk)
981 {
982 	struct mptcp_sock *msk = mptcp_sk(sk);
983 	struct mptcp_data_frag *dtmp, *dfrag;
984 	u64 snd_una;
985 
986 	/* on fallback we just need to ignore snd_una, as this is really
987 	 * plain TCP
988 	 */
989 	if (__mptcp_check_fallback(msk))
990 		msk->snd_una = READ_ONCE(msk->snd_nxt);
991 
992 	snd_una = msk->snd_una;
993 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
994 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
995 			break;
996 
997 		if (unlikely(dfrag == msk->first_pending)) {
998 			/* in recovery mode can see ack after the current snd head */
999 			if (WARN_ON_ONCE(!msk->recovery))
1000 				break;
1001 
1002 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1003 		}
1004 
1005 		dfrag_clear(sk, dfrag);
1006 	}
1007 
1008 	dfrag = mptcp_rtx_head(sk);
1009 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1010 		u64 delta = snd_una - dfrag->data_seq;
1011 
1012 		/* prevent wrap around in recovery mode */
1013 		if (unlikely(delta > dfrag->already_sent)) {
1014 			if (WARN_ON_ONCE(!msk->recovery))
1015 				goto out;
1016 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1017 				goto out;
1018 			dfrag->already_sent += delta - dfrag->already_sent;
1019 		}
1020 
1021 		dfrag->data_seq += delta;
1022 		dfrag->offset += delta;
1023 		dfrag->data_len -= delta;
1024 		dfrag->already_sent -= delta;
1025 
1026 		dfrag_uncharge(sk, delta);
1027 	}
1028 
1029 	/* all retransmitted data acked, recovery completed */
1030 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1031 		msk->recovery = false;
1032 
1033 out:
1034 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1035 	    snd_una == READ_ONCE(msk->write_seq)) {
1036 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1037 			mptcp_stop_timer(sk);
1038 	} else {
1039 		mptcp_reset_timer(sk);
1040 	}
1041 }
1042 
1043 static void __mptcp_clean_una_wakeup(struct sock *sk)
1044 {
1045 	lockdep_assert_held_once(&sk->sk_lock.slock);
1046 
1047 	__mptcp_clean_una(sk);
1048 	mptcp_write_space(sk);
1049 }
1050 
1051 static void mptcp_clean_una_wakeup(struct sock *sk)
1052 {
1053 	mptcp_data_lock(sk);
1054 	__mptcp_clean_una_wakeup(sk);
1055 	mptcp_data_unlock(sk);
1056 }
1057 
1058 static void mptcp_enter_memory_pressure(struct sock *sk)
1059 {
1060 	struct mptcp_subflow_context *subflow;
1061 	struct mptcp_sock *msk = mptcp_sk(sk);
1062 	bool first = true;
1063 
1064 	sk_stream_moderate_sndbuf(sk);
1065 	mptcp_for_each_subflow(msk, subflow) {
1066 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1067 
1068 		if (first)
1069 			tcp_enter_memory_pressure(ssk);
1070 		sk_stream_moderate_sndbuf(ssk);
1071 		first = false;
1072 	}
1073 }
1074 
1075 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1076  * data
1077  */
1078 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1079 {
1080 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1081 					pfrag, sk->sk_allocation)))
1082 		return true;
1083 
1084 	mptcp_enter_memory_pressure(sk);
1085 	return false;
1086 }
1087 
1088 static struct mptcp_data_frag *
1089 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1090 		      int orig_offset)
1091 {
1092 	int offset = ALIGN(orig_offset, sizeof(long));
1093 	struct mptcp_data_frag *dfrag;
1094 
1095 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1096 	dfrag->data_len = 0;
1097 	dfrag->data_seq = msk->write_seq;
1098 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1099 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1100 	dfrag->already_sent = 0;
1101 	dfrag->page = pfrag->page;
1102 
1103 	return dfrag;
1104 }
1105 
1106 struct mptcp_sendmsg_info {
1107 	int mss_now;
1108 	int size_goal;
1109 	u16 limit;
1110 	u16 sent;
1111 	unsigned int flags;
1112 	bool data_lock_held;
1113 };
1114 
1115 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1116 				    u64 data_seq, int avail_size)
1117 {
1118 	u64 window_end = mptcp_wnd_end(msk);
1119 	u64 mptcp_snd_wnd;
1120 
1121 	if (__mptcp_check_fallback(msk))
1122 		return avail_size;
1123 
1124 	mptcp_snd_wnd = window_end - data_seq;
1125 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1126 
1127 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1128 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1129 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1130 	}
1131 
1132 	return avail_size;
1133 }
1134 
1135 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1136 {
1137 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1138 
1139 	if (!mpext)
1140 		return false;
1141 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1142 	return true;
1143 }
1144 
1145 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1146 {
1147 	struct sk_buff *skb;
1148 
1149 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1150 	if (likely(skb)) {
1151 		if (likely(__mptcp_add_ext(skb, gfp))) {
1152 			skb_reserve(skb, MAX_TCP_HEADER);
1153 			skb->ip_summed = CHECKSUM_PARTIAL;
1154 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1155 			return skb;
1156 		}
1157 		__kfree_skb(skb);
1158 	} else {
1159 		mptcp_enter_memory_pressure(sk);
1160 	}
1161 	return NULL;
1162 }
1163 
1164 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1165 {
1166 	struct sk_buff *skb;
1167 
1168 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1169 	if (!skb)
1170 		return NULL;
1171 
1172 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1173 		tcp_skb_entail(ssk, skb);
1174 		return skb;
1175 	}
1176 	tcp_skb_tsorted_anchor_cleanup(skb);
1177 	kfree_skb(skb);
1178 	return NULL;
1179 }
1180 
1181 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1182 {
1183 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1184 
1185 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1186 }
1187 
1188 /* note: this always recompute the csum on the whole skb, even
1189  * if we just appended a single frag. More status info needed
1190  */
1191 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1192 {
1193 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1194 	__wsum csum = ~csum_unfold(mpext->csum);
1195 	int offset = skb->len - added;
1196 
1197 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1198 }
1199 
1200 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1201 				      struct sock *ssk,
1202 				      struct mptcp_ext *mpext)
1203 {
1204 	if (!mpext)
1205 		return;
1206 
1207 	mpext->infinite_map = 1;
1208 	mpext->data_len = 0;
1209 
1210 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1211 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1212 	pr_fallback(msk);
1213 	mptcp_do_fallback(ssk);
1214 }
1215 
1216 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1217 			      struct mptcp_data_frag *dfrag,
1218 			      struct mptcp_sendmsg_info *info)
1219 {
1220 	u64 data_seq = dfrag->data_seq + info->sent;
1221 	int offset = dfrag->offset + info->sent;
1222 	struct mptcp_sock *msk = mptcp_sk(sk);
1223 	bool zero_window_probe = false;
1224 	struct mptcp_ext *mpext = NULL;
1225 	bool can_coalesce = false;
1226 	bool reuse_skb = true;
1227 	struct sk_buff *skb;
1228 	size_t copy;
1229 	int i;
1230 
1231 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1232 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1233 
1234 	if (WARN_ON_ONCE(info->sent > info->limit ||
1235 			 info->limit > dfrag->data_len))
1236 		return 0;
1237 
1238 	/* compute send limit */
1239 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1240 	copy = info->size_goal;
1241 
1242 	skb = tcp_write_queue_tail(ssk);
1243 	if (skb && copy > skb->len) {
1244 		/* Limit the write to the size available in the
1245 		 * current skb, if any, so that we create at most a new skb.
1246 		 * Explicitly tells TCP internals to avoid collapsing on later
1247 		 * queue management operation, to avoid breaking the ext <->
1248 		 * SSN association set here
1249 		 */
1250 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1251 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1252 			TCP_SKB_CB(skb)->eor = 1;
1253 			goto alloc_skb;
1254 		}
1255 
1256 		i = skb_shinfo(skb)->nr_frags;
1257 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1258 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1259 			tcp_mark_push(tcp_sk(ssk), skb);
1260 			goto alloc_skb;
1261 		}
1262 
1263 		copy -= skb->len;
1264 	} else {
1265 alloc_skb:
1266 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1267 		if (!skb)
1268 			return -ENOMEM;
1269 
1270 		i = skb_shinfo(skb)->nr_frags;
1271 		reuse_skb = false;
1272 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1273 	}
1274 
1275 	/* Zero window and all data acked? Probe. */
1276 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1277 	if (copy == 0) {
1278 		u64 snd_una = READ_ONCE(msk->snd_una);
1279 
1280 		if (snd_una != msk->snd_nxt) {
1281 			tcp_remove_empty_skb(ssk);
1282 			return 0;
1283 		}
1284 
1285 		zero_window_probe = true;
1286 		data_seq = snd_una - 1;
1287 		copy = 1;
1288 
1289 		/* all mptcp-level data is acked, no skbs should be present into the
1290 		 * ssk write queue
1291 		 */
1292 		WARN_ON_ONCE(reuse_skb);
1293 	}
1294 
1295 	copy = min_t(size_t, copy, info->limit - info->sent);
1296 	if (!sk_wmem_schedule(ssk, copy)) {
1297 		tcp_remove_empty_skb(ssk);
1298 		return -ENOMEM;
1299 	}
1300 
1301 	if (can_coalesce) {
1302 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1303 	} else {
1304 		get_page(dfrag->page);
1305 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1306 	}
1307 
1308 	skb->len += copy;
1309 	skb->data_len += copy;
1310 	skb->truesize += copy;
1311 	sk_wmem_queued_add(ssk, copy);
1312 	sk_mem_charge(ssk, copy);
1313 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1314 	TCP_SKB_CB(skb)->end_seq += copy;
1315 	tcp_skb_pcount_set(skb, 0);
1316 
1317 	/* on skb reuse we just need to update the DSS len */
1318 	if (reuse_skb) {
1319 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1320 		mpext->data_len += copy;
1321 		WARN_ON_ONCE(zero_window_probe);
1322 		goto out;
1323 	}
1324 
1325 	memset(mpext, 0, sizeof(*mpext));
1326 	mpext->data_seq = data_seq;
1327 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1328 	mpext->data_len = copy;
1329 	mpext->use_map = 1;
1330 	mpext->dsn64 = 1;
1331 
1332 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1333 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1334 		 mpext->dsn64);
1335 
1336 	if (zero_window_probe) {
1337 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1338 		mpext->frozen = 1;
1339 		if (READ_ONCE(msk->csum_enabled))
1340 			mptcp_update_data_checksum(skb, copy);
1341 		tcp_push_pending_frames(ssk);
1342 		return 0;
1343 	}
1344 out:
1345 	if (READ_ONCE(msk->csum_enabled))
1346 		mptcp_update_data_checksum(skb, copy);
1347 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1348 		mptcp_update_infinite_map(msk, ssk, mpext);
1349 	trace_mptcp_sendmsg_frag(mpext);
1350 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1351 	return copy;
1352 }
1353 
1354 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1355 					 sizeof(struct tcphdr) - \
1356 					 MAX_TCP_OPTION_SPACE - \
1357 					 sizeof(struct ipv6hdr) - \
1358 					 sizeof(struct frag_hdr))
1359 
1360 struct subflow_send_info {
1361 	struct sock *ssk;
1362 	u64 linger_time;
1363 };
1364 
1365 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1366 {
1367 	if (!subflow->stale)
1368 		return;
1369 
1370 	subflow->stale = 0;
1371 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1372 }
1373 
1374 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1375 {
1376 	if (unlikely(subflow->stale)) {
1377 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1378 
1379 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1380 			return false;
1381 
1382 		mptcp_subflow_set_active(subflow);
1383 	}
1384 	return __mptcp_subflow_active(subflow);
1385 }
1386 
1387 #define SSK_MODE_ACTIVE	0
1388 #define SSK_MODE_BACKUP	1
1389 #define SSK_MODE_MAX	2
1390 
1391 /* implement the mptcp packet scheduler;
1392  * returns the subflow that will transmit the next DSS
1393  * additionally updates the rtx timeout
1394  */
1395 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1396 {
1397 	struct subflow_send_info send_info[SSK_MODE_MAX];
1398 	struct mptcp_subflow_context *subflow;
1399 	struct sock *sk = (struct sock *)msk;
1400 	u32 pace, burst, wmem;
1401 	int i, nr_active = 0;
1402 	struct sock *ssk;
1403 	u64 linger_time;
1404 	long tout = 0;
1405 
1406 	sock_owned_by_me(sk);
1407 
1408 	if (__mptcp_check_fallback(msk)) {
1409 		if (!msk->first)
1410 			return NULL;
1411 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1412 	}
1413 
1414 	/* re-use last subflow, if the burst allow that */
1415 	if (msk->last_snd && msk->snd_burst > 0 &&
1416 	    sk_stream_memory_free(msk->last_snd) &&
1417 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1418 		mptcp_set_timeout(sk);
1419 		return msk->last_snd;
1420 	}
1421 
1422 	/* pick the subflow with the lower wmem/wspace ratio */
1423 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1424 		send_info[i].ssk = NULL;
1425 		send_info[i].linger_time = -1;
1426 	}
1427 
1428 	mptcp_for_each_subflow(msk, subflow) {
1429 		trace_mptcp_subflow_get_send(subflow);
1430 		ssk =  mptcp_subflow_tcp_sock(subflow);
1431 		if (!mptcp_subflow_active(subflow))
1432 			continue;
1433 
1434 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1435 		nr_active += !subflow->backup;
1436 		pace = subflow->avg_pacing_rate;
1437 		if (unlikely(!pace)) {
1438 			/* init pacing rate from socket */
1439 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1440 			pace = subflow->avg_pacing_rate;
1441 			if (!pace)
1442 				continue;
1443 		}
1444 
1445 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1446 		if (linger_time < send_info[subflow->backup].linger_time) {
1447 			send_info[subflow->backup].ssk = ssk;
1448 			send_info[subflow->backup].linger_time = linger_time;
1449 		}
1450 	}
1451 	__mptcp_set_timeout(sk, tout);
1452 
1453 	/* pick the best backup if no other subflow is active */
1454 	if (!nr_active)
1455 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1456 
1457 	/* According to the blest algorithm, to avoid HoL blocking for the
1458 	 * faster flow, we need to:
1459 	 * - estimate the faster flow linger time
1460 	 * - use the above to estimate the amount of byte transferred
1461 	 *   by the faster flow
1462 	 * - check that the amount of queued data is greter than the above,
1463 	 *   otherwise do not use the picked, slower, subflow
1464 	 * We select the subflow with the shorter estimated time to flush
1465 	 * the queued mem, which basically ensure the above. We just need
1466 	 * to check that subflow has a non empty cwin.
1467 	 */
1468 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1469 	if (!ssk || !sk_stream_memory_free(ssk))
1470 		return NULL;
1471 
1472 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1473 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1474 	if (!burst) {
1475 		msk->last_snd = NULL;
1476 		return ssk;
1477 	}
1478 
1479 	subflow = mptcp_subflow_ctx(ssk);
1480 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1481 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1482 					   burst + wmem);
1483 	msk->last_snd = ssk;
1484 	msk->snd_burst = burst;
1485 	return ssk;
1486 }
1487 
1488 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1489 {
1490 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1491 	release_sock(ssk);
1492 }
1493 
1494 static void mptcp_update_post_push(struct mptcp_sock *msk,
1495 				   struct mptcp_data_frag *dfrag,
1496 				   u32 sent)
1497 {
1498 	u64 snd_nxt_new = dfrag->data_seq;
1499 
1500 	dfrag->already_sent += sent;
1501 
1502 	msk->snd_burst -= sent;
1503 
1504 	snd_nxt_new += dfrag->already_sent;
1505 
1506 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1507 	 * is recovering after a failover. In that event, this re-sends
1508 	 * old segments.
1509 	 *
1510 	 * Thus compute snd_nxt_new candidate based on
1511 	 * the dfrag->data_seq that was sent and the data
1512 	 * that has been handed to the subflow for transmission
1513 	 * and skip update in case it was old dfrag.
1514 	 */
1515 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1516 		msk->snd_nxt = snd_nxt_new;
1517 }
1518 
1519 void mptcp_check_and_set_pending(struct sock *sk)
1520 {
1521 	if (mptcp_send_head(sk))
1522 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1523 }
1524 
1525 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1526 {
1527 	struct sock *prev_ssk = NULL, *ssk = NULL;
1528 	struct mptcp_sock *msk = mptcp_sk(sk);
1529 	struct mptcp_sendmsg_info info = {
1530 				.flags = flags,
1531 	};
1532 	struct mptcp_data_frag *dfrag;
1533 	int len, copied = 0;
1534 
1535 	while ((dfrag = mptcp_send_head(sk))) {
1536 		info.sent = dfrag->already_sent;
1537 		info.limit = dfrag->data_len;
1538 		len = dfrag->data_len - dfrag->already_sent;
1539 		while (len > 0) {
1540 			int ret = 0;
1541 
1542 			prev_ssk = ssk;
1543 			ssk = mptcp_subflow_get_send(msk);
1544 
1545 			/* First check. If the ssk has changed since
1546 			 * the last round, release prev_ssk
1547 			 */
1548 			if (ssk != prev_ssk && prev_ssk)
1549 				mptcp_push_release(prev_ssk, &info);
1550 			if (!ssk)
1551 				goto out;
1552 
1553 			/* Need to lock the new subflow only if different
1554 			 * from the previous one, otherwise we are still
1555 			 * helding the relevant lock
1556 			 */
1557 			if (ssk != prev_ssk)
1558 				lock_sock(ssk);
1559 
1560 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1561 			if (ret <= 0) {
1562 				mptcp_push_release(ssk, &info);
1563 				goto out;
1564 			}
1565 
1566 			info.sent += ret;
1567 			copied += ret;
1568 			len -= ret;
1569 
1570 			mptcp_update_post_push(msk, dfrag, ret);
1571 		}
1572 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1573 	}
1574 
1575 	/* at this point we held the socket lock for the last subflow we used */
1576 	if (ssk)
1577 		mptcp_push_release(ssk, &info);
1578 
1579 out:
1580 	/* ensure the rtx timer is running */
1581 	if (!mptcp_timer_pending(sk))
1582 		mptcp_reset_timer(sk);
1583 	if (copied)
1584 		__mptcp_check_send_data_fin(sk);
1585 }
1586 
1587 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1588 {
1589 	struct mptcp_sock *msk = mptcp_sk(sk);
1590 	struct mptcp_sendmsg_info info = {
1591 		.data_lock_held = true,
1592 	};
1593 	struct mptcp_data_frag *dfrag;
1594 	struct sock *xmit_ssk;
1595 	int len, copied = 0;
1596 	bool first = true;
1597 
1598 	info.flags = 0;
1599 	while ((dfrag = mptcp_send_head(sk))) {
1600 		info.sent = dfrag->already_sent;
1601 		info.limit = dfrag->data_len;
1602 		len = dfrag->data_len - dfrag->already_sent;
1603 		while (len > 0) {
1604 			int ret = 0;
1605 
1606 			/* the caller already invoked the packet scheduler,
1607 			 * check for a different subflow usage only after
1608 			 * spooling the first chunk of data
1609 			 */
1610 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1611 			if (!xmit_ssk)
1612 				goto out;
1613 			if (xmit_ssk != ssk) {
1614 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1615 						       MPTCP_DELEGATE_SEND);
1616 				goto out;
1617 			}
1618 
1619 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1620 			if (ret <= 0)
1621 				goto out;
1622 
1623 			info.sent += ret;
1624 			copied += ret;
1625 			len -= ret;
1626 			first = false;
1627 
1628 			mptcp_update_post_push(msk, dfrag, ret);
1629 		}
1630 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1631 	}
1632 
1633 out:
1634 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1635 	 * not going to flush it via release_sock()
1636 	 */
1637 	if (copied) {
1638 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1639 			 info.size_goal);
1640 		if (!mptcp_timer_pending(sk))
1641 			mptcp_reset_timer(sk);
1642 
1643 		if (msk->snd_data_fin_enable &&
1644 		    msk->snd_nxt + 1 == msk->write_seq)
1645 			mptcp_schedule_work(sk);
1646 	}
1647 }
1648 
1649 static void mptcp_set_nospace(struct sock *sk)
1650 {
1651 	/* enable autotune */
1652 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1653 
1654 	/* will be cleared on avail space */
1655 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1656 }
1657 
1658 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1659 {
1660 	struct mptcp_sock *msk = mptcp_sk(sk);
1661 	struct page_frag *pfrag;
1662 	size_t copied = 0;
1663 	int ret = 0;
1664 	long timeo;
1665 
1666 	/* we don't support FASTOPEN yet */
1667 	if (msg->msg_flags & MSG_FASTOPEN)
1668 		return -EOPNOTSUPP;
1669 
1670 	/* silently ignore everything else */
1671 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1672 
1673 	lock_sock(sk);
1674 
1675 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1676 
1677 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1678 		ret = sk_stream_wait_connect(sk, &timeo);
1679 		if (ret)
1680 			goto out;
1681 	}
1682 
1683 	pfrag = sk_page_frag(sk);
1684 
1685 	while (msg_data_left(msg)) {
1686 		int total_ts, frag_truesize = 0;
1687 		struct mptcp_data_frag *dfrag;
1688 		bool dfrag_collapsed;
1689 		size_t psize, offset;
1690 
1691 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1692 			ret = -EPIPE;
1693 			goto out;
1694 		}
1695 
1696 		/* reuse tail pfrag, if possible, or carve a new one from the
1697 		 * page allocator
1698 		 */
1699 		dfrag = mptcp_pending_tail(sk);
1700 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1701 		if (!dfrag_collapsed) {
1702 			if (!sk_stream_memory_free(sk))
1703 				goto wait_for_memory;
1704 
1705 			if (!mptcp_page_frag_refill(sk, pfrag))
1706 				goto wait_for_memory;
1707 
1708 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1709 			frag_truesize = dfrag->overhead;
1710 		}
1711 
1712 		/* we do not bound vs wspace, to allow a single packet.
1713 		 * memory accounting will prevent execessive memory usage
1714 		 * anyway
1715 		 */
1716 		offset = dfrag->offset + dfrag->data_len;
1717 		psize = pfrag->size - offset;
1718 		psize = min_t(size_t, psize, msg_data_left(msg));
1719 		total_ts = psize + frag_truesize;
1720 
1721 		if (!sk_wmem_schedule(sk, total_ts))
1722 			goto wait_for_memory;
1723 
1724 		if (copy_page_from_iter(dfrag->page, offset, psize,
1725 					&msg->msg_iter) != psize) {
1726 			ret = -EFAULT;
1727 			goto out;
1728 		}
1729 
1730 		/* data successfully copied into the write queue */
1731 		sk->sk_forward_alloc -= total_ts;
1732 		copied += psize;
1733 		dfrag->data_len += psize;
1734 		frag_truesize += psize;
1735 		pfrag->offset += frag_truesize;
1736 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1737 
1738 		/* charge data on mptcp pending queue to the msk socket
1739 		 * Note: we charge such data both to sk and ssk
1740 		 */
1741 		sk_wmem_queued_add(sk, frag_truesize);
1742 		if (!dfrag_collapsed) {
1743 			get_page(dfrag->page);
1744 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1745 			if (!msk->first_pending)
1746 				WRITE_ONCE(msk->first_pending, dfrag);
1747 		}
1748 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1749 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1750 			 !dfrag_collapsed);
1751 
1752 		continue;
1753 
1754 wait_for_memory:
1755 		mptcp_set_nospace(sk);
1756 		__mptcp_push_pending(sk, msg->msg_flags);
1757 		ret = sk_stream_wait_memory(sk, &timeo);
1758 		if (ret)
1759 			goto out;
1760 	}
1761 
1762 	if (copied)
1763 		__mptcp_push_pending(sk, msg->msg_flags);
1764 
1765 out:
1766 	release_sock(sk);
1767 	return copied ? : ret;
1768 }
1769 
1770 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1771 				struct msghdr *msg,
1772 				size_t len, int flags,
1773 				struct scm_timestamping_internal *tss,
1774 				int *cmsg_flags)
1775 {
1776 	struct sk_buff *skb, *tmp;
1777 	int copied = 0;
1778 
1779 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1780 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1781 		u32 data_len = skb->len - offset;
1782 		u32 count = min_t(size_t, len - copied, data_len);
1783 		int err;
1784 
1785 		if (!(flags & MSG_TRUNC)) {
1786 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1787 			if (unlikely(err < 0)) {
1788 				if (!copied)
1789 					return err;
1790 				break;
1791 			}
1792 		}
1793 
1794 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1795 			tcp_update_recv_tstamps(skb, tss);
1796 			*cmsg_flags |= MPTCP_CMSG_TS;
1797 		}
1798 
1799 		copied += count;
1800 
1801 		if (count < data_len) {
1802 			if (!(flags & MSG_PEEK)) {
1803 				MPTCP_SKB_CB(skb)->offset += count;
1804 				MPTCP_SKB_CB(skb)->map_seq += count;
1805 			}
1806 			break;
1807 		}
1808 
1809 		if (!(flags & MSG_PEEK)) {
1810 			/* we will bulk release the skb memory later */
1811 			skb->destructor = NULL;
1812 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1813 			__skb_unlink(skb, &msk->receive_queue);
1814 			__kfree_skb(skb);
1815 		}
1816 
1817 		if (copied >= len)
1818 			break;
1819 	}
1820 
1821 	return copied;
1822 }
1823 
1824 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1825  *
1826  * Only difference: Use highest rtt estimate of the subflows in use.
1827  */
1828 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1829 {
1830 	struct mptcp_subflow_context *subflow;
1831 	struct sock *sk = (struct sock *)msk;
1832 	u32 time, advmss = 1;
1833 	u64 rtt_us, mstamp;
1834 
1835 	sock_owned_by_me(sk);
1836 
1837 	if (copied <= 0)
1838 		return;
1839 
1840 	msk->rcvq_space.copied += copied;
1841 
1842 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1843 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1844 
1845 	rtt_us = msk->rcvq_space.rtt_us;
1846 	if (rtt_us && time < (rtt_us >> 3))
1847 		return;
1848 
1849 	rtt_us = 0;
1850 	mptcp_for_each_subflow(msk, subflow) {
1851 		const struct tcp_sock *tp;
1852 		u64 sf_rtt_us;
1853 		u32 sf_advmss;
1854 
1855 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1856 
1857 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1858 		sf_advmss = READ_ONCE(tp->advmss);
1859 
1860 		rtt_us = max(sf_rtt_us, rtt_us);
1861 		advmss = max(sf_advmss, advmss);
1862 	}
1863 
1864 	msk->rcvq_space.rtt_us = rtt_us;
1865 	if (time < (rtt_us >> 3) || rtt_us == 0)
1866 		return;
1867 
1868 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1869 		goto new_measure;
1870 
1871 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1872 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1873 		int rcvmem, rcvbuf;
1874 		u64 rcvwin, grow;
1875 
1876 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1877 
1878 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1879 
1880 		do_div(grow, msk->rcvq_space.space);
1881 		rcvwin += (grow << 1);
1882 
1883 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1884 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1885 			rcvmem += 128;
1886 
1887 		do_div(rcvwin, advmss);
1888 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1889 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1890 
1891 		if (rcvbuf > sk->sk_rcvbuf) {
1892 			u32 window_clamp;
1893 
1894 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1895 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1896 
1897 			/* Make subflows follow along.  If we do not do this, we
1898 			 * get drops at subflow level if skbs can't be moved to
1899 			 * the mptcp rx queue fast enough (announced rcv_win can
1900 			 * exceed ssk->sk_rcvbuf).
1901 			 */
1902 			mptcp_for_each_subflow(msk, subflow) {
1903 				struct sock *ssk;
1904 				bool slow;
1905 
1906 				ssk = mptcp_subflow_tcp_sock(subflow);
1907 				slow = lock_sock_fast(ssk);
1908 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1909 				tcp_sk(ssk)->window_clamp = window_clamp;
1910 				tcp_cleanup_rbuf(ssk, 1);
1911 				unlock_sock_fast(ssk, slow);
1912 			}
1913 		}
1914 	}
1915 
1916 	msk->rcvq_space.space = msk->rcvq_space.copied;
1917 new_measure:
1918 	msk->rcvq_space.copied = 0;
1919 	msk->rcvq_space.time = mstamp;
1920 }
1921 
1922 static void __mptcp_update_rmem(struct sock *sk)
1923 {
1924 	struct mptcp_sock *msk = mptcp_sk(sk);
1925 
1926 	if (!msk->rmem_released)
1927 		return;
1928 
1929 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1930 	mptcp_rmem_uncharge(sk, msk->rmem_released);
1931 	WRITE_ONCE(msk->rmem_released, 0);
1932 }
1933 
1934 static void __mptcp_splice_receive_queue(struct sock *sk)
1935 {
1936 	struct mptcp_sock *msk = mptcp_sk(sk);
1937 
1938 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1939 }
1940 
1941 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1942 {
1943 	struct sock *sk = (struct sock *)msk;
1944 	unsigned int moved = 0;
1945 	bool ret, done;
1946 
1947 	do {
1948 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1949 		bool slowpath;
1950 
1951 		/* we can have data pending in the subflows only if the msk
1952 		 * receive buffer was full at subflow_data_ready() time,
1953 		 * that is an unlikely slow path.
1954 		 */
1955 		if (likely(!ssk))
1956 			break;
1957 
1958 		slowpath = lock_sock_fast(ssk);
1959 		mptcp_data_lock(sk);
1960 		__mptcp_update_rmem(sk);
1961 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1962 		mptcp_data_unlock(sk);
1963 
1964 		if (unlikely(ssk->sk_err))
1965 			__mptcp_error_report(sk);
1966 		unlock_sock_fast(ssk, slowpath);
1967 	} while (!done);
1968 
1969 	/* acquire the data lock only if some input data is pending */
1970 	ret = moved > 0;
1971 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1972 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1973 		mptcp_data_lock(sk);
1974 		__mptcp_update_rmem(sk);
1975 		ret |= __mptcp_ofo_queue(msk);
1976 		__mptcp_splice_receive_queue(sk);
1977 		mptcp_data_unlock(sk);
1978 	}
1979 	if (ret)
1980 		mptcp_check_data_fin((struct sock *)msk);
1981 	return !skb_queue_empty(&msk->receive_queue);
1982 }
1983 
1984 static unsigned int mptcp_inq_hint(const struct sock *sk)
1985 {
1986 	const struct mptcp_sock *msk = mptcp_sk(sk);
1987 	const struct sk_buff *skb;
1988 
1989 	skb = skb_peek(&msk->receive_queue);
1990 	if (skb) {
1991 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
1992 
1993 		if (hint_val >= INT_MAX)
1994 			return INT_MAX;
1995 
1996 		return (unsigned int)hint_val;
1997 	}
1998 
1999 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2000 		return 1;
2001 
2002 	return 0;
2003 }
2004 
2005 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2006 			 int flags, int *addr_len)
2007 {
2008 	struct mptcp_sock *msk = mptcp_sk(sk);
2009 	struct scm_timestamping_internal tss;
2010 	int copied = 0, cmsg_flags = 0;
2011 	int target;
2012 	long timeo;
2013 
2014 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2015 	if (unlikely(flags & MSG_ERRQUEUE))
2016 		return inet_recv_error(sk, msg, len, addr_len);
2017 
2018 	lock_sock(sk);
2019 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2020 		copied = -ENOTCONN;
2021 		goto out_err;
2022 	}
2023 
2024 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2025 
2026 	len = min_t(size_t, len, INT_MAX);
2027 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2028 
2029 	if (unlikely(msk->recvmsg_inq))
2030 		cmsg_flags = MPTCP_CMSG_INQ;
2031 
2032 	while (copied < len) {
2033 		int bytes_read;
2034 
2035 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2036 		if (unlikely(bytes_read < 0)) {
2037 			if (!copied)
2038 				copied = bytes_read;
2039 			goto out_err;
2040 		}
2041 
2042 		copied += bytes_read;
2043 
2044 		/* be sure to advertise window change */
2045 		mptcp_cleanup_rbuf(msk);
2046 
2047 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2048 			continue;
2049 
2050 		/* only the master socket status is relevant here. The exit
2051 		 * conditions mirror closely tcp_recvmsg()
2052 		 */
2053 		if (copied >= target)
2054 			break;
2055 
2056 		if (copied) {
2057 			if (sk->sk_err ||
2058 			    sk->sk_state == TCP_CLOSE ||
2059 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2060 			    !timeo ||
2061 			    signal_pending(current))
2062 				break;
2063 		} else {
2064 			if (sk->sk_err) {
2065 				copied = sock_error(sk);
2066 				break;
2067 			}
2068 
2069 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2070 				mptcp_check_for_eof(msk);
2071 
2072 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2073 				/* race breaker: the shutdown could be after the
2074 				 * previous receive queue check
2075 				 */
2076 				if (__mptcp_move_skbs(msk))
2077 					continue;
2078 				break;
2079 			}
2080 
2081 			if (sk->sk_state == TCP_CLOSE) {
2082 				copied = -ENOTCONN;
2083 				break;
2084 			}
2085 
2086 			if (!timeo) {
2087 				copied = -EAGAIN;
2088 				break;
2089 			}
2090 
2091 			if (signal_pending(current)) {
2092 				copied = sock_intr_errno(timeo);
2093 				break;
2094 			}
2095 		}
2096 
2097 		pr_debug("block timeout %ld", timeo);
2098 		sk_wait_data(sk, &timeo, NULL);
2099 	}
2100 
2101 out_err:
2102 	if (cmsg_flags && copied >= 0) {
2103 		if (cmsg_flags & MPTCP_CMSG_TS)
2104 			tcp_recv_timestamp(msg, sk, &tss);
2105 
2106 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2107 			unsigned int inq = mptcp_inq_hint(sk);
2108 
2109 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2110 		}
2111 	}
2112 
2113 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2114 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2115 		 skb_queue_empty(&msk->receive_queue), copied);
2116 	if (!(flags & MSG_PEEK))
2117 		mptcp_rcv_space_adjust(msk, copied);
2118 
2119 	release_sock(sk);
2120 	return copied;
2121 }
2122 
2123 static void mptcp_retransmit_timer(struct timer_list *t)
2124 {
2125 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2126 						       icsk_retransmit_timer);
2127 	struct sock *sk = &icsk->icsk_inet.sk;
2128 	struct mptcp_sock *msk = mptcp_sk(sk);
2129 
2130 	bh_lock_sock(sk);
2131 	if (!sock_owned_by_user(sk)) {
2132 		/* we need a process context to retransmit */
2133 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2134 			mptcp_schedule_work(sk);
2135 	} else {
2136 		/* delegate our work to tcp_release_cb() */
2137 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2138 	}
2139 	bh_unlock_sock(sk);
2140 	sock_put(sk);
2141 }
2142 
2143 static void mptcp_timeout_timer(struct timer_list *t)
2144 {
2145 	struct sock *sk = from_timer(sk, t, sk_timer);
2146 
2147 	mptcp_schedule_work(sk);
2148 	sock_put(sk);
2149 }
2150 
2151 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2152  * level.
2153  *
2154  * A backup subflow is returned only if that is the only kind available.
2155  */
2156 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2157 {
2158 	struct sock *backup = NULL, *pick = NULL;
2159 	struct mptcp_subflow_context *subflow;
2160 	int min_stale_count = INT_MAX;
2161 
2162 	sock_owned_by_me((const struct sock *)msk);
2163 
2164 	if (__mptcp_check_fallback(msk))
2165 		return NULL;
2166 
2167 	mptcp_for_each_subflow(msk, subflow) {
2168 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2169 
2170 		if (!__mptcp_subflow_active(subflow))
2171 			continue;
2172 
2173 		/* still data outstanding at TCP level? skip this */
2174 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2175 			mptcp_pm_subflow_chk_stale(msk, ssk);
2176 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2177 			continue;
2178 		}
2179 
2180 		if (subflow->backup) {
2181 			if (!backup)
2182 				backup = ssk;
2183 			continue;
2184 		}
2185 
2186 		if (!pick)
2187 			pick = ssk;
2188 	}
2189 
2190 	if (pick)
2191 		return pick;
2192 
2193 	/* use backup only if there are no progresses anywhere */
2194 	return min_stale_count > 1 ? backup : NULL;
2195 }
2196 
2197 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2198 {
2199 	if (msk->subflow) {
2200 		iput(SOCK_INODE(msk->subflow));
2201 		msk->subflow = NULL;
2202 	}
2203 }
2204 
2205 bool __mptcp_retransmit_pending_data(struct sock *sk)
2206 {
2207 	struct mptcp_data_frag *cur, *rtx_head;
2208 	struct mptcp_sock *msk = mptcp_sk(sk);
2209 
2210 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2211 		return false;
2212 
2213 	if (tcp_rtx_and_write_queues_empty(sk))
2214 		return false;
2215 
2216 	/* the closing socket has some data untransmitted and/or unacked:
2217 	 * some data in the mptcp rtx queue has not really xmitted yet.
2218 	 * keep it simple and re-inject the whole mptcp level rtx queue
2219 	 */
2220 	mptcp_data_lock(sk);
2221 	__mptcp_clean_una_wakeup(sk);
2222 	rtx_head = mptcp_rtx_head(sk);
2223 	if (!rtx_head) {
2224 		mptcp_data_unlock(sk);
2225 		return false;
2226 	}
2227 
2228 	msk->recovery_snd_nxt = msk->snd_nxt;
2229 	msk->recovery = true;
2230 	mptcp_data_unlock(sk);
2231 
2232 	msk->first_pending = rtx_head;
2233 	msk->snd_burst = 0;
2234 
2235 	/* be sure to clear the "sent status" on all re-injected fragments */
2236 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2237 		if (!cur->already_sent)
2238 			break;
2239 		cur->already_sent = 0;
2240 	}
2241 
2242 	return true;
2243 }
2244 
2245 /* flags for __mptcp_close_ssk() */
2246 #define MPTCP_CF_PUSH		BIT(1)
2247 #define MPTCP_CF_FASTCLOSE	BIT(2)
2248 
2249 /* subflow sockets can be either outgoing (connect) or incoming
2250  * (accept).
2251  *
2252  * Outgoing subflows use in-kernel sockets.
2253  * Incoming subflows do not have their own 'struct socket' allocated,
2254  * so we need to use tcp_close() after detaching them from the mptcp
2255  * parent socket.
2256  */
2257 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2258 			      struct mptcp_subflow_context *subflow,
2259 			      unsigned int flags)
2260 {
2261 	struct mptcp_sock *msk = mptcp_sk(sk);
2262 	bool need_push, dispose_it;
2263 
2264 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2265 	if (dispose_it)
2266 		list_del(&subflow->node);
2267 
2268 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2269 
2270 	if (flags & MPTCP_CF_FASTCLOSE)
2271 		subflow->send_fastclose = 1;
2272 
2273 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2274 	if (!dispose_it) {
2275 		tcp_disconnect(ssk, 0);
2276 		msk->subflow->state = SS_UNCONNECTED;
2277 		mptcp_subflow_ctx_reset(subflow);
2278 		release_sock(ssk);
2279 
2280 		goto out;
2281 	}
2282 
2283 	/* if we are invoked by the msk cleanup code, the subflow is
2284 	 * already orphaned
2285 	 */
2286 	if (ssk->sk_socket)
2287 		sock_orphan(ssk);
2288 
2289 	subflow->disposable = 1;
2290 
2291 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2292 	 * the ssk has been already destroyed, we just need to release the
2293 	 * reference owned by msk;
2294 	 */
2295 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2296 		kfree_rcu(subflow, rcu);
2297 	} else {
2298 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2299 		if (ssk->sk_state == TCP_LISTEN) {
2300 			tcp_set_state(ssk, TCP_CLOSE);
2301 			mptcp_subflow_queue_clean(ssk);
2302 			inet_csk_listen_stop(ssk);
2303 		}
2304 		__tcp_close(ssk, 0);
2305 
2306 		/* close acquired an extra ref */
2307 		__sock_put(ssk);
2308 	}
2309 	release_sock(ssk);
2310 
2311 	sock_put(ssk);
2312 
2313 	if (ssk == msk->first)
2314 		msk->first = NULL;
2315 
2316 out:
2317 	if (ssk == msk->last_snd)
2318 		msk->last_snd = NULL;
2319 
2320 	if (need_push)
2321 		__mptcp_push_pending(sk, 0);
2322 }
2323 
2324 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2325 		     struct mptcp_subflow_context *subflow)
2326 {
2327 	if (sk->sk_state == TCP_ESTABLISHED)
2328 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2329 
2330 	/* subflow aborted before reaching the fully_established status
2331 	 * attempt the creation of the next subflow
2332 	 */
2333 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2334 
2335 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2336 }
2337 
2338 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2339 {
2340 	return 0;
2341 }
2342 
2343 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2344 {
2345 	struct mptcp_subflow_context *subflow, *tmp;
2346 
2347 	might_sleep();
2348 
2349 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2350 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2351 
2352 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2353 			continue;
2354 
2355 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2356 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2357 			continue;
2358 
2359 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2360 	}
2361 }
2362 
2363 static bool mptcp_check_close_timeout(const struct sock *sk)
2364 {
2365 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2366 	struct mptcp_subflow_context *subflow;
2367 
2368 	if (delta >= TCP_TIMEWAIT_LEN)
2369 		return true;
2370 
2371 	/* if all subflows are in closed status don't bother with additional
2372 	 * timeout
2373 	 */
2374 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2375 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2376 		    TCP_CLOSE)
2377 			return false;
2378 	}
2379 	return true;
2380 }
2381 
2382 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2383 {
2384 	struct mptcp_subflow_context *subflow, *tmp;
2385 	struct sock *sk = &msk->sk.icsk_inet.sk;
2386 
2387 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2388 		return;
2389 
2390 	mptcp_token_destroy(msk);
2391 
2392 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2393 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2394 		bool slow;
2395 
2396 		slow = lock_sock_fast(tcp_sk);
2397 		if (tcp_sk->sk_state != TCP_CLOSE) {
2398 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2399 			tcp_set_state(tcp_sk, TCP_CLOSE);
2400 		}
2401 		unlock_sock_fast(tcp_sk, slow);
2402 	}
2403 
2404 	inet_sk_state_store(sk, TCP_CLOSE);
2405 	sk->sk_shutdown = SHUTDOWN_MASK;
2406 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2407 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2408 
2409 	mptcp_close_wake_up(sk);
2410 }
2411 
2412 static void __mptcp_retrans(struct sock *sk)
2413 {
2414 	struct mptcp_sock *msk = mptcp_sk(sk);
2415 	struct mptcp_sendmsg_info info = {};
2416 	struct mptcp_data_frag *dfrag;
2417 	size_t copied = 0;
2418 	struct sock *ssk;
2419 	int ret;
2420 
2421 	mptcp_clean_una_wakeup(sk);
2422 
2423 	/* first check ssk: need to kick "stale" logic */
2424 	ssk = mptcp_subflow_get_retrans(msk);
2425 	dfrag = mptcp_rtx_head(sk);
2426 	if (!dfrag) {
2427 		if (mptcp_data_fin_enabled(msk)) {
2428 			struct inet_connection_sock *icsk = inet_csk(sk);
2429 
2430 			icsk->icsk_retransmits++;
2431 			mptcp_set_datafin_timeout(sk);
2432 			mptcp_send_ack(msk);
2433 
2434 			goto reset_timer;
2435 		}
2436 
2437 		if (!mptcp_send_head(sk))
2438 			return;
2439 
2440 		goto reset_timer;
2441 	}
2442 
2443 	if (!ssk)
2444 		goto reset_timer;
2445 
2446 	lock_sock(ssk);
2447 
2448 	/* limit retransmission to the bytes already sent on some subflows */
2449 	info.sent = 0;
2450 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2451 	while (info.sent < info.limit) {
2452 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2453 		if (ret <= 0)
2454 			break;
2455 
2456 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2457 		copied += ret;
2458 		info.sent += ret;
2459 	}
2460 	if (copied) {
2461 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2462 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2463 			 info.size_goal);
2464 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2465 	}
2466 
2467 	release_sock(ssk);
2468 
2469 reset_timer:
2470 	mptcp_check_and_set_pending(sk);
2471 
2472 	if (!mptcp_timer_pending(sk))
2473 		mptcp_reset_timer(sk);
2474 }
2475 
2476 /* schedule the timeout timer for the relevant event: either close timeout
2477  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2478  */
2479 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2480 {
2481 	struct sock *sk = (struct sock *)msk;
2482 	unsigned long timeout, close_timeout;
2483 
2484 	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2485 		return;
2486 
2487 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2488 
2489 	/* the close timeout takes precedence on the fail one, and here at least one of
2490 	 * them is active
2491 	 */
2492 	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2493 
2494 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2495 }
2496 
2497 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2498 {
2499 	struct sock *ssk = msk->first;
2500 	bool slow;
2501 
2502 	if (!ssk)
2503 		return;
2504 
2505 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2506 
2507 	slow = lock_sock_fast(ssk);
2508 	mptcp_subflow_reset(ssk);
2509 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2510 	unlock_sock_fast(ssk, slow);
2511 
2512 	mptcp_reset_timeout(msk, 0);
2513 }
2514 
2515 static void mptcp_worker(struct work_struct *work)
2516 {
2517 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2518 	struct sock *sk = &msk->sk.icsk_inet.sk;
2519 	unsigned long fail_tout;
2520 	int state;
2521 
2522 	lock_sock(sk);
2523 	state = sk->sk_state;
2524 	if (unlikely(state == TCP_CLOSE))
2525 		goto unlock;
2526 
2527 	mptcp_check_data_fin_ack(sk);
2528 
2529 	mptcp_check_fastclose(msk);
2530 
2531 	mptcp_pm_nl_work(msk);
2532 
2533 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2534 		mptcp_check_for_eof(msk);
2535 
2536 	__mptcp_check_send_data_fin(sk);
2537 	mptcp_check_data_fin(sk);
2538 
2539 	/* There is no point in keeping around an orphaned sk timedout or
2540 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2541 	 * even if it is orphaned and in FIN_WAIT2 state
2542 	 */
2543 	if (sock_flag(sk, SOCK_DEAD) &&
2544 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2545 		inet_sk_state_store(sk, TCP_CLOSE);
2546 		__mptcp_destroy_sock(sk);
2547 		goto unlock;
2548 	}
2549 
2550 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2551 		__mptcp_close_subflow(msk);
2552 
2553 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2554 		__mptcp_retrans(sk);
2555 
2556 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2557 	if (fail_tout && time_after(jiffies, fail_tout))
2558 		mptcp_mp_fail_no_response(msk);
2559 
2560 unlock:
2561 	release_sock(sk);
2562 	sock_put(sk);
2563 }
2564 
2565 static int __mptcp_init_sock(struct sock *sk)
2566 {
2567 	struct mptcp_sock *msk = mptcp_sk(sk);
2568 
2569 	INIT_LIST_HEAD(&msk->conn_list);
2570 	INIT_LIST_HEAD(&msk->join_list);
2571 	INIT_LIST_HEAD(&msk->rtx_queue);
2572 	INIT_WORK(&msk->work, mptcp_worker);
2573 	__skb_queue_head_init(&msk->receive_queue);
2574 	msk->out_of_order_queue = RB_ROOT;
2575 	msk->first_pending = NULL;
2576 	msk->rmem_fwd_alloc = 0;
2577 	WRITE_ONCE(msk->rmem_released, 0);
2578 	msk->timer_ival = TCP_RTO_MIN;
2579 
2580 	msk->first = NULL;
2581 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2582 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2583 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2584 	msk->recovery = false;
2585 
2586 	mptcp_pm_data_init(msk);
2587 
2588 	/* re-use the csk retrans timer for MPTCP-level retrans */
2589 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2590 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2591 
2592 	return 0;
2593 }
2594 
2595 static void mptcp_ca_reset(struct sock *sk)
2596 {
2597 	struct inet_connection_sock *icsk = inet_csk(sk);
2598 
2599 	tcp_assign_congestion_control(sk);
2600 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2601 
2602 	/* no need to keep a reference to the ops, the name will suffice */
2603 	tcp_cleanup_congestion_control(sk);
2604 	icsk->icsk_ca_ops = NULL;
2605 }
2606 
2607 static int mptcp_init_sock(struct sock *sk)
2608 {
2609 	struct net *net = sock_net(sk);
2610 	int ret;
2611 
2612 	ret = __mptcp_init_sock(sk);
2613 	if (ret)
2614 		return ret;
2615 
2616 	if (!mptcp_is_enabled(net))
2617 		return -ENOPROTOOPT;
2618 
2619 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2620 		return -ENOMEM;
2621 
2622 	ret = __mptcp_socket_create(mptcp_sk(sk));
2623 	if (ret)
2624 		return ret;
2625 
2626 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2627 	 * propagate the correct value
2628 	 */
2629 	mptcp_ca_reset(sk);
2630 
2631 	sk_sockets_allocated_inc(sk);
2632 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2633 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2634 
2635 	return 0;
2636 }
2637 
2638 static void __mptcp_clear_xmit(struct sock *sk)
2639 {
2640 	struct mptcp_sock *msk = mptcp_sk(sk);
2641 	struct mptcp_data_frag *dtmp, *dfrag;
2642 
2643 	WRITE_ONCE(msk->first_pending, NULL);
2644 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2645 		dfrag_clear(sk, dfrag);
2646 }
2647 
2648 static void mptcp_cancel_work(struct sock *sk)
2649 {
2650 	struct mptcp_sock *msk = mptcp_sk(sk);
2651 
2652 	if (cancel_work_sync(&msk->work))
2653 		__sock_put(sk);
2654 }
2655 
2656 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2657 {
2658 	lock_sock(ssk);
2659 
2660 	switch (ssk->sk_state) {
2661 	case TCP_LISTEN:
2662 		if (!(how & RCV_SHUTDOWN))
2663 			break;
2664 		fallthrough;
2665 	case TCP_SYN_SENT:
2666 		tcp_disconnect(ssk, O_NONBLOCK);
2667 		break;
2668 	default:
2669 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2670 			pr_debug("Fallback");
2671 			ssk->sk_shutdown |= how;
2672 			tcp_shutdown(ssk, how);
2673 		} else {
2674 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2675 			tcp_send_ack(ssk);
2676 			if (!mptcp_timer_pending(sk))
2677 				mptcp_reset_timer(sk);
2678 		}
2679 		break;
2680 	}
2681 
2682 	release_sock(ssk);
2683 }
2684 
2685 static const unsigned char new_state[16] = {
2686 	/* current state:     new state:      action:	*/
2687 	[0 /* (Invalid) */] = TCP_CLOSE,
2688 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2689 	[TCP_SYN_SENT]      = TCP_CLOSE,
2690 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2691 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2692 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2693 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2694 	[TCP_CLOSE]         = TCP_CLOSE,
2695 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2696 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2697 	[TCP_LISTEN]        = TCP_CLOSE,
2698 	[TCP_CLOSING]       = TCP_CLOSING,
2699 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2700 };
2701 
2702 static int mptcp_close_state(struct sock *sk)
2703 {
2704 	int next = (int)new_state[sk->sk_state];
2705 	int ns = next & TCP_STATE_MASK;
2706 
2707 	inet_sk_state_store(sk, ns);
2708 
2709 	return next & TCP_ACTION_FIN;
2710 }
2711 
2712 static void __mptcp_check_send_data_fin(struct sock *sk)
2713 {
2714 	struct mptcp_subflow_context *subflow;
2715 	struct mptcp_sock *msk = mptcp_sk(sk);
2716 
2717 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2718 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2719 		 msk->snd_nxt, msk->write_seq);
2720 
2721 	/* we still need to enqueue subflows or not really shutting down,
2722 	 * skip this
2723 	 */
2724 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2725 	    mptcp_send_head(sk))
2726 		return;
2727 
2728 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2729 
2730 	/* fallback socket will not get data_fin/ack, can move to the next
2731 	 * state now
2732 	 */
2733 	if (__mptcp_check_fallback(msk)) {
2734 		WRITE_ONCE(msk->snd_una, msk->write_seq);
2735 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2736 			inet_sk_state_store(sk, TCP_CLOSE);
2737 			mptcp_close_wake_up(sk);
2738 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2739 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2740 		}
2741 	}
2742 
2743 	mptcp_for_each_subflow(msk, subflow) {
2744 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2745 
2746 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2747 	}
2748 }
2749 
2750 static void __mptcp_wr_shutdown(struct sock *sk)
2751 {
2752 	struct mptcp_sock *msk = mptcp_sk(sk);
2753 
2754 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2755 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2756 		 !!mptcp_send_head(sk));
2757 
2758 	/* will be ignored by fallback sockets */
2759 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2760 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2761 
2762 	__mptcp_check_send_data_fin(sk);
2763 }
2764 
2765 static void __mptcp_destroy_sock(struct sock *sk)
2766 {
2767 	struct mptcp_subflow_context *subflow, *tmp;
2768 	struct mptcp_sock *msk = mptcp_sk(sk);
2769 	LIST_HEAD(conn_list);
2770 
2771 	pr_debug("msk=%p", msk);
2772 
2773 	might_sleep();
2774 
2775 	/* join list will be eventually flushed (with rst) at sock lock release time*/
2776 	list_splice_init(&msk->conn_list, &conn_list);
2777 
2778 	mptcp_stop_timer(sk);
2779 	sk_stop_timer(sk, &sk->sk_timer);
2780 	msk->pm.status = 0;
2781 
2782 	/* clears msk->subflow, allowing the following loop to close
2783 	 * even the initial subflow
2784 	 */
2785 	mptcp_dispose_initial_subflow(msk);
2786 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2787 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2788 		__mptcp_close_ssk(sk, ssk, subflow, 0);
2789 	}
2790 
2791 	sk->sk_prot->destroy(sk);
2792 
2793 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2794 	WARN_ON_ONCE(msk->rmem_released);
2795 	sk_stream_kill_queues(sk);
2796 	xfrm_sk_free_policy(sk);
2797 
2798 	sk_refcnt_debug_release(sk);
2799 	sock_put(sk);
2800 }
2801 
2802 static void mptcp_close(struct sock *sk, long timeout)
2803 {
2804 	struct mptcp_subflow_context *subflow;
2805 	struct mptcp_sock *msk = mptcp_sk(sk);
2806 	bool do_cancel_work = false;
2807 
2808 	lock_sock(sk);
2809 	sk->sk_shutdown = SHUTDOWN_MASK;
2810 
2811 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2812 		inet_sk_state_store(sk, TCP_CLOSE);
2813 		goto cleanup;
2814 	}
2815 
2816 	if (mptcp_close_state(sk))
2817 		__mptcp_wr_shutdown(sk);
2818 
2819 	sk_stream_wait_close(sk, timeout);
2820 
2821 cleanup:
2822 	/* orphan all the subflows */
2823 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2824 	mptcp_for_each_subflow(msk, subflow) {
2825 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2826 		bool slow = lock_sock_fast_nested(ssk);
2827 
2828 		/* since the close timeout takes precedence on the fail one,
2829 		 * cancel the latter
2830 		 */
2831 		if (ssk == msk->first)
2832 			subflow->fail_tout = 0;
2833 
2834 		sock_orphan(ssk);
2835 		unlock_sock_fast(ssk, slow);
2836 	}
2837 	sock_orphan(sk);
2838 
2839 	sock_hold(sk);
2840 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2841 	if (mptcp_sk(sk)->token)
2842 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
2843 
2844 	if (sk->sk_state == TCP_CLOSE) {
2845 		__mptcp_destroy_sock(sk);
2846 		do_cancel_work = true;
2847 	} else {
2848 		mptcp_reset_timeout(msk, 0);
2849 	}
2850 	release_sock(sk);
2851 	if (do_cancel_work)
2852 		mptcp_cancel_work(sk);
2853 
2854 	sock_put(sk);
2855 }
2856 
2857 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2858 {
2859 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2860 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2861 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2862 
2863 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2864 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2865 
2866 	if (msk6 && ssk6) {
2867 		msk6->saddr = ssk6->saddr;
2868 		msk6->flow_label = ssk6->flow_label;
2869 	}
2870 #endif
2871 
2872 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2873 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2874 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2875 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2876 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2877 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2878 }
2879 
2880 static int mptcp_disconnect(struct sock *sk, int flags)
2881 {
2882 	struct mptcp_subflow_context *subflow;
2883 	struct mptcp_sock *msk = mptcp_sk(sk);
2884 
2885 	inet_sk_state_store(sk, TCP_CLOSE);
2886 
2887 	mptcp_for_each_subflow(msk, subflow) {
2888 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2889 
2890 		__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE);
2891 	}
2892 
2893 	mptcp_stop_timer(sk);
2894 	sk_stop_timer(sk, &sk->sk_timer);
2895 
2896 	if (mptcp_sk(sk)->token)
2897 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2898 
2899 	mptcp_destroy_common(msk);
2900 	msk->last_snd = NULL;
2901 	WRITE_ONCE(msk->flags, 0);
2902 	msk->cb_flags = 0;
2903 	msk->push_pending = 0;
2904 	msk->recovery = false;
2905 	msk->can_ack = false;
2906 	msk->fully_established = false;
2907 	msk->rcv_data_fin = false;
2908 	msk->snd_data_fin_enable = false;
2909 	msk->rcv_fastclose = false;
2910 	msk->use_64bit_ack = false;
2911 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2912 	mptcp_pm_data_reset(msk);
2913 	mptcp_ca_reset(sk);
2914 
2915 	sk->sk_shutdown = 0;
2916 	sk_error_report(sk);
2917 	return 0;
2918 }
2919 
2920 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2921 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2922 {
2923 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2924 
2925 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2926 }
2927 #endif
2928 
2929 struct sock *mptcp_sk_clone(const struct sock *sk,
2930 			    const struct mptcp_options_received *mp_opt,
2931 			    struct request_sock *req)
2932 {
2933 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2934 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2935 	struct mptcp_sock *msk;
2936 	u64 ack_seq;
2937 
2938 	if (!nsk)
2939 		return NULL;
2940 
2941 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2942 	if (nsk->sk_family == AF_INET6)
2943 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2944 #endif
2945 
2946 	__mptcp_init_sock(nsk);
2947 
2948 	msk = mptcp_sk(nsk);
2949 	msk->local_key = subflow_req->local_key;
2950 	msk->token = subflow_req->token;
2951 	msk->subflow = NULL;
2952 	WRITE_ONCE(msk->fully_established, false);
2953 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2954 		WRITE_ONCE(msk->csum_enabled, true);
2955 
2956 	msk->write_seq = subflow_req->idsn + 1;
2957 	msk->snd_nxt = msk->write_seq;
2958 	msk->snd_una = msk->write_seq;
2959 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2960 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2961 
2962 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2963 		msk->can_ack = true;
2964 		msk->remote_key = mp_opt->sndr_key;
2965 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2966 		ack_seq++;
2967 		WRITE_ONCE(msk->ack_seq, ack_seq);
2968 		atomic64_set(&msk->rcv_wnd_sent, ack_seq);
2969 	}
2970 
2971 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2972 	/* will be fully established after successful MPC subflow creation */
2973 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2974 
2975 	security_inet_csk_clone(nsk, req);
2976 	bh_unlock_sock(nsk);
2977 
2978 	/* keep a single reference */
2979 	__sock_put(nsk);
2980 	return nsk;
2981 }
2982 
2983 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2984 {
2985 	const struct tcp_sock *tp = tcp_sk(ssk);
2986 
2987 	msk->rcvq_space.copied = 0;
2988 	msk->rcvq_space.rtt_us = 0;
2989 
2990 	msk->rcvq_space.time = tp->tcp_mstamp;
2991 
2992 	/* initial rcv_space offering made to peer */
2993 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2994 				      TCP_INIT_CWND * tp->advmss);
2995 	if (msk->rcvq_space.space == 0)
2996 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2997 
2998 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2999 }
3000 
3001 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3002 				 bool kern)
3003 {
3004 	struct mptcp_sock *msk = mptcp_sk(sk);
3005 	struct socket *listener;
3006 	struct sock *newsk;
3007 
3008 	listener = __mptcp_nmpc_socket(msk);
3009 	if (WARN_ON_ONCE(!listener)) {
3010 		*err = -EINVAL;
3011 		return NULL;
3012 	}
3013 
3014 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3015 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3016 	if (!newsk)
3017 		return NULL;
3018 
3019 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3020 	if (sk_is_mptcp(newsk)) {
3021 		struct mptcp_subflow_context *subflow;
3022 		struct sock *new_mptcp_sock;
3023 
3024 		subflow = mptcp_subflow_ctx(newsk);
3025 		new_mptcp_sock = subflow->conn;
3026 
3027 		/* is_mptcp should be false if subflow->conn is missing, see
3028 		 * subflow_syn_recv_sock()
3029 		 */
3030 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3031 			tcp_sk(newsk)->is_mptcp = 0;
3032 			goto out;
3033 		}
3034 
3035 		/* acquire the 2nd reference for the owning socket */
3036 		sock_hold(new_mptcp_sock);
3037 		newsk = new_mptcp_sock;
3038 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3039 	} else {
3040 		MPTCP_INC_STATS(sock_net(sk),
3041 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3042 	}
3043 
3044 out:
3045 	newsk->sk_kern_sock = kern;
3046 	return newsk;
3047 }
3048 
3049 void mptcp_destroy_common(struct mptcp_sock *msk)
3050 {
3051 	struct sock *sk = (struct sock *)msk;
3052 
3053 	__mptcp_clear_xmit(sk);
3054 
3055 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3056 	mptcp_data_lock(sk);
3057 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3058 	__skb_queue_purge(&sk->sk_receive_queue);
3059 	skb_rbtree_purge(&msk->out_of_order_queue);
3060 	mptcp_data_unlock(sk);
3061 
3062 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3063 	 * inet_sock_destruct() will dispose it
3064 	 */
3065 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3066 	msk->rmem_fwd_alloc = 0;
3067 	mptcp_token_destroy(msk);
3068 	mptcp_pm_free_anno_list(msk);
3069 	mptcp_free_local_addr_list(msk);
3070 }
3071 
3072 static void mptcp_destroy(struct sock *sk)
3073 {
3074 	struct mptcp_sock *msk = mptcp_sk(sk);
3075 
3076 	mptcp_destroy_common(msk);
3077 	sk_sockets_allocated_dec(sk);
3078 }
3079 
3080 void __mptcp_data_acked(struct sock *sk)
3081 {
3082 	if (!sock_owned_by_user(sk))
3083 		__mptcp_clean_una(sk);
3084 	else
3085 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3086 
3087 	if (mptcp_pending_data_fin_ack(sk))
3088 		mptcp_schedule_work(sk);
3089 }
3090 
3091 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3092 {
3093 	if (!mptcp_send_head(sk))
3094 		return;
3095 
3096 	if (!sock_owned_by_user(sk)) {
3097 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3098 
3099 		if (xmit_ssk == ssk)
3100 			__mptcp_subflow_push_pending(sk, ssk);
3101 		else if (xmit_ssk)
3102 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3103 	} else {
3104 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3105 	}
3106 }
3107 
3108 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3109 				      BIT(MPTCP_RETRANSMIT) | \
3110 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3111 
3112 /* processes deferred events and flush wmem */
3113 static void mptcp_release_cb(struct sock *sk)
3114 	__must_hold(&sk->sk_lock.slock)
3115 {
3116 	struct mptcp_sock *msk = mptcp_sk(sk);
3117 
3118 	for (;;) {
3119 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3120 				      msk->push_pending;
3121 		if (!flags)
3122 			break;
3123 
3124 		/* the following actions acquire the subflow socket lock
3125 		 *
3126 		 * 1) can't be invoked in atomic scope
3127 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3128 		 *    datapath acquires the msk socket spinlock while helding
3129 		 *    the subflow socket lock
3130 		 */
3131 		msk->push_pending = 0;
3132 		msk->cb_flags &= ~flags;
3133 		spin_unlock_bh(&sk->sk_lock.slock);
3134 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3135 			__mptcp_flush_join_list(sk);
3136 		if (flags & BIT(MPTCP_PUSH_PENDING))
3137 			__mptcp_push_pending(sk, 0);
3138 		if (flags & BIT(MPTCP_RETRANSMIT))
3139 			__mptcp_retrans(sk);
3140 
3141 		cond_resched();
3142 		spin_lock_bh(&sk->sk_lock.slock);
3143 	}
3144 
3145 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3146 		__mptcp_clean_una_wakeup(sk);
3147 	if (unlikely(&msk->cb_flags)) {
3148 		/* be sure to set the current sk state before tacking actions
3149 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3150 		 */
3151 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3152 			__mptcp_set_connected(sk);
3153 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3154 			__mptcp_error_report(sk);
3155 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3156 			msk->last_snd = NULL;
3157 	}
3158 
3159 	__mptcp_update_rmem(sk);
3160 }
3161 
3162 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3163  * TCP can't schedule delack timer before the subflow is fully established.
3164  * MPTCP uses the delack timer to do 3rd ack retransmissions
3165  */
3166 static void schedule_3rdack_retransmission(struct sock *ssk)
3167 {
3168 	struct inet_connection_sock *icsk = inet_csk(ssk);
3169 	struct tcp_sock *tp = tcp_sk(ssk);
3170 	unsigned long timeout;
3171 
3172 	if (mptcp_subflow_ctx(ssk)->fully_established)
3173 		return;
3174 
3175 	/* reschedule with a timeout above RTT, as we must look only for drop */
3176 	if (tp->srtt_us)
3177 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3178 	else
3179 		timeout = TCP_TIMEOUT_INIT;
3180 	timeout += jiffies;
3181 
3182 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3183 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3184 	icsk->icsk_ack.timeout = timeout;
3185 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3186 }
3187 
3188 void mptcp_subflow_process_delegated(struct sock *ssk)
3189 {
3190 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3191 	struct sock *sk = subflow->conn;
3192 
3193 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3194 		mptcp_data_lock(sk);
3195 		if (!sock_owned_by_user(sk))
3196 			__mptcp_subflow_push_pending(sk, ssk);
3197 		else
3198 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3199 		mptcp_data_unlock(sk);
3200 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3201 	}
3202 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3203 		schedule_3rdack_retransmission(ssk);
3204 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3205 	}
3206 }
3207 
3208 static int mptcp_hash(struct sock *sk)
3209 {
3210 	/* should never be called,
3211 	 * we hash the TCP subflows not the master socket
3212 	 */
3213 	WARN_ON_ONCE(1);
3214 	return 0;
3215 }
3216 
3217 static void mptcp_unhash(struct sock *sk)
3218 {
3219 	/* called from sk_common_release(), but nothing to do here */
3220 }
3221 
3222 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3223 {
3224 	struct mptcp_sock *msk = mptcp_sk(sk);
3225 	struct socket *ssock;
3226 
3227 	ssock = __mptcp_nmpc_socket(msk);
3228 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3229 	if (WARN_ON_ONCE(!ssock))
3230 		return -EINVAL;
3231 
3232 	return inet_csk_get_port(ssock->sk, snum);
3233 }
3234 
3235 void mptcp_finish_connect(struct sock *ssk)
3236 {
3237 	struct mptcp_subflow_context *subflow;
3238 	struct mptcp_sock *msk;
3239 	struct sock *sk;
3240 	u64 ack_seq;
3241 
3242 	subflow = mptcp_subflow_ctx(ssk);
3243 	sk = subflow->conn;
3244 	msk = mptcp_sk(sk);
3245 
3246 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3247 
3248 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3249 	ack_seq++;
3250 	subflow->map_seq = ack_seq;
3251 	subflow->map_subflow_seq = 1;
3252 
3253 	/* the socket is not connected yet, no msk/subflow ops can access/race
3254 	 * accessing the field below
3255 	 */
3256 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3257 	WRITE_ONCE(msk->local_key, subflow->local_key);
3258 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3259 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3260 	WRITE_ONCE(msk->ack_seq, ack_seq);
3261 	WRITE_ONCE(msk->can_ack, 1);
3262 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3263 	atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3264 
3265 	mptcp_pm_new_connection(msk, ssk, 0);
3266 
3267 	mptcp_rcv_space_init(msk, ssk);
3268 }
3269 
3270 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3271 {
3272 	write_lock_bh(&sk->sk_callback_lock);
3273 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3274 	sk_set_socket(sk, parent);
3275 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3276 	write_unlock_bh(&sk->sk_callback_lock);
3277 }
3278 
3279 bool mptcp_finish_join(struct sock *ssk)
3280 {
3281 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3282 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3283 	struct sock *parent = (void *)msk;
3284 	bool ret = true;
3285 
3286 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3287 
3288 	/* mptcp socket already closing? */
3289 	if (!mptcp_is_fully_established(parent)) {
3290 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3291 		return false;
3292 	}
3293 
3294 	if (!list_empty(&subflow->node))
3295 		goto out;
3296 
3297 	if (!mptcp_pm_allow_new_subflow(msk))
3298 		goto err_prohibited;
3299 
3300 	/* active connections are already on conn_list.
3301 	 * If we can't acquire msk socket lock here, let the release callback
3302 	 * handle it
3303 	 */
3304 	mptcp_data_lock(parent);
3305 	if (!sock_owned_by_user(parent)) {
3306 		ret = __mptcp_finish_join(msk, ssk);
3307 		if (ret) {
3308 			sock_hold(ssk);
3309 			list_add_tail(&subflow->node, &msk->conn_list);
3310 		}
3311 	} else {
3312 		sock_hold(ssk);
3313 		list_add_tail(&subflow->node, &msk->join_list);
3314 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3315 	}
3316 	mptcp_data_unlock(parent);
3317 
3318 	if (!ret) {
3319 err_prohibited:
3320 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3321 		return false;
3322 	}
3323 
3324 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3325 	WRITE_ONCE(msk->allow_infinite_fallback, false);
3326 
3327 out:
3328 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3329 	return true;
3330 }
3331 
3332 static void mptcp_shutdown(struct sock *sk, int how)
3333 {
3334 	pr_debug("sk=%p, how=%d", sk, how);
3335 
3336 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3337 		__mptcp_wr_shutdown(sk);
3338 }
3339 
3340 static int mptcp_forward_alloc_get(const struct sock *sk)
3341 {
3342 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3343 }
3344 
3345 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3346 {
3347 	const struct sock *sk = (void *)msk;
3348 	u64 delta;
3349 
3350 	if (sk->sk_state == TCP_LISTEN)
3351 		return -EINVAL;
3352 
3353 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3354 		return 0;
3355 
3356 	delta = msk->write_seq - v;
3357 	if (__mptcp_check_fallback(msk) && msk->first) {
3358 		struct tcp_sock *tp = tcp_sk(msk->first);
3359 
3360 		/* the first subflow is disconnected after close - see
3361 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3362 		 * so ignore that status, too.
3363 		 */
3364 		if (!((1 << msk->first->sk_state) &
3365 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3366 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3367 	}
3368 	if (delta > INT_MAX)
3369 		delta = INT_MAX;
3370 
3371 	return (int)delta;
3372 }
3373 
3374 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3375 {
3376 	struct mptcp_sock *msk = mptcp_sk(sk);
3377 	bool slow;
3378 	int answ;
3379 
3380 	switch (cmd) {
3381 	case SIOCINQ:
3382 		if (sk->sk_state == TCP_LISTEN)
3383 			return -EINVAL;
3384 
3385 		lock_sock(sk);
3386 		__mptcp_move_skbs(msk);
3387 		answ = mptcp_inq_hint(sk);
3388 		release_sock(sk);
3389 		break;
3390 	case SIOCOUTQ:
3391 		slow = lock_sock_fast(sk);
3392 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3393 		unlock_sock_fast(sk, slow);
3394 		break;
3395 	case SIOCOUTQNSD:
3396 		slow = lock_sock_fast(sk);
3397 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3398 		unlock_sock_fast(sk, slow);
3399 		break;
3400 	default:
3401 		return -ENOIOCTLCMD;
3402 	}
3403 
3404 	return put_user(answ, (int __user *)arg);
3405 }
3406 
3407 static struct proto mptcp_prot = {
3408 	.name		= "MPTCP",
3409 	.owner		= THIS_MODULE,
3410 	.init		= mptcp_init_sock,
3411 	.disconnect	= mptcp_disconnect,
3412 	.close		= mptcp_close,
3413 	.accept		= mptcp_accept,
3414 	.setsockopt	= mptcp_setsockopt,
3415 	.getsockopt	= mptcp_getsockopt,
3416 	.shutdown	= mptcp_shutdown,
3417 	.destroy	= mptcp_destroy,
3418 	.sendmsg	= mptcp_sendmsg,
3419 	.ioctl		= mptcp_ioctl,
3420 	.recvmsg	= mptcp_recvmsg,
3421 	.release_cb	= mptcp_release_cb,
3422 	.hash		= mptcp_hash,
3423 	.unhash		= mptcp_unhash,
3424 	.get_port	= mptcp_get_port,
3425 	.forward_alloc_get	= mptcp_forward_alloc_get,
3426 	.sockets_allocated	= &mptcp_sockets_allocated,
3427 
3428 	.memory_allocated	= &tcp_memory_allocated,
3429 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3430 
3431 	.memory_pressure	= &tcp_memory_pressure,
3432 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3433 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3434 	.sysctl_mem	= sysctl_tcp_mem,
3435 	.obj_size	= sizeof(struct mptcp_sock),
3436 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3437 	.no_autobind	= true,
3438 };
3439 
3440 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3441 {
3442 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3443 	struct socket *ssock;
3444 	int err;
3445 
3446 	lock_sock(sock->sk);
3447 	ssock = __mptcp_nmpc_socket(msk);
3448 	if (!ssock) {
3449 		err = -EINVAL;
3450 		goto unlock;
3451 	}
3452 
3453 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3454 	if (!err)
3455 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3456 
3457 unlock:
3458 	release_sock(sock->sk);
3459 	return err;
3460 }
3461 
3462 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3463 					 struct mptcp_subflow_context *subflow)
3464 {
3465 	subflow->request_mptcp = 0;
3466 	__mptcp_do_fallback(msk);
3467 }
3468 
3469 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3470 				int addr_len, int flags)
3471 {
3472 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3473 	struct mptcp_subflow_context *subflow;
3474 	struct socket *ssock;
3475 	int err = -EINVAL;
3476 
3477 	lock_sock(sock->sk);
3478 	if (uaddr) {
3479 		if (addr_len < sizeof(uaddr->sa_family))
3480 			goto unlock;
3481 
3482 		if (uaddr->sa_family == AF_UNSPEC) {
3483 			err = mptcp_disconnect(sock->sk, flags);
3484 			sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
3485 			goto unlock;
3486 		}
3487 	}
3488 
3489 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3490 		/* pending connection or invalid state, let existing subflow
3491 		 * cope with that
3492 		 */
3493 		ssock = msk->subflow;
3494 		goto do_connect;
3495 	}
3496 
3497 	ssock = __mptcp_nmpc_socket(msk);
3498 	if (!ssock)
3499 		goto unlock;
3500 
3501 	mptcp_token_destroy(msk);
3502 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3503 	subflow = mptcp_subflow_ctx(ssock->sk);
3504 #ifdef CONFIG_TCP_MD5SIG
3505 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3506 	 * TCP option space.
3507 	 */
3508 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3509 		mptcp_subflow_early_fallback(msk, subflow);
3510 #endif
3511 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3512 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3513 		mptcp_subflow_early_fallback(msk, subflow);
3514 	}
3515 	if (likely(!__mptcp_check_fallback(msk)))
3516 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3517 
3518 do_connect:
3519 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3520 	sock->state = ssock->state;
3521 
3522 	/* on successful connect, the msk state will be moved to established by
3523 	 * subflow_finish_connect()
3524 	 */
3525 	if (!err || err == -EINPROGRESS)
3526 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3527 	else
3528 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3529 
3530 unlock:
3531 	release_sock(sock->sk);
3532 	return err;
3533 }
3534 
3535 static int mptcp_listen(struct socket *sock, int backlog)
3536 {
3537 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3538 	struct socket *ssock;
3539 	int err;
3540 
3541 	pr_debug("msk=%p", msk);
3542 
3543 	lock_sock(sock->sk);
3544 	ssock = __mptcp_nmpc_socket(msk);
3545 	if (!ssock) {
3546 		err = -EINVAL;
3547 		goto unlock;
3548 	}
3549 
3550 	mptcp_token_destroy(msk);
3551 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3552 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3553 
3554 	err = ssock->ops->listen(ssock, backlog);
3555 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3556 	if (!err)
3557 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3558 
3559 unlock:
3560 	release_sock(sock->sk);
3561 	return err;
3562 }
3563 
3564 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3565 			       int flags, bool kern)
3566 {
3567 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3568 	struct socket *ssock;
3569 	int err;
3570 
3571 	pr_debug("msk=%p", msk);
3572 
3573 	ssock = __mptcp_nmpc_socket(msk);
3574 	if (!ssock)
3575 		return -EINVAL;
3576 
3577 	err = ssock->ops->accept(sock, newsock, flags, kern);
3578 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3579 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3580 		struct mptcp_subflow_context *subflow;
3581 		struct sock *newsk = newsock->sk;
3582 
3583 		lock_sock(newsk);
3584 
3585 		/* PM/worker can now acquire the first subflow socket
3586 		 * lock without racing with listener queue cleanup,
3587 		 * we can notify it, if needed.
3588 		 *
3589 		 * Even if remote has reset the initial subflow by now
3590 		 * the refcnt is still at least one.
3591 		 */
3592 		subflow = mptcp_subflow_ctx(msk->first);
3593 		list_add(&subflow->node, &msk->conn_list);
3594 		sock_hold(msk->first);
3595 		if (mptcp_is_fully_established(newsk))
3596 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3597 
3598 		mptcp_copy_inaddrs(newsk, msk->first);
3599 		mptcp_rcv_space_init(msk, msk->first);
3600 		mptcp_propagate_sndbuf(newsk, msk->first);
3601 
3602 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3603 		 * This is needed so NOSPACE flag can be set from tcp stack.
3604 		 */
3605 		mptcp_for_each_subflow(msk, subflow) {
3606 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3607 
3608 			if (!ssk->sk_socket)
3609 				mptcp_sock_graft(ssk, newsock);
3610 		}
3611 		release_sock(newsk);
3612 	}
3613 
3614 	return err;
3615 }
3616 
3617 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3618 {
3619 	/* Concurrent splices from sk_receive_queue into receive_queue will
3620 	 * always show at least one non-empty queue when checked in this order.
3621 	 */
3622 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3623 	    skb_queue_empty_lockless(&msk->receive_queue))
3624 		return 0;
3625 
3626 	return EPOLLIN | EPOLLRDNORM;
3627 }
3628 
3629 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3630 {
3631 	struct sock *sk = (struct sock *)msk;
3632 
3633 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3634 		return EPOLLOUT | EPOLLWRNORM;
3635 
3636 	if (sk_stream_is_writeable(sk))
3637 		return EPOLLOUT | EPOLLWRNORM;
3638 
3639 	mptcp_set_nospace(sk);
3640 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3641 	if (sk_stream_is_writeable(sk))
3642 		return EPOLLOUT | EPOLLWRNORM;
3643 
3644 	return 0;
3645 }
3646 
3647 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3648 			   struct poll_table_struct *wait)
3649 {
3650 	struct sock *sk = sock->sk;
3651 	struct mptcp_sock *msk;
3652 	__poll_t mask = 0;
3653 	int state;
3654 
3655 	msk = mptcp_sk(sk);
3656 	sock_poll_wait(file, sock, wait);
3657 
3658 	state = inet_sk_state_load(sk);
3659 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3660 	if (state == TCP_LISTEN) {
3661 		if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3662 			return 0;
3663 
3664 		return inet_csk_listen_poll(msk->subflow->sk);
3665 	}
3666 
3667 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3668 		mask |= mptcp_check_readable(msk);
3669 		mask |= mptcp_check_writeable(msk);
3670 	}
3671 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3672 		mask |= EPOLLHUP;
3673 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3674 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3675 
3676 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3677 	smp_rmb();
3678 	if (sk->sk_err)
3679 		mask |= EPOLLERR;
3680 
3681 	return mask;
3682 }
3683 
3684 static const struct proto_ops mptcp_stream_ops = {
3685 	.family		   = PF_INET,
3686 	.owner		   = THIS_MODULE,
3687 	.release	   = inet_release,
3688 	.bind		   = mptcp_bind,
3689 	.connect	   = mptcp_stream_connect,
3690 	.socketpair	   = sock_no_socketpair,
3691 	.accept		   = mptcp_stream_accept,
3692 	.getname	   = inet_getname,
3693 	.poll		   = mptcp_poll,
3694 	.ioctl		   = inet_ioctl,
3695 	.gettstamp	   = sock_gettstamp,
3696 	.listen		   = mptcp_listen,
3697 	.shutdown	   = inet_shutdown,
3698 	.setsockopt	   = sock_common_setsockopt,
3699 	.getsockopt	   = sock_common_getsockopt,
3700 	.sendmsg	   = inet_sendmsg,
3701 	.recvmsg	   = inet_recvmsg,
3702 	.mmap		   = sock_no_mmap,
3703 	.sendpage	   = inet_sendpage,
3704 };
3705 
3706 static struct inet_protosw mptcp_protosw = {
3707 	.type		= SOCK_STREAM,
3708 	.protocol	= IPPROTO_MPTCP,
3709 	.prot		= &mptcp_prot,
3710 	.ops		= &mptcp_stream_ops,
3711 	.flags		= INET_PROTOSW_ICSK,
3712 };
3713 
3714 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3715 {
3716 	struct mptcp_delegated_action *delegated;
3717 	struct mptcp_subflow_context *subflow;
3718 	int work_done = 0;
3719 
3720 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3721 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3722 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3723 
3724 		bh_lock_sock_nested(ssk);
3725 		if (!sock_owned_by_user(ssk) &&
3726 		    mptcp_subflow_has_delegated_action(subflow))
3727 			mptcp_subflow_process_delegated(ssk);
3728 		/* ... elsewhere tcp_release_cb_override already processed
3729 		 * the action or will do at next release_sock().
3730 		 * In both case must dequeue the subflow here - on the same
3731 		 * CPU that scheduled it.
3732 		 */
3733 		bh_unlock_sock(ssk);
3734 		sock_put(ssk);
3735 
3736 		if (++work_done == budget)
3737 			return budget;
3738 	}
3739 
3740 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3741 	 * will not try accessing the NULL napi->dev ptr
3742 	 */
3743 	napi_complete_done(napi, 0);
3744 	return work_done;
3745 }
3746 
3747 void __init mptcp_proto_init(void)
3748 {
3749 	struct mptcp_delegated_action *delegated;
3750 	int cpu;
3751 
3752 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3753 
3754 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3755 		panic("Failed to allocate MPTCP pcpu counter\n");
3756 
3757 	init_dummy_netdev(&mptcp_napi_dev);
3758 	for_each_possible_cpu(cpu) {
3759 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3760 		INIT_LIST_HEAD(&delegated->head);
3761 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3762 				  mptcp_napi_poll);
3763 		napi_enable(&delegated->napi);
3764 	}
3765 
3766 	mptcp_subflow_init();
3767 	mptcp_pm_init();
3768 	mptcp_token_init();
3769 
3770 	if (proto_register(&mptcp_prot, 1) != 0)
3771 		panic("Failed to register MPTCP proto.\n");
3772 
3773 	inet_register_protosw(&mptcp_protosw);
3774 
3775 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3776 }
3777 
3778 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3779 static const struct proto_ops mptcp_v6_stream_ops = {
3780 	.family		   = PF_INET6,
3781 	.owner		   = THIS_MODULE,
3782 	.release	   = inet6_release,
3783 	.bind		   = mptcp_bind,
3784 	.connect	   = mptcp_stream_connect,
3785 	.socketpair	   = sock_no_socketpair,
3786 	.accept		   = mptcp_stream_accept,
3787 	.getname	   = inet6_getname,
3788 	.poll		   = mptcp_poll,
3789 	.ioctl		   = inet6_ioctl,
3790 	.gettstamp	   = sock_gettstamp,
3791 	.listen		   = mptcp_listen,
3792 	.shutdown	   = inet_shutdown,
3793 	.setsockopt	   = sock_common_setsockopt,
3794 	.getsockopt	   = sock_common_getsockopt,
3795 	.sendmsg	   = inet6_sendmsg,
3796 	.recvmsg	   = inet6_recvmsg,
3797 	.mmap		   = sock_no_mmap,
3798 	.sendpage	   = inet_sendpage,
3799 #ifdef CONFIG_COMPAT
3800 	.compat_ioctl	   = inet6_compat_ioctl,
3801 #endif
3802 };
3803 
3804 static struct proto mptcp_v6_prot;
3805 
3806 static void mptcp_v6_destroy(struct sock *sk)
3807 {
3808 	mptcp_destroy(sk);
3809 	inet6_destroy_sock(sk);
3810 }
3811 
3812 static struct inet_protosw mptcp_v6_protosw = {
3813 	.type		= SOCK_STREAM,
3814 	.protocol	= IPPROTO_MPTCP,
3815 	.prot		= &mptcp_v6_prot,
3816 	.ops		= &mptcp_v6_stream_ops,
3817 	.flags		= INET_PROTOSW_ICSK,
3818 };
3819 
3820 int __init mptcp_proto_v6_init(void)
3821 {
3822 	int err;
3823 
3824 	mptcp_v6_prot = mptcp_prot;
3825 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3826 	mptcp_v6_prot.slab = NULL;
3827 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3828 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3829 
3830 	err = proto_register(&mptcp_v6_prot, 1);
3831 	if (err)
3832 		return err;
3833 
3834 	err = inet6_register_protosw(&mptcp_v6_protosw);
3835 	if (err)
3836 		proto_unregister(&mptcp_v6_prot);
3837 
3838 	return err;
3839 }
3840 #endif
3841