1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 125 mptcp_sockopt_sync(msk, msk->first); 126 } 127 128 return msk->first; 129 } 130 131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 132 { 133 sk_drops_add(sk, skb); 134 __kfree_skb(skb); 135 } 136 137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 138 { 139 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 140 mptcp_sk(sk)->rmem_fwd_alloc + size); 141 } 142 143 static void mptcp_rmem_charge(struct sock *sk, int size) 144 { 145 mptcp_rmem_fwd_alloc_add(sk, -size); 146 } 147 148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 149 struct sk_buff *from) 150 { 151 bool fragstolen; 152 int delta; 153 154 if (MPTCP_SKB_CB(from)->offset || 155 !skb_try_coalesce(to, from, &fragstolen, &delta)) 156 return false; 157 158 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 159 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 160 to->len, MPTCP_SKB_CB(from)->end_seq); 161 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 162 163 /* note the fwd memory can reach a negative value after accounting 164 * for the delta, but the later skb free will restore a non 165 * negative one 166 */ 167 atomic_add(delta, &sk->sk_rmem_alloc); 168 mptcp_rmem_charge(sk, delta); 169 kfree_skb_partial(from, fragstolen); 170 171 return true; 172 } 173 174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 175 struct sk_buff *from) 176 { 177 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 178 return false; 179 180 return mptcp_try_coalesce((struct sock *)msk, to, from); 181 } 182 183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 184 { 185 amount >>= PAGE_SHIFT; 186 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 187 __sk_mem_reduce_allocated(sk, amount); 188 } 189 190 static void mptcp_rmem_uncharge(struct sock *sk, int size) 191 { 192 struct mptcp_sock *msk = mptcp_sk(sk); 193 int reclaimable; 194 195 mptcp_rmem_fwd_alloc_add(sk, size); 196 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 197 198 /* see sk_mem_uncharge() for the rationale behind the following schema */ 199 if (unlikely(reclaimable >= PAGE_SIZE)) 200 __mptcp_rmem_reclaim(sk, reclaimable); 201 } 202 203 static void mptcp_rfree(struct sk_buff *skb) 204 { 205 unsigned int len = skb->truesize; 206 struct sock *sk = skb->sk; 207 208 atomic_sub(len, &sk->sk_rmem_alloc); 209 mptcp_rmem_uncharge(sk, len); 210 } 211 212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 213 { 214 skb_orphan(skb); 215 skb->sk = sk; 216 skb->destructor = mptcp_rfree; 217 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 218 mptcp_rmem_charge(sk, skb->truesize); 219 } 220 221 /* "inspired" by tcp_data_queue_ofo(), main differences: 222 * - use mptcp seqs 223 * - don't cope with sacks 224 */ 225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 226 { 227 struct sock *sk = (struct sock *)msk; 228 struct rb_node **p, *parent; 229 u64 seq, end_seq, max_seq; 230 struct sk_buff *skb1; 231 232 seq = MPTCP_SKB_CB(skb)->map_seq; 233 end_seq = MPTCP_SKB_CB(skb)->end_seq; 234 max_seq = atomic64_read(&msk->rcv_wnd_sent); 235 236 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 237 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 238 if (after64(end_seq, max_seq)) { 239 /* out of window */ 240 mptcp_drop(sk, skb); 241 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 242 (unsigned long long)end_seq - (unsigned long)max_seq, 243 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 245 return; 246 } 247 248 p = &msk->out_of_order_queue.rb_node; 249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 250 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 251 rb_link_node(&skb->rbnode, NULL, p); 252 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 253 msk->ooo_last_skb = skb; 254 goto end; 255 } 256 257 /* with 2 subflows, adding at end of ooo queue is quite likely 258 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 259 */ 260 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 261 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 263 return; 264 } 265 266 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 267 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 269 parent = &msk->ooo_last_skb->rbnode; 270 p = &parent->rb_right; 271 goto insert; 272 } 273 274 /* Find place to insert this segment. Handle overlaps on the way. */ 275 parent = NULL; 276 while (*p) { 277 parent = *p; 278 skb1 = rb_to_skb(parent); 279 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 280 p = &parent->rb_left; 281 continue; 282 } 283 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 284 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 285 /* All the bits are present. Drop. */ 286 mptcp_drop(sk, skb); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 return; 289 } 290 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 291 /* partial overlap: 292 * | skb | 293 * | skb1 | 294 * continue traversing 295 */ 296 } else { 297 /* skb's seq == skb1's seq and skb covers skb1. 298 * Replace skb1 with skb. 299 */ 300 rb_replace_node(&skb1->rbnode, &skb->rbnode, 301 &msk->out_of_order_queue); 302 mptcp_drop(sk, skb1); 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 304 goto merge_right; 305 } 306 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 308 return; 309 } 310 p = &parent->rb_right; 311 } 312 313 insert: 314 /* Insert segment into RB tree. */ 315 rb_link_node(&skb->rbnode, parent, p); 316 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 317 318 merge_right: 319 /* Remove other segments covered by skb. */ 320 while ((skb1 = skb_rb_next(skb)) != NULL) { 321 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 322 break; 323 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 324 mptcp_drop(sk, skb1); 325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 326 } 327 /* If there is no skb after us, we are the last_skb ! */ 328 if (!skb1) 329 msk->ooo_last_skb = skb; 330 331 end: 332 skb_condense(skb); 333 mptcp_set_owner_r(skb, sk); 334 } 335 336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 337 { 338 struct mptcp_sock *msk = mptcp_sk(sk); 339 int amt, amount; 340 341 if (size <= msk->rmem_fwd_alloc) 342 return true; 343 344 size -= msk->rmem_fwd_alloc; 345 amt = sk_mem_pages(size); 346 amount = amt << PAGE_SHIFT; 347 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 348 return false; 349 350 mptcp_rmem_fwd_alloc_add(sk, amount); 351 return true; 352 } 353 354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 355 struct sk_buff *skb, unsigned int offset, 356 size_t copy_len) 357 { 358 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 359 struct sock *sk = (struct sock *)msk; 360 struct sk_buff *tail; 361 bool has_rxtstamp; 362 363 __skb_unlink(skb, &ssk->sk_receive_queue); 364 365 skb_ext_reset(skb); 366 skb_orphan(skb); 367 368 /* try to fetch required memory from subflow */ 369 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 370 goto drop; 371 372 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 373 374 /* the skb map_seq accounts for the skb offset: 375 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 376 * value 377 */ 378 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 379 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 380 MPTCP_SKB_CB(skb)->offset = offset; 381 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 mptcp_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static bool mptcp_pending_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 return ((1 << sk->sk_state) & 434 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 435 msk->write_seq == READ_ONCE(msk->snd_una); 436 } 437 438 static void mptcp_check_data_fin_ack(struct sock *sk) 439 { 440 struct mptcp_sock *msk = mptcp_sk(sk); 441 442 /* Look for an acknowledged DATA_FIN */ 443 if (mptcp_pending_data_fin_ack(sk)) { 444 WRITE_ONCE(msk->snd_data_fin_enable, 0); 445 446 switch (sk->sk_state) { 447 case TCP_FIN_WAIT1: 448 inet_sk_state_store(sk, TCP_FIN_WAIT2); 449 break; 450 case TCP_CLOSING: 451 case TCP_LAST_ACK: 452 inet_sk_state_store(sk, TCP_CLOSE); 453 break; 454 } 455 456 mptcp_close_wake_up(sk); 457 } 458 } 459 460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 461 { 462 struct mptcp_sock *msk = mptcp_sk(sk); 463 464 if (READ_ONCE(msk->rcv_data_fin) && 465 ((1 << sk->sk_state) & 466 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 467 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 468 469 if (msk->ack_seq == rcv_data_fin_seq) { 470 if (seq) 471 *seq = rcv_data_fin_seq; 472 473 return true; 474 } 475 } 476 477 return false; 478 } 479 480 static void mptcp_set_datafin_timeout(struct sock *sk) 481 { 482 struct inet_connection_sock *icsk = inet_csk(sk); 483 u32 retransmits; 484 485 retransmits = min_t(u32, icsk->icsk_retransmits, 486 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 487 488 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 489 } 490 491 static void __mptcp_set_timeout(struct sock *sk, long tout) 492 { 493 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 494 } 495 496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 497 { 498 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 499 500 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 501 inet_csk(ssk)->icsk_timeout - jiffies : 0; 502 } 503 504 static void mptcp_set_timeout(struct sock *sk) 505 { 506 struct mptcp_subflow_context *subflow; 507 long tout = 0; 508 509 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 510 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 511 __mptcp_set_timeout(sk, tout); 512 } 513 514 static inline bool tcp_can_send_ack(const struct sock *ssk) 515 { 516 return !((1 << inet_sk_state_load(ssk)) & 517 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 518 } 519 520 void __mptcp_subflow_send_ack(struct sock *ssk) 521 { 522 if (tcp_can_send_ack(ssk)) 523 tcp_send_ack(ssk); 524 } 525 526 static void mptcp_subflow_send_ack(struct sock *ssk) 527 { 528 bool slow; 529 530 slow = lock_sock_fast(ssk); 531 __mptcp_subflow_send_ack(ssk); 532 unlock_sock_fast(ssk, slow); 533 } 534 535 static void mptcp_send_ack(struct mptcp_sock *msk) 536 { 537 struct mptcp_subflow_context *subflow; 538 539 mptcp_for_each_subflow(msk, subflow) 540 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 541 } 542 543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 if (tcp_can_send_ack(ssk)) 549 tcp_cleanup_rbuf(ssk, 1); 550 unlock_sock_fast(ssk, slow); 551 } 552 553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 554 { 555 const struct inet_connection_sock *icsk = inet_csk(ssk); 556 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 557 const struct tcp_sock *tp = tcp_sk(ssk); 558 559 return (ack_pending & ICSK_ACK_SCHED) && 560 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 561 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 562 (rx_empty && ack_pending & 563 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 564 } 565 566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 567 { 568 int old_space = READ_ONCE(msk->old_wspace); 569 struct mptcp_subflow_context *subflow; 570 struct sock *sk = (struct sock *)msk; 571 int space = __mptcp_space(sk); 572 bool cleanup, rx_empty; 573 574 cleanup = (space > 0) && (space >= (old_space << 1)); 575 rx_empty = !__mptcp_rmem(sk); 576 577 mptcp_for_each_subflow(msk, subflow) { 578 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 579 580 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 581 mptcp_subflow_cleanup_rbuf(ssk); 582 } 583 } 584 585 static bool mptcp_check_data_fin(struct sock *sk) 586 { 587 struct mptcp_sock *msk = mptcp_sk(sk); 588 u64 rcv_data_fin_seq; 589 bool ret = false; 590 591 /* Need to ack a DATA_FIN received from a peer while this side 592 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 593 * msk->rcv_data_fin was set when parsing the incoming options 594 * at the subflow level and the msk lock was not held, so this 595 * is the first opportunity to act on the DATA_FIN and change 596 * the msk state. 597 * 598 * If we are caught up to the sequence number of the incoming 599 * DATA_FIN, send the DATA_ACK now and do state transition. If 600 * not caught up, do nothing and let the recv code send DATA_ACK 601 * when catching up. 602 */ 603 604 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 605 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 606 WRITE_ONCE(msk->rcv_data_fin, 0); 607 608 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 609 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 610 611 switch (sk->sk_state) { 612 case TCP_ESTABLISHED: 613 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 614 break; 615 case TCP_FIN_WAIT1: 616 inet_sk_state_store(sk, TCP_CLOSING); 617 break; 618 case TCP_FIN_WAIT2: 619 inet_sk_state_store(sk, TCP_CLOSE); 620 break; 621 default: 622 /* Other states not expected */ 623 WARN_ON_ONCE(1); 624 break; 625 } 626 627 ret = true; 628 if (!__mptcp_check_fallback(msk)) 629 mptcp_send_ack(msk); 630 mptcp_close_wake_up(sk); 631 } 632 return ret; 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (WARN_ON_ONCE(map_remaining < len)) 708 break; 709 } else { 710 WARN_ON_ONCE(!fin); 711 sk_eat_skb(ssk, skb); 712 done = true; 713 } 714 715 WRITE_ONCE(tp->copied_seq, seq); 716 more_data_avail = mptcp_subflow_data_available(ssk); 717 718 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 719 done = true; 720 break; 721 } 722 } while (more_data_avail); 723 724 *bytes += moved; 725 return done; 726 } 727 728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 729 { 730 struct sock *sk = (struct sock *)msk; 731 struct sk_buff *skb, *tail; 732 bool moved = false; 733 struct rb_node *p; 734 u64 end_seq; 735 736 p = rb_first(&msk->out_of_order_queue); 737 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 738 while (p) { 739 skb = rb_to_skb(p); 740 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 741 break; 742 743 p = rb_next(p); 744 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 745 746 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 747 msk->ack_seq))) { 748 mptcp_drop(sk, skb); 749 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 750 continue; 751 } 752 753 end_seq = MPTCP_SKB_CB(skb)->end_seq; 754 tail = skb_peek_tail(&sk->sk_receive_queue); 755 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 756 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 757 758 /* skip overlapping data, if any */ 759 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 760 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 761 delta); 762 MPTCP_SKB_CB(skb)->offset += delta; 763 MPTCP_SKB_CB(skb)->map_seq += delta; 764 __skb_queue_tail(&sk->sk_receive_queue, skb); 765 } 766 msk->bytes_received += end_seq - msk->ack_seq; 767 msk->ack_seq = end_seq; 768 moved = true; 769 } 770 return moved; 771 } 772 773 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 774 { 775 int err = sock_error(ssk); 776 int ssk_state; 777 778 if (!err) 779 return false; 780 781 /* only propagate errors on fallen-back sockets or 782 * on MPC connect 783 */ 784 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 785 return false; 786 787 /* We need to propagate only transition to CLOSE state. 788 * Orphaned socket will see such state change via 789 * subflow_sched_work_if_closed() and that path will properly 790 * destroy the msk as needed. 791 */ 792 ssk_state = inet_sk_state_load(ssk); 793 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 794 inet_sk_state_store(sk, ssk_state); 795 WRITE_ONCE(sk->sk_err, -err); 796 797 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 798 smp_wmb(); 799 sk_error_report(sk); 800 return true; 801 } 802 803 void __mptcp_error_report(struct sock *sk) 804 { 805 struct mptcp_subflow_context *subflow; 806 struct mptcp_sock *msk = mptcp_sk(sk); 807 808 mptcp_for_each_subflow(msk, subflow) 809 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 810 break; 811 } 812 813 /* In most cases we will be able to lock the mptcp socket. If its already 814 * owned, we need to defer to the work queue to avoid ABBA deadlock. 815 */ 816 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 817 { 818 struct sock *sk = (struct sock *)msk; 819 unsigned int moved = 0; 820 821 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 822 __mptcp_ofo_queue(msk); 823 if (unlikely(ssk->sk_err)) { 824 if (!sock_owned_by_user(sk)) 825 __mptcp_error_report(sk); 826 else 827 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 828 } 829 830 /* If the moves have caught up with the DATA_FIN sequence number 831 * it's time to ack the DATA_FIN and change socket state, but 832 * this is not a good place to change state. Let the workqueue 833 * do it. 834 */ 835 if (mptcp_pending_data_fin(sk, NULL)) 836 mptcp_schedule_work(sk); 837 return moved > 0; 838 } 839 840 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 841 { 842 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 843 struct mptcp_sock *msk = mptcp_sk(sk); 844 int sk_rbuf, ssk_rbuf; 845 846 /* The peer can send data while we are shutting down this 847 * subflow at msk destruction time, but we must avoid enqueuing 848 * more data to the msk receive queue 849 */ 850 if (unlikely(subflow->disposable)) 851 return; 852 853 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 854 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 855 if (unlikely(ssk_rbuf > sk_rbuf)) 856 sk_rbuf = ssk_rbuf; 857 858 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 859 if (__mptcp_rmem(sk) > sk_rbuf) { 860 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 861 return; 862 } 863 864 /* Wake-up the reader only for in-sequence data */ 865 mptcp_data_lock(sk); 866 if (move_skbs_to_msk(msk, ssk)) 867 sk->sk_data_ready(sk); 868 869 mptcp_data_unlock(sk); 870 } 871 872 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 873 { 874 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 875 WRITE_ONCE(msk->allow_infinite_fallback, false); 876 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 877 } 878 879 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 880 { 881 struct sock *sk = (struct sock *)msk; 882 883 if (sk->sk_state != TCP_ESTABLISHED) 884 return false; 885 886 /* attach to msk socket only after we are sure we will deal with it 887 * at close time 888 */ 889 if (sk->sk_socket && !ssk->sk_socket) 890 mptcp_sock_graft(ssk, sk->sk_socket); 891 892 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 893 mptcp_sockopt_sync_locked(msk, ssk); 894 mptcp_subflow_joined(msk, ssk); 895 mptcp_stop_tout_timer(sk); 896 return true; 897 } 898 899 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 900 { 901 struct mptcp_subflow_context *tmp, *subflow; 902 struct mptcp_sock *msk = mptcp_sk(sk); 903 904 list_for_each_entry_safe(subflow, tmp, join_list, node) { 905 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 906 bool slow = lock_sock_fast(ssk); 907 908 list_move_tail(&subflow->node, &msk->conn_list); 909 if (!__mptcp_finish_join(msk, ssk)) 910 mptcp_subflow_reset(ssk); 911 unlock_sock_fast(ssk, slow); 912 } 913 } 914 915 static bool mptcp_rtx_timer_pending(struct sock *sk) 916 { 917 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 918 } 919 920 static void mptcp_reset_rtx_timer(struct sock *sk) 921 { 922 struct inet_connection_sock *icsk = inet_csk(sk); 923 unsigned long tout; 924 925 /* prevent rescheduling on close */ 926 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 927 return; 928 929 tout = mptcp_sk(sk)->timer_ival; 930 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 931 } 932 933 bool mptcp_schedule_work(struct sock *sk) 934 { 935 if (inet_sk_state_load(sk) != TCP_CLOSE && 936 schedule_work(&mptcp_sk(sk)->work)) { 937 /* each subflow already holds a reference to the sk, and the 938 * workqueue is invoked by a subflow, so sk can't go away here. 939 */ 940 sock_hold(sk); 941 return true; 942 } 943 return false; 944 } 945 946 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 947 { 948 struct mptcp_subflow_context *subflow; 949 950 msk_owned_by_me(msk); 951 952 mptcp_for_each_subflow(msk, subflow) { 953 if (READ_ONCE(subflow->data_avail)) 954 return mptcp_subflow_tcp_sock(subflow); 955 } 956 957 return NULL; 958 } 959 960 static bool mptcp_skb_can_collapse_to(u64 write_seq, 961 const struct sk_buff *skb, 962 const struct mptcp_ext *mpext) 963 { 964 if (!tcp_skb_can_collapse_to(skb)) 965 return false; 966 967 /* can collapse only if MPTCP level sequence is in order and this 968 * mapping has not been xmitted yet 969 */ 970 return mpext && mpext->data_seq + mpext->data_len == write_seq && 971 !mpext->frozen; 972 } 973 974 /* we can append data to the given data frag if: 975 * - there is space available in the backing page_frag 976 * - the data frag tail matches the current page_frag free offset 977 * - the data frag end sequence number matches the current write seq 978 */ 979 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 980 const struct page_frag *pfrag, 981 const struct mptcp_data_frag *df) 982 { 983 return df && pfrag->page == df->page && 984 pfrag->size - pfrag->offset > 0 && 985 pfrag->offset == (df->offset + df->data_len) && 986 df->data_seq + df->data_len == msk->write_seq; 987 } 988 989 static void dfrag_uncharge(struct sock *sk, int len) 990 { 991 sk_mem_uncharge(sk, len); 992 sk_wmem_queued_add(sk, -len); 993 } 994 995 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 996 { 997 int len = dfrag->data_len + dfrag->overhead; 998 999 list_del(&dfrag->list); 1000 dfrag_uncharge(sk, len); 1001 put_page(dfrag->page); 1002 } 1003 1004 static void __mptcp_clean_una(struct sock *sk) 1005 { 1006 struct mptcp_sock *msk = mptcp_sk(sk); 1007 struct mptcp_data_frag *dtmp, *dfrag; 1008 u64 snd_una; 1009 1010 snd_una = msk->snd_una; 1011 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1012 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1013 break; 1014 1015 if (unlikely(dfrag == msk->first_pending)) { 1016 /* in recovery mode can see ack after the current snd head */ 1017 if (WARN_ON_ONCE(!msk->recovery)) 1018 break; 1019 1020 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1021 } 1022 1023 dfrag_clear(sk, dfrag); 1024 } 1025 1026 dfrag = mptcp_rtx_head(sk); 1027 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1028 u64 delta = snd_una - dfrag->data_seq; 1029 1030 /* prevent wrap around in recovery mode */ 1031 if (unlikely(delta > dfrag->already_sent)) { 1032 if (WARN_ON_ONCE(!msk->recovery)) 1033 goto out; 1034 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1035 goto out; 1036 dfrag->already_sent += delta - dfrag->already_sent; 1037 } 1038 1039 dfrag->data_seq += delta; 1040 dfrag->offset += delta; 1041 dfrag->data_len -= delta; 1042 dfrag->already_sent -= delta; 1043 1044 dfrag_uncharge(sk, delta); 1045 } 1046 1047 /* all retransmitted data acked, recovery completed */ 1048 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1049 msk->recovery = false; 1050 1051 out: 1052 if (snd_una == READ_ONCE(msk->snd_nxt) && 1053 snd_una == READ_ONCE(msk->write_seq)) { 1054 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1055 mptcp_stop_rtx_timer(sk); 1056 } else { 1057 mptcp_reset_rtx_timer(sk); 1058 } 1059 } 1060 1061 static void __mptcp_clean_una_wakeup(struct sock *sk) 1062 { 1063 lockdep_assert_held_once(&sk->sk_lock.slock); 1064 1065 __mptcp_clean_una(sk); 1066 mptcp_write_space(sk); 1067 } 1068 1069 static void mptcp_clean_una_wakeup(struct sock *sk) 1070 { 1071 mptcp_data_lock(sk); 1072 __mptcp_clean_una_wakeup(sk); 1073 mptcp_data_unlock(sk); 1074 } 1075 1076 static void mptcp_enter_memory_pressure(struct sock *sk) 1077 { 1078 struct mptcp_subflow_context *subflow; 1079 struct mptcp_sock *msk = mptcp_sk(sk); 1080 bool first = true; 1081 1082 sk_stream_moderate_sndbuf(sk); 1083 mptcp_for_each_subflow(msk, subflow) { 1084 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1085 1086 if (first) 1087 tcp_enter_memory_pressure(ssk); 1088 sk_stream_moderate_sndbuf(ssk); 1089 first = false; 1090 } 1091 } 1092 1093 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1094 * data 1095 */ 1096 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1097 { 1098 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1099 pfrag, sk->sk_allocation))) 1100 return true; 1101 1102 mptcp_enter_memory_pressure(sk); 1103 return false; 1104 } 1105 1106 static struct mptcp_data_frag * 1107 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1108 int orig_offset) 1109 { 1110 int offset = ALIGN(orig_offset, sizeof(long)); 1111 struct mptcp_data_frag *dfrag; 1112 1113 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1114 dfrag->data_len = 0; 1115 dfrag->data_seq = msk->write_seq; 1116 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1117 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1118 dfrag->already_sent = 0; 1119 dfrag->page = pfrag->page; 1120 1121 return dfrag; 1122 } 1123 1124 struct mptcp_sendmsg_info { 1125 int mss_now; 1126 int size_goal; 1127 u16 limit; 1128 u16 sent; 1129 unsigned int flags; 1130 bool data_lock_held; 1131 }; 1132 1133 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1134 u64 data_seq, int avail_size) 1135 { 1136 u64 window_end = mptcp_wnd_end(msk); 1137 u64 mptcp_snd_wnd; 1138 1139 if (__mptcp_check_fallback(msk)) 1140 return avail_size; 1141 1142 mptcp_snd_wnd = window_end - data_seq; 1143 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1144 1145 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1146 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1147 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1148 } 1149 1150 return avail_size; 1151 } 1152 1153 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1154 { 1155 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1156 1157 if (!mpext) 1158 return false; 1159 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1160 return true; 1161 } 1162 1163 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1164 { 1165 struct sk_buff *skb; 1166 1167 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1168 if (likely(skb)) { 1169 if (likely(__mptcp_add_ext(skb, gfp))) { 1170 skb_reserve(skb, MAX_TCP_HEADER); 1171 skb->ip_summed = CHECKSUM_PARTIAL; 1172 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1173 return skb; 1174 } 1175 __kfree_skb(skb); 1176 } else { 1177 mptcp_enter_memory_pressure(sk); 1178 } 1179 return NULL; 1180 } 1181 1182 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1183 { 1184 struct sk_buff *skb; 1185 1186 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1187 if (!skb) 1188 return NULL; 1189 1190 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1191 tcp_skb_entail(ssk, skb); 1192 return skb; 1193 } 1194 tcp_skb_tsorted_anchor_cleanup(skb); 1195 kfree_skb(skb); 1196 return NULL; 1197 } 1198 1199 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1200 { 1201 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1202 1203 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1204 } 1205 1206 /* note: this always recompute the csum on the whole skb, even 1207 * if we just appended a single frag. More status info needed 1208 */ 1209 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1210 { 1211 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1212 __wsum csum = ~csum_unfold(mpext->csum); 1213 int offset = skb->len - added; 1214 1215 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1216 } 1217 1218 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1219 struct sock *ssk, 1220 struct mptcp_ext *mpext) 1221 { 1222 if (!mpext) 1223 return; 1224 1225 mpext->infinite_map = 1; 1226 mpext->data_len = 0; 1227 1228 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1229 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1230 pr_fallback(msk); 1231 mptcp_do_fallback(ssk); 1232 } 1233 1234 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1235 1236 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1237 struct mptcp_data_frag *dfrag, 1238 struct mptcp_sendmsg_info *info) 1239 { 1240 u64 data_seq = dfrag->data_seq + info->sent; 1241 int offset = dfrag->offset + info->sent; 1242 struct mptcp_sock *msk = mptcp_sk(sk); 1243 bool zero_window_probe = false; 1244 struct mptcp_ext *mpext = NULL; 1245 bool can_coalesce = false; 1246 bool reuse_skb = true; 1247 struct sk_buff *skb; 1248 size_t copy; 1249 int i; 1250 1251 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1252 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1253 1254 if (WARN_ON_ONCE(info->sent > info->limit || 1255 info->limit > dfrag->data_len)) 1256 return 0; 1257 1258 if (unlikely(!__tcp_can_send(ssk))) 1259 return -EAGAIN; 1260 1261 /* compute send limit */ 1262 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1263 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1264 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1265 copy = info->size_goal; 1266 1267 skb = tcp_write_queue_tail(ssk); 1268 if (skb && copy > skb->len) { 1269 /* Limit the write to the size available in the 1270 * current skb, if any, so that we create at most a new skb. 1271 * Explicitly tells TCP internals to avoid collapsing on later 1272 * queue management operation, to avoid breaking the ext <-> 1273 * SSN association set here 1274 */ 1275 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1276 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1277 TCP_SKB_CB(skb)->eor = 1; 1278 goto alloc_skb; 1279 } 1280 1281 i = skb_shinfo(skb)->nr_frags; 1282 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1283 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1284 tcp_mark_push(tcp_sk(ssk), skb); 1285 goto alloc_skb; 1286 } 1287 1288 copy -= skb->len; 1289 } else { 1290 alloc_skb: 1291 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1292 if (!skb) 1293 return -ENOMEM; 1294 1295 i = skb_shinfo(skb)->nr_frags; 1296 reuse_skb = false; 1297 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1298 } 1299 1300 /* Zero window and all data acked? Probe. */ 1301 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1302 if (copy == 0) { 1303 u64 snd_una = READ_ONCE(msk->snd_una); 1304 1305 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1306 tcp_remove_empty_skb(ssk); 1307 return 0; 1308 } 1309 1310 zero_window_probe = true; 1311 data_seq = snd_una - 1; 1312 copy = 1; 1313 } 1314 1315 copy = min_t(size_t, copy, info->limit - info->sent); 1316 if (!sk_wmem_schedule(ssk, copy)) { 1317 tcp_remove_empty_skb(ssk); 1318 return -ENOMEM; 1319 } 1320 1321 if (can_coalesce) { 1322 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1323 } else { 1324 get_page(dfrag->page); 1325 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1326 } 1327 1328 skb->len += copy; 1329 skb->data_len += copy; 1330 skb->truesize += copy; 1331 sk_wmem_queued_add(ssk, copy); 1332 sk_mem_charge(ssk, copy); 1333 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1334 TCP_SKB_CB(skb)->end_seq += copy; 1335 tcp_skb_pcount_set(skb, 0); 1336 1337 /* on skb reuse we just need to update the DSS len */ 1338 if (reuse_skb) { 1339 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1340 mpext->data_len += copy; 1341 goto out; 1342 } 1343 1344 memset(mpext, 0, sizeof(*mpext)); 1345 mpext->data_seq = data_seq; 1346 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1347 mpext->data_len = copy; 1348 mpext->use_map = 1; 1349 mpext->dsn64 = 1; 1350 1351 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1352 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1353 mpext->dsn64); 1354 1355 if (zero_window_probe) { 1356 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1357 mpext->frozen = 1; 1358 if (READ_ONCE(msk->csum_enabled)) 1359 mptcp_update_data_checksum(skb, copy); 1360 tcp_push_pending_frames(ssk); 1361 return 0; 1362 } 1363 out: 1364 if (READ_ONCE(msk->csum_enabled)) 1365 mptcp_update_data_checksum(skb, copy); 1366 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1367 mptcp_update_infinite_map(msk, ssk, mpext); 1368 trace_mptcp_sendmsg_frag(mpext); 1369 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1370 return copy; 1371 } 1372 1373 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1374 sizeof(struct tcphdr) - \ 1375 MAX_TCP_OPTION_SPACE - \ 1376 sizeof(struct ipv6hdr) - \ 1377 sizeof(struct frag_hdr)) 1378 1379 struct subflow_send_info { 1380 struct sock *ssk; 1381 u64 linger_time; 1382 }; 1383 1384 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1385 { 1386 if (!subflow->stale) 1387 return; 1388 1389 subflow->stale = 0; 1390 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1391 } 1392 1393 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1394 { 1395 if (unlikely(subflow->stale)) { 1396 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1397 1398 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1399 return false; 1400 1401 mptcp_subflow_set_active(subflow); 1402 } 1403 return __mptcp_subflow_active(subflow); 1404 } 1405 1406 #define SSK_MODE_ACTIVE 0 1407 #define SSK_MODE_BACKUP 1 1408 #define SSK_MODE_MAX 2 1409 1410 /* implement the mptcp packet scheduler; 1411 * returns the subflow that will transmit the next DSS 1412 * additionally updates the rtx timeout 1413 */ 1414 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1415 { 1416 struct subflow_send_info send_info[SSK_MODE_MAX]; 1417 struct mptcp_subflow_context *subflow; 1418 struct sock *sk = (struct sock *)msk; 1419 u32 pace, burst, wmem; 1420 int i, nr_active = 0; 1421 struct sock *ssk; 1422 u64 linger_time; 1423 long tout = 0; 1424 1425 /* pick the subflow with the lower wmem/wspace ratio */ 1426 for (i = 0; i < SSK_MODE_MAX; ++i) { 1427 send_info[i].ssk = NULL; 1428 send_info[i].linger_time = -1; 1429 } 1430 1431 mptcp_for_each_subflow(msk, subflow) { 1432 trace_mptcp_subflow_get_send(subflow); 1433 ssk = mptcp_subflow_tcp_sock(subflow); 1434 if (!mptcp_subflow_active(subflow)) 1435 continue; 1436 1437 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1438 nr_active += !subflow->backup; 1439 pace = subflow->avg_pacing_rate; 1440 if (unlikely(!pace)) { 1441 /* init pacing rate from socket */ 1442 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1443 pace = subflow->avg_pacing_rate; 1444 if (!pace) 1445 continue; 1446 } 1447 1448 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1449 if (linger_time < send_info[subflow->backup].linger_time) { 1450 send_info[subflow->backup].ssk = ssk; 1451 send_info[subflow->backup].linger_time = linger_time; 1452 } 1453 } 1454 __mptcp_set_timeout(sk, tout); 1455 1456 /* pick the best backup if no other subflow is active */ 1457 if (!nr_active) 1458 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1459 1460 /* According to the blest algorithm, to avoid HoL blocking for the 1461 * faster flow, we need to: 1462 * - estimate the faster flow linger time 1463 * - use the above to estimate the amount of byte transferred 1464 * by the faster flow 1465 * - check that the amount of queued data is greter than the above, 1466 * otherwise do not use the picked, slower, subflow 1467 * We select the subflow with the shorter estimated time to flush 1468 * the queued mem, which basically ensure the above. We just need 1469 * to check that subflow has a non empty cwin. 1470 */ 1471 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1472 if (!ssk || !sk_stream_memory_free(ssk)) 1473 return NULL; 1474 1475 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1476 wmem = READ_ONCE(ssk->sk_wmem_queued); 1477 if (!burst) 1478 return ssk; 1479 1480 subflow = mptcp_subflow_ctx(ssk); 1481 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1482 READ_ONCE(ssk->sk_pacing_rate) * burst, 1483 burst + wmem); 1484 msk->snd_burst = burst; 1485 return ssk; 1486 } 1487 1488 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1489 { 1490 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1491 release_sock(ssk); 1492 } 1493 1494 static void mptcp_update_post_push(struct mptcp_sock *msk, 1495 struct mptcp_data_frag *dfrag, 1496 u32 sent) 1497 { 1498 u64 snd_nxt_new = dfrag->data_seq; 1499 1500 dfrag->already_sent += sent; 1501 1502 msk->snd_burst -= sent; 1503 1504 snd_nxt_new += dfrag->already_sent; 1505 1506 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1507 * is recovering after a failover. In that event, this re-sends 1508 * old segments. 1509 * 1510 * Thus compute snd_nxt_new candidate based on 1511 * the dfrag->data_seq that was sent and the data 1512 * that has been handed to the subflow for transmission 1513 * and skip update in case it was old dfrag. 1514 */ 1515 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1516 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1517 msk->snd_nxt = snd_nxt_new; 1518 } 1519 } 1520 1521 void mptcp_check_and_set_pending(struct sock *sk) 1522 { 1523 if (mptcp_send_head(sk)) 1524 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1525 } 1526 1527 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1528 struct mptcp_sendmsg_info *info) 1529 { 1530 struct mptcp_sock *msk = mptcp_sk(sk); 1531 struct mptcp_data_frag *dfrag; 1532 int len, copied = 0, err = 0; 1533 1534 while ((dfrag = mptcp_send_head(sk))) { 1535 info->sent = dfrag->already_sent; 1536 info->limit = dfrag->data_len; 1537 len = dfrag->data_len - dfrag->already_sent; 1538 while (len > 0) { 1539 int ret = 0; 1540 1541 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1542 if (ret <= 0) { 1543 err = copied ? : ret; 1544 goto out; 1545 } 1546 1547 info->sent += ret; 1548 copied += ret; 1549 len -= ret; 1550 1551 mptcp_update_post_push(msk, dfrag, ret); 1552 } 1553 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1554 1555 if (msk->snd_burst <= 0 || 1556 !sk_stream_memory_free(ssk) || 1557 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1558 err = copied; 1559 goto out; 1560 } 1561 mptcp_set_timeout(sk); 1562 } 1563 err = copied; 1564 1565 out: 1566 return err; 1567 } 1568 1569 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1570 { 1571 struct sock *prev_ssk = NULL, *ssk = NULL; 1572 struct mptcp_sock *msk = mptcp_sk(sk); 1573 struct mptcp_sendmsg_info info = { 1574 .flags = flags, 1575 }; 1576 bool do_check_data_fin = false; 1577 int push_count = 1; 1578 1579 while (mptcp_send_head(sk) && (push_count > 0)) { 1580 struct mptcp_subflow_context *subflow; 1581 int ret = 0; 1582 1583 if (mptcp_sched_get_send(msk)) 1584 break; 1585 1586 push_count = 0; 1587 1588 mptcp_for_each_subflow(msk, subflow) { 1589 if (READ_ONCE(subflow->scheduled)) { 1590 mptcp_subflow_set_scheduled(subflow, false); 1591 1592 prev_ssk = ssk; 1593 ssk = mptcp_subflow_tcp_sock(subflow); 1594 if (ssk != prev_ssk) { 1595 /* First check. If the ssk has changed since 1596 * the last round, release prev_ssk 1597 */ 1598 if (prev_ssk) 1599 mptcp_push_release(prev_ssk, &info); 1600 1601 /* Need to lock the new subflow only if different 1602 * from the previous one, otherwise we are still 1603 * helding the relevant lock 1604 */ 1605 lock_sock(ssk); 1606 } 1607 1608 push_count++; 1609 1610 ret = __subflow_push_pending(sk, ssk, &info); 1611 if (ret <= 0) { 1612 if (ret != -EAGAIN || 1613 (1 << ssk->sk_state) & 1614 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1615 push_count--; 1616 continue; 1617 } 1618 do_check_data_fin = true; 1619 } 1620 } 1621 } 1622 1623 /* at this point we held the socket lock for the last subflow we used */ 1624 if (ssk) 1625 mptcp_push_release(ssk, &info); 1626 1627 /* ensure the rtx timer is running */ 1628 if (!mptcp_rtx_timer_pending(sk)) 1629 mptcp_reset_rtx_timer(sk); 1630 if (do_check_data_fin) 1631 mptcp_check_send_data_fin(sk); 1632 } 1633 1634 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1635 { 1636 struct mptcp_sock *msk = mptcp_sk(sk); 1637 struct mptcp_sendmsg_info info = { 1638 .data_lock_held = true, 1639 }; 1640 bool keep_pushing = true; 1641 struct sock *xmit_ssk; 1642 int copied = 0; 1643 1644 info.flags = 0; 1645 while (mptcp_send_head(sk) && keep_pushing) { 1646 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1647 int ret = 0; 1648 1649 /* check for a different subflow usage only after 1650 * spooling the first chunk of data 1651 */ 1652 if (first) { 1653 mptcp_subflow_set_scheduled(subflow, false); 1654 ret = __subflow_push_pending(sk, ssk, &info); 1655 first = false; 1656 if (ret <= 0) 1657 break; 1658 copied += ret; 1659 continue; 1660 } 1661 1662 if (mptcp_sched_get_send(msk)) 1663 goto out; 1664 1665 if (READ_ONCE(subflow->scheduled)) { 1666 mptcp_subflow_set_scheduled(subflow, false); 1667 ret = __subflow_push_pending(sk, ssk, &info); 1668 if (ret <= 0) 1669 keep_pushing = false; 1670 copied += ret; 1671 } 1672 1673 mptcp_for_each_subflow(msk, subflow) { 1674 if (READ_ONCE(subflow->scheduled)) { 1675 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1676 if (xmit_ssk != ssk) { 1677 mptcp_subflow_delegate(subflow, 1678 MPTCP_DELEGATE_SEND); 1679 keep_pushing = false; 1680 } 1681 } 1682 } 1683 } 1684 1685 out: 1686 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1687 * not going to flush it via release_sock() 1688 */ 1689 if (copied) { 1690 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1691 info.size_goal); 1692 if (!mptcp_rtx_timer_pending(sk)) 1693 mptcp_reset_rtx_timer(sk); 1694 1695 if (msk->snd_data_fin_enable && 1696 msk->snd_nxt + 1 == msk->write_seq) 1697 mptcp_schedule_work(sk); 1698 } 1699 } 1700 1701 static void mptcp_set_nospace(struct sock *sk) 1702 { 1703 /* enable autotune */ 1704 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1705 1706 /* will be cleared on avail space */ 1707 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1708 } 1709 1710 static int mptcp_disconnect(struct sock *sk, int flags); 1711 1712 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1713 size_t len, int *copied_syn) 1714 { 1715 unsigned int saved_flags = msg->msg_flags; 1716 struct mptcp_sock *msk = mptcp_sk(sk); 1717 struct sock *ssk; 1718 int ret; 1719 1720 /* on flags based fastopen the mptcp is supposed to create the 1721 * first subflow right now. Otherwise we are in the defer_connect 1722 * path, and the first subflow must be already present. 1723 * Since the defer_connect flag is cleared after the first succsful 1724 * fastopen attempt, no need to check for additional subflow status. 1725 */ 1726 if (msg->msg_flags & MSG_FASTOPEN) { 1727 ssk = __mptcp_nmpc_sk(msk); 1728 if (IS_ERR(ssk)) 1729 return PTR_ERR(ssk); 1730 } 1731 if (!msk->first) 1732 return -EINVAL; 1733 1734 ssk = msk->first; 1735 1736 lock_sock(ssk); 1737 msg->msg_flags |= MSG_DONTWAIT; 1738 msk->fastopening = 1; 1739 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1740 msk->fastopening = 0; 1741 msg->msg_flags = saved_flags; 1742 release_sock(ssk); 1743 1744 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1745 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1746 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1747 msg->msg_namelen, msg->msg_flags, 1); 1748 1749 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1750 * case of any error, except timeout or signal 1751 */ 1752 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1753 *copied_syn = 0; 1754 } else if (ret && ret != -EINPROGRESS) { 1755 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1756 * __inet_stream_connect() can fail, due to looking check, 1757 * see mptcp_disconnect(). 1758 * Attempt it again outside the problematic scope. 1759 */ 1760 if (!mptcp_disconnect(sk, 0)) 1761 sk->sk_socket->state = SS_UNCONNECTED; 1762 } 1763 inet_clear_bit(DEFER_CONNECT, sk); 1764 1765 return ret; 1766 } 1767 1768 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1769 { 1770 struct mptcp_sock *msk = mptcp_sk(sk); 1771 struct page_frag *pfrag; 1772 size_t copied = 0; 1773 int ret = 0; 1774 long timeo; 1775 1776 /* silently ignore everything else */ 1777 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1778 1779 lock_sock(sk); 1780 1781 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1782 msg->msg_flags & MSG_FASTOPEN)) { 1783 int copied_syn = 0; 1784 1785 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1786 copied += copied_syn; 1787 if (ret == -EINPROGRESS && copied_syn > 0) 1788 goto out; 1789 else if (ret) 1790 goto do_error; 1791 } 1792 1793 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1794 1795 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1796 ret = sk_stream_wait_connect(sk, &timeo); 1797 if (ret) 1798 goto do_error; 1799 } 1800 1801 ret = -EPIPE; 1802 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1803 goto do_error; 1804 1805 pfrag = sk_page_frag(sk); 1806 1807 while (msg_data_left(msg)) { 1808 int total_ts, frag_truesize = 0; 1809 struct mptcp_data_frag *dfrag; 1810 bool dfrag_collapsed; 1811 size_t psize, offset; 1812 1813 /* reuse tail pfrag, if possible, or carve a new one from the 1814 * page allocator 1815 */ 1816 dfrag = mptcp_pending_tail(sk); 1817 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1818 if (!dfrag_collapsed) { 1819 if (!sk_stream_memory_free(sk)) 1820 goto wait_for_memory; 1821 1822 if (!mptcp_page_frag_refill(sk, pfrag)) 1823 goto wait_for_memory; 1824 1825 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1826 frag_truesize = dfrag->overhead; 1827 } 1828 1829 /* we do not bound vs wspace, to allow a single packet. 1830 * memory accounting will prevent execessive memory usage 1831 * anyway 1832 */ 1833 offset = dfrag->offset + dfrag->data_len; 1834 psize = pfrag->size - offset; 1835 psize = min_t(size_t, psize, msg_data_left(msg)); 1836 total_ts = psize + frag_truesize; 1837 1838 if (!sk_wmem_schedule(sk, total_ts)) 1839 goto wait_for_memory; 1840 1841 if (copy_page_from_iter(dfrag->page, offset, psize, 1842 &msg->msg_iter) != psize) { 1843 ret = -EFAULT; 1844 goto do_error; 1845 } 1846 1847 /* data successfully copied into the write queue */ 1848 sk_forward_alloc_add(sk, -total_ts); 1849 copied += psize; 1850 dfrag->data_len += psize; 1851 frag_truesize += psize; 1852 pfrag->offset += frag_truesize; 1853 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1854 1855 /* charge data on mptcp pending queue to the msk socket 1856 * Note: we charge such data both to sk and ssk 1857 */ 1858 sk_wmem_queued_add(sk, frag_truesize); 1859 if (!dfrag_collapsed) { 1860 get_page(dfrag->page); 1861 list_add_tail(&dfrag->list, &msk->rtx_queue); 1862 if (!msk->first_pending) 1863 WRITE_ONCE(msk->first_pending, dfrag); 1864 } 1865 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1866 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1867 !dfrag_collapsed); 1868 1869 continue; 1870 1871 wait_for_memory: 1872 mptcp_set_nospace(sk); 1873 __mptcp_push_pending(sk, msg->msg_flags); 1874 ret = sk_stream_wait_memory(sk, &timeo); 1875 if (ret) 1876 goto do_error; 1877 } 1878 1879 if (copied) 1880 __mptcp_push_pending(sk, msg->msg_flags); 1881 1882 out: 1883 release_sock(sk); 1884 return copied; 1885 1886 do_error: 1887 if (copied) 1888 goto out; 1889 1890 copied = sk_stream_error(sk, msg->msg_flags, ret); 1891 goto out; 1892 } 1893 1894 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1895 struct msghdr *msg, 1896 size_t len, int flags, 1897 struct scm_timestamping_internal *tss, 1898 int *cmsg_flags) 1899 { 1900 struct sk_buff *skb, *tmp; 1901 int copied = 0; 1902 1903 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1904 u32 offset = MPTCP_SKB_CB(skb)->offset; 1905 u32 data_len = skb->len - offset; 1906 u32 count = min_t(size_t, len - copied, data_len); 1907 int err; 1908 1909 if (!(flags & MSG_TRUNC)) { 1910 err = skb_copy_datagram_msg(skb, offset, msg, count); 1911 if (unlikely(err < 0)) { 1912 if (!copied) 1913 return err; 1914 break; 1915 } 1916 } 1917 1918 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1919 tcp_update_recv_tstamps(skb, tss); 1920 *cmsg_flags |= MPTCP_CMSG_TS; 1921 } 1922 1923 copied += count; 1924 1925 if (count < data_len) { 1926 if (!(flags & MSG_PEEK)) { 1927 MPTCP_SKB_CB(skb)->offset += count; 1928 MPTCP_SKB_CB(skb)->map_seq += count; 1929 } 1930 break; 1931 } 1932 1933 if (!(flags & MSG_PEEK)) { 1934 /* we will bulk release the skb memory later */ 1935 skb->destructor = NULL; 1936 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1937 __skb_unlink(skb, &msk->receive_queue); 1938 __kfree_skb(skb); 1939 } 1940 1941 if (copied >= len) 1942 break; 1943 } 1944 1945 return copied; 1946 } 1947 1948 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1949 * 1950 * Only difference: Use highest rtt estimate of the subflows in use. 1951 */ 1952 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1953 { 1954 struct mptcp_subflow_context *subflow; 1955 struct sock *sk = (struct sock *)msk; 1956 u8 scaling_ratio = U8_MAX; 1957 u32 time, advmss = 1; 1958 u64 rtt_us, mstamp; 1959 1960 msk_owned_by_me(msk); 1961 1962 if (copied <= 0) 1963 return; 1964 1965 msk->rcvq_space.copied += copied; 1966 1967 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1968 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1969 1970 rtt_us = msk->rcvq_space.rtt_us; 1971 if (rtt_us && time < (rtt_us >> 3)) 1972 return; 1973 1974 rtt_us = 0; 1975 mptcp_for_each_subflow(msk, subflow) { 1976 const struct tcp_sock *tp; 1977 u64 sf_rtt_us; 1978 u32 sf_advmss; 1979 1980 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1981 1982 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1983 sf_advmss = READ_ONCE(tp->advmss); 1984 1985 rtt_us = max(sf_rtt_us, rtt_us); 1986 advmss = max(sf_advmss, advmss); 1987 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1988 } 1989 1990 msk->rcvq_space.rtt_us = rtt_us; 1991 msk->scaling_ratio = scaling_ratio; 1992 if (time < (rtt_us >> 3) || rtt_us == 0) 1993 return; 1994 1995 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1996 goto new_measure; 1997 1998 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1999 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2000 u64 rcvwin, grow; 2001 int rcvbuf; 2002 2003 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2004 2005 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2006 2007 do_div(grow, msk->rcvq_space.space); 2008 rcvwin += (grow << 1); 2009 2010 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2011 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2012 2013 if (rcvbuf > sk->sk_rcvbuf) { 2014 u32 window_clamp; 2015 2016 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2017 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2018 2019 /* Make subflows follow along. If we do not do this, we 2020 * get drops at subflow level if skbs can't be moved to 2021 * the mptcp rx queue fast enough (announced rcv_win can 2022 * exceed ssk->sk_rcvbuf). 2023 */ 2024 mptcp_for_each_subflow(msk, subflow) { 2025 struct sock *ssk; 2026 bool slow; 2027 2028 ssk = mptcp_subflow_tcp_sock(subflow); 2029 slow = lock_sock_fast(ssk); 2030 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2031 tcp_sk(ssk)->window_clamp = window_clamp; 2032 tcp_cleanup_rbuf(ssk, 1); 2033 unlock_sock_fast(ssk, slow); 2034 } 2035 } 2036 } 2037 2038 msk->rcvq_space.space = msk->rcvq_space.copied; 2039 new_measure: 2040 msk->rcvq_space.copied = 0; 2041 msk->rcvq_space.time = mstamp; 2042 } 2043 2044 static void __mptcp_update_rmem(struct sock *sk) 2045 { 2046 struct mptcp_sock *msk = mptcp_sk(sk); 2047 2048 if (!msk->rmem_released) 2049 return; 2050 2051 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2052 mptcp_rmem_uncharge(sk, msk->rmem_released); 2053 WRITE_ONCE(msk->rmem_released, 0); 2054 } 2055 2056 static void __mptcp_splice_receive_queue(struct sock *sk) 2057 { 2058 struct mptcp_sock *msk = mptcp_sk(sk); 2059 2060 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2061 } 2062 2063 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2064 { 2065 struct sock *sk = (struct sock *)msk; 2066 unsigned int moved = 0; 2067 bool ret, done; 2068 2069 do { 2070 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2071 bool slowpath; 2072 2073 /* we can have data pending in the subflows only if the msk 2074 * receive buffer was full at subflow_data_ready() time, 2075 * that is an unlikely slow path. 2076 */ 2077 if (likely(!ssk)) 2078 break; 2079 2080 slowpath = lock_sock_fast(ssk); 2081 mptcp_data_lock(sk); 2082 __mptcp_update_rmem(sk); 2083 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2084 mptcp_data_unlock(sk); 2085 2086 if (unlikely(ssk->sk_err)) 2087 __mptcp_error_report(sk); 2088 unlock_sock_fast(ssk, slowpath); 2089 } while (!done); 2090 2091 /* acquire the data lock only if some input data is pending */ 2092 ret = moved > 0; 2093 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2094 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2095 mptcp_data_lock(sk); 2096 __mptcp_update_rmem(sk); 2097 ret |= __mptcp_ofo_queue(msk); 2098 __mptcp_splice_receive_queue(sk); 2099 mptcp_data_unlock(sk); 2100 } 2101 if (ret) 2102 mptcp_check_data_fin((struct sock *)msk); 2103 return !skb_queue_empty(&msk->receive_queue); 2104 } 2105 2106 static unsigned int mptcp_inq_hint(const struct sock *sk) 2107 { 2108 const struct mptcp_sock *msk = mptcp_sk(sk); 2109 const struct sk_buff *skb; 2110 2111 skb = skb_peek(&msk->receive_queue); 2112 if (skb) { 2113 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2114 2115 if (hint_val >= INT_MAX) 2116 return INT_MAX; 2117 2118 return (unsigned int)hint_val; 2119 } 2120 2121 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2122 return 1; 2123 2124 return 0; 2125 } 2126 2127 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2128 int flags, int *addr_len) 2129 { 2130 struct mptcp_sock *msk = mptcp_sk(sk); 2131 struct scm_timestamping_internal tss; 2132 int copied = 0, cmsg_flags = 0; 2133 int target; 2134 long timeo; 2135 2136 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2137 if (unlikely(flags & MSG_ERRQUEUE)) 2138 return inet_recv_error(sk, msg, len, addr_len); 2139 2140 lock_sock(sk); 2141 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2142 copied = -ENOTCONN; 2143 goto out_err; 2144 } 2145 2146 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2147 2148 len = min_t(size_t, len, INT_MAX); 2149 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2150 2151 if (unlikely(msk->recvmsg_inq)) 2152 cmsg_flags = MPTCP_CMSG_INQ; 2153 2154 while (copied < len) { 2155 int bytes_read; 2156 2157 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2158 if (unlikely(bytes_read < 0)) { 2159 if (!copied) 2160 copied = bytes_read; 2161 goto out_err; 2162 } 2163 2164 copied += bytes_read; 2165 2166 /* be sure to advertise window change */ 2167 mptcp_cleanup_rbuf(msk); 2168 2169 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2170 continue; 2171 2172 /* only the master socket status is relevant here. The exit 2173 * conditions mirror closely tcp_recvmsg() 2174 */ 2175 if (copied >= target) 2176 break; 2177 2178 if (copied) { 2179 if (sk->sk_err || 2180 sk->sk_state == TCP_CLOSE || 2181 (sk->sk_shutdown & RCV_SHUTDOWN) || 2182 !timeo || 2183 signal_pending(current)) 2184 break; 2185 } else { 2186 if (sk->sk_err) { 2187 copied = sock_error(sk); 2188 break; 2189 } 2190 2191 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2192 /* race breaker: the shutdown could be after the 2193 * previous receive queue check 2194 */ 2195 if (__mptcp_move_skbs(msk)) 2196 continue; 2197 break; 2198 } 2199 2200 if (sk->sk_state == TCP_CLOSE) { 2201 copied = -ENOTCONN; 2202 break; 2203 } 2204 2205 if (!timeo) { 2206 copied = -EAGAIN; 2207 break; 2208 } 2209 2210 if (signal_pending(current)) { 2211 copied = sock_intr_errno(timeo); 2212 break; 2213 } 2214 } 2215 2216 pr_debug("block timeout %ld", timeo); 2217 sk_wait_data(sk, &timeo, NULL); 2218 } 2219 2220 out_err: 2221 if (cmsg_flags && copied >= 0) { 2222 if (cmsg_flags & MPTCP_CMSG_TS) 2223 tcp_recv_timestamp(msg, sk, &tss); 2224 2225 if (cmsg_flags & MPTCP_CMSG_INQ) { 2226 unsigned int inq = mptcp_inq_hint(sk); 2227 2228 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2229 } 2230 } 2231 2232 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2233 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2234 skb_queue_empty(&msk->receive_queue), copied); 2235 if (!(flags & MSG_PEEK)) 2236 mptcp_rcv_space_adjust(msk, copied); 2237 2238 release_sock(sk); 2239 return copied; 2240 } 2241 2242 static void mptcp_retransmit_timer(struct timer_list *t) 2243 { 2244 struct inet_connection_sock *icsk = from_timer(icsk, t, 2245 icsk_retransmit_timer); 2246 struct sock *sk = &icsk->icsk_inet.sk; 2247 struct mptcp_sock *msk = mptcp_sk(sk); 2248 2249 bh_lock_sock(sk); 2250 if (!sock_owned_by_user(sk)) { 2251 /* we need a process context to retransmit */ 2252 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2253 mptcp_schedule_work(sk); 2254 } else { 2255 /* delegate our work to tcp_release_cb() */ 2256 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2257 } 2258 bh_unlock_sock(sk); 2259 sock_put(sk); 2260 } 2261 2262 static void mptcp_tout_timer(struct timer_list *t) 2263 { 2264 struct sock *sk = from_timer(sk, t, sk_timer); 2265 2266 mptcp_schedule_work(sk); 2267 sock_put(sk); 2268 } 2269 2270 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2271 * level. 2272 * 2273 * A backup subflow is returned only if that is the only kind available. 2274 */ 2275 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2276 { 2277 struct sock *backup = NULL, *pick = NULL; 2278 struct mptcp_subflow_context *subflow; 2279 int min_stale_count = INT_MAX; 2280 2281 mptcp_for_each_subflow(msk, subflow) { 2282 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2283 2284 if (!__mptcp_subflow_active(subflow)) 2285 continue; 2286 2287 /* still data outstanding at TCP level? skip this */ 2288 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2289 mptcp_pm_subflow_chk_stale(msk, ssk); 2290 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2291 continue; 2292 } 2293 2294 if (subflow->backup) { 2295 if (!backup) 2296 backup = ssk; 2297 continue; 2298 } 2299 2300 if (!pick) 2301 pick = ssk; 2302 } 2303 2304 if (pick) 2305 return pick; 2306 2307 /* use backup only if there are no progresses anywhere */ 2308 return min_stale_count > 1 ? backup : NULL; 2309 } 2310 2311 bool __mptcp_retransmit_pending_data(struct sock *sk) 2312 { 2313 struct mptcp_data_frag *cur, *rtx_head; 2314 struct mptcp_sock *msk = mptcp_sk(sk); 2315 2316 if (__mptcp_check_fallback(msk)) 2317 return false; 2318 2319 if (tcp_rtx_and_write_queues_empty(sk)) 2320 return false; 2321 2322 /* the closing socket has some data untransmitted and/or unacked: 2323 * some data in the mptcp rtx queue has not really xmitted yet. 2324 * keep it simple and re-inject the whole mptcp level rtx queue 2325 */ 2326 mptcp_data_lock(sk); 2327 __mptcp_clean_una_wakeup(sk); 2328 rtx_head = mptcp_rtx_head(sk); 2329 if (!rtx_head) { 2330 mptcp_data_unlock(sk); 2331 return false; 2332 } 2333 2334 msk->recovery_snd_nxt = msk->snd_nxt; 2335 msk->recovery = true; 2336 mptcp_data_unlock(sk); 2337 2338 msk->first_pending = rtx_head; 2339 msk->snd_burst = 0; 2340 2341 /* be sure to clear the "sent status" on all re-injected fragments */ 2342 list_for_each_entry(cur, &msk->rtx_queue, list) { 2343 if (!cur->already_sent) 2344 break; 2345 cur->already_sent = 0; 2346 } 2347 2348 return true; 2349 } 2350 2351 /* flags for __mptcp_close_ssk() */ 2352 #define MPTCP_CF_PUSH BIT(1) 2353 #define MPTCP_CF_FASTCLOSE BIT(2) 2354 2355 /* be sure to send a reset only if the caller asked for it, also 2356 * clean completely the subflow status when the subflow reaches 2357 * TCP_CLOSE state 2358 */ 2359 static void __mptcp_subflow_disconnect(struct sock *ssk, 2360 struct mptcp_subflow_context *subflow, 2361 unsigned int flags) 2362 { 2363 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2364 (flags & MPTCP_CF_FASTCLOSE)) { 2365 /* The MPTCP code never wait on the subflow sockets, TCP-level 2366 * disconnect should never fail 2367 */ 2368 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2369 mptcp_subflow_ctx_reset(subflow); 2370 } else { 2371 tcp_shutdown(ssk, SEND_SHUTDOWN); 2372 } 2373 } 2374 2375 /* subflow sockets can be either outgoing (connect) or incoming 2376 * (accept). 2377 * 2378 * Outgoing subflows use in-kernel sockets. 2379 * Incoming subflows do not have their own 'struct socket' allocated, 2380 * so we need to use tcp_close() after detaching them from the mptcp 2381 * parent socket. 2382 */ 2383 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2384 struct mptcp_subflow_context *subflow, 2385 unsigned int flags) 2386 { 2387 struct mptcp_sock *msk = mptcp_sk(sk); 2388 bool dispose_it, need_push = false; 2389 2390 /* If the first subflow moved to a close state before accept, e.g. due 2391 * to an incoming reset or listener shutdown, the subflow socket is 2392 * already deleted by inet_child_forget() and the mptcp socket can't 2393 * survive too. 2394 */ 2395 if (msk->in_accept_queue && msk->first == ssk && 2396 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2397 /* ensure later check in mptcp_worker() will dispose the msk */ 2398 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2399 sock_set_flag(sk, SOCK_DEAD); 2400 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2401 mptcp_subflow_drop_ctx(ssk); 2402 goto out_release; 2403 } 2404 2405 dispose_it = msk->free_first || ssk != msk->first; 2406 if (dispose_it) 2407 list_del(&subflow->node); 2408 2409 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2410 2411 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2412 /* be sure to force the tcp_close path 2413 * to generate the egress reset 2414 */ 2415 ssk->sk_lingertime = 0; 2416 sock_set_flag(ssk, SOCK_LINGER); 2417 subflow->send_fastclose = 1; 2418 } 2419 2420 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2421 if (!dispose_it) { 2422 __mptcp_subflow_disconnect(ssk, subflow, flags); 2423 release_sock(ssk); 2424 2425 goto out; 2426 } 2427 2428 subflow->disposable = 1; 2429 2430 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2431 * the ssk has been already destroyed, we just need to release the 2432 * reference owned by msk; 2433 */ 2434 if (!inet_csk(ssk)->icsk_ulp_ops) { 2435 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2436 kfree_rcu(subflow, rcu); 2437 } else { 2438 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2439 __tcp_close(ssk, 0); 2440 2441 /* close acquired an extra ref */ 2442 __sock_put(ssk); 2443 } 2444 2445 out_release: 2446 __mptcp_subflow_error_report(sk, ssk); 2447 release_sock(ssk); 2448 2449 sock_put(ssk); 2450 2451 if (ssk == msk->first) 2452 WRITE_ONCE(msk->first, NULL); 2453 2454 out: 2455 if (need_push) 2456 __mptcp_push_pending(sk, 0); 2457 2458 /* Catch every 'all subflows closed' scenario, including peers silently 2459 * closing them, e.g. due to timeout. 2460 * For established sockets, allow an additional timeout before closing, 2461 * as the protocol can still create more subflows. 2462 */ 2463 if (list_is_singular(&msk->conn_list) && msk->first && 2464 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2465 if (sk->sk_state != TCP_ESTABLISHED || 2466 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2467 inet_sk_state_store(sk, TCP_CLOSE); 2468 mptcp_close_wake_up(sk); 2469 } else { 2470 mptcp_start_tout_timer(sk); 2471 } 2472 } 2473 } 2474 2475 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2476 struct mptcp_subflow_context *subflow) 2477 { 2478 if (sk->sk_state == TCP_ESTABLISHED) 2479 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2480 2481 /* subflow aborted before reaching the fully_established status 2482 * attempt the creation of the next subflow 2483 */ 2484 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2485 2486 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2487 } 2488 2489 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2490 { 2491 return 0; 2492 } 2493 2494 static void __mptcp_close_subflow(struct sock *sk) 2495 { 2496 struct mptcp_subflow_context *subflow, *tmp; 2497 struct mptcp_sock *msk = mptcp_sk(sk); 2498 2499 might_sleep(); 2500 2501 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2502 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2503 2504 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2505 continue; 2506 2507 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2508 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2509 continue; 2510 2511 mptcp_close_ssk(sk, ssk, subflow); 2512 } 2513 2514 } 2515 2516 static bool mptcp_close_tout_expired(const struct sock *sk) 2517 { 2518 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2519 sk->sk_state == TCP_CLOSE) 2520 return false; 2521 2522 return time_after32(tcp_jiffies32, 2523 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2524 } 2525 2526 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2527 { 2528 struct mptcp_subflow_context *subflow, *tmp; 2529 struct sock *sk = (struct sock *)msk; 2530 2531 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2532 return; 2533 2534 mptcp_token_destroy(msk); 2535 2536 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2537 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2538 bool slow; 2539 2540 slow = lock_sock_fast(tcp_sk); 2541 if (tcp_sk->sk_state != TCP_CLOSE) { 2542 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2543 tcp_set_state(tcp_sk, TCP_CLOSE); 2544 } 2545 unlock_sock_fast(tcp_sk, slow); 2546 } 2547 2548 /* Mirror the tcp_reset() error propagation */ 2549 switch (sk->sk_state) { 2550 case TCP_SYN_SENT: 2551 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2552 break; 2553 case TCP_CLOSE_WAIT: 2554 WRITE_ONCE(sk->sk_err, EPIPE); 2555 break; 2556 case TCP_CLOSE: 2557 return; 2558 default: 2559 WRITE_ONCE(sk->sk_err, ECONNRESET); 2560 } 2561 2562 inet_sk_state_store(sk, TCP_CLOSE); 2563 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2564 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2565 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2566 2567 /* the calling mptcp_worker will properly destroy the socket */ 2568 if (sock_flag(sk, SOCK_DEAD)) 2569 return; 2570 2571 sk->sk_state_change(sk); 2572 sk_error_report(sk); 2573 } 2574 2575 static void __mptcp_retrans(struct sock *sk) 2576 { 2577 struct mptcp_sock *msk = mptcp_sk(sk); 2578 struct mptcp_subflow_context *subflow; 2579 struct mptcp_sendmsg_info info = {}; 2580 struct mptcp_data_frag *dfrag; 2581 struct sock *ssk; 2582 int ret, err; 2583 u16 len = 0; 2584 2585 mptcp_clean_una_wakeup(sk); 2586 2587 /* first check ssk: need to kick "stale" logic */ 2588 err = mptcp_sched_get_retrans(msk); 2589 dfrag = mptcp_rtx_head(sk); 2590 if (!dfrag) { 2591 if (mptcp_data_fin_enabled(msk)) { 2592 struct inet_connection_sock *icsk = inet_csk(sk); 2593 2594 icsk->icsk_retransmits++; 2595 mptcp_set_datafin_timeout(sk); 2596 mptcp_send_ack(msk); 2597 2598 goto reset_timer; 2599 } 2600 2601 if (!mptcp_send_head(sk)) 2602 return; 2603 2604 goto reset_timer; 2605 } 2606 2607 if (err) 2608 goto reset_timer; 2609 2610 mptcp_for_each_subflow(msk, subflow) { 2611 if (READ_ONCE(subflow->scheduled)) { 2612 u16 copied = 0; 2613 2614 mptcp_subflow_set_scheduled(subflow, false); 2615 2616 ssk = mptcp_subflow_tcp_sock(subflow); 2617 2618 lock_sock(ssk); 2619 2620 /* limit retransmission to the bytes already sent on some subflows */ 2621 info.sent = 0; 2622 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2623 dfrag->already_sent; 2624 while (info.sent < info.limit) { 2625 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2626 if (ret <= 0) 2627 break; 2628 2629 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2630 copied += ret; 2631 info.sent += ret; 2632 } 2633 if (copied) { 2634 len = max(copied, len); 2635 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2636 info.size_goal); 2637 WRITE_ONCE(msk->allow_infinite_fallback, false); 2638 } 2639 2640 release_sock(ssk); 2641 } 2642 } 2643 2644 msk->bytes_retrans += len; 2645 dfrag->already_sent = max(dfrag->already_sent, len); 2646 2647 reset_timer: 2648 mptcp_check_and_set_pending(sk); 2649 2650 if (!mptcp_rtx_timer_pending(sk)) 2651 mptcp_reset_rtx_timer(sk); 2652 } 2653 2654 /* schedule the timeout timer for the relevant event: either close timeout 2655 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2656 */ 2657 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2658 { 2659 struct sock *sk = (struct sock *)msk; 2660 unsigned long timeout, close_timeout; 2661 2662 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2663 return; 2664 2665 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2666 TCP_TIMEWAIT_LEN; 2667 2668 /* the close timeout takes precedence on the fail one, and here at least one of 2669 * them is active 2670 */ 2671 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2672 2673 sk_reset_timer(sk, &sk->sk_timer, timeout); 2674 } 2675 2676 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2677 { 2678 struct sock *ssk = msk->first; 2679 bool slow; 2680 2681 if (!ssk) 2682 return; 2683 2684 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2685 2686 slow = lock_sock_fast(ssk); 2687 mptcp_subflow_reset(ssk); 2688 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2689 unlock_sock_fast(ssk, slow); 2690 } 2691 2692 static void mptcp_do_fastclose(struct sock *sk) 2693 { 2694 struct mptcp_subflow_context *subflow, *tmp; 2695 struct mptcp_sock *msk = mptcp_sk(sk); 2696 2697 inet_sk_state_store(sk, TCP_CLOSE); 2698 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2699 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2700 subflow, MPTCP_CF_FASTCLOSE); 2701 } 2702 2703 static void mptcp_worker(struct work_struct *work) 2704 { 2705 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2706 struct sock *sk = (struct sock *)msk; 2707 unsigned long fail_tout; 2708 int state; 2709 2710 lock_sock(sk); 2711 state = sk->sk_state; 2712 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2713 goto unlock; 2714 2715 mptcp_check_fastclose(msk); 2716 2717 mptcp_pm_nl_work(msk); 2718 2719 mptcp_check_send_data_fin(sk); 2720 mptcp_check_data_fin_ack(sk); 2721 mptcp_check_data_fin(sk); 2722 2723 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2724 __mptcp_close_subflow(sk); 2725 2726 if (mptcp_close_tout_expired(sk)) { 2727 mptcp_do_fastclose(sk); 2728 mptcp_close_wake_up(sk); 2729 } 2730 2731 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2732 __mptcp_destroy_sock(sk); 2733 goto unlock; 2734 } 2735 2736 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2737 __mptcp_retrans(sk); 2738 2739 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2740 if (fail_tout && time_after(jiffies, fail_tout)) 2741 mptcp_mp_fail_no_response(msk); 2742 2743 unlock: 2744 release_sock(sk); 2745 sock_put(sk); 2746 } 2747 2748 static void __mptcp_init_sock(struct sock *sk) 2749 { 2750 struct mptcp_sock *msk = mptcp_sk(sk); 2751 2752 INIT_LIST_HEAD(&msk->conn_list); 2753 INIT_LIST_HEAD(&msk->join_list); 2754 INIT_LIST_HEAD(&msk->rtx_queue); 2755 INIT_WORK(&msk->work, mptcp_worker); 2756 __skb_queue_head_init(&msk->receive_queue); 2757 msk->out_of_order_queue = RB_ROOT; 2758 msk->first_pending = NULL; 2759 msk->rmem_fwd_alloc = 0; 2760 WRITE_ONCE(msk->rmem_released, 0); 2761 msk->timer_ival = TCP_RTO_MIN; 2762 2763 WRITE_ONCE(msk->first, NULL); 2764 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2765 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2766 WRITE_ONCE(msk->allow_infinite_fallback, true); 2767 msk->recovery = false; 2768 msk->subflow_id = 1; 2769 2770 mptcp_pm_data_init(msk); 2771 2772 /* re-use the csk retrans timer for MPTCP-level retrans */ 2773 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2774 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2775 } 2776 2777 static void mptcp_ca_reset(struct sock *sk) 2778 { 2779 struct inet_connection_sock *icsk = inet_csk(sk); 2780 2781 tcp_assign_congestion_control(sk); 2782 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2783 2784 /* no need to keep a reference to the ops, the name will suffice */ 2785 tcp_cleanup_congestion_control(sk); 2786 icsk->icsk_ca_ops = NULL; 2787 } 2788 2789 static int mptcp_init_sock(struct sock *sk) 2790 { 2791 struct net *net = sock_net(sk); 2792 int ret; 2793 2794 __mptcp_init_sock(sk); 2795 2796 if (!mptcp_is_enabled(net)) 2797 return -ENOPROTOOPT; 2798 2799 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2800 return -ENOMEM; 2801 2802 ret = mptcp_init_sched(mptcp_sk(sk), 2803 mptcp_sched_find(mptcp_get_scheduler(net))); 2804 if (ret) 2805 return ret; 2806 2807 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2808 2809 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2810 * propagate the correct value 2811 */ 2812 mptcp_ca_reset(sk); 2813 2814 sk_sockets_allocated_inc(sk); 2815 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2816 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2817 2818 return 0; 2819 } 2820 2821 static void __mptcp_clear_xmit(struct sock *sk) 2822 { 2823 struct mptcp_sock *msk = mptcp_sk(sk); 2824 struct mptcp_data_frag *dtmp, *dfrag; 2825 2826 WRITE_ONCE(msk->first_pending, NULL); 2827 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2828 dfrag_clear(sk, dfrag); 2829 } 2830 2831 void mptcp_cancel_work(struct sock *sk) 2832 { 2833 struct mptcp_sock *msk = mptcp_sk(sk); 2834 2835 if (cancel_work_sync(&msk->work)) 2836 __sock_put(sk); 2837 } 2838 2839 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2840 { 2841 lock_sock(ssk); 2842 2843 switch (ssk->sk_state) { 2844 case TCP_LISTEN: 2845 if (!(how & RCV_SHUTDOWN)) 2846 break; 2847 fallthrough; 2848 case TCP_SYN_SENT: 2849 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2850 break; 2851 default: 2852 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2853 pr_debug("Fallback"); 2854 ssk->sk_shutdown |= how; 2855 tcp_shutdown(ssk, how); 2856 2857 /* simulate the data_fin ack reception to let the state 2858 * machine move forward 2859 */ 2860 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2861 mptcp_schedule_work(sk); 2862 } else { 2863 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2864 tcp_send_ack(ssk); 2865 if (!mptcp_rtx_timer_pending(sk)) 2866 mptcp_reset_rtx_timer(sk); 2867 } 2868 break; 2869 } 2870 2871 release_sock(ssk); 2872 } 2873 2874 static const unsigned char new_state[16] = { 2875 /* current state: new state: action: */ 2876 [0 /* (Invalid) */] = TCP_CLOSE, 2877 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2878 [TCP_SYN_SENT] = TCP_CLOSE, 2879 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2880 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2881 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2882 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2883 [TCP_CLOSE] = TCP_CLOSE, 2884 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2885 [TCP_LAST_ACK] = TCP_LAST_ACK, 2886 [TCP_LISTEN] = TCP_CLOSE, 2887 [TCP_CLOSING] = TCP_CLOSING, 2888 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2889 }; 2890 2891 static int mptcp_close_state(struct sock *sk) 2892 { 2893 int next = (int)new_state[sk->sk_state]; 2894 int ns = next & TCP_STATE_MASK; 2895 2896 inet_sk_state_store(sk, ns); 2897 2898 return next & TCP_ACTION_FIN; 2899 } 2900 2901 static void mptcp_check_send_data_fin(struct sock *sk) 2902 { 2903 struct mptcp_subflow_context *subflow; 2904 struct mptcp_sock *msk = mptcp_sk(sk); 2905 2906 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2907 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2908 msk->snd_nxt, msk->write_seq); 2909 2910 /* we still need to enqueue subflows or not really shutting down, 2911 * skip this 2912 */ 2913 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2914 mptcp_send_head(sk)) 2915 return; 2916 2917 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2918 2919 mptcp_for_each_subflow(msk, subflow) { 2920 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2921 2922 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2923 } 2924 } 2925 2926 static void __mptcp_wr_shutdown(struct sock *sk) 2927 { 2928 struct mptcp_sock *msk = mptcp_sk(sk); 2929 2930 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2931 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2932 !!mptcp_send_head(sk)); 2933 2934 /* will be ignored by fallback sockets */ 2935 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2936 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2937 2938 mptcp_check_send_data_fin(sk); 2939 } 2940 2941 static void __mptcp_destroy_sock(struct sock *sk) 2942 { 2943 struct mptcp_sock *msk = mptcp_sk(sk); 2944 2945 pr_debug("msk=%p", msk); 2946 2947 might_sleep(); 2948 2949 mptcp_stop_rtx_timer(sk); 2950 sk_stop_timer(sk, &sk->sk_timer); 2951 msk->pm.status = 0; 2952 mptcp_release_sched(msk); 2953 2954 sk->sk_prot->destroy(sk); 2955 2956 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2957 WARN_ON_ONCE(msk->rmem_released); 2958 sk_stream_kill_queues(sk); 2959 xfrm_sk_free_policy(sk); 2960 2961 sock_put(sk); 2962 } 2963 2964 void __mptcp_unaccepted_force_close(struct sock *sk) 2965 { 2966 sock_set_flag(sk, SOCK_DEAD); 2967 mptcp_do_fastclose(sk); 2968 __mptcp_destroy_sock(sk); 2969 } 2970 2971 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2972 { 2973 /* Concurrent splices from sk_receive_queue into receive_queue will 2974 * always show at least one non-empty queue when checked in this order. 2975 */ 2976 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2977 skb_queue_empty_lockless(&msk->receive_queue)) 2978 return 0; 2979 2980 return EPOLLIN | EPOLLRDNORM; 2981 } 2982 2983 static void mptcp_check_listen_stop(struct sock *sk) 2984 { 2985 struct sock *ssk; 2986 2987 if (inet_sk_state_load(sk) != TCP_LISTEN) 2988 return; 2989 2990 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2991 ssk = mptcp_sk(sk)->first; 2992 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2993 return; 2994 2995 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2996 tcp_set_state(ssk, TCP_CLOSE); 2997 mptcp_subflow_queue_clean(sk, ssk); 2998 inet_csk_listen_stop(ssk); 2999 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3000 release_sock(ssk); 3001 } 3002 3003 bool __mptcp_close(struct sock *sk, long timeout) 3004 { 3005 struct mptcp_subflow_context *subflow; 3006 struct mptcp_sock *msk = mptcp_sk(sk); 3007 bool do_cancel_work = false; 3008 int subflows_alive = 0; 3009 3010 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3011 3012 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3013 mptcp_check_listen_stop(sk); 3014 inet_sk_state_store(sk, TCP_CLOSE); 3015 goto cleanup; 3016 } 3017 3018 if (mptcp_check_readable(msk) || timeout < 0) { 3019 /* If the msk has read data, or the caller explicitly ask it, 3020 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3021 */ 3022 mptcp_do_fastclose(sk); 3023 timeout = 0; 3024 } else if (mptcp_close_state(sk)) { 3025 __mptcp_wr_shutdown(sk); 3026 } 3027 3028 sk_stream_wait_close(sk, timeout); 3029 3030 cleanup: 3031 /* orphan all the subflows */ 3032 mptcp_for_each_subflow(msk, subflow) { 3033 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3034 bool slow = lock_sock_fast_nested(ssk); 3035 3036 subflows_alive += ssk->sk_state != TCP_CLOSE; 3037 3038 /* since the close timeout takes precedence on the fail one, 3039 * cancel the latter 3040 */ 3041 if (ssk == msk->first) 3042 subflow->fail_tout = 0; 3043 3044 /* detach from the parent socket, but allow data_ready to 3045 * push incoming data into the mptcp stack, to properly ack it 3046 */ 3047 ssk->sk_socket = NULL; 3048 ssk->sk_wq = NULL; 3049 unlock_sock_fast(ssk, slow); 3050 } 3051 sock_orphan(sk); 3052 3053 /* all the subflows are closed, only timeout can change the msk 3054 * state, let's not keep resources busy for no reasons 3055 */ 3056 if (subflows_alive == 0) 3057 inet_sk_state_store(sk, TCP_CLOSE); 3058 3059 sock_hold(sk); 3060 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3061 if (msk->token) 3062 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3063 3064 if (sk->sk_state == TCP_CLOSE) { 3065 __mptcp_destroy_sock(sk); 3066 do_cancel_work = true; 3067 } else { 3068 mptcp_start_tout_timer(sk); 3069 } 3070 3071 return do_cancel_work; 3072 } 3073 3074 static void mptcp_close(struct sock *sk, long timeout) 3075 { 3076 bool do_cancel_work; 3077 3078 lock_sock(sk); 3079 3080 do_cancel_work = __mptcp_close(sk, timeout); 3081 release_sock(sk); 3082 if (do_cancel_work) 3083 mptcp_cancel_work(sk); 3084 3085 sock_put(sk); 3086 } 3087 3088 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3089 { 3090 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3091 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3092 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3093 3094 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3095 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3096 3097 if (msk6 && ssk6) { 3098 msk6->saddr = ssk6->saddr; 3099 msk6->flow_label = ssk6->flow_label; 3100 } 3101 #endif 3102 3103 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3104 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3105 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3106 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3107 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3108 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3109 } 3110 3111 static int mptcp_disconnect(struct sock *sk, int flags) 3112 { 3113 struct mptcp_sock *msk = mptcp_sk(sk); 3114 3115 /* We are on the fastopen error path. We can't call straight into the 3116 * subflows cleanup code due to lock nesting (we are already under 3117 * msk->firstsocket lock). 3118 */ 3119 if (msk->fastopening) 3120 return -EBUSY; 3121 3122 mptcp_check_listen_stop(sk); 3123 inet_sk_state_store(sk, TCP_CLOSE); 3124 3125 mptcp_stop_rtx_timer(sk); 3126 mptcp_stop_tout_timer(sk); 3127 3128 if (msk->token) 3129 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3130 3131 /* msk->subflow is still intact, the following will not free the first 3132 * subflow 3133 */ 3134 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3135 WRITE_ONCE(msk->flags, 0); 3136 msk->cb_flags = 0; 3137 msk->push_pending = 0; 3138 msk->recovery = false; 3139 msk->can_ack = false; 3140 msk->fully_established = false; 3141 msk->rcv_data_fin = false; 3142 msk->snd_data_fin_enable = false; 3143 msk->rcv_fastclose = false; 3144 msk->use_64bit_ack = false; 3145 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3146 mptcp_pm_data_reset(msk); 3147 mptcp_ca_reset(sk); 3148 msk->bytes_acked = 0; 3149 msk->bytes_received = 0; 3150 msk->bytes_sent = 0; 3151 msk->bytes_retrans = 0; 3152 3153 WRITE_ONCE(sk->sk_shutdown, 0); 3154 sk_error_report(sk); 3155 return 0; 3156 } 3157 3158 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3159 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3160 { 3161 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3162 3163 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3164 } 3165 #endif 3166 3167 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3168 const struct mptcp_options_received *mp_opt, 3169 struct sock *ssk, 3170 struct request_sock *req) 3171 { 3172 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3173 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3174 struct mptcp_sock *msk; 3175 3176 if (!nsk) 3177 return NULL; 3178 3179 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3180 if (nsk->sk_family == AF_INET6) 3181 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3182 #endif 3183 3184 __mptcp_init_sock(nsk); 3185 3186 msk = mptcp_sk(nsk); 3187 msk->local_key = subflow_req->local_key; 3188 msk->token = subflow_req->token; 3189 msk->in_accept_queue = 1; 3190 WRITE_ONCE(msk->fully_established, false); 3191 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3192 WRITE_ONCE(msk->csum_enabled, true); 3193 3194 msk->write_seq = subflow_req->idsn + 1; 3195 msk->snd_nxt = msk->write_seq; 3196 msk->snd_una = msk->write_seq; 3197 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3198 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3199 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3200 3201 /* passive msk is created after the first/MPC subflow */ 3202 msk->subflow_id = 2; 3203 3204 sock_reset_flag(nsk, SOCK_RCU_FREE); 3205 security_inet_csk_clone(nsk, req); 3206 3207 /* this can't race with mptcp_close(), as the msk is 3208 * not yet exposted to user-space 3209 */ 3210 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3211 3212 /* The msk maintain a ref to each subflow in the connections list */ 3213 WRITE_ONCE(msk->first, ssk); 3214 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3215 sock_hold(ssk); 3216 3217 /* new mpc subflow takes ownership of the newly 3218 * created mptcp socket 3219 */ 3220 mptcp_token_accept(subflow_req, msk); 3221 3222 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3223 * uses the correct data 3224 */ 3225 mptcp_copy_inaddrs(nsk, ssk); 3226 mptcp_propagate_sndbuf(nsk, ssk); 3227 3228 mptcp_rcv_space_init(msk, ssk); 3229 bh_unlock_sock(nsk); 3230 3231 /* note: the newly allocated socket refcount is 2 now */ 3232 return nsk; 3233 } 3234 3235 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3236 { 3237 const struct tcp_sock *tp = tcp_sk(ssk); 3238 3239 msk->rcvq_space.copied = 0; 3240 msk->rcvq_space.rtt_us = 0; 3241 3242 msk->rcvq_space.time = tp->tcp_mstamp; 3243 3244 /* initial rcv_space offering made to peer */ 3245 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3246 TCP_INIT_CWND * tp->advmss); 3247 if (msk->rcvq_space.space == 0) 3248 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3249 3250 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3251 } 3252 3253 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3254 bool kern) 3255 { 3256 struct sock *newsk; 3257 3258 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3259 newsk = inet_csk_accept(ssk, flags, err, kern); 3260 if (!newsk) 3261 return NULL; 3262 3263 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3264 if (sk_is_mptcp(newsk)) { 3265 struct mptcp_subflow_context *subflow; 3266 struct sock *new_mptcp_sock; 3267 3268 subflow = mptcp_subflow_ctx(newsk); 3269 new_mptcp_sock = subflow->conn; 3270 3271 /* is_mptcp should be false if subflow->conn is missing, see 3272 * subflow_syn_recv_sock() 3273 */ 3274 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3275 tcp_sk(newsk)->is_mptcp = 0; 3276 goto out; 3277 } 3278 3279 newsk = new_mptcp_sock; 3280 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3281 } else { 3282 MPTCP_INC_STATS(sock_net(ssk), 3283 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3284 } 3285 3286 out: 3287 newsk->sk_kern_sock = kern; 3288 return newsk; 3289 } 3290 3291 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3292 { 3293 struct mptcp_subflow_context *subflow, *tmp; 3294 struct sock *sk = (struct sock *)msk; 3295 3296 __mptcp_clear_xmit(sk); 3297 3298 /* join list will be eventually flushed (with rst) at sock lock release time */ 3299 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3300 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3301 3302 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3303 mptcp_data_lock(sk); 3304 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3305 __skb_queue_purge(&sk->sk_receive_queue); 3306 skb_rbtree_purge(&msk->out_of_order_queue); 3307 mptcp_data_unlock(sk); 3308 3309 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3310 * inet_sock_destruct() will dispose it 3311 */ 3312 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3313 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3314 mptcp_token_destroy(msk); 3315 mptcp_pm_free_anno_list(msk); 3316 mptcp_free_local_addr_list(msk); 3317 } 3318 3319 static void mptcp_destroy(struct sock *sk) 3320 { 3321 struct mptcp_sock *msk = mptcp_sk(sk); 3322 3323 /* allow the following to close even the initial subflow */ 3324 msk->free_first = 1; 3325 mptcp_destroy_common(msk, 0); 3326 sk_sockets_allocated_dec(sk); 3327 } 3328 3329 void __mptcp_data_acked(struct sock *sk) 3330 { 3331 if (!sock_owned_by_user(sk)) 3332 __mptcp_clean_una(sk); 3333 else 3334 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3335 3336 if (mptcp_pending_data_fin_ack(sk)) 3337 mptcp_schedule_work(sk); 3338 } 3339 3340 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3341 { 3342 if (!mptcp_send_head(sk)) 3343 return; 3344 3345 if (!sock_owned_by_user(sk)) 3346 __mptcp_subflow_push_pending(sk, ssk, false); 3347 else 3348 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3349 } 3350 3351 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3352 BIT(MPTCP_RETRANSMIT) | \ 3353 BIT(MPTCP_FLUSH_JOIN_LIST)) 3354 3355 /* processes deferred events and flush wmem */ 3356 static void mptcp_release_cb(struct sock *sk) 3357 __must_hold(&sk->sk_lock.slock) 3358 { 3359 struct mptcp_sock *msk = mptcp_sk(sk); 3360 3361 for (;;) { 3362 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3363 msk->push_pending; 3364 struct list_head join_list; 3365 3366 if (!flags) 3367 break; 3368 3369 INIT_LIST_HEAD(&join_list); 3370 list_splice_init(&msk->join_list, &join_list); 3371 3372 /* the following actions acquire the subflow socket lock 3373 * 3374 * 1) can't be invoked in atomic scope 3375 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3376 * datapath acquires the msk socket spinlock while helding 3377 * the subflow socket lock 3378 */ 3379 msk->push_pending = 0; 3380 msk->cb_flags &= ~flags; 3381 spin_unlock_bh(&sk->sk_lock.slock); 3382 3383 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3384 __mptcp_flush_join_list(sk, &join_list); 3385 if (flags & BIT(MPTCP_PUSH_PENDING)) 3386 __mptcp_push_pending(sk, 0); 3387 if (flags & BIT(MPTCP_RETRANSMIT)) 3388 __mptcp_retrans(sk); 3389 3390 cond_resched(); 3391 spin_lock_bh(&sk->sk_lock.slock); 3392 } 3393 3394 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3395 __mptcp_clean_una_wakeup(sk); 3396 if (unlikely(msk->cb_flags)) { 3397 /* be sure to set the current sk state before tacking actions 3398 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3399 */ 3400 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3401 __mptcp_set_connected(sk); 3402 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3403 __mptcp_error_report(sk); 3404 } 3405 3406 __mptcp_update_rmem(sk); 3407 } 3408 3409 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3410 * TCP can't schedule delack timer before the subflow is fully established. 3411 * MPTCP uses the delack timer to do 3rd ack retransmissions 3412 */ 3413 static void schedule_3rdack_retransmission(struct sock *ssk) 3414 { 3415 struct inet_connection_sock *icsk = inet_csk(ssk); 3416 struct tcp_sock *tp = tcp_sk(ssk); 3417 unsigned long timeout; 3418 3419 if (mptcp_subflow_ctx(ssk)->fully_established) 3420 return; 3421 3422 /* reschedule with a timeout above RTT, as we must look only for drop */ 3423 if (tp->srtt_us) 3424 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3425 else 3426 timeout = TCP_TIMEOUT_INIT; 3427 timeout += jiffies; 3428 3429 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3430 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3431 icsk->icsk_ack.timeout = timeout; 3432 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3433 } 3434 3435 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3436 { 3437 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3438 struct sock *sk = subflow->conn; 3439 3440 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3441 mptcp_data_lock(sk); 3442 if (!sock_owned_by_user(sk)) 3443 __mptcp_subflow_push_pending(sk, ssk, true); 3444 else 3445 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3446 mptcp_data_unlock(sk); 3447 } 3448 if (status & BIT(MPTCP_DELEGATE_ACK)) 3449 schedule_3rdack_retransmission(ssk); 3450 } 3451 3452 static int mptcp_hash(struct sock *sk) 3453 { 3454 /* should never be called, 3455 * we hash the TCP subflows not the master socket 3456 */ 3457 WARN_ON_ONCE(1); 3458 return 0; 3459 } 3460 3461 static void mptcp_unhash(struct sock *sk) 3462 { 3463 /* called from sk_common_release(), but nothing to do here */ 3464 } 3465 3466 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3467 { 3468 struct mptcp_sock *msk = mptcp_sk(sk); 3469 3470 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3471 if (WARN_ON_ONCE(!msk->first)) 3472 return -EINVAL; 3473 3474 return inet_csk_get_port(msk->first, snum); 3475 } 3476 3477 void mptcp_finish_connect(struct sock *ssk) 3478 { 3479 struct mptcp_subflow_context *subflow; 3480 struct mptcp_sock *msk; 3481 struct sock *sk; 3482 3483 subflow = mptcp_subflow_ctx(ssk); 3484 sk = subflow->conn; 3485 msk = mptcp_sk(sk); 3486 3487 pr_debug("msk=%p, token=%u", sk, subflow->token); 3488 3489 subflow->map_seq = subflow->iasn; 3490 subflow->map_subflow_seq = 1; 3491 3492 /* the socket is not connected yet, no msk/subflow ops can access/race 3493 * accessing the field below 3494 */ 3495 WRITE_ONCE(msk->local_key, subflow->local_key); 3496 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3497 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3498 WRITE_ONCE(msk->snd_una, msk->write_seq); 3499 3500 mptcp_pm_new_connection(msk, ssk, 0); 3501 3502 mptcp_rcv_space_init(msk, ssk); 3503 } 3504 3505 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3506 { 3507 write_lock_bh(&sk->sk_callback_lock); 3508 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3509 sk_set_socket(sk, parent); 3510 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3511 write_unlock_bh(&sk->sk_callback_lock); 3512 } 3513 3514 bool mptcp_finish_join(struct sock *ssk) 3515 { 3516 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3517 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3518 struct sock *parent = (void *)msk; 3519 bool ret = true; 3520 3521 pr_debug("msk=%p, subflow=%p", msk, subflow); 3522 3523 /* mptcp socket already closing? */ 3524 if (!mptcp_is_fully_established(parent)) { 3525 subflow->reset_reason = MPTCP_RST_EMPTCP; 3526 return false; 3527 } 3528 3529 /* active subflow, already present inside the conn_list */ 3530 if (!list_empty(&subflow->node)) { 3531 mptcp_subflow_joined(msk, ssk); 3532 return true; 3533 } 3534 3535 if (!mptcp_pm_allow_new_subflow(msk)) 3536 goto err_prohibited; 3537 3538 /* If we can't acquire msk socket lock here, let the release callback 3539 * handle it 3540 */ 3541 mptcp_data_lock(parent); 3542 if (!sock_owned_by_user(parent)) { 3543 ret = __mptcp_finish_join(msk, ssk); 3544 if (ret) { 3545 sock_hold(ssk); 3546 list_add_tail(&subflow->node, &msk->conn_list); 3547 } 3548 } else { 3549 sock_hold(ssk); 3550 list_add_tail(&subflow->node, &msk->join_list); 3551 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3552 } 3553 mptcp_data_unlock(parent); 3554 3555 if (!ret) { 3556 err_prohibited: 3557 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3558 return false; 3559 } 3560 3561 return true; 3562 } 3563 3564 static void mptcp_shutdown(struct sock *sk, int how) 3565 { 3566 pr_debug("sk=%p, how=%d", sk, how); 3567 3568 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3569 __mptcp_wr_shutdown(sk); 3570 } 3571 3572 static int mptcp_forward_alloc_get(const struct sock *sk) 3573 { 3574 return READ_ONCE(sk->sk_forward_alloc) + 3575 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3576 } 3577 3578 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3579 { 3580 const struct sock *sk = (void *)msk; 3581 u64 delta; 3582 3583 if (sk->sk_state == TCP_LISTEN) 3584 return -EINVAL; 3585 3586 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3587 return 0; 3588 3589 delta = msk->write_seq - v; 3590 if (__mptcp_check_fallback(msk) && msk->first) { 3591 struct tcp_sock *tp = tcp_sk(msk->first); 3592 3593 /* the first subflow is disconnected after close - see 3594 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3595 * so ignore that status, too. 3596 */ 3597 if (!((1 << msk->first->sk_state) & 3598 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3599 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3600 } 3601 if (delta > INT_MAX) 3602 delta = INT_MAX; 3603 3604 return (int)delta; 3605 } 3606 3607 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3608 { 3609 struct mptcp_sock *msk = mptcp_sk(sk); 3610 bool slow; 3611 3612 switch (cmd) { 3613 case SIOCINQ: 3614 if (sk->sk_state == TCP_LISTEN) 3615 return -EINVAL; 3616 3617 lock_sock(sk); 3618 __mptcp_move_skbs(msk); 3619 *karg = mptcp_inq_hint(sk); 3620 release_sock(sk); 3621 break; 3622 case SIOCOUTQ: 3623 slow = lock_sock_fast(sk); 3624 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3625 unlock_sock_fast(sk, slow); 3626 break; 3627 case SIOCOUTQNSD: 3628 slow = lock_sock_fast(sk); 3629 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3630 unlock_sock_fast(sk, slow); 3631 break; 3632 default: 3633 return -ENOIOCTLCMD; 3634 } 3635 3636 return 0; 3637 } 3638 3639 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3640 struct mptcp_subflow_context *subflow) 3641 { 3642 subflow->request_mptcp = 0; 3643 __mptcp_do_fallback(msk); 3644 } 3645 3646 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3647 { 3648 struct mptcp_subflow_context *subflow; 3649 struct mptcp_sock *msk = mptcp_sk(sk); 3650 int err = -EINVAL; 3651 struct sock *ssk; 3652 3653 ssk = __mptcp_nmpc_sk(msk); 3654 if (IS_ERR(ssk)) 3655 return PTR_ERR(ssk); 3656 3657 inet_sk_state_store(sk, TCP_SYN_SENT); 3658 subflow = mptcp_subflow_ctx(ssk); 3659 #ifdef CONFIG_TCP_MD5SIG 3660 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3661 * TCP option space. 3662 */ 3663 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3664 mptcp_subflow_early_fallback(msk, subflow); 3665 #endif 3666 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3667 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3668 mptcp_subflow_early_fallback(msk, subflow); 3669 } 3670 if (likely(!__mptcp_check_fallback(msk))) 3671 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3672 3673 /* if reaching here via the fastopen/sendmsg path, the caller already 3674 * acquired the subflow socket lock, too. 3675 */ 3676 if (!msk->fastopening) 3677 lock_sock(ssk); 3678 3679 /* the following mirrors closely a very small chunk of code from 3680 * __inet_stream_connect() 3681 */ 3682 if (ssk->sk_state != TCP_CLOSE) 3683 goto out; 3684 3685 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3686 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3687 if (err) 3688 goto out; 3689 } 3690 3691 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3692 if (err < 0) 3693 goto out; 3694 3695 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3696 3697 out: 3698 if (!msk->fastopening) 3699 release_sock(ssk); 3700 3701 /* on successful connect, the msk state will be moved to established by 3702 * subflow_finish_connect() 3703 */ 3704 if (unlikely(err)) { 3705 /* avoid leaving a dangling token in an unconnected socket */ 3706 mptcp_token_destroy(msk); 3707 inet_sk_state_store(sk, TCP_CLOSE); 3708 return err; 3709 } 3710 3711 mptcp_copy_inaddrs(sk, ssk); 3712 return 0; 3713 } 3714 3715 static struct proto mptcp_prot = { 3716 .name = "MPTCP", 3717 .owner = THIS_MODULE, 3718 .init = mptcp_init_sock, 3719 .connect = mptcp_connect, 3720 .disconnect = mptcp_disconnect, 3721 .close = mptcp_close, 3722 .accept = mptcp_accept, 3723 .setsockopt = mptcp_setsockopt, 3724 .getsockopt = mptcp_getsockopt, 3725 .shutdown = mptcp_shutdown, 3726 .destroy = mptcp_destroy, 3727 .sendmsg = mptcp_sendmsg, 3728 .ioctl = mptcp_ioctl, 3729 .recvmsg = mptcp_recvmsg, 3730 .release_cb = mptcp_release_cb, 3731 .hash = mptcp_hash, 3732 .unhash = mptcp_unhash, 3733 .get_port = mptcp_get_port, 3734 .forward_alloc_get = mptcp_forward_alloc_get, 3735 .sockets_allocated = &mptcp_sockets_allocated, 3736 3737 .memory_allocated = &tcp_memory_allocated, 3738 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3739 3740 .memory_pressure = &tcp_memory_pressure, 3741 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3742 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3743 .sysctl_mem = sysctl_tcp_mem, 3744 .obj_size = sizeof(struct mptcp_sock), 3745 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3746 .no_autobind = true, 3747 }; 3748 3749 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3750 { 3751 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3752 struct sock *ssk, *sk = sock->sk; 3753 int err = -EINVAL; 3754 3755 lock_sock(sk); 3756 ssk = __mptcp_nmpc_sk(msk); 3757 if (IS_ERR(ssk)) { 3758 err = PTR_ERR(ssk); 3759 goto unlock; 3760 } 3761 3762 if (sk->sk_family == AF_INET) 3763 err = inet_bind_sk(ssk, uaddr, addr_len); 3764 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3765 else if (sk->sk_family == AF_INET6) 3766 err = inet6_bind_sk(ssk, uaddr, addr_len); 3767 #endif 3768 if (!err) 3769 mptcp_copy_inaddrs(sk, ssk); 3770 3771 unlock: 3772 release_sock(sk); 3773 return err; 3774 } 3775 3776 static int mptcp_listen(struct socket *sock, int backlog) 3777 { 3778 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3779 struct sock *sk = sock->sk; 3780 struct sock *ssk; 3781 int err; 3782 3783 pr_debug("msk=%p", msk); 3784 3785 lock_sock(sk); 3786 3787 err = -EINVAL; 3788 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3789 goto unlock; 3790 3791 ssk = __mptcp_nmpc_sk(msk); 3792 if (IS_ERR(ssk)) { 3793 err = PTR_ERR(ssk); 3794 goto unlock; 3795 } 3796 3797 inet_sk_state_store(sk, TCP_LISTEN); 3798 sock_set_flag(sk, SOCK_RCU_FREE); 3799 3800 lock_sock(ssk); 3801 err = __inet_listen_sk(ssk, backlog); 3802 release_sock(ssk); 3803 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 3804 3805 if (!err) { 3806 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3807 mptcp_copy_inaddrs(sk, ssk); 3808 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3809 } 3810 3811 unlock: 3812 release_sock(sk); 3813 return err; 3814 } 3815 3816 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3817 int flags, bool kern) 3818 { 3819 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3820 struct sock *ssk, *newsk; 3821 int err; 3822 3823 pr_debug("msk=%p", msk); 3824 3825 /* Buggy applications can call accept on socket states other then LISTEN 3826 * but no need to allocate the first subflow just to error out. 3827 */ 3828 ssk = READ_ONCE(msk->first); 3829 if (!ssk) 3830 return -EINVAL; 3831 3832 newsk = mptcp_accept(ssk, flags, &err, kern); 3833 if (!newsk) 3834 return err; 3835 3836 lock_sock(newsk); 3837 3838 __inet_accept(sock, newsock, newsk); 3839 if (!mptcp_is_tcpsk(newsock->sk)) { 3840 struct mptcp_sock *msk = mptcp_sk(newsk); 3841 struct mptcp_subflow_context *subflow; 3842 3843 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3844 msk->in_accept_queue = 0; 3845 3846 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3847 * This is needed so NOSPACE flag can be set from tcp stack. 3848 */ 3849 mptcp_for_each_subflow(msk, subflow) { 3850 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3851 3852 if (!ssk->sk_socket) 3853 mptcp_sock_graft(ssk, newsock); 3854 } 3855 3856 /* Do late cleanup for the first subflow as necessary. Also 3857 * deal with bad peers not doing a complete shutdown. 3858 */ 3859 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3860 __mptcp_close_ssk(newsk, msk->first, 3861 mptcp_subflow_ctx(msk->first), 0); 3862 if (unlikely(list_is_singular(&msk->conn_list))) 3863 inet_sk_state_store(newsk, TCP_CLOSE); 3864 } 3865 } 3866 release_sock(newsk); 3867 3868 return 0; 3869 } 3870 3871 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3872 { 3873 struct sock *sk = (struct sock *)msk; 3874 3875 if (sk_stream_is_writeable(sk)) 3876 return EPOLLOUT | EPOLLWRNORM; 3877 3878 mptcp_set_nospace(sk); 3879 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3880 if (sk_stream_is_writeable(sk)) 3881 return EPOLLOUT | EPOLLWRNORM; 3882 3883 return 0; 3884 } 3885 3886 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3887 struct poll_table_struct *wait) 3888 { 3889 struct sock *sk = sock->sk; 3890 struct mptcp_sock *msk; 3891 __poll_t mask = 0; 3892 u8 shutdown; 3893 int state; 3894 3895 msk = mptcp_sk(sk); 3896 sock_poll_wait(file, sock, wait); 3897 3898 state = inet_sk_state_load(sk); 3899 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3900 if (state == TCP_LISTEN) { 3901 struct sock *ssk = READ_ONCE(msk->first); 3902 3903 if (WARN_ON_ONCE(!ssk)) 3904 return 0; 3905 3906 return inet_csk_listen_poll(ssk); 3907 } 3908 3909 shutdown = READ_ONCE(sk->sk_shutdown); 3910 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3911 mask |= EPOLLHUP; 3912 if (shutdown & RCV_SHUTDOWN) 3913 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3914 3915 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3916 mask |= mptcp_check_readable(msk); 3917 if (shutdown & SEND_SHUTDOWN) 3918 mask |= EPOLLOUT | EPOLLWRNORM; 3919 else 3920 mask |= mptcp_check_writeable(msk); 3921 } else if (state == TCP_SYN_SENT && 3922 inet_test_bit(DEFER_CONNECT, sk)) { 3923 /* cf tcp_poll() note about TFO */ 3924 mask |= EPOLLOUT | EPOLLWRNORM; 3925 } 3926 3927 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3928 smp_rmb(); 3929 if (READ_ONCE(sk->sk_err)) 3930 mask |= EPOLLERR; 3931 3932 return mask; 3933 } 3934 3935 static const struct proto_ops mptcp_stream_ops = { 3936 .family = PF_INET, 3937 .owner = THIS_MODULE, 3938 .release = inet_release, 3939 .bind = mptcp_bind, 3940 .connect = inet_stream_connect, 3941 .socketpair = sock_no_socketpair, 3942 .accept = mptcp_stream_accept, 3943 .getname = inet_getname, 3944 .poll = mptcp_poll, 3945 .ioctl = inet_ioctl, 3946 .gettstamp = sock_gettstamp, 3947 .listen = mptcp_listen, 3948 .shutdown = inet_shutdown, 3949 .setsockopt = sock_common_setsockopt, 3950 .getsockopt = sock_common_getsockopt, 3951 .sendmsg = inet_sendmsg, 3952 .recvmsg = inet_recvmsg, 3953 .mmap = sock_no_mmap, 3954 }; 3955 3956 static struct inet_protosw mptcp_protosw = { 3957 .type = SOCK_STREAM, 3958 .protocol = IPPROTO_MPTCP, 3959 .prot = &mptcp_prot, 3960 .ops = &mptcp_stream_ops, 3961 .flags = INET_PROTOSW_ICSK, 3962 }; 3963 3964 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3965 { 3966 struct mptcp_delegated_action *delegated; 3967 struct mptcp_subflow_context *subflow; 3968 int work_done = 0; 3969 3970 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3971 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3972 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3973 3974 bh_lock_sock_nested(ssk); 3975 if (!sock_owned_by_user(ssk)) { 3976 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 3977 } else { 3978 /* tcp_release_cb_override already processed 3979 * the action or will do at next release_sock(). 3980 * In both case must dequeue the subflow here - on the same 3981 * CPU that scheduled it. 3982 */ 3983 smp_wmb(); 3984 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 3985 } 3986 bh_unlock_sock(ssk); 3987 sock_put(ssk); 3988 3989 if (++work_done == budget) 3990 return budget; 3991 } 3992 3993 /* always provide a 0 'work_done' argument, so that napi_complete_done 3994 * will not try accessing the NULL napi->dev ptr 3995 */ 3996 napi_complete_done(napi, 0); 3997 return work_done; 3998 } 3999 4000 void __init mptcp_proto_init(void) 4001 { 4002 struct mptcp_delegated_action *delegated; 4003 int cpu; 4004 4005 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4006 4007 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4008 panic("Failed to allocate MPTCP pcpu counter\n"); 4009 4010 init_dummy_netdev(&mptcp_napi_dev); 4011 for_each_possible_cpu(cpu) { 4012 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4013 INIT_LIST_HEAD(&delegated->head); 4014 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4015 mptcp_napi_poll); 4016 napi_enable(&delegated->napi); 4017 } 4018 4019 mptcp_subflow_init(); 4020 mptcp_pm_init(); 4021 mptcp_sched_init(); 4022 mptcp_token_init(); 4023 4024 if (proto_register(&mptcp_prot, 1) != 0) 4025 panic("Failed to register MPTCP proto.\n"); 4026 4027 inet_register_protosw(&mptcp_protosw); 4028 4029 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4030 } 4031 4032 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4033 static const struct proto_ops mptcp_v6_stream_ops = { 4034 .family = PF_INET6, 4035 .owner = THIS_MODULE, 4036 .release = inet6_release, 4037 .bind = mptcp_bind, 4038 .connect = inet_stream_connect, 4039 .socketpair = sock_no_socketpair, 4040 .accept = mptcp_stream_accept, 4041 .getname = inet6_getname, 4042 .poll = mptcp_poll, 4043 .ioctl = inet6_ioctl, 4044 .gettstamp = sock_gettstamp, 4045 .listen = mptcp_listen, 4046 .shutdown = inet_shutdown, 4047 .setsockopt = sock_common_setsockopt, 4048 .getsockopt = sock_common_getsockopt, 4049 .sendmsg = inet6_sendmsg, 4050 .recvmsg = inet6_recvmsg, 4051 .mmap = sock_no_mmap, 4052 #ifdef CONFIG_COMPAT 4053 .compat_ioctl = inet6_compat_ioctl, 4054 #endif 4055 }; 4056 4057 static struct proto mptcp_v6_prot; 4058 4059 static struct inet_protosw mptcp_v6_protosw = { 4060 .type = SOCK_STREAM, 4061 .protocol = IPPROTO_MPTCP, 4062 .prot = &mptcp_v6_prot, 4063 .ops = &mptcp_v6_stream_ops, 4064 .flags = INET_PROTOSW_ICSK, 4065 }; 4066 4067 int __init mptcp_proto_v6_init(void) 4068 { 4069 int err; 4070 4071 mptcp_v6_prot = mptcp_prot; 4072 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4073 mptcp_v6_prot.slab = NULL; 4074 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4075 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4076 4077 err = proto_register(&mptcp_v6_prot, 1); 4078 if (err) 4079 return err; 4080 4081 err = inet6_register_protosw(&mptcp_v6_protosw); 4082 if (err) 4083 proto_unregister(&mptcp_v6_prot); 4084 4085 return err; 4086 } 4087 #endif 4088