xref: /openbmc/linux/net/mptcp/protocol.c (revision e9fd34ab)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 	struct socket *sock = sk->sk_socket;
61 
62 	if (unlikely(sk->sk_prot == &tcp_prot)) {
63 		/* we are being invoked after mptcp_accept() has
64 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 		 * not an mptcp one.
66 		 *
67 		 * Hand the socket over to tcp so all further socket ops
68 		 * bypass mptcp.
69 		 */
70 		WRITE_ONCE(sock->ops, &inet_stream_ops);
71 		return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 		WRITE_ONCE(sock->ops, &inet6_stream_ops);
75 		return true;
76 #endif
77 	}
78 
79 	return false;
80 }
81 
82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 	struct mptcp_subflow_context *subflow;
85 	struct sock *sk = (struct sock *)msk;
86 	struct socket *ssock;
87 	int err;
88 
89 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 	if (err)
91 		return err;
92 
93 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
94 	WRITE_ONCE(msk->first, ssock->sk);
95 	subflow = mptcp_subflow_ctx(ssock->sk);
96 	list_add(&subflow->node, &msk->conn_list);
97 	sock_hold(ssock->sk);
98 	subflow->request_mptcp = 1;
99 	subflow->subflow_id = msk->subflow_id++;
100 
101 	/* This is the first subflow, always with id 0 */
102 	subflow->local_id_valid = 1;
103 	mptcp_sock_graft(msk->first, sk->sk_socket);
104 	iput(SOCK_INODE(ssock));
105 
106 	return 0;
107 }
108 
109 /* If the MPC handshake is not started, returns the first subflow,
110  * eventually allocating it.
111  */
112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
113 {
114 	struct sock *sk = (struct sock *)msk;
115 	int ret;
116 
117 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
118 		return ERR_PTR(-EINVAL);
119 
120 	if (!msk->first) {
121 		ret = __mptcp_socket_create(msk);
122 		if (ret)
123 			return ERR_PTR(ret);
124 
125 		mptcp_sockopt_sync(msk, msk->first);
126 	}
127 
128 	return msk->first;
129 }
130 
131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
132 {
133 	sk_drops_add(sk, skb);
134 	__kfree_skb(skb);
135 }
136 
137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
138 {
139 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
140 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
141 }
142 
143 static void mptcp_rmem_charge(struct sock *sk, int size)
144 {
145 	mptcp_rmem_fwd_alloc_add(sk, -size);
146 }
147 
148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
149 			       struct sk_buff *from)
150 {
151 	bool fragstolen;
152 	int delta;
153 
154 	if (MPTCP_SKB_CB(from)->offset ||
155 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
156 		return false;
157 
158 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
159 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
160 		 to->len, MPTCP_SKB_CB(from)->end_seq);
161 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
162 
163 	/* note the fwd memory can reach a negative value after accounting
164 	 * for the delta, but the later skb free will restore a non
165 	 * negative one
166 	 */
167 	atomic_add(delta, &sk->sk_rmem_alloc);
168 	mptcp_rmem_charge(sk, delta);
169 	kfree_skb_partial(from, fragstolen);
170 
171 	return true;
172 }
173 
174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
175 				   struct sk_buff *from)
176 {
177 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
178 		return false;
179 
180 	return mptcp_try_coalesce((struct sock *)msk, to, from);
181 }
182 
183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
184 {
185 	amount >>= PAGE_SHIFT;
186 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
187 	__sk_mem_reduce_allocated(sk, amount);
188 }
189 
190 static void mptcp_rmem_uncharge(struct sock *sk, int size)
191 {
192 	struct mptcp_sock *msk = mptcp_sk(sk);
193 	int reclaimable;
194 
195 	mptcp_rmem_fwd_alloc_add(sk, size);
196 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
197 
198 	/* see sk_mem_uncharge() for the rationale behind the following schema */
199 	if (unlikely(reclaimable >= PAGE_SIZE))
200 		__mptcp_rmem_reclaim(sk, reclaimable);
201 }
202 
203 static void mptcp_rfree(struct sk_buff *skb)
204 {
205 	unsigned int len = skb->truesize;
206 	struct sock *sk = skb->sk;
207 
208 	atomic_sub(len, &sk->sk_rmem_alloc);
209 	mptcp_rmem_uncharge(sk, len);
210 }
211 
212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
213 {
214 	skb_orphan(skb);
215 	skb->sk = sk;
216 	skb->destructor = mptcp_rfree;
217 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
218 	mptcp_rmem_charge(sk, skb->truesize);
219 }
220 
221 /* "inspired" by tcp_data_queue_ofo(), main differences:
222  * - use mptcp seqs
223  * - don't cope with sacks
224  */
225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
226 {
227 	struct sock *sk = (struct sock *)msk;
228 	struct rb_node **p, *parent;
229 	u64 seq, end_seq, max_seq;
230 	struct sk_buff *skb1;
231 
232 	seq = MPTCP_SKB_CB(skb)->map_seq;
233 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
234 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
235 
236 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
237 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
238 	if (after64(end_seq, max_seq)) {
239 		/* out of window */
240 		mptcp_drop(sk, skb);
241 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
242 			 (unsigned long long)end_seq - (unsigned long)max_seq,
243 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
244 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
245 		return;
246 	}
247 
248 	p = &msk->out_of_order_queue.rb_node;
249 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
250 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
251 		rb_link_node(&skb->rbnode, NULL, p);
252 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
253 		msk->ooo_last_skb = skb;
254 		goto end;
255 	}
256 
257 	/* with 2 subflows, adding at end of ooo queue is quite likely
258 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
259 	 */
260 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
261 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
263 		return;
264 	}
265 
266 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
267 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
268 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
269 		parent = &msk->ooo_last_skb->rbnode;
270 		p = &parent->rb_right;
271 		goto insert;
272 	}
273 
274 	/* Find place to insert this segment. Handle overlaps on the way. */
275 	parent = NULL;
276 	while (*p) {
277 		parent = *p;
278 		skb1 = rb_to_skb(parent);
279 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
280 			p = &parent->rb_left;
281 			continue;
282 		}
283 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
284 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
285 				/* All the bits are present. Drop. */
286 				mptcp_drop(sk, skb);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				return;
289 			}
290 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
291 				/* partial overlap:
292 				 *     |     skb      |
293 				 *  |     skb1    |
294 				 * continue traversing
295 				 */
296 			} else {
297 				/* skb's seq == skb1's seq and skb covers skb1.
298 				 * Replace skb1 with skb.
299 				 */
300 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
301 						&msk->out_of_order_queue);
302 				mptcp_drop(sk, skb1);
303 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
304 				goto merge_right;
305 			}
306 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
307 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
308 			return;
309 		}
310 		p = &parent->rb_right;
311 	}
312 
313 insert:
314 	/* Insert segment into RB tree. */
315 	rb_link_node(&skb->rbnode, parent, p);
316 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
317 
318 merge_right:
319 	/* Remove other segments covered by skb. */
320 	while ((skb1 = skb_rb_next(skb)) != NULL) {
321 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
322 			break;
323 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
324 		mptcp_drop(sk, skb1);
325 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
326 	}
327 	/* If there is no skb after us, we are the last_skb ! */
328 	if (!skb1)
329 		msk->ooo_last_skb = skb;
330 
331 end:
332 	skb_condense(skb);
333 	mptcp_set_owner_r(skb, sk);
334 }
335 
336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
337 {
338 	struct mptcp_sock *msk = mptcp_sk(sk);
339 	int amt, amount;
340 
341 	if (size <= msk->rmem_fwd_alloc)
342 		return true;
343 
344 	size -= msk->rmem_fwd_alloc;
345 	amt = sk_mem_pages(size);
346 	amount = amt << PAGE_SHIFT;
347 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
348 		return false;
349 
350 	mptcp_rmem_fwd_alloc_add(sk, amount);
351 	return true;
352 }
353 
354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
355 			     struct sk_buff *skb, unsigned int offset,
356 			     size_t copy_len)
357 {
358 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
359 	struct sock *sk = (struct sock *)msk;
360 	struct sk_buff *tail;
361 	bool has_rxtstamp;
362 
363 	__skb_unlink(skb, &ssk->sk_receive_queue);
364 
365 	skb_ext_reset(skb);
366 	skb_orphan(skb);
367 
368 	/* try to fetch required memory from subflow */
369 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
370 		goto drop;
371 
372 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
373 
374 	/* the skb map_seq accounts for the skb offset:
375 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
376 	 * value
377 	 */
378 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
379 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
380 	MPTCP_SKB_CB(skb)->offset = offset;
381 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
382 
383 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
384 		/* in sequence */
385 		msk->bytes_received += copy_len;
386 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
387 		tail = skb_peek_tail(&sk->sk_receive_queue);
388 		if (tail && mptcp_try_coalesce(sk, tail, skb))
389 			return true;
390 
391 		mptcp_set_owner_r(skb, sk);
392 		__skb_queue_tail(&sk->sk_receive_queue, skb);
393 		return true;
394 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
395 		mptcp_data_queue_ofo(msk, skb);
396 		return false;
397 	}
398 
399 	/* old data, keep it simple and drop the whole pkt, sender
400 	 * will retransmit as needed, if needed.
401 	 */
402 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
403 drop:
404 	mptcp_drop(sk, skb);
405 	return false;
406 }
407 
408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 
412 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
413 	mptcp_sk(sk)->timer_ival = 0;
414 }
415 
416 static void mptcp_close_wake_up(struct sock *sk)
417 {
418 	if (sock_flag(sk, SOCK_DEAD))
419 		return;
420 
421 	sk->sk_state_change(sk);
422 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
423 	    sk->sk_state == TCP_CLOSE)
424 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
425 	else
426 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
427 }
428 
429 static bool mptcp_pending_data_fin_ack(struct sock *sk)
430 {
431 	struct mptcp_sock *msk = mptcp_sk(sk);
432 
433 	return ((1 << sk->sk_state) &
434 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
435 	       msk->write_seq == READ_ONCE(msk->snd_una);
436 }
437 
438 static void mptcp_check_data_fin_ack(struct sock *sk)
439 {
440 	struct mptcp_sock *msk = mptcp_sk(sk);
441 
442 	/* Look for an acknowledged DATA_FIN */
443 	if (mptcp_pending_data_fin_ack(sk)) {
444 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
445 
446 		switch (sk->sk_state) {
447 		case TCP_FIN_WAIT1:
448 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
449 			break;
450 		case TCP_CLOSING:
451 		case TCP_LAST_ACK:
452 			inet_sk_state_store(sk, TCP_CLOSE);
453 			break;
454 		}
455 
456 		mptcp_close_wake_up(sk);
457 	}
458 }
459 
460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
461 {
462 	struct mptcp_sock *msk = mptcp_sk(sk);
463 
464 	if (READ_ONCE(msk->rcv_data_fin) &&
465 	    ((1 << sk->sk_state) &
466 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
467 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
468 
469 		if (msk->ack_seq == rcv_data_fin_seq) {
470 			if (seq)
471 				*seq = rcv_data_fin_seq;
472 
473 			return true;
474 		}
475 	}
476 
477 	return false;
478 }
479 
480 static void mptcp_set_datafin_timeout(struct sock *sk)
481 {
482 	struct inet_connection_sock *icsk = inet_csk(sk);
483 	u32 retransmits;
484 
485 	retransmits = min_t(u32, icsk->icsk_retransmits,
486 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
487 
488 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
489 }
490 
491 static void __mptcp_set_timeout(struct sock *sk, long tout)
492 {
493 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
494 }
495 
496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
497 {
498 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
499 
500 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
501 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
502 }
503 
504 static void mptcp_set_timeout(struct sock *sk)
505 {
506 	struct mptcp_subflow_context *subflow;
507 	long tout = 0;
508 
509 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
510 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
511 	__mptcp_set_timeout(sk, tout);
512 }
513 
514 static inline bool tcp_can_send_ack(const struct sock *ssk)
515 {
516 	return !((1 << inet_sk_state_load(ssk)) &
517 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
518 }
519 
520 void __mptcp_subflow_send_ack(struct sock *ssk)
521 {
522 	if (tcp_can_send_ack(ssk))
523 		tcp_send_ack(ssk);
524 }
525 
526 static void mptcp_subflow_send_ack(struct sock *ssk)
527 {
528 	bool slow;
529 
530 	slow = lock_sock_fast(ssk);
531 	__mptcp_subflow_send_ack(ssk);
532 	unlock_sock_fast(ssk, slow);
533 }
534 
535 static void mptcp_send_ack(struct mptcp_sock *msk)
536 {
537 	struct mptcp_subflow_context *subflow;
538 
539 	mptcp_for_each_subflow(msk, subflow)
540 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
541 }
542 
543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
544 {
545 	bool slow;
546 
547 	slow = lock_sock_fast(ssk);
548 	if (tcp_can_send_ack(ssk))
549 		tcp_cleanup_rbuf(ssk, 1);
550 	unlock_sock_fast(ssk, slow);
551 }
552 
553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
554 {
555 	const struct inet_connection_sock *icsk = inet_csk(ssk);
556 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
557 	const struct tcp_sock *tp = tcp_sk(ssk);
558 
559 	return (ack_pending & ICSK_ACK_SCHED) &&
560 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
561 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
562 		 (rx_empty && ack_pending &
563 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
564 }
565 
566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
567 {
568 	int old_space = READ_ONCE(msk->old_wspace);
569 	struct mptcp_subflow_context *subflow;
570 	struct sock *sk = (struct sock *)msk;
571 	int space =  __mptcp_space(sk);
572 	bool cleanup, rx_empty;
573 
574 	cleanup = (space > 0) && (space >= (old_space << 1));
575 	rx_empty = !__mptcp_rmem(sk);
576 
577 	mptcp_for_each_subflow(msk, subflow) {
578 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
579 
580 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
581 			mptcp_subflow_cleanup_rbuf(ssk);
582 	}
583 }
584 
585 static bool mptcp_check_data_fin(struct sock *sk)
586 {
587 	struct mptcp_sock *msk = mptcp_sk(sk);
588 	u64 rcv_data_fin_seq;
589 	bool ret = false;
590 
591 	/* Need to ack a DATA_FIN received from a peer while this side
592 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
593 	 * msk->rcv_data_fin was set when parsing the incoming options
594 	 * at the subflow level and the msk lock was not held, so this
595 	 * is the first opportunity to act on the DATA_FIN and change
596 	 * the msk state.
597 	 *
598 	 * If we are caught up to the sequence number of the incoming
599 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
600 	 * not caught up, do nothing and let the recv code send DATA_ACK
601 	 * when catching up.
602 	 */
603 
604 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
605 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
606 		WRITE_ONCE(msk->rcv_data_fin, 0);
607 
608 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
609 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
610 
611 		switch (sk->sk_state) {
612 		case TCP_ESTABLISHED:
613 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
614 			break;
615 		case TCP_FIN_WAIT1:
616 			inet_sk_state_store(sk, TCP_CLOSING);
617 			break;
618 		case TCP_FIN_WAIT2:
619 			inet_sk_state_store(sk, TCP_CLOSE);
620 			break;
621 		default:
622 			/* Other states not expected */
623 			WARN_ON_ONCE(1);
624 			break;
625 		}
626 
627 		ret = true;
628 		if (!__mptcp_check_fallback(msk))
629 			mptcp_send_ack(msk);
630 		mptcp_close_wake_up(sk);
631 	}
632 	return ret;
633 }
634 
635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 					   struct sock *ssk,
637 					   unsigned int *bytes)
638 {
639 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 	struct sock *sk = (struct sock *)msk;
641 	unsigned int moved = 0;
642 	bool more_data_avail;
643 	struct tcp_sock *tp;
644 	bool done = false;
645 	int sk_rbuf;
646 
647 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648 
649 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651 
652 		if (unlikely(ssk_rbuf > sk_rbuf)) {
653 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 			sk_rbuf = ssk_rbuf;
655 		}
656 	}
657 
658 	pr_debug("msk=%p ssk=%p", msk, ssk);
659 	tp = tcp_sk(ssk);
660 	do {
661 		u32 map_remaining, offset;
662 		u32 seq = tp->copied_seq;
663 		struct sk_buff *skb;
664 		bool fin;
665 
666 		/* try to move as much data as available */
667 		map_remaining = subflow->map_data_len -
668 				mptcp_subflow_get_map_offset(subflow);
669 
670 		skb = skb_peek(&ssk->sk_receive_queue);
671 		if (!skb) {
672 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 			 * a different CPU can have already processed the pending
674 			 * data, stop here or we can enter an infinite loop
675 			 */
676 			if (!moved)
677 				done = true;
678 			break;
679 		}
680 
681 		if (__mptcp_check_fallback(msk)) {
682 			/* Under fallback skbs have no MPTCP extension and TCP could
683 			 * collapse them between the dummy map creation and the
684 			 * current dequeue. Be sure to adjust the map size.
685 			 */
686 			map_remaining = skb->len;
687 			subflow->map_data_len = skb->len;
688 		}
689 
690 		offset = seq - TCP_SKB_CB(skb)->seq;
691 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 		if (fin) {
693 			done = true;
694 			seq++;
695 		}
696 
697 		if (offset < skb->len) {
698 			size_t len = skb->len - offset;
699 
700 			if (tp->urg_data)
701 				done = true;
702 
703 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 				moved += len;
705 			seq += len;
706 
707 			if (WARN_ON_ONCE(map_remaining < len))
708 				break;
709 		} else {
710 			WARN_ON_ONCE(!fin);
711 			sk_eat_skb(ssk, skb);
712 			done = true;
713 		}
714 
715 		WRITE_ONCE(tp->copied_seq, seq);
716 		more_data_avail = mptcp_subflow_data_available(ssk);
717 
718 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
719 			done = true;
720 			break;
721 		}
722 	} while (more_data_avail);
723 
724 	*bytes += moved;
725 	return done;
726 }
727 
728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
729 {
730 	struct sock *sk = (struct sock *)msk;
731 	struct sk_buff *skb, *tail;
732 	bool moved = false;
733 	struct rb_node *p;
734 	u64 end_seq;
735 
736 	p = rb_first(&msk->out_of_order_queue);
737 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
738 	while (p) {
739 		skb = rb_to_skb(p);
740 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
741 			break;
742 
743 		p = rb_next(p);
744 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
745 
746 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
747 				      msk->ack_seq))) {
748 			mptcp_drop(sk, skb);
749 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
750 			continue;
751 		}
752 
753 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
754 		tail = skb_peek_tail(&sk->sk_receive_queue);
755 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
756 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
757 
758 			/* skip overlapping data, if any */
759 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
760 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
761 				 delta);
762 			MPTCP_SKB_CB(skb)->offset += delta;
763 			MPTCP_SKB_CB(skb)->map_seq += delta;
764 			__skb_queue_tail(&sk->sk_receive_queue, skb);
765 		}
766 		msk->bytes_received += end_seq - msk->ack_seq;
767 		msk->ack_seq = end_seq;
768 		moved = true;
769 	}
770 	return moved;
771 }
772 
773 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
774 {
775 	int err = sock_error(ssk);
776 	int ssk_state;
777 
778 	if (!err)
779 		return false;
780 
781 	/* only propagate errors on fallen-back sockets or
782 	 * on MPC connect
783 	 */
784 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
785 		return false;
786 
787 	/* We need to propagate only transition to CLOSE state.
788 	 * Orphaned socket will see such state change via
789 	 * subflow_sched_work_if_closed() and that path will properly
790 	 * destroy the msk as needed.
791 	 */
792 	ssk_state = inet_sk_state_load(ssk);
793 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
794 		inet_sk_state_store(sk, ssk_state);
795 	WRITE_ONCE(sk->sk_err, -err);
796 
797 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
798 	smp_wmb();
799 	sk_error_report(sk);
800 	return true;
801 }
802 
803 void __mptcp_error_report(struct sock *sk)
804 {
805 	struct mptcp_subflow_context *subflow;
806 	struct mptcp_sock *msk = mptcp_sk(sk);
807 
808 	mptcp_for_each_subflow(msk, subflow)
809 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
810 			break;
811 }
812 
813 /* In most cases we will be able to lock the mptcp socket.  If its already
814  * owned, we need to defer to the work queue to avoid ABBA deadlock.
815  */
816 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
817 {
818 	struct sock *sk = (struct sock *)msk;
819 	unsigned int moved = 0;
820 
821 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
822 	__mptcp_ofo_queue(msk);
823 	if (unlikely(ssk->sk_err)) {
824 		if (!sock_owned_by_user(sk))
825 			__mptcp_error_report(sk);
826 		else
827 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
828 	}
829 
830 	/* If the moves have caught up with the DATA_FIN sequence number
831 	 * it's time to ack the DATA_FIN and change socket state, but
832 	 * this is not a good place to change state. Let the workqueue
833 	 * do it.
834 	 */
835 	if (mptcp_pending_data_fin(sk, NULL))
836 		mptcp_schedule_work(sk);
837 	return moved > 0;
838 }
839 
840 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
841 {
842 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
843 	struct mptcp_sock *msk = mptcp_sk(sk);
844 	int sk_rbuf, ssk_rbuf;
845 
846 	/* The peer can send data while we are shutting down this
847 	 * subflow at msk destruction time, but we must avoid enqueuing
848 	 * more data to the msk receive queue
849 	 */
850 	if (unlikely(subflow->disposable))
851 		return;
852 
853 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
854 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
855 	if (unlikely(ssk_rbuf > sk_rbuf))
856 		sk_rbuf = ssk_rbuf;
857 
858 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
859 	if (__mptcp_rmem(sk) > sk_rbuf) {
860 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
861 		return;
862 	}
863 
864 	/* Wake-up the reader only for in-sequence data */
865 	mptcp_data_lock(sk);
866 	if (move_skbs_to_msk(msk, ssk))
867 		sk->sk_data_ready(sk);
868 
869 	mptcp_data_unlock(sk);
870 }
871 
872 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
873 {
874 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
875 	WRITE_ONCE(msk->allow_infinite_fallback, false);
876 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
877 }
878 
879 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
880 {
881 	struct sock *sk = (struct sock *)msk;
882 
883 	if (sk->sk_state != TCP_ESTABLISHED)
884 		return false;
885 
886 	/* attach to msk socket only after we are sure we will deal with it
887 	 * at close time
888 	 */
889 	if (sk->sk_socket && !ssk->sk_socket)
890 		mptcp_sock_graft(ssk, sk->sk_socket);
891 
892 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
893 	mptcp_sockopt_sync_locked(msk, ssk);
894 	mptcp_subflow_joined(msk, ssk);
895 	mptcp_stop_tout_timer(sk);
896 	return true;
897 }
898 
899 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
900 {
901 	struct mptcp_subflow_context *tmp, *subflow;
902 	struct mptcp_sock *msk = mptcp_sk(sk);
903 
904 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
905 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
906 		bool slow = lock_sock_fast(ssk);
907 
908 		list_move_tail(&subflow->node, &msk->conn_list);
909 		if (!__mptcp_finish_join(msk, ssk))
910 			mptcp_subflow_reset(ssk);
911 		unlock_sock_fast(ssk, slow);
912 	}
913 }
914 
915 static bool mptcp_rtx_timer_pending(struct sock *sk)
916 {
917 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
918 }
919 
920 static void mptcp_reset_rtx_timer(struct sock *sk)
921 {
922 	struct inet_connection_sock *icsk = inet_csk(sk);
923 	unsigned long tout;
924 
925 	/* prevent rescheduling on close */
926 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
927 		return;
928 
929 	tout = mptcp_sk(sk)->timer_ival;
930 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
931 }
932 
933 bool mptcp_schedule_work(struct sock *sk)
934 {
935 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
936 	    schedule_work(&mptcp_sk(sk)->work)) {
937 		/* each subflow already holds a reference to the sk, and the
938 		 * workqueue is invoked by a subflow, so sk can't go away here.
939 		 */
940 		sock_hold(sk);
941 		return true;
942 	}
943 	return false;
944 }
945 
946 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
947 {
948 	struct mptcp_subflow_context *subflow;
949 
950 	msk_owned_by_me(msk);
951 
952 	mptcp_for_each_subflow(msk, subflow) {
953 		if (READ_ONCE(subflow->data_avail))
954 			return mptcp_subflow_tcp_sock(subflow);
955 	}
956 
957 	return NULL;
958 }
959 
960 static bool mptcp_skb_can_collapse_to(u64 write_seq,
961 				      const struct sk_buff *skb,
962 				      const struct mptcp_ext *mpext)
963 {
964 	if (!tcp_skb_can_collapse_to(skb))
965 		return false;
966 
967 	/* can collapse only if MPTCP level sequence is in order and this
968 	 * mapping has not been xmitted yet
969 	 */
970 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
971 	       !mpext->frozen;
972 }
973 
974 /* we can append data to the given data frag if:
975  * - there is space available in the backing page_frag
976  * - the data frag tail matches the current page_frag free offset
977  * - the data frag end sequence number matches the current write seq
978  */
979 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
980 				       const struct page_frag *pfrag,
981 				       const struct mptcp_data_frag *df)
982 {
983 	return df && pfrag->page == df->page &&
984 		pfrag->size - pfrag->offset > 0 &&
985 		pfrag->offset == (df->offset + df->data_len) &&
986 		df->data_seq + df->data_len == msk->write_seq;
987 }
988 
989 static void dfrag_uncharge(struct sock *sk, int len)
990 {
991 	sk_mem_uncharge(sk, len);
992 	sk_wmem_queued_add(sk, -len);
993 }
994 
995 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
996 {
997 	int len = dfrag->data_len + dfrag->overhead;
998 
999 	list_del(&dfrag->list);
1000 	dfrag_uncharge(sk, len);
1001 	put_page(dfrag->page);
1002 }
1003 
1004 static void __mptcp_clean_una(struct sock *sk)
1005 {
1006 	struct mptcp_sock *msk = mptcp_sk(sk);
1007 	struct mptcp_data_frag *dtmp, *dfrag;
1008 	u64 snd_una;
1009 
1010 	snd_una = msk->snd_una;
1011 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1012 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1013 			break;
1014 
1015 		if (unlikely(dfrag == msk->first_pending)) {
1016 			/* in recovery mode can see ack after the current snd head */
1017 			if (WARN_ON_ONCE(!msk->recovery))
1018 				break;
1019 
1020 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1021 		}
1022 
1023 		dfrag_clear(sk, dfrag);
1024 	}
1025 
1026 	dfrag = mptcp_rtx_head(sk);
1027 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1028 		u64 delta = snd_una - dfrag->data_seq;
1029 
1030 		/* prevent wrap around in recovery mode */
1031 		if (unlikely(delta > dfrag->already_sent)) {
1032 			if (WARN_ON_ONCE(!msk->recovery))
1033 				goto out;
1034 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1035 				goto out;
1036 			dfrag->already_sent += delta - dfrag->already_sent;
1037 		}
1038 
1039 		dfrag->data_seq += delta;
1040 		dfrag->offset += delta;
1041 		dfrag->data_len -= delta;
1042 		dfrag->already_sent -= delta;
1043 
1044 		dfrag_uncharge(sk, delta);
1045 	}
1046 
1047 	/* all retransmitted data acked, recovery completed */
1048 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1049 		msk->recovery = false;
1050 
1051 out:
1052 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1053 	    snd_una == READ_ONCE(msk->write_seq)) {
1054 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1055 			mptcp_stop_rtx_timer(sk);
1056 	} else {
1057 		mptcp_reset_rtx_timer(sk);
1058 	}
1059 }
1060 
1061 static void __mptcp_clean_una_wakeup(struct sock *sk)
1062 {
1063 	lockdep_assert_held_once(&sk->sk_lock.slock);
1064 
1065 	__mptcp_clean_una(sk);
1066 	mptcp_write_space(sk);
1067 }
1068 
1069 static void mptcp_clean_una_wakeup(struct sock *sk)
1070 {
1071 	mptcp_data_lock(sk);
1072 	__mptcp_clean_una_wakeup(sk);
1073 	mptcp_data_unlock(sk);
1074 }
1075 
1076 static void mptcp_enter_memory_pressure(struct sock *sk)
1077 {
1078 	struct mptcp_subflow_context *subflow;
1079 	struct mptcp_sock *msk = mptcp_sk(sk);
1080 	bool first = true;
1081 
1082 	sk_stream_moderate_sndbuf(sk);
1083 	mptcp_for_each_subflow(msk, subflow) {
1084 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1085 
1086 		if (first)
1087 			tcp_enter_memory_pressure(ssk);
1088 		sk_stream_moderate_sndbuf(ssk);
1089 		first = false;
1090 	}
1091 }
1092 
1093 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1094  * data
1095  */
1096 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1097 {
1098 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1099 					pfrag, sk->sk_allocation)))
1100 		return true;
1101 
1102 	mptcp_enter_memory_pressure(sk);
1103 	return false;
1104 }
1105 
1106 static struct mptcp_data_frag *
1107 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1108 		      int orig_offset)
1109 {
1110 	int offset = ALIGN(orig_offset, sizeof(long));
1111 	struct mptcp_data_frag *dfrag;
1112 
1113 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1114 	dfrag->data_len = 0;
1115 	dfrag->data_seq = msk->write_seq;
1116 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1117 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1118 	dfrag->already_sent = 0;
1119 	dfrag->page = pfrag->page;
1120 
1121 	return dfrag;
1122 }
1123 
1124 struct mptcp_sendmsg_info {
1125 	int mss_now;
1126 	int size_goal;
1127 	u16 limit;
1128 	u16 sent;
1129 	unsigned int flags;
1130 	bool data_lock_held;
1131 };
1132 
1133 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1134 				    u64 data_seq, int avail_size)
1135 {
1136 	u64 window_end = mptcp_wnd_end(msk);
1137 	u64 mptcp_snd_wnd;
1138 
1139 	if (__mptcp_check_fallback(msk))
1140 		return avail_size;
1141 
1142 	mptcp_snd_wnd = window_end - data_seq;
1143 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1144 
1145 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1146 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1147 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1148 	}
1149 
1150 	return avail_size;
1151 }
1152 
1153 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1154 {
1155 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1156 
1157 	if (!mpext)
1158 		return false;
1159 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1160 	return true;
1161 }
1162 
1163 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1164 {
1165 	struct sk_buff *skb;
1166 
1167 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1168 	if (likely(skb)) {
1169 		if (likely(__mptcp_add_ext(skb, gfp))) {
1170 			skb_reserve(skb, MAX_TCP_HEADER);
1171 			skb->ip_summed = CHECKSUM_PARTIAL;
1172 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1173 			return skb;
1174 		}
1175 		__kfree_skb(skb);
1176 	} else {
1177 		mptcp_enter_memory_pressure(sk);
1178 	}
1179 	return NULL;
1180 }
1181 
1182 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1183 {
1184 	struct sk_buff *skb;
1185 
1186 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1187 	if (!skb)
1188 		return NULL;
1189 
1190 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1191 		tcp_skb_entail(ssk, skb);
1192 		return skb;
1193 	}
1194 	tcp_skb_tsorted_anchor_cleanup(skb);
1195 	kfree_skb(skb);
1196 	return NULL;
1197 }
1198 
1199 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1200 {
1201 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1202 
1203 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1204 }
1205 
1206 /* note: this always recompute the csum on the whole skb, even
1207  * if we just appended a single frag. More status info needed
1208  */
1209 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1210 {
1211 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1212 	__wsum csum = ~csum_unfold(mpext->csum);
1213 	int offset = skb->len - added;
1214 
1215 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1216 }
1217 
1218 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1219 				      struct sock *ssk,
1220 				      struct mptcp_ext *mpext)
1221 {
1222 	if (!mpext)
1223 		return;
1224 
1225 	mpext->infinite_map = 1;
1226 	mpext->data_len = 0;
1227 
1228 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1229 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1230 	pr_fallback(msk);
1231 	mptcp_do_fallback(ssk);
1232 }
1233 
1234 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1235 
1236 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1237 			      struct mptcp_data_frag *dfrag,
1238 			      struct mptcp_sendmsg_info *info)
1239 {
1240 	u64 data_seq = dfrag->data_seq + info->sent;
1241 	int offset = dfrag->offset + info->sent;
1242 	struct mptcp_sock *msk = mptcp_sk(sk);
1243 	bool zero_window_probe = false;
1244 	struct mptcp_ext *mpext = NULL;
1245 	bool can_coalesce = false;
1246 	bool reuse_skb = true;
1247 	struct sk_buff *skb;
1248 	size_t copy;
1249 	int i;
1250 
1251 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1252 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1253 
1254 	if (WARN_ON_ONCE(info->sent > info->limit ||
1255 			 info->limit > dfrag->data_len))
1256 		return 0;
1257 
1258 	if (unlikely(!__tcp_can_send(ssk)))
1259 		return -EAGAIN;
1260 
1261 	/* compute send limit */
1262 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1263 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1264 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1265 	copy = info->size_goal;
1266 
1267 	skb = tcp_write_queue_tail(ssk);
1268 	if (skb && copy > skb->len) {
1269 		/* Limit the write to the size available in the
1270 		 * current skb, if any, so that we create at most a new skb.
1271 		 * Explicitly tells TCP internals to avoid collapsing on later
1272 		 * queue management operation, to avoid breaking the ext <->
1273 		 * SSN association set here
1274 		 */
1275 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1276 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1277 			TCP_SKB_CB(skb)->eor = 1;
1278 			goto alloc_skb;
1279 		}
1280 
1281 		i = skb_shinfo(skb)->nr_frags;
1282 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1283 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1284 			tcp_mark_push(tcp_sk(ssk), skb);
1285 			goto alloc_skb;
1286 		}
1287 
1288 		copy -= skb->len;
1289 	} else {
1290 alloc_skb:
1291 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1292 		if (!skb)
1293 			return -ENOMEM;
1294 
1295 		i = skb_shinfo(skb)->nr_frags;
1296 		reuse_skb = false;
1297 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1298 	}
1299 
1300 	/* Zero window and all data acked? Probe. */
1301 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1302 	if (copy == 0) {
1303 		u64 snd_una = READ_ONCE(msk->snd_una);
1304 
1305 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1306 			tcp_remove_empty_skb(ssk);
1307 			return 0;
1308 		}
1309 
1310 		zero_window_probe = true;
1311 		data_seq = snd_una - 1;
1312 		copy = 1;
1313 	}
1314 
1315 	copy = min_t(size_t, copy, info->limit - info->sent);
1316 	if (!sk_wmem_schedule(ssk, copy)) {
1317 		tcp_remove_empty_skb(ssk);
1318 		return -ENOMEM;
1319 	}
1320 
1321 	if (can_coalesce) {
1322 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1323 	} else {
1324 		get_page(dfrag->page);
1325 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1326 	}
1327 
1328 	skb->len += copy;
1329 	skb->data_len += copy;
1330 	skb->truesize += copy;
1331 	sk_wmem_queued_add(ssk, copy);
1332 	sk_mem_charge(ssk, copy);
1333 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1334 	TCP_SKB_CB(skb)->end_seq += copy;
1335 	tcp_skb_pcount_set(skb, 0);
1336 
1337 	/* on skb reuse we just need to update the DSS len */
1338 	if (reuse_skb) {
1339 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1340 		mpext->data_len += copy;
1341 		goto out;
1342 	}
1343 
1344 	memset(mpext, 0, sizeof(*mpext));
1345 	mpext->data_seq = data_seq;
1346 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1347 	mpext->data_len = copy;
1348 	mpext->use_map = 1;
1349 	mpext->dsn64 = 1;
1350 
1351 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1352 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1353 		 mpext->dsn64);
1354 
1355 	if (zero_window_probe) {
1356 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1357 		mpext->frozen = 1;
1358 		if (READ_ONCE(msk->csum_enabled))
1359 			mptcp_update_data_checksum(skb, copy);
1360 		tcp_push_pending_frames(ssk);
1361 		return 0;
1362 	}
1363 out:
1364 	if (READ_ONCE(msk->csum_enabled))
1365 		mptcp_update_data_checksum(skb, copy);
1366 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1367 		mptcp_update_infinite_map(msk, ssk, mpext);
1368 	trace_mptcp_sendmsg_frag(mpext);
1369 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1370 	return copy;
1371 }
1372 
1373 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1374 					 sizeof(struct tcphdr) - \
1375 					 MAX_TCP_OPTION_SPACE - \
1376 					 sizeof(struct ipv6hdr) - \
1377 					 sizeof(struct frag_hdr))
1378 
1379 struct subflow_send_info {
1380 	struct sock *ssk;
1381 	u64 linger_time;
1382 };
1383 
1384 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1385 {
1386 	if (!subflow->stale)
1387 		return;
1388 
1389 	subflow->stale = 0;
1390 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1391 }
1392 
1393 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1394 {
1395 	if (unlikely(subflow->stale)) {
1396 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1397 
1398 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1399 			return false;
1400 
1401 		mptcp_subflow_set_active(subflow);
1402 	}
1403 	return __mptcp_subflow_active(subflow);
1404 }
1405 
1406 #define SSK_MODE_ACTIVE	0
1407 #define SSK_MODE_BACKUP	1
1408 #define SSK_MODE_MAX	2
1409 
1410 /* implement the mptcp packet scheduler;
1411  * returns the subflow that will transmit the next DSS
1412  * additionally updates the rtx timeout
1413  */
1414 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1415 {
1416 	struct subflow_send_info send_info[SSK_MODE_MAX];
1417 	struct mptcp_subflow_context *subflow;
1418 	struct sock *sk = (struct sock *)msk;
1419 	u32 pace, burst, wmem;
1420 	int i, nr_active = 0;
1421 	struct sock *ssk;
1422 	u64 linger_time;
1423 	long tout = 0;
1424 
1425 	/* pick the subflow with the lower wmem/wspace ratio */
1426 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1427 		send_info[i].ssk = NULL;
1428 		send_info[i].linger_time = -1;
1429 	}
1430 
1431 	mptcp_for_each_subflow(msk, subflow) {
1432 		trace_mptcp_subflow_get_send(subflow);
1433 		ssk =  mptcp_subflow_tcp_sock(subflow);
1434 		if (!mptcp_subflow_active(subflow))
1435 			continue;
1436 
1437 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1438 		nr_active += !subflow->backup;
1439 		pace = subflow->avg_pacing_rate;
1440 		if (unlikely(!pace)) {
1441 			/* init pacing rate from socket */
1442 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1443 			pace = subflow->avg_pacing_rate;
1444 			if (!pace)
1445 				continue;
1446 		}
1447 
1448 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1449 		if (linger_time < send_info[subflow->backup].linger_time) {
1450 			send_info[subflow->backup].ssk = ssk;
1451 			send_info[subflow->backup].linger_time = linger_time;
1452 		}
1453 	}
1454 	__mptcp_set_timeout(sk, tout);
1455 
1456 	/* pick the best backup if no other subflow is active */
1457 	if (!nr_active)
1458 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1459 
1460 	/* According to the blest algorithm, to avoid HoL blocking for the
1461 	 * faster flow, we need to:
1462 	 * - estimate the faster flow linger time
1463 	 * - use the above to estimate the amount of byte transferred
1464 	 *   by the faster flow
1465 	 * - check that the amount of queued data is greter than the above,
1466 	 *   otherwise do not use the picked, slower, subflow
1467 	 * We select the subflow with the shorter estimated time to flush
1468 	 * the queued mem, which basically ensure the above. We just need
1469 	 * to check that subflow has a non empty cwin.
1470 	 */
1471 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1472 	if (!ssk || !sk_stream_memory_free(ssk))
1473 		return NULL;
1474 
1475 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1476 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1477 	if (!burst)
1478 		return ssk;
1479 
1480 	subflow = mptcp_subflow_ctx(ssk);
1481 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1482 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1483 					   burst + wmem);
1484 	msk->snd_burst = burst;
1485 	return ssk;
1486 }
1487 
1488 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1489 {
1490 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1491 	release_sock(ssk);
1492 }
1493 
1494 static void mptcp_update_post_push(struct mptcp_sock *msk,
1495 				   struct mptcp_data_frag *dfrag,
1496 				   u32 sent)
1497 {
1498 	u64 snd_nxt_new = dfrag->data_seq;
1499 
1500 	dfrag->already_sent += sent;
1501 
1502 	msk->snd_burst -= sent;
1503 
1504 	snd_nxt_new += dfrag->already_sent;
1505 
1506 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1507 	 * is recovering after a failover. In that event, this re-sends
1508 	 * old segments.
1509 	 *
1510 	 * Thus compute snd_nxt_new candidate based on
1511 	 * the dfrag->data_seq that was sent and the data
1512 	 * that has been handed to the subflow for transmission
1513 	 * and skip update in case it was old dfrag.
1514 	 */
1515 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1516 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1517 		msk->snd_nxt = snd_nxt_new;
1518 	}
1519 }
1520 
1521 void mptcp_check_and_set_pending(struct sock *sk)
1522 {
1523 	if (mptcp_send_head(sk))
1524 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1525 }
1526 
1527 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1528 				  struct mptcp_sendmsg_info *info)
1529 {
1530 	struct mptcp_sock *msk = mptcp_sk(sk);
1531 	struct mptcp_data_frag *dfrag;
1532 	int len, copied = 0, err = 0;
1533 
1534 	while ((dfrag = mptcp_send_head(sk))) {
1535 		info->sent = dfrag->already_sent;
1536 		info->limit = dfrag->data_len;
1537 		len = dfrag->data_len - dfrag->already_sent;
1538 		while (len > 0) {
1539 			int ret = 0;
1540 
1541 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1542 			if (ret <= 0) {
1543 				err = copied ? : ret;
1544 				goto out;
1545 			}
1546 
1547 			info->sent += ret;
1548 			copied += ret;
1549 			len -= ret;
1550 
1551 			mptcp_update_post_push(msk, dfrag, ret);
1552 		}
1553 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1554 
1555 		if (msk->snd_burst <= 0 ||
1556 		    !sk_stream_memory_free(ssk) ||
1557 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1558 			err = copied;
1559 			goto out;
1560 		}
1561 		mptcp_set_timeout(sk);
1562 	}
1563 	err = copied;
1564 
1565 out:
1566 	return err;
1567 }
1568 
1569 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1570 {
1571 	struct sock *prev_ssk = NULL, *ssk = NULL;
1572 	struct mptcp_sock *msk = mptcp_sk(sk);
1573 	struct mptcp_sendmsg_info info = {
1574 				.flags = flags,
1575 	};
1576 	bool do_check_data_fin = false;
1577 	int push_count = 1;
1578 
1579 	while (mptcp_send_head(sk) && (push_count > 0)) {
1580 		struct mptcp_subflow_context *subflow;
1581 		int ret = 0;
1582 
1583 		if (mptcp_sched_get_send(msk))
1584 			break;
1585 
1586 		push_count = 0;
1587 
1588 		mptcp_for_each_subflow(msk, subflow) {
1589 			if (READ_ONCE(subflow->scheduled)) {
1590 				mptcp_subflow_set_scheduled(subflow, false);
1591 
1592 				prev_ssk = ssk;
1593 				ssk = mptcp_subflow_tcp_sock(subflow);
1594 				if (ssk != prev_ssk) {
1595 					/* First check. If the ssk has changed since
1596 					 * the last round, release prev_ssk
1597 					 */
1598 					if (prev_ssk)
1599 						mptcp_push_release(prev_ssk, &info);
1600 
1601 					/* Need to lock the new subflow only if different
1602 					 * from the previous one, otherwise we are still
1603 					 * helding the relevant lock
1604 					 */
1605 					lock_sock(ssk);
1606 				}
1607 
1608 				push_count++;
1609 
1610 				ret = __subflow_push_pending(sk, ssk, &info);
1611 				if (ret <= 0) {
1612 					if (ret != -EAGAIN ||
1613 					    (1 << ssk->sk_state) &
1614 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1615 						push_count--;
1616 					continue;
1617 				}
1618 				do_check_data_fin = true;
1619 			}
1620 		}
1621 	}
1622 
1623 	/* at this point we held the socket lock for the last subflow we used */
1624 	if (ssk)
1625 		mptcp_push_release(ssk, &info);
1626 
1627 	/* ensure the rtx timer is running */
1628 	if (!mptcp_rtx_timer_pending(sk))
1629 		mptcp_reset_rtx_timer(sk);
1630 	if (do_check_data_fin)
1631 		mptcp_check_send_data_fin(sk);
1632 }
1633 
1634 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1635 {
1636 	struct mptcp_sock *msk = mptcp_sk(sk);
1637 	struct mptcp_sendmsg_info info = {
1638 		.data_lock_held = true,
1639 	};
1640 	bool keep_pushing = true;
1641 	struct sock *xmit_ssk;
1642 	int copied = 0;
1643 
1644 	info.flags = 0;
1645 	while (mptcp_send_head(sk) && keep_pushing) {
1646 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1647 		int ret = 0;
1648 
1649 		/* check for a different subflow usage only after
1650 		 * spooling the first chunk of data
1651 		 */
1652 		if (first) {
1653 			mptcp_subflow_set_scheduled(subflow, false);
1654 			ret = __subflow_push_pending(sk, ssk, &info);
1655 			first = false;
1656 			if (ret <= 0)
1657 				break;
1658 			copied += ret;
1659 			continue;
1660 		}
1661 
1662 		if (mptcp_sched_get_send(msk))
1663 			goto out;
1664 
1665 		if (READ_ONCE(subflow->scheduled)) {
1666 			mptcp_subflow_set_scheduled(subflow, false);
1667 			ret = __subflow_push_pending(sk, ssk, &info);
1668 			if (ret <= 0)
1669 				keep_pushing = false;
1670 			copied += ret;
1671 		}
1672 
1673 		mptcp_for_each_subflow(msk, subflow) {
1674 			if (READ_ONCE(subflow->scheduled)) {
1675 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1676 				if (xmit_ssk != ssk) {
1677 					mptcp_subflow_delegate(subflow,
1678 							       MPTCP_DELEGATE_SEND);
1679 					keep_pushing = false;
1680 				}
1681 			}
1682 		}
1683 	}
1684 
1685 out:
1686 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1687 	 * not going to flush it via release_sock()
1688 	 */
1689 	if (copied) {
1690 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1691 			 info.size_goal);
1692 		if (!mptcp_rtx_timer_pending(sk))
1693 			mptcp_reset_rtx_timer(sk);
1694 
1695 		if (msk->snd_data_fin_enable &&
1696 		    msk->snd_nxt + 1 == msk->write_seq)
1697 			mptcp_schedule_work(sk);
1698 	}
1699 }
1700 
1701 static void mptcp_set_nospace(struct sock *sk)
1702 {
1703 	/* enable autotune */
1704 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1705 
1706 	/* will be cleared on avail space */
1707 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1708 }
1709 
1710 static int mptcp_disconnect(struct sock *sk, int flags);
1711 
1712 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1713 				  size_t len, int *copied_syn)
1714 {
1715 	unsigned int saved_flags = msg->msg_flags;
1716 	struct mptcp_sock *msk = mptcp_sk(sk);
1717 	struct sock *ssk;
1718 	int ret;
1719 
1720 	/* on flags based fastopen the mptcp is supposed to create the
1721 	 * first subflow right now. Otherwise we are in the defer_connect
1722 	 * path, and the first subflow must be already present.
1723 	 * Since the defer_connect flag is cleared after the first succsful
1724 	 * fastopen attempt, no need to check for additional subflow status.
1725 	 */
1726 	if (msg->msg_flags & MSG_FASTOPEN) {
1727 		ssk = __mptcp_nmpc_sk(msk);
1728 		if (IS_ERR(ssk))
1729 			return PTR_ERR(ssk);
1730 	}
1731 	if (!msk->first)
1732 		return -EINVAL;
1733 
1734 	ssk = msk->first;
1735 
1736 	lock_sock(ssk);
1737 	msg->msg_flags |= MSG_DONTWAIT;
1738 	msk->fastopening = 1;
1739 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1740 	msk->fastopening = 0;
1741 	msg->msg_flags = saved_flags;
1742 	release_sock(ssk);
1743 
1744 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1745 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1746 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1747 					    msg->msg_namelen, msg->msg_flags, 1);
1748 
1749 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1750 		 * case of any error, except timeout or signal
1751 		 */
1752 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1753 			*copied_syn = 0;
1754 	} else if (ret && ret != -EINPROGRESS) {
1755 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1756 		 * __inet_stream_connect() can fail, due to looking check,
1757 		 * see mptcp_disconnect().
1758 		 * Attempt it again outside the problematic scope.
1759 		 */
1760 		if (!mptcp_disconnect(sk, 0))
1761 			sk->sk_socket->state = SS_UNCONNECTED;
1762 	}
1763 	inet_clear_bit(DEFER_CONNECT, sk);
1764 
1765 	return ret;
1766 }
1767 
1768 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1769 {
1770 	struct mptcp_sock *msk = mptcp_sk(sk);
1771 	struct page_frag *pfrag;
1772 	size_t copied = 0;
1773 	int ret = 0;
1774 	long timeo;
1775 
1776 	/* silently ignore everything else */
1777 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1778 
1779 	lock_sock(sk);
1780 
1781 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1782 		     msg->msg_flags & MSG_FASTOPEN)) {
1783 		int copied_syn = 0;
1784 
1785 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1786 		copied += copied_syn;
1787 		if (ret == -EINPROGRESS && copied_syn > 0)
1788 			goto out;
1789 		else if (ret)
1790 			goto do_error;
1791 	}
1792 
1793 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1794 
1795 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1796 		ret = sk_stream_wait_connect(sk, &timeo);
1797 		if (ret)
1798 			goto do_error;
1799 	}
1800 
1801 	ret = -EPIPE;
1802 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1803 		goto do_error;
1804 
1805 	pfrag = sk_page_frag(sk);
1806 
1807 	while (msg_data_left(msg)) {
1808 		int total_ts, frag_truesize = 0;
1809 		struct mptcp_data_frag *dfrag;
1810 		bool dfrag_collapsed;
1811 		size_t psize, offset;
1812 
1813 		/* reuse tail pfrag, if possible, or carve a new one from the
1814 		 * page allocator
1815 		 */
1816 		dfrag = mptcp_pending_tail(sk);
1817 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1818 		if (!dfrag_collapsed) {
1819 			if (!sk_stream_memory_free(sk))
1820 				goto wait_for_memory;
1821 
1822 			if (!mptcp_page_frag_refill(sk, pfrag))
1823 				goto wait_for_memory;
1824 
1825 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1826 			frag_truesize = dfrag->overhead;
1827 		}
1828 
1829 		/* we do not bound vs wspace, to allow a single packet.
1830 		 * memory accounting will prevent execessive memory usage
1831 		 * anyway
1832 		 */
1833 		offset = dfrag->offset + dfrag->data_len;
1834 		psize = pfrag->size - offset;
1835 		psize = min_t(size_t, psize, msg_data_left(msg));
1836 		total_ts = psize + frag_truesize;
1837 
1838 		if (!sk_wmem_schedule(sk, total_ts))
1839 			goto wait_for_memory;
1840 
1841 		if (copy_page_from_iter(dfrag->page, offset, psize,
1842 					&msg->msg_iter) != psize) {
1843 			ret = -EFAULT;
1844 			goto do_error;
1845 		}
1846 
1847 		/* data successfully copied into the write queue */
1848 		sk_forward_alloc_add(sk, -total_ts);
1849 		copied += psize;
1850 		dfrag->data_len += psize;
1851 		frag_truesize += psize;
1852 		pfrag->offset += frag_truesize;
1853 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1854 
1855 		/* charge data on mptcp pending queue to the msk socket
1856 		 * Note: we charge such data both to sk and ssk
1857 		 */
1858 		sk_wmem_queued_add(sk, frag_truesize);
1859 		if (!dfrag_collapsed) {
1860 			get_page(dfrag->page);
1861 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1862 			if (!msk->first_pending)
1863 				WRITE_ONCE(msk->first_pending, dfrag);
1864 		}
1865 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1866 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1867 			 !dfrag_collapsed);
1868 
1869 		continue;
1870 
1871 wait_for_memory:
1872 		mptcp_set_nospace(sk);
1873 		__mptcp_push_pending(sk, msg->msg_flags);
1874 		ret = sk_stream_wait_memory(sk, &timeo);
1875 		if (ret)
1876 			goto do_error;
1877 	}
1878 
1879 	if (copied)
1880 		__mptcp_push_pending(sk, msg->msg_flags);
1881 
1882 out:
1883 	release_sock(sk);
1884 	return copied;
1885 
1886 do_error:
1887 	if (copied)
1888 		goto out;
1889 
1890 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1891 	goto out;
1892 }
1893 
1894 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1895 				struct msghdr *msg,
1896 				size_t len, int flags,
1897 				struct scm_timestamping_internal *tss,
1898 				int *cmsg_flags)
1899 {
1900 	struct sk_buff *skb, *tmp;
1901 	int copied = 0;
1902 
1903 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1904 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1905 		u32 data_len = skb->len - offset;
1906 		u32 count = min_t(size_t, len - copied, data_len);
1907 		int err;
1908 
1909 		if (!(flags & MSG_TRUNC)) {
1910 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1911 			if (unlikely(err < 0)) {
1912 				if (!copied)
1913 					return err;
1914 				break;
1915 			}
1916 		}
1917 
1918 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1919 			tcp_update_recv_tstamps(skb, tss);
1920 			*cmsg_flags |= MPTCP_CMSG_TS;
1921 		}
1922 
1923 		copied += count;
1924 
1925 		if (count < data_len) {
1926 			if (!(flags & MSG_PEEK)) {
1927 				MPTCP_SKB_CB(skb)->offset += count;
1928 				MPTCP_SKB_CB(skb)->map_seq += count;
1929 			}
1930 			break;
1931 		}
1932 
1933 		if (!(flags & MSG_PEEK)) {
1934 			/* we will bulk release the skb memory later */
1935 			skb->destructor = NULL;
1936 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1937 			__skb_unlink(skb, &msk->receive_queue);
1938 			__kfree_skb(skb);
1939 		}
1940 
1941 		if (copied >= len)
1942 			break;
1943 	}
1944 
1945 	return copied;
1946 }
1947 
1948 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1949  *
1950  * Only difference: Use highest rtt estimate of the subflows in use.
1951  */
1952 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1953 {
1954 	struct mptcp_subflow_context *subflow;
1955 	struct sock *sk = (struct sock *)msk;
1956 	u8 scaling_ratio = U8_MAX;
1957 	u32 time, advmss = 1;
1958 	u64 rtt_us, mstamp;
1959 
1960 	msk_owned_by_me(msk);
1961 
1962 	if (copied <= 0)
1963 		return;
1964 
1965 	msk->rcvq_space.copied += copied;
1966 
1967 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1968 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1969 
1970 	rtt_us = msk->rcvq_space.rtt_us;
1971 	if (rtt_us && time < (rtt_us >> 3))
1972 		return;
1973 
1974 	rtt_us = 0;
1975 	mptcp_for_each_subflow(msk, subflow) {
1976 		const struct tcp_sock *tp;
1977 		u64 sf_rtt_us;
1978 		u32 sf_advmss;
1979 
1980 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1981 
1982 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1983 		sf_advmss = READ_ONCE(tp->advmss);
1984 
1985 		rtt_us = max(sf_rtt_us, rtt_us);
1986 		advmss = max(sf_advmss, advmss);
1987 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1988 	}
1989 
1990 	msk->rcvq_space.rtt_us = rtt_us;
1991 	msk->scaling_ratio = scaling_ratio;
1992 	if (time < (rtt_us >> 3) || rtt_us == 0)
1993 		return;
1994 
1995 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1996 		goto new_measure;
1997 
1998 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1999 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2000 		u64 rcvwin, grow;
2001 		int rcvbuf;
2002 
2003 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2004 
2005 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2006 
2007 		do_div(grow, msk->rcvq_space.space);
2008 		rcvwin += (grow << 1);
2009 
2010 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2011 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2012 
2013 		if (rcvbuf > sk->sk_rcvbuf) {
2014 			u32 window_clamp;
2015 
2016 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2017 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2018 
2019 			/* Make subflows follow along.  If we do not do this, we
2020 			 * get drops at subflow level if skbs can't be moved to
2021 			 * the mptcp rx queue fast enough (announced rcv_win can
2022 			 * exceed ssk->sk_rcvbuf).
2023 			 */
2024 			mptcp_for_each_subflow(msk, subflow) {
2025 				struct sock *ssk;
2026 				bool slow;
2027 
2028 				ssk = mptcp_subflow_tcp_sock(subflow);
2029 				slow = lock_sock_fast(ssk);
2030 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2031 				tcp_sk(ssk)->window_clamp = window_clamp;
2032 				tcp_cleanup_rbuf(ssk, 1);
2033 				unlock_sock_fast(ssk, slow);
2034 			}
2035 		}
2036 	}
2037 
2038 	msk->rcvq_space.space = msk->rcvq_space.copied;
2039 new_measure:
2040 	msk->rcvq_space.copied = 0;
2041 	msk->rcvq_space.time = mstamp;
2042 }
2043 
2044 static void __mptcp_update_rmem(struct sock *sk)
2045 {
2046 	struct mptcp_sock *msk = mptcp_sk(sk);
2047 
2048 	if (!msk->rmem_released)
2049 		return;
2050 
2051 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2052 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2053 	WRITE_ONCE(msk->rmem_released, 0);
2054 }
2055 
2056 static void __mptcp_splice_receive_queue(struct sock *sk)
2057 {
2058 	struct mptcp_sock *msk = mptcp_sk(sk);
2059 
2060 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2061 }
2062 
2063 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2064 {
2065 	struct sock *sk = (struct sock *)msk;
2066 	unsigned int moved = 0;
2067 	bool ret, done;
2068 
2069 	do {
2070 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2071 		bool slowpath;
2072 
2073 		/* we can have data pending in the subflows only if the msk
2074 		 * receive buffer was full at subflow_data_ready() time,
2075 		 * that is an unlikely slow path.
2076 		 */
2077 		if (likely(!ssk))
2078 			break;
2079 
2080 		slowpath = lock_sock_fast(ssk);
2081 		mptcp_data_lock(sk);
2082 		__mptcp_update_rmem(sk);
2083 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2084 		mptcp_data_unlock(sk);
2085 
2086 		if (unlikely(ssk->sk_err))
2087 			__mptcp_error_report(sk);
2088 		unlock_sock_fast(ssk, slowpath);
2089 	} while (!done);
2090 
2091 	/* acquire the data lock only if some input data is pending */
2092 	ret = moved > 0;
2093 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2094 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2095 		mptcp_data_lock(sk);
2096 		__mptcp_update_rmem(sk);
2097 		ret |= __mptcp_ofo_queue(msk);
2098 		__mptcp_splice_receive_queue(sk);
2099 		mptcp_data_unlock(sk);
2100 	}
2101 	if (ret)
2102 		mptcp_check_data_fin((struct sock *)msk);
2103 	return !skb_queue_empty(&msk->receive_queue);
2104 }
2105 
2106 static unsigned int mptcp_inq_hint(const struct sock *sk)
2107 {
2108 	const struct mptcp_sock *msk = mptcp_sk(sk);
2109 	const struct sk_buff *skb;
2110 
2111 	skb = skb_peek(&msk->receive_queue);
2112 	if (skb) {
2113 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2114 
2115 		if (hint_val >= INT_MAX)
2116 			return INT_MAX;
2117 
2118 		return (unsigned int)hint_val;
2119 	}
2120 
2121 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2122 		return 1;
2123 
2124 	return 0;
2125 }
2126 
2127 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2128 			 int flags, int *addr_len)
2129 {
2130 	struct mptcp_sock *msk = mptcp_sk(sk);
2131 	struct scm_timestamping_internal tss;
2132 	int copied = 0, cmsg_flags = 0;
2133 	int target;
2134 	long timeo;
2135 
2136 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2137 	if (unlikely(flags & MSG_ERRQUEUE))
2138 		return inet_recv_error(sk, msg, len, addr_len);
2139 
2140 	lock_sock(sk);
2141 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2142 		copied = -ENOTCONN;
2143 		goto out_err;
2144 	}
2145 
2146 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2147 
2148 	len = min_t(size_t, len, INT_MAX);
2149 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2150 
2151 	if (unlikely(msk->recvmsg_inq))
2152 		cmsg_flags = MPTCP_CMSG_INQ;
2153 
2154 	while (copied < len) {
2155 		int bytes_read;
2156 
2157 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2158 		if (unlikely(bytes_read < 0)) {
2159 			if (!copied)
2160 				copied = bytes_read;
2161 			goto out_err;
2162 		}
2163 
2164 		copied += bytes_read;
2165 
2166 		/* be sure to advertise window change */
2167 		mptcp_cleanup_rbuf(msk);
2168 
2169 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2170 			continue;
2171 
2172 		/* only the master socket status is relevant here. The exit
2173 		 * conditions mirror closely tcp_recvmsg()
2174 		 */
2175 		if (copied >= target)
2176 			break;
2177 
2178 		if (copied) {
2179 			if (sk->sk_err ||
2180 			    sk->sk_state == TCP_CLOSE ||
2181 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2182 			    !timeo ||
2183 			    signal_pending(current))
2184 				break;
2185 		} else {
2186 			if (sk->sk_err) {
2187 				copied = sock_error(sk);
2188 				break;
2189 			}
2190 
2191 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2192 				/* race breaker: the shutdown could be after the
2193 				 * previous receive queue check
2194 				 */
2195 				if (__mptcp_move_skbs(msk))
2196 					continue;
2197 				break;
2198 			}
2199 
2200 			if (sk->sk_state == TCP_CLOSE) {
2201 				copied = -ENOTCONN;
2202 				break;
2203 			}
2204 
2205 			if (!timeo) {
2206 				copied = -EAGAIN;
2207 				break;
2208 			}
2209 
2210 			if (signal_pending(current)) {
2211 				copied = sock_intr_errno(timeo);
2212 				break;
2213 			}
2214 		}
2215 
2216 		pr_debug("block timeout %ld", timeo);
2217 		sk_wait_data(sk, &timeo, NULL);
2218 	}
2219 
2220 out_err:
2221 	if (cmsg_flags && copied >= 0) {
2222 		if (cmsg_flags & MPTCP_CMSG_TS)
2223 			tcp_recv_timestamp(msg, sk, &tss);
2224 
2225 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2226 			unsigned int inq = mptcp_inq_hint(sk);
2227 
2228 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2229 		}
2230 	}
2231 
2232 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2233 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2234 		 skb_queue_empty(&msk->receive_queue), copied);
2235 	if (!(flags & MSG_PEEK))
2236 		mptcp_rcv_space_adjust(msk, copied);
2237 
2238 	release_sock(sk);
2239 	return copied;
2240 }
2241 
2242 static void mptcp_retransmit_timer(struct timer_list *t)
2243 {
2244 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2245 						       icsk_retransmit_timer);
2246 	struct sock *sk = &icsk->icsk_inet.sk;
2247 	struct mptcp_sock *msk = mptcp_sk(sk);
2248 
2249 	bh_lock_sock(sk);
2250 	if (!sock_owned_by_user(sk)) {
2251 		/* we need a process context to retransmit */
2252 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2253 			mptcp_schedule_work(sk);
2254 	} else {
2255 		/* delegate our work to tcp_release_cb() */
2256 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2257 	}
2258 	bh_unlock_sock(sk);
2259 	sock_put(sk);
2260 }
2261 
2262 static void mptcp_tout_timer(struct timer_list *t)
2263 {
2264 	struct sock *sk = from_timer(sk, t, sk_timer);
2265 
2266 	mptcp_schedule_work(sk);
2267 	sock_put(sk);
2268 }
2269 
2270 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2271  * level.
2272  *
2273  * A backup subflow is returned only if that is the only kind available.
2274  */
2275 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2276 {
2277 	struct sock *backup = NULL, *pick = NULL;
2278 	struct mptcp_subflow_context *subflow;
2279 	int min_stale_count = INT_MAX;
2280 
2281 	mptcp_for_each_subflow(msk, subflow) {
2282 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2283 
2284 		if (!__mptcp_subflow_active(subflow))
2285 			continue;
2286 
2287 		/* still data outstanding at TCP level? skip this */
2288 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2289 			mptcp_pm_subflow_chk_stale(msk, ssk);
2290 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2291 			continue;
2292 		}
2293 
2294 		if (subflow->backup) {
2295 			if (!backup)
2296 				backup = ssk;
2297 			continue;
2298 		}
2299 
2300 		if (!pick)
2301 			pick = ssk;
2302 	}
2303 
2304 	if (pick)
2305 		return pick;
2306 
2307 	/* use backup only if there are no progresses anywhere */
2308 	return min_stale_count > 1 ? backup : NULL;
2309 }
2310 
2311 bool __mptcp_retransmit_pending_data(struct sock *sk)
2312 {
2313 	struct mptcp_data_frag *cur, *rtx_head;
2314 	struct mptcp_sock *msk = mptcp_sk(sk);
2315 
2316 	if (__mptcp_check_fallback(msk))
2317 		return false;
2318 
2319 	if (tcp_rtx_and_write_queues_empty(sk))
2320 		return false;
2321 
2322 	/* the closing socket has some data untransmitted and/or unacked:
2323 	 * some data in the mptcp rtx queue has not really xmitted yet.
2324 	 * keep it simple and re-inject the whole mptcp level rtx queue
2325 	 */
2326 	mptcp_data_lock(sk);
2327 	__mptcp_clean_una_wakeup(sk);
2328 	rtx_head = mptcp_rtx_head(sk);
2329 	if (!rtx_head) {
2330 		mptcp_data_unlock(sk);
2331 		return false;
2332 	}
2333 
2334 	msk->recovery_snd_nxt = msk->snd_nxt;
2335 	msk->recovery = true;
2336 	mptcp_data_unlock(sk);
2337 
2338 	msk->first_pending = rtx_head;
2339 	msk->snd_burst = 0;
2340 
2341 	/* be sure to clear the "sent status" on all re-injected fragments */
2342 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2343 		if (!cur->already_sent)
2344 			break;
2345 		cur->already_sent = 0;
2346 	}
2347 
2348 	return true;
2349 }
2350 
2351 /* flags for __mptcp_close_ssk() */
2352 #define MPTCP_CF_PUSH		BIT(1)
2353 #define MPTCP_CF_FASTCLOSE	BIT(2)
2354 
2355 /* be sure to send a reset only if the caller asked for it, also
2356  * clean completely the subflow status when the subflow reaches
2357  * TCP_CLOSE state
2358  */
2359 static void __mptcp_subflow_disconnect(struct sock *ssk,
2360 				       struct mptcp_subflow_context *subflow,
2361 				       unsigned int flags)
2362 {
2363 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2364 	    (flags & MPTCP_CF_FASTCLOSE)) {
2365 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2366 		 * disconnect should never fail
2367 		 */
2368 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2369 		mptcp_subflow_ctx_reset(subflow);
2370 	} else {
2371 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2372 	}
2373 }
2374 
2375 /* subflow sockets can be either outgoing (connect) or incoming
2376  * (accept).
2377  *
2378  * Outgoing subflows use in-kernel sockets.
2379  * Incoming subflows do not have their own 'struct socket' allocated,
2380  * so we need to use tcp_close() after detaching them from the mptcp
2381  * parent socket.
2382  */
2383 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2384 			      struct mptcp_subflow_context *subflow,
2385 			      unsigned int flags)
2386 {
2387 	struct mptcp_sock *msk = mptcp_sk(sk);
2388 	bool dispose_it, need_push = false;
2389 
2390 	/* If the first subflow moved to a close state before accept, e.g. due
2391 	 * to an incoming reset or listener shutdown, the subflow socket is
2392 	 * already deleted by inet_child_forget() and the mptcp socket can't
2393 	 * survive too.
2394 	 */
2395 	if (msk->in_accept_queue && msk->first == ssk &&
2396 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2397 		/* ensure later check in mptcp_worker() will dispose the msk */
2398 		mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2399 		sock_set_flag(sk, SOCK_DEAD);
2400 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2401 		mptcp_subflow_drop_ctx(ssk);
2402 		goto out_release;
2403 	}
2404 
2405 	dispose_it = msk->free_first || ssk != msk->first;
2406 	if (dispose_it)
2407 		list_del(&subflow->node);
2408 
2409 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2410 
2411 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2412 		/* be sure to force the tcp_close path
2413 		 * to generate the egress reset
2414 		 */
2415 		ssk->sk_lingertime = 0;
2416 		sock_set_flag(ssk, SOCK_LINGER);
2417 		subflow->send_fastclose = 1;
2418 	}
2419 
2420 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2421 	if (!dispose_it) {
2422 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2423 		release_sock(ssk);
2424 
2425 		goto out;
2426 	}
2427 
2428 	subflow->disposable = 1;
2429 
2430 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2431 	 * the ssk has been already destroyed, we just need to release the
2432 	 * reference owned by msk;
2433 	 */
2434 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2435 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2436 		kfree_rcu(subflow, rcu);
2437 	} else {
2438 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2439 		__tcp_close(ssk, 0);
2440 
2441 		/* close acquired an extra ref */
2442 		__sock_put(ssk);
2443 	}
2444 
2445 out_release:
2446 	__mptcp_subflow_error_report(sk, ssk);
2447 	release_sock(ssk);
2448 
2449 	sock_put(ssk);
2450 
2451 	if (ssk == msk->first)
2452 		WRITE_ONCE(msk->first, NULL);
2453 
2454 out:
2455 	if (need_push)
2456 		__mptcp_push_pending(sk, 0);
2457 
2458 	/* Catch every 'all subflows closed' scenario, including peers silently
2459 	 * closing them, e.g. due to timeout.
2460 	 * For established sockets, allow an additional timeout before closing,
2461 	 * as the protocol can still create more subflows.
2462 	 */
2463 	if (list_is_singular(&msk->conn_list) && msk->first &&
2464 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2465 		if (sk->sk_state != TCP_ESTABLISHED ||
2466 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2467 			inet_sk_state_store(sk, TCP_CLOSE);
2468 			mptcp_close_wake_up(sk);
2469 		} else {
2470 			mptcp_start_tout_timer(sk);
2471 		}
2472 	}
2473 }
2474 
2475 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2476 		     struct mptcp_subflow_context *subflow)
2477 {
2478 	if (sk->sk_state == TCP_ESTABLISHED)
2479 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2480 
2481 	/* subflow aborted before reaching the fully_established status
2482 	 * attempt the creation of the next subflow
2483 	 */
2484 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2485 
2486 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2487 }
2488 
2489 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2490 {
2491 	return 0;
2492 }
2493 
2494 static void __mptcp_close_subflow(struct sock *sk)
2495 {
2496 	struct mptcp_subflow_context *subflow, *tmp;
2497 	struct mptcp_sock *msk = mptcp_sk(sk);
2498 
2499 	might_sleep();
2500 
2501 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2502 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2503 
2504 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2505 			continue;
2506 
2507 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2508 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2509 			continue;
2510 
2511 		mptcp_close_ssk(sk, ssk, subflow);
2512 	}
2513 
2514 }
2515 
2516 static bool mptcp_close_tout_expired(const struct sock *sk)
2517 {
2518 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2519 	    sk->sk_state == TCP_CLOSE)
2520 		return false;
2521 
2522 	return time_after32(tcp_jiffies32,
2523 		  inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2524 }
2525 
2526 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2527 {
2528 	struct mptcp_subflow_context *subflow, *tmp;
2529 	struct sock *sk = (struct sock *)msk;
2530 
2531 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2532 		return;
2533 
2534 	mptcp_token_destroy(msk);
2535 
2536 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2537 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2538 		bool slow;
2539 
2540 		slow = lock_sock_fast(tcp_sk);
2541 		if (tcp_sk->sk_state != TCP_CLOSE) {
2542 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2543 			tcp_set_state(tcp_sk, TCP_CLOSE);
2544 		}
2545 		unlock_sock_fast(tcp_sk, slow);
2546 	}
2547 
2548 	/* Mirror the tcp_reset() error propagation */
2549 	switch (sk->sk_state) {
2550 	case TCP_SYN_SENT:
2551 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2552 		break;
2553 	case TCP_CLOSE_WAIT:
2554 		WRITE_ONCE(sk->sk_err, EPIPE);
2555 		break;
2556 	case TCP_CLOSE:
2557 		return;
2558 	default:
2559 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2560 	}
2561 
2562 	inet_sk_state_store(sk, TCP_CLOSE);
2563 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2564 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2565 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2566 
2567 	/* the calling mptcp_worker will properly destroy the socket */
2568 	if (sock_flag(sk, SOCK_DEAD))
2569 		return;
2570 
2571 	sk->sk_state_change(sk);
2572 	sk_error_report(sk);
2573 }
2574 
2575 static void __mptcp_retrans(struct sock *sk)
2576 {
2577 	struct mptcp_sock *msk = mptcp_sk(sk);
2578 	struct mptcp_subflow_context *subflow;
2579 	struct mptcp_sendmsg_info info = {};
2580 	struct mptcp_data_frag *dfrag;
2581 	struct sock *ssk;
2582 	int ret, err;
2583 	u16 len = 0;
2584 
2585 	mptcp_clean_una_wakeup(sk);
2586 
2587 	/* first check ssk: need to kick "stale" logic */
2588 	err = mptcp_sched_get_retrans(msk);
2589 	dfrag = mptcp_rtx_head(sk);
2590 	if (!dfrag) {
2591 		if (mptcp_data_fin_enabled(msk)) {
2592 			struct inet_connection_sock *icsk = inet_csk(sk);
2593 
2594 			icsk->icsk_retransmits++;
2595 			mptcp_set_datafin_timeout(sk);
2596 			mptcp_send_ack(msk);
2597 
2598 			goto reset_timer;
2599 		}
2600 
2601 		if (!mptcp_send_head(sk))
2602 			return;
2603 
2604 		goto reset_timer;
2605 	}
2606 
2607 	if (err)
2608 		goto reset_timer;
2609 
2610 	mptcp_for_each_subflow(msk, subflow) {
2611 		if (READ_ONCE(subflow->scheduled)) {
2612 			u16 copied = 0;
2613 
2614 			mptcp_subflow_set_scheduled(subflow, false);
2615 
2616 			ssk = mptcp_subflow_tcp_sock(subflow);
2617 
2618 			lock_sock(ssk);
2619 
2620 			/* limit retransmission to the bytes already sent on some subflows */
2621 			info.sent = 0;
2622 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2623 								    dfrag->already_sent;
2624 			while (info.sent < info.limit) {
2625 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2626 				if (ret <= 0)
2627 					break;
2628 
2629 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2630 				copied += ret;
2631 				info.sent += ret;
2632 			}
2633 			if (copied) {
2634 				len = max(copied, len);
2635 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2636 					 info.size_goal);
2637 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2638 			}
2639 
2640 			release_sock(ssk);
2641 		}
2642 	}
2643 
2644 	msk->bytes_retrans += len;
2645 	dfrag->already_sent = max(dfrag->already_sent, len);
2646 
2647 reset_timer:
2648 	mptcp_check_and_set_pending(sk);
2649 
2650 	if (!mptcp_rtx_timer_pending(sk))
2651 		mptcp_reset_rtx_timer(sk);
2652 }
2653 
2654 /* schedule the timeout timer for the relevant event: either close timeout
2655  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2656  */
2657 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2658 {
2659 	struct sock *sk = (struct sock *)msk;
2660 	unsigned long timeout, close_timeout;
2661 
2662 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2663 		return;
2664 
2665 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2666 			TCP_TIMEWAIT_LEN;
2667 
2668 	/* the close timeout takes precedence on the fail one, and here at least one of
2669 	 * them is active
2670 	 */
2671 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2672 
2673 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2674 }
2675 
2676 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2677 {
2678 	struct sock *ssk = msk->first;
2679 	bool slow;
2680 
2681 	if (!ssk)
2682 		return;
2683 
2684 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2685 
2686 	slow = lock_sock_fast(ssk);
2687 	mptcp_subflow_reset(ssk);
2688 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2689 	unlock_sock_fast(ssk, slow);
2690 }
2691 
2692 static void mptcp_do_fastclose(struct sock *sk)
2693 {
2694 	struct mptcp_subflow_context *subflow, *tmp;
2695 	struct mptcp_sock *msk = mptcp_sk(sk);
2696 
2697 	inet_sk_state_store(sk, TCP_CLOSE);
2698 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2699 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2700 				  subflow, MPTCP_CF_FASTCLOSE);
2701 }
2702 
2703 static void mptcp_worker(struct work_struct *work)
2704 {
2705 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2706 	struct sock *sk = (struct sock *)msk;
2707 	unsigned long fail_tout;
2708 	int state;
2709 
2710 	lock_sock(sk);
2711 	state = sk->sk_state;
2712 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2713 		goto unlock;
2714 
2715 	mptcp_check_fastclose(msk);
2716 
2717 	mptcp_pm_nl_work(msk);
2718 
2719 	mptcp_check_send_data_fin(sk);
2720 	mptcp_check_data_fin_ack(sk);
2721 	mptcp_check_data_fin(sk);
2722 
2723 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2724 		__mptcp_close_subflow(sk);
2725 
2726 	if (mptcp_close_tout_expired(sk)) {
2727 		mptcp_do_fastclose(sk);
2728 		mptcp_close_wake_up(sk);
2729 	}
2730 
2731 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2732 		__mptcp_destroy_sock(sk);
2733 		goto unlock;
2734 	}
2735 
2736 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2737 		__mptcp_retrans(sk);
2738 
2739 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2740 	if (fail_tout && time_after(jiffies, fail_tout))
2741 		mptcp_mp_fail_no_response(msk);
2742 
2743 unlock:
2744 	release_sock(sk);
2745 	sock_put(sk);
2746 }
2747 
2748 static void __mptcp_init_sock(struct sock *sk)
2749 {
2750 	struct mptcp_sock *msk = mptcp_sk(sk);
2751 
2752 	INIT_LIST_HEAD(&msk->conn_list);
2753 	INIT_LIST_HEAD(&msk->join_list);
2754 	INIT_LIST_HEAD(&msk->rtx_queue);
2755 	INIT_WORK(&msk->work, mptcp_worker);
2756 	__skb_queue_head_init(&msk->receive_queue);
2757 	msk->out_of_order_queue = RB_ROOT;
2758 	msk->first_pending = NULL;
2759 	msk->rmem_fwd_alloc = 0;
2760 	WRITE_ONCE(msk->rmem_released, 0);
2761 	msk->timer_ival = TCP_RTO_MIN;
2762 
2763 	WRITE_ONCE(msk->first, NULL);
2764 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2765 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2766 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2767 	msk->recovery = false;
2768 	msk->subflow_id = 1;
2769 
2770 	mptcp_pm_data_init(msk);
2771 
2772 	/* re-use the csk retrans timer for MPTCP-level retrans */
2773 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2774 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2775 }
2776 
2777 static void mptcp_ca_reset(struct sock *sk)
2778 {
2779 	struct inet_connection_sock *icsk = inet_csk(sk);
2780 
2781 	tcp_assign_congestion_control(sk);
2782 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2783 
2784 	/* no need to keep a reference to the ops, the name will suffice */
2785 	tcp_cleanup_congestion_control(sk);
2786 	icsk->icsk_ca_ops = NULL;
2787 }
2788 
2789 static int mptcp_init_sock(struct sock *sk)
2790 {
2791 	struct net *net = sock_net(sk);
2792 	int ret;
2793 
2794 	__mptcp_init_sock(sk);
2795 
2796 	if (!mptcp_is_enabled(net))
2797 		return -ENOPROTOOPT;
2798 
2799 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2800 		return -ENOMEM;
2801 
2802 	ret = mptcp_init_sched(mptcp_sk(sk),
2803 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2804 	if (ret)
2805 		return ret;
2806 
2807 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2808 
2809 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2810 	 * propagate the correct value
2811 	 */
2812 	mptcp_ca_reset(sk);
2813 
2814 	sk_sockets_allocated_inc(sk);
2815 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2816 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2817 
2818 	return 0;
2819 }
2820 
2821 static void __mptcp_clear_xmit(struct sock *sk)
2822 {
2823 	struct mptcp_sock *msk = mptcp_sk(sk);
2824 	struct mptcp_data_frag *dtmp, *dfrag;
2825 
2826 	WRITE_ONCE(msk->first_pending, NULL);
2827 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2828 		dfrag_clear(sk, dfrag);
2829 }
2830 
2831 void mptcp_cancel_work(struct sock *sk)
2832 {
2833 	struct mptcp_sock *msk = mptcp_sk(sk);
2834 
2835 	if (cancel_work_sync(&msk->work))
2836 		__sock_put(sk);
2837 }
2838 
2839 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2840 {
2841 	lock_sock(ssk);
2842 
2843 	switch (ssk->sk_state) {
2844 	case TCP_LISTEN:
2845 		if (!(how & RCV_SHUTDOWN))
2846 			break;
2847 		fallthrough;
2848 	case TCP_SYN_SENT:
2849 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2850 		break;
2851 	default:
2852 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2853 			pr_debug("Fallback");
2854 			ssk->sk_shutdown |= how;
2855 			tcp_shutdown(ssk, how);
2856 
2857 			/* simulate the data_fin ack reception to let the state
2858 			 * machine move forward
2859 			 */
2860 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2861 			mptcp_schedule_work(sk);
2862 		} else {
2863 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2864 			tcp_send_ack(ssk);
2865 			if (!mptcp_rtx_timer_pending(sk))
2866 				mptcp_reset_rtx_timer(sk);
2867 		}
2868 		break;
2869 	}
2870 
2871 	release_sock(ssk);
2872 }
2873 
2874 static const unsigned char new_state[16] = {
2875 	/* current state:     new state:      action:	*/
2876 	[0 /* (Invalid) */] = TCP_CLOSE,
2877 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2878 	[TCP_SYN_SENT]      = TCP_CLOSE,
2879 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2880 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2881 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2882 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2883 	[TCP_CLOSE]         = TCP_CLOSE,
2884 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2885 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2886 	[TCP_LISTEN]        = TCP_CLOSE,
2887 	[TCP_CLOSING]       = TCP_CLOSING,
2888 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2889 };
2890 
2891 static int mptcp_close_state(struct sock *sk)
2892 {
2893 	int next = (int)new_state[sk->sk_state];
2894 	int ns = next & TCP_STATE_MASK;
2895 
2896 	inet_sk_state_store(sk, ns);
2897 
2898 	return next & TCP_ACTION_FIN;
2899 }
2900 
2901 static void mptcp_check_send_data_fin(struct sock *sk)
2902 {
2903 	struct mptcp_subflow_context *subflow;
2904 	struct mptcp_sock *msk = mptcp_sk(sk);
2905 
2906 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2907 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2908 		 msk->snd_nxt, msk->write_seq);
2909 
2910 	/* we still need to enqueue subflows or not really shutting down,
2911 	 * skip this
2912 	 */
2913 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2914 	    mptcp_send_head(sk))
2915 		return;
2916 
2917 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2918 
2919 	mptcp_for_each_subflow(msk, subflow) {
2920 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2921 
2922 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2923 	}
2924 }
2925 
2926 static void __mptcp_wr_shutdown(struct sock *sk)
2927 {
2928 	struct mptcp_sock *msk = mptcp_sk(sk);
2929 
2930 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2931 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2932 		 !!mptcp_send_head(sk));
2933 
2934 	/* will be ignored by fallback sockets */
2935 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2936 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2937 
2938 	mptcp_check_send_data_fin(sk);
2939 }
2940 
2941 static void __mptcp_destroy_sock(struct sock *sk)
2942 {
2943 	struct mptcp_sock *msk = mptcp_sk(sk);
2944 
2945 	pr_debug("msk=%p", msk);
2946 
2947 	might_sleep();
2948 
2949 	mptcp_stop_rtx_timer(sk);
2950 	sk_stop_timer(sk, &sk->sk_timer);
2951 	msk->pm.status = 0;
2952 	mptcp_release_sched(msk);
2953 
2954 	sk->sk_prot->destroy(sk);
2955 
2956 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2957 	WARN_ON_ONCE(msk->rmem_released);
2958 	sk_stream_kill_queues(sk);
2959 	xfrm_sk_free_policy(sk);
2960 
2961 	sock_put(sk);
2962 }
2963 
2964 void __mptcp_unaccepted_force_close(struct sock *sk)
2965 {
2966 	sock_set_flag(sk, SOCK_DEAD);
2967 	mptcp_do_fastclose(sk);
2968 	__mptcp_destroy_sock(sk);
2969 }
2970 
2971 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2972 {
2973 	/* Concurrent splices from sk_receive_queue into receive_queue will
2974 	 * always show at least one non-empty queue when checked in this order.
2975 	 */
2976 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2977 	    skb_queue_empty_lockless(&msk->receive_queue))
2978 		return 0;
2979 
2980 	return EPOLLIN | EPOLLRDNORM;
2981 }
2982 
2983 static void mptcp_check_listen_stop(struct sock *sk)
2984 {
2985 	struct sock *ssk;
2986 
2987 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2988 		return;
2989 
2990 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2991 	ssk = mptcp_sk(sk)->first;
2992 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2993 		return;
2994 
2995 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2996 	tcp_set_state(ssk, TCP_CLOSE);
2997 	mptcp_subflow_queue_clean(sk, ssk);
2998 	inet_csk_listen_stop(ssk);
2999 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3000 	release_sock(ssk);
3001 }
3002 
3003 bool __mptcp_close(struct sock *sk, long timeout)
3004 {
3005 	struct mptcp_subflow_context *subflow;
3006 	struct mptcp_sock *msk = mptcp_sk(sk);
3007 	bool do_cancel_work = false;
3008 	int subflows_alive = 0;
3009 
3010 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3011 
3012 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3013 		mptcp_check_listen_stop(sk);
3014 		inet_sk_state_store(sk, TCP_CLOSE);
3015 		goto cleanup;
3016 	}
3017 
3018 	if (mptcp_check_readable(msk) || timeout < 0) {
3019 		/* If the msk has read data, or the caller explicitly ask it,
3020 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3021 		 */
3022 		mptcp_do_fastclose(sk);
3023 		timeout = 0;
3024 	} else if (mptcp_close_state(sk)) {
3025 		__mptcp_wr_shutdown(sk);
3026 	}
3027 
3028 	sk_stream_wait_close(sk, timeout);
3029 
3030 cleanup:
3031 	/* orphan all the subflows */
3032 	mptcp_for_each_subflow(msk, subflow) {
3033 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3034 		bool slow = lock_sock_fast_nested(ssk);
3035 
3036 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3037 
3038 		/* since the close timeout takes precedence on the fail one,
3039 		 * cancel the latter
3040 		 */
3041 		if (ssk == msk->first)
3042 			subflow->fail_tout = 0;
3043 
3044 		/* detach from the parent socket, but allow data_ready to
3045 		 * push incoming data into the mptcp stack, to properly ack it
3046 		 */
3047 		ssk->sk_socket = NULL;
3048 		ssk->sk_wq = NULL;
3049 		unlock_sock_fast(ssk, slow);
3050 	}
3051 	sock_orphan(sk);
3052 
3053 	/* all the subflows are closed, only timeout can change the msk
3054 	 * state, let's not keep resources busy for no reasons
3055 	 */
3056 	if (subflows_alive == 0)
3057 		inet_sk_state_store(sk, TCP_CLOSE);
3058 
3059 	sock_hold(sk);
3060 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3061 	if (msk->token)
3062 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3063 
3064 	if (sk->sk_state == TCP_CLOSE) {
3065 		__mptcp_destroy_sock(sk);
3066 		do_cancel_work = true;
3067 	} else {
3068 		mptcp_start_tout_timer(sk);
3069 	}
3070 
3071 	return do_cancel_work;
3072 }
3073 
3074 static void mptcp_close(struct sock *sk, long timeout)
3075 {
3076 	bool do_cancel_work;
3077 
3078 	lock_sock(sk);
3079 
3080 	do_cancel_work = __mptcp_close(sk, timeout);
3081 	release_sock(sk);
3082 	if (do_cancel_work)
3083 		mptcp_cancel_work(sk);
3084 
3085 	sock_put(sk);
3086 }
3087 
3088 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3089 {
3090 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3091 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3092 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3093 
3094 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3095 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3096 
3097 	if (msk6 && ssk6) {
3098 		msk6->saddr = ssk6->saddr;
3099 		msk6->flow_label = ssk6->flow_label;
3100 	}
3101 #endif
3102 
3103 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3104 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3105 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3106 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3107 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3108 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3109 }
3110 
3111 static int mptcp_disconnect(struct sock *sk, int flags)
3112 {
3113 	struct mptcp_sock *msk = mptcp_sk(sk);
3114 
3115 	/* We are on the fastopen error path. We can't call straight into the
3116 	 * subflows cleanup code due to lock nesting (we are already under
3117 	 * msk->firstsocket lock).
3118 	 */
3119 	if (msk->fastopening)
3120 		return -EBUSY;
3121 
3122 	mptcp_check_listen_stop(sk);
3123 	inet_sk_state_store(sk, TCP_CLOSE);
3124 
3125 	mptcp_stop_rtx_timer(sk);
3126 	mptcp_stop_tout_timer(sk);
3127 
3128 	if (msk->token)
3129 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3130 
3131 	/* msk->subflow is still intact, the following will not free the first
3132 	 * subflow
3133 	 */
3134 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3135 	WRITE_ONCE(msk->flags, 0);
3136 	msk->cb_flags = 0;
3137 	msk->push_pending = 0;
3138 	msk->recovery = false;
3139 	msk->can_ack = false;
3140 	msk->fully_established = false;
3141 	msk->rcv_data_fin = false;
3142 	msk->snd_data_fin_enable = false;
3143 	msk->rcv_fastclose = false;
3144 	msk->use_64bit_ack = false;
3145 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3146 	mptcp_pm_data_reset(msk);
3147 	mptcp_ca_reset(sk);
3148 	msk->bytes_acked = 0;
3149 	msk->bytes_received = 0;
3150 	msk->bytes_sent = 0;
3151 	msk->bytes_retrans = 0;
3152 
3153 	WRITE_ONCE(sk->sk_shutdown, 0);
3154 	sk_error_report(sk);
3155 	return 0;
3156 }
3157 
3158 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3159 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3160 {
3161 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3162 
3163 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3164 }
3165 #endif
3166 
3167 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3168 				 const struct mptcp_options_received *mp_opt,
3169 				 struct sock *ssk,
3170 				 struct request_sock *req)
3171 {
3172 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3173 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3174 	struct mptcp_sock *msk;
3175 
3176 	if (!nsk)
3177 		return NULL;
3178 
3179 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3180 	if (nsk->sk_family == AF_INET6)
3181 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3182 #endif
3183 
3184 	__mptcp_init_sock(nsk);
3185 
3186 	msk = mptcp_sk(nsk);
3187 	msk->local_key = subflow_req->local_key;
3188 	msk->token = subflow_req->token;
3189 	msk->in_accept_queue = 1;
3190 	WRITE_ONCE(msk->fully_established, false);
3191 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3192 		WRITE_ONCE(msk->csum_enabled, true);
3193 
3194 	msk->write_seq = subflow_req->idsn + 1;
3195 	msk->snd_nxt = msk->write_seq;
3196 	msk->snd_una = msk->write_seq;
3197 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3198 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3199 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3200 
3201 	/* passive msk is created after the first/MPC subflow */
3202 	msk->subflow_id = 2;
3203 
3204 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3205 	security_inet_csk_clone(nsk, req);
3206 
3207 	/* this can't race with mptcp_close(), as the msk is
3208 	 * not yet exposted to user-space
3209 	 */
3210 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3211 
3212 	/* The msk maintain a ref to each subflow in the connections list */
3213 	WRITE_ONCE(msk->first, ssk);
3214 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3215 	sock_hold(ssk);
3216 
3217 	/* new mpc subflow takes ownership of the newly
3218 	 * created mptcp socket
3219 	 */
3220 	mptcp_token_accept(subflow_req, msk);
3221 
3222 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3223 	 * uses the correct data
3224 	 */
3225 	mptcp_copy_inaddrs(nsk, ssk);
3226 	mptcp_propagate_sndbuf(nsk, ssk);
3227 
3228 	mptcp_rcv_space_init(msk, ssk);
3229 	bh_unlock_sock(nsk);
3230 
3231 	/* note: the newly allocated socket refcount is 2 now */
3232 	return nsk;
3233 }
3234 
3235 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3236 {
3237 	const struct tcp_sock *tp = tcp_sk(ssk);
3238 
3239 	msk->rcvq_space.copied = 0;
3240 	msk->rcvq_space.rtt_us = 0;
3241 
3242 	msk->rcvq_space.time = tp->tcp_mstamp;
3243 
3244 	/* initial rcv_space offering made to peer */
3245 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3246 				      TCP_INIT_CWND * tp->advmss);
3247 	if (msk->rcvq_space.space == 0)
3248 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3249 
3250 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3251 }
3252 
3253 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err,
3254 				 bool kern)
3255 {
3256 	struct sock *newsk;
3257 
3258 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3259 	newsk = inet_csk_accept(ssk, flags, err, kern);
3260 	if (!newsk)
3261 		return NULL;
3262 
3263 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3264 	if (sk_is_mptcp(newsk)) {
3265 		struct mptcp_subflow_context *subflow;
3266 		struct sock *new_mptcp_sock;
3267 
3268 		subflow = mptcp_subflow_ctx(newsk);
3269 		new_mptcp_sock = subflow->conn;
3270 
3271 		/* is_mptcp should be false if subflow->conn is missing, see
3272 		 * subflow_syn_recv_sock()
3273 		 */
3274 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3275 			tcp_sk(newsk)->is_mptcp = 0;
3276 			goto out;
3277 		}
3278 
3279 		newsk = new_mptcp_sock;
3280 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3281 	} else {
3282 		MPTCP_INC_STATS(sock_net(ssk),
3283 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3284 	}
3285 
3286 out:
3287 	newsk->sk_kern_sock = kern;
3288 	return newsk;
3289 }
3290 
3291 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3292 {
3293 	struct mptcp_subflow_context *subflow, *tmp;
3294 	struct sock *sk = (struct sock *)msk;
3295 
3296 	__mptcp_clear_xmit(sk);
3297 
3298 	/* join list will be eventually flushed (with rst) at sock lock release time */
3299 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3300 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3301 
3302 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3303 	mptcp_data_lock(sk);
3304 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3305 	__skb_queue_purge(&sk->sk_receive_queue);
3306 	skb_rbtree_purge(&msk->out_of_order_queue);
3307 	mptcp_data_unlock(sk);
3308 
3309 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3310 	 * inet_sock_destruct() will dispose it
3311 	 */
3312 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3313 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3314 	mptcp_token_destroy(msk);
3315 	mptcp_pm_free_anno_list(msk);
3316 	mptcp_free_local_addr_list(msk);
3317 }
3318 
3319 static void mptcp_destroy(struct sock *sk)
3320 {
3321 	struct mptcp_sock *msk = mptcp_sk(sk);
3322 
3323 	/* allow the following to close even the initial subflow */
3324 	msk->free_first = 1;
3325 	mptcp_destroy_common(msk, 0);
3326 	sk_sockets_allocated_dec(sk);
3327 }
3328 
3329 void __mptcp_data_acked(struct sock *sk)
3330 {
3331 	if (!sock_owned_by_user(sk))
3332 		__mptcp_clean_una(sk);
3333 	else
3334 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3335 
3336 	if (mptcp_pending_data_fin_ack(sk))
3337 		mptcp_schedule_work(sk);
3338 }
3339 
3340 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3341 {
3342 	if (!mptcp_send_head(sk))
3343 		return;
3344 
3345 	if (!sock_owned_by_user(sk))
3346 		__mptcp_subflow_push_pending(sk, ssk, false);
3347 	else
3348 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3349 }
3350 
3351 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3352 				      BIT(MPTCP_RETRANSMIT) | \
3353 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3354 
3355 /* processes deferred events and flush wmem */
3356 static void mptcp_release_cb(struct sock *sk)
3357 	__must_hold(&sk->sk_lock.slock)
3358 {
3359 	struct mptcp_sock *msk = mptcp_sk(sk);
3360 
3361 	for (;;) {
3362 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3363 				      msk->push_pending;
3364 		struct list_head join_list;
3365 
3366 		if (!flags)
3367 			break;
3368 
3369 		INIT_LIST_HEAD(&join_list);
3370 		list_splice_init(&msk->join_list, &join_list);
3371 
3372 		/* the following actions acquire the subflow socket lock
3373 		 *
3374 		 * 1) can't be invoked in atomic scope
3375 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3376 		 *    datapath acquires the msk socket spinlock while helding
3377 		 *    the subflow socket lock
3378 		 */
3379 		msk->push_pending = 0;
3380 		msk->cb_flags &= ~flags;
3381 		spin_unlock_bh(&sk->sk_lock.slock);
3382 
3383 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3384 			__mptcp_flush_join_list(sk, &join_list);
3385 		if (flags & BIT(MPTCP_PUSH_PENDING))
3386 			__mptcp_push_pending(sk, 0);
3387 		if (flags & BIT(MPTCP_RETRANSMIT))
3388 			__mptcp_retrans(sk);
3389 
3390 		cond_resched();
3391 		spin_lock_bh(&sk->sk_lock.slock);
3392 	}
3393 
3394 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3395 		__mptcp_clean_una_wakeup(sk);
3396 	if (unlikely(msk->cb_flags)) {
3397 		/* be sure to set the current sk state before tacking actions
3398 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3399 		 */
3400 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3401 			__mptcp_set_connected(sk);
3402 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3403 			__mptcp_error_report(sk);
3404 	}
3405 
3406 	__mptcp_update_rmem(sk);
3407 }
3408 
3409 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3410  * TCP can't schedule delack timer before the subflow is fully established.
3411  * MPTCP uses the delack timer to do 3rd ack retransmissions
3412  */
3413 static void schedule_3rdack_retransmission(struct sock *ssk)
3414 {
3415 	struct inet_connection_sock *icsk = inet_csk(ssk);
3416 	struct tcp_sock *tp = tcp_sk(ssk);
3417 	unsigned long timeout;
3418 
3419 	if (mptcp_subflow_ctx(ssk)->fully_established)
3420 		return;
3421 
3422 	/* reschedule with a timeout above RTT, as we must look only for drop */
3423 	if (tp->srtt_us)
3424 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3425 	else
3426 		timeout = TCP_TIMEOUT_INIT;
3427 	timeout += jiffies;
3428 
3429 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3430 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3431 	icsk->icsk_ack.timeout = timeout;
3432 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3433 }
3434 
3435 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3436 {
3437 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3438 	struct sock *sk = subflow->conn;
3439 
3440 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3441 		mptcp_data_lock(sk);
3442 		if (!sock_owned_by_user(sk))
3443 			__mptcp_subflow_push_pending(sk, ssk, true);
3444 		else
3445 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3446 		mptcp_data_unlock(sk);
3447 	}
3448 	if (status & BIT(MPTCP_DELEGATE_ACK))
3449 		schedule_3rdack_retransmission(ssk);
3450 }
3451 
3452 static int mptcp_hash(struct sock *sk)
3453 {
3454 	/* should never be called,
3455 	 * we hash the TCP subflows not the master socket
3456 	 */
3457 	WARN_ON_ONCE(1);
3458 	return 0;
3459 }
3460 
3461 static void mptcp_unhash(struct sock *sk)
3462 {
3463 	/* called from sk_common_release(), but nothing to do here */
3464 }
3465 
3466 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3467 {
3468 	struct mptcp_sock *msk = mptcp_sk(sk);
3469 
3470 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3471 	if (WARN_ON_ONCE(!msk->first))
3472 		return -EINVAL;
3473 
3474 	return inet_csk_get_port(msk->first, snum);
3475 }
3476 
3477 void mptcp_finish_connect(struct sock *ssk)
3478 {
3479 	struct mptcp_subflow_context *subflow;
3480 	struct mptcp_sock *msk;
3481 	struct sock *sk;
3482 
3483 	subflow = mptcp_subflow_ctx(ssk);
3484 	sk = subflow->conn;
3485 	msk = mptcp_sk(sk);
3486 
3487 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3488 
3489 	subflow->map_seq = subflow->iasn;
3490 	subflow->map_subflow_seq = 1;
3491 
3492 	/* the socket is not connected yet, no msk/subflow ops can access/race
3493 	 * accessing the field below
3494 	 */
3495 	WRITE_ONCE(msk->local_key, subflow->local_key);
3496 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3497 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3498 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3499 
3500 	mptcp_pm_new_connection(msk, ssk, 0);
3501 
3502 	mptcp_rcv_space_init(msk, ssk);
3503 }
3504 
3505 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3506 {
3507 	write_lock_bh(&sk->sk_callback_lock);
3508 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3509 	sk_set_socket(sk, parent);
3510 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3511 	write_unlock_bh(&sk->sk_callback_lock);
3512 }
3513 
3514 bool mptcp_finish_join(struct sock *ssk)
3515 {
3516 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3517 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3518 	struct sock *parent = (void *)msk;
3519 	bool ret = true;
3520 
3521 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3522 
3523 	/* mptcp socket already closing? */
3524 	if (!mptcp_is_fully_established(parent)) {
3525 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3526 		return false;
3527 	}
3528 
3529 	/* active subflow, already present inside the conn_list */
3530 	if (!list_empty(&subflow->node)) {
3531 		mptcp_subflow_joined(msk, ssk);
3532 		return true;
3533 	}
3534 
3535 	if (!mptcp_pm_allow_new_subflow(msk))
3536 		goto err_prohibited;
3537 
3538 	/* If we can't acquire msk socket lock here, let the release callback
3539 	 * handle it
3540 	 */
3541 	mptcp_data_lock(parent);
3542 	if (!sock_owned_by_user(parent)) {
3543 		ret = __mptcp_finish_join(msk, ssk);
3544 		if (ret) {
3545 			sock_hold(ssk);
3546 			list_add_tail(&subflow->node, &msk->conn_list);
3547 		}
3548 	} else {
3549 		sock_hold(ssk);
3550 		list_add_tail(&subflow->node, &msk->join_list);
3551 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3552 	}
3553 	mptcp_data_unlock(parent);
3554 
3555 	if (!ret) {
3556 err_prohibited:
3557 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3558 		return false;
3559 	}
3560 
3561 	return true;
3562 }
3563 
3564 static void mptcp_shutdown(struct sock *sk, int how)
3565 {
3566 	pr_debug("sk=%p, how=%d", sk, how);
3567 
3568 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3569 		__mptcp_wr_shutdown(sk);
3570 }
3571 
3572 static int mptcp_forward_alloc_get(const struct sock *sk)
3573 {
3574 	return READ_ONCE(sk->sk_forward_alloc) +
3575 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3576 }
3577 
3578 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3579 {
3580 	const struct sock *sk = (void *)msk;
3581 	u64 delta;
3582 
3583 	if (sk->sk_state == TCP_LISTEN)
3584 		return -EINVAL;
3585 
3586 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3587 		return 0;
3588 
3589 	delta = msk->write_seq - v;
3590 	if (__mptcp_check_fallback(msk) && msk->first) {
3591 		struct tcp_sock *tp = tcp_sk(msk->first);
3592 
3593 		/* the first subflow is disconnected after close - see
3594 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3595 		 * so ignore that status, too.
3596 		 */
3597 		if (!((1 << msk->first->sk_state) &
3598 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3599 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3600 	}
3601 	if (delta > INT_MAX)
3602 		delta = INT_MAX;
3603 
3604 	return (int)delta;
3605 }
3606 
3607 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3608 {
3609 	struct mptcp_sock *msk = mptcp_sk(sk);
3610 	bool slow;
3611 
3612 	switch (cmd) {
3613 	case SIOCINQ:
3614 		if (sk->sk_state == TCP_LISTEN)
3615 			return -EINVAL;
3616 
3617 		lock_sock(sk);
3618 		__mptcp_move_skbs(msk);
3619 		*karg = mptcp_inq_hint(sk);
3620 		release_sock(sk);
3621 		break;
3622 	case SIOCOUTQ:
3623 		slow = lock_sock_fast(sk);
3624 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3625 		unlock_sock_fast(sk, slow);
3626 		break;
3627 	case SIOCOUTQNSD:
3628 		slow = lock_sock_fast(sk);
3629 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3630 		unlock_sock_fast(sk, slow);
3631 		break;
3632 	default:
3633 		return -ENOIOCTLCMD;
3634 	}
3635 
3636 	return 0;
3637 }
3638 
3639 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3640 					 struct mptcp_subflow_context *subflow)
3641 {
3642 	subflow->request_mptcp = 0;
3643 	__mptcp_do_fallback(msk);
3644 }
3645 
3646 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3647 {
3648 	struct mptcp_subflow_context *subflow;
3649 	struct mptcp_sock *msk = mptcp_sk(sk);
3650 	int err = -EINVAL;
3651 	struct sock *ssk;
3652 
3653 	ssk = __mptcp_nmpc_sk(msk);
3654 	if (IS_ERR(ssk))
3655 		return PTR_ERR(ssk);
3656 
3657 	inet_sk_state_store(sk, TCP_SYN_SENT);
3658 	subflow = mptcp_subflow_ctx(ssk);
3659 #ifdef CONFIG_TCP_MD5SIG
3660 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3661 	 * TCP option space.
3662 	 */
3663 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3664 		mptcp_subflow_early_fallback(msk, subflow);
3665 #endif
3666 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3667 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3668 		mptcp_subflow_early_fallback(msk, subflow);
3669 	}
3670 	if (likely(!__mptcp_check_fallback(msk)))
3671 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3672 
3673 	/* if reaching here via the fastopen/sendmsg path, the caller already
3674 	 * acquired the subflow socket lock, too.
3675 	 */
3676 	if (!msk->fastopening)
3677 		lock_sock(ssk);
3678 
3679 	/* the following mirrors closely a very small chunk of code from
3680 	 * __inet_stream_connect()
3681 	 */
3682 	if (ssk->sk_state != TCP_CLOSE)
3683 		goto out;
3684 
3685 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3686 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3687 		if (err)
3688 			goto out;
3689 	}
3690 
3691 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3692 	if (err < 0)
3693 		goto out;
3694 
3695 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3696 
3697 out:
3698 	if (!msk->fastopening)
3699 		release_sock(ssk);
3700 
3701 	/* on successful connect, the msk state will be moved to established by
3702 	 * subflow_finish_connect()
3703 	 */
3704 	if (unlikely(err)) {
3705 		/* avoid leaving a dangling token in an unconnected socket */
3706 		mptcp_token_destroy(msk);
3707 		inet_sk_state_store(sk, TCP_CLOSE);
3708 		return err;
3709 	}
3710 
3711 	mptcp_copy_inaddrs(sk, ssk);
3712 	return 0;
3713 }
3714 
3715 static struct proto mptcp_prot = {
3716 	.name		= "MPTCP",
3717 	.owner		= THIS_MODULE,
3718 	.init		= mptcp_init_sock,
3719 	.connect	= mptcp_connect,
3720 	.disconnect	= mptcp_disconnect,
3721 	.close		= mptcp_close,
3722 	.accept		= mptcp_accept,
3723 	.setsockopt	= mptcp_setsockopt,
3724 	.getsockopt	= mptcp_getsockopt,
3725 	.shutdown	= mptcp_shutdown,
3726 	.destroy	= mptcp_destroy,
3727 	.sendmsg	= mptcp_sendmsg,
3728 	.ioctl		= mptcp_ioctl,
3729 	.recvmsg	= mptcp_recvmsg,
3730 	.release_cb	= mptcp_release_cb,
3731 	.hash		= mptcp_hash,
3732 	.unhash		= mptcp_unhash,
3733 	.get_port	= mptcp_get_port,
3734 	.forward_alloc_get	= mptcp_forward_alloc_get,
3735 	.sockets_allocated	= &mptcp_sockets_allocated,
3736 
3737 	.memory_allocated	= &tcp_memory_allocated,
3738 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3739 
3740 	.memory_pressure	= &tcp_memory_pressure,
3741 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3742 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3743 	.sysctl_mem	= sysctl_tcp_mem,
3744 	.obj_size	= sizeof(struct mptcp_sock),
3745 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3746 	.no_autobind	= true,
3747 };
3748 
3749 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3750 {
3751 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3752 	struct sock *ssk, *sk = sock->sk;
3753 	int err = -EINVAL;
3754 
3755 	lock_sock(sk);
3756 	ssk = __mptcp_nmpc_sk(msk);
3757 	if (IS_ERR(ssk)) {
3758 		err = PTR_ERR(ssk);
3759 		goto unlock;
3760 	}
3761 
3762 	if (sk->sk_family == AF_INET)
3763 		err = inet_bind_sk(ssk, uaddr, addr_len);
3764 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3765 	else if (sk->sk_family == AF_INET6)
3766 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3767 #endif
3768 	if (!err)
3769 		mptcp_copy_inaddrs(sk, ssk);
3770 
3771 unlock:
3772 	release_sock(sk);
3773 	return err;
3774 }
3775 
3776 static int mptcp_listen(struct socket *sock, int backlog)
3777 {
3778 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3779 	struct sock *sk = sock->sk;
3780 	struct sock *ssk;
3781 	int err;
3782 
3783 	pr_debug("msk=%p", msk);
3784 
3785 	lock_sock(sk);
3786 
3787 	err = -EINVAL;
3788 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3789 		goto unlock;
3790 
3791 	ssk = __mptcp_nmpc_sk(msk);
3792 	if (IS_ERR(ssk)) {
3793 		err = PTR_ERR(ssk);
3794 		goto unlock;
3795 	}
3796 
3797 	inet_sk_state_store(sk, TCP_LISTEN);
3798 	sock_set_flag(sk, SOCK_RCU_FREE);
3799 
3800 	lock_sock(ssk);
3801 	err = __inet_listen_sk(ssk, backlog);
3802 	release_sock(ssk);
3803 	inet_sk_state_store(sk, inet_sk_state_load(ssk));
3804 
3805 	if (!err) {
3806 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3807 		mptcp_copy_inaddrs(sk, ssk);
3808 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3809 	}
3810 
3811 unlock:
3812 	release_sock(sk);
3813 	return err;
3814 }
3815 
3816 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3817 			       int flags, bool kern)
3818 {
3819 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3820 	struct sock *ssk, *newsk;
3821 	int err;
3822 
3823 	pr_debug("msk=%p", msk);
3824 
3825 	/* Buggy applications can call accept on socket states other then LISTEN
3826 	 * but no need to allocate the first subflow just to error out.
3827 	 */
3828 	ssk = READ_ONCE(msk->first);
3829 	if (!ssk)
3830 		return -EINVAL;
3831 
3832 	newsk = mptcp_accept(ssk, flags, &err, kern);
3833 	if (!newsk)
3834 		return err;
3835 
3836 	lock_sock(newsk);
3837 
3838 	__inet_accept(sock, newsock, newsk);
3839 	if (!mptcp_is_tcpsk(newsock->sk)) {
3840 		struct mptcp_sock *msk = mptcp_sk(newsk);
3841 		struct mptcp_subflow_context *subflow;
3842 
3843 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3844 		msk->in_accept_queue = 0;
3845 
3846 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3847 		 * This is needed so NOSPACE flag can be set from tcp stack.
3848 		 */
3849 		mptcp_for_each_subflow(msk, subflow) {
3850 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3851 
3852 			if (!ssk->sk_socket)
3853 				mptcp_sock_graft(ssk, newsock);
3854 		}
3855 
3856 		/* Do late cleanup for the first subflow as necessary. Also
3857 		 * deal with bad peers not doing a complete shutdown.
3858 		 */
3859 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3860 			__mptcp_close_ssk(newsk, msk->first,
3861 					  mptcp_subflow_ctx(msk->first), 0);
3862 			if (unlikely(list_is_singular(&msk->conn_list)))
3863 				inet_sk_state_store(newsk, TCP_CLOSE);
3864 		}
3865 	}
3866 	release_sock(newsk);
3867 
3868 	return 0;
3869 }
3870 
3871 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3872 {
3873 	struct sock *sk = (struct sock *)msk;
3874 
3875 	if (sk_stream_is_writeable(sk))
3876 		return EPOLLOUT | EPOLLWRNORM;
3877 
3878 	mptcp_set_nospace(sk);
3879 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3880 	if (sk_stream_is_writeable(sk))
3881 		return EPOLLOUT | EPOLLWRNORM;
3882 
3883 	return 0;
3884 }
3885 
3886 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3887 			   struct poll_table_struct *wait)
3888 {
3889 	struct sock *sk = sock->sk;
3890 	struct mptcp_sock *msk;
3891 	__poll_t mask = 0;
3892 	u8 shutdown;
3893 	int state;
3894 
3895 	msk = mptcp_sk(sk);
3896 	sock_poll_wait(file, sock, wait);
3897 
3898 	state = inet_sk_state_load(sk);
3899 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3900 	if (state == TCP_LISTEN) {
3901 		struct sock *ssk = READ_ONCE(msk->first);
3902 
3903 		if (WARN_ON_ONCE(!ssk))
3904 			return 0;
3905 
3906 		return inet_csk_listen_poll(ssk);
3907 	}
3908 
3909 	shutdown = READ_ONCE(sk->sk_shutdown);
3910 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3911 		mask |= EPOLLHUP;
3912 	if (shutdown & RCV_SHUTDOWN)
3913 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3914 
3915 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3916 		mask |= mptcp_check_readable(msk);
3917 		if (shutdown & SEND_SHUTDOWN)
3918 			mask |= EPOLLOUT | EPOLLWRNORM;
3919 		else
3920 			mask |= mptcp_check_writeable(msk);
3921 	} else if (state == TCP_SYN_SENT &&
3922 		   inet_test_bit(DEFER_CONNECT, sk)) {
3923 		/* cf tcp_poll() note about TFO */
3924 		mask |= EPOLLOUT | EPOLLWRNORM;
3925 	}
3926 
3927 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3928 	smp_rmb();
3929 	if (READ_ONCE(sk->sk_err))
3930 		mask |= EPOLLERR;
3931 
3932 	return mask;
3933 }
3934 
3935 static const struct proto_ops mptcp_stream_ops = {
3936 	.family		   = PF_INET,
3937 	.owner		   = THIS_MODULE,
3938 	.release	   = inet_release,
3939 	.bind		   = mptcp_bind,
3940 	.connect	   = inet_stream_connect,
3941 	.socketpair	   = sock_no_socketpair,
3942 	.accept		   = mptcp_stream_accept,
3943 	.getname	   = inet_getname,
3944 	.poll		   = mptcp_poll,
3945 	.ioctl		   = inet_ioctl,
3946 	.gettstamp	   = sock_gettstamp,
3947 	.listen		   = mptcp_listen,
3948 	.shutdown	   = inet_shutdown,
3949 	.setsockopt	   = sock_common_setsockopt,
3950 	.getsockopt	   = sock_common_getsockopt,
3951 	.sendmsg	   = inet_sendmsg,
3952 	.recvmsg	   = inet_recvmsg,
3953 	.mmap		   = sock_no_mmap,
3954 };
3955 
3956 static struct inet_protosw mptcp_protosw = {
3957 	.type		= SOCK_STREAM,
3958 	.protocol	= IPPROTO_MPTCP,
3959 	.prot		= &mptcp_prot,
3960 	.ops		= &mptcp_stream_ops,
3961 	.flags		= INET_PROTOSW_ICSK,
3962 };
3963 
3964 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3965 {
3966 	struct mptcp_delegated_action *delegated;
3967 	struct mptcp_subflow_context *subflow;
3968 	int work_done = 0;
3969 
3970 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3971 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3972 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3973 
3974 		bh_lock_sock_nested(ssk);
3975 		if (!sock_owned_by_user(ssk)) {
3976 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3977 		} else {
3978 			/* tcp_release_cb_override already processed
3979 			 * the action or will do at next release_sock().
3980 			 * In both case must dequeue the subflow here - on the same
3981 			 * CPU that scheduled it.
3982 			 */
3983 			smp_wmb();
3984 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
3985 		}
3986 		bh_unlock_sock(ssk);
3987 		sock_put(ssk);
3988 
3989 		if (++work_done == budget)
3990 			return budget;
3991 	}
3992 
3993 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3994 	 * will not try accessing the NULL napi->dev ptr
3995 	 */
3996 	napi_complete_done(napi, 0);
3997 	return work_done;
3998 }
3999 
4000 void __init mptcp_proto_init(void)
4001 {
4002 	struct mptcp_delegated_action *delegated;
4003 	int cpu;
4004 
4005 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4006 
4007 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4008 		panic("Failed to allocate MPTCP pcpu counter\n");
4009 
4010 	init_dummy_netdev(&mptcp_napi_dev);
4011 	for_each_possible_cpu(cpu) {
4012 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4013 		INIT_LIST_HEAD(&delegated->head);
4014 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4015 				  mptcp_napi_poll);
4016 		napi_enable(&delegated->napi);
4017 	}
4018 
4019 	mptcp_subflow_init();
4020 	mptcp_pm_init();
4021 	mptcp_sched_init();
4022 	mptcp_token_init();
4023 
4024 	if (proto_register(&mptcp_prot, 1) != 0)
4025 		panic("Failed to register MPTCP proto.\n");
4026 
4027 	inet_register_protosw(&mptcp_protosw);
4028 
4029 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4030 }
4031 
4032 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4033 static const struct proto_ops mptcp_v6_stream_ops = {
4034 	.family		   = PF_INET6,
4035 	.owner		   = THIS_MODULE,
4036 	.release	   = inet6_release,
4037 	.bind		   = mptcp_bind,
4038 	.connect	   = inet_stream_connect,
4039 	.socketpair	   = sock_no_socketpair,
4040 	.accept		   = mptcp_stream_accept,
4041 	.getname	   = inet6_getname,
4042 	.poll		   = mptcp_poll,
4043 	.ioctl		   = inet6_ioctl,
4044 	.gettstamp	   = sock_gettstamp,
4045 	.listen		   = mptcp_listen,
4046 	.shutdown	   = inet_shutdown,
4047 	.setsockopt	   = sock_common_setsockopt,
4048 	.getsockopt	   = sock_common_getsockopt,
4049 	.sendmsg	   = inet6_sendmsg,
4050 	.recvmsg	   = inet6_recvmsg,
4051 	.mmap		   = sock_no_mmap,
4052 #ifdef CONFIG_COMPAT
4053 	.compat_ioctl	   = inet6_compat_ioctl,
4054 #endif
4055 };
4056 
4057 static struct proto mptcp_v6_prot;
4058 
4059 static struct inet_protosw mptcp_v6_protosw = {
4060 	.type		= SOCK_STREAM,
4061 	.protocol	= IPPROTO_MPTCP,
4062 	.prot		= &mptcp_v6_prot,
4063 	.ops		= &mptcp_v6_stream_ops,
4064 	.flags		= INET_PROTOSW_ICSK,
4065 };
4066 
4067 int __init mptcp_proto_v6_init(void)
4068 {
4069 	int err;
4070 
4071 	mptcp_v6_prot = mptcp_prot;
4072 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4073 	mptcp_v6_prot.slab = NULL;
4074 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4075 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4076 
4077 	err = proto_register(&mptcp_v6_prot, 1);
4078 	if (err)
4079 		return err;
4080 
4081 	err = inet6_register_protosw(&mptcp_v6_protosw);
4082 	if (err)
4083 		proto_unregister(&mptcp_v6_prot);
4084 
4085 	return err;
4086 }
4087 #endif
4088