xref: /openbmc/linux/net/mptcp/protocol.c (revision e8614313)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
29 struct mptcp6_sock {
30 	struct mptcp_sock msk;
31 	struct ipv6_pinfo np;
32 };
33 #endif
34 
35 struct mptcp_skb_cb {
36 	u64 map_seq;
37 	u64 end_seq;
38 	u32 offset;
39 };
40 
41 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
42 
43 static struct percpu_counter mptcp_sockets_allocated;
44 
45 static void __mptcp_destroy_sock(struct sock *sk);
46 static void __mptcp_check_send_data_fin(struct sock *sk);
47 
48 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
49 static struct net_device mptcp_napi_dev;
50 
51 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
52  * completed yet or has failed, return the subflow socket.
53  * Otherwise return NULL.
54  */
55 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
56 {
57 	if (!msk->subflow || READ_ONCE(msk->can_ack))
58 		return NULL;
59 
60 	return msk->subflow;
61 }
62 
63 /* Returns end sequence number of the receiver's advertised window */
64 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
65 {
66 	return READ_ONCE(msk->wnd_end);
67 }
68 
69 static bool mptcp_is_tcpsk(struct sock *sk)
70 {
71 	struct socket *sock = sk->sk_socket;
72 
73 	if (unlikely(sk->sk_prot == &tcp_prot)) {
74 		/* we are being invoked after mptcp_accept() has
75 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
76 		 * not an mptcp one.
77 		 *
78 		 * Hand the socket over to tcp so all further socket ops
79 		 * bypass mptcp.
80 		 */
81 		sock->ops = &inet_stream_ops;
82 		return true;
83 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
84 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
85 		sock->ops = &inet6_stream_ops;
86 		return true;
87 #endif
88 	}
89 
90 	return false;
91 }
92 
93 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
94 {
95 	sock_owned_by_me((const struct sock *)msk);
96 
97 	if (likely(!__mptcp_check_fallback(msk)))
98 		return NULL;
99 
100 	return msk->first;
101 }
102 
103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, &ssock);
111 	if (err)
112 		return err;
113 
114 	msk->first = ssock->sk;
115 	msk->subflow = ssock;
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 	mptcp_sock_graft(msk->first, sk->sk_socket);
121 
122 	return 0;
123 }
124 
125 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
126 {
127 	sk_drops_add(sk, skb);
128 	__kfree_skb(skb);
129 }
130 
131 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
132 			       struct sk_buff *from)
133 {
134 	bool fragstolen;
135 	int delta;
136 
137 	if (MPTCP_SKB_CB(from)->offset ||
138 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
139 		return false;
140 
141 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
142 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
143 		 to->len, MPTCP_SKB_CB(from)->end_seq);
144 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
145 	kfree_skb_partial(from, fragstolen);
146 	atomic_add(delta, &sk->sk_rmem_alloc);
147 	sk_mem_charge(sk, delta);
148 	return true;
149 }
150 
151 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
152 				   struct sk_buff *from)
153 {
154 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
155 		return false;
156 
157 	return mptcp_try_coalesce((struct sock *)msk, to, from);
158 }
159 
160 /* "inspired" by tcp_data_queue_ofo(), main differences:
161  * - use mptcp seqs
162  * - don't cope with sacks
163  */
164 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
165 {
166 	struct sock *sk = (struct sock *)msk;
167 	struct rb_node **p, *parent;
168 	u64 seq, end_seq, max_seq;
169 	struct sk_buff *skb1;
170 
171 	seq = MPTCP_SKB_CB(skb)->map_seq;
172 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
173 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
174 
175 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
176 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
177 	if (after64(end_seq, max_seq)) {
178 		/* out of window */
179 		mptcp_drop(sk, skb);
180 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
181 			 (unsigned long long)end_seq - (unsigned long)max_seq,
182 			 (unsigned long long)msk->rcv_wnd_sent);
183 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
184 		return;
185 	}
186 
187 	p = &msk->out_of_order_queue.rb_node;
188 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
189 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
190 		rb_link_node(&skb->rbnode, NULL, p);
191 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
192 		msk->ooo_last_skb = skb;
193 		goto end;
194 	}
195 
196 	/* with 2 subflows, adding at end of ooo queue is quite likely
197 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
198 	 */
199 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
200 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
201 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
202 		return;
203 	}
204 
205 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
206 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
207 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
208 		parent = &msk->ooo_last_skb->rbnode;
209 		p = &parent->rb_right;
210 		goto insert;
211 	}
212 
213 	/* Find place to insert this segment. Handle overlaps on the way. */
214 	parent = NULL;
215 	while (*p) {
216 		parent = *p;
217 		skb1 = rb_to_skb(parent);
218 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
219 			p = &parent->rb_left;
220 			continue;
221 		}
222 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
223 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
224 				/* All the bits are present. Drop. */
225 				mptcp_drop(sk, skb);
226 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
227 				return;
228 			}
229 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
230 				/* partial overlap:
231 				 *     |     skb      |
232 				 *  |     skb1    |
233 				 * continue traversing
234 				 */
235 			} else {
236 				/* skb's seq == skb1's seq and skb covers skb1.
237 				 * Replace skb1 with skb.
238 				 */
239 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
240 						&msk->out_of_order_queue);
241 				mptcp_drop(sk, skb1);
242 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
243 				goto merge_right;
244 			}
245 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
246 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 			return;
248 		}
249 		p = &parent->rb_right;
250 	}
251 
252 insert:
253 	/* Insert segment into RB tree. */
254 	rb_link_node(&skb->rbnode, parent, p);
255 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
256 
257 merge_right:
258 	/* Remove other segments covered by skb. */
259 	while ((skb1 = skb_rb_next(skb)) != NULL) {
260 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
261 			break;
262 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
263 		mptcp_drop(sk, skb1);
264 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
265 	}
266 	/* If there is no skb after us, we are the last_skb ! */
267 	if (!skb1)
268 		msk->ooo_last_skb = skb;
269 
270 end:
271 	skb_condense(skb);
272 	skb_set_owner_r(skb, sk);
273 }
274 
275 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
276 			     struct sk_buff *skb, unsigned int offset,
277 			     size_t copy_len)
278 {
279 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
280 	struct sock *sk = (struct sock *)msk;
281 	struct sk_buff *tail;
282 
283 	__skb_unlink(skb, &ssk->sk_receive_queue);
284 
285 	skb_ext_reset(skb);
286 	skb_orphan(skb);
287 
288 	/* try to fetch required memory from subflow */
289 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
290 		if (ssk->sk_forward_alloc < skb->truesize)
291 			goto drop;
292 		__sk_mem_reclaim(ssk, skb->truesize);
293 		if (!sk_rmem_schedule(sk, skb, skb->truesize))
294 			goto drop;
295 	}
296 
297 	/* the skb map_seq accounts for the skb offset:
298 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
299 	 * value
300 	 */
301 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
302 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
303 	MPTCP_SKB_CB(skb)->offset = offset;
304 
305 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
306 		/* in sequence */
307 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
308 		tail = skb_peek_tail(&sk->sk_receive_queue);
309 		if (tail && mptcp_try_coalesce(sk, tail, skb))
310 			return true;
311 
312 		skb_set_owner_r(skb, sk);
313 		__skb_queue_tail(&sk->sk_receive_queue, skb);
314 		return true;
315 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
316 		mptcp_data_queue_ofo(msk, skb);
317 		return false;
318 	}
319 
320 	/* old data, keep it simple and drop the whole pkt, sender
321 	 * will retransmit as needed, if needed.
322 	 */
323 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
324 drop:
325 	mptcp_drop(sk, skb);
326 	return false;
327 }
328 
329 static void mptcp_stop_timer(struct sock *sk)
330 {
331 	struct inet_connection_sock *icsk = inet_csk(sk);
332 
333 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
334 	mptcp_sk(sk)->timer_ival = 0;
335 }
336 
337 static void mptcp_close_wake_up(struct sock *sk)
338 {
339 	if (sock_flag(sk, SOCK_DEAD))
340 		return;
341 
342 	sk->sk_state_change(sk);
343 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
344 	    sk->sk_state == TCP_CLOSE)
345 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
346 	else
347 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
348 }
349 
350 static bool mptcp_pending_data_fin_ack(struct sock *sk)
351 {
352 	struct mptcp_sock *msk = mptcp_sk(sk);
353 
354 	return !__mptcp_check_fallback(msk) &&
355 	       ((1 << sk->sk_state) &
356 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
357 	       msk->write_seq == READ_ONCE(msk->snd_una);
358 }
359 
360 static void mptcp_check_data_fin_ack(struct sock *sk)
361 {
362 	struct mptcp_sock *msk = mptcp_sk(sk);
363 
364 	/* Look for an acknowledged DATA_FIN */
365 	if (mptcp_pending_data_fin_ack(sk)) {
366 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
367 
368 		switch (sk->sk_state) {
369 		case TCP_FIN_WAIT1:
370 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
371 			break;
372 		case TCP_CLOSING:
373 		case TCP_LAST_ACK:
374 			inet_sk_state_store(sk, TCP_CLOSE);
375 			break;
376 		}
377 
378 		mptcp_close_wake_up(sk);
379 	}
380 }
381 
382 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
383 {
384 	struct mptcp_sock *msk = mptcp_sk(sk);
385 
386 	if (READ_ONCE(msk->rcv_data_fin) &&
387 	    ((1 << sk->sk_state) &
388 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
389 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
390 
391 		if (msk->ack_seq == rcv_data_fin_seq) {
392 			if (seq)
393 				*seq = rcv_data_fin_seq;
394 
395 			return true;
396 		}
397 	}
398 
399 	return false;
400 }
401 
402 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
403 {
404 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
405 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
406 
407 	if (tout <= 0)
408 		tout = mptcp_sk(sk)->timer_ival;
409 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
410 }
411 
412 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
413 {
414 	struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
415 
416 	/* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */
417 	if (subflow->request_join && !subflow->fully_established)
418 		return false;
419 
420 	/* only send if our side has not closed yet */
421 	return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT));
422 }
423 
424 static bool tcp_can_send_ack(const struct sock *ssk)
425 {
426 	return !((1 << inet_sk_state_load(ssk)) &
427 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
428 }
429 
430 static void mptcp_send_ack(struct mptcp_sock *msk)
431 {
432 	struct mptcp_subflow_context *subflow;
433 
434 	mptcp_for_each_subflow(msk, subflow) {
435 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
436 
437 		lock_sock(ssk);
438 		if (tcp_can_send_ack(ssk))
439 			tcp_send_ack(ssk);
440 		release_sock(ssk);
441 	}
442 }
443 
444 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk)
445 {
446 	int ret;
447 
448 	lock_sock(ssk);
449 	ret = tcp_can_send_ack(ssk);
450 	if (ret)
451 		tcp_cleanup_rbuf(ssk, 1);
452 	release_sock(ssk);
453 	return ret;
454 }
455 
456 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
457 {
458 	struct sock *ack_hint = READ_ONCE(msk->ack_hint);
459 	int old_space = READ_ONCE(msk->old_wspace);
460 	struct mptcp_subflow_context *subflow;
461 	struct sock *sk = (struct sock *)msk;
462 	bool cleanup;
463 
464 	/* this is a simple superset of what tcp_cleanup_rbuf() implements
465 	 * so that we don't have to acquire the ssk socket lock most of the time
466 	 * to do actually nothing
467 	 */
468 	cleanup = __mptcp_space(sk) - old_space >= max(0, old_space);
469 	if (!cleanup)
470 		return;
471 
472 	/* if the hinted ssk is still active, try to use it */
473 	if (likely(ack_hint)) {
474 		mptcp_for_each_subflow(msk, subflow) {
475 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
476 
477 			if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk))
478 				return;
479 		}
480 	}
481 
482 	/* otherwise pick the first active subflow */
483 	mptcp_for_each_subflow(msk, subflow)
484 		if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow)))
485 			return;
486 }
487 
488 static bool mptcp_check_data_fin(struct sock *sk)
489 {
490 	struct mptcp_sock *msk = mptcp_sk(sk);
491 	u64 rcv_data_fin_seq;
492 	bool ret = false;
493 
494 	if (__mptcp_check_fallback(msk) || !msk->first)
495 		return ret;
496 
497 	/* Need to ack a DATA_FIN received from a peer while this side
498 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
499 	 * msk->rcv_data_fin was set when parsing the incoming options
500 	 * at the subflow level and the msk lock was not held, so this
501 	 * is the first opportunity to act on the DATA_FIN and change
502 	 * the msk state.
503 	 *
504 	 * If we are caught up to the sequence number of the incoming
505 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
506 	 * not caught up, do nothing and let the recv code send DATA_ACK
507 	 * when catching up.
508 	 */
509 
510 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
511 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
512 		WRITE_ONCE(msk->rcv_data_fin, 0);
513 
514 		sk->sk_shutdown |= RCV_SHUTDOWN;
515 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
516 		set_bit(MPTCP_DATA_READY, &msk->flags);
517 
518 		switch (sk->sk_state) {
519 		case TCP_ESTABLISHED:
520 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
521 			break;
522 		case TCP_FIN_WAIT1:
523 			inet_sk_state_store(sk, TCP_CLOSING);
524 			break;
525 		case TCP_FIN_WAIT2:
526 			inet_sk_state_store(sk, TCP_CLOSE);
527 			break;
528 		default:
529 			/* Other states not expected */
530 			WARN_ON_ONCE(1);
531 			break;
532 		}
533 
534 		ret = true;
535 		mptcp_set_timeout(sk, NULL);
536 		mptcp_send_ack(msk);
537 		mptcp_close_wake_up(sk);
538 	}
539 	return ret;
540 }
541 
542 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
543 					   struct sock *ssk,
544 					   unsigned int *bytes)
545 {
546 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
547 	struct sock *sk = (struct sock *)msk;
548 	unsigned int moved = 0;
549 	bool more_data_avail;
550 	struct tcp_sock *tp;
551 	bool done = false;
552 	int sk_rbuf;
553 
554 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
555 
556 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
557 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
558 
559 		if (unlikely(ssk_rbuf > sk_rbuf)) {
560 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
561 			sk_rbuf = ssk_rbuf;
562 		}
563 	}
564 
565 	pr_debug("msk=%p ssk=%p", msk, ssk);
566 	tp = tcp_sk(ssk);
567 	do {
568 		u32 map_remaining, offset;
569 		u32 seq = tp->copied_seq;
570 		struct sk_buff *skb;
571 		bool fin;
572 
573 		/* try to move as much data as available */
574 		map_remaining = subflow->map_data_len -
575 				mptcp_subflow_get_map_offset(subflow);
576 
577 		skb = skb_peek(&ssk->sk_receive_queue);
578 		if (!skb) {
579 			/* if no data is found, a racing workqueue/recvmsg
580 			 * already processed the new data, stop here or we
581 			 * can enter an infinite loop
582 			 */
583 			if (!moved)
584 				done = true;
585 			break;
586 		}
587 
588 		if (__mptcp_check_fallback(msk)) {
589 			/* if we are running under the workqueue, TCP could have
590 			 * collapsed skbs between dummy map creation and now
591 			 * be sure to adjust the size
592 			 */
593 			map_remaining = skb->len;
594 			subflow->map_data_len = skb->len;
595 		}
596 
597 		offset = seq - TCP_SKB_CB(skb)->seq;
598 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
599 		if (fin) {
600 			done = true;
601 			seq++;
602 		}
603 
604 		if (offset < skb->len) {
605 			size_t len = skb->len - offset;
606 
607 			if (tp->urg_data)
608 				done = true;
609 
610 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
611 				moved += len;
612 			seq += len;
613 
614 			if (WARN_ON_ONCE(map_remaining < len))
615 				break;
616 		} else {
617 			WARN_ON_ONCE(!fin);
618 			sk_eat_skb(ssk, skb);
619 			done = true;
620 		}
621 
622 		WRITE_ONCE(tp->copied_seq, seq);
623 		more_data_avail = mptcp_subflow_data_available(ssk);
624 
625 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
626 			done = true;
627 			break;
628 		}
629 	} while (more_data_avail);
630 	WRITE_ONCE(msk->ack_hint, ssk);
631 
632 	*bytes += moved;
633 	return done;
634 }
635 
636 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
637 {
638 	struct sock *sk = (struct sock *)msk;
639 	struct sk_buff *skb, *tail;
640 	bool moved = false;
641 	struct rb_node *p;
642 	u64 end_seq;
643 
644 	p = rb_first(&msk->out_of_order_queue);
645 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
646 	while (p) {
647 		skb = rb_to_skb(p);
648 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
649 			break;
650 
651 		p = rb_next(p);
652 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
653 
654 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
655 				      msk->ack_seq))) {
656 			mptcp_drop(sk, skb);
657 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
658 			continue;
659 		}
660 
661 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
662 		tail = skb_peek_tail(&sk->sk_receive_queue);
663 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
664 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
665 
666 			/* skip overlapping data, if any */
667 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
668 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
669 				 delta);
670 			MPTCP_SKB_CB(skb)->offset += delta;
671 			__skb_queue_tail(&sk->sk_receive_queue, skb);
672 		}
673 		msk->ack_seq = end_seq;
674 		moved = true;
675 	}
676 	return moved;
677 }
678 
679 /* In most cases we will be able to lock the mptcp socket.  If its already
680  * owned, we need to defer to the work queue to avoid ABBA deadlock.
681  */
682 static void move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
683 {
684 	struct sock *sk = (struct sock *)msk;
685 	unsigned int moved = 0;
686 
687 	if (inet_sk_state_load(sk) == TCP_CLOSE)
688 		return;
689 
690 	mptcp_data_lock(sk);
691 
692 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
693 	__mptcp_ofo_queue(msk);
694 
695 	/* If the moves have caught up with the DATA_FIN sequence number
696 	 * it's time to ack the DATA_FIN and change socket state, but
697 	 * this is not a good place to change state. Let the workqueue
698 	 * do it.
699 	 */
700 	if (mptcp_pending_data_fin(sk, NULL))
701 		mptcp_schedule_work(sk);
702 	mptcp_data_unlock(sk);
703 }
704 
705 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
706 {
707 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
708 	struct mptcp_sock *msk = mptcp_sk(sk);
709 	int sk_rbuf, ssk_rbuf;
710 	bool wake;
711 
712 	/* The peer can send data while we are shutting down this
713 	 * subflow at msk destruction time, but we must avoid enqueuing
714 	 * more data to the msk receive queue
715 	 */
716 	if (unlikely(subflow->disposable))
717 		return;
718 
719 	/* move_skbs_to_msk below can legitly clear the data_avail flag,
720 	 * but we will need later to properly woke the reader, cache its
721 	 * value
722 	 */
723 	wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL;
724 	if (wake)
725 		set_bit(MPTCP_DATA_READY, &msk->flags);
726 
727 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
728 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
729 	if (unlikely(ssk_rbuf > sk_rbuf))
730 		sk_rbuf = ssk_rbuf;
731 
732 	/* over limit? can't append more skbs to msk */
733 	if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
734 		goto wake;
735 
736 	move_skbs_to_msk(msk, ssk);
737 
738 wake:
739 	if (wake)
740 		sk->sk_data_ready(sk);
741 }
742 
743 void __mptcp_flush_join_list(struct mptcp_sock *msk)
744 {
745 	struct mptcp_subflow_context *subflow;
746 
747 	if (likely(list_empty(&msk->join_list)))
748 		return;
749 
750 	spin_lock_bh(&msk->join_list_lock);
751 	list_for_each_entry(subflow, &msk->join_list, node)
752 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
753 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
754 	spin_unlock_bh(&msk->join_list_lock);
755 }
756 
757 static bool mptcp_timer_pending(struct sock *sk)
758 {
759 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
760 }
761 
762 static void mptcp_reset_timer(struct sock *sk)
763 {
764 	struct inet_connection_sock *icsk = inet_csk(sk);
765 	unsigned long tout;
766 
767 	/* prevent rescheduling on close */
768 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
769 		return;
770 
771 	/* should never be called with mptcp level timer cleared */
772 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
773 	if (WARN_ON_ONCE(!tout))
774 		tout = TCP_RTO_MIN;
775 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
776 }
777 
778 bool mptcp_schedule_work(struct sock *sk)
779 {
780 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
781 	    schedule_work(&mptcp_sk(sk)->work)) {
782 		/* each subflow already holds a reference to the sk, and the
783 		 * workqueue is invoked by a subflow, so sk can't go away here.
784 		 */
785 		sock_hold(sk);
786 		return true;
787 	}
788 	return false;
789 }
790 
791 void mptcp_subflow_eof(struct sock *sk)
792 {
793 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
794 		mptcp_schedule_work(sk);
795 }
796 
797 static void mptcp_check_for_eof(struct mptcp_sock *msk)
798 {
799 	struct mptcp_subflow_context *subflow;
800 	struct sock *sk = (struct sock *)msk;
801 	int receivers = 0;
802 
803 	mptcp_for_each_subflow(msk, subflow)
804 		receivers += !subflow->rx_eof;
805 	if (receivers)
806 		return;
807 
808 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
809 		/* hopefully temporary hack: propagate shutdown status
810 		 * to msk, when all subflows agree on it
811 		 */
812 		sk->sk_shutdown |= RCV_SHUTDOWN;
813 
814 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
815 		set_bit(MPTCP_DATA_READY, &msk->flags);
816 		sk->sk_data_ready(sk);
817 	}
818 
819 	switch (sk->sk_state) {
820 	case TCP_ESTABLISHED:
821 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
822 		break;
823 	case TCP_FIN_WAIT1:
824 		inet_sk_state_store(sk, TCP_CLOSING);
825 		break;
826 	case TCP_FIN_WAIT2:
827 		inet_sk_state_store(sk, TCP_CLOSE);
828 		break;
829 	default:
830 		return;
831 	}
832 	mptcp_close_wake_up(sk);
833 }
834 
835 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
836 {
837 	struct mptcp_subflow_context *subflow;
838 	struct sock *sk = (struct sock *)msk;
839 
840 	sock_owned_by_me(sk);
841 
842 	mptcp_for_each_subflow(msk, subflow) {
843 		if (subflow->data_avail)
844 			return mptcp_subflow_tcp_sock(subflow);
845 	}
846 
847 	return NULL;
848 }
849 
850 static bool mptcp_skb_can_collapse_to(u64 write_seq,
851 				      const struct sk_buff *skb,
852 				      const struct mptcp_ext *mpext)
853 {
854 	if (!tcp_skb_can_collapse_to(skb))
855 		return false;
856 
857 	/* can collapse only if MPTCP level sequence is in order and this
858 	 * mapping has not been xmitted yet
859 	 */
860 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
861 	       !mpext->frozen;
862 }
863 
864 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
865 				       const struct page_frag *pfrag,
866 				       const struct mptcp_data_frag *df)
867 {
868 	return df && pfrag->page == df->page &&
869 		pfrag->size - pfrag->offset > 0 &&
870 		df->data_seq + df->data_len == msk->write_seq;
871 }
872 
873 static int mptcp_wmem_with_overhead(struct sock *sk, int size)
874 {
875 	struct mptcp_sock *msk = mptcp_sk(sk);
876 	int ret, skbs;
877 
878 	ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
879 	skbs = (msk->tx_pending_data + size) / msk->size_goal_cache;
880 	if (skbs < msk->skb_tx_cache.qlen)
881 		return ret;
882 
883 	return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER);
884 }
885 
886 static void __mptcp_wmem_reserve(struct sock *sk, int size)
887 {
888 	int amount = mptcp_wmem_with_overhead(sk, size);
889 	struct mptcp_sock *msk = mptcp_sk(sk);
890 
891 	WARN_ON_ONCE(msk->wmem_reserved);
892 	if (WARN_ON_ONCE(amount < 0))
893 		amount = 0;
894 
895 	if (amount <= sk->sk_forward_alloc)
896 		goto reserve;
897 
898 	/* under memory pressure try to reserve at most a single page
899 	 * otherwise try to reserve the full estimate and fallback
900 	 * to a single page before entering the error path
901 	 */
902 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
903 	    !sk_wmem_schedule(sk, amount)) {
904 		if (amount <= PAGE_SIZE)
905 			goto nomem;
906 
907 		amount = PAGE_SIZE;
908 		if (!sk_wmem_schedule(sk, amount))
909 			goto nomem;
910 	}
911 
912 reserve:
913 	msk->wmem_reserved = amount;
914 	sk->sk_forward_alloc -= amount;
915 	return;
916 
917 nomem:
918 	/* we will wait for memory on next allocation */
919 	msk->wmem_reserved = -1;
920 }
921 
922 static void __mptcp_update_wmem(struct sock *sk)
923 {
924 	struct mptcp_sock *msk = mptcp_sk(sk);
925 
926 	if (!msk->wmem_reserved)
927 		return;
928 
929 	if (msk->wmem_reserved < 0)
930 		msk->wmem_reserved = 0;
931 	if (msk->wmem_reserved > 0) {
932 		sk->sk_forward_alloc += msk->wmem_reserved;
933 		msk->wmem_reserved = 0;
934 	}
935 }
936 
937 static bool mptcp_wmem_alloc(struct sock *sk, int size)
938 {
939 	struct mptcp_sock *msk = mptcp_sk(sk);
940 
941 	/* check for pre-existing error condition */
942 	if (msk->wmem_reserved < 0)
943 		return false;
944 
945 	if (msk->wmem_reserved >= size)
946 		goto account;
947 
948 	mptcp_data_lock(sk);
949 	if (!sk_wmem_schedule(sk, size)) {
950 		mptcp_data_unlock(sk);
951 		return false;
952 	}
953 
954 	sk->sk_forward_alloc -= size;
955 	msk->wmem_reserved += size;
956 	mptcp_data_unlock(sk);
957 
958 account:
959 	msk->wmem_reserved -= size;
960 	return true;
961 }
962 
963 static void mptcp_wmem_uncharge(struct sock *sk, int size)
964 {
965 	struct mptcp_sock *msk = mptcp_sk(sk);
966 
967 	if (msk->wmem_reserved < 0)
968 		msk->wmem_reserved = 0;
969 	msk->wmem_reserved += size;
970 }
971 
972 static void mptcp_mem_reclaim_partial(struct sock *sk)
973 {
974 	struct mptcp_sock *msk = mptcp_sk(sk);
975 
976 	/* if we are experiencing a transint allocation error,
977 	 * the forward allocation memory has been already
978 	 * released
979 	 */
980 	if (msk->wmem_reserved < 0)
981 		return;
982 
983 	mptcp_data_lock(sk);
984 	sk->sk_forward_alloc += msk->wmem_reserved;
985 	sk_mem_reclaim_partial(sk);
986 	msk->wmem_reserved = sk->sk_forward_alloc;
987 	sk->sk_forward_alloc = 0;
988 	mptcp_data_unlock(sk);
989 }
990 
991 static void dfrag_uncharge(struct sock *sk, int len)
992 {
993 	sk_mem_uncharge(sk, len);
994 	sk_wmem_queued_add(sk, -len);
995 }
996 
997 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
998 {
999 	int len = dfrag->data_len + dfrag->overhead;
1000 
1001 	list_del(&dfrag->list);
1002 	dfrag_uncharge(sk, len);
1003 	put_page(dfrag->page);
1004 }
1005 
1006 static void __mptcp_clean_una(struct sock *sk)
1007 {
1008 	struct mptcp_sock *msk = mptcp_sk(sk);
1009 	struct mptcp_data_frag *dtmp, *dfrag;
1010 	bool cleaned = false;
1011 	u64 snd_una;
1012 
1013 	/* on fallback we just need to ignore snd_una, as this is really
1014 	 * plain TCP
1015 	 */
1016 	if (__mptcp_check_fallback(msk))
1017 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1018 
1019 	snd_una = msk->snd_una;
1020 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1021 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1022 			break;
1023 
1024 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1025 			break;
1026 		dfrag_clear(sk, dfrag);
1027 		cleaned = true;
1028 	}
1029 
1030 	dfrag = mptcp_rtx_head(sk);
1031 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1032 		u64 delta = snd_una - dfrag->data_seq;
1033 
1034 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1035 			goto out;
1036 
1037 		dfrag->data_seq += delta;
1038 		dfrag->offset += delta;
1039 		dfrag->data_len -= delta;
1040 		dfrag->already_sent -= delta;
1041 
1042 		dfrag_uncharge(sk, delta);
1043 		cleaned = true;
1044 	}
1045 
1046 out:
1047 	if (cleaned) {
1048 		if (tcp_under_memory_pressure(sk)) {
1049 			__mptcp_update_wmem(sk);
1050 			sk_mem_reclaim_partial(sk);
1051 		}
1052 	}
1053 
1054 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1055 		if (msk->timer_ival)
1056 			mptcp_stop_timer(sk);
1057 	} else {
1058 		mptcp_reset_timer(sk);
1059 	}
1060 }
1061 
1062 static void __mptcp_clean_una_wakeup(struct sock *sk)
1063 {
1064 	__mptcp_clean_una(sk);
1065 	mptcp_write_space(sk);
1066 }
1067 
1068 static void mptcp_enter_memory_pressure(struct sock *sk)
1069 {
1070 	struct mptcp_subflow_context *subflow;
1071 	struct mptcp_sock *msk = mptcp_sk(sk);
1072 	bool first = true;
1073 
1074 	sk_stream_moderate_sndbuf(sk);
1075 	mptcp_for_each_subflow(msk, subflow) {
1076 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1077 
1078 		if (first)
1079 			tcp_enter_memory_pressure(ssk);
1080 		sk_stream_moderate_sndbuf(ssk);
1081 		first = false;
1082 	}
1083 }
1084 
1085 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1086  * data
1087  */
1088 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1089 {
1090 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1091 					pfrag, sk->sk_allocation)))
1092 		return true;
1093 
1094 	mptcp_enter_memory_pressure(sk);
1095 	return false;
1096 }
1097 
1098 static struct mptcp_data_frag *
1099 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1100 		      int orig_offset)
1101 {
1102 	int offset = ALIGN(orig_offset, sizeof(long));
1103 	struct mptcp_data_frag *dfrag;
1104 
1105 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1106 	dfrag->data_len = 0;
1107 	dfrag->data_seq = msk->write_seq;
1108 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1109 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1110 	dfrag->already_sent = 0;
1111 	dfrag->page = pfrag->page;
1112 
1113 	return dfrag;
1114 }
1115 
1116 struct mptcp_sendmsg_info {
1117 	int mss_now;
1118 	int size_goal;
1119 	u16 limit;
1120 	u16 sent;
1121 	unsigned int flags;
1122 };
1123 
1124 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1125 				    int avail_size)
1126 {
1127 	u64 window_end = mptcp_wnd_end(msk);
1128 
1129 	if (__mptcp_check_fallback(msk))
1130 		return avail_size;
1131 
1132 	if (!before64(data_seq + avail_size, window_end)) {
1133 		u64 allowed_size = window_end - data_seq;
1134 
1135 		return min_t(unsigned int, allowed_size, avail_size);
1136 	}
1137 
1138 	return avail_size;
1139 }
1140 
1141 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1142 {
1143 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1144 
1145 	if (!mpext)
1146 		return false;
1147 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1148 	return true;
1149 }
1150 
1151 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1152 {
1153 	struct sk_buff *skb;
1154 
1155 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1156 	if (likely(skb)) {
1157 		if (likely(__mptcp_add_ext(skb, gfp))) {
1158 			skb_reserve(skb, MAX_TCP_HEADER);
1159 			skb->reserved_tailroom = skb->end - skb->tail;
1160 			return skb;
1161 		}
1162 		__kfree_skb(skb);
1163 	} else {
1164 		mptcp_enter_memory_pressure(sk);
1165 	}
1166 	return NULL;
1167 }
1168 
1169 static bool mptcp_tx_cache_refill(struct sock *sk, int size,
1170 				  struct sk_buff_head *skbs, int *total_ts)
1171 {
1172 	struct mptcp_sock *msk = mptcp_sk(sk);
1173 	struct sk_buff *skb;
1174 	int space_needed;
1175 
1176 	if (unlikely(tcp_under_memory_pressure(sk))) {
1177 		mptcp_mem_reclaim_partial(sk);
1178 
1179 		/* under pressure pre-allocate at most a single skb */
1180 		if (msk->skb_tx_cache.qlen)
1181 			return true;
1182 		space_needed = msk->size_goal_cache;
1183 	} else {
1184 		space_needed = msk->tx_pending_data + size -
1185 			       msk->skb_tx_cache.qlen * msk->size_goal_cache;
1186 	}
1187 
1188 	while (space_needed > 0) {
1189 		skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation);
1190 		if (unlikely(!skb)) {
1191 			/* under memory pressure, try to pass the caller a
1192 			 * single skb to allow forward progress
1193 			 */
1194 			while (skbs->qlen > 1) {
1195 				skb = __skb_dequeue_tail(skbs);
1196 				*total_ts -= skb->truesize;
1197 				__kfree_skb(skb);
1198 			}
1199 			return skbs->qlen > 0;
1200 		}
1201 
1202 		*total_ts += skb->truesize;
1203 		__skb_queue_tail(skbs, skb);
1204 		space_needed -= msk->size_goal_cache;
1205 	}
1206 	return true;
1207 }
1208 
1209 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1210 {
1211 	struct mptcp_sock *msk = mptcp_sk(sk);
1212 	struct sk_buff *skb;
1213 
1214 	if (ssk->sk_tx_skb_cache) {
1215 		skb = ssk->sk_tx_skb_cache;
1216 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1217 			     !__mptcp_add_ext(skb, gfp)))
1218 			return false;
1219 		return true;
1220 	}
1221 
1222 	skb = skb_peek(&msk->skb_tx_cache);
1223 	if (skb) {
1224 		if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1225 			skb = __skb_dequeue(&msk->skb_tx_cache);
1226 			if (WARN_ON_ONCE(!skb))
1227 				return false;
1228 
1229 			mptcp_wmem_uncharge(sk, skb->truesize);
1230 			ssk->sk_tx_skb_cache = skb;
1231 			return true;
1232 		}
1233 
1234 		/* over memory limit, no point to try to allocate a new skb */
1235 		return false;
1236 	}
1237 
1238 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1239 	if (!skb)
1240 		return false;
1241 
1242 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1243 		ssk->sk_tx_skb_cache = skb;
1244 		return true;
1245 	}
1246 	kfree_skb(skb);
1247 	return false;
1248 }
1249 
1250 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1251 {
1252 	return !ssk->sk_tx_skb_cache &&
1253 	       !skb_peek(&mptcp_sk(sk)->skb_tx_cache) &&
1254 	       tcp_under_memory_pressure(sk);
1255 }
1256 
1257 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1258 {
1259 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1260 		mptcp_mem_reclaim_partial(sk);
1261 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1262 }
1263 
1264 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1265 			      struct mptcp_data_frag *dfrag,
1266 			      struct mptcp_sendmsg_info *info)
1267 {
1268 	u64 data_seq = dfrag->data_seq + info->sent;
1269 	struct mptcp_sock *msk = mptcp_sk(sk);
1270 	bool zero_window_probe = false;
1271 	struct mptcp_ext *mpext = NULL;
1272 	struct sk_buff *skb, *tail;
1273 	bool can_collapse = false;
1274 	int size_bias = 0;
1275 	int avail_size;
1276 	size_t ret = 0;
1277 
1278 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%lld len=%d already sent=%d",
1279 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1280 
1281 	/* compute send limit */
1282 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1283 	avail_size = info->size_goal;
1284 	msk->size_goal_cache = info->size_goal;
1285 	skb = tcp_write_queue_tail(ssk);
1286 	if (skb) {
1287 		/* Limit the write to the size available in the
1288 		 * current skb, if any, so that we create at most a new skb.
1289 		 * Explicitly tells TCP internals to avoid collapsing on later
1290 		 * queue management operation, to avoid breaking the ext <->
1291 		 * SSN association set here
1292 		 */
1293 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1294 		can_collapse = (info->size_goal - skb->len > 0) &&
1295 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1296 		if (!can_collapse) {
1297 			TCP_SKB_CB(skb)->eor = 1;
1298 		} else {
1299 			size_bias = skb->len;
1300 			avail_size = info->size_goal - skb->len;
1301 		}
1302 	}
1303 
1304 	/* Zero window and all data acked? Probe. */
1305 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1306 	if (avail_size == 0) {
1307 		u64 snd_una = READ_ONCE(msk->snd_una);
1308 
1309 		if (skb || snd_una != msk->snd_nxt)
1310 			return 0;
1311 		zero_window_probe = true;
1312 		data_seq = snd_una - 1;
1313 		avail_size = 1;
1314 	}
1315 
1316 	if (WARN_ON_ONCE(info->sent > info->limit ||
1317 			 info->limit > dfrag->data_len))
1318 		return 0;
1319 
1320 	ret = info->limit - info->sent;
1321 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1322 			      dfrag->page, dfrag->offset + info->sent, &ret);
1323 	if (!tail) {
1324 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1325 		return -ENOMEM;
1326 	}
1327 
1328 	/* if the tail skb is still the cached one, collapsing really happened.
1329 	 */
1330 	if (skb == tail) {
1331 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1332 		mpext->data_len += ret;
1333 		WARN_ON_ONCE(!can_collapse);
1334 		WARN_ON_ONCE(zero_window_probe);
1335 		goto out;
1336 	}
1337 
1338 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1339 	if (WARN_ON_ONCE(!mpext)) {
1340 		/* should never reach here, stream corrupted */
1341 		return -EINVAL;
1342 	}
1343 
1344 	memset(mpext, 0, sizeof(*mpext));
1345 	mpext->data_seq = data_seq;
1346 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1347 	mpext->data_len = ret;
1348 	mpext->use_map = 1;
1349 	mpext->dsn64 = 1;
1350 
1351 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1352 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1353 		 mpext->dsn64);
1354 
1355 	if (zero_window_probe) {
1356 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1357 		mpext->frozen = 1;
1358 		ret = 0;
1359 		tcp_push_pending_frames(ssk);
1360 	}
1361 out:
1362 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1363 	return ret;
1364 }
1365 
1366 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1367 					 sizeof(struct tcphdr) - \
1368 					 MAX_TCP_OPTION_SPACE - \
1369 					 sizeof(struct ipv6hdr) - \
1370 					 sizeof(struct frag_hdr))
1371 
1372 struct subflow_send_info {
1373 	struct sock *ssk;
1374 	u64 ratio;
1375 };
1376 
1377 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1378 {
1379 	struct subflow_send_info send_info[2];
1380 	struct mptcp_subflow_context *subflow;
1381 	int i, nr_active = 0;
1382 	struct sock *ssk;
1383 	u64 ratio;
1384 	u32 pace;
1385 
1386 	sock_owned_by_me((struct sock *)msk);
1387 
1388 	if (__mptcp_check_fallback(msk)) {
1389 		if (!msk->first)
1390 			return NULL;
1391 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1392 	}
1393 
1394 	/* re-use last subflow, if the burst allow that */
1395 	if (msk->last_snd && msk->snd_burst > 0 &&
1396 	    sk_stream_memory_free(msk->last_snd) &&
1397 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1398 		return msk->last_snd;
1399 
1400 	/* pick the subflow with the lower wmem/wspace ratio */
1401 	for (i = 0; i < 2; ++i) {
1402 		send_info[i].ssk = NULL;
1403 		send_info[i].ratio = -1;
1404 	}
1405 	mptcp_for_each_subflow(msk, subflow) {
1406 		ssk =  mptcp_subflow_tcp_sock(subflow);
1407 		if (!mptcp_subflow_active(subflow))
1408 			continue;
1409 
1410 		nr_active += !subflow->backup;
1411 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1412 			continue;
1413 
1414 		pace = READ_ONCE(ssk->sk_pacing_rate);
1415 		if (!pace)
1416 			continue;
1417 
1418 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1419 				pace);
1420 		if (ratio < send_info[subflow->backup].ratio) {
1421 			send_info[subflow->backup].ssk = ssk;
1422 			send_info[subflow->backup].ratio = ratio;
1423 		}
1424 	}
1425 
1426 	pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld",
1427 		 msk, nr_active, send_info[0].ssk, send_info[0].ratio,
1428 		 send_info[1].ssk, send_info[1].ratio);
1429 
1430 	/* pick the best backup if no other subflow is active */
1431 	if (!nr_active)
1432 		send_info[0].ssk = send_info[1].ssk;
1433 
1434 	if (send_info[0].ssk) {
1435 		msk->last_snd = send_info[0].ssk;
1436 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1437 				       tcp_sk(msk->last_snd)->snd_wnd);
1438 		return msk->last_snd;
1439 	}
1440 
1441 	return NULL;
1442 }
1443 
1444 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1445 			       struct mptcp_sendmsg_info *info)
1446 {
1447 	mptcp_set_timeout(sk, ssk);
1448 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1449 	release_sock(ssk);
1450 }
1451 
1452 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1453 {
1454 	struct sock *prev_ssk = NULL, *ssk = NULL;
1455 	struct mptcp_sock *msk = mptcp_sk(sk);
1456 	struct mptcp_sendmsg_info info = {
1457 				.flags = flags,
1458 	};
1459 	struct mptcp_data_frag *dfrag;
1460 	int len, copied = 0;
1461 
1462 	while ((dfrag = mptcp_send_head(sk))) {
1463 		info.sent = dfrag->already_sent;
1464 		info.limit = dfrag->data_len;
1465 		len = dfrag->data_len - dfrag->already_sent;
1466 		while (len > 0) {
1467 			int ret = 0;
1468 
1469 			prev_ssk = ssk;
1470 			__mptcp_flush_join_list(msk);
1471 			ssk = mptcp_subflow_get_send(msk);
1472 
1473 			/* try to keep the subflow socket lock across
1474 			 * consecutive xmit on the same socket
1475 			 */
1476 			if (ssk != prev_ssk && prev_ssk)
1477 				mptcp_push_release(sk, prev_ssk, &info);
1478 			if (!ssk)
1479 				goto out;
1480 
1481 			if (ssk != prev_ssk || !prev_ssk)
1482 				lock_sock(ssk);
1483 
1484 			/* keep it simple and always provide a new skb for the
1485 			 * subflow, even if we will not use it when collapsing
1486 			 * on the pending one
1487 			 */
1488 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1489 				mptcp_push_release(sk, ssk, &info);
1490 				goto out;
1491 			}
1492 
1493 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1494 			if (ret <= 0) {
1495 				mptcp_push_release(sk, ssk, &info);
1496 				goto out;
1497 			}
1498 
1499 			info.sent += ret;
1500 			dfrag->already_sent += ret;
1501 			msk->snd_nxt += ret;
1502 			msk->snd_burst -= ret;
1503 			msk->tx_pending_data -= ret;
1504 			copied += ret;
1505 			len -= ret;
1506 		}
1507 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1508 	}
1509 
1510 	/* at this point we held the socket lock for the last subflow we used */
1511 	if (ssk)
1512 		mptcp_push_release(sk, ssk, &info);
1513 
1514 out:
1515 	if (copied) {
1516 		/* start the timer, if it's not pending */
1517 		if (!mptcp_timer_pending(sk))
1518 			mptcp_reset_timer(sk);
1519 		__mptcp_check_send_data_fin(sk);
1520 	}
1521 }
1522 
1523 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1524 {
1525 	struct mptcp_sock *msk = mptcp_sk(sk);
1526 	struct mptcp_sendmsg_info info;
1527 	struct mptcp_data_frag *dfrag;
1528 	struct sock *xmit_ssk;
1529 	int len, copied = 0;
1530 	bool first = true;
1531 
1532 	info.flags = 0;
1533 	while ((dfrag = mptcp_send_head(sk))) {
1534 		info.sent = dfrag->already_sent;
1535 		info.limit = dfrag->data_len;
1536 		len = dfrag->data_len - dfrag->already_sent;
1537 		while (len > 0) {
1538 			int ret = 0;
1539 
1540 			/* the caller already invoked the packet scheduler,
1541 			 * check for a different subflow usage only after
1542 			 * spooling the first chunk of data
1543 			 */
1544 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1545 			if (!xmit_ssk)
1546 				goto out;
1547 			if (xmit_ssk != ssk) {
1548 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1549 				goto out;
1550 			}
1551 
1552 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1553 				__mptcp_update_wmem(sk);
1554 				sk_mem_reclaim_partial(sk);
1555 			}
1556 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1557 				goto out;
1558 
1559 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1560 			if (ret <= 0)
1561 				goto out;
1562 
1563 			info.sent += ret;
1564 			dfrag->already_sent += ret;
1565 			msk->snd_nxt += ret;
1566 			msk->snd_burst -= ret;
1567 			msk->tx_pending_data -= ret;
1568 			copied += ret;
1569 			len -= ret;
1570 			first = false;
1571 		}
1572 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1573 	}
1574 
1575 out:
1576 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1577 	 * not going to flush it via release_sock()
1578 	 */
1579 	__mptcp_update_wmem(sk);
1580 	if (copied) {
1581 		mptcp_set_timeout(sk, ssk);
1582 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1583 			 info.size_goal);
1584 		if (!mptcp_timer_pending(sk))
1585 			mptcp_reset_timer(sk);
1586 
1587 		if (msk->snd_data_fin_enable &&
1588 		    msk->snd_nxt + 1 == msk->write_seq)
1589 			mptcp_schedule_work(sk);
1590 	}
1591 }
1592 
1593 static void mptcp_set_nospace(struct sock *sk)
1594 {
1595 	/* enable autotune */
1596 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1597 
1598 	/* will be cleared on avail space */
1599 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1600 }
1601 
1602 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1603 {
1604 	struct mptcp_sock *msk = mptcp_sk(sk);
1605 	struct page_frag *pfrag;
1606 	size_t copied = 0;
1607 	int ret = 0;
1608 	long timeo;
1609 
1610 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
1611 		return -EOPNOTSUPP;
1612 
1613 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1614 
1615 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1616 
1617 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1618 		ret = sk_stream_wait_connect(sk, &timeo);
1619 		if (ret)
1620 			goto out;
1621 	}
1622 
1623 	pfrag = sk_page_frag(sk);
1624 
1625 	while (msg_data_left(msg)) {
1626 		int total_ts, frag_truesize = 0;
1627 		struct mptcp_data_frag *dfrag;
1628 		struct sk_buff_head skbs;
1629 		bool dfrag_collapsed;
1630 		size_t psize, offset;
1631 
1632 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1633 			ret = -EPIPE;
1634 			goto out;
1635 		}
1636 
1637 		/* reuse tail pfrag, if possible, or carve a new one from the
1638 		 * page allocator
1639 		 */
1640 		dfrag = mptcp_pending_tail(sk);
1641 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1642 		if (!dfrag_collapsed) {
1643 			if (!sk_stream_memory_free(sk))
1644 				goto wait_for_memory;
1645 
1646 			if (!mptcp_page_frag_refill(sk, pfrag))
1647 				goto wait_for_memory;
1648 
1649 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1650 			frag_truesize = dfrag->overhead;
1651 		}
1652 
1653 		/* we do not bound vs wspace, to allow a single packet.
1654 		 * memory accounting will prevent execessive memory usage
1655 		 * anyway
1656 		 */
1657 		offset = dfrag->offset + dfrag->data_len;
1658 		psize = pfrag->size - offset;
1659 		psize = min_t(size_t, psize, msg_data_left(msg));
1660 		total_ts = psize + frag_truesize;
1661 		__skb_queue_head_init(&skbs);
1662 		if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts))
1663 			goto wait_for_memory;
1664 
1665 		if (!mptcp_wmem_alloc(sk, total_ts)) {
1666 			__skb_queue_purge(&skbs);
1667 			goto wait_for_memory;
1668 		}
1669 
1670 		skb_queue_splice_tail(&skbs, &msk->skb_tx_cache);
1671 		if (copy_page_from_iter(dfrag->page, offset, psize,
1672 					&msg->msg_iter) != psize) {
1673 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1674 			ret = -EFAULT;
1675 			goto out;
1676 		}
1677 
1678 		/* data successfully copied into the write queue */
1679 		copied += psize;
1680 		dfrag->data_len += psize;
1681 		frag_truesize += psize;
1682 		pfrag->offset += frag_truesize;
1683 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1684 		msk->tx_pending_data += psize;
1685 
1686 		/* charge data on mptcp pending queue to the msk socket
1687 		 * Note: we charge such data both to sk and ssk
1688 		 */
1689 		sk_wmem_queued_add(sk, frag_truesize);
1690 		if (!dfrag_collapsed) {
1691 			get_page(dfrag->page);
1692 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1693 			if (!msk->first_pending)
1694 				WRITE_ONCE(msk->first_pending, dfrag);
1695 		}
1696 		pr_debug("msk=%p dfrag at seq=%lld len=%d sent=%d new=%d", msk,
1697 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1698 			 !dfrag_collapsed);
1699 
1700 		continue;
1701 
1702 wait_for_memory:
1703 		mptcp_set_nospace(sk);
1704 		__mptcp_push_pending(sk, msg->msg_flags);
1705 		ret = sk_stream_wait_memory(sk, &timeo);
1706 		if (ret)
1707 			goto out;
1708 	}
1709 
1710 	if (copied)
1711 		__mptcp_push_pending(sk, msg->msg_flags);
1712 
1713 out:
1714 	release_sock(sk);
1715 	return copied ? : ret;
1716 }
1717 
1718 static void mptcp_wait_data(struct sock *sk, long *timeo)
1719 {
1720 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1721 	struct mptcp_sock *msk = mptcp_sk(sk);
1722 
1723 	add_wait_queue(sk_sleep(sk), &wait);
1724 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1725 
1726 	sk_wait_event(sk, timeo,
1727 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1728 
1729 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1730 	remove_wait_queue(sk_sleep(sk), &wait);
1731 }
1732 
1733 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1734 				struct msghdr *msg,
1735 				size_t len)
1736 {
1737 	struct sk_buff *skb;
1738 	int copied = 0;
1739 
1740 	while ((skb = skb_peek(&msk->receive_queue)) != NULL) {
1741 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1742 		u32 data_len = skb->len - offset;
1743 		u32 count = min_t(size_t, len - copied, data_len);
1744 		int err;
1745 
1746 		err = skb_copy_datagram_msg(skb, offset, msg, count);
1747 		if (unlikely(err < 0)) {
1748 			if (!copied)
1749 				return err;
1750 			break;
1751 		}
1752 
1753 		copied += count;
1754 
1755 		if (count < data_len) {
1756 			MPTCP_SKB_CB(skb)->offset += count;
1757 			break;
1758 		}
1759 
1760 		/* we will bulk release the skb memory later */
1761 		skb->destructor = NULL;
1762 		msk->rmem_released += skb->truesize;
1763 		__skb_unlink(skb, &msk->receive_queue);
1764 		__kfree_skb(skb);
1765 
1766 		if (copied >= len)
1767 			break;
1768 	}
1769 
1770 	return copied;
1771 }
1772 
1773 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1774  *
1775  * Only difference: Use highest rtt estimate of the subflows in use.
1776  */
1777 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1778 {
1779 	struct mptcp_subflow_context *subflow;
1780 	struct sock *sk = (struct sock *)msk;
1781 	u32 time, advmss = 1;
1782 	u64 rtt_us, mstamp;
1783 
1784 	sock_owned_by_me(sk);
1785 
1786 	if (copied <= 0)
1787 		return;
1788 
1789 	msk->rcvq_space.copied += copied;
1790 
1791 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1792 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1793 
1794 	rtt_us = msk->rcvq_space.rtt_us;
1795 	if (rtt_us && time < (rtt_us >> 3))
1796 		return;
1797 
1798 	rtt_us = 0;
1799 	mptcp_for_each_subflow(msk, subflow) {
1800 		const struct tcp_sock *tp;
1801 		u64 sf_rtt_us;
1802 		u32 sf_advmss;
1803 
1804 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1805 
1806 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1807 		sf_advmss = READ_ONCE(tp->advmss);
1808 
1809 		rtt_us = max(sf_rtt_us, rtt_us);
1810 		advmss = max(sf_advmss, advmss);
1811 	}
1812 
1813 	msk->rcvq_space.rtt_us = rtt_us;
1814 	if (time < (rtt_us >> 3) || rtt_us == 0)
1815 		return;
1816 
1817 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1818 		goto new_measure;
1819 
1820 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1821 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1822 		int rcvmem, rcvbuf;
1823 		u64 rcvwin, grow;
1824 
1825 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1826 
1827 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1828 
1829 		do_div(grow, msk->rcvq_space.space);
1830 		rcvwin += (grow << 1);
1831 
1832 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1833 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1834 			rcvmem += 128;
1835 
1836 		do_div(rcvwin, advmss);
1837 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1838 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1839 
1840 		if (rcvbuf > sk->sk_rcvbuf) {
1841 			u32 window_clamp;
1842 
1843 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1844 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1845 
1846 			/* Make subflows follow along.  If we do not do this, we
1847 			 * get drops at subflow level if skbs can't be moved to
1848 			 * the mptcp rx queue fast enough (announced rcv_win can
1849 			 * exceed ssk->sk_rcvbuf).
1850 			 */
1851 			mptcp_for_each_subflow(msk, subflow) {
1852 				struct sock *ssk;
1853 				bool slow;
1854 
1855 				ssk = mptcp_subflow_tcp_sock(subflow);
1856 				slow = lock_sock_fast(ssk);
1857 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1858 				tcp_sk(ssk)->window_clamp = window_clamp;
1859 				tcp_cleanup_rbuf(ssk, 1);
1860 				unlock_sock_fast(ssk, slow);
1861 			}
1862 		}
1863 	}
1864 
1865 	msk->rcvq_space.space = msk->rcvq_space.copied;
1866 new_measure:
1867 	msk->rcvq_space.copied = 0;
1868 	msk->rcvq_space.time = mstamp;
1869 }
1870 
1871 static void __mptcp_update_rmem(struct sock *sk)
1872 {
1873 	struct mptcp_sock *msk = mptcp_sk(sk);
1874 
1875 	if (!msk->rmem_released)
1876 		return;
1877 
1878 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1879 	sk_mem_uncharge(sk, msk->rmem_released);
1880 	msk->rmem_released = 0;
1881 }
1882 
1883 static void __mptcp_splice_receive_queue(struct sock *sk)
1884 {
1885 	struct mptcp_sock *msk = mptcp_sk(sk);
1886 
1887 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1888 }
1889 
1890 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1891 {
1892 	struct sock *sk = (struct sock *)msk;
1893 	unsigned int moved = 0;
1894 	bool ret, done;
1895 
1896 	__mptcp_flush_join_list(msk);
1897 	do {
1898 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1899 		bool slowpath;
1900 
1901 		/* we can have data pending in the subflows only if the msk
1902 		 * receive buffer was full at subflow_data_ready() time,
1903 		 * that is an unlikely slow path.
1904 		 */
1905 		if (likely(!ssk))
1906 			break;
1907 
1908 		slowpath = lock_sock_fast(ssk);
1909 		mptcp_data_lock(sk);
1910 		__mptcp_update_rmem(sk);
1911 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1912 		mptcp_data_unlock(sk);
1913 		tcp_cleanup_rbuf(ssk, moved);
1914 		unlock_sock_fast(ssk, slowpath);
1915 	} while (!done);
1916 
1917 	/* acquire the data lock only if some input data is pending */
1918 	ret = moved > 0;
1919 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1920 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1921 		mptcp_data_lock(sk);
1922 		__mptcp_update_rmem(sk);
1923 		ret |= __mptcp_ofo_queue(msk);
1924 		__mptcp_splice_receive_queue(sk);
1925 		mptcp_data_unlock(sk);
1926 		mptcp_cleanup_rbuf(msk);
1927 	}
1928 	if (ret)
1929 		mptcp_check_data_fin((struct sock *)msk);
1930 	return !skb_queue_empty(&msk->receive_queue);
1931 }
1932 
1933 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1934 			 int nonblock, int flags, int *addr_len)
1935 {
1936 	struct mptcp_sock *msk = mptcp_sk(sk);
1937 	int copied = 0;
1938 	int target;
1939 	long timeo;
1940 
1941 	if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
1942 		return -EOPNOTSUPP;
1943 
1944 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1945 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1946 		copied = -ENOTCONN;
1947 		goto out_err;
1948 	}
1949 
1950 	timeo = sock_rcvtimeo(sk, nonblock);
1951 
1952 	len = min_t(size_t, len, INT_MAX);
1953 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1954 
1955 	while (copied < len) {
1956 		int bytes_read;
1957 
1958 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
1959 		if (unlikely(bytes_read < 0)) {
1960 			if (!copied)
1961 				copied = bytes_read;
1962 			goto out_err;
1963 		}
1964 
1965 		copied += bytes_read;
1966 
1967 		/* be sure to advertise window change */
1968 		mptcp_cleanup_rbuf(msk);
1969 
1970 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
1971 			continue;
1972 
1973 		/* only the master socket status is relevant here. The exit
1974 		 * conditions mirror closely tcp_recvmsg()
1975 		 */
1976 		if (copied >= target)
1977 			break;
1978 
1979 		if (copied) {
1980 			if (sk->sk_err ||
1981 			    sk->sk_state == TCP_CLOSE ||
1982 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1983 			    !timeo ||
1984 			    signal_pending(current))
1985 				break;
1986 		} else {
1987 			if (sk->sk_err) {
1988 				copied = sock_error(sk);
1989 				break;
1990 			}
1991 
1992 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1993 				mptcp_check_for_eof(msk);
1994 
1995 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
1996 				/* race breaker: the shutdown could be after the
1997 				 * previous receive queue check
1998 				 */
1999 				if (__mptcp_move_skbs(msk))
2000 					continue;
2001 				break;
2002 			}
2003 
2004 			if (sk->sk_state == TCP_CLOSE) {
2005 				copied = -ENOTCONN;
2006 				break;
2007 			}
2008 
2009 			if (!timeo) {
2010 				copied = -EAGAIN;
2011 				break;
2012 			}
2013 
2014 			if (signal_pending(current)) {
2015 				copied = sock_intr_errno(timeo);
2016 				break;
2017 			}
2018 		}
2019 
2020 		pr_debug("block timeout %ld", timeo);
2021 		mptcp_wait_data(sk, &timeo);
2022 	}
2023 
2024 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2025 	    skb_queue_empty(&msk->receive_queue)) {
2026 		/* entire backlog drained, clear DATA_READY. */
2027 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2028 
2029 		/* .. race-breaker: ssk might have gotten new data
2030 		 * after last __mptcp_move_skbs() returned false.
2031 		 */
2032 		if (unlikely(__mptcp_move_skbs(msk)))
2033 			set_bit(MPTCP_DATA_READY, &msk->flags);
2034 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
2035 		/* data to read but mptcp_wait_data() cleared DATA_READY */
2036 		set_bit(MPTCP_DATA_READY, &msk->flags);
2037 	}
2038 out_err:
2039 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2040 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2041 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2042 	mptcp_rcv_space_adjust(msk, copied);
2043 
2044 	release_sock(sk);
2045 	return copied;
2046 }
2047 
2048 static void mptcp_retransmit_handler(struct sock *sk)
2049 {
2050 	struct mptcp_sock *msk = mptcp_sk(sk);
2051 
2052 	set_bit(MPTCP_WORK_RTX, &msk->flags);
2053 	mptcp_schedule_work(sk);
2054 }
2055 
2056 static void mptcp_retransmit_timer(struct timer_list *t)
2057 {
2058 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2059 						       icsk_retransmit_timer);
2060 	struct sock *sk = &icsk->icsk_inet.sk;
2061 
2062 	bh_lock_sock(sk);
2063 	if (!sock_owned_by_user(sk)) {
2064 		mptcp_retransmit_handler(sk);
2065 	} else {
2066 		/* delegate our work to tcp_release_cb() */
2067 		if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
2068 				      &sk->sk_tsq_flags))
2069 			sock_hold(sk);
2070 	}
2071 	bh_unlock_sock(sk);
2072 	sock_put(sk);
2073 }
2074 
2075 static void mptcp_timeout_timer(struct timer_list *t)
2076 {
2077 	struct sock *sk = from_timer(sk, t, sk_timer);
2078 
2079 	mptcp_schedule_work(sk);
2080 	sock_put(sk);
2081 }
2082 
2083 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2084  * level.
2085  *
2086  * A backup subflow is returned only if that is the only kind available.
2087  */
2088 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2089 {
2090 	struct mptcp_subflow_context *subflow;
2091 	struct sock *backup = NULL;
2092 
2093 	sock_owned_by_me((const struct sock *)msk);
2094 
2095 	if (__mptcp_check_fallback(msk))
2096 		return NULL;
2097 
2098 	mptcp_for_each_subflow(msk, subflow) {
2099 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2100 
2101 		if (!mptcp_subflow_active(subflow))
2102 			continue;
2103 
2104 		/* still data outstanding at TCP level?  Don't retransmit. */
2105 		if (!tcp_write_queue_empty(ssk)) {
2106 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2107 				continue;
2108 			return NULL;
2109 		}
2110 
2111 		if (subflow->backup) {
2112 			if (!backup)
2113 				backup = ssk;
2114 			continue;
2115 		}
2116 
2117 		return ssk;
2118 	}
2119 
2120 	return backup;
2121 }
2122 
2123 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2124 {
2125 	if (msk->subflow) {
2126 		iput(SOCK_INODE(msk->subflow));
2127 		msk->subflow = NULL;
2128 	}
2129 }
2130 
2131 /* subflow sockets can be either outgoing (connect) or incoming
2132  * (accept).
2133  *
2134  * Outgoing subflows use in-kernel sockets.
2135  * Incoming subflows do not have their own 'struct socket' allocated,
2136  * so we need to use tcp_close() after detaching them from the mptcp
2137  * parent socket.
2138  */
2139 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2140 			      struct mptcp_subflow_context *subflow)
2141 {
2142 	struct mptcp_sock *msk = mptcp_sk(sk);
2143 
2144 	list_del(&subflow->node);
2145 
2146 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2147 
2148 	/* if we are invoked by the msk cleanup code, the subflow is
2149 	 * already orphaned
2150 	 */
2151 	if (ssk->sk_socket)
2152 		sock_orphan(ssk);
2153 
2154 	subflow->disposable = 1;
2155 
2156 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2157 	 * the ssk has been already destroyed, we just need to release the
2158 	 * reference owned by msk;
2159 	 */
2160 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2161 		kfree_rcu(subflow, rcu);
2162 	} else {
2163 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2164 		__tcp_close(ssk, 0);
2165 
2166 		/* close acquired an extra ref */
2167 		__sock_put(ssk);
2168 	}
2169 	release_sock(ssk);
2170 
2171 	sock_put(ssk);
2172 
2173 	if (ssk == msk->last_snd)
2174 		msk->last_snd = NULL;
2175 
2176 	if (ssk == msk->ack_hint)
2177 		msk->ack_hint = NULL;
2178 
2179 	if (ssk == msk->first)
2180 		msk->first = NULL;
2181 
2182 	if (msk->subflow && ssk == msk->subflow->sk)
2183 		mptcp_dispose_initial_subflow(msk);
2184 }
2185 
2186 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2187 		     struct mptcp_subflow_context *subflow)
2188 {
2189 	if (sk->sk_state == TCP_ESTABLISHED)
2190 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2191 	__mptcp_close_ssk(sk, ssk, subflow);
2192 }
2193 
2194 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2195 {
2196 	return 0;
2197 }
2198 
2199 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2200 {
2201 	struct mptcp_subflow_context *subflow, *tmp;
2202 
2203 	might_sleep();
2204 
2205 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2206 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2207 
2208 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2209 			continue;
2210 
2211 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2212 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2213 			continue;
2214 
2215 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2216 	}
2217 }
2218 
2219 static bool mptcp_check_close_timeout(const struct sock *sk)
2220 {
2221 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2222 	struct mptcp_subflow_context *subflow;
2223 
2224 	if (delta >= TCP_TIMEWAIT_LEN)
2225 		return true;
2226 
2227 	/* if all subflows are in closed status don't bother with additional
2228 	 * timeout
2229 	 */
2230 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2231 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2232 		    TCP_CLOSE)
2233 			return false;
2234 	}
2235 	return true;
2236 }
2237 
2238 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2239 {
2240 	struct mptcp_subflow_context *subflow, *tmp;
2241 	struct sock *sk = &msk->sk.icsk_inet.sk;
2242 
2243 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2244 		return;
2245 
2246 	mptcp_token_destroy(msk);
2247 
2248 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2249 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2250 
2251 		lock_sock(tcp_sk);
2252 		if (tcp_sk->sk_state != TCP_CLOSE) {
2253 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2254 			tcp_set_state(tcp_sk, TCP_CLOSE);
2255 		}
2256 		release_sock(tcp_sk);
2257 	}
2258 
2259 	inet_sk_state_store(sk, TCP_CLOSE);
2260 	sk->sk_shutdown = SHUTDOWN_MASK;
2261 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2262 	set_bit(MPTCP_DATA_READY, &msk->flags);
2263 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2264 
2265 	mptcp_close_wake_up(sk);
2266 }
2267 
2268 static void __mptcp_retrans(struct sock *sk)
2269 {
2270 	struct mptcp_sock *msk = mptcp_sk(sk);
2271 	struct mptcp_sendmsg_info info = {};
2272 	struct mptcp_data_frag *dfrag;
2273 	size_t copied = 0;
2274 	struct sock *ssk;
2275 	int ret;
2276 
2277 	__mptcp_clean_una_wakeup(sk);
2278 	dfrag = mptcp_rtx_head(sk);
2279 	if (!dfrag)
2280 		return;
2281 
2282 	ssk = mptcp_subflow_get_retrans(msk);
2283 	if (!ssk)
2284 		goto reset_timer;
2285 
2286 	lock_sock(ssk);
2287 
2288 	/* limit retransmission to the bytes already sent on some subflows */
2289 	info.sent = 0;
2290 	info.limit = dfrag->already_sent;
2291 	while (info.sent < dfrag->already_sent) {
2292 		if (!mptcp_alloc_tx_skb(sk, ssk))
2293 			break;
2294 
2295 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2296 		if (ret <= 0)
2297 			break;
2298 
2299 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2300 		copied += ret;
2301 		info.sent += ret;
2302 	}
2303 	if (copied)
2304 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2305 			 info.size_goal);
2306 
2307 	mptcp_set_timeout(sk, ssk);
2308 	release_sock(ssk);
2309 
2310 reset_timer:
2311 	if (!mptcp_timer_pending(sk))
2312 		mptcp_reset_timer(sk);
2313 }
2314 
2315 static void mptcp_worker(struct work_struct *work)
2316 {
2317 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2318 	struct sock *sk = &msk->sk.icsk_inet.sk;
2319 	int state;
2320 
2321 	lock_sock(sk);
2322 	state = sk->sk_state;
2323 	if (unlikely(state == TCP_CLOSE))
2324 		goto unlock;
2325 
2326 	mptcp_check_data_fin_ack(sk);
2327 	__mptcp_flush_join_list(msk);
2328 
2329 	mptcp_check_fastclose(msk);
2330 
2331 	if (msk->pm.status)
2332 		mptcp_pm_nl_work(msk);
2333 
2334 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2335 		mptcp_check_for_eof(msk);
2336 
2337 	__mptcp_check_send_data_fin(sk);
2338 	mptcp_check_data_fin(sk);
2339 
2340 	/* There is no point in keeping around an orphaned sk timedout or
2341 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2342 	 * even if it is orphaned and in FIN_WAIT2 state
2343 	 */
2344 	if (sock_flag(sk, SOCK_DEAD) &&
2345 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2346 		inet_sk_state_store(sk, TCP_CLOSE);
2347 		__mptcp_destroy_sock(sk);
2348 		goto unlock;
2349 	}
2350 
2351 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2352 		__mptcp_close_subflow(msk);
2353 
2354 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2355 		__mptcp_retrans(sk);
2356 
2357 unlock:
2358 	release_sock(sk);
2359 	sock_put(sk);
2360 }
2361 
2362 static int __mptcp_init_sock(struct sock *sk)
2363 {
2364 	struct mptcp_sock *msk = mptcp_sk(sk);
2365 
2366 	spin_lock_init(&msk->join_list_lock);
2367 
2368 	INIT_LIST_HEAD(&msk->conn_list);
2369 	INIT_LIST_HEAD(&msk->join_list);
2370 	INIT_LIST_HEAD(&msk->rtx_queue);
2371 	INIT_WORK(&msk->work, mptcp_worker);
2372 	__skb_queue_head_init(&msk->receive_queue);
2373 	__skb_queue_head_init(&msk->skb_tx_cache);
2374 	msk->out_of_order_queue = RB_ROOT;
2375 	msk->first_pending = NULL;
2376 	msk->wmem_reserved = 0;
2377 	msk->rmem_released = 0;
2378 	msk->tx_pending_data = 0;
2379 	msk->size_goal_cache = TCP_BASE_MSS;
2380 
2381 	msk->ack_hint = NULL;
2382 	msk->first = NULL;
2383 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2384 
2385 	mptcp_pm_data_init(msk);
2386 
2387 	/* re-use the csk retrans timer for MPTCP-level retrans */
2388 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2389 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2390 	return 0;
2391 }
2392 
2393 static int mptcp_init_sock(struct sock *sk)
2394 {
2395 	struct net *net = sock_net(sk);
2396 	int ret;
2397 
2398 	ret = __mptcp_init_sock(sk);
2399 	if (ret)
2400 		return ret;
2401 
2402 	if (!mptcp_is_enabled(net))
2403 		return -ENOPROTOOPT;
2404 
2405 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2406 		return -ENOMEM;
2407 
2408 	ret = __mptcp_socket_create(mptcp_sk(sk));
2409 	if (ret)
2410 		return ret;
2411 
2412 	sk_sockets_allocated_inc(sk);
2413 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2414 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2415 
2416 	return 0;
2417 }
2418 
2419 static void __mptcp_clear_xmit(struct sock *sk)
2420 {
2421 	struct mptcp_sock *msk = mptcp_sk(sk);
2422 	struct mptcp_data_frag *dtmp, *dfrag;
2423 	struct sk_buff *skb;
2424 
2425 	WRITE_ONCE(msk->first_pending, NULL);
2426 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2427 		dfrag_clear(sk, dfrag);
2428 	while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) {
2429 		sk->sk_forward_alloc += skb->truesize;
2430 		kfree_skb(skb);
2431 	}
2432 }
2433 
2434 static void mptcp_cancel_work(struct sock *sk)
2435 {
2436 	struct mptcp_sock *msk = mptcp_sk(sk);
2437 
2438 	if (cancel_work_sync(&msk->work))
2439 		__sock_put(sk);
2440 }
2441 
2442 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2443 {
2444 	lock_sock(ssk);
2445 
2446 	switch (ssk->sk_state) {
2447 	case TCP_LISTEN:
2448 		if (!(how & RCV_SHUTDOWN))
2449 			break;
2450 		fallthrough;
2451 	case TCP_SYN_SENT:
2452 		tcp_disconnect(ssk, O_NONBLOCK);
2453 		break;
2454 	default:
2455 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2456 			pr_debug("Fallback");
2457 			ssk->sk_shutdown |= how;
2458 			tcp_shutdown(ssk, how);
2459 		} else {
2460 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2461 			mptcp_set_timeout(sk, ssk);
2462 			tcp_send_ack(ssk);
2463 		}
2464 		break;
2465 	}
2466 
2467 	release_sock(ssk);
2468 }
2469 
2470 static const unsigned char new_state[16] = {
2471 	/* current state:     new state:      action:	*/
2472 	[0 /* (Invalid) */] = TCP_CLOSE,
2473 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2474 	[TCP_SYN_SENT]      = TCP_CLOSE,
2475 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2476 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2477 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2478 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2479 	[TCP_CLOSE]         = TCP_CLOSE,
2480 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2481 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2482 	[TCP_LISTEN]        = TCP_CLOSE,
2483 	[TCP_CLOSING]       = TCP_CLOSING,
2484 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2485 };
2486 
2487 static int mptcp_close_state(struct sock *sk)
2488 {
2489 	int next = (int)new_state[sk->sk_state];
2490 	int ns = next & TCP_STATE_MASK;
2491 
2492 	inet_sk_state_store(sk, ns);
2493 
2494 	return next & TCP_ACTION_FIN;
2495 }
2496 
2497 static void __mptcp_check_send_data_fin(struct sock *sk)
2498 {
2499 	struct mptcp_subflow_context *subflow;
2500 	struct mptcp_sock *msk = mptcp_sk(sk);
2501 
2502 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2503 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2504 		 msk->snd_nxt, msk->write_seq);
2505 
2506 	/* we still need to enqueue subflows or not really shutting down,
2507 	 * skip this
2508 	 */
2509 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2510 	    mptcp_send_head(sk))
2511 		return;
2512 
2513 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2514 
2515 	/* fallback socket will not get data_fin/ack, can move to the next
2516 	 * state now
2517 	 */
2518 	if (__mptcp_check_fallback(msk)) {
2519 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2520 			inet_sk_state_store(sk, TCP_CLOSE);
2521 			mptcp_close_wake_up(sk);
2522 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2523 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2524 		}
2525 	}
2526 
2527 	__mptcp_flush_join_list(msk);
2528 	mptcp_for_each_subflow(msk, subflow) {
2529 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2530 
2531 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2532 	}
2533 }
2534 
2535 static void __mptcp_wr_shutdown(struct sock *sk)
2536 {
2537 	struct mptcp_sock *msk = mptcp_sk(sk);
2538 
2539 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2540 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2541 		 !!mptcp_send_head(sk));
2542 
2543 	/* will be ignored by fallback sockets */
2544 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2545 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2546 
2547 	__mptcp_check_send_data_fin(sk);
2548 }
2549 
2550 static void __mptcp_destroy_sock(struct sock *sk)
2551 {
2552 	struct mptcp_subflow_context *subflow, *tmp;
2553 	struct mptcp_sock *msk = mptcp_sk(sk);
2554 	LIST_HEAD(conn_list);
2555 
2556 	pr_debug("msk=%p", msk);
2557 
2558 	might_sleep();
2559 
2560 	/* be sure to always acquire the join list lock, to sync vs
2561 	 * mptcp_finish_join().
2562 	 */
2563 	spin_lock_bh(&msk->join_list_lock);
2564 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2565 	spin_unlock_bh(&msk->join_list_lock);
2566 	list_splice_init(&msk->conn_list, &conn_list);
2567 
2568 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2569 	sk_stop_timer(sk, &sk->sk_timer);
2570 	msk->pm.status = 0;
2571 
2572 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2573 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2574 		__mptcp_close_ssk(sk, ssk, subflow);
2575 	}
2576 
2577 	sk->sk_prot->destroy(sk);
2578 
2579 	WARN_ON_ONCE(msk->wmem_reserved);
2580 	WARN_ON_ONCE(msk->rmem_released);
2581 	sk_stream_kill_queues(sk);
2582 	xfrm_sk_free_policy(sk);
2583 	sk_refcnt_debug_release(sk);
2584 	mptcp_dispose_initial_subflow(msk);
2585 	sock_put(sk);
2586 }
2587 
2588 static void mptcp_close(struct sock *sk, long timeout)
2589 {
2590 	struct mptcp_subflow_context *subflow;
2591 	bool do_cancel_work = false;
2592 
2593 	lock_sock(sk);
2594 	sk->sk_shutdown = SHUTDOWN_MASK;
2595 
2596 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2597 		inet_sk_state_store(sk, TCP_CLOSE);
2598 		goto cleanup;
2599 	}
2600 
2601 	if (mptcp_close_state(sk))
2602 		__mptcp_wr_shutdown(sk);
2603 
2604 	sk_stream_wait_close(sk, timeout);
2605 
2606 cleanup:
2607 	/* orphan all the subflows */
2608 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2609 	list_for_each_entry(subflow, &mptcp_sk(sk)->conn_list, node) {
2610 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2611 		bool slow = lock_sock_fast(ssk);
2612 
2613 		sock_orphan(ssk);
2614 		unlock_sock_fast(ssk, slow);
2615 	}
2616 	sock_orphan(sk);
2617 
2618 	sock_hold(sk);
2619 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2620 	if (sk->sk_state == TCP_CLOSE) {
2621 		__mptcp_destroy_sock(sk);
2622 		do_cancel_work = true;
2623 	} else {
2624 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2625 	}
2626 	release_sock(sk);
2627 	if (do_cancel_work)
2628 		mptcp_cancel_work(sk);
2629 
2630 	if (mptcp_sk(sk)->token)
2631 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2632 
2633 	sock_put(sk);
2634 }
2635 
2636 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2637 {
2638 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2639 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2640 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2641 
2642 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2643 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2644 
2645 	if (msk6 && ssk6) {
2646 		msk6->saddr = ssk6->saddr;
2647 		msk6->flow_label = ssk6->flow_label;
2648 	}
2649 #endif
2650 
2651 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2652 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2653 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2654 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2655 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2656 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2657 }
2658 
2659 static int mptcp_disconnect(struct sock *sk, int flags)
2660 {
2661 	struct mptcp_subflow_context *subflow;
2662 	struct mptcp_sock *msk = mptcp_sk(sk);
2663 
2664 	__mptcp_flush_join_list(msk);
2665 	mptcp_for_each_subflow(msk, subflow) {
2666 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2667 
2668 		lock_sock(ssk);
2669 		tcp_disconnect(ssk, flags);
2670 		release_sock(ssk);
2671 	}
2672 	return 0;
2673 }
2674 
2675 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2676 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2677 {
2678 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2679 
2680 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2681 }
2682 #endif
2683 
2684 struct sock *mptcp_sk_clone(const struct sock *sk,
2685 			    const struct mptcp_options_received *mp_opt,
2686 			    struct request_sock *req)
2687 {
2688 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2689 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2690 	struct mptcp_sock *msk;
2691 	u64 ack_seq;
2692 
2693 	if (!nsk)
2694 		return NULL;
2695 
2696 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2697 	if (nsk->sk_family == AF_INET6)
2698 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2699 #endif
2700 
2701 	__mptcp_init_sock(nsk);
2702 
2703 	msk = mptcp_sk(nsk);
2704 	msk->local_key = subflow_req->local_key;
2705 	msk->token = subflow_req->token;
2706 	msk->subflow = NULL;
2707 	WRITE_ONCE(msk->fully_established, false);
2708 
2709 	msk->write_seq = subflow_req->idsn + 1;
2710 	msk->snd_nxt = msk->write_seq;
2711 	msk->snd_una = msk->write_seq;
2712 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2713 
2714 	if (mp_opt->mp_capable) {
2715 		msk->can_ack = true;
2716 		msk->remote_key = mp_opt->sndr_key;
2717 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2718 		ack_seq++;
2719 		WRITE_ONCE(msk->ack_seq, ack_seq);
2720 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2721 	}
2722 
2723 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2724 	/* will be fully established after successful MPC subflow creation */
2725 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2726 
2727 	security_inet_csk_clone(nsk, req);
2728 	bh_unlock_sock(nsk);
2729 
2730 	/* keep a single reference */
2731 	__sock_put(nsk);
2732 	return nsk;
2733 }
2734 
2735 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2736 {
2737 	const struct tcp_sock *tp = tcp_sk(ssk);
2738 
2739 	msk->rcvq_space.copied = 0;
2740 	msk->rcvq_space.rtt_us = 0;
2741 
2742 	msk->rcvq_space.time = tp->tcp_mstamp;
2743 
2744 	/* initial rcv_space offering made to peer */
2745 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2746 				      TCP_INIT_CWND * tp->advmss);
2747 	if (msk->rcvq_space.space == 0)
2748 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2749 
2750 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2751 }
2752 
2753 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2754 				 bool kern)
2755 {
2756 	struct mptcp_sock *msk = mptcp_sk(sk);
2757 	struct socket *listener;
2758 	struct sock *newsk;
2759 
2760 	listener = __mptcp_nmpc_socket(msk);
2761 	if (WARN_ON_ONCE(!listener)) {
2762 		*err = -EINVAL;
2763 		return NULL;
2764 	}
2765 
2766 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2767 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2768 	if (!newsk)
2769 		return NULL;
2770 
2771 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2772 	if (sk_is_mptcp(newsk)) {
2773 		struct mptcp_subflow_context *subflow;
2774 		struct sock *new_mptcp_sock;
2775 
2776 		subflow = mptcp_subflow_ctx(newsk);
2777 		new_mptcp_sock = subflow->conn;
2778 
2779 		/* is_mptcp should be false if subflow->conn is missing, see
2780 		 * subflow_syn_recv_sock()
2781 		 */
2782 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2783 			tcp_sk(newsk)->is_mptcp = 0;
2784 			return newsk;
2785 		}
2786 
2787 		/* acquire the 2nd reference for the owning socket */
2788 		sock_hold(new_mptcp_sock);
2789 		newsk = new_mptcp_sock;
2790 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2791 	} else {
2792 		MPTCP_INC_STATS(sock_net(sk),
2793 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2794 	}
2795 
2796 	return newsk;
2797 }
2798 
2799 void mptcp_destroy_common(struct mptcp_sock *msk)
2800 {
2801 	struct sock *sk = (struct sock *)msk;
2802 
2803 	__mptcp_clear_xmit(sk);
2804 
2805 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2806 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2807 
2808 	skb_rbtree_purge(&msk->out_of_order_queue);
2809 	mptcp_token_destroy(msk);
2810 	mptcp_pm_free_anno_list(msk);
2811 }
2812 
2813 static void mptcp_destroy(struct sock *sk)
2814 {
2815 	struct mptcp_sock *msk = mptcp_sk(sk);
2816 
2817 	mptcp_destroy_common(msk);
2818 	sk_sockets_allocated_dec(sk);
2819 }
2820 
2821 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
2822 				       sockptr_t optval, unsigned int optlen)
2823 {
2824 	struct sock *sk = (struct sock *)msk;
2825 	struct socket *ssock;
2826 	int ret;
2827 
2828 	switch (optname) {
2829 	case SO_REUSEPORT:
2830 	case SO_REUSEADDR:
2831 		lock_sock(sk);
2832 		ssock = __mptcp_nmpc_socket(msk);
2833 		if (!ssock) {
2834 			release_sock(sk);
2835 			return -EINVAL;
2836 		}
2837 
2838 		ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
2839 		if (ret == 0) {
2840 			if (optname == SO_REUSEPORT)
2841 				sk->sk_reuseport = ssock->sk->sk_reuseport;
2842 			else if (optname == SO_REUSEADDR)
2843 				sk->sk_reuse = ssock->sk->sk_reuse;
2844 		}
2845 		release_sock(sk);
2846 		return ret;
2847 	}
2848 
2849 	return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
2850 }
2851 
2852 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
2853 			       sockptr_t optval, unsigned int optlen)
2854 {
2855 	struct sock *sk = (struct sock *)msk;
2856 	int ret = -EOPNOTSUPP;
2857 	struct socket *ssock;
2858 
2859 	switch (optname) {
2860 	case IPV6_V6ONLY:
2861 		lock_sock(sk);
2862 		ssock = __mptcp_nmpc_socket(msk);
2863 		if (!ssock) {
2864 			release_sock(sk);
2865 			return -EINVAL;
2866 		}
2867 
2868 		ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
2869 		if (ret == 0)
2870 			sk->sk_ipv6only = ssock->sk->sk_ipv6only;
2871 
2872 		release_sock(sk);
2873 		break;
2874 	}
2875 
2876 	return ret;
2877 }
2878 
2879 static bool mptcp_unsupported(int level, int optname)
2880 {
2881 	if (level == SOL_IP) {
2882 		switch (optname) {
2883 		case IP_ADD_MEMBERSHIP:
2884 		case IP_ADD_SOURCE_MEMBERSHIP:
2885 		case IP_DROP_MEMBERSHIP:
2886 		case IP_DROP_SOURCE_MEMBERSHIP:
2887 		case IP_BLOCK_SOURCE:
2888 		case IP_UNBLOCK_SOURCE:
2889 		case MCAST_JOIN_GROUP:
2890 		case MCAST_LEAVE_GROUP:
2891 		case MCAST_JOIN_SOURCE_GROUP:
2892 		case MCAST_LEAVE_SOURCE_GROUP:
2893 		case MCAST_BLOCK_SOURCE:
2894 		case MCAST_UNBLOCK_SOURCE:
2895 		case MCAST_MSFILTER:
2896 			return true;
2897 		}
2898 		return false;
2899 	}
2900 	if (level == SOL_IPV6) {
2901 		switch (optname) {
2902 		case IPV6_ADDRFORM:
2903 		case IPV6_ADD_MEMBERSHIP:
2904 		case IPV6_DROP_MEMBERSHIP:
2905 		case IPV6_JOIN_ANYCAST:
2906 		case IPV6_LEAVE_ANYCAST:
2907 		case MCAST_JOIN_GROUP:
2908 		case MCAST_LEAVE_GROUP:
2909 		case MCAST_JOIN_SOURCE_GROUP:
2910 		case MCAST_LEAVE_SOURCE_GROUP:
2911 		case MCAST_BLOCK_SOURCE:
2912 		case MCAST_UNBLOCK_SOURCE:
2913 		case MCAST_MSFILTER:
2914 			return true;
2915 		}
2916 		return false;
2917 	}
2918 	return false;
2919 }
2920 
2921 static int mptcp_setsockopt(struct sock *sk, int level, int optname,
2922 			    sockptr_t optval, unsigned int optlen)
2923 {
2924 	struct mptcp_sock *msk = mptcp_sk(sk);
2925 	struct sock *ssk;
2926 
2927 	pr_debug("msk=%p", msk);
2928 
2929 	if (mptcp_unsupported(level, optname))
2930 		return -ENOPROTOOPT;
2931 
2932 	if (level == SOL_SOCKET)
2933 		return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
2934 
2935 	/* @@ the meaning of setsockopt() when the socket is connected and
2936 	 * there are multiple subflows is not yet defined. It is up to the
2937 	 * MPTCP-level socket to configure the subflows until the subflow
2938 	 * is in TCP fallback, when TCP socket options are passed through
2939 	 * to the one remaining subflow.
2940 	 */
2941 	lock_sock(sk);
2942 	ssk = __mptcp_tcp_fallback(msk);
2943 	release_sock(sk);
2944 	if (ssk)
2945 		return tcp_setsockopt(ssk, level, optname, optval, optlen);
2946 
2947 	if (level == SOL_IPV6)
2948 		return mptcp_setsockopt_v6(msk, optname, optval, optlen);
2949 
2950 	return -EOPNOTSUPP;
2951 }
2952 
2953 static int mptcp_getsockopt(struct sock *sk, int level, int optname,
2954 			    char __user *optval, int __user *option)
2955 {
2956 	struct mptcp_sock *msk = mptcp_sk(sk);
2957 	struct sock *ssk;
2958 
2959 	pr_debug("msk=%p", msk);
2960 
2961 	/* @@ the meaning of setsockopt() when the socket is connected and
2962 	 * there are multiple subflows is not yet defined. It is up to the
2963 	 * MPTCP-level socket to configure the subflows until the subflow
2964 	 * is in TCP fallback, when socket options are passed through
2965 	 * to the one remaining subflow.
2966 	 */
2967 	lock_sock(sk);
2968 	ssk = __mptcp_tcp_fallback(msk);
2969 	release_sock(sk);
2970 	if (ssk)
2971 		return tcp_getsockopt(ssk, level, optname, optval, option);
2972 
2973 	return -EOPNOTSUPP;
2974 }
2975 
2976 void __mptcp_data_acked(struct sock *sk)
2977 {
2978 	if (!sock_owned_by_user(sk))
2979 		__mptcp_clean_una(sk);
2980 	else
2981 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2982 
2983 	if (mptcp_pending_data_fin_ack(sk))
2984 		mptcp_schedule_work(sk);
2985 }
2986 
2987 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2988 {
2989 	if (!mptcp_send_head(sk))
2990 		return;
2991 
2992 	if (!sock_owned_by_user(sk)) {
2993 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2994 
2995 		if (xmit_ssk == ssk)
2996 			__mptcp_subflow_push_pending(sk, ssk);
2997 		else if (xmit_ssk)
2998 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2999 	} else {
3000 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3001 	}
3002 }
3003 
3004 #define MPTCP_DEFERRED_ALL (TCPF_WRITE_TIMER_DEFERRED)
3005 
3006 /* processes deferred events and flush wmem */
3007 static void mptcp_release_cb(struct sock *sk)
3008 {
3009 	unsigned long flags, nflags;
3010 
3011 	for (;;) {
3012 		flags = 0;
3013 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
3014 			flags |= BIT(MPTCP_PUSH_PENDING);
3015 		if (!flags)
3016 			break;
3017 
3018 		/* the following actions acquire the subflow socket lock
3019 		 *
3020 		 * 1) can't be invoked in atomic scope
3021 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3022 		 *    datapath acquires the msk socket spinlock while helding
3023 		 *    the subflow socket lock
3024 		 */
3025 
3026 		spin_unlock_bh(&sk->sk_lock.slock);
3027 		if (flags & BIT(MPTCP_PUSH_PENDING))
3028 			__mptcp_push_pending(sk, 0);
3029 
3030 		cond_resched();
3031 		spin_lock_bh(&sk->sk_lock.slock);
3032 	}
3033 
3034 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
3035 		__mptcp_clean_una_wakeup(sk);
3036 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
3037 		__mptcp_error_report(sk);
3038 
3039 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
3040 	 * later
3041 	 */
3042 	__mptcp_update_wmem(sk);
3043 	__mptcp_update_rmem(sk);
3044 
3045 	do {
3046 		flags = sk->sk_tsq_flags;
3047 		if (!(flags & MPTCP_DEFERRED_ALL))
3048 			return;
3049 		nflags = flags & ~MPTCP_DEFERRED_ALL;
3050 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
3051 
3052 	sock_release_ownership(sk);
3053 
3054 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
3055 		mptcp_retransmit_handler(sk);
3056 		__sock_put(sk);
3057 	}
3058 }
3059 
3060 void mptcp_subflow_process_delegated(struct sock *ssk)
3061 {
3062 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3063 	struct sock *sk = subflow->conn;
3064 
3065 	mptcp_data_lock(sk);
3066 	if (!sock_owned_by_user(sk))
3067 		__mptcp_subflow_push_pending(sk, ssk);
3068 	else
3069 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3070 	mptcp_data_unlock(sk);
3071 	mptcp_subflow_delegated_done(subflow);
3072 }
3073 
3074 static int mptcp_hash(struct sock *sk)
3075 {
3076 	/* should never be called,
3077 	 * we hash the TCP subflows not the master socket
3078 	 */
3079 	WARN_ON_ONCE(1);
3080 	return 0;
3081 }
3082 
3083 static void mptcp_unhash(struct sock *sk)
3084 {
3085 	/* called from sk_common_release(), but nothing to do here */
3086 }
3087 
3088 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3089 {
3090 	struct mptcp_sock *msk = mptcp_sk(sk);
3091 	struct socket *ssock;
3092 
3093 	ssock = __mptcp_nmpc_socket(msk);
3094 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3095 	if (WARN_ON_ONCE(!ssock))
3096 		return -EINVAL;
3097 
3098 	return inet_csk_get_port(ssock->sk, snum);
3099 }
3100 
3101 void mptcp_finish_connect(struct sock *ssk)
3102 {
3103 	struct mptcp_subflow_context *subflow;
3104 	struct mptcp_sock *msk;
3105 	struct sock *sk;
3106 	u64 ack_seq;
3107 
3108 	subflow = mptcp_subflow_ctx(ssk);
3109 	sk = subflow->conn;
3110 	msk = mptcp_sk(sk);
3111 
3112 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3113 
3114 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3115 	ack_seq++;
3116 	subflow->map_seq = ack_seq;
3117 	subflow->map_subflow_seq = 1;
3118 
3119 	/* the socket is not connected yet, no msk/subflow ops can access/race
3120 	 * accessing the field below
3121 	 */
3122 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3123 	WRITE_ONCE(msk->local_key, subflow->local_key);
3124 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3125 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3126 	WRITE_ONCE(msk->ack_seq, ack_seq);
3127 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3128 	WRITE_ONCE(msk->can_ack, 1);
3129 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3130 
3131 	mptcp_pm_new_connection(msk, ssk, 0);
3132 
3133 	mptcp_rcv_space_init(msk, ssk);
3134 }
3135 
3136 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3137 {
3138 	write_lock_bh(&sk->sk_callback_lock);
3139 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3140 	sk_set_socket(sk, parent);
3141 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3142 	write_unlock_bh(&sk->sk_callback_lock);
3143 }
3144 
3145 bool mptcp_finish_join(struct sock *ssk)
3146 {
3147 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3148 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3149 	struct sock *parent = (void *)msk;
3150 	struct socket *parent_sock;
3151 	bool ret;
3152 
3153 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3154 
3155 	/* mptcp socket already closing? */
3156 	if (!mptcp_is_fully_established(parent))
3157 		return false;
3158 
3159 	if (!msk->pm.server_side)
3160 		goto out;
3161 
3162 	if (!mptcp_pm_allow_new_subflow(msk))
3163 		return false;
3164 
3165 	/* active connections are already on conn_list, and we can't acquire
3166 	 * msk lock here.
3167 	 * use the join list lock as synchronization point and double-check
3168 	 * msk status to avoid racing with __mptcp_destroy_sock()
3169 	 */
3170 	spin_lock_bh(&msk->join_list_lock);
3171 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3172 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3173 		list_add_tail(&subflow->node, &msk->join_list);
3174 		sock_hold(ssk);
3175 	}
3176 	spin_unlock_bh(&msk->join_list_lock);
3177 	if (!ret)
3178 		return false;
3179 
3180 	/* attach to msk socket only after we are sure he will deal with us
3181 	 * at close time
3182 	 */
3183 	parent_sock = READ_ONCE(parent->sk_socket);
3184 	if (parent_sock && !ssk->sk_socket)
3185 		mptcp_sock_graft(ssk, parent_sock);
3186 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3187 out:
3188 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3189 	return true;
3190 }
3191 
3192 static void mptcp_shutdown(struct sock *sk, int how)
3193 {
3194 	pr_debug("sk=%p, how=%d", sk, how);
3195 
3196 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3197 		__mptcp_wr_shutdown(sk);
3198 }
3199 
3200 static struct proto mptcp_prot = {
3201 	.name		= "MPTCP",
3202 	.owner		= THIS_MODULE,
3203 	.init		= mptcp_init_sock,
3204 	.disconnect	= mptcp_disconnect,
3205 	.close		= mptcp_close,
3206 	.accept		= mptcp_accept,
3207 	.setsockopt	= mptcp_setsockopt,
3208 	.getsockopt	= mptcp_getsockopt,
3209 	.shutdown	= mptcp_shutdown,
3210 	.destroy	= mptcp_destroy,
3211 	.sendmsg	= mptcp_sendmsg,
3212 	.recvmsg	= mptcp_recvmsg,
3213 	.release_cb	= mptcp_release_cb,
3214 	.hash		= mptcp_hash,
3215 	.unhash		= mptcp_unhash,
3216 	.get_port	= mptcp_get_port,
3217 	.sockets_allocated	= &mptcp_sockets_allocated,
3218 	.memory_allocated	= &tcp_memory_allocated,
3219 	.memory_pressure	= &tcp_memory_pressure,
3220 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3221 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3222 	.sysctl_mem	= sysctl_tcp_mem,
3223 	.obj_size	= sizeof(struct mptcp_sock),
3224 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3225 	.no_autobind	= true,
3226 };
3227 
3228 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3229 {
3230 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3231 	struct socket *ssock;
3232 	int err;
3233 
3234 	lock_sock(sock->sk);
3235 	ssock = __mptcp_nmpc_socket(msk);
3236 	if (!ssock) {
3237 		err = -EINVAL;
3238 		goto unlock;
3239 	}
3240 
3241 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3242 	if (!err)
3243 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3244 
3245 unlock:
3246 	release_sock(sock->sk);
3247 	return err;
3248 }
3249 
3250 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3251 					 struct mptcp_subflow_context *subflow)
3252 {
3253 	subflow->request_mptcp = 0;
3254 	__mptcp_do_fallback(msk);
3255 }
3256 
3257 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3258 				int addr_len, int flags)
3259 {
3260 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3261 	struct mptcp_subflow_context *subflow;
3262 	struct socket *ssock;
3263 	int err;
3264 
3265 	lock_sock(sock->sk);
3266 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3267 		/* pending connection or invalid state, let existing subflow
3268 		 * cope with that
3269 		 */
3270 		ssock = msk->subflow;
3271 		goto do_connect;
3272 	}
3273 
3274 	ssock = __mptcp_nmpc_socket(msk);
3275 	if (!ssock) {
3276 		err = -EINVAL;
3277 		goto unlock;
3278 	}
3279 
3280 	mptcp_token_destroy(msk);
3281 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3282 	subflow = mptcp_subflow_ctx(ssock->sk);
3283 #ifdef CONFIG_TCP_MD5SIG
3284 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3285 	 * TCP option space.
3286 	 */
3287 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3288 		mptcp_subflow_early_fallback(msk, subflow);
3289 #endif
3290 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
3291 		mptcp_subflow_early_fallback(msk, subflow);
3292 
3293 do_connect:
3294 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3295 	sock->state = ssock->state;
3296 
3297 	/* on successful connect, the msk state will be moved to established by
3298 	 * subflow_finish_connect()
3299 	 */
3300 	if (!err || err == -EINPROGRESS)
3301 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3302 	else
3303 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3304 
3305 unlock:
3306 	release_sock(sock->sk);
3307 	return err;
3308 }
3309 
3310 static int mptcp_listen(struct socket *sock, int backlog)
3311 {
3312 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3313 	struct socket *ssock;
3314 	int err;
3315 
3316 	pr_debug("msk=%p", msk);
3317 
3318 	lock_sock(sock->sk);
3319 	ssock = __mptcp_nmpc_socket(msk);
3320 	if (!ssock) {
3321 		err = -EINVAL;
3322 		goto unlock;
3323 	}
3324 
3325 	mptcp_token_destroy(msk);
3326 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3327 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3328 
3329 	err = ssock->ops->listen(ssock, backlog);
3330 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3331 	if (!err)
3332 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3333 
3334 unlock:
3335 	release_sock(sock->sk);
3336 	return err;
3337 }
3338 
3339 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3340 			       int flags, bool kern)
3341 {
3342 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3343 	struct socket *ssock;
3344 	int err;
3345 
3346 	pr_debug("msk=%p", msk);
3347 
3348 	lock_sock(sock->sk);
3349 	if (sock->sk->sk_state != TCP_LISTEN)
3350 		goto unlock_fail;
3351 
3352 	ssock = __mptcp_nmpc_socket(msk);
3353 	if (!ssock)
3354 		goto unlock_fail;
3355 
3356 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3357 	sock_hold(ssock->sk);
3358 	release_sock(sock->sk);
3359 
3360 	err = ssock->ops->accept(sock, newsock, flags, kern);
3361 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3362 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3363 		struct mptcp_subflow_context *subflow;
3364 		struct sock *newsk = newsock->sk;
3365 
3366 		lock_sock(newsk);
3367 
3368 		/* PM/worker can now acquire the first subflow socket
3369 		 * lock without racing with listener queue cleanup,
3370 		 * we can notify it, if needed.
3371 		 *
3372 		 * Even if remote has reset the initial subflow by now
3373 		 * the refcnt is still at least one.
3374 		 */
3375 		subflow = mptcp_subflow_ctx(msk->first);
3376 		list_add(&subflow->node, &msk->conn_list);
3377 		sock_hold(msk->first);
3378 		if (mptcp_is_fully_established(newsk))
3379 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3380 
3381 		mptcp_copy_inaddrs(newsk, msk->first);
3382 		mptcp_rcv_space_init(msk, msk->first);
3383 		mptcp_propagate_sndbuf(newsk, msk->first);
3384 
3385 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3386 		 * This is needed so NOSPACE flag can be set from tcp stack.
3387 		 */
3388 		__mptcp_flush_join_list(msk);
3389 		mptcp_for_each_subflow(msk, subflow) {
3390 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3391 
3392 			if (!ssk->sk_socket)
3393 				mptcp_sock_graft(ssk, newsock);
3394 		}
3395 		release_sock(newsk);
3396 	}
3397 
3398 	if (inet_csk_listen_poll(ssock->sk))
3399 		set_bit(MPTCP_DATA_READY, &msk->flags);
3400 	sock_put(ssock->sk);
3401 	return err;
3402 
3403 unlock_fail:
3404 	release_sock(sock->sk);
3405 	return -EINVAL;
3406 }
3407 
3408 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3409 {
3410 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3411 	       0;
3412 }
3413 
3414 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3415 {
3416 	struct sock *sk = (struct sock *)msk;
3417 
3418 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3419 		return EPOLLOUT | EPOLLWRNORM;
3420 
3421 	if (sk_stream_is_writeable(sk))
3422 		return EPOLLOUT | EPOLLWRNORM;
3423 
3424 	mptcp_set_nospace(sk);
3425 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3426 	if (sk_stream_is_writeable(sk))
3427 		return EPOLLOUT | EPOLLWRNORM;
3428 
3429 	return 0;
3430 }
3431 
3432 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3433 			   struct poll_table_struct *wait)
3434 {
3435 	struct sock *sk = sock->sk;
3436 	struct mptcp_sock *msk;
3437 	__poll_t mask = 0;
3438 	int state;
3439 
3440 	msk = mptcp_sk(sk);
3441 	sock_poll_wait(file, sock, wait);
3442 
3443 	state = inet_sk_state_load(sk);
3444 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3445 	if (state == TCP_LISTEN)
3446 		return mptcp_check_readable(msk);
3447 
3448 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3449 		mask |= mptcp_check_readable(msk);
3450 		mask |= mptcp_check_writeable(msk);
3451 	}
3452 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3453 		mask |= EPOLLHUP;
3454 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3455 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3456 
3457 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3458 	smp_rmb();
3459 	if (sk->sk_err)
3460 		mask |= EPOLLERR;
3461 
3462 	return mask;
3463 }
3464 
3465 static const struct proto_ops mptcp_stream_ops = {
3466 	.family		   = PF_INET,
3467 	.owner		   = THIS_MODULE,
3468 	.release	   = inet_release,
3469 	.bind		   = mptcp_bind,
3470 	.connect	   = mptcp_stream_connect,
3471 	.socketpair	   = sock_no_socketpair,
3472 	.accept		   = mptcp_stream_accept,
3473 	.getname	   = inet_getname,
3474 	.poll		   = mptcp_poll,
3475 	.ioctl		   = inet_ioctl,
3476 	.gettstamp	   = sock_gettstamp,
3477 	.listen		   = mptcp_listen,
3478 	.shutdown	   = inet_shutdown,
3479 	.setsockopt	   = sock_common_setsockopt,
3480 	.getsockopt	   = sock_common_getsockopt,
3481 	.sendmsg	   = inet_sendmsg,
3482 	.recvmsg	   = inet_recvmsg,
3483 	.mmap		   = sock_no_mmap,
3484 	.sendpage	   = inet_sendpage,
3485 };
3486 
3487 static struct inet_protosw mptcp_protosw = {
3488 	.type		= SOCK_STREAM,
3489 	.protocol	= IPPROTO_MPTCP,
3490 	.prot		= &mptcp_prot,
3491 	.ops		= &mptcp_stream_ops,
3492 	.flags		= INET_PROTOSW_ICSK,
3493 };
3494 
3495 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3496 {
3497 	struct mptcp_delegated_action *delegated;
3498 	struct mptcp_subflow_context *subflow;
3499 	int work_done = 0;
3500 
3501 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3502 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3503 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3504 
3505 		bh_lock_sock_nested(ssk);
3506 		if (!sock_owned_by_user(ssk) &&
3507 		    mptcp_subflow_has_delegated_action(subflow))
3508 			mptcp_subflow_process_delegated(ssk);
3509 		/* ... elsewhere tcp_release_cb_override already processed
3510 		 * the action or will do at next release_sock().
3511 		 * In both case must dequeue the subflow here - on the same
3512 		 * CPU that scheduled it.
3513 		 */
3514 		bh_unlock_sock(ssk);
3515 		sock_put(ssk);
3516 
3517 		if (++work_done == budget)
3518 			return budget;
3519 	}
3520 
3521 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3522 	 * will not try accessing the NULL napi->dev ptr
3523 	 */
3524 	napi_complete_done(napi, 0);
3525 	return work_done;
3526 }
3527 
3528 void __init mptcp_proto_init(void)
3529 {
3530 	struct mptcp_delegated_action *delegated;
3531 	int cpu;
3532 
3533 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3534 
3535 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3536 		panic("Failed to allocate MPTCP pcpu counter\n");
3537 
3538 	init_dummy_netdev(&mptcp_napi_dev);
3539 	for_each_possible_cpu(cpu) {
3540 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3541 		INIT_LIST_HEAD(&delegated->head);
3542 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3543 				  NAPI_POLL_WEIGHT);
3544 		napi_enable(&delegated->napi);
3545 	}
3546 
3547 	mptcp_subflow_init();
3548 	mptcp_pm_init();
3549 	mptcp_token_init();
3550 
3551 	if (proto_register(&mptcp_prot, 1) != 0)
3552 		panic("Failed to register MPTCP proto.\n");
3553 
3554 	inet_register_protosw(&mptcp_protosw);
3555 
3556 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3557 }
3558 
3559 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3560 static const struct proto_ops mptcp_v6_stream_ops = {
3561 	.family		   = PF_INET6,
3562 	.owner		   = THIS_MODULE,
3563 	.release	   = inet6_release,
3564 	.bind		   = mptcp_bind,
3565 	.connect	   = mptcp_stream_connect,
3566 	.socketpair	   = sock_no_socketpair,
3567 	.accept		   = mptcp_stream_accept,
3568 	.getname	   = inet6_getname,
3569 	.poll		   = mptcp_poll,
3570 	.ioctl		   = inet6_ioctl,
3571 	.gettstamp	   = sock_gettstamp,
3572 	.listen		   = mptcp_listen,
3573 	.shutdown	   = inet_shutdown,
3574 	.setsockopt	   = sock_common_setsockopt,
3575 	.getsockopt	   = sock_common_getsockopt,
3576 	.sendmsg	   = inet6_sendmsg,
3577 	.recvmsg	   = inet6_recvmsg,
3578 	.mmap		   = sock_no_mmap,
3579 	.sendpage	   = inet_sendpage,
3580 #ifdef CONFIG_COMPAT
3581 	.compat_ioctl	   = inet6_compat_ioctl,
3582 #endif
3583 };
3584 
3585 static struct proto mptcp_v6_prot;
3586 
3587 static void mptcp_v6_destroy(struct sock *sk)
3588 {
3589 	mptcp_destroy(sk);
3590 	inet6_destroy_sock(sk);
3591 }
3592 
3593 static struct inet_protosw mptcp_v6_protosw = {
3594 	.type		= SOCK_STREAM,
3595 	.protocol	= IPPROTO_MPTCP,
3596 	.prot		= &mptcp_v6_prot,
3597 	.ops		= &mptcp_v6_stream_ops,
3598 	.flags		= INET_PROTOSW_ICSK,
3599 };
3600 
3601 int __init mptcp_proto_v6_init(void)
3602 {
3603 	int err;
3604 
3605 	mptcp_v6_prot = mptcp_prot;
3606 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3607 	mptcp_v6_prot.slab = NULL;
3608 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3609 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3610 
3611 	err = proto_register(&mptcp_v6_prot, 1);
3612 	if (err)
3613 		return err;
3614 
3615 	err = inet6_register_protosw(&mptcp_v6_protosw);
3616 	if (err)
3617 		proto_unregister(&mptcp_v6_prot);
3618 
3619 	return err;
3620 }
3621 #endif
3622