xref: /openbmc/linux/net/mptcp/protocol.c (revision e368cd72)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 	u8  has_rxtstamp:1;
43 };
44 
45 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46 
47 enum {
48 	MPTCP_CMSG_TS = BIT(0),
49 };
50 
51 static struct percpu_counter mptcp_sockets_allocated;
52 
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void __mptcp_check_send_data_fin(struct sock *sk);
55 
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58 
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60  * completed yet or has failed, return the subflow socket.
61  * Otherwise return NULL.
62  */
63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 	if (!msk->subflow || READ_ONCE(msk->can_ack))
66 		return NULL;
67 
68 	return msk->subflow;
69 }
70 
71 /* Returns end sequence number of the receiver's advertised window */
72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 	return READ_ONCE(msk->wnd_end);
75 }
76 
77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 	struct socket *sock = sk->sk_socket;
80 
81 	if (unlikely(sk->sk_prot == &tcp_prot)) {
82 		/* we are being invoked after mptcp_accept() has
83 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 		 * not an mptcp one.
85 		 *
86 		 * Hand the socket over to tcp so all further socket ops
87 		 * bypass mptcp.
88 		 */
89 		sock->ops = &inet_stream_ops;
90 		return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 		sock->ops = &inet6_stream_ops;
94 		return true;
95 #endif
96 	}
97 
98 	return false;
99 }
100 
101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->first = ssock->sk;
113 	msk->subflow = ssock;
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	mptcp_sock_graft(msk->first, sk->sk_socket);
119 
120 	return 0;
121 }
122 
123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 	sk_drops_add(sk, skb);
126 	__kfree_skb(skb);
127 }
128 
129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 			       struct sk_buff *from)
131 {
132 	bool fragstolen;
133 	int delta;
134 
135 	if (MPTCP_SKB_CB(from)->offset ||
136 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
137 		return false;
138 
139 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 		 to->len, MPTCP_SKB_CB(from)->end_seq);
142 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 	kfree_skb_partial(from, fragstolen);
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	return true;
147 }
148 
149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)msk->rcv_wnd_sent);
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290 
291 		if (ssk->sk_forward_alloc < amount)
292 			goto drop;
293 
294 		ssk->sk_forward_alloc -= amount;
295 		sk->sk_forward_alloc += amount;
296 	}
297 
298 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299 
300 	/* the skb map_seq accounts for the skb offset:
301 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 	 * value
303 	 */
304 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 	MPTCP_SKB_CB(skb)->offset = offset;
307 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308 
309 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 		/* in sequence */
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
333 static void mptcp_stop_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return !__mptcp_check_fallback(msk) &&
359 	       ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			inet_sk_state_store(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << sk->sk_state) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (msk->ack_seq == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
406 static void mptcp_set_datafin_timeout(const struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 
410 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
411 				       TCP_RTO_MIN << icsk->icsk_retransmits);
412 }
413 
414 static void __mptcp_set_timeout(struct sock *sk, long tout)
415 {
416 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
417 }
418 
419 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
420 {
421 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
422 
423 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
424 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
425 }
426 
427 static void mptcp_set_timeout(struct sock *sk)
428 {
429 	struct mptcp_subflow_context *subflow;
430 	long tout = 0;
431 
432 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
433 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
434 	__mptcp_set_timeout(sk, tout);
435 }
436 
437 static bool tcp_can_send_ack(const struct sock *ssk)
438 {
439 	return !((1 << inet_sk_state_load(ssk)) &
440 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
441 }
442 
443 static void mptcp_send_ack(struct mptcp_sock *msk)
444 {
445 	struct mptcp_subflow_context *subflow;
446 
447 	mptcp_for_each_subflow(msk, subflow) {
448 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
449 		bool slow;
450 
451 		slow = lock_sock_fast(ssk);
452 		if (tcp_can_send_ack(ssk))
453 			tcp_send_ack(ssk);
454 		unlock_sock_fast(ssk, slow);
455 	}
456 }
457 
458 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
459 {
460 	bool slow;
461 
462 	slow = lock_sock_fast(ssk);
463 	if (tcp_can_send_ack(ssk))
464 		tcp_cleanup_rbuf(ssk, 1);
465 	unlock_sock_fast(ssk, slow);
466 }
467 
468 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
469 {
470 	const struct inet_connection_sock *icsk = inet_csk(ssk);
471 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
472 	const struct tcp_sock *tp = tcp_sk(ssk);
473 
474 	return (ack_pending & ICSK_ACK_SCHED) &&
475 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
476 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
477 		 (rx_empty && ack_pending &
478 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
479 }
480 
481 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
482 {
483 	int old_space = READ_ONCE(msk->old_wspace);
484 	struct mptcp_subflow_context *subflow;
485 	struct sock *sk = (struct sock *)msk;
486 	int space =  __mptcp_space(sk);
487 	bool cleanup, rx_empty;
488 
489 	cleanup = (space > 0) && (space >= (old_space << 1));
490 	rx_empty = !__mptcp_rmem(sk);
491 
492 	mptcp_for_each_subflow(msk, subflow) {
493 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
494 
495 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
496 			mptcp_subflow_cleanup_rbuf(ssk);
497 	}
498 }
499 
500 static bool mptcp_check_data_fin(struct sock *sk)
501 {
502 	struct mptcp_sock *msk = mptcp_sk(sk);
503 	u64 rcv_data_fin_seq;
504 	bool ret = false;
505 
506 	if (__mptcp_check_fallback(msk))
507 		return ret;
508 
509 	/* Need to ack a DATA_FIN received from a peer while this side
510 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
511 	 * msk->rcv_data_fin was set when parsing the incoming options
512 	 * at the subflow level and the msk lock was not held, so this
513 	 * is the first opportunity to act on the DATA_FIN and change
514 	 * the msk state.
515 	 *
516 	 * If we are caught up to the sequence number of the incoming
517 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
518 	 * not caught up, do nothing and let the recv code send DATA_ACK
519 	 * when catching up.
520 	 */
521 
522 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
523 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
524 		WRITE_ONCE(msk->rcv_data_fin, 0);
525 
526 		sk->sk_shutdown |= RCV_SHUTDOWN;
527 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
528 		set_bit(MPTCP_DATA_READY, &msk->flags);
529 
530 		switch (sk->sk_state) {
531 		case TCP_ESTABLISHED:
532 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
533 			break;
534 		case TCP_FIN_WAIT1:
535 			inet_sk_state_store(sk, TCP_CLOSING);
536 			break;
537 		case TCP_FIN_WAIT2:
538 			inet_sk_state_store(sk, TCP_CLOSE);
539 			break;
540 		default:
541 			/* Other states not expected */
542 			WARN_ON_ONCE(1);
543 			break;
544 		}
545 
546 		ret = true;
547 		mptcp_send_ack(msk);
548 		mptcp_close_wake_up(sk);
549 	}
550 	return ret;
551 }
552 
553 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
554 					   struct sock *ssk,
555 					   unsigned int *bytes)
556 {
557 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
558 	struct sock *sk = (struct sock *)msk;
559 	unsigned int moved = 0;
560 	bool more_data_avail;
561 	struct tcp_sock *tp;
562 	bool done = false;
563 	int sk_rbuf;
564 
565 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
566 
567 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
568 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
569 
570 		if (unlikely(ssk_rbuf > sk_rbuf)) {
571 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
572 			sk_rbuf = ssk_rbuf;
573 		}
574 	}
575 
576 	pr_debug("msk=%p ssk=%p", msk, ssk);
577 	tp = tcp_sk(ssk);
578 	do {
579 		u32 map_remaining, offset;
580 		u32 seq = tp->copied_seq;
581 		struct sk_buff *skb;
582 		bool fin;
583 
584 		/* try to move as much data as available */
585 		map_remaining = subflow->map_data_len -
586 				mptcp_subflow_get_map_offset(subflow);
587 
588 		skb = skb_peek(&ssk->sk_receive_queue);
589 		if (!skb) {
590 			/* if no data is found, a racing workqueue/recvmsg
591 			 * already processed the new data, stop here or we
592 			 * can enter an infinite loop
593 			 */
594 			if (!moved)
595 				done = true;
596 			break;
597 		}
598 
599 		if (__mptcp_check_fallback(msk)) {
600 			/* if we are running under the workqueue, TCP could have
601 			 * collapsed skbs between dummy map creation and now
602 			 * be sure to adjust the size
603 			 */
604 			map_remaining = skb->len;
605 			subflow->map_data_len = skb->len;
606 		}
607 
608 		offset = seq - TCP_SKB_CB(skb)->seq;
609 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
610 		if (fin) {
611 			done = true;
612 			seq++;
613 		}
614 
615 		if (offset < skb->len) {
616 			size_t len = skb->len - offset;
617 
618 			if (tp->urg_data)
619 				done = true;
620 
621 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
622 				moved += len;
623 			seq += len;
624 
625 			if (WARN_ON_ONCE(map_remaining < len))
626 				break;
627 		} else {
628 			WARN_ON_ONCE(!fin);
629 			sk_eat_skb(ssk, skb);
630 			done = true;
631 		}
632 
633 		WRITE_ONCE(tp->copied_seq, seq);
634 		more_data_avail = mptcp_subflow_data_available(ssk);
635 
636 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
637 			done = true;
638 			break;
639 		}
640 	} while (more_data_avail);
641 
642 	*bytes += moved;
643 	return done;
644 }
645 
646 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
647 {
648 	struct sock *sk = (struct sock *)msk;
649 	struct sk_buff *skb, *tail;
650 	bool moved = false;
651 	struct rb_node *p;
652 	u64 end_seq;
653 
654 	p = rb_first(&msk->out_of_order_queue);
655 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
656 	while (p) {
657 		skb = rb_to_skb(p);
658 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
659 			break;
660 
661 		p = rb_next(p);
662 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
663 
664 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
665 				      msk->ack_seq))) {
666 			mptcp_drop(sk, skb);
667 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
668 			continue;
669 		}
670 
671 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
672 		tail = skb_peek_tail(&sk->sk_receive_queue);
673 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
674 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
675 
676 			/* skip overlapping data, if any */
677 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
678 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
679 				 delta);
680 			MPTCP_SKB_CB(skb)->offset += delta;
681 			__skb_queue_tail(&sk->sk_receive_queue, skb);
682 		}
683 		msk->ack_seq = end_seq;
684 		moved = true;
685 	}
686 	return moved;
687 }
688 
689 /* In most cases we will be able to lock the mptcp socket.  If its already
690  * owned, we need to defer to the work queue to avoid ABBA deadlock.
691  */
692 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
693 {
694 	struct sock *sk = (struct sock *)msk;
695 	unsigned int moved = 0;
696 
697 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
698 	__mptcp_ofo_queue(msk);
699 	if (unlikely(ssk->sk_err)) {
700 		if (!sock_owned_by_user(sk))
701 			__mptcp_error_report(sk);
702 		else
703 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
704 	}
705 
706 	/* If the moves have caught up with the DATA_FIN sequence number
707 	 * it's time to ack the DATA_FIN and change socket state, but
708 	 * this is not a good place to change state. Let the workqueue
709 	 * do it.
710 	 */
711 	if (mptcp_pending_data_fin(sk, NULL))
712 		mptcp_schedule_work(sk);
713 	return moved > 0;
714 }
715 
716 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
717 {
718 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
719 	struct mptcp_sock *msk = mptcp_sk(sk);
720 	int sk_rbuf, ssk_rbuf;
721 
722 	/* The peer can send data while we are shutting down this
723 	 * subflow at msk destruction time, but we must avoid enqueuing
724 	 * more data to the msk receive queue
725 	 */
726 	if (unlikely(subflow->disposable))
727 		return;
728 
729 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
730 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
731 	if (unlikely(ssk_rbuf > sk_rbuf))
732 		sk_rbuf = ssk_rbuf;
733 
734 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
735 	if (__mptcp_rmem(sk) > sk_rbuf) {
736 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
737 		return;
738 	}
739 
740 	/* Wake-up the reader only for in-sequence data */
741 	mptcp_data_lock(sk);
742 	if (move_skbs_to_msk(msk, ssk)) {
743 		set_bit(MPTCP_DATA_READY, &msk->flags);
744 		sk->sk_data_ready(sk);
745 	}
746 	mptcp_data_unlock(sk);
747 }
748 
749 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
750 {
751 	struct mptcp_subflow_context *subflow;
752 	bool ret = false;
753 
754 	if (likely(list_empty(&msk->join_list)))
755 		return false;
756 
757 	spin_lock_bh(&msk->join_list_lock);
758 	list_for_each_entry(subflow, &msk->join_list, node) {
759 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
760 
761 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
762 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
763 			ret = true;
764 	}
765 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
766 	spin_unlock_bh(&msk->join_list_lock);
767 
768 	return ret;
769 }
770 
771 void __mptcp_flush_join_list(struct mptcp_sock *msk)
772 {
773 	if (likely(!mptcp_do_flush_join_list(msk)))
774 		return;
775 
776 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
777 		mptcp_schedule_work((struct sock *)msk);
778 }
779 
780 static void mptcp_flush_join_list(struct mptcp_sock *msk)
781 {
782 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
783 
784 	might_sleep();
785 
786 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
787 		return;
788 
789 	mptcp_sockopt_sync_all(msk);
790 }
791 
792 static bool mptcp_timer_pending(struct sock *sk)
793 {
794 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
795 }
796 
797 static void mptcp_reset_timer(struct sock *sk)
798 {
799 	struct inet_connection_sock *icsk = inet_csk(sk);
800 	unsigned long tout;
801 
802 	/* prevent rescheduling on close */
803 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
804 		return;
805 
806 	tout = mptcp_sk(sk)->timer_ival;
807 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
808 }
809 
810 bool mptcp_schedule_work(struct sock *sk)
811 {
812 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
813 	    schedule_work(&mptcp_sk(sk)->work)) {
814 		/* each subflow already holds a reference to the sk, and the
815 		 * workqueue is invoked by a subflow, so sk can't go away here.
816 		 */
817 		sock_hold(sk);
818 		return true;
819 	}
820 	return false;
821 }
822 
823 void mptcp_subflow_eof(struct sock *sk)
824 {
825 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
826 		mptcp_schedule_work(sk);
827 }
828 
829 static void mptcp_check_for_eof(struct mptcp_sock *msk)
830 {
831 	struct mptcp_subflow_context *subflow;
832 	struct sock *sk = (struct sock *)msk;
833 	int receivers = 0;
834 
835 	mptcp_for_each_subflow(msk, subflow)
836 		receivers += !subflow->rx_eof;
837 	if (receivers)
838 		return;
839 
840 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
841 		/* hopefully temporary hack: propagate shutdown status
842 		 * to msk, when all subflows agree on it
843 		 */
844 		sk->sk_shutdown |= RCV_SHUTDOWN;
845 
846 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
847 		set_bit(MPTCP_DATA_READY, &msk->flags);
848 		sk->sk_data_ready(sk);
849 	}
850 
851 	switch (sk->sk_state) {
852 	case TCP_ESTABLISHED:
853 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
854 		break;
855 	case TCP_FIN_WAIT1:
856 		inet_sk_state_store(sk, TCP_CLOSING);
857 		break;
858 	case TCP_FIN_WAIT2:
859 		inet_sk_state_store(sk, TCP_CLOSE);
860 		break;
861 	default:
862 		return;
863 	}
864 	mptcp_close_wake_up(sk);
865 }
866 
867 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
868 {
869 	struct mptcp_subflow_context *subflow;
870 	struct sock *sk = (struct sock *)msk;
871 
872 	sock_owned_by_me(sk);
873 
874 	mptcp_for_each_subflow(msk, subflow) {
875 		if (READ_ONCE(subflow->data_avail))
876 			return mptcp_subflow_tcp_sock(subflow);
877 	}
878 
879 	return NULL;
880 }
881 
882 static bool mptcp_skb_can_collapse_to(u64 write_seq,
883 				      const struct sk_buff *skb,
884 				      const struct mptcp_ext *mpext)
885 {
886 	if (!tcp_skb_can_collapse_to(skb))
887 		return false;
888 
889 	/* can collapse only if MPTCP level sequence is in order and this
890 	 * mapping has not been xmitted yet
891 	 */
892 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
893 	       !mpext->frozen;
894 }
895 
896 /* we can append data to the given data frag if:
897  * - there is space available in the backing page_frag
898  * - the data frag tail matches the current page_frag free offset
899  * - the data frag end sequence number matches the current write seq
900  */
901 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
902 				       const struct page_frag *pfrag,
903 				       const struct mptcp_data_frag *df)
904 {
905 	return df && pfrag->page == df->page &&
906 		pfrag->size - pfrag->offset > 0 &&
907 		pfrag->offset == (df->offset + df->data_len) &&
908 		df->data_seq + df->data_len == msk->write_seq;
909 }
910 
911 static int mptcp_wmem_with_overhead(int size)
912 {
913 	return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
914 }
915 
916 static void __mptcp_wmem_reserve(struct sock *sk, int size)
917 {
918 	int amount = mptcp_wmem_with_overhead(size);
919 	struct mptcp_sock *msk = mptcp_sk(sk);
920 
921 	WARN_ON_ONCE(msk->wmem_reserved);
922 	if (WARN_ON_ONCE(amount < 0))
923 		amount = 0;
924 
925 	if (amount <= sk->sk_forward_alloc)
926 		goto reserve;
927 
928 	/* under memory pressure try to reserve at most a single page
929 	 * otherwise try to reserve the full estimate and fallback
930 	 * to a single page before entering the error path
931 	 */
932 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
933 	    !sk_wmem_schedule(sk, amount)) {
934 		if (amount <= PAGE_SIZE)
935 			goto nomem;
936 
937 		amount = PAGE_SIZE;
938 		if (!sk_wmem_schedule(sk, amount))
939 			goto nomem;
940 	}
941 
942 reserve:
943 	msk->wmem_reserved = amount;
944 	sk->sk_forward_alloc -= amount;
945 	return;
946 
947 nomem:
948 	/* we will wait for memory on next allocation */
949 	msk->wmem_reserved = -1;
950 }
951 
952 static void __mptcp_update_wmem(struct sock *sk)
953 {
954 	struct mptcp_sock *msk = mptcp_sk(sk);
955 
956 #ifdef CONFIG_LOCKDEP
957 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
958 #endif
959 
960 	if (!msk->wmem_reserved)
961 		return;
962 
963 	if (msk->wmem_reserved < 0)
964 		msk->wmem_reserved = 0;
965 	if (msk->wmem_reserved > 0) {
966 		sk->sk_forward_alloc += msk->wmem_reserved;
967 		msk->wmem_reserved = 0;
968 	}
969 }
970 
971 static bool mptcp_wmem_alloc(struct sock *sk, int size)
972 {
973 	struct mptcp_sock *msk = mptcp_sk(sk);
974 
975 	/* check for pre-existing error condition */
976 	if (msk->wmem_reserved < 0)
977 		return false;
978 
979 	if (msk->wmem_reserved >= size)
980 		goto account;
981 
982 	mptcp_data_lock(sk);
983 	if (!sk_wmem_schedule(sk, size)) {
984 		mptcp_data_unlock(sk);
985 		return false;
986 	}
987 
988 	sk->sk_forward_alloc -= size;
989 	msk->wmem_reserved += size;
990 	mptcp_data_unlock(sk);
991 
992 account:
993 	msk->wmem_reserved -= size;
994 	return true;
995 }
996 
997 static void mptcp_wmem_uncharge(struct sock *sk, int size)
998 {
999 	struct mptcp_sock *msk = mptcp_sk(sk);
1000 
1001 	if (msk->wmem_reserved < 0)
1002 		msk->wmem_reserved = 0;
1003 	msk->wmem_reserved += size;
1004 }
1005 
1006 static void mptcp_mem_reclaim_partial(struct sock *sk)
1007 {
1008 	struct mptcp_sock *msk = mptcp_sk(sk);
1009 
1010 	/* if we are experiencing a transint allocation error,
1011 	 * the forward allocation memory has been already
1012 	 * released
1013 	 */
1014 	if (msk->wmem_reserved < 0)
1015 		return;
1016 
1017 	mptcp_data_lock(sk);
1018 	sk->sk_forward_alloc += msk->wmem_reserved;
1019 	sk_mem_reclaim_partial(sk);
1020 	msk->wmem_reserved = sk->sk_forward_alloc;
1021 	sk->sk_forward_alloc = 0;
1022 	mptcp_data_unlock(sk);
1023 }
1024 
1025 static void dfrag_uncharge(struct sock *sk, int len)
1026 {
1027 	sk_mem_uncharge(sk, len);
1028 	sk_wmem_queued_add(sk, -len);
1029 }
1030 
1031 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1032 {
1033 	int len = dfrag->data_len + dfrag->overhead;
1034 
1035 	list_del(&dfrag->list);
1036 	dfrag_uncharge(sk, len);
1037 	put_page(dfrag->page);
1038 }
1039 
1040 static void __mptcp_clean_una(struct sock *sk)
1041 {
1042 	struct mptcp_sock *msk = mptcp_sk(sk);
1043 	struct mptcp_data_frag *dtmp, *dfrag;
1044 	bool cleaned = false;
1045 	u64 snd_una;
1046 
1047 	/* on fallback we just need to ignore snd_una, as this is really
1048 	 * plain TCP
1049 	 */
1050 	if (__mptcp_check_fallback(msk))
1051 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1052 
1053 	snd_una = msk->snd_una;
1054 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1055 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1056 			break;
1057 
1058 		if (unlikely(dfrag == msk->first_pending)) {
1059 			/* in recovery mode can see ack after the current snd head */
1060 			if (WARN_ON_ONCE(!msk->recovery))
1061 				break;
1062 
1063 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1064 		}
1065 
1066 		dfrag_clear(sk, dfrag);
1067 		cleaned = true;
1068 	}
1069 
1070 	dfrag = mptcp_rtx_head(sk);
1071 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1072 		u64 delta = snd_una - dfrag->data_seq;
1073 
1074 		/* prevent wrap around in recovery mode */
1075 		if (unlikely(delta > dfrag->already_sent)) {
1076 			if (WARN_ON_ONCE(!msk->recovery))
1077 				goto out;
1078 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1079 				goto out;
1080 			dfrag->already_sent += delta - dfrag->already_sent;
1081 		}
1082 
1083 		dfrag->data_seq += delta;
1084 		dfrag->offset += delta;
1085 		dfrag->data_len -= delta;
1086 		dfrag->already_sent -= delta;
1087 
1088 		dfrag_uncharge(sk, delta);
1089 		cleaned = true;
1090 	}
1091 
1092 	/* all retransmitted data acked, recovery completed */
1093 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1094 		msk->recovery = false;
1095 
1096 out:
1097 	if (cleaned) {
1098 		if (tcp_under_memory_pressure(sk)) {
1099 			__mptcp_update_wmem(sk);
1100 			sk_mem_reclaim_partial(sk);
1101 		}
1102 	}
1103 
1104 	if (snd_una == READ_ONCE(msk->snd_nxt) && !msk->recovery) {
1105 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1106 			mptcp_stop_timer(sk);
1107 	} else {
1108 		mptcp_reset_timer(sk);
1109 	}
1110 }
1111 
1112 static void __mptcp_clean_una_wakeup(struct sock *sk)
1113 {
1114 #ifdef CONFIG_LOCKDEP
1115 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1116 #endif
1117 	__mptcp_clean_una(sk);
1118 	mptcp_write_space(sk);
1119 }
1120 
1121 static void mptcp_clean_una_wakeup(struct sock *sk)
1122 {
1123 	mptcp_data_lock(sk);
1124 	__mptcp_clean_una_wakeup(sk);
1125 	mptcp_data_unlock(sk);
1126 }
1127 
1128 static void mptcp_enter_memory_pressure(struct sock *sk)
1129 {
1130 	struct mptcp_subflow_context *subflow;
1131 	struct mptcp_sock *msk = mptcp_sk(sk);
1132 	bool first = true;
1133 
1134 	sk_stream_moderate_sndbuf(sk);
1135 	mptcp_for_each_subflow(msk, subflow) {
1136 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1137 
1138 		if (first)
1139 			tcp_enter_memory_pressure(ssk);
1140 		sk_stream_moderate_sndbuf(ssk);
1141 		first = false;
1142 	}
1143 }
1144 
1145 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1146  * data
1147  */
1148 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1149 {
1150 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1151 					pfrag, sk->sk_allocation)))
1152 		return true;
1153 
1154 	mptcp_enter_memory_pressure(sk);
1155 	return false;
1156 }
1157 
1158 static struct mptcp_data_frag *
1159 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1160 		      int orig_offset)
1161 {
1162 	int offset = ALIGN(orig_offset, sizeof(long));
1163 	struct mptcp_data_frag *dfrag;
1164 
1165 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1166 	dfrag->data_len = 0;
1167 	dfrag->data_seq = msk->write_seq;
1168 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1169 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1170 	dfrag->already_sent = 0;
1171 	dfrag->page = pfrag->page;
1172 
1173 	return dfrag;
1174 }
1175 
1176 struct mptcp_sendmsg_info {
1177 	int mss_now;
1178 	int size_goal;
1179 	u16 limit;
1180 	u16 sent;
1181 	unsigned int flags;
1182 };
1183 
1184 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1185 				    int avail_size)
1186 {
1187 	u64 window_end = mptcp_wnd_end(msk);
1188 
1189 	if (__mptcp_check_fallback(msk))
1190 		return avail_size;
1191 
1192 	if (!before64(data_seq + avail_size, window_end)) {
1193 		u64 allowed_size = window_end - data_seq;
1194 
1195 		return min_t(unsigned int, allowed_size, avail_size);
1196 	}
1197 
1198 	return avail_size;
1199 }
1200 
1201 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1202 {
1203 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1204 
1205 	if (!mpext)
1206 		return false;
1207 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1208 	return true;
1209 }
1210 
1211 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1212 {
1213 	struct sk_buff *skb;
1214 
1215 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1216 	if (likely(skb)) {
1217 		if (likely(__mptcp_add_ext(skb, gfp))) {
1218 			skb_reserve(skb, MAX_TCP_HEADER);
1219 			skb->reserved_tailroom = skb->end - skb->tail;
1220 			return skb;
1221 		}
1222 		__kfree_skb(skb);
1223 	} else {
1224 		mptcp_enter_memory_pressure(sk);
1225 	}
1226 	return NULL;
1227 }
1228 
1229 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1230 {
1231 	struct sk_buff *skb;
1232 
1233 	if (ssk->sk_tx_skb_cache) {
1234 		skb = ssk->sk_tx_skb_cache;
1235 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1236 			     !__mptcp_add_ext(skb, gfp)))
1237 			return false;
1238 		return true;
1239 	}
1240 
1241 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1242 	if (!skb)
1243 		return false;
1244 
1245 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1246 		ssk->sk_tx_skb_cache = skb;
1247 		return true;
1248 	}
1249 	kfree_skb(skb);
1250 	return false;
1251 }
1252 
1253 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1254 {
1255 	return !ssk->sk_tx_skb_cache &&
1256 	       tcp_under_memory_pressure(sk);
1257 }
1258 
1259 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1260 {
1261 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1262 		mptcp_mem_reclaim_partial(sk);
1263 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1264 }
1265 
1266 /* note: this always recompute the csum on the whole skb, even
1267  * if we just appended a single frag. More status info needed
1268  */
1269 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1270 {
1271 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1272 	__wsum csum = ~csum_unfold(mpext->csum);
1273 	int offset = skb->len - added;
1274 
1275 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1276 }
1277 
1278 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1279 			      struct mptcp_data_frag *dfrag,
1280 			      struct mptcp_sendmsg_info *info)
1281 {
1282 	u64 data_seq = dfrag->data_seq + info->sent;
1283 	struct mptcp_sock *msk = mptcp_sk(sk);
1284 	bool zero_window_probe = false;
1285 	struct mptcp_ext *mpext = NULL;
1286 	struct sk_buff *skb, *tail;
1287 	bool can_collapse = false;
1288 	int size_bias = 0;
1289 	int avail_size;
1290 	size_t ret = 0;
1291 
1292 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1293 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1294 
1295 	/* compute send limit */
1296 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1297 	avail_size = info->size_goal;
1298 	skb = tcp_write_queue_tail(ssk);
1299 	if (skb) {
1300 		/* Limit the write to the size available in the
1301 		 * current skb, if any, so that we create at most a new skb.
1302 		 * Explicitly tells TCP internals to avoid collapsing on later
1303 		 * queue management operation, to avoid breaking the ext <->
1304 		 * SSN association set here
1305 		 */
1306 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1307 		can_collapse = (info->size_goal - skb->len > 0) &&
1308 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1309 		if (!can_collapse) {
1310 			TCP_SKB_CB(skb)->eor = 1;
1311 		} else {
1312 			size_bias = skb->len;
1313 			avail_size = info->size_goal - skb->len;
1314 		}
1315 	}
1316 
1317 	/* Zero window and all data acked? Probe. */
1318 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1319 	if (avail_size == 0) {
1320 		u64 snd_una = READ_ONCE(msk->snd_una);
1321 
1322 		if (skb || snd_una != msk->snd_nxt)
1323 			return 0;
1324 		zero_window_probe = true;
1325 		data_seq = snd_una - 1;
1326 		avail_size = 1;
1327 	}
1328 
1329 	if (WARN_ON_ONCE(info->sent > info->limit ||
1330 			 info->limit > dfrag->data_len))
1331 		return 0;
1332 
1333 	ret = info->limit - info->sent;
1334 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1335 			      dfrag->page, dfrag->offset + info->sent, &ret);
1336 	if (!tail) {
1337 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1338 		return -ENOMEM;
1339 	}
1340 
1341 	/* if the tail skb is still the cached one, collapsing really happened.
1342 	 */
1343 	if (skb == tail) {
1344 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1345 		mpext->data_len += ret;
1346 		WARN_ON_ONCE(!can_collapse);
1347 		WARN_ON_ONCE(zero_window_probe);
1348 		goto out;
1349 	}
1350 
1351 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1352 	if (WARN_ON_ONCE(!mpext)) {
1353 		/* should never reach here, stream corrupted */
1354 		return -EINVAL;
1355 	}
1356 
1357 	memset(mpext, 0, sizeof(*mpext));
1358 	mpext->data_seq = data_seq;
1359 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1360 	mpext->data_len = ret;
1361 	mpext->use_map = 1;
1362 	mpext->dsn64 = 1;
1363 
1364 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1365 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1366 		 mpext->dsn64);
1367 
1368 	if (zero_window_probe) {
1369 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1370 		mpext->frozen = 1;
1371 		if (READ_ONCE(msk->csum_enabled))
1372 			mptcp_update_data_checksum(tail, ret);
1373 		tcp_push_pending_frames(ssk);
1374 		return 0;
1375 	}
1376 out:
1377 	if (READ_ONCE(msk->csum_enabled))
1378 		mptcp_update_data_checksum(tail, ret);
1379 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1380 	return ret;
1381 }
1382 
1383 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1384 					 sizeof(struct tcphdr) - \
1385 					 MAX_TCP_OPTION_SPACE - \
1386 					 sizeof(struct ipv6hdr) - \
1387 					 sizeof(struct frag_hdr))
1388 
1389 struct subflow_send_info {
1390 	struct sock *ssk;
1391 	u64 ratio;
1392 };
1393 
1394 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1395 {
1396 	if (!subflow->stale)
1397 		return;
1398 
1399 	subflow->stale = 0;
1400 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1401 }
1402 
1403 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1404 {
1405 	if (unlikely(subflow->stale)) {
1406 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1407 
1408 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1409 			return false;
1410 
1411 		mptcp_subflow_set_active(subflow);
1412 	}
1413 	return __mptcp_subflow_active(subflow);
1414 }
1415 
1416 /* implement the mptcp packet scheduler;
1417  * returns the subflow that will transmit the next DSS
1418  * additionally updates the rtx timeout
1419  */
1420 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1421 {
1422 	struct subflow_send_info send_info[2];
1423 	struct mptcp_subflow_context *subflow;
1424 	struct sock *sk = (struct sock *)msk;
1425 	int i, nr_active = 0;
1426 	struct sock *ssk;
1427 	long tout = 0;
1428 	u64 ratio;
1429 	u32 pace;
1430 
1431 	sock_owned_by_me(sk);
1432 
1433 	if (__mptcp_check_fallback(msk)) {
1434 		if (!msk->first)
1435 			return NULL;
1436 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1437 	}
1438 
1439 	/* re-use last subflow, if the burst allow that */
1440 	if (msk->last_snd && msk->snd_burst > 0 &&
1441 	    sk_stream_memory_free(msk->last_snd) &&
1442 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1443 		mptcp_set_timeout(sk);
1444 		return msk->last_snd;
1445 	}
1446 
1447 	/* pick the subflow with the lower wmem/wspace ratio */
1448 	for (i = 0; i < 2; ++i) {
1449 		send_info[i].ssk = NULL;
1450 		send_info[i].ratio = -1;
1451 	}
1452 	mptcp_for_each_subflow(msk, subflow) {
1453 		trace_mptcp_subflow_get_send(subflow);
1454 		ssk =  mptcp_subflow_tcp_sock(subflow);
1455 		if (!mptcp_subflow_active(subflow))
1456 			continue;
1457 
1458 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1459 		nr_active += !subflow->backup;
1460 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1461 			continue;
1462 
1463 		pace = READ_ONCE(ssk->sk_pacing_rate);
1464 		if (!pace)
1465 			continue;
1466 
1467 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1468 				pace);
1469 		if (ratio < send_info[subflow->backup].ratio) {
1470 			send_info[subflow->backup].ssk = ssk;
1471 			send_info[subflow->backup].ratio = ratio;
1472 		}
1473 	}
1474 	__mptcp_set_timeout(sk, tout);
1475 
1476 	/* pick the best backup if no other subflow is active */
1477 	if (!nr_active)
1478 		send_info[0].ssk = send_info[1].ssk;
1479 
1480 	if (send_info[0].ssk) {
1481 		msk->last_snd = send_info[0].ssk;
1482 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1483 				       tcp_sk(msk->last_snd)->snd_wnd);
1484 		return msk->last_snd;
1485 	}
1486 
1487 	return NULL;
1488 }
1489 
1490 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1491 			       struct mptcp_sendmsg_info *info)
1492 {
1493 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1494 	release_sock(ssk);
1495 }
1496 
1497 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1498 {
1499 	struct sock *prev_ssk = NULL, *ssk = NULL;
1500 	struct mptcp_sock *msk = mptcp_sk(sk);
1501 	struct mptcp_sendmsg_info info = {
1502 				.flags = flags,
1503 	};
1504 	struct mptcp_data_frag *dfrag;
1505 	int len, copied = 0;
1506 
1507 	while ((dfrag = mptcp_send_head(sk))) {
1508 		info.sent = dfrag->already_sent;
1509 		info.limit = dfrag->data_len;
1510 		len = dfrag->data_len - dfrag->already_sent;
1511 		while (len > 0) {
1512 			int ret = 0;
1513 
1514 			prev_ssk = ssk;
1515 			mptcp_flush_join_list(msk);
1516 			ssk = mptcp_subflow_get_send(msk);
1517 
1518 			/* First check. If the ssk has changed since
1519 			 * the last round, release prev_ssk
1520 			 */
1521 			if (ssk != prev_ssk && prev_ssk)
1522 				mptcp_push_release(sk, prev_ssk, &info);
1523 			if (!ssk)
1524 				goto out;
1525 
1526 			/* Need to lock the new subflow only if different
1527 			 * from the previous one, otherwise we are still
1528 			 * helding the relevant lock
1529 			 */
1530 			if (ssk != prev_ssk)
1531 				lock_sock(ssk);
1532 
1533 			/* keep it simple and always provide a new skb for the
1534 			 * subflow, even if we will not use it when collapsing
1535 			 * on the pending one
1536 			 */
1537 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1538 				mptcp_push_release(sk, ssk, &info);
1539 				goto out;
1540 			}
1541 
1542 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1543 			if (ret <= 0) {
1544 				mptcp_push_release(sk, ssk, &info);
1545 				goto out;
1546 			}
1547 
1548 			info.sent += ret;
1549 			dfrag->already_sent += ret;
1550 			msk->snd_nxt += ret;
1551 			msk->snd_burst -= ret;
1552 			msk->tx_pending_data -= ret;
1553 			copied += ret;
1554 			len -= ret;
1555 		}
1556 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1557 	}
1558 
1559 	/* at this point we held the socket lock for the last subflow we used */
1560 	if (ssk)
1561 		mptcp_push_release(sk, ssk, &info);
1562 
1563 out:
1564 	/* ensure the rtx timer is running */
1565 	if (!mptcp_timer_pending(sk))
1566 		mptcp_reset_timer(sk);
1567 	if (copied)
1568 		__mptcp_check_send_data_fin(sk);
1569 }
1570 
1571 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1572 {
1573 	struct mptcp_sock *msk = mptcp_sk(sk);
1574 	struct mptcp_sendmsg_info info;
1575 	struct mptcp_data_frag *dfrag;
1576 	struct sock *xmit_ssk;
1577 	int len, copied = 0;
1578 	bool first = true;
1579 
1580 	info.flags = 0;
1581 	while ((dfrag = mptcp_send_head(sk))) {
1582 		info.sent = dfrag->already_sent;
1583 		info.limit = dfrag->data_len;
1584 		len = dfrag->data_len - dfrag->already_sent;
1585 		while (len > 0) {
1586 			int ret = 0;
1587 
1588 			/* the caller already invoked the packet scheduler,
1589 			 * check for a different subflow usage only after
1590 			 * spooling the first chunk of data
1591 			 */
1592 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1593 			if (!xmit_ssk)
1594 				goto out;
1595 			if (xmit_ssk != ssk) {
1596 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1597 				goto out;
1598 			}
1599 
1600 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1601 				__mptcp_update_wmem(sk);
1602 				sk_mem_reclaim_partial(sk);
1603 			}
1604 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1605 				goto out;
1606 
1607 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1608 			if (ret <= 0)
1609 				goto out;
1610 
1611 			info.sent += ret;
1612 			dfrag->already_sent += ret;
1613 			msk->snd_nxt += ret;
1614 			msk->snd_burst -= ret;
1615 			msk->tx_pending_data -= ret;
1616 			copied += ret;
1617 			len -= ret;
1618 			first = false;
1619 		}
1620 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1621 	}
1622 
1623 out:
1624 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1625 	 * not going to flush it via release_sock()
1626 	 */
1627 	__mptcp_update_wmem(sk);
1628 	if (copied) {
1629 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1630 			 info.size_goal);
1631 		if (!mptcp_timer_pending(sk))
1632 			mptcp_reset_timer(sk);
1633 
1634 		if (msk->snd_data_fin_enable &&
1635 		    msk->snd_nxt + 1 == msk->write_seq)
1636 			mptcp_schedule_work(sk);
1637 	}
1638 }
1639 
1640 static void mptcp_set_nospace(struct sock *sk)
1641 {
1642 	/* enable autotune */
1643 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1644 
1645 	/* will be cleared on avail space */
1646 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1647 }
1648 
1649 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1650 {
1651 	struct mptcp_sock *msk = mptcp_sk(sk);
1652 	struct page_frag *pfrag;
1653 	size_t copied = 0;
1654 	int ret = 0;
1655 	long timeo;
1656 
1657 	/* we don't support FASTOPEN yet */
1658 	if (msg->msg_flags & MSG_FASTOPEN)
1659 		return -EOPNOTSUPP;
1660 
1661 	/* silently ignore everything else */
1662 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1663 
1664 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1665 
1666 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1667 
1668 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1669 		ret = sk_stream_wait_connect(sk, &timeo);
1670 		if (ret)
1671 			goto out;
1672 	}
1673 
1674 	pfrag = sk_page_frag(sk);
1675 
1676 	while (msg_data_left(msg)) {
1677 		int total_ts, frag_truesize = 0;
1678 		struct mptcp_data_frag *dfrag;
1679 		bool dfrag_collapsed;
1680 		size_t psize, offset;
1681 
1682 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1683 			ret = -EPIPE;
1684 			goto out;
1685 		}
1686 
1687 		/* reuse tail pfrag, if possible, or carve a new one from the
1688 		 * page allocator
1689 		 */
1690 		dfrag = mptcp_pending_tail(sk);
1691 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1692 		if (!dfrag_collapsed) {
1693 			if (!sk_stream_memory_free(sk))
1694 				goto wait_for_memory;
1695 
1696 			if (!mptcp_page_frag_refill(sk, pfrag))
1697 				goto wait_for_memory;
1698 
1699 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1700 			frag_truesize = dfrag->overhead;
1701 		}
1702 
1703 		/* we do not bound vs wspace, to allow a single packet.
1704 		 * memory accounting will prevent execessive memory usage
1705 		 * anyway
1706 		 */
1707 		offset = dfrag->offset + dfrag->data_len;
1708 		psize = pfrag->size - offset;
1709 		psize = min_t(size_t, psize, msg_data_left(msg));
1710 		total_ts = psize + frag_truesize;
1711 
1712 		if (!mptcp_wmem_alloc(sk, total_ts))
1713 			goto wait_for_memory;
1714 
1715 		if (copy_page_from_iter(dfrag->page, offset, psize,
1716 					&msg->msg_iter) != psize) {
1717 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1718 			ret = -EFAULT;
1719 			goto out;
1720 		}
1721 
1722 		/* data successfully copied into the write queue */
1723 		copied += psize;
1724 		dfrag->data_len += psize;
1725 		frag_truesize += psize;
1726 		pfrag->offset += frag_truesize;
1727 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1728 		msk->tx_pending_data += psize;
1729 
1730 		/* charge data on mptcp pending queue to the msk socket
1731 		 * Note: we charge such data both to sk and ssk
1732 		 */
1733 		sk_wmem_queued_add(sk, frag_truesize);
1734 		if (!dfrag_collapsed) {
1735 			get_page(dfrag->page);
1736 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1737 			if (!msk->first_pending)
1738 				WRITE_ONCE(msk->first_pending, dfrag);
1739 		}
1740 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1741 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1742 			 !dfrag_collapsed);
1743 
1744 		continue;
1745 
1746 wait_for_memory:
1747 		mptcp_set_nospace(sk);
1748 		__mptcp_push_pending(sk, msg->msg_flags);
1749 		ret = sk_stream_wait_memory(sk, &timeo);
1750 		if (ret)
1751 			goto out;
1752 	}
1753 
1754 	if (copied)
1755 		__mptcp_push_pending(sk, msg->msg_flags);
1756 
1757 out:
1758 	release_sock(sk);
1759 	return copied ? : ret;
1760 }
1761 
1762 static void mptcp_wait_data(struct sock *sk, long *timeo)
1763 {
1764 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1765 	struct mptcp_sock *msk = mptcp_sk(sk);
1766 
1767 	add_wait_queue(sk_sleep(sk), &wait);
1768 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1769 
1770 	sk_wait_event(sk, timeo,
1771 		      test_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1772 
1773 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1774 	remove_wait_queue(sk_sleep(sk), &wait);
1775 }
1776 
1777 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1778 				struct msghdr *msg,
1779 				size_t len, int flags,
1780 				struct scm_timestamping_internal *tss,
1781 				int *cmsg_flags)
1782 {
1783 	struct sk_buff *skb, *tmp;
1784 	int copied = 0;
1785 
1786 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1787 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1788 		u32 data_len = skb->len - offset;
1789 		u32 count = min_t(size_t, len - copied, data_len);
1790 		int err;
1791 
1792 		if (!(flags & MSG_TRUNC)) {
1793 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1794 			if (unlikely(err < 0)) {
1795 				if (!copied)
1796 					return err;
1797 				break;
1798 			}
1799 		}
1800 
1801 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1802 			tcp_update_recv_tstamps(skb, tss);
1803 			*cmsg_flags |= MPTCP_CMSG_TS;
1804 		}
1805 
1806 		copied += count;
1807 
1808 		if (count < data_len) {
1809 			if (!(flags & MSG_PEEK))
1810 				MPTCP_SKB_CB(skb)->offset += count;
1811 			break;
1812 		}
1813 
1814 		if (!(flags & MSG_PEEK)) {
1815 			/* we will bulk release the skb memory later */
1816 			skb->destructor = NULL;
1817 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1818 			__skb_unlink(skb, &msk->receive_queue);
1819 			__kfree_skb(skb);
1820 		}
1821 
1822 		if (copied >= len)
1823 			break;
1824 	}
1825 
1826 	return copied;
1827 }
1828 
1829 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1830  *
1831  * Only difference: Use highest rtt estimate of the subflows in use.
1832  */
1833 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1834 {
1835 	struct mptcp_subflow_context *subflow;
1836 	struct sock *sk = (struct sock *)msk;
1837 	u32 time, advmss = 1;
1838 	u64 rtt_us, mstamp;
1839 
1840 	sock_owned_by_me(sk);
1841 
1842 	if (copied <= 0)
1843 		return;
1844 
1845 	msk->rcvq_space.copied += copied;
1846 
1847 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1848 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1849 
1850 	rtt_us = msk->rcvq_space.rtt_us;
1851 	if (rtt_us && time < (rtt_us >> 3))
1852 		return;
1853 
1854 	rtt_us = 0;
1855 	mptcp_for_each_subflow(msk, subflow) {
1856 		const struct tcp_sock *tp;
1857 		u64 sf_rtt_us;
1858 		u32 sf_advmss;
1859 
1860 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1861 
1862 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1863 		sf_advmss = READ_ONCE(tp->advmss);
1864 
1865 		rtt_us = max(sf_rtt_us, rtt_us);
1866 		advmss = max(sf_advmss, advmss);
1867 	}
1868 
1869 	msk->rcvq_space.rtt_us = rtt_us;
1870 	if (time < (rtt_us >> 3) || rtt_us == 0)
1871 		return;
1872 
1873 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1874 		goto new_measure;
1875 
1876 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1877 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1878 		int rcvmem, rcvbuf;
1879 		u64 rcvwin, grow;
1880 
1881 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1882 
1883 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1884 
1885 		do_div(grow, msk->rcvq_space.space);
1886 		rcvwin += (grow << 1);
1887 
1888 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1889 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1890 			rcvmem += 128;
1891 
1892 		do_div(rcvwin, advmss);
1893 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1894 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1895 
1896 		if (rcvbuf > sk->sk_rcvbuf) {
1897 			u32 window_clamp;
1898 
1899 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1900 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1901 
1902 			/* Make subflows follow along.  If we do not do this, we
1903 			 * get drops at subflow level if skbs can't be moved to
1904 			 * the mptcp rx queue fast enough (announced rcv_win can
1905 			 * exceed ssk->sk_rcvbuf).
1906 			 */
1907 			mptcp_for_each_subflow(msk, subflow) {
1908 				struct sock *ssk;
1909 				bool slow;
1910 
1911 				ssk = mptcp_subflow_tcp_sock(subflow);
1912 				slow = lock_sock_fast(ssk);
1913 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1914 				tcp_sk(ssk)->window_clamp = window_clamp;
1915 				tcp_cleanup_rbuf(ssk, 1);
1916 				unlock_sock_fast(ssk, slow);
1917 			}
1918 		}
1919 	}
1920 
1921 	msk->rcvq_space.space = msk->rcvq_space.copied;
1922 new_measure:
1923 	msk->rcvq_space.copied = 0;
1924 	msk->rcvq_space.time = mstamp;
1925 }
1926 
1927 static void __mptcp_update_rmem(struct sock *sk)
1928 {
1929 	struct mptcp_sock *msk = mptcp_sk(sk);
1930 
1931 	if (!msk->rmem_released)
1932 		return;
1933 
1934 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1935 	sk_mem_uncharge(sk, msk->rmem_released);
1936 	WRITE_ONCE(msk->rmem_released, 0);
1937 }
1938 
1939 static void __mptcp_splice_receive_queue(struct sock *sk)
1940 {
1941 	struct mptcp_sock *msk = mptcp_sk(sk);
1942 
1943 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1944 }
1945 
1946 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1947 {
1948 	struct sock *sk = (struct sock *)msk;
1949 	unsigned int moved = 0;
1950 	bool ret, done;
1951 
1952 	mptcp_flush_join_list(msk);
1953 	do {
1954 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1955 		bool slowpath;
1956 
1957 		/* we can have data pending in the subflows only if the msk
1958 		 * receive buffer was full at subflow_data_ready() time,
1959 		 * that is an unlikely slow path.
1960 		 */
1961 		if (likely(!ssk))
1962 			break;
1963 
1964 		slowpath = lock_sock_fast(ssk);
1965 		mptcp_data_lock(sk);
1966 		__mptcp_update_rmem(sk);
1967 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1968 		mptcp_data_unlock(sk);
1969 
1970 		if (unlikely(ssk->sk_err))
1971 			__mptcp_error_report(sk);
1972 		unlock_sock_fast(ssk, slowpath);
1973 	} while (!done);
1974 
1975 	/* acquire the data lock only if some input data is pending */
1976 	ret = moved > 0;
1977 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1978 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1979 		mptcp_data_lock(sk);
1980 		__mptcp_update_rmem(sk);
1981 		ret |= __mptcp_ofo_queue(msk);
1982 		__mptcp_splice_receive_queue(sk);
1983 		mptcp_data_unlock(sk);
1984 	}
1985 	if (ret)
1986 		mptcp_check_data_fin((struct sock *)msk);
1987 	return !skb_queue_empty(&msk->receive_queue);
1988 }
1989 
1990 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1991 			 int nonblock, int flags, int *addr_len)
1992 {
1993 	struct mptcp_sock *msk = mptcp_sk(sk);
1994 	struct scm_timestamping_internal tss;
1995 	int copied = 0, cmsg_flags = 0;
1996 	int target;
1997 	long timeo;
1998 
1999 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2000 	if (unlikely(flags & MSG_ERRQUEUE))
2001 		return inet_recv_error(sk, msg, len, addr_len);
2002 
2003 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
2004 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2005 		copied = -ENOTCONN;
2006 		goto out_err;
2007 	}
2008 
2009 	timeo = sock_rcvtimeo(sk, nonblock);
2010 
2011 	len = min_t(size_t, len, INT_MAX);
2012 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2013 
2014 	while (copied < len) {
2015 		int bytes_read;
2016 
2017 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2018 		if (unlikely(bytes_read < 0)) {
2019 			if (!copied)
2020 				copied = bytes_read;
2021 			goto out_err;
2022 		}
2023 
2024 		copied += bytes_read;
2025 
2026 		/* be sure to advertise window change */
2027 		mptcp_cleanup_rbuf(msk);
2028 
2029 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2030 			continue;
2031 
2032 		/* only the master socket status is relevant here. The exit
2033 		 * conditions mirror closely tcp_recvmsg()
2034 		 */
2035 		if (copied >= target)
2036 			break;
2037 
2038 		if (copied) {
2039 			if (sk->sk_err ||
2040 			    sk->sk_state == TCP_CLOSE ||
2041 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2042 			    !timeo ||
2043 			    signal_pending(current))
2044 				break;
2045 		} else {
2046 			if (sk->sk_err) {
2047 				copied = sock_error(sk);
2048 				break;
2049 			}
2050 
2051 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2052 				mptcp_check_for_eof(msk);
2053 
2054 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2055 				/* race breaker: the shutdown could be after the
2056 				 * previous receive queue check
2057 				 */
2058 				if (__mptcp_move_skbs(msk))
2059 					continue;
2060 				break;
2061 			}
2062 
2063 			if (sk->sk_state == TCP_CLOSE) {
2064 				copied = -ENOTCONN;
2065 				break;
2066 			}
2067 
2068 			if (!timeo) {
2069 				copied = -EAGAIN;
2070 				break;
2071 			}
2072 
2073 			if (signal_pending(current)) {
2074 				copied = sock_intr_errno(timeo);
2075 				break;
2076 			}
2077 		}
2078 
2079 		pr_debug("block timeout %ld", timeo);
2080 		mptcp_wait_data(sk, &timeo);
2081 	}
2082 
2083 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2084 	    skb_queue_empty(&msk->receive_queue)) {
2085 		/* entire backlog drained, clear DATA_READY. */
2086 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2087 
2088 		/* .. race-breaker: ssk might have gotten new data
2089 		 * after last __mptcp_move_skbs() returned false.
2090 		 */
2091 		if (unlikely(__mptcp_move_skbs(msk)))
2092 			set_bit(MPTCP_DATA_READY, &msk->flags);
2093 	}
2094 
2095 out_err:
2096 	if (cmsg_flags && copied >= 0) {
2097 		if (cmsg_flags & MPTCP_CMSG_TS)
2098 			tcp_recv_timestamp(msg, sk, &tss);
2099 	}
2100 
2101 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2102 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2103 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2104 	if (!(flags & MSG_PEEK))
2105 		mptcp_rcv_space_adjust(msk, copied);
2106 
2107 	release_sock(sk);
2108 	return copied;
2109 }
2110 
2111 static void mptcp_retransmit_timer(struct timer_list *t)
2112 {
2113 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2114 						       icsk_retransmit_timer);
2115 	struct sock *sk = &icsk->icsk_inet.sk;
2116 	struct mptcp_sock *msk = mptcp_sk(sk);
2117 
2118 	bh_lock_sock(sk);
2119 	if (!sock_owned_by_user(sk)) {
2120 		/* we need a process context to retransmit */
2121 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2122 			mptcp_schedule_work(sk);
2123 	} else {
2124 		/* delegate our work to tcp_release_cb() */
2125 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2126 	}
2127 	bh_unlock_sock(sk);
2128 	sock_put(sk);
2129 }
2130 
2131 static void mptcp_timeout_timer(struct timer_list *t)
2132 {
2133 	struct sock *sk = from_timer(sk, t, sk_timer);
2134 
2135 	mptcp_schedule_work(sk);
2136 	sock_put(sk);
2137 }
2138 
2139 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2140  * level.
2141  *
2142  * A backup subflow is returned only if that is the only kind available.
2143  */
2144 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2145 {
2146 	struct sock *backup = NULL, *pick = NULL;
2147 	struct mptcp_subflow_context *subflow;
2148 	int min_stale_count = INT_MAX;
2149 
2150 	sock_owned_by_me((const struct sock *)msk);
2151 
2152 	if (__mptcp_check_fallback(msk))
2153 		return NULL;
2154 
2155 	mptcp_for_each_subflow(msk, subflow) {
2156 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2157 
2158 		if (!__mptcp_subflow_active(subflow))
2159 			continue;
2160 
2161 		/* still data outstanding at TCP level? skip this */
2162 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2163 			mptcp_pm_subflow_chk_stale(msk, ssk);
2164 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2165 			continue;
2166 		}
2167 
2168 		if (subflow->backup) {
2169 			if (!backup)
2170 				backup = ssk;
2171 			continue;
2172 		}
2173 
2174 		if (!pick)
2175 			pick = ssk;
2176 	}
2177 
2178 	if (pick)
2179 		return pick;
2180 
2181 	/* use backup only if there are no progresses anywhere */
2182 	return min_stale_count > 1 ? backup : NULL;
2183 }
2184 
2185 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2186 {
2187 	if (msk->subflow) {
2188 		iput(SOCK_INODE(msk->subflow));
2189 		msk->subflow = NULL;
2190 	}
2191 }
2192 
2193 bool __mptcp_retransmit_pending_data(struct sock *sk)
2194 {
2195 	struct mptcp_data_frag *cur, *rtx_head;
2196 	struct mptcp_sock *msk = mptcp_sk(sk);
2197 
2198 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2199 		return false;
2200 
2201 	if (tcp_rtx_and_write_queues_empty(sk))
2202 		return false;
2203 
2204 	/* the closing socket has some data untransmitted and/or unacked:
2205 	 * some data in the mptcp rtx queue has not really xmitted yet.
2206 	 * keep it simple and re-inject the whole mptcp level rtx queue
2207 	 */
2208 	mptcp_data_lock(sk);
2209 	__mptcp_clean_una_wakeup(sk);
2210 	rtx_head = mptcp_rtx_head(sk);
2211 	if (!rtx_head) {
2212 		mptcp_data_unlock(sk);
2213 		return false;
2214 	}
2215 
2216 	/* will accept ack for reijected data before re-sending them */
2217 	if (!msk->recovery || after64(msk->snd_nxt, msk->recovery_snd_nxt))
2218 		msk->recovery_snd_nxt = msk->snd_nxt;
2219 	msk->recovery = true;
2220 	mptcp_data_unlock(sk);
2221 
2222 	msk->first_pending = rtx_head;
2223 	msk->tx_pending_data += msk->snd_nxt - rtx_head->data_seq;
2224 	msk->snd_nxt = rtx_head->data_seq;
2225 	msk->snd_burst = 0;
2226 
2227 	/* be sure to clear the "sent status" on all re-injected fragments */
2228 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2229 		if (!cur->already_sent)
2230 			break;
2231 		cur->already_sent = 0;
2232 	}
2233 
2234 	return true;
2235 }
2236 
2237 /* subflow sockets can be either outgoing (connect) or incoming
2238  * (accept).
2239  *
2240  * Outgoing subflows use in-kernel sockets.
2241  * Incoming subflows do not have their own 'struct socket' allocated,
2242  * so we need to use tcp_close() after detaching them from the mptcp
2243  * parent socket.
2244  */
2245 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2246 			      struct mptcp_subflow_context *subflow)
2247 {
2248 	struct mptcp_sock *msk = mptcp_sk(sk);
2249 	bool need_push;
2250 
2251 	list_del(&subflow->node);
2252 
2253 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2254 
2255 	/* if we are invoked by the msk cleanup code, the subflow is
2256 	 * already orphaned
2257 	 */
2258 	if (ssk->sk_socket)
2259 		sock_orphan(ssk);
2260 
2261 	need_push = __mptcp_retransmit_pending_data(sk);
2262 	subflow->disposable = 1;
2263 
2264 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2265 	 * the ssk has been already destroyed, we just need to release the
2266 	 * reference owned by msk;
2267 	 */
2268 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2269 		kfree_rcu(subflow, rcu);
2270 	} else {
2271 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2272 		__tcp_close(ssk, 0);
2273 
2274 		/* close acquired an extra ref */
2275 		__sock_put(ssk);
2276 	}
2277 	release_sock(ssk);
2278 
2279 	sock_put(ssk);
2280 
2281 	if (ssk == msk->last_snd)
2282 		msk->last_snd = NULL;
2283 
2284 	if (ssk == msk->first)
2285 		msk->first = NULL;
2286 
2287 	if (msk->subflow && ssk == msk->subflow->sk)
2288 		mptcp_dispose_initial_subflow(msk);
2289 
2290 	if (need_push)
2291 		__mptcp_push_pending(sk, 0);
2292 }
2293 
2294 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2295 		     struct mptcp_subflow_context *subflow)
2296 {
2297 	if (sk->sk_state == TCP_ESTABLISHED)
2298 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2299 	__mptcp_close_ssk(sk, ssk, subflow);
2300 }
2301 
2302 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2303 {
2304 	return 0;
2305 }
2306 
2307 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2308 {
2309 	struct mptcp_subflow_context *subflow, *tmp;
2310 
2311 	might_sleep();
2312 
2313 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2314 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2315 
2316 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2317 			continue;
2318 
2319 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2320 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2321 			continue;
2322 
2323 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2324 	}
2325 }
2326 
2327 static bool mptcp_check_close_timeout(const struct sock *sk)
2328 {
2329 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2330 	struct mptcp_subflow_context *subflow;
2331 
2332 	if (delta >= TCP_TIMEWAIT_LEN)
2333 		return true;
2334 
2335 	/* if all subflows are in closed status don't bother with additional
2336 	 * timeout
2337 	 */
2338 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2339 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2340 		    TCP_CLOSE)
2341 			return false;
2342 	}
2343 	return true;
2344 }
2345 
2346 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2347 {
2348 	struct mptcp_subflow_context *subflow, *tmp;
2349 	struct sock *sk = &msk->sk.icsk_inet.sk;
2350 
2351 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2352 		return;
2353 
2354 	mptcp_token_destroy(msk);
2355 
2356 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2357 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2358 		bool slow;
2359 
2360 		slow = lock_sock_fast(tcp_sk);
2361 		if (tcp_sk->sk_state != TCP_CLOSE) {
2362 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2363 			tcp_set_state(tcp_sk, TCP_CLOSE);
2364 		}
2365 		unlock_sock_fast(tcp_sk, slow);
2366 	}
2367 
2368 	inet_sk_state_store(sk, TCP_CLOSE);
2369 	sk->sk_shutdown = SHUTDOWN_MASK;
2370 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2371 	set_bit(MPTCP_DATA_READY, &msk->flags);
2372 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2373 
2374 	mptcp_close_wake_up(sk);
2375 }
2376 
2377 static void __mptcp_retrans(struct sock *sk)
2378 {
2379 	struct mptcp_sock *msk = mptcp_sk(sk);
2380 	struct mptcp_sendmsg_info info = {};
2381 	struct mptcp_data_frag *dfrag;
2382 	size_t copied = 0;
2383 	struct sock *ssk;
2384 	int ret;
2385 
2386 	mptcp_clean_una_wakeup(sk);
2387 	dfrag = mptcp_rtx_head(sk);
2388 	if (!dfrag) {
2389 		if (mptcp_data_fin_enabled(msk)) {
2390 			struct inet_connection_sock *icsk = inet_csk(sk);
2391 
2392 			icsk->icsk_retransmits++;
2393 			mptcp_set_datafin_timeout(sk);
2394 			mptcp_send_ack(msk);
2395 
2396 			goto reset_timer;
2397 		}
2398 
2399 		return;
2400 	}
2401 
2402 	ssk = mptcp_subflow_get_retrans(msk);
2403 	if (!ssk)
2404 		goto reset_timer;
2405 
2406 	lock_sock(ssk);
2407 
2408 	/* limit retransmission to the bytes already sent on some subflows */
2409 	info.sent = 0;
2410 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2411 	while (info.sent < info.limit) {
2412 		if (!mptcp_alloc_tx_skb(sk, ssk))
2413 			break;
2414 
2415 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2416 		if (ret <= 0)
2417 			break;
2418 
2419 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2420 		copied += ret;
2421 		info.sent += ret;
2422 	}
2423 	if (copied) {
2424 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2425 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2426 			 info.size_goal);
2427 	}
2428 
2429 	release_sock(ssk);
2430 
2431 reset_timer:
2432 	if (!mptcp_timer_pending(sk))
2433 		mptcp_reset_timer(sk);
2434 }
2435 
2436 static void mptcp_worker(struct work_struct *work)
2437 {
2438 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2439 	struct sock *sk = &msk->sk.icsk_inet.sk;
2440 	int state;
2441 
2442 	lock_sock(sk);
2443 	state = sk->sk_state;
2444 	if (unlikely(state == TCP_CLOSE))
2445 		goto unlock;
2446 
2447 	mptcp_check_data_fin_ack(sk);
2448 	mptcp_flush_join_list(msk);
2449 
2450 	mptcp_check_fastclose(msk);
2451 
2452 	if (msk->pm.status)
2453 		mptcp_pm_nl_work(msk);
2454 
2455 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2456 		mptcp_check_for_eof(msk);
2457 
2458 	__mptcp_check_send_data_fin(sk);
2459 	mptcp_check_data_fin(sk);
2460 
2461 	/* There is no point in keeping around an orphaned sk timedout or
2462 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2463 	 * even if it is orphaned and in FIN_WAIT2 state
2464 	 */
2465 	if (sock_flag(sk, SOCK_DEAD) &&
2466 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2467 		inet_sk_state_store(sk, TCP_CLOSE);
2468 		__mptcp_destroy_sock(sk);
2469 		goto unlock;
2470 	}
2471 
2472 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2473 		__mptcp_close_subflow(msk);
2474 
2475 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2476 		__mptcp_retrans(sk);
2477 
2478 unlock:
2479 	release_sock(sk);
2480 	sock_put(sk);
2481 }
2482 
2483 static int __mptcp_init_sock(struct sock *sk)
2484 {
2485 	struct mptcp_sock *msk = mptcp_sk(sk);
2486 
2487 	spin_lock_init(&msk->join_list_lock);
2488 
2489 	INIT_LIST_HEAD(&msk->conn_list);
2490 	INIT_LIST_HEAD(&msk->join_list);
2491 	INIT_LIST_HEAD(&msk->rtx_queue);
2492 	INIT_WORK(&msk->work, mptcp_worker);
2493 	__skb_queue_head_init(&msk->receive_queue);
2494 	msk->out_of_order_queue = RB_ROOT;
2495 	msk->first_pending = NULL;
2496 	msk->wmem_reserved = 0;
2497 	WRITE_ONCE(msk->rmem_released, 0);
2498 	msk->tx_pending_data = 0;
2499 	msk->timer_ival = TCP_RTO_MIN;
2500 
2501 	msk->first = NULL;
2502 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2503 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2504 	msk->recovery = false;
2505 
2506 	mptcp_pm_data_init(msk);
2507 
2508 	/* re-use the csk retrans timer for MPTCP-level retrans */
2509 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2510 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2511 
2512 	return 0;
2513 }
2514 
2515 static int mptcp_init_sock(struct sock *sk)
2516 {
2517 	struct inet_connection_sock *icsk = inet_csk(sk);
2518 	struct net *net = sock_net(sk);
2519 	int ret;
2520 
2521 	ret = __mptcp_init_sock(sk);
2522 	if (ret)
2523 		return ret;
2524 
2525 	if (!mptcp_is_enabled(net))
2526 		return -ENOPROTOOPT;
2527 
2528 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2529 		return -ENOMEM;
2530 
2531 	ret = __mptcp_socket_create(mptcp_sk(sk));
2532 	if (ret)
2533 		return ret;
2534 
2535 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2536 	 * propagate the correct value
2537 	 */
2538 	tcp_assign_congestion_control(sk);
2539 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2540 
2541 	/* no need to keep a reference to the ops, the name will suffice */
2542 	tcp_cleanup_congestion_control(sk);
2543 	icsk->icsk_ca_ops = NULL;
2544 
2545 	sk_sockets_allocated_inc(sk);
2546 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2547 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2548 
2549 	return 0;
2550 }
2551 
2552 static void __mptcp_clear_xmit(struct sock *sk)
2553 {
2554 	struct mptcp_sock *msk = mptcp_sk(sk);
2555 	struct mptcp_data_frag *dtmp, *dfrag;
2556 
2557 	WRITE_ONCE(msk->first_pending, NULL);
2558 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2559 		dfrag_clear(sk, dfrag);
2560 }
2561 
2562 static void mptcp_cancel_work(struct sock *sk)
2563 {
2564 	struct mptcp_sock *msk = mptcp_sk(sk);
2565 
2566 	if (cancel_work_sync(&msk->work))
2567 		__sock_put(sk);
2568 }
2569 
2570 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2571 {
2572 	lock_sock(ssk);
2573 
2574 	switch (ssk->sk_state) {
2575 	case TCP_LISTEN:
2576 		if (!(how & RCV_SHUTDOWN))
2577 			break;
2578 		fallthrough;
2579 	case TCP_SYN_SENT:
2580 		tcp_disconnect(ssk, O_NONBLOCK);
2581 		break;
2582 	default:
2583 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2584 			pr_debug("Fallback");
2585 			ssk->sk_shutdown |= how;
2586 			tcp_shutdown(ssk, how);
2587 		} else {
2588 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2589 			tcp_send_ack(ssk);
2590 			if (!mptcp_timer_pending(sk))
2591 				mptcp_reset_timer(sk);
2592 		}
2593 		break;
2594 	}
2595 
2596 	release_sock(ssk);
2597 }
2598 
2599 static const unsigned char new_state[16] = {
2600 	/* current state:     new state:      action:	*/
2601 	[0 /* (Invalid) */] = TCP_CLOSE,
2602 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2603 	[TCP_SYN_SENT]      = TCP_CLOSE,
2604 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2605 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2606 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2607 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2608 	[TCP_CLOSE]         = TCP_CLOSE,
2609 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2610 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2611 	[TCP_LISTEN]        = TCP_CLOSE,
2612 	[TCP_CLOSING]       = TCP_CLOSING,
2613 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2614 };
2615 
2616 static int mptcp_close_state(struct sock *sk)
2617 {
2618 	int next = (int)new_state[sk->sk_state];
2619 	int ns = next & TCP_STATE_MASK;
2620 
2621 	inet_sk_state_store(sk, ns);
2622 
2623 	return next & TCP_ACTION_FIN;
2624 }
2625 
2626 static void __mptcp_check_send_data_fin(struct sock *sk)
2627 {
2628 	struct mptcp_subflow_context *subflow;
2629 	struct mptcp_sock *msk = mptcp_sk(sk);
2630 
2631 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2632 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2633 		 msk->snd_nxt, msk->write_seq);
2634 
2635 	/* we still need to enqueue subflows or not really shutting down,
2636 	 * skip this
2637 	 */
2638 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2639 	    mptcp_send_head(sk))
2640 		return;
2641 
2642 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2643 
2644 	/* fallback socket will not get data_fin/ack, can move to the next
2645 	 * state now
2646 	 */
2647 	if (__mptcp_check_fallback(msk)) {
2648 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2649 			inet_sk_state_store(sk, TCP_CLOSE);
2650 			mptcp_close_wake_up(sk);
2651 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2652 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2653 		}
2654 	}
2655 
2656 	mptcp_flush_join_list(msk);
2657 	mptcp_for_each_subflow(msk, subflow) {
2658 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2659 
2660 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2661 	}
2662 }
2663 
2664 static void __mptcp_wr_shutdown(struct sock *sk)
2665 {
2666 	struct mptcp_sock *msk = mptcp_sk(sk);
2667 
2668 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2669 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2670 		 !!mptcp_send_head(sk));
2671 
2672 	/* will be ignored by fallback sockets */
2673 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2674 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2675 
2676 	__mptcp_check_send_data_fin(sk);
2677 }
2678 
2679 static void __mptcp_destroy_sock(struct sock *sk)
2680 {
2681 	struct mptcp_subflow_context *subflow, *tmp;
2682 	struct mptcp_sock *msk = mptcp_sk(sk);
2683 	LIST_HEAD(conn_list);
2684 
2685 	pr_debug("msk=%p", msk);
2686 
2687 	might_sleep();
2688 
2689 	/* be sure to always acquire the join list lock, to sync vs
2690 	 * mptcp_finish_join().
2691 	 */
2692 	spin_lock_bh(&msk->join_list_lock);
2693 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2694 	spin_unlock_bh(&msk->join_list_lock);
2695 	list_splice_init(&msk->conn_list, &conn_list);
2696 
2697 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2698 	sk_stop_timer(sk, &sk->sk_timer);
2699 	msk->pm.status = 0;
2700 
2701 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2702 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2703 		__mptcp_close_ssk(sk, ssk, subflow);
2704 	}
2705 
2706 	sk->sk_prot->destroy(sk);
2707 
2708 	WARN_ON_ONCE(msk->wmem_reserved);
2709 	WARN_ON_ONCE(msk->rmem_released);
2710 	sk_stream_kill_queues(sk);
2711 	xfrm_sk_free_policy(sk);
2712 
2713 	sk_refcnt_debug_release(sk);
2714 	mptcp_dispose_initial_subflow(msk);
2715 	sock_put(sk);
2716 }
2717 
2718 static void mptcp_close(struct sock *sk, long timeout)
2719 {
2720 	struct mptcp_subflow_context *subflow;
2721 	bool do_cancel_work = false;
2722 
2723 	lock_sock(sk);
2724 	sk->sk_shutdown = SHUTDOWN_MASK;
2725 
2726 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2727 		inet_sk_state_store(sk, TCP_CLOSE);
2728 		goto cleanup;
2729 	}
2730 
2731 	if (mptcp_close_state(sk))
2732 		__mptcp_wr_shutdown(sk);
2733 
2734 	sk_stream_wait_close(sk, timeout);
2735 
2736 cleanup:
2737 	/* orphan all the subflows */
2738 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2739 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2740 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2741 		bool slow = lock_sock_fast(ssk);
2742 
2743 		sock_orphan(ssk);
2744 		unlock_sock_fast(ssk, slow);
2745 	}
2746 	sock_orphan(sk);
2747 
2748 	sock_hold(sk);
2749 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2750 	if (sk->sk_state == TCP_CLOSE) {
2751 		__mptcp_destroy_sock(sk);
2752 		do_cancel_work = true;
2753 	} else {
2754 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2755 	}
2756 	release_sock(sk);
2757 	if (do_cancel_work)
2758 		mptcp_cancel_work(sk);
2759 
2760 	if (mptcp_sk(sk)->token)
2761 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2762 
2763 	sock_put(sk);
2764 }
2765 
2766 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2767 {
2768 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2769 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2770 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2771 
2772 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2773 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2774 
2775 	if (msk6 && ssk6) {
2776 		msk6->saddr = ssk6->saddr;
2777 		msk6->flow_label = ssk6->flow_label;
2778 	}
2779 #endif
2780 
2781 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2782 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2783 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2784 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2785 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2786 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2787 }
2788 
2789 static int mptcp_disconnect(struct sock *sk, int flags)
2790 {
2791 	struct mptcp_subflow_context *subflow;
2792 	struct mptcp_sock *msk = mptcp_sk(sk);
2793 
2794 	mptcp_do_flush_join_list(msk);
2795 
2796 	mptcp_for_each_subflow(msk, subflow) {
2797 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2798 
2799 		lock_sock(ssk);
2800 		tcp_disconnect(ssk, flags);
2801 		release_sock(ssk);
2802 	}
2803 	return 0;
2804 }
2805 
2806 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2807 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2808 {
2809 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2810 
2811 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2812 }
2813 #endif
2814 
2815 struct sock *mptcp_sk_clone(const struct sock *sk,
2816 			    const struct mptcp_options_received *mp_opt,
2817 			    struct request_sock *req)
2818 {
2819 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2820 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2821 	struct mptcp_sock *msk;
2822 	u64 ack_seq;
2823 
2824 	if (!nsk)
2825 		return NULL;
2826 
2827 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2828 	if (nsk->sk_family == AF_INET6)
2829 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2830 #endif
2831 
2832 	__mptcp_init_sock(nsk);
2833 
2834 	msk = mptcp_sk(nsk);
2835 	msk->local_key = subflow_req->local_key;
2836 	msk->token = subflow_req->token;
2837 	msk->subflow = NULL;
2838 	WRITE_ONCE(msk->fully_established, false);
2839 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2840 		WRITE_ONCE(msk->csum_enabled, true);
2841 
2842 	msk->write_seq = subflow_req->idsn + 1;
2843 	msk->snd_nxt = msk->write_seq;
2844 	msk->snd_una = msk->write_seq;
2845 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2846 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2847 
2848 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2849 		msk->can_ack = true;
2850 		msk->remote_key = mp_opt->sndr_key;
2851 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2852 		ack_seq++;
2853 		WRITE_ONCE(msk->ack_seq, ack_seq);
2854 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2855 	}
2856 
2857 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2858 	/* will be fully established after successful MPC subflow creation */
2859 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2860 
2861 	security_inet_csk_clone(nsk, req);
2862 	bh_unlock_sock(nsk);
2863 
2864 	/* keep a single reference */
2865 	__sock_put(nsk);
2866 	return nsk;
2867 }
2868 
2869 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2870 {
2871 	const struct tcp_sock *tp = tcp_sk(ssk);
2872 
2873 	msk->rcvq_space.copied = 0;
2874 	msk->rcvq_space.rtt_us = 0;
2875 
2876 	msk->rcvq_space.time = tp->tcp_mstamp;
2877 
2878 	/* initial rcv_space offering made to peer */
2879 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2880 				      TCP_INIT_CWND * tp->advmss);
2881 	if (msk->rcvq_space.space == 0)
2882 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2883 
2884 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2885 }
2886 
2887 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2888 				 bool kern)
2889 {
2890 	struct mptcp_sock *msk = mptcp_sk(sk);
2891 	struct socket *listener;
2892 	struct sock *newsk;
2893 
2894 	listener = __mptcp_nmpc_socket(msk);
2895 	if (WARN_ON_ONCE(!listener)) {
2896 		*err = -EINVAL;
2897 		return NULL;
2898 	}
2899 
2900 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2901 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2902 	if (!newsk)
2903 		return NULL;
2904 
2905 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2906 	if (sk_is_mptcp(newsk)) {
2907 		struct mptcp_subflow_context *subflow;
2908 		struct sock *new_mptcp_sock;
2909 
2910 		subflow = mptcp_subflow_ctx(newsk);
2911 		new_mptcp_sock = subflow->conn;
2912 
2913 		/* is_mptcp should be false if subflow->conn is missing, see
2914 		 * subflow_syn_recv_sock()
2915 		 */
2916 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2917 			tcp_sk(newsk)->is_mptcp = 0;
2918 			return newsk;
2919 		}
2920 
2921 		/* acquire the 2nd reference for the owning socket */
2922 		sock_hold(new_mptcp_sock);
2923 		newsk = new_mptcp_sock;
2924 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2925 	} else {
2926 		MPTCP_INC_STATS(sock_net(sk),
2927 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2928 	}
2929 
2930 	return newsk;
2931 }
2932 
2933 void mptcp_destroy_common(struct mptcp_sock *msk)
2934 {
2935 	struct sock *sk = (struct sock *)msk;
2936 
2937 	__mptcp_clear_xmit(sk);
2938 
2939 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2940 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2941 
2942 	skb_rbtree_purge(&msk->out_of_order_queue);
2943 	mptcp_token_destroy(msk);
2944 	mptcp_pm_free_anno_list(msk);
2945 }
2946 
2947 static void mptcp_destroy(struct sock *sk)
2948 {
2949 	struct mptcp_sock *msk = mptcp_sk(sk);
2950 
2951 	mptcp_destroy_common(msk);
2952 	sk_sockets_allocated_dec(sk);
2953 }
2954 
2955 void __mptcp_data_acked(struct sock *sk)
2956 {
2957 	if (!sock_owned_by_user(sk))
2958 		__mptcp_clean_una(sk);
2959 	else
2960 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2961 
2962 	if (mptcp_pending_data_fin_ack(sk))
2963 		mptcp_schedule_work(sk);
2964 }
2965 
2966 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2967 {
2968 	if (!mptcp_send_head(sk))
2969 		return;
2970 
2971 	if (!sock_owned_by_user(sk)) {
2972 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2973 
2974 		if (xmit_ssk == ssk)
2975 			__mptcp_subflow_push_pending(sk, ssk);
2976 		else if (xmit_ssk)
2977 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2978 	} else {
2979 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2980 	}
2981 }
2982 
2983 /* processes deferred events and flush wmem */
2984 static void mptcp_release_cb(struct sock *sk)
2985 {
2986 	for (;;) {
2987 		unsigned long flags = 0;
2988 
2989 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2990 			flags |= BIT(MPTCP_PUSH_PENDING);
2991 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2992 			flags |= BIT(MPTCP_RETRANSMIT);
2993 		if (!flags)
2994 			break;
2995 
2996 		/* the following actions acquire the subflow socket lock
2997 		 *
2998 		 * 1) can't be invoked in atomic scope
2999 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3000 		 *    datapath acquires the msk socket spinlock while helding
3001 		 *    the subflow socket lock
3002 		 */
3003 
3004 		spin_unlock_bh(&sk->sk_lock.slock);
3005 		if (flags & BIT(MPTCP_PUSH_PENDING))
3006 			__mptcp_push_pending(sk, 0);
3007 		if (flags & BIT(MPTCP_RETRANSMIT))
3008 			__mptcp_retrans(sk);
3009 
3010 		cond_resched();
3011 		spin_lock_bh(&sk->sk_lock.slock);
3012 	}
3013 
3014 	/* be sure to set the current sk state before tacking actions
3015 	 * depending on sk_state
3016 	 */
3017 	if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
3018 		__mptcp_set_connected(sk);
3019 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
3020 		__mptcp_clean_una_wakeup(sk);
3021 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
3022 		__mptcp_error_report(sk);
3023 
3024 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
3025 	 * later
3026 	 */
3027 	__mptcp_update_wmem(sk);
3028 	__mptcp_update_rmem(sk);
3029 }
3030 
3031 void mptcp_subflow_process_delegated(struct sock *ssk)
3032 {
3033 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3034 	struct sock *sk = subflow->conn;
3035 
3036 	mptcp_data_lock(sk);
3037 	if (!sock_owned_by_user(sk))
3038 		__mptcp_subflow_push_pending(sk, ssk);
3039 	else
3040 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
3041 	mptcp_data_unlock(sk);
3042 	mptcp_subflow_delegated_done(subflow);
3043 }
3044 
3045 static int mptcp_hash(struct sock *sk)
3046 {
3047 	/* should never be called,
3048 	 * we hash the TCP subflows not the master socket
3049 	 */
3050 	WARN_ON_ONCE(1);
3051 	return 0;
3052 }
3053 
3054 static void mptcp_unhash(struct sock *sk)
3055 {
3056 	/* called from sk_common_release(), but nothing to do here */
3057 }
3058 
3059 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3060 {
3061 	struct mptcp_sock *msk = mptcp_sk(sk);
3062 	struct socket *ssock;
3063 
3064 	ssock = __mptcp_nmpc_socket(msk);
3065 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3066 	if (WARN_ON_ONCE(!ssock))
3067 		return -EINVAL;
3068 
3069 	return inet_csk_get_port(ssock->sk, snum);
3070 }
3071 
3072 void mptcp_finish_connect(struct sock *ssk)
3073 {
3074 	struct mptcp_subflow_context *subflow;
3075 	struct mptcp_sock *msk;
3076 	struct sock *sk;
3077 	u64 ack_seq;
3078 
3079 	subflow = mptcp_subflow_ctx(ssk);
3080 	sk = subflow->conn;
3081 	msk = mptcp_sk(sk);
3082 
3083 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3084 
3085 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3086 	ack_seq++;
3087 	subflow->map_seq = ack_seq;
3088 	subflow->map_subflow_seq = 1;
3089 
3090 	/* the socket is not connected yet, no msk/subflow ops can access/race
3091 	 * accessing the field below
3092 	 */
3093 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3094 	WRITE_ONCE(msk->local_key, subflow->local_key);
3095 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3096 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3097 	WRITE_ONCE(msk->ack_seq, ack_seq);
3098 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3099 	WRITE_ONCE(msk->can_ack, 1);
3100 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3101 
3102 	mptcp_pm_new_connection(msk, ssk, 0);
3103 
3104 	mptcp_rcv_space_init(msk, ssk);
3105 }
3106 
3107 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3108 {
3109 	write_lock_bh(&sk->sk_callback_lock);
3110 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3111 	sk_set_socket(sk, parent);
3112 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3113 	write_unlock_bh(&sk->sk_callback_lock);
3114 }
3115 
3116 bool mptcp_finish_join(struct sock *ssk)
3117 {
3118 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3119 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3120 	struct sock *parent = (void *)msk;
3121 	struct socket *parent_sock;
3122 	bool ret;
3123 
3124 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3125 
3126 	/* mptcp socket already closing? */
3127 	if (!mptcp_is_fully_established(parent)) {
3128 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3129 		return false;
3130 	}
3131 
3132 	if (!msk->pm.server_side)
3133 		goto out;
3134 
3135 	if (!mptcp_pm_allow_new_subflow(msk)) {
3136 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3137 		return false;
3138 	}
3139 
3140 	/* active connections are already on conn_list, and we can't acquire
3141 	 * msk lock here.
3142 	 * use the join list lock as synchronization point and double-check
3143 	 * msk status to avoid racing with __mptcp_destroy_sock()
3144 	 */
3145 	spin_lock_bh(&msk->join_list_lock);
3146 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3147 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3148 		list_add_tail(&subflow->node, &msk->join_list);
3149 		sock_hold(ssk);
3150 	}
3151 	spin_unlock_bh(&msk->join_list_lock);
3152 	if (!ret) {
3153 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3154 		return false;
3155 	}
3156 
3157 	/* attach to msk socket only after we are sure he will deal with us
3158 	 * at close time
3159 	 */
3160 	parent_sock = READ_ONCE(parent->sk_socket);
3161 	if (parent_sock && !ssk->sk_socket)
3162 		mptcp_sock_graft(ssk, parent_sock);
3163 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3164 out:
3165 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3166 	return true;
3167 }
3168 
3169 static void mptcp_shutdown(struct sock *sk, int how)
3170 {
3171 	pr_debug("sk=%p, how=%d", sk, how);
3172 
3173 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3174 		__mptcp_wr_shutdown(sk);
3175 }
3176 
3177 static struct proto mptcp_prot = {
3178 	.name		= "MPTCP",
3179 	.owner		= THIS_MODULE,
3180 	.init		= mptcp_init_sock,
3181 	.disconnect	= mptcp_disconnect,
3182 	.close		= mptcp_close,
3183 	.accept		= mptcp_accept,
3184 	.setsockopt	= mptcp_setsockopt,
3185 	.getsockopt	= mptcp_getsockopt,
3186 	.shutdown	= mptcp_shutdown,
3187 	.destroy	= mptcp_destroy,
3188 	.sendmsg	= mptcp_sendmsg,
3189 	.recvmsg	= mptcp_recvmsg,
3190 	.release_cb	= mptcp_release_cb,
3191 	.hash		= mptcp_hash,
3192 	.unhash		= mptcp_unhash,
3193 	.get_port	= mptcp_get_port,
3194 	.sockets_allocated	= &mptcp_sockets_allocated,
3195 	.memory_allocated	= &tcp_memory_allocated,
3196 	.memory_pressure	= &tcp_memory_pressure,
3197 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3198 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3199 	.sysctl_mem	= sysctl_tcp_mem,
3200 	.obj_size	= sizeof(struct mptcp_sock),
3201 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3202 	.no_autobind	= true,
3203 };
3204 
3205 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3206 {
3207 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3208 	struct socket *ssock;
3209 	int err;
3210 
3211 	lock_sock(sock->sk);
3212 	ssock = __mptcp_nmpc_socket(msk);
3213 	if (!ssock) {
3214 		err = -EINVAL;
3215 		goto unlock;
3216 	}
3217 
3218 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3219 	if (!err)
3220 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3221 
3222 unlock:
3223 	release_sock(sock->sk);
3224 	return err;
3225 }
3226 
3227 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3228 					 struct mptcp_subflow_context *subflow)
3229 {
3230 	subflow->request_mptcp = 0;
3231 	__mptcp_do_fallback(msk);
3232 }
3233 
3234 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3235 				int addr_len, int flags)
3236 {
3237 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3238 	struct mptcp_subflow_context *subflow;
3239 	struct socket *ssock;
3240 	int err;
3241 
3242 	lock_sock(sock->sk);
3243 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3244 		/* pending connection or invalid state, let existing subflow
3245 		 * cope with that
3246 		 */
3247 		ssock = msk->subflow;
3248 		goto do_connect;
3249 	}
3250 
3251 	ssock = __mptcp_nmpc_socket(msk);
3252 	if (!ssock) {
3253 		err = -EINVAL;
3254 		goto unlock;
3255 	}
3256 
3257 	mptcp_token_destroy(msk);
3258 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3259 	subflow = mptcp_subflow_ctx(ssock->sk);
3260 #ifdef CONFIG_TCP_MD5SIG
3261 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3262 	 * TCP option space.
3263 	 */
3264 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3265 		mptcp_subflow_early_fallback(msk, subflow);
3266 #endif
3267 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3268 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3269 		mptcp_subflow_early_fallback(msk, subflow);
3270 	}
3271 	if (likely(!__mptcp_check_fallback(msk)))
3272 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3273 
3274 do_connect:
3275 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3276 	sock->state = ssock->state;
3277 
3278 	/* on successful connect, the msk state will be moved to established by
3279 	 * subflow_finish_connect()
3280 	 */
3281 	if (!err || err == -EINPROGRESS)
3282 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3283 	else
3284 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3285 
3286 unlock:
3287 	release_sock(sock->sk);
3288 	return err;
3289 }
3290 
3291 static int mptcp_listen(struct socket *sock, int backlog)
3292 {
3293 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3294 	struct socket *ssock;
3295 	int err;
3296 
3297 	pr_debug("msk=%p", msk);
3298 
3299 	lock_sock(sock->sk);
3300 	ssock = __mptcp_nmpc_socket(msk);
3301 	if (!ssock) {
3302 		err = -EINVAL;
3303 		goto unlock;
3304 	}
3305 
3306 	mptcp_token_destroy(msk);
3307 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3308 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3309 
3310 	err = ssock->ops->listen(ssock, backlog);
3311 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3312 	if (!err)
3313 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3314 
3315 unlock:
3316 	release_sock(sock->sk);
3317 	return err;
3318 }
3319 
3320 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3321 			       int flags, bool kern)
3322 {
3323 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3324 	struct socket *ssock;
3325 	int err;
3326 
3327 	pr_debug("msk=%p", msk);
3328 
3329 	lock_sock(sock->sk);
3330 	if (sock->sk->sk_state != TCP_LISTEN)
3331 		goto unlock_fail;
3332 
3333 	ssock = __mptcp_nmpc_socket(msk);
3334 	if (!ssock)
3335 		goto unlock_fail;
3336 
3337 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3338 	sock_hold(ssock->sk);
3339 	release_sock(sock->sk);
3340 
3341 	err = ssock->ops->accept(sock, newsock, flags, kern);
3342 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3343 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3344 		struct mptcp_subflow_context *subflow;
3345 		struct sock *newsk = newsock->sk;
3346 
3347 		lock_sock(newsk);
3348 
3349 		/* PM/worker can now acquire the first subflow socket
3350 		 * lock without racing with listener queue cleanup,
3351 		 * we can notify it, if needed.
3352 		 *
3353 		 * Even if remote has reset the initial subflow by now
3354 		 * the refcnt is still at least one.
3355 		 */
3356 		subflow = mptcp_subflow_ctx(msk->first);
3357 		list_add(&subflow->node, &msk->conn_list);
3358 		sock_hold(msk->first);
3359 		if (mptcp_is_fully_established(newsk))
3360 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3361 
3362 		mptcp_copy_inaddrs(newsk, msk->first);
3363 		mptcp_rcv_space_init(msk, msk->first);
3364 		mptcp_propagate_sndbuf(newsk, msk->first);
3365 
3366 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3367 		 * This is needed so NOSPACE flag can be set from tcp stack.
3368 		 */
3369 		mptcp_flush_join_list(msk);
3370 		mptcp_for_each_subflow(msk, subflow) {
3371 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3372 
3373 			if (!ssk->sk_socket)
3374 				mptcp_sock_graft(ssk, newsock);
3375 		}
3376 		release_sock(newsk);
3377 	}
3378 
3379 	if (inet_csk_listen_poll(ssock->sk))
3380 		set_bit(MPTCP_DATA_READY, &msk->flags);
3381 	sock_put(ssock->sk);
3382 	return err;
3383 
3384 unlock_fail:
3385 	release_sock(sock->sk);
3386 	return -EINVAL;
3387 }
3388 
3389 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3390 {
3391 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3392 	       0;
3393 }
3394 
3395 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3396 {
3397 	struct sock *sk = (struct sock *)msk;
3398 
3399 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3400 		return EPOLLOUT | EPOLLWRNORM;
3401 
3402 	if (sk_stream_is_writeable(sk))
3403 		return EPOLLOUT | EPOLLWRNORM;
3404 
3405 	mptcp_set_nospace(sk);
3406 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3407 	if (sk_stream_is_writeable(sk))
3408 		return EPOLLOUT | EPOLLWRNORM;
3409 
3410 	return 0;
3411 }
3412 
3413 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3414 			   struct poll_table_struct *wait)
3415 {
3416 	struct sock *sk = sock->sk;
3417 	struct mptcp_sock *msk;
3418 	__poll_t mask = 0;
3419 	int state;
3420 
3421 	msk = mptcp_sk(sk);
3422 	sock_poll_wait(file, sock, wait);
3423 
3424 	state = inet_sk_state_load(sk);
3425 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3426 	if (state == TCP_LISTEN)
3427 		return mptcp_check_readable(msk);
3428 
3429 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3430 		mask |= mptcp_check_readable(msk);
3431 		mask |= mptcp_check_writeable(msk);
3432 	}
3433 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3434 		mask |= EPOLLHUP;
3435 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3436 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3437 
3438 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3439 	smp_rmb();
3440 	if (sk->sk_err)
3441 		mask |= EPOLLERR;
3442 
3443 	return mask;
3444 }
3445 
3446 static const struct proto_ops mptcp_stream_ops = {
3447 	.family		   = PF_INET,
3448 	.owner		   = THIS_MODULE,
3449 	.release	   = inet_release,
3450 	.bind		   = mptcp_bind,
3451 	.connect	   = mptcp_stream_connect,
3452 	.socketpair	   = sock_no_socketpair,
3453 	.accept		   = mptcp_stream_accept,
3454 	.getname	   = inet_getname,
3455 	.poll		   = mptcp_poll,
3456 	.ioctl		   = inet_ioctl,
3457 	.gettstamp	   = sock_gettstamp,
3458 	.listen		   = mptcp_listen,
3459 	.shutdown	   = inet_shutdown,
3460 	.setsockopt	   = sock_common_setsockopt,
3461 	.getsockopt	   = sock_common_getsockopt,
3462 	.sendmsg	   = inet_sendmsg,
3463 	.recvmsg	   = inet_recvmsg,
3464 	.mmap		   = sock_no_mmap,
3465 	.sendpage	   = inet_sendpage,
3466 };
3467 
3468 static struct inet_protosw mptcp_protosw = {
3469 	.type		= SOCK_STREAM,
3470 	.protocol	= IPPROTO_MPTCP,
3471 	.prot		= &mptcp_prot,
3472 	.ops		= &mptcp_stream_ops,
3473 	.flags		= INET_PROTOSW_ICSK,
3474 };
3475 
3476 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3477 {
3478 	struct mptcp_delegated_action *delegated;
3479 	struct mptcp_subflow_context *subflow;
3480 	int work_done = 0;
3481 
3482 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3483 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3484 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3485 
3486 		bh_lock_sock_nested(ssk);
3487 		if (!sock_owned_by_user(ssk) &&
3488 		    mptcp_subflow_has_delegated_action(subflow))
3489 			mptcp_subflow_process_delegated(ssk);
3490 		/* ... elsewhere tcp_release_cb_override already processed
3491 		 * the action or will do at next release_sock().
3492 		 * In both case must dequeue the subflow here - on the same
3493 		 * CPU that scheduled it.
3494 		 */
3495 		bh_unlock_sock(ssk);
3496 		sock_put(ssk);
3497 
3498 		if (++work_done == budget)
3499 			return budget;
3500 	}
3501 
3502 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3503 	 * will not try accessing the NULL napi->dev ptr
3504 	 */
3505 	napi_complete_done(napi, 0);
3506 	return work_done;
3507 }
3508 
3509 void __init mptcp_proto_init(void)
3510 {
3511 	struct mptcp_delegated_action *delegated;
3512 	int cpu;
3513 
3514 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3515 
3516 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3517 		panic("Failed to allocate MPTCP pcpu counter\n");
3518 
3519 	init_dummy_netdev(&mptcp_napi_dev);
3520 	for_each_possible_cpu(cpu) {
3521 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3522 		INIT_LIST_HEAD(&delegated->head);
3523 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3524 				  NAPI_POLL_WEIGHT);
3525 		napi_enable(&delegated->napi);
3526 	}
3527 
3528 	mptcp_subflow_init();
3529 	mptcp_pm_init();
3530 	mptcp_token_init();
3531 
3532 	if (proto_register(&mptcp_prot, 1) != 0)
3533 		panic("Failed to register MPTCP proto.\n");
3534 
3535 	inet_register_protosw(&mptcp_protosw);
3536 
3537 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3538 }
3539 
3540 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3541 static const struct proto_ops mptcp_v6_stream_ops = {
3542 	.family		   = PF_INET6,
3543 	.owner		   = THIS_MODULE,
3544 	.release	   = inet6_release,
3545 	.bind		   = mptcp_bind,
3546 	.connect	   = mptcp_stream_connect,
3547 	.socketpair	   = sock_no_socketpair,
3548 	.accept		   = mptcp_stream_accept,
3549 	.getname	   = inet6_getname,
3550 	.poll		   = mptcp_poll,
3551 	.ioctl		   = inet6_ioctl,
3552 	.gettstamp	   = sock_gettstamp,
3553 	.listen		   = mptcp_listen,
3554 	.shutdown	   = inet_shutdown,
3555 	.setsockopt	   = sock_common_setsockopt,
3556 	.getsockopt	   = sock_common_getsockopt,
3557 	.sendmsg	   = inet6_sendmsg,
3558 	.recvmsg	   = inet6_recvmsg,
3559 	.mmap		   = sock_no_mmap,
3560 	.sendpage	   = inet_sendpage,
3561 #ifdef CONFIG_COMPAT
3562 	.compat_ioctl	   = inet6_compat_ioctl,
3563 #endif
3564 };
3565 
3566 static struct proto mptcp_v6_prot;
3567 
3568 static void mptcp_v6_destroy(struct sock *sk)
3569 {
3570 	mptcp_destroy(sk);
3571 	inet6_destroy_sock(sk);
3572 }
3573 
3574 static struct inet_protosw mptcp_v6_protosw = {
3575 	.type		= SOCK_STREAM,
3576 	.protocol	= IPPROTO_MPTCP,
3577 	.prot		= &mptcp_v6_prot,
3578 	.ops		= &mptcp_v6_stream_ops,
3579 	.flags		= INET_PROTOSW_ICSK,
3580 };
3581 
3582 int __init mptcp_proto_v6_init(void)
3583 {
3584 	int err;
3585 
3586 	mptcp_v6_prot = mptcp_prot;
3587 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3588 	mptcp_v6_prot.slab = NULL;
3589 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3590 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3591 
3592 	err = proto_register(&mptcp_v6_prot, 1);
3593 	if (err)
3594 		return err;
3595 
3596 	err = inet6_register_protosw(&mptcp_v6_protosw);
3597 	if (err)
3598 		proto_unregister(&mptcp_v6_prot);
3599 
3600 	return err;
3601 }
3602 #endif
3603