xref: /openbmc/linux/net/mptcp/protocol.c (revision e0652f8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 };
43 
44 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
45 
46 static struct percpu_counter mptcp_sockets_allocated;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void __mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
52 static struct net_device mptcp_napi_dev;
53 
54 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
55  * completed yet or has failed, return the subflow socket.
56  * Otherwise return NULL.
57  */
58 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
59 {
60 	if (!msk->subflow || READ_ONCE(msk->can_ack))
61 		return NULL;
62 
63 	return msk->subflow;
64 }
65 
66 /* Returns end sequence number of the receiver's advertised window */
67 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
68 {
69 	return READ_ONCE(msk->wnd_end);
70 }
71 
72 static bool mptcp_is_tcpsk(struct sock *sk)
73 {
74 	struct socket *sock = sk->sk_socket;
75 
76 	if (unlikely(sk->sk_prot == &tcp_prot)) {
77 		/* we are being invoked after mptcp_accept() has
78 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
79 		 * not an mptcp one.
80 		 *
81 		 * Hand the socket over to tcp so all further socket ops
82 		 * bypass mptcp.
83 		 */
84 		sock->ops = &inet_stream_ops;
85 		return true;
86 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
87 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
88 		sock->ops = &inet6_stream_ops;
89 		return true;
90 #endif
91 	}
92 
93 	return false;
94 }
95 
96 static int __mptcp_socket_create(struct mptcp_sock *msk)
97 {
98 	struct mptcp_subflow_context *subflow;
99 	struct sock *sk = (struct sock *)msk;
100 	struct socket *ssock;
101 	int err;
102 
103 	err = mptcp_subflow_create_socket(sk, &ssock);
104 	if (err)
105 		return err;
106 
107 	msk->first = ssock->sk;
108 	msk->subflow = ssock;
109 	subflow = mptcp_subflow_ctx(ssock->sk);
110 	list_add(&subflow->node, &msk->conn_list);
111 	sock_hold(ssock->sk);
112 	subflow->request_mptcp = 1;
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 
115 	return 0;
116 }
117 
118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
119 {
120 	sk_drops_add(sk, skb);
121 	__kfree_skb(skb);
122 }
123 
124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
125 			       struct sk_buff *from)
126 {
127 	bool fragstolen;
128 	int delta;
129 
130 	if (MPTCP_SKB_CB(from)->offset ||
131 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
132 		return false;
133 
134 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
135 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
136 		 to->len, MPTCP_SKB_CB(from)->end_seq);
137 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
138 	kfree_skb_partial(from, fragstolen);
139 	atomic_add(delta, &sk->sk_rmem_alloc);
140 	sk_mem_charge(sk, delta);
141 	return true;
142 }
143 
144 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
145 				   struct sk_buff *from)
146 {
147 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
148 		return false;
149 
150 	return mptcp_try_coalesce((struct sock *)msk, to, from);
151 }
152 
153 /* "inspired" by tcp_data_queue_ofo(), main differences:
154  * - use mptcp seqs
155  * - don't cope with sacks
156  */
157 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
158 {
159 	struct sock *sk = (struct sock *)msk;
160 	struct rb_node **p, *parent;
161 	u64 seq, end_seq, max_seq;
162 	struct sk_buff *skb1;
163 
164 	seq = MPTCP_SKB_CB(skb)->map_seq;
165 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
166 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
167 
168 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
169 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
170 	if (after64(end_seq, max_seq)) {
171 		/* out of window */
172 		mptcp_drop(sk, skb);
173 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
174 			 (unsigned long long)end_seq - (unsigned long)max_seq,
175 			 (unsigned long long)msk->rcv_wnd_sent);
176 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
177 		return;
178 	}
179 
180 	p = &msk->out_of_order_queue.rb_node;
181 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
182 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
183 		rb_link_node(&skb->rbnode, NULL, p);
184 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
185 		msk->ooo_last_skb = skb;
186 		goto end;
187 	}
188 
189 	/* with 2 subflows, adding at end of ooo queue is quite likely
190 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
191 	 */
192 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
193 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
194 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
195 		return;
196 	}
197 
198 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
199 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
200 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
201 		parent = &msk->ooo_last_skb->rbnode;
202 		p = &parent->rb_right;
203 		goto insert;
204 	}
205 
206 	/* Find place to insert this segment. Handle overlaps on the way. */
207 	parent = NULL;
208 	while (*p) {
209 		parent = *p;
210 		skb1 = rb_to_skb(parent);
211 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
212 			p = &parent->rb_left;
213 			continue;
214 		}
215 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
216 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
217 				/* All the bits are present. Drop. */
218 				mptcp_drop(sk, skb);
219 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
220 				return;
221 			}
222 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
223 				/* partial overlap:
224 				 *     |     skb      |
225 				 *  |     skb1    |
226 				 * continue traversing
227 				 */
228 			} else {
229 				/* skb's seq == skb1's seq and skb covers skb1.
230 				 * Replace skb1 with skb.
231 				 */
232 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
233 						&msk->out_of_order_queue);
234 				mptcp_drop(sk, skb1);
235 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
236 				goto merge_right;
237 			}
238 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
239 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
240 			return;
241 		}
242 		p = &parent->rb_right;
243 	}
244 
245 insert:
246 	/* Insert segment into RB tree. */
247 	rb_link_node(&skb->rbnode, parent, p);
248 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
249 
250 merge_right:
251 	/* Remove other segments covered by skb. */
252 	while ((skb1 = skb_rb_next(skb)) != NULL) {
253 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
254 			break;
255 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
256 		mptcp_drop(sk, skb1);
257 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
258 	}
259 	/* If there is no skb after us, we are the last_skb ! */
260 	if (!skb1)
261 		msk->ooo_last_skb = skb;
262 
263 end:
264 	skb_condense(skb);
265 	skb_set_owner_r(skb, sk);
266 }
267 
268 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
269 			     struct sk_buff *skb, unsigned int offset,
270 			     size_t copy_len)
271 {
272 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
273 	struct sock *sk = (struct sock *)msk;
274 	struct sk_buff *tail;
275 
276 	__skb_unlink(skb, &ssk->sk_receive_queue);
277 
278 	skb_ext_reset(skb);
279 	skb_orphan(skb);
280 
281 	/* try to fetch required memory from subflow */
282 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
283 		if (ssk->sk_forward_alloc < skb->truesize)
284 			goto drop;
285 		__sk_mem_reclaim(ssk, skb->truesize);
286 		if (!sk_rmem_schedule(sk, skb, skb->truesize))
287 			goto drop;
288 	}
289 
290 	/* the skb map_seq accounts for the skb offset:
291 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
292 	 * value
293 	 */
294 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
295 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
296 	MPTCP_SKB_CB(skb)->offset = offset;
297 
298 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
299 		/* in sequence */
300 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
301 		tail = skb_peek_tail(&sk->sk_receive_queue);
302 		if (tail && mptcp_try_coalesce(sk, tail, skb))
303 			return true;
304 
305 		skb_set_owner_r(skb, sk);
306 		__skb_queue_tail(&sk->sk_receive_queue, skb);
307 		return true;
308 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
309 		mptcp_data_queue_ofo(msk, skb);
310 		return false;
311 	}
312 
313 	/* old data, keep it simple and drop the whole pkt, sender
314 	 * will retransmit as needed, if needed.
315 	 */
316 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
317 drop:
318 	mptcp_drop(sk, skb);
319 	return false;
320 }
321 
322 static void mptcp_stop_timer(struct sock *sk)
323 {
324 	struct inet_connection_sock *icsk = inet_csk(sk);
325 
326 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
327 	mptcp_sk(sk)->timer_ival = 0;
328 }
329 
330 static void mptcp_close_wake_up(struct sock *sk)
331 {
332 	if (sock_flag(sk, SOCK_DEAD))
333 		return;
334 
335 	sk->sk_state_change(sk);
336 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
337 	    sk->sk_state == TCP_CLOSE)
338 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
339 	else
340 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
341 }
342 
343 static bool mptcp_pending_data_fin_ack(struct sock *sk)
344 {
345 	struct mptcp_sock *msk = mptcp_sk(sk);
346 
347 	return !__mptcp_check_fallback(msk) &&
348 	       ((1 << sk->sk_state) &
349 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
350 	       msk->write_seq == READ_ONCE(msk->snd_una);
351 }
352 
353 static void mptcp_check_data_fin_ack(struct sock *sk)
354 {
355 	struct mptcp_sock *msk = mptcp_sk(sk);
356 
357 	/* Look for an acknowledged DATA_FIN */
358 	if (mptcp_pending_data_fin_ack(sk)) {
359 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
360 
361 		switch (sk->sk_state) {
362 		case TCP_FIN_WAIT1:
363 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
364 			break;
365 		case TCP_CLOSING:
366 		case TCP_LAST_ACK:
367 			inet_sk_state_store(sk, TCP_CLOSE);
368 			break;
369 		}
370 
371 		mptcp_close_wake_up(sk);
372 	}
373 }
374 
375 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
376 {
377 	struct mptcp_sock *msk = mptcp_sk(sk);
378 
379 	if (READ_ONCE(msk->rcv_data_fin) &&
380 	    ((1 << sk->sk_state) &
381 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
382 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
383 
384 		if (msk->ack_seq == rcv_data_fin_seq) {
385 			if (seq)
386 				*seq = rcv_data_fin_seq;
387 
388 			return true;
389 		}
390 	}
391 
392 	return false;
393 }
394 
395 static void mptcp_set_datafin_timeout(const struct sock *sk)
396 {
397 	struct inet_connection_sock *icsk = inet_csk(sk);
398 
399 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
400 				       TCP_RTO_MIN << icsk->icsk_retransmits);
401 }
402 
403 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
404 {
405 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
406 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
407 
408 	if (tout <= 0)
409 		tout = mptcp_sk(sk)->timer_ival;
410 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
411 }
412 
413 static bool tcp_can_send_ack(const struct sock *ssk)
414 {
415 	return !((1 << inet_sk_state_load(ssk)) &
416 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
417 }
418 
419 static void mptcp_send_ack(struct mptcp_sock *msk)
420 {
421 	struct mptcp_subflow_context *subflow;
422 
423 	mptcp_for_each_subflow(msk, subflow) {
424 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
425 
426 		lock_sock(ssk);
427 		if (tcp_can_send_ack(ssk))
428 			tcp_send_ack(ssk);
429 		release_sock(ssk);
430 	}
431 }
432 
433 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk)
434 {
435 	int ret;
436 
437 	lock_sock(ssk);
438 	ret = tcp_can_send_ack(ssk);
439 	if (ret)
440 		tcp_cleanup_rbuf(ssk, 1);
441 	release_sock(ssk);
442 	return ret;
443 }
444 
445 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
446 {
447 	struct sock *ack_hint = READ_ONCE(msk->ack_hint);
448 	int old_space = READ_ONCE(msk->old_wspace);
449 	struct mptcp_subflow_context *subflow;
450 	struct sock *sk = (struct sock *)msk;
451 	bool cleanup;
452 
453 	/* this is a simple superset of what tcp_cleanup_rbuf() implements
454 	 * so that we don't have to acquire the ssk socket lock most of the time
455 	 * to do actually nothing
456 	 */
457 	cleanup = __mptcp_space(sk) - old_space >= max(0, old_space);
458 	if (!cleanup)
459 		return;
460 
461 	/* if the hinted ssk is still active, try to use it */
462 	if (likely(ack_hint)) {
463 		mptcp_for_each_subflow(msk, subflow) {
464 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
465 
466 			if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk))
467 				return;
468 		}
469 	}
470 
471 	/* otherwise pick the first active subflow */
472 	mptcp_for_each_subflow(msk, subflow)
473 		if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow)))
474 			return;
475 }
476 
477 static bool mptcp_check_data_fin(struct sock *sk)
478 {
479 	struct mptcp_sock *msk = mptcp_sk(sk);
480 	u64 rcv_data_fin_seq;
481 	bool ret = false;
482 
483 	if (__mptcp_check_fallback(msk))
484 		return ret;
485 
486 	/* Need to ack a DATA_FIN received from a peer while this side
487 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
488 	 * msk->rcv_data_fin was set when parsing the incoming options
489 	 * at the subflow level and the msk lock was not held, so this
490 	 * is the first opportunity to act on the DATA_FIN and change
491 	 * the msk state.
492 	 *
493 	 * If we are caught up to the sequence number of the incoming
494 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
495 	 * not caught up, do nothing and let the recv code send DATA_ACK
496 	 * when catching up.
497 	 */
498 
499 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
500 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
501 		WRITE_ONCE(msk->rcv_data_fin, 0);
502 
503 		sk->sk_shutdown |= RCV_SHUTDOWN;
504 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
505 		set_bit(MPTCP_DATA_READY, &msk->flags);
506 
507 		switch (sk->sk_state) {
508 		case TCP_ESTABLISHED:
509 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
510 			break;
511 		case TCP_FIN_WAIT1:
512 			inet_sk_state_store(sk, TCP_CLOSING);
513 			break;
514 		case TCP_FIN_WAIT2:
515 			inet_sk_state_store(sk, TCP_CLOSE);
516 			break;
517 		default:
518 			/* Other states not expected */
519 			WARN_ON_ONCE(1);
520 			break;
521 		}
522 
523 		ret = true;
524 		mptcp_set_timeout(sk, NULL);
525 		mptcp_send_ack(msk);
526 		mptcp_close_wake_up(sk);
527 	}
528 	return ret;
529 }
530 
531 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
532 					   struct sock *ssk,
533 					   unsigned int *bytes)
534 {
535 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
536 	struct sock *sk = (struct sock *)msk;
537 	unsigned int moved = 0;
538 	bool more_data_avail;
539 	struct tcp_sock *tp;
540 	bool done = false;
541 	int sk_rbuf;
542 
543 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
544 
545 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
547 
548 		if (unlikely(ssk_rbuf > sk_rbuf)) {
549 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
550 			sk_rbuf = ssk_rbuf;
551 		}
552 	}
553 
554 	pr_debug("msk=%p ssk=%p", msk, ssk);
555 	tp = tcp_sk(ssk);
556 	do {
557 		u32 map_remaining, offset;
558 		u32 seq = tp->copied_seq;
559 		struct sk_buff *skb;
560 		bool fin;
561 
562 		/* try to move as much data as available */
563 		map_remaining = subflow->map_data_len -
564 				mptcp_subflow_get_map_offset(subflow);
565 
566 		skb = skb_peek(&ssk->sk_receive_queue);
567 		if (!skb) {
568 			/* if no data is found, a racing workqueue/recvmsg
569 			 * already processed the new data, stop here or we
570 			 * can enter an infinite loop
571 			 */
572 			if (!moved)
573 				done = true;
574 			break;
575 		}
576 
577 		if (__mptcp_check_fallback(msk)) {
578 			/* if we are running under the workqueue, TCP could have
579 			 * collapsed skbs between dummy map creation and now
580 			 * be sure to adjust the size
581 			 */
582 			map_remaining = skb->len;
583 			subflow->map_data_len = skb->len;
584 		}
585 
586 		offset = seq - TCP_SKB_CB(skb)->seq;
587 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
588 		if (fin) {
589 			done = true;
590 			seq++;
591 		}
592 
593 		if (offset < skb->len) {
594 			size_t len = skb->len - offset;
595 
596 			if (tp->urg_data)
597 				done = true;
598 
599 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
600 				moved += len;
601 			seq += len;
602 
603 			if (WARN_ON_ONCE(map_remaining < len))
604 				break;
605 		} else {
606 			WARN_ON_ONCE(!fin);
607 			sk_eat_skb(ssk, skb);
608 			done = true;
609 		}
610 
611 		WRITE_ONCE(tp->copied_seq, seq);
612 		more_data_avail = mptcp_subflow_data_available(ssk);
613 
614 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
615 			done = true;
616 			break;
617 		}
618 	} while (more_data_avail);
619 	WRITE_ONCE(msk->ack_hint, ssk);
620 
621 	*bytes += moved;
622 	return done;
623 }
624 
625 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
626 {
627 	struct sock *sk = (struct sock *)msk;
628 	struct sk_buff *skb, *tail;
629 	bool moved = false;
630 	struct rb_node *p;
631 	u64 end_seq;
632 
633 	p = rb_first(&msk->out_of_order_queue);
634 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
635 	while (p) {
636 		skb = rb_to_skb(p);
637 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
638 			break;
639 
640 		p = rb_next(p);
641 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
642 
643 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
644 				      msk->ack_seq))) {
645 			mptcp_drop(sk, skb);
646 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
647 			continue;
648 		}
649 
650 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
651 		tail = skb_peek_tail(&sk->sk_receive_queue);
652 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
653 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
654 
655 			/* skip overlapping data, if any */
656 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
657 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
658 				 delta);
659 			MPTCP_SKB_CB(skb)->offset += delta;
660 			__skb_queue_tail(&sk->sk_receive_queue, skb);
661 		}
662 		msk->ack_seq = end_seq;
663 		moved = true;
664 	}
665 	return moved;
666 }
667 
668 /* In most cases we will be able to lock the mptcp socket.  If its already
669  * owned, we need to defer to the work queue to avoid ABBA deadlock.
670  */
671 static void move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
672 {
673 	struct sock *sk = (struct sock *)msk;
674 	unsigned int moved = 0;
675 
676 	if (inet_sk_state_load(sk) == TCP_CLOSE)
677 		return;
678 
679 	mptcp_data_lock(sk);
680 
681 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
682 	__mptcp_ofo_queue(msk);
683 
684 	/* If the moves have caught up with the DATA_FIN sequence number
685 	 * it's time to ack the DATA_FIN and change socket state, but
686 	 * this is not a good place to change state. Let the workqueue
687 	 * do it.
688 	 */
689 	if (mptcp_pending_data_fin(sk, NULL))
690 		mptcp_schedule_work(sk);
691 	mptcp_data_unlock(sk);
692 }
693 
694 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
695 {
696 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
697 	struct mptcp_sock *msk = mptcp_sk(sk);
698 	int sk_rbuf, ssk_rbuf;
699 	bool wake;
700 
701 	/* The peer can send data while we are shutting down this
702 	 * subflow at msk destruction time, but we must avoid enqueuing
703 	 * more data to the msk receive queue
704 	 */
705 	if (unlikely(subflow->disposable))
706 		return;
707 
708 	/* move_skbs_to_msk below can legitly clear the data_avail flag,
709 	 * but we will need later to properly woke the reader, cache its
710 	 * value
711 	 */
712 	wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL;
713 	if (wake)
714 		set_bit(MPTCP_DATA_READY, &msk->flags);
715 
716 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
717 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
718 	if (unlikely(ssk_rbuf > sk_rbuf))
719 		sk_rbuf = ssk_rbuf;
720 
721 	/* over limit? can't append more skbs to msk */
722 	if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
723 		goto wake;
724 
725 	move_skbs_to_msk(msk, ssk);
726 
727 wake:
728 	if (wake)
729 		sk->sk_data_ready(sk);
730 }
731 
732 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
733 {
734 	struct mptcp_subflow_context *subflow;
735 	bool ret = false;
736 
737 	if (likely(list_empty(&msk->join_list)))
738 		return false;
739 
740 	spin_lock_bh(&msk->join_list_lock);
741 	list_for_each_entry(subflow, &msk->join_list, node) {
742 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
743 
744 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
745 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
746 			ret = true;
747 	}
748 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
749 	spin_unlock_bh(&msk->join_list_lock);
750 
751 	return ret;
752 }
753 
754 void __mptcp_flush_join_list(struct mptcp_sock *msk)
755 {
756 	if (likely(!mptcp_do_flush_join_list(msk)))
757 		return;
758 
759 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
760 		mptcp_schedule_work((struct sock *)msk);
761 }
762 
763 static void mptcp_flush_join_list(struct mptcp_sock *msk)
764 {
765 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
766 
767 	might_sleep();
768 
769 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
770 		return;
771 
772 	mptcp_sockopt_sync_all(msk);
773 }
774 
775 static bool mptcp_timer_pending(struct sock *sk)
776 {
777 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
778 }
779 
780 static void mptcp_reset_timer(struct sock *sk)
781 {
782 	struct inet_connection_sock *icsk = inet_csk(sk);
783 	unsigned long tout;
784 
785 	/* prevent rescheduling on close */
786 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
787 		return;
788 
789 	/* should never be called with mptcp level timer cleared */
790 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
791 	if (WARN_ON_ONCE(!tout))
792 		tout = TCP_RTO_MIN;
793 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
794 }
795 
796 bool mptcp_schedule_work(struct sock *sk)
797 {
798 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
799 	    schedule_work(&mptcp_sk(sk)->work)) {
800 		/* each subflow already holds a reference to the sk, and the
801 		 * workqueue is invoked by a subflow, so sk can't go away here.
802 		 */
803 		sock_hold(sk);
804 		return true;
805 	}
806 	return false;
807 }
808 
809 void mptcp_subflow_eof(struct sock *sk)
810 {
811 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
812 		mptcp_schedule_work(sk);
813 }
814 
815 static void mptcp_check_for_eof(struct mptcp_sock *msk)
816 {
817 	struct mptcp_subflow_context *subflow;
818 	struct sock *sk = (struct sock *)msk;
819 	int receivers = 0;
820 
821 	mptcp_for_each_subflow(msk, subflow)
822 		receivers += !subflow->rx_eof;
823 	if (receivers)
824 		return;
825 
826 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
827 		/* hopefully temporary hack: propagate shutdown status
828 		 * to msk, when all subflows agree on it
829 		 */
830 		sk->sk_shutdown |= RCV_SHUTDOWN;
831 
832 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
833 		set_bit(MPTCP_DATA_READY, &msk->flags);
834 		sk->sk_data_ready(sk);
835 	}
836 
837 	switch (sk->sk_state) {
838 	case TCP_ESTABLISHED:
839 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
840 		break;
841 	case TCP_FIN_WAIT1:
842 		inet_sk_state_store(sk, TCP_CLOSING);
843 		break;
844 	case TCP_FIN_WAIT2:
845 		inet_sk_state_store(sk, TCP_CLOSE);
846 		break;
847 	default:
848 		return;
849 	}
850 	mptcp_close_wake_up(sk);
851 }
852 
853 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
854 {
855 	struct mptcp_subflow_context *subflow;
856 	struct sock *sk = (struct sock *)msk;
857 
858 	sock_owned_by_me(sk);
859 
860 	mptcp_for_each_subflow(msk, subflow) {
861 		if (subflow->data_avail)
862 			return mptcp_subflow_tcp_sock(subflow);
863 	}
864 
865 	return NULL;
866 }
867 
868 static bool mptcp_skb_can_collapse_to(u64 write_seq,
869 				      const struct sk_buff *skb,
870 				      const struct mptcp_ext *mpext)
871 {
872 	if (!tcp_skb_can_collapse_to(skb))
873 		return false;
874 
875 	/* can collapse only if MPTCP level sequence is in order and this
876 	 * mapping has not been xmitted yet
877 	 */
878 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
879 	       !mpext->frozen;
880 }
881 
882 /* we can append data to the given data frag if:
883  * - there is space available in the backing page_frag
884  * - the data frag tail matches the current page_frag free offset
885  * - the data frag end sequence number matches the current write seq
886  */
887 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
888 				       const struct page_frag *pfrag,
889 				       const struct mptcp_data_frag *df)
890 {
891 	return df && pfrag->page == df->page &&
892 		pfrag->size - pfrag->offset > 0 &&
893 		pfrag->offset == (df->offset + df->data_len) &&
894 		df->data_seq + df->data_len == msk->write_seq;
895 }
896 
897 static int mptcp_wmem_with_overhead(struct sock *sk, int size)
898 {
899 	struct mptcp_sock *msk = mptcp_sk(sk);
900 	int ret, skbs;
901 
902 	ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
903 	skbs = (msk->tx_pending_data + size) / msk->size_goal_cache;
904 	if (skbs < msk->skb_tx_cache.qlen)
905 		return ret;
906 
907 	return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER);
908 }
909 
910 static void __mptcp_wmem_reserve(struct sock *sk, int size)
911 {
912 	int amount = mptcp_wmem_with_overhead(sk, size);
913 	struct mptcp_sock *msk = mptcp_sk(sk);
914 
915 	WARN_ON_ONCE(msk->wmem_reserved);
916 	if (WARN_ON_ONCE(amount < 0))
917 		amount = 0;
918 
919 	if (amount <= sk->sk_forward_alloc)
920 		goto reserve;
921 
922 	/* under memory pressure try to reserve at most a single page
923 	 * otherwise try to reserve the full estimate and fallback
924 	 * to a single page before entering the error path
925 	 */
926 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
927 	    !sk_wmem_schedule(sk, amount)) {
928 		if (amount <= PAGE_SIZE)
929 			goto nomem;
930 
931 		amount = PAGE_SIZE;
932 		if (!sk_wmem_schedule(sk, amount))
933 			goto nomem;
934 	}
935 
936 reserve:
937 	msk->wmem_reserved = amount;
938 	sk->sk_forward_alloc -= amount;
939 	return;
940 
941 nomem:
942 	/* we will wait for memory on next allocation */
943 	msk->wmem_reserved = -1;
944 }
945 
946 static void __mptcp_update_wmem(struct sock *sk)
947 {
948 	struct mptcp_sock *msk = mptcp_sk(sk);
949 
950 	if (!msk->wmem_reserved)
951 		return;
952 
953 	if (msk->wmem_reserved < 0)
954 		msk->wmem_reserved = 0;
955 	if (msk->wmem_reserved > 0) {
956 		sk->sk_forward_alloc += msk->wmem_reserved;
957 		msk->wmem_reserved = 0;
958 	}
959 }
960 
961 static bool mptcp_wmem_alloc(struct sock *sk, int size)
962 {
963 	struct mptcp_sock *msk = mptcp_sk(sk);
964 
965 	/* check for pre-existing error condition */
966 	if (msk->wmem_reserved < 0)
967 		return false;
968 
969 	if (msk->wmem_reserved >= size)
970 		goto account;
971 
972 	mptcp_data_lock(sk);
973 	if (!sk_wmem_schedule(sk, size)) {
974 		mptcp_data_unlock(sk);
975 		return false;
976 	}
977 
978 	sk->sk_forward_alloc -= size;
979 	msk->wmem_reserved += size;
980 	mptcp_data_unlock(sk);
981 
982 account:
983 	msk->wmem_reserved -= size;
984 	return true;
985 }
986 
987 static void mptcp_wmem_uncharge(struct sock *sk, int size)
988 {
989 	struct mptcp_sock *msk = mptcp_sk(sk);
990 
991 	if (msk->wmem_reserved < 0)
992 		msk->wmem_reserved = 0;
993 	msk->wmem_reserved += size;
994 }
995 
996 static void mptcp_mem_reclaim_partial(struct sock *sk)
997 {
998 	struct mptcp_sock *msk = mptcp_sk(sk);
999 
1000 	/* if we are experiencing a transint allocation error,
1001 	 * the forward allocation memory has been already
1002 	 * released
1003 	 */
1004 	if (msk->wmem_reserved < 0)
1005 		return;
1006 
1007 	mptcp_data_lock(sk);
1008 	sk->sk_forward_alloc += msk->wmem_reserved;
1009 	sk_mem_reclaim_partial(sk);
1010 	msk->wmem_reserved = sk->sk_forward_alloc;
1011 	sk->sk_forward_alloc = 0;
1012 	mptcp_data_unlock(sk);
1013 }
1014 
1015 static void dfrag_uncharge(struct sock *sk, int len)
1016 {
1017 	sk_mem_uncharge(sk, len);
1018 	sk_wmem_queued_add(sk, -len);
1019 }
1020 
1021 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1022 {
1023 	int len = dfrag->data_len + dfrag->overhead;
1024 
1025 	list_del(&dfrag->list);
1026 	dfrag_uncharge(sk, len);
1027 	put_page(dfrag->page);
1028 }
1029 
1030 static void __mptcp_clean_una(struct sock *sk)
1031 {
1032 	struct mptcp_sock *msk = mptcp_sk(sk);
1033 	struct mptcp_data_frag *dtmp, *dfrag;
1034 	bool cleaned = false;
1035 	u64 snd_una;
1036 
1037 	/* on fallback we just need to ignore snd_una, as this is really
1038 	 * plain TCP
1039 	 */
1040 	if (__mptcp_check_fallback(msk))
1041 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1042 
1043 	snd_una = msk->snd_una;
1044 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1045 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1046 			break;
1047 
1048 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1049 			break;
1050 		dfrag_clear(sk, dfrag);
1051 		cleaned = true;
1052 	}
1053 
1054 	dfrag = mptcp_rtx_head(sk);
1055 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1056 		u64 delta = snd_una - dfrag->data_seq;
1057 
1058 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1059 			goto out;
1060 
1061 		dfrag->data_seq += delta;
1062 		dfrag->offset += delta;
1063 		dfrag->data_len -= delta;
1064 		dfrag->already_sent -= delta;
1065 
1066 		dfrag_uncharge(sk, delta);
1067 		cleaned = true;
1068 	}
1069 
1070 out:
1071 	if (cleaned) {
1072 		if (tcp_under_memory_pressure(sk)) {
1073 			__mptcp_update_wmem(sk);
1074 			sk_mem_reclaim_partial(sk);
1075 		}
1076 	}
1077 
1078 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1079 		if (msk->timer_ival && !mptcp_data_fin_enabled(msk))
1080 			mptcp_stop_timer(sk);
1081 	} else {
1082 		mptcp_reset_timer(sk);
1083 	}
1084 }
1085 
1086 static void __mptcp_clean_una_wakeup(struct sock *sk)
1087 {
1088 	__mptcp_clean_una(sk);
1089 	mptcp_write_space(sk);
1090 }
1091 
1092 static void mptcp_enter_memory_pressure(struct sock *sk)
1093 {
1094 	struct mptcp_subflow_context *subflow;
1095 	struct mptcp_sock *msk = mptcp_sk(sk);
1096 	bool first = true;
1097 
1098 	sk_stream_moderate_sndbuf(sk);
1099 	mptcp_for_each_subflow(msk, subflow) {
1100 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1101 
1102 		if (first)
1103 			tcp_enter_memory_pressure(ssk);
1104 		sk_stream_moderate_sndbuf(ssk);
1105 		first = false;
1106 	}
1107 }
1108 
1109 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1110  * data
1111  */
1112 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1113 {
1114 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1115 					pfrag, sk->sk_allocation)))
1116 		return true;
1117 
1118 	mptcp_enter_memory_pressure(sk);
1119 	return false;
1120 }
1121 
1122 static struct mptcp_data_frag *
1123 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1124 		      int orig_offset)
1125 {
1126 	int offset = ALIGN(orig_offset, sizeof(long));
1127 	struct mptcp_data_frag *dfrag;
1128 
1129 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1130 	dfrag->data_len = 0;
1131 	dfrag->data_seq = msk->write_seq;
1132 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1133 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1134 	dfrag->already_sent = 0;
1135 	dfrag->page = pfrag->page;
1136 
1137 	return dfrag;
1138 }
1139 
1140 struct mptcp_sendmsg_info {
1141 	int mss_now;
1142 	int size_goal;
1143 	u16 limit;
1144 	u16 sent;
1145 	unsigned int flags;
1146 };
1147 
1148 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1149 				    int avail_size)
1150 {
1151 	u64 window_end = mptcp_wnd_end(msk);
1152 
1153 	if (__mptcp_check_fallback(msk))
1154 		return avail_size;
1155 
1156 	if (!before64(data_seq + avail_size, window_end)) {
1157 		u64 allowed_size = window_end - data_seq;
1158 
1159 		return min_t(unsigned int, allowed_size, avail_size);
1160 	}
1161 
1162 	return avail_size;
1163 }
1164 
1165 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1166 {
1167 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1168 
1169 	if (!mpext)
1170 		return false;
1171 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1172 	return true;
1173 }
1174 
1175 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1176 {
1177 	struct sk_buff *skb;
1178 
1179 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1180 	if (likely(skb)) {
1181 		if (likely(__mptcp_add_ext(skb, gfp))) {
1182 			skb_reserve(skb, MAX_TCP_HEADER);
1183 			skb->reserved_tailroom = skb->end - skb->tail;
1184 			return skb;
1185 		}
1186 		__kfree_skb(skb);
1187 	} else {
1188 		mptcp_enter_memory_pressure(sk);
1189 	}
1190 	return NULL;
1191 }
1192 
1193 static bool mptcp_tx_cache_refill(struct sock *sk, int size,
1194 				  struct sk_buff_head *skbs, int *total_ts)
1195 {
1196 	struct mptcp_sock *msk = mptcp_sk(sk);
1197 	struct sk_buff *skb;
1198 	int space_needed;
1199 
1200 	if (unlikely(tcp_under_memory_pressure(sk))) {
1201 		mptcp_mem_reclaim_partial(sk);
1202 
1203 		/* under pressure pre-allocate at most a single skb */
1204 		if (msk->skb_tx_cache.qlen)
1205 			return true;
1206 		space_needed = msk->size_goal_cache;
1207 	} else {
1208 		space_needed = msk->tx_pending_data + size -
1209 			       msk->skb_tx_cache.qlen * msk->size_goal_cache;
1210 	}
1211 
1212 	while (space_needed > 0) {
1213 		skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation);
1214 		if (unlikely(!skb)) {
1215 			/* under memory pressure, try to pass the caller a
1216 			 * single skb to allow forward progress
1217 			 */
1218 			while (skbs->qlen > 1) {
1219 				skb = __skb_dequeue_tail(skbs);
1220 				*total_ts -= skb->truesize;
1221 				__kfree_skb(skb);
1222 			}
1223 			return skbs->qlen > 0;
1224 		}
1225 
1226 		*total_ts += skb->truesize;
1227 		__skb_queue_tail(skbs, skb);
1228 		space_needed -= msk->size_goal_cache;
1229 	}
1230 	return true;
1231 }
1232 
1233 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1234 {
1235 	struct mptcp_sock *msk = mptcp_sk(sk);
1236 	struct sk_buff *skb;
1237 
1238 	if (ssk->sk_tx_skb_cache) {
1239 		skb = ssk->sk_tx_skb_cache;
1240 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1241 			     !__mptcp_add_ext(skb, gfp)))
1242 			return false;
1243 		return true;
1244 	}
1245 
1246 	skb = skb_peek(&msk->skb_tx_cache);
1247 	if (skb) {
1248 		if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1249 			skb = __skb_dequeue(&msk->skb_tx_cache);
1250 			if (WARN_ON_ONCE(!skb))
1251 				return false;
1252 
1253 			mptcp_wmem_uncharge(sk, skb->truesize);
1254 			ssk->sk_tx_skb_cache = skb;
1255 			return true;
1256 		}
1257 
1258 		/* over memory limit, no point to try to allocate a new skb */
1259 		return false;
1260 	}
1261 
1262 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1263 	if (!skb)
1264 		return false;
1265 
1266 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1267 		ssk->sk_tx_skb_cache = skb;
1268 		return true;
1269 	}
1270 	kfree_skb(skb);
1271 	return false;
1272 }
1273 
1274 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1275 {
1276 	return !ssk->sk_tx_skb_cache &&
1277 	       !skb_peek(&mptcp_sk(sk)->skb_tx_cache) &&
1278 	       tcp_under_memory_pressure(sk);
1279 }
1280 
1281 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1282 {
1283 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1284 		mptcp_mem_reclaim_partial(sk);
1285 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1286 }
1287 
1288 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1289 			      struct mptcp_data_frag *dfrag,
1290 			      struct mptcp_sendmsg_info *info)
1291 {
1292 	u64 data_seq = dfrag->data_seq + info->sent;
1293 	struct mptcp_sock *msk = mptcp_sk(sk);
1294 	bool zero_window_probe = false;
1295 	struct mptcp_ext *mpext = NULL;
1296 	struct sk_buff *skb, *tail;
1297 	bool can_collapse = false;
1298 	int size_bias = 0;
1299 	int avail_size;
1300 	size_t ret = 0;
1301 
1302 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1303 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1304 
1305 	/* compute send limit */
1306 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1307 	avail_size = info->size_goal;
1308 	msk->size_goal_cache = info->size_goal;
1309 	skb = tcp_write_queue_tail(ssk);
1310 	if (skb) {
1311 		/* Limit the write to the size available in the
1312 		 * current skb, if any, so that we create at most a new skb.
1313 		 * Explicitly tells TCP internals to avoid collapsing on later
1314 		 * queue management operation, to avoid breaking the ext <->
1315 		 * SSN association set here
1316 		 */
1317 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1318 		can_collapse = (info->size_goal - skb->len > 0) &&
1319 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1320 		if (!can_collapse) {
1321 			TCP_SKB_CB(skb)->eor = 1;
1322 		} else {
1323 			size_bias = skb->len;
1324 			avail_size = info->size_goal - skb->len;
1325 		}
1326 	}
1327 
1328 	/* Zero window and all data acked? Probe. */
1329 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1330 	if (avail_size == 0) {
1331 		u64 snd_una = READ_ONCE(msk->snd_una);
1332 
1333 		if (skb || snd_una != msk->snd_nxt)
1334 			return 0;
1335 		zero_window_probe = true;
1336 		data_seq = snd_una - 1;
1337 		avail_size = 1;
1338 	}
1339 
1340 	if (WARN_ON_ONCE(info->sent > info->limit ||
1341 			 info->limit > dfrag->data_len))
1342 		return 0;
1343 
1344 	ret = info->limit - info->sent;
1345 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1346 			      dfrag->page, dfrag->offset + info->sent, &ret);
1347 	if (!tail) {
1348 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1349 		return -ENOMEM;
1350 	}
1351 
1352 	/* if the tail skb is still the cached one, collapsing really happened.
1353 	 */
1354 	if (skb == tail) {
1355 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1356 		mpext->data_len += ret;
1357 		WARN_ON_ONCE(!can_collapse);
1358 		WARN_ON_ONCE(zero_window_probe);
1359 		goto out;
1360 	}
1361 
1362 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1363 	if (WARN_ON_ONCE(!mpext)) {
1364 		/* should never reach here, stream corrupted */
1365 		return -EINVAL;
1366 	}
1367 
1368 	memset(mpext, 0, sizeof(*mpext));
1369 	mpext->data_seq = data_seq;
1370 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1371 	mpext->data_len = ret;
1372 	mpext->use_map = 1;
1373 	mpext->dsn64 = 1;
1374 
1375 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1376 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1377 		 mpext->dsn64);
1378 
1379 	if (zero_window_probe) {
1380 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1381 		mpext->frozen = 1;
1382 		ret = 0;
1383 		tcp_push_pending_frames(ssk);
1384 	}
1385 out:
1386 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1387 	return ret;
1388 }
1389 
1390 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1391 					 sizeof(struct tcphdr) - \
1392 					 MAX_TCP_OPTION_SPACE - \
1393 					 sizeof(struct ipv6hdr) - \
1394 					 sizeof(struct frag_hdr))
1395 
1396 struct subflow_send_info {
1397 	struct sock *ssk;
1398 	u64 ratio;
1399 };
1400 
1401 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1402 {
1403 	struct subflow_send_info send_info[2];
1404 	struct mptcp_subflow_context *subflow;
1405 	int i, nr_active = 0;
1406 	struct sock *ssk;
1407 	u64 ratio;
1408 	u32 pace;
1409 
1410 	sock_owned_by_me((struct sock *)msk);
1411 
1412 	if (__mptcp_check_fallback(msk)) {
1413 		if (!msk->first)
1414 			return NULL;
1415 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1416 	}
1417 
1418 	/* re-use last subflow, if the burst allow that */
1419 	if (msk->last_snd && msk->snd_burst > 0 &&
1420 	    sk_stream_memory_free(msk->last_snd) &&
1421 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1422 		return msk->last_snd;
1423 
1424 	/* pick the subflow with the lower wmem/wspace ratio */
1425 	for (i = 0; i < 2; ++i) {
1426 		send_info[i].ssk = NULL;
1427 		send_info[i].ratio = -1;
1428 	}
1429 	mptcp_for_each_subflow(msk, subflow) {
1430 		trace_mptcp_subflow_get_send(subflow);
1431 		ssk =  mptcp_subflow_tcp_sock(subflow);
1432 		if (!mptcp_subflow_active(subflow))
1433 			continue;
1434 
1435 		nr_active += !subflow->backup;
1436 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1437 			continue;
1438 
1439 		pace = READ_ONCE(ssk->sk_pacing_rate);
1440 		if (!pace)
1441 			continue;
1442 
1443 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1444 				pace);
1445 		if (ratio < send_info[subflow->backup].ratio) {
1446 			send_info[subflow->backup].ssk = ssk;
1447 			send_info[subflow->backup].ratio = ratio;
1448 		}
1449 	}
1450 
1451 	/* pick the best backup if no other subflow is active */
1452 	if (!nr_active)
1453 		send_info[0].ssk = send_info[1].ssk;
1454 
1455 	if (send_info[0].ssk) {
1456 		msk->last_snd = send_info[0].ssk;
1457 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1458 				       tcp_sk(msk->last_snd)->snd_wnd);
1459 		return msk->last_snd;
1460 	}
1461 
1462 	return NULL;
1463 }
1464 
1465 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1466 			       struct mptcp_sendmsg_info *info)
1467 {
1468 	mptcp_set_timeout(sk, ssk);
1469 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1470 	release_sock(ssk);
1471 }
1472 
1473 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1474 {
1475 	struct sock *prev_ssk = NULL, *ssk = NULL;
1476 	struct mptcp_sock *msk = mptcp_sk(sk);
1477 	struct mptcp_sendmsg_info info = {
1478 				.flags = flags,
1479 	};
1480 	struct mptcp_data_frag *dfrag;
1481 	int len, copied = 0;
1482 
1483 	while ((dfrag = mptcp_send_head(sk))) {
1484 		info.sent = dfrag->already_sent;
1485 		info.limit = dfrag->data_len;
1486 		len = dfrag->data_len - dfrag->already_sent;
1487 		while (len > 0) {
1488 			int ret = 0;
1489 
1490 			prev_ssk = ssk;
1491 			mptcp_flush_join_list(msk);
1492 			ssk = mptcp_subflow_get_send(msk);
1493 
1494 			/* try to keep the subflow socket lock across
1495 			 * consecutive xmit on the same socket
1496 			 */
1497 			if (ssk != prev_ssk && prev_ssk)
1498 				mptcp_push_release(sk, prev_ssk, &info);
1499 			if (!ssk)
1500 				goto out;
1501 
1502 			if (ssk != prev_ssk || !prev_ssk)
1503 				lock_sock(ssk);
1504 
1505 			/* keep it simple and always provide a new skb for the
1506 			 * subflow, even if we will not use it when collapsing
1507 			 * on the pending one
1508 			 */
1509 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1510 				mptcp_push_release(sk, ssk, &info);
1511 				goto out;
1512 			}
1513 
1514 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1515 			if (ret <= 0) {
1516 				mptcp_push_release(sk, ssk, &info);
1517 				goto out;
1518 			}
1519 
1520 			info.sent += ret;
1521 			dfrag->already_sent += ret;
1522 			msk->snd_nxt += ret;
1523 			msk->snd_burst -= ret;
1524 			msk->tx_pending_data -= ret;
1525 			copied += ret;
1526 			len -= ret;
1527 		}
1528 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1529 	}
1530 
1531 	/* at this point we held the socket lock for the last subflow we used */
1532 	if (ssk)
1533 		mptcp_push_release(sk, ssk, &info);
1534 
1535 out:
1536 	if (copied) {
1537 		/* start the timer, if it's not pending */
1538 		if (!mptcp_timer_pending(sk))
1539 			mptcp_reset_timer(sk);
1540 		__mptcp_check_send_data_fin(sk);
1541 	}
1542 }
1543 
1544 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1545 {
1546 	struct mptcp_sock *msk = mptcp_sk(sk);
1547 	struct mptcp_sendmsg_info info;
1548 	struct mptcp_data_frag *dfrag;
1549 	struct sock *xmit_ssk;
1550 	int len, copied = 0;
1551 	bool first = true;
1552 
1553 	info.flags = 0;
1554 	while ((dfrag = mptcp_send_head(sk))) {
1555 		info.sent = dfrag->already_sent;
1556 		info.limit = dfrag->data_len;
1557 		len = dfrag->data_len - dfrag->already_sent;
1558 		while (len > 0) {
1559 			int ret = 0;
1560 
1561 			/* the caller already invoked the packet scheduler,
1562 			 * check for a different subflow usage only after
1563 			 * spooling the first chunk of data
1564 			 */
1565 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1566 			if (!xmit_ssk)
1567 				goto out;
1568 			if (xmit_ssk != ssk) {
1569 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1570 				goto out;
1571 			}
1572 
1573 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1574 				__mptcp_update_wmem(sk);
1575 				sk_mem_reclaim_partial(sk);
1576 			}
1577 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1578 				goto out;
1579 
1580 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1581 			if (ret <= 0)
1582 				goto out;
1583 
1584 			info.sent += ret;
1585 			dfrag->already_sent += ret;
1586 			msk->snd_nxt += ret;
1587 			msk->snd_burst -= ret;
1588 			msk->tx_pending_data -= ret;
1589 			copied += ret;
1590 			len -= ret;
1591 			first = false;
1592 		}
1593 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1594 	}
1595 
1596 out:
1597 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1598 	 * not going to flush it via release_sock()
1599 	 */
1600 	__mptcp_update_wmem(sk);
1601 	if (copied) {
1602 		mptcp_set_timeout(sk, ssk);
1603 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1604 			 info.size_goal);
1605 		if (!mptcp_timer_pending(sk))
1606 			mptcp_reset_timer(sk);
1607 
1608 		if (msk->snd_data_fin_enable &&
1609 		    msk->snd_nxt + 1 == msk->write_seq)
1610 			mptcp_schedule_work(sk);
1611 	}
1612 }
1613 
1614 static void mptcp_set_nospace(struct sock *sk)
1615 {
1616 	/* enable autotune */
1617 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1618 
1619 	/* will be cleared on avail space */
1620 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1621 }
1622 
1623 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1624 {
1625 	struct mptcp_sock *msk = mptcp_sk(sk);
1626 	struct page_frag *pfrag;
1627 	size_t copied = 0;
1628 	int ret = 0;
1629 	long timeo;
1630 
1631 	/* we don't support FASTOPEN yet */
1632 	if (msg->msg_flags & MSG_FASTOPEN)
1633 		return -EOPNOTSUPP;
1634 
1635 	/* silently ignore everything else */
1636 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1637 
1638 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1639 
1640 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1641 
1642 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1643 		ret = sk_stream_wait_connect(sk, &timeo);
1644 		if (ret)
1645 			goto out;
1646 	}
1647 
1648 	pfrag = sk_page_frag(sk);
1649 
1650 	while (msg_data_left(msg)) {
1651 		int total_ts, frag_truesize = 0;
1652 		struct mptcp_data_frag *dfrag;
1653 		struct sk_buff_head skbs;
1654 		bool dfrag_collapsed;
1655 		size_t psize, offset;
1656 
1657 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1658 			ret = -EPIPE;
1659 			goto out;
1660 		}
1661 
1662 		/* reuse tail pfrag, if possible, or carve a new one from the
1663 		 * page allocator
1664 		 */
1665 		dfrag = mptcp_pending_tail(sk);
1666 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1667 		if (!dfrag_collapsed) {
1668 			if (!sk_stream_memory_free(sk))
1669 				goto wait_for_memory;
1670 
1671 			if (!mptcp_page_frag_refill(sk, pfrag))
1672 				goto wait_for_memory;
1673 
1674 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1675 			frag_truesize = dfrag->overhead;
1676 		}
1677 
1678 		/* we do not bound vs wspace, to allow a single packet.
1679 		 * memory accounting will prevent execessive memory usage
1680 		 * anyway
1681 		 */
1682 		offset = dfrag->offset + dfrag->data_len;
1683 		psize = pfrag->size - offset;
1684 		psize = min_t(size_t, psize, msg_data_left(msg));
1685 		total_ts = psize + frag_truesize;
1686 		__skb_queue_head_init(&skbs);
1687 		if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts))
1688 			goto wait_for_memory;
1689 
1690 		if (!mptcp_wmem_alloc(sk, total_ts)) {
1691 			__skb_queue_purge(&skbs);
1692 			goto wait_for_memory;
1693 		}
1694 
1695 		skb_queue_splice_tail(&skbs, &msk->skb_tx_cache);
1696 		if (copy_page_from_iter(dfrag->page, offset, psize,
1697 					&msg->msg_iter) != psize) {
1698 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1699 			ret = -EFAULT;
1700 			goto out;
1701 		}
1702 
1703 		/* data successfully copied into the write queue */
1704 		copied += psize;
1705 		dfrag->data_len += psize;
1706 		frag_truesize += psize;
1707 		pfrag->offset += frag_truesize;
1708 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1709 		msk->tx_pending_data += psize;
1710 
1711 		/* charge data on mptcp pending queue to the msk socket
1712 		 * Note: we charge such data both to sk and ssk
1713 		 */
1714 		sk_wmem_queued_add(sk, frag_truesize);
1715 		if (!dfrag_collapsed) {
1716 			get_page(dfrag->page);
1717 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1718 			if (!msk->first_pending)
1719 				WRITE_ONCE(msk->first_pending, dfrag);
1720 		}
1721 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1722 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1723 			 !dfrag_collapsed);
1724 
1725 		continue;
1726 
1727 wait_for_memory:
1728 		mptcp_set_nospace(sk);
1729 		__mptcp_push_pending(sk, msg->msg_flags);
1730 		ret = sk_stream_wait_memory(sk, &timeo);
1731 		if (ret)
1732 			goto out;
1733 	}
1734 
1735 	if (copied)
1736 		__mptcp_push_pending(sk, msg->msg_flags);
1737 
1738 out:
1739 	release_sock(sk);
1740 	return copied ? : ret;
1741 }
1742 
1743 static void mptcp_wait_data(struct sock *sk, long *timeo)
1744 {
1745 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1746 	struct mptcp_sock *msk = mptcp_sk(sk);
1747 
1748 	add_wait_queue(sk_sleep(sk), &wait);
1749 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1750 
1751 	sk_wait_event(sk, timeo,
1752 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1753 
1754 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1755 	remove_wait_queue(sk_sleep(sk), &wait);
1756 }
1757 
1758 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1759 				struct msghdr *msg,
1760 				size_t len, int flags)
1761 {
1762 	struct sk_buff *skb, *tmp;
1763 	int copied = 0;
1764 
1765 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1766 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1767 		u32 data_len = skb->len - offset;
1768 		u32 count = min_t(size_t, len - copied, data_len);
1769 		int err;
1770 
1771 		if (!(flags & MSG_TRUNC)) {
1772 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1773 			if (unlikely(err < 0)) {
1774 				if (!copied)
1775 					return err;
1776 				break;
1777 			}
1778 		}
1779 
1780 		copied += count;
1781 
1782 		if (count < data_len) {
1783 			if (!(flags & MSG_PEEK))
1784 				MPTCP_SKB_CB(skb)->offset += count;
1785 			break;
1786 		}
1787 
1788 		if (!(flags & MSG_PEEK)) {
1789 			/* we will bulk release the skb memory later */
1790 			skb->destructor = NULL;
1791 			msk->rmem_released += skb->truesize;
1792 			__skb_unlink(skb, &msk->receive_queue);
1793 			__kfree_skb(skb);
1794 		}
1795 
1796 		if (copied >= len)
1797 			break;
1798 	}
1799 
1800 	return copied;
1801 }
1802 
1803 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1804  *
1805  * Only difference: Use highest rtt estimate of the subflows in use.
1806  */
1807 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1808 {
1809 	struct mptcp_subflow_context *subflow;
1810 	struct sock *sk = (struct sock *)msk;
1811 	u32 time, advmss = 1;
1812 	u64 rtt_us, mstamp;
1813 
1814 	sock_owned_by_me(sk);
1815 
1816 	if (copied <= 0)
1817 		return;
1818 
1819 	msk->rcvq_space.copied += copied;
1820 
1821 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1822 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1823 
1824 	rtt_us = msk->rcvq_space.rtt_us;
1825 	if (rtt_us && time < (rtt_us >> 3))
1826 		return;
1827 
1828 	rtt_us = 0;
1829 	mptcp_for_each_subflow(msk, subflow) {
1830 		const struct tcp_sock *tp;
1831 		u64 sf_rtt_us;
1832 		u32 sf_advmss;
1833 
1834 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1835 
1836 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1837 		sf_advmss = READ_ONCE(tp->advmss);
1838 
1839 		rtt_us = max(sf_rtt_us, rtt_us);
1840 		advmss = max(sf_advmss, advmss);
1841 	}
1842 
1843 	msk->rcvq_space.rtt_us = rtt_us;
1844 	if (time < (rtt_us >> 3) || rtt_us == 0)
1845 		return;
1846 
1847 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1848 		goto new_measure;
1849 
1850 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1851 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1852 		int rcvmem, rcvbuf;
1853 		u64 rcvwin, grow;
1854 
1855 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1856 
1857 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1858 
1859 		do_div(grow, msk->rcvq_space.space);
1860 		rcvwin += (grow << 1);
1861 
1862 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1863 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1864 			rcvmem += 128;
1865 
1866 		do_div(rcvwin, advmss);
1867 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1868 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1869 
1870 		if (rcvbuf > sk->sk_rcvbuf) {
1871 			u32 window_clamp;
1872 
1873 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1874 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1875 
1876 			/* Make subflows follow along.  If we do not do this, we
1877 			 * get drops at subflow level if skbs can't be moved to
1878 			 * the mptcp rx queue fast enough (announced rcv_win can
1879 			 * exceed ssk->sk_rcvbuf).
1880 			 */
1881 			mptcp_for_each_subflow(msk, subflow) {
1882 				struct sock *ssk;
1883 				bool slow;
1884 
1885 				ssk = mptcp_subflow_tcp_sock(subflow);
1886 				slow = lock_sock_fast(ssk);
1887 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1888 				tcp_sk(ssk)->window_clamp = window_clamp;
1889 				tcp_cleanup_rbuf(ssk, 1);
1890 				unlock_sock_fast(ssk, slow);
1891 			}
1892 		}
1893 	}
1894 
1895 	msk->rcvq_space.space = msk->rcvq_space.copied;
1896 new_measure:
1897 	msk->rcvq_space.copied = 0;
1898 	msk->rcvq_space.time = mstamp;
1899 }
1900 
1901 static void __mptcp_update_rmem(struct sock *sk)
1902 {
1903 	struct mptcp_sock *msk = mptcp_sk(sk);
1904 
1905 	if (!msk->rmem_released)
1906 		return;
1907 
1908 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1909 	sk_mem_uncharge(sk, msk->rmem_released);
1910 	msk->rmem_released = 0;
1911 }
1912 
1913 static void __mptcp_splice_receive_queue(struct sock *sk)
1914 {
1915 	struct mptcp_sock *msk = mptcp_sk(sk);
1916 
1917 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1918 }
1919 
1920 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1921 {
1922 	struct sock *sk = (struct sock *)msk;
1923 	unsigned int moved = 0;
1924 	bool ret, done;
1925 
1926 	mptcp_flush_join_list(msk);
1927 	do {
1928 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1929 		bool slowpath;
1930 
1931 		/* we can have data pending in the subflows only if the msk
1932 		 * receive buffer was full at subflow_data_ready() time,
1933 		 * that is an unlikely slow path.
1934 		 */
1935 		if (likely(!ssk))
1936 			break;
1937 
1938 		slowpath = lock_sock_fast(ssk);
1939 		mptcp_data_lock(sk);
1940 		__mptcp_update_rmem(sk);
1941 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1942 		mptcp_data_unlock(sk);
1943 		tcp_cleanup_rbuf(ssk, moved);
1944 		unlock_sock_fast(ssk, slowpath);
1945 	} while (!done);
1946 
1947 	/* acquire the data lock only if some input data is pending */
1948 	ret = moved > 0;
1949 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1950 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1951 		mptcp_data_lock(sk);
1952 		__mptcp_update_rmem(sk);
1953 		ret |= __mptcp_ofo_queue(msk);
1954 		__mptcp_splice_receive_queue(sk);
1955 		mptcp_data_unlock(sk);
1956 		mptcp_cleanup_rbuf(msk);
1957 	}
1958 	if (ret)
1959 		mptcp_check_data_fin((struct sock *)msk);
1960 	return !skb_queue_empty(&msk->receive_queue);
1961 }
1962 
1963 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1964 			 int nonblock, int flags, int *addr_len)
1965 {
1966 	struct mptcp_sock *msk = mptcp_sk(sk);
1967 	int copied = 0;
1968 	int target;
1969 	long timeo;
1970 
1971 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
1972 	if (unlikely(flags & MSG_ERRQUEUE))
1973 		return inet_recv_error(sk, msg, len, addr_len);
1974 
1975 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1976 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1977 		copied = -ENOTCONN;
1978 		goto out_err;
1979 	}
1980 
1981 	timeo = sock_rcvtimeo(sk, nonblock);
1982 
1983 	len = min_t(size_t, len, INT_MAX);
1984 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1985 
1986 	while (copied < len) {
1987 		int bytes_read;
1988 
1989 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags);
1990 		if (unlikely(bytes_read < 0)) {
1991 			if (!copied)
1992 				copied = bytes_read;
1993 			goto out_err;
1994 		}
1995 
1996 		copied += bytes_read;
1997 
1998 		/* be sure to advertise window change */
1999 		mptcp_cleanup_rbuf(msk);
2000 
2001 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2002 			continue;
2003 
2004 		/* only the master socket status is relevant here. The exit
2005 		 * conditions mirror closely tcp_recvmsg()
2006 		 */
2007 		if (copied >= target)
2008 			break;
2009 
2010 		if (copied) {
2011 			if (sk->sk_err ||
2012 			    sk->sk_state == TCP_CLOSE ||
2013 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2014 			    !timeo ||
2015 			    signal_pending(current))
2016 				break;
2017 		} else {
2018 			if (sk->sk_err) {
2019 				copied = sock_error(sk);
2020 				break;
2021 			}
2022 
2023 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2024 				mptcp_check_for_eof(msk);
2025 
2026 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2027 				/* race breaker: the shutdown could be after the
2028 				 * previous receive queue check
2029 				 */
2030 				if (__mptcp_move_skbs(msk))
2031 					continue;
2032 				break;
2033 			}
2034 
2035 			if (sk->sk_state == TCP_CLOSE) {
2036 				copied = -ENOTCONN;
2037 				break;
2038 			}
2039 
2040 			if (!timeo) {
2041 				copied = -EAGAIN;
2042 				break;
2043 			}
2044 
2045 			if (signal_pending(current)) {
2046 				copied = sock_intr_errno(timeo);
2047 				break;
2048 			}
2049 		}
2050 
2051 		pr_debug("block timeout %ld", timeo);
2052 		mptcp_wait_data(sk, &timeo);
2053 	}
2054 
2055 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2056 	    skb_queue_empty(&msk->receive_queue)) {
2057 		/* entire backlog drained, clear DATA_READY. */
2058 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2059 
2060 		/* .. race-breaker: ssk might have gotten new data
2061 		 * after last __mptcp_move_skbs() returned false.
2062 		 */
2063 		if (unlikely(__mptcp_move_skbs(msk)))
2064 			set_bit(MPTCP_DATA_READY, &msk->flags);
2065 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
2066 		/* data to read but mptcp_wait_data() cleared DATA_READY */
2067 		set_bit(MPTCP_DATA_READY, &msk->flags);
2068 	}
2069 out_err:
2070 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2071 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2072 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2073 	if (!(flags & MSG_PEEK))
2074 		mptcp_rcv_space_adjust(msk, copied);
2075 
2076 	release_sock(sk);
2077 	return copied;
2078 }
2079 
2080 static void mptcp_retransmit_timer(struct timer_list *t)
2081 {
2082 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2083 						       icsk_retransmit_timer);
2084 	struct sock *sk = &icsk->icsk_inet.sk;
2085 	struct mptcp_sock *msk = mptcp_sk(sk);
2086 
2087 	bh_lock_sock(sk);
2088 	if (!sock_owned_by_user(sk)) {
2089 		/* we need a process context to retransmit */
2090 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2091 			mptcp_schedule_work(sk);
2092 	} else {
2093 		/* delegate our work to tcp_release_cb() */
2094 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2095 	}
2096 	bh_unlock_sock(sk);
2097 	sock_put(sk);
2098 }
2099 
2100 static void mptcp_timeout_timer(struct timer_list *t)
2101 {
2102 	struct sock *sk = from_timer(sk, t, sk_timer);
2103 
2104 	mptcp_schedule_work(sk);
2105 	sock_put(sk);
2106 }
2107 
2108 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2109  * level.
2110  *
2111  * A backup subflow is returned only if that is the only kind available.
2112  */
2113 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2114 {
2115 	struct mptcp_subflow_context *subflow;
2116 	struct sock *backup = NULL;
2117 
2118 	sock_owned_by_me((const struct sock *)msk);
2119 
2120 	if (__mptcp_check_fallback(msk))
2121 		return NULL;
2122 
2123 	mptcp_for_each_subflow(msk, subflow) {
2124 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2125 
2126 		if (!mptcp_subflow_active(subflow))
2127 			continue;
2128 
2129 		/* still data outstanding at TCP level?  Don't retransmit. */
2130 		if (!tcp_write_queue_empty(ssk)) {
2131 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2132 				continue;
2133 			return NULL;
2134 		}
2135 
2136 		if (subflow->backup) {
2137 			if (!backup)
2138 				backup = ssk;
2139 			continue;
2140 		}
2141 
2142 		return ssk;
2143 	}
2144 
2145 	return backup;
2146 }
2147 
2148 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2149 {
2150 	if (msk->subflow) {
2151 		iput(SOCK_INODE(msk->subflow));
2152 		msk->subflow = NULL;
2153 	}
2154 }
2155 
2156 /* subflow sockets can be either outgoing (connect) or incoming
2157  * (accept).
2158  *
2159  * Outgoing subflows use in-kernel sockets.
2160  * Incoming subflows do not have their own 'struct socket' allocated,
2161  * so we need to use tcp_close() after detaching them from the mptcp
2162  * parent socket.
2163  */
2164 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2165 			      struct mptcp_subflow_context *subflow)
2166 {
2167 	struct mptcp_sock *msk = mptcp_sk(sk);
2168 
2169 	list_del(&subflow->node);
2170 
2171 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2172 
2173 	/* if we are invoked by the msk cleanup code, the subflow is
2174 	 * already orphaned
2175 	 */
2176 	if (ssk->sk_socket)
2177 		sock_orphan(ssk);
2178 
2179 	subflow->disposable = 1;
2180 
2181 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2182 	 * the ssk has been already destroyed, we just need to release the
2183 	 * reference owned by msk;
2184 	 */
2185 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2186 		kfree_rcu(subflow, rcu);
2187 	} else {
2188 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2189 		__tcp_close(ssk, 0);
2190 
2191 		/* close acquired an extra ref */
2192 		__sock_put(ssk);
2193 	}
2194 	release_sock(ssk);
2195 
2196 	sock_put(ssk);
2197 
2198 	if (ssk == msk->last_snd)
2199 		msk->last_snd = NULL;
2200 
2201 	if (ssk == msk->ack_hint)
2202 		msk->ack_hint = NULL;
2203 
2204 	if (ssk == msk->first)
2205 		msk->first = NULL;
2206 
2207 	if (msk->subflow && ssk == msk->subflow->sk)
2208 		mptcp_dispose_initial_subflow(msk);
2209 }
2210 
2211 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2212 		     struct mptcp_subflow_context *subflow)
2213 {
2214 	if (sk->sk_state == TCP_ESTABLISHED)
2215 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2216 	__mptcp_close_ssk(sk, ssk, subflow);
2217 }
2218 
2219 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2220 {
2221 	return 0;
2222 }
2223 
2224 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2225 {
2226 	struct mptcp_subflow_context *subflow, *tmp;
2227 
2228 	might_sleep();
2229 
2230 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2231 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2232 
2233 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2234 			continue;
2235 
2236 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2237 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2238 			continue;
2239 
2240 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2241 	}
2242 }
2243 
2244 static bool mptcp_check_close_timeout(const struct sock *sk)
2245 {
2246 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2247 	struct mptcp_subflow_context *subflow;
2248 
2249 	if (delta >= TCP_TIMEWAIT_LEN)
2250 		return true;
2251 
2252 	/* if all subflows are in closed status don't bother with additional
2253 	 * timeout
2254 	 */
2255 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2256 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2257 		    TCP_CLOSE)
2258 			return false;
2259 	}
2260 	return true;
2261 }
2262 
2263 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2264 {
2265 	struct mptcp_subflow_context *subflow, *tmp;
2266 	struct sock *sk = &msk->sk.icsk_inet.sk;
2267 
2268 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2269 		return;
2270 
2271 	mptcp_token_destroy(msk);
2272 
2273 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2274 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2275 
2276 		lock_sock(tcp_sk);
2277 		if (tcp_sk->sk_state != TCP_CLOSE) {
2278 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2279 			tcp_set_state(tcp_sk, TCP_CLOSE);
2280 		}
2281 		release_sock(tcp_sk);
2282 	}
2283 
2284 	inet_sk_state_store(sk, TCP_CLOSE);
2285 	sk->sk_shutdown = SHUTDOWN_MASK;
2286 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2287 	set_bit(MPTCP_DATA_READY, &msk->flags);
2288 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2289 
2290 	mptcp_close_wake_up(sk);
2291 }
2292 
2293 static void __mptcp_retrans(struct sock *sk)
2294 {
2295 	struct mptcp_sock *msk = mptcp_sk(sk);
2296 	struct mptcp_sendmsg_info info = {};
2297 	struct mptcp_data_frag *dfrag;
2298 	size_t copied = 0;
2299 	struct sock *ssk;
2300 	int ret;
2301 
2302 	__mptcp_clean_una_wakeup(sk);
2303 	dfrag = mptcp_rtx_head(sk);
2304 	if (!dfrag) {
2305 		if (mptcp_data_fin_enabled(msk)) {
2306 			struct inet_connection_sock *icsk = inet_csk(sk);
2307 
2308 			icsk->icsk_retransmits++;
2309 			mptcp_set_datafin_timeout(sk);
2310 			mptcp_send_ack(msk);
2311 
2312 			goto reset_timer;
2313 		}
2314 
2315 		return;
2316 	}
2317 
2318 	ssk = mptcp_subflow_get_retrans(msk);
2319 	if (!ssk)
2320 		goto reset_timer;
2321 
2322 	lock_sock(ssk);
2323 
2324 	/* limit retransmission to the bytes already sent on some subflows */
2325 	info.sent = 0;
2326 	info.limit = dfrag->already_sent;
2327 	while (info.sent < dfrag->already_sent) {
2328 		if (!mptcp_alloc_tx_skb(sk, ssk))
2329 			break;
2330 
2331 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2332 		if (ret <= 0)
2333 			break;
2334 
2335 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2336 		copied += ret;
2337 		info.sent += ret;
2338 	}
2339 	if (copied)
2340 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2341 			 info.size_goal);
2342 
2343 	mptcp_set_timeout(sk, ssk);
2344 	release_sock(ssk);
2345 
2346 reset_timer:
2347 	if (!mptcp_timer_pending(sk))
2348 		mptcp_reset_timer(sk);
2349 }
2350 
2351 static void mptcp_worker(struct work_struct *work)
2352 {
2353 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2354 	struct sock *sk = &msk->sk.icsk_inet.sk;
2355 	int state;
2356 
2357 	lock_sock(sk);
2358 	state = sk->sk_state;
2359 	if (unlikely(state == TCP_CLOSE))
2360 		goto unlock;
2361 
2362 	mptcp_check_data_fin_ack(sk);
2363 	mptcp_flush_join_list(msk);
2364 
2365 	mptcp_check_fastclose(msk);
2366 
2367 	if (msk->pm.status)
2368 		mptcp_pm_nl_work(msk);
2369 
2370 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2371 		mptcp_check_for_eof(msk);
2372 
2373 	__mptcp_check_send_data_fin(sk);
2374 	mptcp_check_data_fin(sk);
2375 
2376 	/* There is no point in keeping around an orphaned sk timedout or
2377 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2378 	 * even if it is orphaned and in FIN_WAIT2 state
2379 	 */
2380 	if (sock_flag(sk, SOCK_DEAD) &&
2381 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2382 		inet_sk_state_store(sk, TCP_CLOSE);
2383 		__mptcp_destroy_sock(sk);
2384 		goto unlock;
2385 	}
2386 
2387 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2388 		__mptcp_close_subflow(msk);
2389 
2390 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2391 		__mptcp_retrans(sk);
2392 
2393 unlock:
2394 	release_sock(sk);
2395 	sock_put(sk);
2396 }
2397 
2398 static int __mptcp_init_sock(struct sock *sk)
2399 {
2400 	struct mptcp_sock *msk = mptcp_sk(sk);
2401 
2402 	spin_lock_init(&msk->join_list_lock);
2403 
2404 	INIT_LIST_HEAD(&msk->conn_list);
2405 	INIT_LIST_HEAD(&msk->join_list);
2406 	INIT_LIST_HEAD(&msk->rtx_queue);
2407 	INIT_WORK(&msk->work, mptcp_worker);
2408 	__skb_queue_head_init(&msk->receive_queue);
2409 	__skb_queue_head_init(&msk->skb_tx_cache);
2410 	msk->out_of_order_queue = RB_ROOT;
2411 	msk->first_pending = NULL;
2412 	msk->wmem_reserved = 0;
2413 	msk->rmem_released = 0;
2414 	msk->tx_pending_data = 0;
2415 	msk->size_goal_cache = TCP_BASE_MSS;
2416 
2417 	msk->ack_hint = NULL;
2418 	msk->first = NULL;
2419 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2420 
2421 	mptcp_pm_data_init(msk);
2422 
2423 	/* re-use the csk retrans timer for MPTCP-level retrans */
2424 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2425 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2426 
2427 	tcp_assign_congestion_control(sk);
2428 
2429 	return 0;
2430 }
2431 
2432 static int mptcp_init_sock(struct sock *sk)
2433 {
2434 	struct net *net = sock_net(sk);
2435 	int ret;
2436 
2437 	ret = __mptcp_init_sock(sk);
2438 	if (ret)
2439 		return ret;
2440 
2441 	if (!mptcp_is_enabled(net))
2442 		return -ENOPROTOOPT;
2443 
2444 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2445 		return -ENOMEM;
2446 
2447 	ret = __mptcp_socket_create(mptcp_sk(sk));
2448 	if (ret)
2449 		return ret;
2450 
2451 	sk_sockets_allocated_inc(sk);
2452 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2453 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2454 
2455 	return 0;
2456 }
2457 
2458 static void __mptcp_clear_xmit(struct sock *sk)
2459 {
2460 	struct mptcp_sock *msk = mptcp_sk(sk);
2461 	struct mptcp_data_frag *dtmp, *dfrag;
2462 	struct sk_buff *skb;
2463 
2464 	WRITE_ONCE(msk->first_pending, NULL);
2465 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2466 		dfrag_clear(sk, dfrag);
2467 	while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) {
2468 		sk->sk_forward_alloc += skb->truesize;
2469 		kfree_skb(skb);
2470 	}
2471 }
2472 
2473 static void mptcp_cancel_work(struct sock *sk)
2474 {
2475 	struct mptcp_sock *msk = mptcp_sk(sk);
2476 
2477 	if (cancel_work_sync(&msk->work))
2478 		__sock_put(sk);
2479 }
2480 
2481 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2482 {
2483 	lock_sock(ssk);
2484 
2485 	switch (ssk->sk_state) {
2486 	case TCP_LISTEN:
2487 		if (!(how & RCV_SHUTDOWN))
2488 			break;
2489 		fallthrough;
2490 	case TCP_SYN_SENT:
2491 		tcp_disconnect(ssk, O_NONBLOCK);
2492 		break;
2493 	default:
2494 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2495 			pr_debug("Fallback");
2496 			ssk->sk_shutdown |= how;
2497 			tcp_shutdown(ssk, how);
2498 		} else {
2499 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2500 			mptcp_set_timeout(sk, ssk);
2501 			tcp_send_ack(ssk);
2502 			if (!mptcp_timer_pending(sk))
2503 				mptcp_reset_timer(sk);
2504 		}
2505 		break;
2506 	}
2507 
2508 	release_sock(ssk);
2509 }
2510 
2511 static const unsigned char new_state[16] = {
2512 	/* current state:     new state:      action:	*/
2513 	[0 /* (Invalid) */] = TCP_CLOSE,
2514 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2515 	[TCP_SYN_SENT]      = TCP_CLOSE,
2516 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2517 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2518 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2519 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2520 	[TCP_CLOSE]         = TCP_CLOSE,
2521 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2522 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2523 	[TCP_LISTEN]        = TCP_CLOSE,
2524 	[TCP_CLOSING]       = TCP_CLOSING,
2525 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2526 };
2527 
2528 static int mptcp_close_state(struct sock *sk)
2529 {
2530 	int next = (int)new_state[sk->sk_state];
2531 	int ns = next & TCP_STATE_MASK;
2532 
2533 	inet_sk_state_store(sk, ns);
2534 
2535 	return next & TCP_ACTION_FIN;
2536 }
2537 
2538 static void __mptcp_check_send_data_fin(struct sock *sk)
2539 {
2540 	struct mptcp_subflow_context *subflow;
2541 	struct mptcp_sock *msk = mptcp_sk(sk);
2542 
2543 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2544 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2545 		 msk->snd_nxt, msk->write_seq);
2546 
2547 	/* we still need to enqueue subflows or not really shutting down,
2548 	 * skip this
2549 	 */
2550 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2551 	    mptcp_send_head(sk))
2552 		return;
2553 
2554 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2555 
2556 	/* fallback socket will not get data_fin/ack, can move to the next
2557 	 * state now
2558 	 */
2559 	if (__mptcp_check_fallback(msk)) {
2560 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2561 			inet_sk_state_store(sk, TCP_CLOSE);
2562 			mptcp_close_wake_up(sk);
2563 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2564 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2565 		}
2566 	}
2567 
2568 	mptcp_flush_join_list(msk);
2569 	mptcp_for_each_subflow(msk, subflow) {
2570 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2571 
2572 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2573 	}
2574 }
2575 
2576 static void __mptcp_wr_shutdown(struct sock *sk)
2577 {
2578 	struct mptcp_sock *msk = mptcp_sk(sk);
2579 
2580 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2581 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2582 		 !!mptcp_send_head(sk));
2583 
2584 	/* will be ignored by fallback sockets */
2585 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2586 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2587 
2588 	__mptcp_check_send_data_fin(sk);
2589 }
2590 
2591 static void __mptcp_destroy_sock(struct sock *sk)
2592 {
2593 	struct mptcp_subflow_context *subflow, *tmp;
2594 	struct mptcp_sock *msk = mptcp_sk(sk);
2595 	LIST_HEAD(conn_list);
2596 
2597 	pr_debug("msk=%p", msk);
2598 
2599 	might_sleep();
2600 
2601 	/* be sure to always acquire the join list lock, to sync vs
2602 	 * mptcp_finish_join().
2603 	 */
2604 	spin_lock_bh(&msk->join_list_lock);
2605 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2606 	spin_unlock_bh(&msk->join_list_lock);
2607 	list_splice_init(&msk->conn_list, &conn_list);
2608 
2609 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2610 	sk_stop_timer(sk, &sk->sk_timer);
2611 	msk->pm.status = 0;
2612 
2613 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2614 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2615 		__mptcp_close_ssk(sk, ssk, subflow);
2616 	}
2617 
2618 	sk->sk_prot->destroy(sk);
2619 
2620 	WARN_ON_ONCE(msk->wmem_reserved);
2621 	WARN_ON_ONCE(msk->rmem_released);
2622 	sk_stream_kill_queues(sk);
2623 	xfrm_sk_free_policy(sk);
2624 
2625 	tcp_cleanup_congestion_control(sk);
2626 	sk_refcnt_debug_release(sk);
2627 	mptcp_dispose_initial_subflow(msk);
2628 	sock_put(sk);
2629 }
2630 
2631 static void mptcp_close(struct sock *sk, long timeout)
2632 {
2633 	struct mptcp_subflow_context *subflow;
2634 	bool do_cancel_work = false;
2635 
2636 	lock_sock(sk);
2637 	sk->sk_shutdown = SHUTDOWN_MASK;
2638 
2639 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2640 		inet_sk_state_store(sk, TCP_CLOSE);
2641 		goto cleanup;
2642 	}
2643 
2644 	if (mptcp_close_state(sk))
2645 		__mptcp_wr_shutdown(sk);
2646 
2647 	sk_stream_wait_close(sk, timeout);
2648 
2649 cleanup:
2650 	/* orphan all the subflows */
2651 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2652 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2653 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2654 		bool slow = lock_sock_fast(ssk);
2655 
2656 		sock_orphan(ssk);
2657 		unlock_sock_fast(ssk, slow);
2658 	}
2659 	sock_orphan(sk);
2660 
2661 	sock_hold(sk);
2662 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2663 	if (sk->sk_state == TCP_CLOSE) {
2664 		__mptcp_destroy_sock(sk);
2665 		do_cancel_work = true;
2666 	} else {
2667 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2668 	}
2669 	release_sock(sk);
2670 	if (do_cancel_work)
2671 		mptcp_cancel_work(sk);
2672 
2673 	if (mptcp_sk(sk)->token)
2674 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2675 
2676 	sock_put(sk);
2677 }
2678 
2679 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2680 {
2681 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2682 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2683 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2684 
2685 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2686 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2687 
2688 	if (msk6 && ssk6) {
2689 		msk6->saddr = ssk6->saddr;
2690 		msk6->flow_label = ssk6->flow_label;
2691 	}
2692 #endif
2693 
2694 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2695 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2696 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2697 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2698 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2699 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2700 }
2701 
2702 static int mptcp_disconnect(struct sock *sk, int flags)
2703 {
2704 	struct mptcp_subflow_context *subflow;
2705 	struct mptcp_sock *msk = mptcp_sk(sk);
2706 
2707 	mptcp_do_flush_join_list(msk);
2708 
2709 	mptcp_for_each_subflow(msk, subflow) {
2710 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2711 
2712 		lock_sock(ssk);
2713 		tcp_disconnect(ssk, flags);
2714 		release_sock(ssk);
2715 	}
2716 	return 0;
2717 }
2718 
2719 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2720 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2721 {
2722 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2723 
2724 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2725 }
2726 #endif
2727 
2728 struct sock *mptcp_sk_clone(const struct sock *sk,
2729 			    const struct mptcp_options_received *mp_opt,
2730 			    struct request_sock *req)
2731 {
2732 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2733 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2734 	struct mptcp_sock *msk;
2735 	u64 ack_seq;
2736 
2737 	if (!nsk)
2738 		return NULL;
2739 
2740 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2741 	if (nsk->sk_family == AF_INET6)
2742 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2743 #endif
2744 
2745 	__mptcp_init_sock(nsk);
2746 
2747 	msk = mptcp_sk(nsk);
2748 	msk->local_key = subflow_req->local_key;
2749 	msk->token = subflow_req->token;
2750 	msk->subflow = NULL;
2751 	WRITE_ONCE(msk->fully_established, false);
2752 
2753 	msk->write_seq = subflow_req->idsn + 1;
2754 	msk->snd_nxt = msk->write_seq;
2755 	msk->snd_una = msk->write_seq;
2756 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2757 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2758 
2759 	if (mp_opt->mp_capable) {
2760 		msk->can_ack = true;
2761 		msk->remote_key = mp_opt->sndr_key;
2762 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2763 		ack_seq++;
2764 		WRITE_ONCE(msk->ack_seq, ack_seq);
2765 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2766 	}
2767 
2768 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2769 	/* will be fully established after successful MPC subflow creation */
2770 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2771 
2772 	security_inet_csk_clone(nsk, req);
2773 	bh_unlock_sock(nsk);
2774 
2775 	/* keep a single reference */
2776 	__sock_put(nsk);
2777 	return nsk;
2778 }
2779 
2780 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2781 {
2782 	const struct tcp_sock *tp = tcp_sk(ssk);
2783 
2784 	msk->rcvq_space.copied = 0;
2785 	msk->rcvq_space.rtt_us = 0;
2786 
2787 	msk->rcvq_space.time = tp->tcp_mstamp;
2788 
2789 	/* initial rcv_space offering made to peer */
2790 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2791 				      TCP_INIT_CWND * tp->advmss);
2792 	if (msk->rcvq_space.space == 0)
2793 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2794 
2795 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2796 }
2797 
2798 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2799 				 bool kern)
2800 {
2801 	struct mptcp_sock *msk = mptcp_sk(sk);
2802 	struct socket *listener;
2803 	struct sock *newsk;
2804 
2805 	listener = __mptcp_nmpc_socket(msk);
2806 	if (WARN_ON_ONCE(!listener)) {
2807 		*err = -EINVAL;
2808 		return NULL;
2809 	}
2810 
2811 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2812 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2813 	if (!newsk)
2814 		return NULL;
2815 
2816 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2817 	if (sk_is_mptcp(newsk)) {
2818 		struct mptcp_subflow_context *subflow;
2819 		struct sock *new_mptcp_sock;
2820 
2821 		subflow = mptcp_subflow_ctx(newsk);
2822 		new_mptcp_sock = subflow->conn;
2823 
2824 		/* is_mptcp should be false if subflow->conn is missing, see
2825 		 * subflow_syn_recv_sock()
2826 		 */
2827 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2828 			tcp_sk(newsk)->is_mptcp = 0;
2829 			return newsk;
2830 		}
2831 
2832 		/* acquire the 2nd reference for the owning socket */
2833 		sock_hold(new_mptcp_sock);
2834 		newsk = new_mptcp_sock;
2835 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2836 	} else {
2837 		MPTCP_INC_STATS(sock_net(sk),
2838 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2839 	}
2840 
2841 	return newsk;
2842 }
2843 
2844 void mptcp_destroy_common(struct mptcp_sock *msk)
2845 {
2846 	struct sock *sk = (struct sock *)msk;
2847 
2848 	__mptcp_clear_xmit(sk);
2849 
2850 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2851 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2852 
2853 	skb_rbtree_purge(&msk->out_of_order_queue);
2854 	mptcp_token_destroy(msk);
2855 	mptcp_pm_free_anno_list(msk);
2856 }
2857 
2858 static void mptcp_destroy(struct sock *sk)
2859 {
2860 	struct mptcp_sock *msk = mptcp_sk(sk);
2861 
2862 	mptcp_destroy_common(msk);
2863 	sk_sockets_allocated_dec(sk);
2864 }
2865 
2866 void __mptcp_data_acked(struct sock *sk)
2867 {
2868 	if (!sock_owned_by_user(sk))
2869 		__mptcp_clean_una(sk);
2870 	else
2871 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2872 
2873 	if (mptcp_pending_data_fin_ack(sk))
2874 		mptcp_schedule_work(sk);
2875 }
2876 
2877 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2878 {
2879 	if (!mptcp_send_head(sk))
2880 		return;
2881 
2882 	if (!sock_owned_by_user(sk)) {
2883 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2884 
2885 		if (xmit_ssk == ssk)
2886 			__mptcp_subflow_push_pending(sk, ssk);
2887 		else if (xmit_ssk)
2888 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2889 	} else {
2890 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2891 	}
2892 }
2893 
2894 /* processes deferred events and flush wmem */
2895 static void mptcp_release_cb(struct sock *sk)
2896 {
2897 	for (;;) {
2898 		unsigned long flags = 0;
2899 
2900 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2901 			flags |= BIT(MPTCP_PUSH_PENDING);
2902 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2903 			flags |= BIT(MPTCP_RETRANSMIT);
2904 		if (!flags)
2905 			break;
2906 
2907 		/* the following actions acquire the subflow socket lock
2908 		 *
2909 		 * 1) can't be invoked in atomic scope
2910 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2911 		 *    datapath acquires the msk socket spinlock while helding
2912 		 *    the subflow socket lock
2913 		 */
2914 
2915 		spin_unlock_bh(&sk->sk_lock.slock);
2916 		if (flags & BIT(MPTCP_PUSH_PENDING))
2917 			__mptcp_push_pending(sk, 0);
2918 		if (flags & BIT(MPTCP_RETRANSMIT))
2919 			__mptcp_retrans(sk);
2920 
2921 		cond_resched();
2922 		spin_lock_bh(&sk->sk_lock.slock);
2923 	}
2924 
2925 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2926 		__mptcp_clean_una_wakeup(sk);
2927 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2928 		__mptcp_error_report(sk);
2929 
2930 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2931 	 * later
2932 	 */
2933 	__mptcp_update_wmem(sk);
2934 	__mptcp_update_rmem(sk);
2935 }
2936 
2937 void mptcp_subflow_process_delegated(struct sock *ssk)
2938 {
2939 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
2940 	struct sock *sk = subflow->conn;
2941 
2942 	mptcp_data_lock(sk);
2943 	if (!sock_owned_by_user(sk))
2944 		__mptcp_subflow_push_pending(sk, ssk);
2945 	else
2946 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2947 	mptcp_data_unlock(sk);
2948 	mptcp_subflow_delegated_done(subflow);
2949 }
2950 
2951 static int mptcp_hash(struct sock *sk)
2952 {
2953 	/* should never be called,
2954 	 * we hash the TCP subflows not the master socket
2955 	 */
2956 	WARN_ON_ONCE(1);
2957 	return 0;
2958 }
2959 
2960 static void mptcp_unhash(struct sock *sk)
2961 {
2962 	/* called from sk_common_release(), but nothing to do here */
2963 }
2964 
2965 static int mptcp_get_port(struct sock *sk, unsigned short snum)
2966 {
2967 	struct mptcp_sock *msk = mptcp_sk(sk);
2968 	struct socket *ssock;
2969 
2970 	ssock = __mptcp_nmpc_socket(msk);
2971 	pr_debug("msk=%p, subflow=%p", msk, ssock);
2972 	if (WARN_ON_ONCE(!ssock))
2973 		return -EINVAL;
2974 
2975 	return inet_csk_get_port(ssock->sk, snum);
2976 }
2977 
2978 void mptcp_finish_connect(struct sock *ssk)
2979 {
2980 	struct mptcp_subflow_context *subflow;
2981 	struct mptcp_sock *msk;
2982 	struct sock *sk;
2983 	u64 ack_seq;
2984 
2985 	subflow = mptcp_subflow_ctx(ssk);
2986 	sk = subflow->conn;
2987 	msk = mptcp_sk(sk);
2988 
2989 	pr_debug("msk=%p, token=%u", sk, subflow->token);
2990 
2991 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2992 	ack_seq++;
2993 	subflow->map_seq = ack_seq;
2994 	subflow->map_subflow_seq = 1;
2995 
2996 	/* the socket is not connected yet, no msk/subflow ops can access/race
2997 	 * accessing the field below
2998 	 */
2999 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3000 	WRITE_ONCE(msk->local_key, subflow->local_key);
3001 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3002 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3003 	WRITE_ONCE(msk->ack_seq, ack_seq);
3004 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3005 	WRITE_ONCE(msk->can_ack, 1);
3006 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3007 
3008 	mptcp_pm_new_connection(msk, ssk, 0);
3009 
3010 	mptcp_rcv_space_init(msk, ssk);
3011 }
3012 
3013 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3014 {
3015 	write_lock_bh(&sk->sk_callback_lock);
3016 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3017 	sk_set_socket(sk, parent);
3018 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3019 	write_unlock_bh(&sk->sk_callback_lock);
3020 }
3021 
3022 bool mptcp_finish_join(struct sock *ssk)
3023 {
3024 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3025 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3026 	struct sock *parent = (void *)msk;
3027 	struct socket *parent_sock;
3028 	bool ret;
3029 
3030 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3031 
3032 	/* mptcp socket already closing? */
3033 	if (!mptcp_is_fully_established(parent)) {
3034 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3035 		return false;
3036 	}
3037 
3038 	if (!msk->pm.server_side)
3039 		goto out;
3040 
3041 	if (!mptcp_pm_allow_new_subflow(msk)) {
3042 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3043 		return false;
3044 	}
3045 
3046 	/* active connections are already on conn_list, and we can't acquire
3047 	 * msk lock here.
3048 	 * use the join list lock as synchronization point and double-check
3049 	 * msk status to avoid racing with __mptcp_destroy_sock()
3050 	 */
3051 	spin_lock_bh(&msk->join_list_lock);
3052 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3053 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3054 		list_add_tail(&subflow->node, &msk->join_list);
3055 		sock_hold(ssk);
3056 	}
3057 	spin_unlock_bh(&msk->join_list_lock);
3058 	if (!ret) {
3059 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3060 		return false;
3061 	}
3062 
3063 	/* attach to msk socket only after we are sure he will deal with us
3064 	 * at close time
3065 	 */
3066 	parent_sock = READ_ONCE(parent->sk_socket);
3067 	if (parent_sock && !ssk->sk_socket)
3068 		mptcp_sock_graft(ssk, parent_sock);
3069 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3070 out:
3071 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3072 	return true;
3073 }
3074 
3075 static void mptcp_shutdown(struct sock *sk, int how)
3076 {
3077 	pr_debug("sk=%p, how=%d", sk, how);
3078 
3079 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3080 		__mptcp_wr_shutdown(sk);
3081 }
3082 
3083 static struct proto mptcp_prot = {
3084 	.name		= "MPTCP",
3085 	.owner		= THIS_MODULE,
3086 	.init		= mptcp_init_sock,
3087 	.disconnect	= mptcp_disconnect,
3088 	.close		= mptcp_close,
3089 	.accept		= mptcp_accept,
3090 	.setsockopt	= mptcp_setsockopt,
3091 	.getsockopt	= mptcp_getsockopt,
3092 	.shutdown	= mptcp_shutdown,
3093 	.destroy	= mptcp_destroy,
3094 	.sendmsg	= mptcp_sendmsg,
3095 	.recvmsg	= mptcp_recvmsg,
3096 	.release_cb	= mptcp_release_cb,
3097 	.hash		= mptcp_hash,
3098 	.unhash		= mptcp_unhash,
3099 	.get_port	= mptcp_get_port,
3100 	.sockets_allocated	= &mptcp_sockets_allocated,
3101 	.memory_allocated	= &tcp_memory_allocated,
3102 	.memory_pressure	= &tcp_memory_pressure,
3103 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3104 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3105 	.sysctl_mem	= sysctl_tcp_mem,
3106 	.obj_size	= sizeof(struct mptcp_sock),
3107 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3108 	.no_autobind	= true,
3109 };
3110 
3111 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3112 {
3113 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3114 	struct socket *ssock;
3115 	int err;
3116 
3117 	lock_sock(sock->sk);
3118 	ssock = __mptcp_nmpc_socket(msk);
3119 	if (!ssock) {
3120 		err = -EINVAL;
3121 		goto unlock;
3122 	}
3123 
3124 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3125 	if (!err)
3126 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3127 
3128 unlock:
3129 	release_sock(sock->sk);
3130 	return err;
3131 }
3132 
3133 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3134 					 struct mptcp_subflow_context *subflow)
3135 {
3136 	subflow->request_mptcp = 0;
3137 	__mptcp_do_fallback(msk);
3138 }
3139 
3140 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3141 				int addr_len, int flags)
3142 {
3143 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3144 	struct mptcp_subflow_context *subflow;
3145 	struct socket *ssock;
3146 	int err;
3147 
3148 	lock_sock(sock->sk);
3149 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3150 		/* pending connection or invalid state, let existing subflow
3151 		 * cope with that
3152 		 */
3153 		ssock = msk->subflow;
3154 		goto do_connect;
3155 	}
3156 
3157 	ssock = __mptcp_nmpc_socket(msk);
3158 	if (!ssock) {
3159 		err = -EINVAL;
3160 		goto unlock;
3161 	}
3162 
3163 	mptcp_token_destroy(msk);
3164 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3165 	subflow = mptcp_subflow_ctx(ssock->sk);
3166 #ifdef CONFIG_TCP_MD5SIG
3167 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3168 	 * TCP option space.
3169 	 */
3170 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3171 		mptcp_subflow_early_fallback(msk, subflow);
3172 #endif
3173 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3174 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3175 		mptcp_subflow_early_fallback(msk, subflow);
3176 	}
3177 	if (likely(!__mptcp_check_fallback(msk)))
3178 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3179 
3180 do_connect:
3181 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3182 	sock->state = ssock->state;
3183 
3184 	/* on successful connect, the msk state will be moved to established by
3185 	 * subflow_finish_connect()
3186 	 */
3187 	if (!err || err == -EINPROGRESS)
3188 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3189 	else
3190 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3191 
3192 unlock:
3193 	release_sock(sock->sk);
3194 	return err;
3195 }
3196 
3197 static int mptcp_listen(struct socket *sock, int backlog)
3198 {
3199 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3200 	struct socket *ssock;
3201 	int err;
3202 
3203 	pr_debug("msk=%p", msk);
3204 
3205 	lock_sock(sock->sk);
3206 	ssock = __mptcp_nmpc_socket(msk);
3207 	if (!ssock) {
3208 		err = -EINVAL;
3209 		goto unlock;
3210 	}
3211 
3212 	mptcp_token_destroy(msk);
3213 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3214 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3215 
3216 	err = ssock->ops->listen(ssock, backlog);
3217 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3218 	if (!err)
3219 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3220 
3221 unlock:
3222 	release_sock(sock->sk);
3223 	return err;
3224 }
3225 
3226 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3227 			       int flags, bool kern)
3228 {
3229 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3230 	struct socket *ssock;
3231 	int err;
3232 
3233 	pr_debug("msk=%p", msk);
3234 
3235 	lock_sock(sock->sk);
3236 	if (sock->sk->sk_state != TCP_LISTEN)
3237 		goto unlock_fail;
3238 
3239 	ssock = __mptcp_nmpc_socket(msk);
3240 	if (!ssock)
3241 		goto unlock_fail;
3242 
3243 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3244 	sock_hold(ssock->sk);
3245 	release_sock(sock->sk);
3246 
3247 	err = ssock->ops->accept(sock, newsock, flags, kern);
3248 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3249 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3250 		struct mptcp_subflow_context *subflow;
3251 		struct sock *newsk = newsock->sk;
3252 
3253 		lock_sock(newsk);
3254 
3255 		/* PM/worker can now acquire the first subflow socket
3256 		 * lock without racing with listener queue cleanup,
3257 		 * we can notify it, if needed.
3258 		 *
3259 		 * Even if remote has reset the initial subflow by now
3260 		 * the refcnt is still at least one.
3261 		 */
3262 		subflow = mptcp_subflow_ctx(msk->first);
3263 		list_add(&subflow->node, &msk->conn_list);
3264 		sock_hold(msk->first);
3265 		if (mptcp_is_fully_established(newsk))
3266 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3267 
3268 		mptcp_copy_inaddrs(newsk, msk->first);
3269 		mptcp_rcv_space_init(msk, msk->first);
3270 		mptcp_propagate_sndbuf(newsk, msk->first);
3271 
3272 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3273 		 * This is needed so NOSPACE flag can be set from tcp stack.
3274 		 */
3275 		mptcp_flush_join_list(msk);
3276 		mptcp_for_each_subflow(msk, subflow) {
3277 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3278 
3279 			if (!ssk->sk_socket)
3280 				mptcp_sock_graft(ssk, newsock);
3281 		}
3282 		release_sock(newsk);
3283 	}
3284 
3285 	if (inet_csk_listen_poll(ssock->sk))
3286 		set_bit(MPTCP_DATA_READY, &msk->flags);
3287 	sock_put(ssock->sk);
3288 	return err;
3289 
3290 unlock_fail:
3291 	release_sock(sock->sk);
3292 	return -EINVAL;
3293 }
3294 
3295 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3296 {
3297 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3298 	       0;
3299 }
3300 
3301 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3302 {
3303 	struct sock *sk = (struct sock *)msk;
3304 
3305 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3306 		return EPOLLOUT | EPOLLWRNORM;
3307 
3308 	if (sk_stream_is_writeable(sk))
3309 		return EPOLLOUT | EPOLLWRNORM;
3310 
3311 	mptcp_set_nospace(sk);
3312 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3313 	if (sk_stream_is_writeable(sk))
3314 		return EPOLLOUT | EPOLLWRNORM;
3315 
3316 	return 0;
3317 }
3318 
3319 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3320 			   struct poll_table_struct *wait)
3321 {
3322 	struct sock *sk = sock->sk;
3323 	struct mptcp_sock *msk;
3324 	__poll_t mask = 0;
3325 	int state;
3326 
3327 	msk = mptcp_sk(sk);
3328 	sock_poll_wait(file, sock, wait);
3329 
3330 	state = inet_sk_state_load(sk);
3331 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3332 	if (state == TCP_LISTEN)
3333 		return mptcp_check_readable(msk);
3334 
3335 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3336 		mask |= mptcp_check_readable(msk);
3337 		mask |= mptcp_check_writeable(msk);
3338 	}
3339 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3340 		mask |= EPOLLHUP;
3341 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3342 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3343 
3344 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3345 	smp_rmb();
3346 	if (sk->sk_err)
3347 		mask |= EPOLLERR;
3348 
3349 	return mask;
3350 }
3351 
3352 static const struct proto_ops mptcp_stream_ops = {
3353 	.family		   = PF_INET,
3354 	.owner		   = THIS_MODULE,
3355 	.release	   = inet_release,
3356 	.bind		   = mptcp_bind,
3357 	.connect	   = mptcp_stream_connect,
3358 	.socketpair	   = sock_no_socketpair,
3359 	.accept		   = mptcp_stream_accept,
3360 	.getname	   = inet_getname,
3361 	.poll		   = mptcp_poll,
3362 	.ioctl		   = inet_ioctl,
3363 	.gettstamp	   = sock_gettstamp,
3364 	.listen		   = mptcp_listen,
3365 	.shutdown	   = inet_shutdown,
3366 	.setsockopt	   = sock_common_setsockopt,
3367 	.getsockopt	   = sock_common_getsockopt,
3368 	.sendmsg	   = inet_sendmsg,
3369 	.recvmsg	   = inet_recvmsg,
3370 	.mmap		   = sock_no_mmap,
3371 	.sendpage	   = inet_sendpage,
3372 };
3373 
3374 static struct inet_protosw mptcp_protosw = {
3375 	.type		= SOCK_STREAM,
3376 	.protocol	= IPPROTO_MPTCP,
3377 	.prot		= &mptcp_prot,
3378 	.ops		= &mptcp_stream_ops,
3379 	.flags		= INET_PROTOSW_ICSK,
3380 };
3381 
3382 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3383 {
3384 	struct mptcp_delegated_action *delegated;
3385 	struct mptcp_subflow_context *subflow;
3386 	int work_done = 0;
3387 
3388 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3389 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3390 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3391 
3392 		bh_lock_sock_nested(ssk);
3393 		if (!sock_owned_by_user(ssk) &&
3394 		    mptcp_subflow_has_delegated_action(subflow))
3395 			mptcp_subflow_process_delegated(ssk);
3396 		/* ... elsewhere tcp_release_cb_override already processed
3397 		 * the action or will do at next release_sock().
3398 		 * In both case must dequeue the subflow here - on the same
3399 		 * CPU that scheduled it.
3400 		 */
3401 		bh_unlock_sock(ssk);
3402 		sock_put(ssk);
3403 
3404 		if (++work_done == budget)
3405 			return budget;
3406 	}
3407 
3408 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3409 	 * will not try accessing the NULL napi->dev ptr
3410 	 */
3411 	napi_complete_done(napi, 0);
3412 	return work_done;
3413 }
3414 
3415 void __init mptcp_proto_init(void)
3416 {
3417 	struct mptcp_delegated_action *delegated;
3418 	int cpu;
3419 
3420 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3421 
3422 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3423 		panic("Failed to allocate MPTCP pcpu counter\n");
3424 
3425 	init_dummy_netdev(&mptcp_napi_dev);
3426 	for_each_possible_cpu(cpu) {
3427 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3428 		INIT_LIST_HEAD(&delegated->head);
3429 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3430 				  NAPI_POLL_WEIGHT);
3431 		napi_enable(&delegated->napi);
3432 	}
3433 
3434 	mptcp_subflow_init();
3435 	mptcp_pm_init();
3436 	mptcp_token_init();
3437 
3438 	if (proto_register(&mptcp_prot, 1) != 0)
3439 		panic("Failed to register MPTCP proto.\n");
3440 
3441 	inet_register_protosw(&mptcp_protosw);
3442 
3443 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3444 }
3445 
3446 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3447 static const struct proto_ops mptcp_v6_stream_ops = {
3448 	.family		   = PF_INET6,
3449 	.owner		   = THIS_MODULE,
3450 	.release	   = inet6_release,
3451 	.bind		   = mptcp_bind,
3452 	.connect	   = mptcp_stream_connect,
3453 	.socketpair	   = sock_no_socketpair,
3454 	.accept		   = mptcp_stream_accept,
3455 	.getname	   = inet6_getname,
3456 	.poll		   = mptcp_poll,
3457 	.ioctl		   = inet6_ioctl,
3458 	.gettstamp	   = sock_gettstamp,
3459 	.listen		   = mptcp_listen,
3460 	.shutdown	   = inet_shutdown,
3461 	.setsockopt	   = sock_common_setsockopt,
3462 	.getsockopt	   = sock_common_getsockopt,
3463 	.sendmsg	   = inet6_sendmsg,
3464 	.recvmsg	   = inet6_recvmsg,
3465 	.mmap		   = sock_no_mmap,
3466 	.sendpage	   = inet_sendpage,
3467 #ifdef CONFIG_COMPAT
3468 	.compat_ioctl	   = inet6_compat_ioctl,
3469 #endif
3470 };
3471 
3472 static struct proto mptcp_v6_prot;
3473 
3474 static void mptcp_v6_destroy(struct sock *sk)
3475 {
3476 	mptcp_destroy(sk);
3477 	inet6_destroy_sock(sk);
3478 }
3479 
3480 static struct inet_protosw mptcp_v6_protosw = {
3481 	.type		= SOCK_STREAM,
3482 	.protocol	= IPPROTO_MPTCP,
3483 	.prot		= &mptcp_v6_prot,
3484 	.ops		= &mptcp_v6_stream_ops,
3485 	.flags		= INET_PROTOSW_ICSK,
3486 };
3487 
3488 int __init mptcp_proto_v6_init(void)
3489 {
3490 	int err;
3491 
3492 	mptcp_v6_prot = mptcp_prot;
3493 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3494 	mptcp_v6_prot.slab = NULL;
3495 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3496 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3497 
3498 	err = proto_register(&mptcp_v6_prot, 1);
3499 	if (err)
3500 		return err;
3501 
3502 	err = inet6_register_protosw(&mptcp_v6_protosw);
3503 	if (err)
3504 		proto_unregister(&mptcp_v6_prot);
3505 
3506 	return err;
3507 }
3508 #endif
3509