1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 kfree_skb_partial(from, fragstolen); 154 atomic_add(delta, &sk->sk_rmem_alloc); 155 mptcp_rmem_charge(sk, delta); 156 return true; 157 } 158 159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 160 struct sk_buff *from) 161 { 162 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 163 return false; 164 165 return mptcp_try_coalesce((struct sock *)msk, to, from); 166 } 167 168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 169 { 170 amount >>= PAGE_SHIFT; 171 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 172 __sk_mem_reduce_allocated(sk, amount); 173 } 174 175 static void mptcp_rmem_uncharge(struct sock *sk, int size) 176 { 177 struct mptcp_sock *msk = mptcp_sk(sk); 178 int reclaimable; 179 180 msk->rmem_fwd_alloc += size; 181 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 182 183 /* see sk_mem_uncharge() for the rationale behind the following schema */ 184 if (unlikely(reclaimable >= PAGE_SIZE)) 185 __mptcp_rmem_reclaim(sk, reclaimable); 186 } 187 188 static void mptcp_rfree(struct sk_buff *skb) 189 { 190 unsigned int len = skb->truesize; 191 struct sock *sk = skb->sk; 192 193 atomic_sub(len, &sk->sk_rmem_alloc); 194 mptcp_rmem_uncharge(sk, len); 195 } 196 197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 198 { 199 skb_orphan(skb); 200 skb->sk = sk; 201 skb->destructor = mptcp_rfree; 202 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 203 mptcp_rmem_charge(sk, skb->truesize); 204 } 205 206 /* "inspired" by tcp_data_queue_ofo(), main differences: 207 * - use mptcp seqs 208 * - don't cope with sacks 209 */ 210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 211 { 212 struct sock *sk = (struct sock *)msk; 213 struct rb_node **p, *parent; 214 u64 seq, end_seq, max_seq; 215 struct sk_buff *skb1; 216 217 seq = MPTCP_SKB_CB(skb)->map_seq; 218 end_seq = MPTCP_SKB_CB(skb)->end_seq; 219 max_seq = atomic64_read(&msk->rcv_wnd_sent); 220 221 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 222 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 223 if (after64(end_seq, max_seq)) { 224 /* out of window */ 225 mptcp_drop(sk, skb); 226 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 227 (unsigned long long)end_seq - (unsigned long)max_seq, 228 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 230 return; 231 } 232 233 p = &msk->out_of_order_queue.rb_node; 234 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 235 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 236 rb_link_node(&skb->rbnode, NULL, p); 237 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 238 msk->ooo_last_skb = skb; 239 goto end; 240 } 241 242 /* with 2 subflows, adding at end of ooo queue is quite likely 243 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 244 */ 245 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 248 return; 249 } 250 251 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 252 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 parent = &msk->ooo_last_skb->rbnode; 255 p = &parent->rb_right; 256 goto insert; 257 } 258 259 /* Find place to insert this segment. Handle overlaps on the way. */ 260 parent = NULL; 261 while (*p) { 262 parent = *p; 263 skb1 = rb_to_skb(parent); 264 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 265 p = &parent->rb_left; 266 continue; 267 } 268 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 /* All the bits are present. Drop. */ 271 mptcp_drop(sk, skb); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 273 return; 274 } 275 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 276 /* partial overlap: 277 * | skb | 278 * | skb1 | 279 * continue traversing 280 */ 281 } else { 282 /* skb's seq == skb1's seq and skb covers skb1. 283 * Replace skb1 with skb. 284 */ 285 rb_replace_node(&skb1->rbnode, &skb->rbnode, 286 &msk->out_of_order_queue); 287 mptcp_drop(sk, skb1); 288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 289 goto merge_right; 290 } 291 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 293 return; 294 } 295 p = &parent->rb_right; 296 } 297 298 insert: 299 /* Insert segment into RB tree. */ 300 rb_link_node(&skb->rbnode, parent, p); 301 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 302 303 merge_right: 304 /* Remove other segments covered by skb. */ 305 while ((skb1 = skb_rb_next(skb)) != NULL) { 306 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 307 break; 308 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 309 mptcp_drop(sk, skb1); 310 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 311 } 312 /* If there is no skb after us, we are the last_skb ! */ 313 if (!skb1) 314 msk->ooo_last_skb = skb; 315 316 end: 317 skb_condense(skb); 318 mptcp_set_owner_r(skb, sk); 319 } 320 321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 322 { 323 struct mptcp_sock *msk = mptcp_sk(sk); 324 int amt, amount; 325 326 if (size <= msk->rmem_fwd_alloc) 327 return true; 328 329 size -= msk->rmem_fwd_alloc; 330 amt = sk_mem_pages(size); 331 amount = amt << PAGE_SHIFT; 332 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 333 return false; 334 335 msk->rmem_fwd_alloc += amount; 336 return true; 337 } 338 339 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 340 struct sk_buff *skb, unsigned int offset, 341 size_t copy_len) 342 { 343 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 344 struct sock *sk = (struct sock *)msk; 345 struct sk_buff *tail; 346 bool has_rxtstamp; 347 348 __skb_unlink(skb, &ssk->sk_receive_queue); 349 350 skb_ext_reset(skb); 351 skb_orphan(skb); 352 353 /* try to fetch required memory from subflow */ 354 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 355 goto drop; 356 357 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 358 359 /* the skb map_seq accounts for the skb offset: 360 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 361 * value 362 */ 363 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 364 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 365 MPTCP_SKB_CB(skb)->offset = offset; 366 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 367 368 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 369 /* in sequence */ 370 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 371 tail = skb_peek_tail(&sk->sk_receive_queue); 372 if (tail && mptcp_try_coalesce(sk, tail, skb)) 373 return true; 374 375 mptcp_set_owner_r(skb, sk); 376 __skb_queue_tail(&sk->sk_receive_queue, skb); 377 return true; 378 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 379 mptcp_data_queue_ofo(msk, skb); 380 return false; 381 } 382 383 /* old data, keep it simple and drop the whole pkt, sender 384 * will retransmit as needed, if needed. 385 */ 386 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 387 drop: 388 mptcp_drop(sk, skb); 389 return false; 390 } 391 392 static void mptcp_stop_timer(struct sock *sk) 393 { 394 struct inet_connection_sock *icsk = inet_csk(sk); 395 396 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 397 mptcp_sk(sk)->timer_ival = 0; 398 } 399 400 static void mptcp_close_wake_up(struct sock *sk) 401 { 402 if (sock_flag(sk, SOCK_DEAD)) 403 return; 404 405 sk->sk_state_change(sk); 406 if (sk->sk_shutdown == SHUTDOWN_MASK || 407 sk->sk_state == TCP_CLOSE) 408 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 409 else 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 411 } 412 413 static bool mptcp_pending_data_fin_ack(struct sock *sk) 414 { 415 struct mptcp_sock *msk = mptcp_sk(sk); 416 417 return !__mptcp_check_fallback(msk) && 418 ((1 << sk->sk_state) & 419 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 420 msk->write_seq == READ_ONCE(msk->snd_una); 421 } 422 423 static void mptcp_check_data_fin_ack(struct sock *sk) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 /* Look for an acknowledged DATA_FIN */ 428 if (mptcp_pending_data_fin_ack(sk)) { 429 WRITE_ONCE(msk->snd_data_fin_enable, 0); 430 431 switch (sk->sk_state) { 432 case TCP_FIN_WAIT1: 433 inet_sk_state_store(sk, TCP_FIN_WAIT2); 434 break; 435 case TCP_CLOSING: 436 case TCP_LAST_ACK: 437 inet_sk_state_store(sk, TCP_CLOSE); 438 break; 439 } 440 441 mptcp_close_wake_up(sk); 442 } 443 } 444 445 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 446 { 447 struct mptcp_sock *msk = mptcp_sk(sk); 448 449 if (READ_ONCE(msk->rcv_data_fin) && 450 ((1 << sk->sk_state) & 451 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 452 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 453 454 if (msk->ack_seq == rcv_data_fin_seq) { 455 if (seq) 456 *seq = rcv_data_fin_seq; 457 458 return true; 459 } 460 } 461 462 return false; 463 } 464 465 static void mptcp_set_datafin_timeout(const struct sock *sk) 466 { 467 struct inet_connection_sock *icsk = inet_csk(sk); 468 u32 retransmits; 469 470 retransmits = min_t(u32, icsk->icsk_retransmits, 471 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 472 473 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 474 } 475 476 static void __mptcp_set_timeout(struct sock *sk, long tout) 477 { 478 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 479 } 480 481 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 482 { 483 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 484 485 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 486 inet_csk(ssk)->icsk_timeout - jiffies : 0; 487 } 488 489 static void mptcp_set_timeout(struct sock *sk) 490 { 491 struct mptcp_subflow_context *subflow; 492 long tout = 0; 493 494 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 495 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 496 __mptcp_set_timeout(sk, tout); 497 } 498 499 static inline bool tcp_can_send_ack(const struct sock *ssk) 500 { 501 return !((1 << inet_sk_state_load(ssk)) & 502 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 503 } 504 505 void __mptcp_subflow_send_ack(struct sock *ssk) 506 { 507 if (tcp_can_send_ack(ssk)) 508 tcp_send_ack(ssk); 509 } 510 511 static void mptcp_subflow_send_ack(struct sock *ssk) 512 { 513 bool slow; 514 515 slow = lock_sock_fast(ssk); 516 __mptcp_subflow_send_ack(ssk); 517 unlock_sock_fast(ssk, slow); 518 } 519 520 static void mptcp_send_ack(struct mptcp_sock *msk) 521 { 522 struct mptcp_subflow_context *subflow; 523 524 mptcp_for_each_subflow(msk, subflow) 525 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 526 } 527 528 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 529 { 530 bool slow; 531 532 slow = lock_sock_fast(ssk); 533 if (tcp_can_send_ack(ssk)) 534 tcp_cleanup_rbuf(ssk, 1); 535 unlock_sock_fast(ssk, slow); 536 } 537 538 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 539 { 540 const struct inet_connection_sock *icsk = inet_csk(ssk); 541 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 542 const struct tcp_sock *tp = tcp_sk(ssk); 543 544 return (ack_pending & ICSK_ACK_SCHED) && 545 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 546 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 547 (rx_empty && ack_pending & 548 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 549 } 550 551 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 552 { 553 int old_space = READ_ONCE(msk->old_wspace); 554 struct mptcp_subflow_context *subflow; 555 struct sock *sk = (struct sock *)msk; 556 int space = __mptcp_space(sk); 557 bool cleanup, rx_empty; 558 559 cleanup = (space > 0) && (space >= (old_space << 1)); 560 rx_empty = !__mptcp_rmem(sk); 561 562 mptcp_for_each_subflow(msk, subflow) { 563 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 564 565 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 566 mptcp_subflow_cleanup_rbuf(ssk); 567 } 568 } 569 570 static bool mptcp_check_data_fin(struct sock *sk) 571 { 572 struct mptcp_sock *msk = mptcp_sk(sk); 573 u64 rcv_data_fin_seq; 574 bool ret = false; 575 576 if (__mptcp_check_fallback(msk)) 577 return ret; 578 579 /* Need to ack a DATA_FIN received from a peer while this side 580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 581 * msk->rcv_data_fin was set when parsing the incoming options 582 * at the subflow level and the msk lock was not held, so this 583 * is the first opportunity to act on the DATA_FIN and change 584 * the msk state. 585 * 586 * If we are caught up to the sequence number of the incoming 587 * DATA_FIN, send the DATA_ACK now and do state transition. If 588 * not caught up, do nothing and let the recv code send DATA_ACK 589 * when catching up. 590 */ 591 592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 594 WRITE_ONCE(msk->rcv_data_fin, 0); 595 596 sk->sk_shutdown |= RCV_SHUTDOWN; 597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 598 599 switch (sk->sk_state) { 600 case TCP_ESTABLISHED: 601 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 602 break; 603 case TCP_FIN_WAIT1: 604 inet_sk_state_store(sk, TCP_CLOSING); 605 break; 606 case TCP_FIN_WAIT2: 607 inet_sk_state_store(sk, TCP_CLOSE); 608 break; 609 default: 610 /* Other states not expected */ 611 WARN_ON_ONCE(1); 612 break; 613 } 614 615 ret = true; 616 mptcp_send_ack(msk); 617 mptcp_close_wake_up(sk); 618 } 619 return ret; 620 } 621 622 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 623 struct sock *ssk, 624 unsigned int *bytes) 625 { 626 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 627 struct sock *sk = (struct sock *)msk; 628 unsigned int moved = 0; 629 bool more_data_avail; 630 struct tcp_sock *tp; 631 bool done = false; 632 int sk_rbuf; 633 634 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 635 636 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 637 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 638 639 if (unlikely(ssk_rbuf > sk_rbuf)) { 640 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 641 sk_rbuf = ssk_rbuf; 642 } 643 } 644 645 pr_debug("msk=%p ssk=%p", msk, ssk); 646 tp = tcp_sk(ssk); 647 do { 648 u32 map_remaining, offset; 649 u32 seq = tp->copied_seq; 650 struct sk_buff *skb; 651 bool fin; 652 653 /* try to move as much data as available */ 654 map_remaining = subflow->map_data_len - 655 mptcp_subflow_get_map_offset(subflow); 656 657 skb = skb_peek(&ssk->sk_receive_queue); 658 if (!skb) { 659 /* if no data is found, a racing workqueue/recvmsg 660 * already processed the new data, stop here or we 661 * can enter an infinite loop 662 */ 663 if (!moved) 664 done = true; 665 break; 666 } 667 668 if (__mptcp_check_fallback(msk)) { 669 /* if we are running under the workqueue, TCP could have 670 * collapsed skbs between dummy map creation and now 671 * be sure to adjust the size 672 */ 673 map_remaining = skb->len; 674 subflow->map_data_len = skb->len; 675 } 676 677 offset = seq - TCP_SKB_CB(skb)->seq; 678 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 679 if (fin) { 680 done = true; 681 seq++; 682 } 683 684 if (offset < skb->len) { 685 size_t len = skb->len - offset; 686 687 if (tp->urg_data) 688 done = true; 689 690 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 691 moved += len; 692 seq += len; 693 694 if (WARN_ON_ONCE(map_remaining < len)) 695 break; 696 } else { 697 WARN_ON_ONCE(!fin); 698 sk_eat_skb(ssk, skb); 699 done = true; 700 } 701 702 WRITE_ONCE(tp->copied_seq, seq); 703 more_data_avail = mptcp_subflow_data_available(ssk); 704 705 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 706 done = true; 707 break; 708 } 709 } while (more_data_avail); 710 711 *bytes += moved; 712 return done; 713 } 714 715 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 716 { 717 struct sock *sk = (struct sock *)msk; 718 struct sk_buff *skb, *tail; 719 bool moved = false; 720 struct rb_node *p; 721 u64 end_seq; 722 723 p = rb_first(&msk->out_of_order_queue); 724 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 725 while (p) { 726 skb = rb_to_skb(p); 727 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 728 break; 729 730 p = rb_next(p); 731 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 732 733 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 734 msk->ack_seq))) { 735 mptcp_drop(sk, skb); 736 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 737 continue; 738 } 739 740 end_seq = MPTCP_SKB_CB(skb)->end_seq; 741 tail = skb_peek_tail(&sk->sk_receive_queue); 742 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 743 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 744 745 /* skip overlapping data, if any */ 746 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 747 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 748 delta); 749 MPTCP_SKB_CB(skb)->offset += delta; 750 MPTCP_SKB_CB(skb)->map_seq += delta; 751 __skb_queue_tail(&sk->sk_receive_queue, skb); 752 } 753 msk->ack_seq = end_seq; 754 moved = true; 755 } 756 return moved; 757 } 758 759 /* In most cases we will be able to lock the mptcp socket. If its already 760 * owned, we need to defer to the work queue to avoid ABBA deadlock. 761 */ 762 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 763 { 764 struct sock *sk = (struct sock *)msk; 765 unsigned int moved = 0; 766 767 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 768 __mptcp_ofo_queue(msk); 769 if (unlikely(ssk->sk_err)) { 770 if (!sock_owned_by_user(sk)) 771 __mptcp_error_report(sk); 772 else 773 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 774 } 775 776 /* If the moves have caught up with the DATA_FIN sequence number 777 * it's time to ack the DATA_FIN and change socket state, but 778 * this is not a good place to change state. Let the workqueue 779 * do it. 780 */ 781 if (mptcp_pending_data_fin(sk, NULL)) 782 mptcp_schedule_work(sk); 783 return moved > 0; 784 } 785 786 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 787 { 788 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 789 struct mptcp_sock *msk = mptcp_sk(sk); 790 int sk_rbuf, ssk_rbuf; 791 792 /* The peer can send data while we are shutting down this 793 * subflow at msk destruction time, but we must avoid enqueuing 794 * more data to the msk receive queue 795 */ 796 if (unlikely(subflow->disposable)) 797 return; 798 799 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 800 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 801 if (unlikely(ssk_rbuf > sk_rbuf)) 802 sk_rbuf = ssk_rbuf; 803 804 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 805 if (__mptcp_rmem(sk) > sk_rbuf) { 806 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 807 return; 808 } 809 810 /* Wake-up the reader only for in-sequence data */ 811 mptcp_data_lock(sk); 812 if (move_skbs_to_msk(msk, ssk)) 813 sk->sk_data_ready(sk); 814 815 mptcp_data_unlock(sk); 816 } 817 818 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 819 { 820 struct sock *sk = (struct sock *)msk; 821 822 if (sk->sk_state != TCP_ESTABLISHED) 823 return false; 824 825 /* attach to msk socket only after we are sure we will deal with it 826 * at close time 827 */ 828 if (sk->sk_socket && !ssk->sk_socket) 829 mptcp_sock_graft(ssk, sk->sk_socket); 830 831 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 832 mptcp_sockopt_sync_locked(msk, ssk); 833 return true; 834 } 835 836 static void __mptcp_flush_join_list(struct sock *sk) 837 { 838 struct mptcp_subflow_context *tmp, *subflow; 839 struct mptcp_sock *msk = mptcp_sk(sk); 840 841 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 842 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 843 bool slow = lock_sock_fast(ssk); 844 845 list_move_tail(&subflow->node, &msk->conn_list); 846 if (!__mptcp_finish_join(msk, ssk)) 847 mptcp_subflow_reset(ssk); 848 unlock_sock_fast(ssk, slow); 849 } 850 } 851 852 static bool mptcp_timer_pending(struct sock *sk) 853 { 854 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 855 } 856 857 static void mptcp_reset_timer(struct sock *sk) 858 { 859 struct inet_connection_sock *icsk = inet_csk(sk); 860 unsigned long tout; 861 862 /* prevent rescheduling on close */ 863 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 864 return; 865 866 tout = mptcp_sk(sk)->timer_ival; 867 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 868 } 869 870 bool mptcp_schedule_work(struct sock *sk) 871 { 872 if (inet_sk_state_load(sk) != TCP_CLOSE && 873 schedule_work(&mptcp_sk(sk)->work)) { 874 /* each subflow already holds a reference to the sk, and the 875 * workqueue is invoked by a subflow, so sk can't go away here. 876 */ 877 sock_hold(sk); 878 return true; 879 } 880 return false; 881 } 882 883 void mptcp_subflow_eof(struct sock *sk) 884 { 885 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 886 mptcp_schedule_work(sk); 887 } 888 889 static void mptcp_check_for_eof(struct mptcp_sock *msk) 890 { 891 struct mptcp_subflow_context *subflow; 892 struct sock *sk = (struct sock *)msk; 893 int receivers = 0; 894 895 mptcp_for_each_subflow(msk, subflow) 896 receivers += !subflow->rx_eof; 897 if (receivers) 898 return; 899 900 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 901 /* hopefully temporary hack: propagate shutdown status 902 * to msk, when all subflows agree on it 903 */ 904 sk->sk_shutdown |= RCV_SHUTDOWN; 905 906 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 907 sk->sk_data_ready(sk); 908 } 909 910 switch (sk->sk_state) { 911 case TCP_ESTABLISHED: 912 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 913 break; 914 case TCP_FIN_WAIT1: 915 inet_sk_state_store(sk, TCP_CLOSING); 916 break; 917 case TCP_FIN_WAIT2: 918 inet_sk_state_store(sk, TCP_CLOSE); 919 break; 920 default: 921 return; 922 } 923 mptcp_close_wake_up(sk); 924 } 925 926 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 927 { 928 struct mptcp_subflow_context *subflow; 929 struct sock *sk = (struct sock *)msk; 930 931 sock_owned_by_me(sk); 932 933 mptcp_for_each_subflow(msk, subflow) { 934 if (READ_ONCE(subflow->data_avail)) 935 return mptcp_subflow_tcp_sock(subflow); 936 } 937 938 return NULL; 939 } 940 941 static bool mptcp_skb_can_collapse_to(u64 write_seq, 942 const struct sk_buff *skb, 943 const struct mptcp_ext *mpext) 944 { 945 if (!tcp_skb_can_collapse_to(skb)) 946 return false; 947 948 /* can collapse only if MPTCP level sequence is in order and this 949 * mapping has not been xmitted yet 950 */ 951 return mpext && mpext->data_seq + mpext->data_len == write_seq && 952 !mpext->frozen; 953 } 954 955 /* we can append data to the given data frag if: 956 * - there is space available in the backing page_frag 957 * - the data frag tail matches the current page_frag free offset 958 * - the data frag end sequence number matches the current write seq 959 */ 960 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 961 const struct page_frag *pfrag, 962 const struct mptcp_data_frag *df) 963 { 964 return df && pfrag->page == df->page && 965 pfrag->size - pfrag->offset > 0 && 966 pfrag->offset == (df->offset + df->data_len) && 967 df->data_seq + df->data_len == msk->write_seq; 968 } 969 970 static void dfrag_uncharge(struct sock *sk, int len) 971 { 972 sk_mem_uncharge(sk, len); 973 sk_wmem_queued_add(sk, -len); 974 } 975 976 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 977 { 978 int len = dfrag->data_len + dfrag->overhead; 979 980 list_del(&dfrag->list); 981 dfrag_uncharge(sk, len); 982 put_page(dfrag->page); 983 } 984 985 static void __mptcp_clean_una(struct sock *sk) 986 { 987 struct mptcp_sock *msk = mptcp_sk(sk); 988 struct mptcp_data_frag *dtmp, *dfrag; 989 u64 snd_una; 990 991 /* on fallback we just need to ignore snd_una, as this is really 992 * plain TCP 993 */ 994 if (__mptcp_check_fallback(msk)) 995 msk->snd_una = READ_ONCE(msk->snd_nxt); 996 997 snd_una = msk->snd_una; 998 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 999 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1000 break; 1001 1002 if (unlikely(dfrag == msk->first_pending)) { 1003 /* in recovery mode can see ack after the current snd head */ 1004 if (WARN_ON_ONCE(!msk->recovery)) 1005 break; 1006 1007 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1008 } 1009 1010 dfrag_clear(sk, dfrag); 1011 } 1012 1013 dfrag = mptcp_rtx_head(sk); 1014 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1015 u64 delta = snd_una - dfrag->data_seq; 1016 1017 /* prevent wrap around in recovery mode */ 1018 if (unlikely(delta > dfrag->already_sent)) { 1019 if (WARN_ON_ONCE(!msk->recovery)) 1020 goto out; 1021 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1022 goto out; 1023 dfrag->already_sent += delta - dfrag->already_sent; 1024 } 1025 1026 dfrag->data_seq += delta; 1027 dfrag->offset += delta; 1028 dfrag->data_len -= delta; 1029 dfrag->already_sent -= delta; 1030 1031 dfrag_uncharge(sk, delta); 1032 } 1033 1034 /* all retransmitted data acked, recovery completed */ 1035 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1036 msk->recovery = false; 1037 1038 out: 1039 if (snd_una == READ_ONCE(msk->snd_nxt) && 1040 snd_una == READ_ONCE(msk->write_seq)) { 1041 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1042 mptcp_stop_timer(sk); 1043 } else { 1044 mptcp_reset_timer(sk); 1045 } 1046 } 1047 1048 static void __mptcp_clean_una_wakeup(struct sock *sk) 1049 { 1050 lockdep_assert_held_once(&sk->sk_lock.slock); 1051 1052 __mptcp_clean_una(sk); 1053 mptcp_write_space(sk); 1054 } 1055 1056 static void mptcp_clean_una_wakeup(struct sock *sk) 1057 { 1058 mptcp_data_lock(sk); 1059 __mptcp_clean_una_wakeup(sk); 1060 mptcp_data_unlock(sk); 1061 } 1062 1063 static void mptcp_enter_memory_pressure(struct sock *sk) 1064 { 1065 struct mptcp_subflow_context *subflow; 1066 struct mptcp_sock *msk = mptcp_sk(sk); 1067 bool first = true; 1068 1069 sk_stream_moderate_sndbuf(sk); 1070 mptcp_for_each_subflow(msk, subflow) { 1071 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1072 1073 if (first) 1074 tcp_enter_memory_pressure(ssk); 1075 sk_stream_moderate_sndbuf(ssk); 1076 first = false; 1077 } 1078 } 1079 1080 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1081 * data 1082 */ 1083 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1084 { 1085 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1086 pfrag, sk->sk_allocation))) 1087 return true; 1088 1089 mptcp_enter_memory_pressure(sk); 1090 return false; 1091 } 1092 1093 static struct mptcp_data_frag * 1094 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1095 int orig_offset) 1096 { 1097 int offset = ALIGN(orig_offset, sizeof(long)); 1098 struct mptcp_data_frag *dfrag; 1099 1100 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1101 dfrag->data_len = 0; 1102 dfrag->data_seq = msk->write_seq; 1103 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1104 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1105 dfrag->already_sent = 0; 1106 dfrag->page = pfrag->page; 1107 1108 return dfrag; 1109 } 1110 1111 struct mptcp_sendmsg_info { 1112 int mss_now; 1113 int size_goal; 1114 u16 limit; 1115 u16 sent; 1116 unsigned int flags; 1117 bool data_lock_held; 1118 }; 1119 1120 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1121 u64 data_seq, int avail_size) 1122 { 1123 u64 window_end = mptcp_wnd_end(msk); 1124 u64 mptcp_snd_wnd; 1125 1126 if (__mptcp_check_fallback(msk)) 1127 return avail_size; 1128 1129 mptcp_snd_wnd = window_end - data_seq; 1130 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1131 1132 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1133 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1134 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1135 } 1136 1137 return avail_size; 1138 } 1139 1140 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1141 { 1142 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1143 1144 if (!mpext) 1145 return false; 1146 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1147 return true; 1148 } 1149 1150 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1151 { 1152 struct sk_buff *skb; 1153 1154 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1155 if (likely(skb)) { 1156 if (likely(__mptcp_add_ext(skb, gfp))) { 1157 skb_reserve(skb, MAX_TCP_HEADER); 1158 skb->ip_summed = CHECKSUM_PARTIAL; 1159 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1160 return skb; 1161 } 1162 __kfree_skb(skb); 1163 } else { 1164 mptcp_enter_memory_pressure(sk); 1165 } 1166 return NULL; 1167 } 1168 1169 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1170 { 1171 struct sk_buff *skb; 1172 1173 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1174 if (!skb) 1175 return NULL; 1176 1177 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1178 tcp_skb_entail(ssk, skb); 1179 return skb; 1180 } 1181 tcp_skb_tsorted_anchor_cleanup(skb); 1182 kfree_skb(skb); 1183 return NULL; 1184 } 1185 1186 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1187 { 1188 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1189 1190 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1191 } 1192 1193 /* note: this always recompute the csum on the whole skb, even 1194 * if we just appended a single frag. More status info needed 1195 */ 1196 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1197 { 1198 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1199 __wsum csum = ~csum_unfold(mpext->csum); 1200 int offset = skb->len - added; 1201 1202 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1203 } 1204 1205 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1206 struct sock *ssk, 1207 struct mptcp_ext *mpext) 1208 { 1209 if (!mpext) 1210 return; 1211 1212 mpext->infinite_map = 1; 1213 mpext->data_len = 0; 1214 1215 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1216 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1217 pr_fallback(msk); 1218 mptcp_do_fallback(ssk); 1219 } 1220 1221 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1222 struct mptcp_data_frag *dfrag, 1223 struct mptcp_sendmsg_info *info) 1224 { 1225 u64 data_seq = dfrag->data_seq + info->sent; 1226 int offset = dfrag->offset + info->sent; 1227 struct mptcp_sock *msk = mptcp_sk(sk); 1228 bool zero_window_probe = false; 1229 struct mptcp_ext *mpext = NULL; 1230 bool can_coalesce = false; 1231 bool reuse_skb = true; 1232 struct sk_buff *skb; 1233 size_t copy; 1234 int i; 1235 1236 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1237 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1238 1239 if (WARN_ON_ONCE(info->sent > info->limit || 1240 info->limit > dfrag->data_len)) 1241 return 0; 1242 1243 /* compute send limit */ 1244 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1245 copy = info->size_goal; 1246 1247 skb = tcp_write_queue_tail(ssk); 1248 if (skb && copy > skb->len) { 1249 /* Limit the write to the size available in the 1250 * current skb, if any, so that we create at most a new skb. 1251 * Explicitly tells TCP internals to avoid collapsing on later 1252 * queue management operation, to avoid breaking the ext <-> 1253 * SSN association set here 1254 */ 1255 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1256 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1257 TCP_SKB_CB(skb)->eor = 1; 1258 goto alloc_skb; 1259 } 1260 1261 i = skb_shinfo(skb)->nr_frags; 1262 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1263 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1264 tcp_mark_push(tcp_sk(ssk), skb); 1265 goto alloc_skb; 1266 } 1267 1268 copy -= skb->len; 1269 } else { 1270 alloc_skb: 1271 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1272 if (!skb) 1273 return -ENOMEM; 1274 1275 i = skb_shinfo(skb)->nr_frags; 1276 reuse_skb = false; 1277 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1278 } 1279 1280 /* Zero window and all data acked? Probe. */ 1281 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1282 if (copy == 0) { 1283 u64 snd_una = READ_ONCE(msk->snd_una); 1284 1285 if (snd_una != msk->snd_nxt) { 1286 tcp_remove_empty_skb(ssk); 1287 return 0; 1288 } 1289 1290 zero_window_probe = true; 1291 data_seq = snd_una - 1; 1292 copy = 1; 1293 1294 /* all mptcp-level data is acked, no skbs should be present into the 1295 * ssk write queue 1296 */ 1297 WARN_ON_ONCE(reuse_skb); 1298 } 1299 1300 copy = min_t(size_t, copy, info->limit - info->sent); 1301 if (!sk_wmem_schedule(ssk, copy)) { 1302 tcp_remove_empty_skb(ssk); 1303 return -ENOMEM; 1304 } 1305 1306 if (can_coalesce) { 1307 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1308 } else { 1309 get_page(dfrag->page); 1310 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1311 } 1312 1313 skb->len += copy; 1314 skb->data_len += copy; 1315 skb->truesize += copy; 1316 sk_wmem_queued_add(ssk, copy); 1317 sk_mem_charge(ssk, copy); 1318 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1319 TCP_SKB_CB(skb)->end_seq += copy; 1320 tcp_skb_pcount_set(skb, 0); 1321 1322 /* on skb reuse we just need to update the DSS len */ 1323 if (reuse_skb) { 1324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1325 mpext->data_len += copy; 1326 WARN_ON_ONCE(zero_window_probe); 1327 goto out; 1328 } 1329 1330 memset(mpext, 0, sizeof(*mpext)); 1331 mpext->data_seq = data_seq; 1332 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1333 mpext->data_len = copy; 1334 mpext->use_map = 1; 1335 mpext->dsn64 = 1; 1336 1337 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1338 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1339 mpext->dsn64); 1340 1341 if (zero_window_probe) { 1342 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1343 mpext->frozen = 1; 1344 if (READ_ONCE(msk->csum_enabled)) 1345 mptcp_update_data_checksum(skb, copy); 1346 tcp_push_pending_frames(ssk); 1347 return 0; 1348 } 1349 out: 1350 if (READ_ONCE(msk->csum_enabled)) 1351 mptcp_update_data_checksum(skb, copy); 1352 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1353 mptcp_update_infinite_map(msk, ssk, mpext); 1354 trace_mptcp_sendmsg_frag(mpext); 1355 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1356 return copy; 1357 } 1358 1359 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1360 sizeof(struct tcphdr) - \ 1361 MAX_TCP_OPTION_SPACE - \ 1362 sizeof(struct ipv6hdr) - \ 1363 sizeof(struct frag_hdr)) 1364 1365 struct subflow_send_info { 1366 struct sock *ssk; 1367 u64 linger_time; 1368 }; 1369 1370 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1371 { 1372 if (!subflow->stale) 1373 return; 1374 1375 subflow->stale = 0; 1376 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1377 } 1378 1379 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (unlikely(subflow->stale)) { 1382 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1383 1384 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1385 return false; 1386 1387 mptcp_subflow_set_active(subflow); 1388 } 1389 return __mptcp_subflow_active(subflow); 1390 } 1391 1392 #define SSK_MODE_ACTIVE 0 1393 #define SSK_MODE_BACKUP 1 1394 #define SSK_MODE_MAX 2 1395 1396 /* implement the mptcp packet scheduler; 1397 * returns the subflow that will transmit the next DSS 1398 * additionally updates the rtx timeout 1399 */ 1400 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1401 { 1402 struct subflow_send_info send_info[SSK_MODE_MAX]; 1403 struct mptcp_subflow_context *subflow; 1404 struct sock *sk = (struct sock *)msk; 1405 u32 pace, burst, wmem; 1406 int i, nr_active = 0; 1407 struct sock *ssk; 1408 u64 linger_time; 1409 long tout = 0; 1410 1411 sock_owned_by_me(sk); 1412 1413 if (__mptcp_check_fallback(msk)) { 1414 if (!msk->first) 1415 return NULL; 1416 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1417 } 1418 1419 /* re-use last subflow, if the burst allow that */ 1420 if (msk->last_snd && msk->snd_burst > 0 && 1421 sk_stream_memory_free(msk->last_snd) && 1422 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1423 mptcp_set_timeout(sk); 1424 return msk->last_snd; 1425 } 1426 1427 /* pick the subflow with the lower wmem/wspace ratio */ 1428 for (i = 0; i < SSK_MODE_MAX; ++i) { 1429 send_info[i].ssk = NULL; 1430 send_info[i].linger_time = -1; 1431 } 1432 1433 mptcp_for_each_subflow(msk, subflow) { 1434 trace_mptcp_subflow_get_send(subflow); 1435 ssk = mptcp_subflow_tcp_sock(subflow); 1436 if (!mptcp_subflow_active(subflow)) 1437 continue; 1438 1439 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1440 nr_active += !subflow->backup; 1441 pace = subflow->avg_pacing_rate; 1442 if (unlikely(!pace)) { 1443 /* init pacing rate from socket */ 1444 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1445 pace = subflow->avg_pacing_rate; 1446 if (!pace) 1447 continue; 1448 } 1449 1450 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1451 if (linger_time < send_info[subflow->backup].linger_time) { 1452 send_info[subflow->backup].ssk = ssk; 1453 send_info[subflow->backup].linger_time = linger_time; 1454 } 1455 } 1456 __mptcp_set_timeout(sk, tout); 1457 1458 /* pick the best backup if no other subflow is active */ 1459 if (!nr_active) 1460 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1461 1462 /* According to the blest algorithm, to avoid HoL blocking for the 1463 * faster flow, we need to: 1464 * - estimate the faster flow linger time 1465 * - use the above to estimate the amount of byte transferred 1466 * by the faster flow 1467 * - check that the amount of queued data is greter than the above, 1468 * otherwise do not use the picked, slower, subflow 1469 * We select the subflow with the shorter estimated time to flush 1470 * the queued mem, which basically ensure the above. We just need 1471 * to check that subflow has a non empty cwin. 1472 */ 1473 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1474 if (!ssk || !sk_stream_memory_free(ssk)) 1475 return NULL; 1476 1477 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1478 wmem = READ_ONCE(ssk->sk_wmem_queued); 1479 if (!burst) { 1480 msk->last_snd = NULL; 1481 return ssk; 1482 } 1483 1484 subflow = mptcp_subflow_ctx(ssk); 1485 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1486 READ_ONCE(ssk->sk_pacing_rate) * burst, 1487 burst + wmem); 1488 msk->last_snd = ssk; 1489 msk->snd_burst = burst; 1490 return ssk; 1491 } 1492 1493 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1494 { 1495 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1496 release_sock(ssk); 1497 } 1498 1499 static void mptcp_update_post_push(struct mptcp_sock *msk, 1500 struct mptcp_data_frag *dfrag, 1501 u32 sent) 1502 { 1503 u64 snd_nxt_new = dfrag->data_seq; 1504 1505 dfrag->already_sent += sent; 1506 1507 msk->snd_burst -= sent; 1508 1509 snd_nxt_new += dfrag->already_sent; 1510 1511 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1512 * is recovering after a failover. In that event, this re-sends 1513 * old segments. 1514 * 1515 * Thus compute snd_nxt_new candidate based on 1516 * the dfrag->data_seq that was sent and the data 1517 * that has been handed to the subflow for transmission 1518 * and skip update in case it was old dfrag. 1519 */ 1520 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1521 msk->snd_nxt = snd_nxt_new; 1522 } 1523 1524 void mptcp_check_and_set_pending(struct sock *sk) 1525 { 1526 if (mptcp_send_head(sk)) 1527 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1528 } 1529 1530 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1531 { 1532 struct sock *prev_ssk = NULL, *ssk = NULL; 1533 struct mptcp_sock *msk = mptcp_sk(sk); 1534 struct mptcp_sendmsg_info info = { 1535 .flags = flags, 1536 }; 1537 struct mptcp_data_frag *dfrag; 1538 int len, copied = 0; 1539 1540 while ((dfrag = mptcp_send_head(sk))) { 1541 info.sent = dfrag->already_sent; 1542 info.limit = dfrag->data_len; 1543 len = dfrag->data_len - dfrag->already_sent; 1544 while (len > 0) { 1545 int ret = 0; 1546 1547 prev_ssk = ssk; 1548 ssk = mptcp_subflow_get_send(msk); 1549 1550 /* First check. If the ssk has changed since 1551 * the last round, release prev_ssk 1552 */ 1553 if (ssk != prev_ssk && prev_ssk) 1554 mptcp_push_release(prev_ssk, &info); 1555 if (!ssk) 1556 goto out; 1557 1558 /* Need to lock the new subflow only if different 1559 * from the previous one, otherwise we are still 1560 * helding the relevant lock 1561 */ 1562 if (ssk != prev_ssk) 1563 lock_sock(ssk); 1564 1565 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1566 if (ret <= 0) { 1567 mptcp_push_release(ssk, &info); 1568 goto out; 1569 } 1570 1571 info.sent += ret; 1572 copied += ret; 1573 len -= ret; 1574 1575 mptcp_update_post_push(msk, dfrag, ret); 1576 } 1577 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1578 } 1579 1580 /* at this point we held the socket lock for the last subflow we used */ 1581 if (ssk) 1582 mptcp_push_release(ssk, &info); 1583 1584 out: 1585 /* ensure the rtx timer is running */ 1586 if (!mptcp_timer_pending(sk)) 1587 mptcp_reset_timer(sk); 1588 if (copied) 1589 __mptcp_check_send_data_fin(sk); 1590 } 1591 1592 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1593 { 1594 struct mptcp_sock *msk = mptcp_sk(sk); 1595 struct mptcp_sendmsg_info info = { 1596 .data_lock_held = true, 1597 }; 1598 struct mptcp_data_frag *dfrag; 1599 struct sock *xmit_ssk; 1600 int len, copied = 0; 1601 bool first = true; 1602 1603 info.flags = 0; 1604 while ((dfrag = mptcp_send_head(sk))) { 1605 info.sent = dfrag->already_sent; 1606 info.limit = dfrag->data_len; 1607 len = dfrag->data_len - dfrag->already_sent; 1608 while (len > 0) { 1609 int ret = 0; 1610 1611 /* the caller already invoked the packet scheduler, 1612 * check for a different subflow usage only after 1613 * spooling the first chunk of data 1614 */ 1615 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1616 if (!xmit_ssk) 1617 goto out; 1618 if (xmit_ssk != ssk) { 1619 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1620 MPTCP_DELEGATE_SEND); 1621 goto out; 1622 } 1623 1624 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1625 if (ret <= 0) 1626 goto out; 1627 1628 info.sent += ret; 1629 copied += ret; 1630 len -= ret; 1631 first = false; 1632 1633 mptcp_update_post_push(msk, dfrag, ret); 1634 } 1635 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1636 } 1637 1638 out: 1639 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1640 * not going to flush it via release_sock() 1641 */ 1642 if (copied) { 1643 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1644 info.size_goal); 1645 if (!mptcp_timer_pending(sk)) 1646 mptcp_reset_timer(sk); 1647 1648 if (msk->snd_data_fin_enable && 1649 msk->snd_nxt + 1 == msk->write_seq) 1650 mptcp_schedule_work(sk); 1651 } 1652 } 1653 1654 static void mptcp_set_nospace(struct sock *sk) 1655 { 1656 /* enable autotune */ 1657 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1658 1659 /* will be cleared on avail space */ 1660 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1661 } 1662 1663 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1664 { 1665 struct mptcp_sock *msk = mptcp_sk(sk); 1666 struct page_frag *pfrag; 1667 size_t copied = 0; 1668 int ret = 0; 1669 long timeo; 1670 1671 /* we don't support FASTOPEN yet */ 1672 if (msg->msg_flags & MSG_FASTOPEN) 1673 return -EOPNOTSUPP; 1674 1675 /* silently ignore everything else */ 1676 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1677 1678 lock_sock(sk); 1679 1680 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1681 1682 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1683 ret = sk_stream_wait_connect(sk, &timeo); 1684 if (ret) 1685 goto out; 1686 } 1687 1688 pfrag = sk_page_frag(sk); 1689 1690 while (msg_data_left(msg)) { 1691 int total_ts, frag_truesize = 0; 1692 struct mptcp_data_frag *dfrag; 1693 bool dfrag_collapsed; 1694 size_t psize, offset; 1695 1696 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1697 ret = -EPIPE; 1698 goto out; 1699 } 1700 1701 /* reuse tail pfrag, if possible, or carve a new one from the 1702 * page allocator 1703 */ 1704 dfrag = mptcp_pending_tail(sk); 1705 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1706 if (!dfrag_collapsed) { 1707 if (!sk_stream_memory_free(sk)) 1708 goto wait_for_memory; 1709 1710 if (!mptcp_page_frag_refill(sk, pfrag)) 1711 goto wait_for_memory; 1712 1713 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1714 frag_truesize = dfrag->overhead; 1715 } 1716 1717 /* we do not bound vs wspace, to allow a single packet. 1718 * memory accounting will prevent execessive memory usage 1719 * anyway 1720 */ 1721 offset = dfrag->offset + dfrag->data_len; 1722 psize = pfrag->size - offset; 1723 psize = min_t(size_t, psize, msg_data_left(msg)); 1724 total_ts = psize + frag_truesize; 1725 1726 if (!sk_wmem_schedule(sk, total_ts)) 1727 goto wait_for_memory; 1728 1729 if (copy_page_from_iter(dfrag->page, offset, psize, 1730 &msg->msg_iter) != psize) { 1731 ret = -EFAULT; 1732 goto out; 1733 } 1734 1735 /* data successfully copied into the write queue */ 1736 sk->sk_forward_alloc -= total_ts; 1737 copied += psize; 1738 dfrag->data_len += psize; 1739 frag_truesize += psize; 1740 pfrag->offset += frag_truesize; 1741 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1742 1743 /* charge data on mptcp pending queue to the msk socket 1744 * Note: we charge such data both to sk and ssk 1745 */ 1746 sk_wmem_queued_add(sk, frag_truesize); 1747 if (!dfrag_collapsed) { 1748 get_page(dfrag->page); 1749 list_add_tail(&dfrag->list, &msk->rtx_queue); 1750 if (!msk->first_pending) 1751 WRITE_ONCE(msk->first_pending, dfrag); 1752 } 1753 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1754 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1755 !dfrag_collapsed); 1756 1757 continue; 1758 1759 wait_for_memory: 1760 mptcp_set_nospace(sk); 1761 __mptcp_push_pending(sk, msg->msg_flags); 1762 ret = sk_stream_wait_memory(sk, &timeo); 1763 if (ret) 1764 goto out; 1765 } 1766 1767 if (copied) 1768 __mptcp_push_pending(sk, msg->msg_flags); 1769 1770 out: 1771 release_sock(sk); 1772 return copied ? : ret; 1773 } 1774 1775 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1776 struct msghdr *msg, 1777 size_t len, int flags, 1778 struct scm_timestamping_internal *tss, 1779 int *cmsg_flags) 1780 { 1781 struct sk_buff *skb, *tmp; 1782 int copied = 0; 1783 1784 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1785 u32 offset = MPTCP_SKB_CB(skb)->offset; 1786 u32 data_len = skb->len - offset; 1787 u32 count = min_t(size_t, len - copied, data_len); 1788 int err; 1789 1790 if (!(flags & MSG_TRUNC)) { 1791 err = skb_copy_datagram_msg(skb, offset, msg, count); 1792 if (unlikely(err < 0)) { 1793 if (!copied) 1794 return err; 1795 break; 1796 } 1797 } 1798 1799 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1800 tcp_update_recv_tstamps(skb, tss); 1801 *cmsg_flags |= MPTCP_CMSG_TS; 1802 } 1803 1804 copied += count; 1805 1806 if (count < data_len) { 1807 if (!(flags & MSG_PEEK)) { 1808 MPTCP_SKB_CB(skb)->offset += count; 1809 MPTCP_SKB_CB(skb)->map_seq += count; 1810 } 1811 break; 1812 } 1813 1814 if (!(flags & MSG_PEEK)) { 1815 /* we will bulk release the skb memory later */ 1816 skb->destructor = NULL; 1817 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1818 __skb_unlink(skb, &msk->receive_queue); 1819 __kfree_skb(skb); 1820 } 1821 1822 if (copied >= len) 1823 break; 1824 } 1825 1826 return copied; 1827 } 1828 1829 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1830 * 1831 * Only difference: Use highest rtt estimate of the subflows in use. 1832 */ 1833 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1834 { 1835 struct mptcp_subflow_context *subflow; 1836 struct sock *sk = (struct sock *)msk; 1837 u32 time, advmss = 1; 1838 u64 rtt_us, mstamp; 1839 1840 sock_owned_by_me(sk); 1841 1842 if (copied <= 0) 1843 return; 1844 1845 msk->rcvq_space.copied += copied; 1846 1847 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1848 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1849 1850 rtt_us = msk->rcvq_space.rtt_us; 1851 if (rtt_us && time < (rtt_us >> 3)) 1852 return; 1853 1854 rtt_us = 0; 1855 mptcp_for_each_subflow(msk, subflow) { 1856 const struct tcp_sock *tp; 1857 u64 sf_rtt_us; 1858 u32 sf_advmss; 1859 1860 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1861 1862 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1863 sf_advmss = READ_ONCE(tp->advmss); 1864 1865 rtt_us = max(sf_rtt_us, rtt_us); 1866 advmss = max(sf_advmss, advmss); 1867 } 1868 1869 msk->rcvq_space.rtt_us = rtt_us; 1870 if (time < (rtt_us >> 3) || rtt_us == 0) 1871 return; 1872 1873 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1874 goto new_measure; 1875 1876 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1877 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1878 int rcvmem, rcvbuf; 1879 u64 rcvwin, grow; 1880 1881 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1882 1883 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1884 1885 do_div(grow, msk->rcvq_space.space); 1886 rcvwin += (grow << 1); 1887 1888 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1889 while (tcp_win_from_space(sk, rcvmem) < advmss) 1890 rcvmem += 128; 1891 1892 do_div(rcvwin, advmss); 1893 rcvbuf = min_t(u64, rcvwin * rcvmem, 1894 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1895 1896 if (rcvbuf > sk->sk_rcvbuf) { 1897 u32 window_clamp; 1898 1899 window_clamp = tcp_win_from_space(sk, rcvbuf); 1900 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1901 1902 /* Make subflows follow along. If we do not do this, we 1903 * get drops at subflow level if skbs can't be moved to 1904 * the mptcp rx queue fast enough (announced rcv_win can 1905 * exceed ssk->sk_rcvbuf). 1906 */ 1907 mptcp_for_each_subflow(msk, subflow) { 1908 struct sock *ssk; 1909 bool slow; 1910 1911 ssk = mptcp_subflow_tcp_sock(subflow); 1912 slow = lock_sock_fast(ssk); 1913 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1914 tcp_sk(ssk)->window_clamp = window_clamp; 1915 tcp_cleanup_rbuf(ssk, 1); 1916 unlock_sock_fast(ssk, slow); 1917 } 1918 } 1919 } 1920 1921 msk->rcvq_space.space = msk->rcvq_space.copied; 1922 new_measure: 1923 msk->rcvq_space.copied = 0; 1924 msk->rcvq_space.time = mstamp; 1925 } 1926 1927 static void __mptcp_update_rmem(struct sock *sk) 1928 { 1929 struct mptcp_sock *msk = mptcp_sk(sk); 1930 1931 if (!msk->rmem_released) 1932 return; 1933 1934 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1935 mptcp_rmem_uncharge(sk, msk->rmem_released); 1936 WRITE_ONCE(msk->rmem_released, 0); 1937 } 1938 1939 static void __mptcp_splice_receive_queue(struct sock *sk) 1940 { 1941 struct mptcp_sock *msk = mptcp_sk(sk); 1942 1943 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1944 } 1945 1946 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1947 { 1948 struct sock *sk = (struct sock *)msk; 1949 unsigned int moved = 0; 1950 bool ret, done; 1951 1952 do { 1953 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1954 bool slowpath; 1955 1956 /* we can have data pending in the subflows only if the msk 1957 * receive buffer was full at subflow_data_ready() time, 1958 * that is an unlikely slow path. 1959 */ 1960 if (likely(!ssk)) 1961 break; 1962 1963 slowpath = lock_sock_fast(ssk); 1964 mptcp_data_lock(sk); 1965 __mptcp_update_rmem(sk); 1966 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1967 mptcp_data_unlock(sk); 1968 1969 if (unlikely(ssk->sk_err)) 1970 __mptcp_error_report(sk); 1971 unlock_sock_fast(ssk, slowpath); 1972 } while (!done); 1973 1974 /* acquire the data lock only if some input data is pending */ 1975 ret = moved > 0; 1976 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1977 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1978 mptcp_data_lock(sk); 1979 __mptcp_update_rmem(sk); 1980 ret |= __mptcp_ofo_queue(msk); 1981 __mptcp_splice_receive_queue(sk); 1982 mptcp_data_unlock(sk); 1983 } 1984 if (ret) 1985 mptcp_check_data_fin((struct sock *)msk); 1986 return !skb_queue_empty(&msk->receive_queue); 1987 } 1988 1989 static unsigned int mptcp_inq_hint(const struct sock *sk) 1990 { 1991 const struct mptcp_sock *msk = mptcp_sk(sk); 1992 const struct sk_buff *skb; 1993 1994 skb = skb_peek(&msk->receive_queue); 1995 if (skb) { 1996 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 1997 1998 if (hint_val >= INT_MAX) 1999 return INT_MAX; 2000 2001 return (unsigned int)hint_val; 2002 } 2003 2004 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2005 return 1; 2006 2007 return 0; 2008 } 2009 2010 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2011 int flags, int *addr_len) 2012 { 2013 struct mptcp_sock *msk = mptcp_sk(sk); 2014 struct scm_timestamping_internal tss; 2015 int copied = 0, cmsg_flags = 0; 2016 int target; 2017 long timeo; 2018 2019 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2020 if (unlikely(flags & MSG_ERRQUEUE)) 2021 return inet_recv_error(sk, msg, len, addr_len); 2022 2023 lock_sock(sk); 2024 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2025 copied = -ENOTCONN; 2026 goto out_err; 2027 } 2028 2029 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2030 2031 len = min_t(size_t, len, INT_MAX); 2032 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2033 2034 if (unlikely(msk->recvmsg_inq)) 2035 cmsg_flags = MPTCP_CMSG_INQ; 2036 2037 while (copied < len) { 2038 int bytes_read; 2039 2040 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2041 if (unlikely(bytes_read < 0)) { 2042 if (!copied) 2043 copied = bytes_read; 2044 goto out_err; 2045 } 2046 2047 copied += bytes_read; 2048 2049 /* be sure to advertise window change */ 2050 mptcp_cleanup_rbuf(msk); 2051 2052 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2053 continue; 2054 2055 /* only the master socket status is relevant here. The exit 2056 * conditions mirror closely tcp_recvmsg() 2057 */ 2058 if (copied >= target) 2059 break; 2060 2061 if (copied) { 2062 if (sk->sk_err || 2063 sk->sk_state == TCP_CLOSE || 2064 (sk->sk_shutdown & RCV_SHUTDOWN) || 2065 !timeo || 2066 signal_pending(current)) 2067 break; 2068 } else { 2069 if (sk->sk_err) { 2070 copied = sock_error(sk); 2071 break; 2072 } 2073 2074 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2075 mptcp_check_for_eof(msk); 2076 2077 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2078 /* race breaker: the shutdown could be after the 2079 * previous receive queue check 2080 */ 2081 if (__mptcp_move_skbs(msk)) 2082 continue; 2083 break; 2084 } 2085 2086 if (sk->sk_state == TCP_CLOSE) { 2087 copied = -ENOTCONN; 2088 break; 2089 } 2090 2091 if (!timeo) { 2092 copied = -EAGAIN; 2093 break; 2094 } 2095 2096 if (signal_pending(current)) { 2097 copied = sock_intr_errno(timeo); 2098 break; 2099 } 2100 } 2101 2102 pr_debug("block timeout %ld", timeo); 2103 sk_wait_data(sk, &timeo, NULL); 2104 } 2105 2106 out_err: 2107 if (cmsg_flags && copied >= 0) { 2108 if (cmsg_flags & MPTCP_CMSG_TS) 2109 tcp_recv_timestamp(msg, sk, &tss); 2110 2111 if (cmsg_flags & MPTCP_CMSG_INQ) { 2112 unsigned int inq = mptcp_inq_hint(sk); 2113 2114 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2115 } 2116 } 2117 2118 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2119 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2120 skb_queue_empty(&msk->receive_queue), copied); 2121 if (!(flags & MSG_PEEK)) 2122 mptcp_rcv_space_adjust(msk, copied); 2123 2124 release_sock(sk); 2125 return copied; 2126 } 2127 2128 static void mptcp_retransmit_timer(struct timer_list *t) 2129 { 2130 struct inet_connection_sock *icsk = from_timer(icsk, t, 2131 icsk_retransmit_timer); 2132 struct sock *sk = &icsk->icsk_inet.sk; 2133 struct mptcp_sock *msk = mptcp_sk(sk); 2134 2135 bh_lock_sock(sk); 2136 if (!sock_owned_by_user(sk)) { 2137 /* we need a process context to retransmit */ 2138 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2139 mptcp_schedule_work(sk); 2140 } else { 2141 /* delegate our work to tcp_release_cb() */ 2142 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2143 } 2144 bh_unlock_sock(sk); 2145 sock_put(sk); 2146 } 2147 2148 static void mptcp_timeout_timer(struct timer_list *t) 2149 { 2150 struct sock *sk = from_timer(sk, t, sk_timer); 2151 2152 mptcp_schedule_work(sk); 2153 sock_put(sk); 2154 } 2155 2156 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2157 * level. 2158 * 2159 * A backup subflow is returned only if that is the only kind available. 2160 */ 2161 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2162 { 2163 struct sock *backup = NULL, *pick = NULL; 2164 struct mptcp_subflow_context *subflow; 2165 int min_stale_count = INT_MAX; 2166 2167 sock_owned_by_me((const struct sock *)msk); 2168 2169 if (__mptcp_check_fallback(msk)) 2170 return NULL; 2171 2172 mptcp_for_each_subflow(msk, subflow) { 2173 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2174 2175 if (!__mptcp_subflow_active(subflow)) 2176 continue; 2177 2178 /* still data outstanding at TCP level? skip this */ 2179 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2180 mptcp_pm_subflow_chk_stale(msk, ssk); 2181 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2182 continue; 2183 } 2184 2185 if (subflow->backup) { 2186 if (!backup) 2187 backup = ssk; 2188 continue; 2189 } 2190 2191 if (!pick) 2192 pick = ssk; 2193 } 2194 2195 if (pick) 2196 return pick; 2197 2198 /* use backup only if there are no progresses anywhere */ 2199 return min_stale_count > 1 ? backup : NULL; 2200 } 2201 2202 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2203 { 2204 if (msk->subflow) { 2205 iput(SOCK_INODE(msk->subflow)); 2206 msk->subflow = NULL; 2207 } 2208 } 2209 2210 bool __mptcp_retransmit_pending_data(struct sock *sk) 2211 { 2212 struct mptcp_data_frag *cur, *rtx_head; 2213 struct mptcp_sock *msk = mptcp_sk(sk); 2214 2215 if (__mptcp_check_fallback(mptcp_sk(sk))) 2216 return false; 2217 2218 if (tcp_rtx_and_write_queues_empty(sk)) 2219 return false; 2220 2221 /* the closing socket has some data untransmitted and/or unacked: 2222 * some data in the mptcp rtx queue has not really xmitted yet. 2223 * keep it simple and re-inject the whole mptcp level rtx queue 2224 */ 2225 mptcp_data_lock(sk); 2226 __mptcp_clean_una_wakeup(sk); 2227 rtx_head = mptcp_rtx_head(sk); 2228 if (!rtx_head) { 2229 mptcp_data_unlock(sk); 2230 return false; 2231 } 2232 2233 msk->recovery_snd_nxt = msk->snd_nxt; 2234 msk->recovery = true; 2235 mptcp_data_unlock(sk); 2236 2237 msk->first_pending = rtx_head; 2238 msk->snd_burst = 0; 2239 2240 /* be sure to clear the "sent status" on all re-injected fragments */ 2241 list_for_each_entry(cur, &msk->rtx_queue, list) { 2242 if (!cur->already_sent) 2243 break; 2244 cur->already_sent = 0; 2245 } 2246 2247 return true; 2248 } 2249 2250 /* flags for __mptcp_close_ssk() */ 2251 #define MPTCP_CF_PUSH BIT(1) 2252 #define MPTCP_CF_FASTCLOSE BIT(2) 2253 2254 /* subflow sockets can be either outgoing (connect) or incoming 2255 * (accept). 2256 * 2257 * Outgoing subflows use in-kernel sockets. 2258 * Incoming subflows do not have their own 'struct socket' allocated, 2259 * so we need to use tcp_close() after detaching them from the mptcp 2260 * parent socket. 2261 */ 2262 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2263 struct mptcp_subflow_context *subflow, 2264 unsigned int flags) 2265 { 2266 struct mptcp_sock *msk = mptcp_sk(sk); 2267 bool need_push, dispose_it; 2268 2269 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2270 if (dispose_it) 2271 list_del(&subflow->node); 2272 2273 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2274 2275 if (flags & MPTCP_CF_FASTCLOSE) 2276 subflow->send_fastclose = 1; 2277 2278 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2279 if (!dispose_it) { 2280 tcp_disconnect(ssk, 0); 2281 msk->subflow->state = SS_UNCONNECTED; 2282 mptcp_subflow_ctx_reset(subflow); 2283 release_sock(ssk); 2284 2285 goto out; 2286 } 2287 2288 /* if we are invoked by the msk cleanup code, the subflow is 2289 * already orphaned 2290 */ 2291 if (ssk->sk_socket) 2292 sock_orphan(ssk); 2293 2294 subflow->disposable = 1; 2295 2296 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2297 * the ssk has been already destroyed, we just need to release the 2298 * reference owned by msk; 2299 */ 2300 if (!inet_csk(ssk)->icsk_ulp_ops) { 2301 kfree_rcu(subflow, rcu); 2302 } else { 2303 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2304 if (ssk->sk_state == TCP_LISTEN) { 2305 tcp_set_state(ssk, TCP_CLOSE); 2306 mptcp_subflow_queue_clean(ssk); 2307 inet_csk_listen_stop(ssk); 2308 } 2309 __tcp_close(ssk, 0); 2310 2311 /* close acquired an extra ref */ 2312 __sock_put(ssk); 2313 } 2314 release_sock(ssk); 2315 2316 sock_put(ssk); 2317 2318 if (ssk == msk->first) 2319 msk->first = NULL; 2320 2321 out: 2322 if (ssk == msk->last_snd) 2323 msk->last_snd = NULL; 2324 2325 if (need_push) 2326 __mptcp_push_pending(sk, 0); 2327 } 2328 2329 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2330 struct mptcp_subflow_context *subflow) 2331 { 2332 if (sk->sk_state == TCP_ESTABLISHED) 2333 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2334 2335 /* subflow aborted before reaching the fully_established status 2336 * attempt the creation of the next subflow 2337 */ 2338 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2339 2340 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2341 } 2342 2343 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2344 { 2345 return 0; 2346 } 2347 2348 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2349 { 2350 struct mptcp_subflow_context *subflow, *tmp; 2351 2352 might_sleep(); 2353 2354 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2355 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2356 2357 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2358 continue; 2359 2360 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2361 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2362 continue; 2363 2364 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2365 } 2366 } 2367 2368 static bool mptcp_check_close_timeout(const struct sock *sk) 2369 { 2370 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2371 struct mptcp_subflow_context *subflow; 2372 2373 if (delta >= TCP_TIMEWAIT_LEN) 2374 return true; 2375 2376 /* if all subflows are in closed status don't bother with additional 2377 * timeout 2378 */ 2379 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2380 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2381 TCP_CLOSE) 2382 return false; 2383 } 2384 return true; 2385 } 2386 2387 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2388 { 2389 struct mptcp_subflow_context *subflow, *tmp; 2390 struct sock *sk = &msk->sk.icsk_inet.sk; 2391 2392 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2393 return; 2394 2395 mptcp_token_destroy(msk); 2396 2397 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2398 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2399 bool slow; 2400 2401 slow = lock_sock_fast(tcp_sk); 2402 if (tcp_sk->sk_state != TCP_CLOSE) { 2403 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2404 tcp_set_state(tcp_sk, TCP_CLOSE); 2405 } 2406 unlock_sock_fast(tcp_sk, slow); 2407 } 2408 2409 inet_sk_state_store(sk, TCP_CLOSE); 2410 sk->sk_shutdown = SHUTDOWN_MASK; 2411 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2412 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2413 2414 mptcp_close_wake_up(sk); 2415 } 2416 2417 static void __mptcp_retrans(struct sock *sk) 2418 { 2419 struct mptcp_sock *msk = mptcp_sk(sk); 2420 struct mptcp_sendmsg_info info = {}; 2421 struct mptcp_data_frag *dfrag; 2422 size_t copied = 0; 2423 struct sock *ssk; 2424 int ret; 2425 2426 mptcp_clean_una_wakeup(sk); 2427 2428 /* first check ssk: need to kick "stale" logic */ 2429 ssk = mptcp_subflow_get_retrans(msk); 2430 dfrag = mptcp_rtx_head(sk); 2431 if (!dfrag) { 2432 if (mptcp_data_fin_enabled(msk)) { 2433 struct inet_connection_sock *icsk = inet_csk(sk); 2434 2435 icsk->icsk_retransmits++; 2436 mptcp_set_datafin_timeout(sk); 2437 mptcp_send_ack(msk); 2438 2439 goto reset_timer; 2440 } 2441 2442 if (!mptcp_send_head(sk)) 2443 return; 2444 2445 goto reset_timer; 2446 } 2447 2448 if (!ssk) 2449 goto reset_timer; 2450 2451 lock_sock(ssk); 2452 2453 /* limit retransmission to the bytes already sent on some subflows */ 2454 info.sent = 0; 2455 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2456 while (info.sent < info.limit) { 2457 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2458 if (ret <= 0) 2459 break; 2460 2461 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2462 copied += ret; 2463 info.sent += ret; 2464 } 2465 if (copied) { 2466 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2467 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2468 info.size_goal); 2469 WRITE_ONCE(msk->allow_infinite_fallback, false); 2470 } 2471 2472 release_sock(ssk); 2473 2474 reset_timer: 2475 mptcp_check_and_set_pending(sk); 2476 2477 if (!mptcp_timer_pending(sk)) 2478 mptcp_reset_timer(sk); 2479 } 2480 2481 /* schedule the timeout timer for the relevant event: either close timeout 2482 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2483 */ 2484 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2485 { 2486 struct sock *sk = (struct sock *)msk; 2487 unsigned long timeout, close_timeout; 2488 2489 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2490 return; 2491 2492 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2493 2494 /* the close timeout takes precedence on the fail one, and here at least one of 2495 * them is active 2496 */ 2497 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2498 2499 sk_reset_timer(sk, &sk->sk_timer, timeout); 2500 } 2501 2502 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2503 { 2504 struct sock *ssk = msk->first; 2505 bool slow; 2506 2507 if (!ssk) 2508 return; 2509 2510 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2511 2512 slow = lock_sock_fast(ssk); 2513 mptcp_subflow_reset(ssk); 2514 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2515 unlock_sock_fast(ssk, slow); 2516 2517 mptcp_reset_timeout(msk, 0); 2518 } 2519 2520 static void mptcp_worker(struct work_struct *work) 2521 { 2522 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2523 struct sock *sk = &msk->sk.icsk_inet.sk; 2524 unsigned long fail_tout; 2525 int state; 2526 2527 lock_sock(sk); 2528 state = sk->sk_state; 2529 if (unlikely(state == TCP_CLOSE)) 2530 goto unlock; 2531 2532 mptcp_check_data_fin_ack(sk); 2533 2534 mptcp_check_fastclose(msk); 2535 2536 mptcp_pm_nl_work(msk); 2537 2538 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2539 mptcp_check_for_eof(msk); 2540 2541 __mptcp_check_send_data_fin(sk); 2542 mptcp_check_data_fin(sk); 2543 2544 /* There is no point in keeping around an orphaned sk timedout or 2545 * closed, but we need the msk around to reply to incoming DATA_FIN, 2546 * even if it is orphaned and in FIN_WAIT2 state 2547 */ 2548 if (sock_flag(sk, SOCK_DEAD) && 2549 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2550 inet_sk_state_store(sk, TCP_CLOSE); 2551 __mptcp_destroy_sock(sk); 2552 goto unlock; 2553 } 2554 2555 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2556 __mptcp_close_subflow(msk); 2557 2558 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2559 __mptcp_retrans(sk); 2560 2561 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2562 if (fail_tout && time_after(jiffies, fail_tout)) 2563 mptcp_mp_fail_no_response(msk); 2564 2565 unlock: 2566 release_sock(sk); 2567 sock_put(sk); 2568 } 2569 2570 static int __mptcp_init_sock(struct sock *sk) 2571 { 2572 struct mptcp_sock *msk = mptcp_sk(sk); 2573 2574 INIT_LIST_HEAD(&msk->conn_list); 2575 INIT_LIST_HEAD(&msk->join_list); 2576 INIT_LIST_HEAD(&msk->rtx_queue); 2577 INIT_WORK(&msk->work, mptcp_worker); 2578 __skb_queue_head_init(&msk->receive_queue); 2579 msk->out_of_order_queue = RB_ROOT; 2580 msk->first_pending = NULL; 2581 msk->rmem_fwd_alloc = 0; 2582 WRITE_ONCE(msk->rmem_released, 0); 2583 msk->timer_ival = TCP_RTO_MIN; 2584 2585 msk->first = NULL; 2586 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2587 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2588 WRITE_ONCE(msk->allow_infinite_fallback, true); 2589 msk->recovery = false; 2590 2591 mptcp_pm_data_init(msk); 2592 2593 /* re-use the csk retrans timer for MPTCP-level retrans */ 2594 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2595 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2596 2597 return 0; 2598 } 2599 2600 static void mptcp_ca_reset(struct sock *sk) 2601 { 2602 struct inet_connection_sock *icsk = inet_csk(sk); 2603 2604 tcp_assign_congestion_control(sk); 2605 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2606 2607 /* no need to keep a reference to the ops, the name will suffice */ 2608 tcp_cleanup_congestion_control(sk); 2609 icsk->icsk_ca_ops = NULL; 2610 } 2611 2612 static int mptcp_init_sock(struct sock *sk) 2613 { 2614 struct net *net = sock_net(sk); 2615 int ret; 2616 2617 ret = __mptcp_init_sock(sk); 2618 if (ret) 2619 return ret; 2620 2621 if (!mptcp_is_enabled(net)) 2622 return -ENOPROTOOPT; 2623 2624 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2625 return -ENOMEM; 2626 2627 ret = __mptcp_socket_create(mptcp_sk(sk)); 2628 if (ret) 2629 return ret; 2630 2631 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2632 * propagate the correct value 2633 */ 2634 mptcp_ca_reset(sk); 2635 2636 sk_sockets_allocated_inc(sk); 2637 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 2638 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 2639 2640 return 0; 2641 } 2642 2643 static void __mptcp_clear_xmit(struct sock *sk) 2644 { 2645 struct mptcp_sock *msk = mptcp_sk(sk); 2646 struct mptcp_data_frag *dtmp, *dfrag; 2647 2648 WRITE_ONCE(msk->first_pending, NULL); 2649 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2650 dfrag_clear(sk, dfrag); 2651 } 2652 2653 static void mptcp_cancel_work(struct sock *sk) 2654 { 2655 struct mptcp_sock *msk = mptcp_sk(sk); 2656 2657 if (cancel_work_sync(&msk->work)) 2658 __sock_put(sk); 2659 } 2660 2661 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2662 { 2663 lock_sock(ssk); 2664 2665 switch (ssk->sk_state) { 2666 case TCP_LISTEN: 2667 if (!(how & RCV_SHUTDOWN)) 2668 break; 2669 fallthrough; 2670 case TCP_SYN_SENT: 2671 tcp_disconnect(ssk, O_NONBLOCK); 2672 break; 2673 default: 2674 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2675 pr_debug("Fallback"); 2676 ssk->sk_shutdown |= how; 2677 tcp_shutdown(ssk, how); 2678 } else { 2679 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2680 tcp_send_ack(ssk); 2681 if (!mptcp_timer_pending(sk)) 2682 mptcp_reset_timer(sk); 2683 } 2684 break; 2685 } 2686 2687 release_sock(ssk); 2688 } 2689 2690 static const unsigned char new_state[16] = { 2691 /* current state: new state: action: */ 2692 [0 /* (Invalid) */] = TCP_CLOSE, 2693 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2694 [TCP_SYN_SENT] = TCP_CLOSE, 2695 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2696 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2697 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2698 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2699 [TCP_CLOSE] = TCP_CLOSE, 2700 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2701 [TCP_LAST_ACK] = TCP_LAST_ACK, 2702 [TCP_LISTEN] = TCP_CLOSE, 2703 [TCP_CLOSING] = TCP_CLOSING, 2704 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2705 }; 2706 2707 static int mptcp_close_state(struct sock *sk) 2708 { 2709 int next = (int)new_state[sk->sk_state]; 2710 int ns = next & TCP_STATE_MASK; 2711 2712 inet_sk_state_store(sk, ns); 2713 2714 return next & TCP_ACTION_FIN; 2715 } 2716 2717 static void __mptcp_check_send_data_fin(struct sock *sk) 2718 { 2719 struct mptcp_subflow_context *subflow; 2720 struct mptcp_sock *msk = mptcp_sk(sk); 2721 2722 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2723 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2724 msk->snd_nxt, msk->write_seq); 2725 2726 /* we still need to enqueue subflows or not really shutting down, 2727 * skip this 2728 */ 2729 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2730 mptcp_send_head(sk)) 2731 return; 2732 2733 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2734 2735 /* fallback socket will not get data_fin/ack, can move to the next 2736 * state now 2737 */ 2738 if (__mptcp_check_fallback(msk)) { 2739 WRITE_ONCE(msk->snd_una, msk->write_seq); 2740 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2741 inet_sk_state_store(sk, TCP_CLOSE); 2742 mptcp_close_wake_up(sk); 2743 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2744 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2745 } 2746 } 2747 2748 mptcp_for_each_subflow(msk, subflow) { 2749 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2750 2751 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2752 } 2753 } 2754 2755 static void __mptcp_wr_shutdown(struct sock *sk) 2756 { 2757 struct mptcp_sock *msk = mptcp_sk(sk); 2758 2759 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2760 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2761 !!mptcp_send_head(sk)); 2762 2763 /* will be ignored by fallback sockets */ 2764 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2765 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2766 2767 __mptcp_check_send_data_fin(sk); 2768 } 2769 2770 static void __mptcp_destroy_sock(struct sock *sk) 2771 { 2772 struct mptcp_subflow_context *subflow, *tmp; 2773 struct mptcp_sock *msk = mptcp_sk(sk); 2774 LIST_HEAD(conn_list); 2775 2776 pr_debug("msk=%p", msk); 2777 2778 might_sleep(); 2779 2780 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2781 list_splice_init(&msk->conn_list, &conn_list); 2782 2783 mptcp_stop_timer(sk); 2784 sk_stop_timer(sk, &sk->sk_timer); 2785 msk->pm.status = 0; 2786 2787 /* clears msk->subflow, allowing the following loop to close 2788 * even the initial subflow 2789 */ 2790 mptcp_dispose_initial_subflow(msk); 2791 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2792 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2793 __mptcp_close_ssk(sk, ssk, subflow, 0); 2794 } 2795 2796 sk->sk_prot->destroy(sk); 2797 2798 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2799 WARN_ON_ONCE(msk->rmem_released); 2800 sk_stream_kill_queues(sk); 2801 xfrm_sk_free_policy(sk); 2802 2803 sk_refcnt_debug_release(sk); 2804 sock_put(sk); 2805 } 2806 2807 static void mptcp_close(struct sock *sk, long timeout) 2808 { 2809 struct mptcp_subflow_context *subflow; 2810 struct mptcp_sock *msk = mptcp_sk(sk); 2811 bool do_cancel_work = false; 2812 2813 lock_sock(sk); 2814 sk->sk_shutdown = SHUTDOWN_MASK; 2815 2816 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2817 inet_sk_state_store(sk, TCP_CLOSE); 2818 goto cleanup; 2819 } 2820 2821 if (mptcp_close_state(sk)) 2822 __mptcp_wr_shutdown(sk); 2823 2824 sk_stream_wait_close(sk, timeout); 2825 2826 cleanup: 2827 /* orphan all the subflows */ 2828 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2829 mptcp_for_each_subflow(msk, subflow) { 2830 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2831 bool slow = lock_sock_fast_nested(ssk); 2832 2833 /* since the close timeout takes precedence on the fail one, 2834 * cancel the latter 2835 */ 2836 if (ssk == msk->first) 2837 subflow->fail_tout = 0; 2838 2839 sock_orphan(ssk); 2840 unlock_sock_fast(ssk, slow); 2841 } 2842 sock_orphan(sk); 2843 2844 sock_hold(sk); 2845 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2846 if (mptcp_sk(sk)->token) 2847 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2848 2849 if (sk->sk_state == TCP_CLOSE) { 2850 __mptcp_destroy_sock(sk); 2851 do_cancel_work = true; 2852 } else { 2853 mptcp_reset_timeout(msk, 0); 2854 } 2855 release_sock(sk); 2856 if (do_cancel_work) 2857 mptcp_cancel_work(sk); 2858 2859 sock_put(sk); 2860 } 2861 2862 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2863 { 2864 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2865 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2866 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2867 2868 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2869 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2870 2871 if (msk6 && ssk6) { 2872 msk6->saddr = ssk6->saddr; 2873 msk6->flow_label = ssk6->flow_label; 2874 } 2875 #endif 2876 2877 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2878 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2879 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2880 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2881 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2882 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2883 } 2884 2885 static int mptcp_disconnect(struct sock *sk, int flags) 2886 { 2887 struct mptcp_subflow_context *subflow, *tmp; 2888 struct mptcp_sock *msk = mptcp_sk(sk); 2889 2890 inet_sk_state_store(sk, TCP_CLOSE); 2891 2892 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2893 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2894 2895 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2896 } 2897 2898 mptcp_stop_timer(sk); 2899 sk_stop_timer(sk, &sk->sk_timer); 2900 2901 if (mptcp_sk(sk)->token) 2902 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2903 2904 mptcp_destroy_common(msk); 2905 msk->last_snd = NULL; 2906 WRITE_ONCE(msk->flags, 0); 2907 msk->cb_flags = 0; 2908 msk->push_pending = 0; 2909 msk->recovery = false; 2910 msk->can_ack = false; 2911 msk->fully_established = false; 2912 msk->rcv_data_fin = false; 2913 msk->snd_data_fin_enable = false; 2914 msk->rcv_fastclose = false; 2915 msk->use_64bit_ack = false; 2916 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2917 mptcp_pm_data_reset(msk); 2918 mptcp_ca_reset(sk); 2919 2920 sk->sk_shutdown = 0; 2921 sk_error_report(sk); 2922 return 0; 2923 } 2924 2925 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2926 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2927 { 2928 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2929 2930 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2931 } 2932 #endif 2933 2934 struct sock *mptcp_sk_clone(const struct sock *sk, 2935 const struct mptcp_options_received *mp_opt, 2936 struct request_sock *req) 2937 { 2938 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2939 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2940 struct mptcp_sock *msk; 2941 u64 ack_seq; 2942 2943 if (!nsk) 2944 return NULL; 2945 2946 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2947 if (nsk->sk_family == AF_INET6) 2948 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2949 #endif 2950 2951 __mptcp_init_sock(nsk); 2952 2953 msk = mptcp_sk(nsk); 2954 msk->local_key = subflow_req->local_key; 2955 msk->token = subflow_req->token; 2956 msk->subflow = NULL; 2957 WRITE_ONCE(msk->fully_established, false); 2958 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2959 WRITE_ONCE(msk->csum_enabled, true); 2960 2961 msk->write_seq = subflow_req->idsn + 1; 2962 msk->snd_nxt = msk->write_seq; 2963 msk->snd_una = msk->write_seq; 2964 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2965 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2966 2967 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2968 msk->can_ack = true; 2969 msk->remote_key = mp_opt->sndr_key; 2970 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2971 ack_seq++; 2972 WRITE_ONCE(msk->ack_seq, ack_seq); 2973 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 2974 } 2975 2976 sock_reset_flag(nsk, SOCK_RCU_FREE); 2977 /* will be fully established after successful MPC subflow creation */ 2978 inet_sk_state_store(nsk, TCP_SYN_RECV); 2979 2980 security_inet_csk_clone(nsk, req); 2981 bh_unlock_sock(nsk); 2982 2983 /* keep a single reference */ 2984 __sock_put(nsk); 2985 return nsk; 2986 } 2987 2988 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2989 { 2990 const struct tcp_sock *tp = tcp_sk(ssk); 2991 2992 msk->rcvq_space.copied = 0; 2993 msk->rcvq_space.rtt_us = 0; 2994 2995 msk->rcvq_space.time = tp->tcp_mstamp; 2996 2997 /* initial rcv_space offering made to peer */ 2998 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2999 TCP_INIT_CWND * tp->advmss); 3000 if (msk->rcvq_space.space == 0) 3001 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3002 3003 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3004 } 3005 3006 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3007 bool kern) 3008 { 3009 struct mptcp_sock *msk = mptcp_sk(sk); 3010 struct socket *listener; 3011 struct sock *newsk; 3012 3013 listener = __mptcp_nmpc_socket(msk); 3014 if (WARN_ON_ONCE(!listener)) { 3015 *err = -EINVAL; 3016 return NULL; 3017 } 3018 3019 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3020 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3021 if (!newsk) 3022 return NULL; 3023 3024 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3025 if (sk_is_mptcp(newsk)) { 3026 struct mptcp_subflow_context *subflow; 3027 struct sock *new_mptcp_sock; 3028 3029 subflow = mptcp_subflow_ctx(newsk); 3030 new_mptcp_sock = subflow->conn; 3031 3032 /* is_mptcp should be false if subflow->conn is missing, see 3033 * subflow_syn_recv_sock() 3034 */ 3035 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3036 tcp_sk(newsk)->is_mptcp = 0; 3037 goto out; 3038 } 3039 3040 /* acquire the 2nd reference for the owning socket */ 3041 sock_hold(new_mptcp_sock); 3042 newsk = new_mptcp_sock; 3043 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3044 } else { 3045 MPTCP_INC_STATS(sock_net(sk), 3046 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3047 } 3048 3049 out: 3050 newsk->sk_kern_sock = kern; 3051 return newsk; 3052 } 3053 3054 void mptcp_destroy_common(struct mptcp_sock *msk) 3055 { 3056 struct sock *sk = (struct sock *)msk; 3057 3058 __mptcp_clear_xmit(sk); 3059 3060 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3061 mptcp_data_lock(sk); 3062 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3063 __skb_queue_purge(&sk->sk_receive_queue); 3064 skb_rbtree_purge(&msk->out_of_order_queue); 3065 mptcp_data_unlock(sk); 3066 3067 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3068 * inet_sock_destruct() will dispose it 3069 */ 3070 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3071 msk->rmem_fwd_alloc = 0; 3072 mptcp_token_destroy(msk); 3073 mptcp_pm_free_anno_list(msk); 3074 mptcp_free_local_addr_list(msk); 3075 } 3076 3077 static void mptcp_destroy(struct sock *sk) 3078 { 3079 struct mptcp_sock *msk = mptcp_sk(sk); 3080 3081 mptcp_destroy_common(msk); 3082 sk_sockets_allocated_dec(sk); 3083 } 3084 3085 void __mptcp_data_acked(struct sock *sk) 3086 { 3087 if (!sock_owned_by_user(sk)) 3088 __mptcp_clean_una(sk); 3089 else 3090 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3091 3092 if (mptcp_pending_data_fin_ack(sk)) 3093 mptcp_schedule_work(sk); 3094 } 3095 3096 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3097 { 3098 if (!mptcp_send_head(sk)) 3099 return; 3100 3101 if (!sock_owned_by_user(sk)) { 3102 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3103 3104 if (xmit_ssk == ssk) 3105 __mptcp_subflow_push_pending(sk, ssk); 3106 else if (xmit_ssk) 3107 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3108 } else { 3109 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3110 } 3111 } 3112 3113 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3114 BIT(MPTCP_RETRANSMIT) | \ 3115 BIT(MPTCP_FLUSH_JOIN_LIST)) 3116 3117 /* processes deferred events and flush wmem */ 3118 static void mptcp_release_cb(struct sock *sk) 3119 __must_hold(&sk->sk_lock.slock) 3120 { 3121 struct mptcp_sock *msk = mptcp_sk(sk); 3122 3123 for (;;) { 3124 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3125 msk->push_pending; 3126 if (!flags) 3127 break; 3128 3129 /* the following actions acquire the subflow socket lock 3130 * 3131 * 1) can't be invoked in atomic scope 3132 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3133 * datapath acquires the msk socket spinlock while helding 3134 * the subflow socket lock 3135 */ 3136 msk->push_pending = 0; 3137 msk->cb_flags &= ~flags; 3138 spin_unlock_bh(&sk->sk_lock.slock); 3139 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3140 __mptcp_flush_join_list(sk); 3141 if (flags & BIT(MPTCP_PUSH_PENDING)) 3142 __mptcp_push_pending(sk, 0); 3143 if (flags & BIT(MPTCP_RETRANSMIT)) 3144 __mptcp_retrans(sk); 3145 3146 cond_resched(); 3147 spin_lock_bh(&sk->sk_lock.slock); 3148 } 3149 3150 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3151 __mptcp_clean_una_wakeup(sk); 3152 if (unlikely(&msk->cb_flags)) { 3153 /* be sure to set the current sk state before tacking actions 3154 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3155 */ 3156 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3157 __mptcp_set_connected(sk); 3158 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3159 __mptcp_error_report(sk); 3160 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3161 msk->last_snd = NULL; 3162 } 3163 3164 __mptcp_update_rmem(sk); 3165 } 3166 3167 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3168 * TCP can't schedule delack timer before the subflow is fully established. 3169 * MPTCP uses the delack timer to do 3rd ack retransmissions 3170 */ 3171 static void schedule_3rdack_retransmission(struct sock *ssk) 3172 { 3173 struct inet_connection_sock *icsk = inet_csk(ssk); 3174 struct tcp_sock *tp = tcp_sk(ssk); 3175 unsigned long timeout; 3176 3177 if (mptcp_subflow_ctx(ssk)->fully_established) 3178 return; 3179 3180 /* reschedule with a timeout above RTT, as we must look only for drop */ 3181 if (tp->srtt_us) 3182 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3183 else 3184 timeout = TCP_TIMEOUT_INIT; 3185 timeout += jiffies; 3186 3187 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3188 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3189 icsk->icsk_ack.timeout = timeout; 3190 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3191 } 3192 3193 void mptcp_subflow_process_delegated(struct sock *ssk) 3194 { 3195 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3196 struct sock *sk = subflow->conn; 3197 3198 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3199 mptcp_data_lock(sk); 3200 if (!sock_owned_by_user(sk)) 3201 __mptcp_subflow_push_pending(sk, ssk); 3202 else 3203 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3204 mptcp_data_unlock(sk); 3205 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3206 } 3207 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3208 schedule_3rdack_retransmission(ssk); 3209 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3210 } 3211 } 3212 3213 static int mptcp_hash(struct sock *sk) 3214 { 3215 /* should never be called, 3216 * we hash the TCP subflows not the master socket 3217 */ 3218 WARN_ON_ONCE(1); 3219 return 0; 3220 } 3221 3222 static void mptcp_unhash(struct sock *sk) 3223 { 3224 /* called from sk_common_release(), but nothing to do here */ 3225 } 3226 3227 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3228 { 3229 struct mptcp_sock *msk = mptcp_sk(sk); 3230 struct socket *ssock; 3231 3232 ssock = __mptcp_nmpc_socket(msk); 3233 pr_debug("msk=%p, subflow=%p", msk, ssock); 3234 if (WARN_ON_ONCE(!ssock)) 3235 return -EINVAL; 3236 3237 return inet_csk_get_port(ssock->sk, snum); 3238 } 3239 3240 void mptcp_finish_connect(struct sock *ssk) 3241 { 3242 struct mptcp_subflow_context *subflow; 3243 struct mptcp_sock *msk; 3244 struct sock *sk; 3245 u64 ack_seq; 3246 3247 subflow = mptcp_subflow_ctx(ssk); 3248 sk = subflow->conn; 3249 msk = mptcp_sk(sk); 3250 3251 pr_debug("msk=%p, token=%u", sk, subflow->token); 3252 3253 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3254 ack_seq++; 3255 subflow->map_seq = ack_seq; 3256 subflow->map_subflow_seq = 1; 3257 3258 /* the socket is not connected yet, no msk/subflow ops can access/race 3259 * accessing the field below 3260 */ 3261 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3262 WRITE_ONCE(msk->local_key, subflow->local_key); 3263 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3264 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3265 WRITE_ONCE(msk->ack_seq, ack_seq); 3266 WRITE_ONCE(msk->can_ack, 1); 3267 WRITE_ONCE(msk->snd_una, msk->write_seq); 3268 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3269 3270 mptcp_pm_new_connection(msk, ssk, 0); 3271 3272 mptcp_rcv_space_init(msk, ssk); 3273 } 3274 3275 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3276 { 3277 write_lock_bh(&sk->sk_callback_lock); 3278 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3279 sk_set_socket(sk, parent); 3280 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3281 write_unlock_bh(&sk->sk_callback_lock); 3282 } 3283 3284 bool mptcp_finish_join(struct sock *ssk) 3285 { 3286 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3287 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3288 struct sock *parent = (void *)msk; 3289 bool ret = true; 3290 3291 pr_debug("msk=%p, subflow=%p", msk, subflow); 3292 3293 /* mptcp socket already closing? */ 3294 if (!mptcp_is_fully_established(parent)) { 3295 subflow->reset_reason = MPTCP_RST_EMPTCP; 3296 return false; 3297 } 3298 3299 if (!list_empty(&subflow->node)) 3300 goto out; 3301 3302 if (!mptcp_pm_allow_new_subflow(msk)) 3303 goto err_prohibited; 3304 3305 /* active connections are already on conn_list. 3306 * If we can't acquire msk socket lock here, let the release callback 3307 * handle it 3308 */ 3309 mptcp_data_lock(parent); 3310 if (!sock_owned_by_user(parent)) { 3311 ret = __mptcp_finish_join(msk, ssk); 3312 if (ret) { 3313 sock_hold(ssk); 3314 list_add_tail(&subflow->node, &msk->conn_list); 3315 } 3316 } else { 3317 sock_hold(ssk); 3318 list_add_tail(&subflow->node, &msk->join_list); 3319 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3320 } 3321 mptcp_data_unlock(parent); 3322 3323 if (!ret) { 3324 err_prohibited: 3325 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3326 return false; 3327 } 3328 3329 subflow->map_seq = READ_ONCE(msk->ack_seq); 3330 WRITE_ONCE(msk->allow_infinite_fallback, false); 3331 3332 out: 3333 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3334 return true; 3335 } 3336 3337 static void mptcp_shutdown(struct sock *sk, int how) 3338 { 3339 pr_debug("sk=%p, how=%d", sk, how); 3340 3341 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3342 __mptcp_wr_shutdown(sk); 3343 } 3344 3345 static int mptcp_forward_alloc_get(const struct sock *sk) 3346 { 3347 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3348 } 3349 3350 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3351 { 3352 const struct sock *sk = (void *)msk; 3353 u64 delta; 3354 3355 if (sk->sk_state == TCP_LISTEN) 3356 return -EINVAL; 3357 3358 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3359 return 0; 3360 3361 delta = msk->write_seq - v; 3362 if (__mptcp_check_fallback(msk) && msk->first) { 3363 struct tcp_sock *tp = tcp_sk(msk->first); 3364 3365 /* the first subflow is disconnected after close - see 3366 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3367 * so ignore that status, too. 3368 */ 3369 if (!((1 << msk->first->sk_state) & 3370 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3371 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3372 } 3373 if (delta > INT_MAX) 3374 delta = INT_MAX; 3375 3376 return (int)delta; 3377 } 3378 3379 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3380 { 3381 struct mptcp_sock *msk = mptcp_sk(sk); 3382 bool slow; 3383 int answ; 3384 3385 switch (cmd) { 3386 case SIOCINQ: 3387 if (sk->sk_state == TCP_LISTEN) 3388 return -EINVAL; 3389 3390 lock_sock(sk); 3391 __mptcp_move_skbs(msk); 3392 answ = mptcp_inq_hint(sk); 3393 release_sock(sk); 3394 break; 3395 case SIOCOUTQ: 3396 slow = lock_sock_fast(sk); 3397 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3398 unlock_sock_fast(sk, slow); 3399 break; 3400 case SIOCOUTQNSD: 3401 slow = lock_sock_fast(sk); 3402 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3403 unlock_sock_fast(sk, slow); 3404 break; 3405 default: 3406 return -ENOIOCTLCMD; 3407 } 3408 3409 return put_user(answ, (int __user *)arg); 3410 } 3411 3412 static struct proto mptcp_prot = { 3413 .name = "MPTCP", 3414 .owner = THIS_MODULE, 3415 .init = mptcp_init_sock, 3416 .disconnect = mptcp_disconnect, 3417 .close = mptcp_close, 3418 .accept = mptcp_accept, 3419 .setsockopt = mptcp_setsockopt, 3420 .getsockopt = mptcp_getsockopt, 3421 .shutdown = mptcp_shutdown, 3422 .destroy = mptcp_destroy, 3423 .sendmsg = mptcp_sendmsg, 3424 .ioctl = mptcp_ioctl, 3425 .recvmsg = mptcp_recvmsg, 3426 .release_cb = mptcp_release_cb, 3427 .hash = mptcp_hash, 3428 .unhash = mptcp_unhash, 3429 .get_port = mptcp_get_port, 3430 .forward_alloc_get = mptcp_forward_alloc_get, 3431 .sockets_allocated = &mptcp_sockets_allocated, 3432 3433 .memory_allocated = &tcp_memory_allocated, 3434 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3435 3436 .memory_pressure = &tcp_memory_pressure, 3437 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3438 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3439 .sysctl_mem = sysctl_tcp_mem, 3440 .obj_size = sizeof(struct mptcp_sock), 3441 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3442 .no_autobind = true, 3443 }; 3444 3445 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3446 { 3447 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3448 struct socket *ssock; 3449 int err; 3450 3451 lock_sock(sock->sk); 3452 ssock = __mptcp_nmpc_socket(msk); 3453 if (!ssock) { 3454 err = -EINVAL; 3455 goto unlock; 3456 } 3457 3458 err = ssock->ops->bind(ssock, uaddr, addr_len); 3459 if (!err) 3460 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3461 3462 unlock: 3463 release_sock(sock->sk); 3464 return err; 3465 } 3466 3467 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3468 struct mptcp_subflow_context *subflow) 3469 { 3470 subflow->request_mptcp = 0; 3471 __mptcp_do_fallback(msk); 3472 } 3473 3474 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3475 int addr_len, int flags) 3476 { 3477 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3478 struct mptcp_subflow_context *subflow; 3479 struct socket *ssock; 3480 int err = -EINVAL; 3481 3482 lock_sock(sock->sk); 3483 if (uaddr) { 3484 if (addr_len < sizeof(uaddr->sa_family)) 3485 goto unlock; 3486 3487 if (uaddr->sa_family == AF_UNSPEC) { 3488 err = mptcp_disconnect(sock->sk, flags); 3489 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3490 goto unlock; 3491 } 3492 } 3493 3494 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3495 /* pending connection or invalid state, let existing subflow 3496 * cope with that 3497 */ 3498 ssock = msk->subflow; 3499 goto do_connect; 3500 } 3501 3502 ssock = __mptcp_nmpc_socket(msk); 3503 if (!ssock) 3504 goto unlock; 3505 3506 mptcp_token_destroy(msk); 3507 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3508 subflow = mptcp_subflow_ctx(ssock->sk); 3509 #ifdef CONFIG_TCP_MD5SIG 3510 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3511 * TCP option space. 3512 */ 3513 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3514 mptcp_subflow_early_fallback(msk, subflow); 3515 #endif 3516 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3517 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3518 mptcp_subflow_early_fallback(msk, subflow); 3519 } 3520 if (likely(!__mptcp_check_fallback(msk))) 3521 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3522 3523 do_connect: 3524 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3525 sock->state = ssock->state; 3526 3527 /* on successful connect, the msk state will be moved to established by 3528 * subflow_finish_connect() 3529 */ 3530 if (!err || err == -EINPROGRESS) 3531 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3532 else 3533 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3534 3535 unlock: 3536 release_sock(sock->sk); 3537 return err; 3538 } 3539 3540 static int mptcp_listen(struct socket *sock, int backlog) 3541 { 3542 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3543 struct socket *ssock; 3544 int err; 3545 3546 pr_debug("msk=%p", msk); 3547 3548 lock_sock(sock->sk); 3549 ssock = __mptcp_nmpc_socket(msk); 3550 if (!ssock) { 3551 err = -EINVAL; 3552 goto unlock; 3553 } 3554 3555 mptcp_token_destroy(msk); 3556 inet_sk_state_store(sock->sk, TCP_LISTEN); 3557 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3558 3559 err = ssock->ops->listen(ssock, backlog); 3560 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3561 if (!err) 3562 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3563 3564 unlock: 3565 release_sock(sock->sk); 3566 return err; 3567 } 3568 3569 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3570 int flags, bool kern) 3571 { 3572 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3573 struct socket *ssock; 3574 int err; 3575 3576 pr_debug("msk=%p", msk); 3577 3578 ssock = __mptcp_nmpc_socket(msk); 3579 if (!ssock) 3580 return -EINVAL; 3581 3582 err = ssock->ops->accept(sock, newsock, flags, kern); 3583 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3584 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3585 struct mptcp_subflow_context *subflow; 3586 struct sock *newsk = newsock->sk; 3587 3588 lock_sock(newsk); 3589 3590 /* PM/worker can now acquire the first subflow socket 3591 * lock without racing with listener queue cleanup, 3592 * we can notify it, if needed. 3593 * 3594 * Even if remote has reset the initial subflow by now 3595 * the refcnt is still at least one. 3596 */ 3597 subflow = mptcp_subflow_ctx(msk->first); 3598 list_add(&subflow->node, &msk->conn_list); 3599 sock_hold(msk->first); 3600 if (mptcp_is_fully_established(newsk)) 3601 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3602 3603 mptcp_copy_inaddrs(newsk, msk->first); 3604 mptcp_rcv_space_init(msk, msk->first); 3605 mptcp_propagate_sndbuf(newsk, msk->first); 3606 3607 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3608 * This is needed so NOSPACE flag can be set from tcp stack. 3609 */ 3610 mptcp_for_each_subflow(msk, subflow) { 3611 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3612 3613 if (!ssk->sk_socket) 3614 mptcp_sock_graft(ssk, newsock); 3615 } 3616 release_sock(newsk); 3617 } 3618 3619 return err; 3620 } 3621 3622 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3623 { 3624 /* Concurrent splices from sk_receive_queue into receive_queue will 3625 * always show at least one non-empty queue when checked in this order. 3626 */ 3627 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3628 skb_queue_empty_lockless(&msk->receive_queue)) 3629 return 0; 3630 3631 return EPOLLIN | EPOLLRDNORM; 3632 } 3633 3634 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3635 { 3636 struct sock *sk = (struct sock *)msk; 3637 3638 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3639 return EPOLLOUT | EPOLLWRNORM; 3640 3641 if (sk_stream_is_writeable(sk)) 3642 return EPOLLOUT | EPOLLWRNORM; 3643 3644 mptcp_set_nospace(sk); 3645 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3646 if (sk_stream_is_writeable(sk)) 3647 return EPOLLOUT | EPOLLWRNORM; 3648 3649 return 0; 3650 } 3651 3652 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3653 struct poll_table_struct *wait) 3654 { 3655 struct sock *sk = sock->sk; 3656 struct mptcp_sock *msk; 3657 __poll_t mask = 0; 3658 int state; 3659 3660 msk = mptcp_sk(sk); 3661 sock_poll_wait(file, sock, wait); 3662 3663 state = inet_sk_state_load(sk); 3664 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3665 if (state == TCP_LISTEN) { 3666 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3667 return 0; 3668 3669 return inet_csk_listen_poll(msk->subflow->sk); 3670 } 3671 3672 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3673 mask |= mptcp_check_readable(msk); 3674 mask |= mptcp_check_writeable(msk); 3675 } 3676 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3677 mask |= EPOLLHUP; 3678 if (sk->sk_shutdown & RCV_SHUTDOWN) 3679 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3680 3681 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3682 smp_rmb(); 3683 if (sk->sk_err) 3684 mask |= EPOLLERR; 3685 3686 return mask; 3687 } 3688 3689 static const struct proto_ops mptcp_stream_ops = { 3690 .family = PF_INET, 3691 .owner = THIS_MODULE, 3692 .release = inet_release, 3693 .bind = mptcp_bind, 3694 .connect = mptcp_stream_connect, 3695 .socketpair = sock_no_socketpair, 3696 .accept = mptcp_stream_accept, 3697 .getname = inet_getname, 3698 .poll = mptcp_poll, 3699 .ioctl = inet_ioctl, 3700 .gettstamp = sock_gettstamp, 3701 .listen = mptcp_listen, 3702 .shutdown = inet_shutdown, 3703 .setsockopt = sock_common_setsockopt, 3704 .getsockopt = sock_common_getsockopt, 3705 .sendmsg = inet_sendmsg, 3706 .recvmsg = inet_recvmsg, 3707 .mmap = sock_no_mmap, 3708 .sendpage = inet_sendpage, 3709 }; 3710 3711 static struct inet_protosw mptcp_protosw = { 3712 .type = SOCK_STREAM, 3713 .protocol = IPPROTO_MPTCP, 3714 .prot = &mptcp_prot, 3715 .ops = &mptcp_stream_ops, 3716 .flags = INET_PROTOSW_ICSK, 3717 }; 3718 3719 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3720 { 3721 struct mptcp_delegated_action *delegated; 3722 struct mptcp_subflow_context *subflow; 3723 int work_done = 0; 3724 3725 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3726 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3727 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3728 3729 bh_lock_sock_nested(ssk); 3730 if (!sock_owned_by_user(ssk) && 3731 mptcp_subflow_has_delegated_action(subflow)) 3732 mptcp_subflow_process_delegated(ssk); 3733 /* ... elsewhere tcp_release_cb_override already processed 3734 * the action or will do at next release_sock(). 3735 * In both case must dequeue the subflow here - on the same 3736 * CPU that scheduled it. 3737 */ 3738 bh_unlock_sock(ssk); 3739 sock_put(ssk); 3740 3741 if (++work_done == budget) 3742 return budget; 3743 } 3744 3745 /* always provide a 0 'work_done' argument, so that napi_complete_done 3746 * will not try accessing the NULL napi->dev ptr 3747 */ 3748 napi_complete_done(napi, 0); 3749 return work_done; 3750 } 3751 3752 void __init mptcp_proto_init(void) 3753 { 3754 struct mptcp_delegated_action *delegated; 3755 int cpu; 3756 3757 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3758 3759 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3760 panic("Failed to allocate MPTCP pcpu counter\n"); 3761 3762 init_dummy_netdev(&mptcp_napi_dev); 3763 for_each_possible_cpu(cpu) { 3764 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3765 INIT_LIST_HEAD(&delegated->head); 3766 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3767 mptcp_napi_poll); 3768 napi_enable(&delegated->napi); 3769 } 3770 3771 mptcp_subflow_init(); 3772 mptcp_pm_init(); 3773 mptcp_token_init(); 3774 3775 if (proto_register(&mptcp_prot, 1) != 0) 3776 panic("Failed to register MPTCP proto.\n"); 3777 3778 inet_register_protosw(&mptcp_protosw); 3779 3780 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3781 } 3782 3783 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3784 static const struct proto_ops mptcp_v6_stream_ops = { 3785 .family = PF_INET6, 3786 .owner = THIS_MODULE, 3787 .release = inet6_release, 3788 .bind = mptcp_bind, 3789 .connect = mptcp_stream_connect, 3790 .socketpair = sock_no_socketpair, 3791 .accept = mptcp_stream_accept, 3792 .getname = inet6_getname, 3793 .poll = mptcp_poll, 3794 .ioctl = inet6_ioctl, 3795 .gettstamp = sock_gettstamp, 3796 .listen = mptcp_listen, 3797 .shutdown = inet_shutdown, 3798 .setsockopt = sock_common_setsockopt, 3799 .getsockopt = sock_common_getsockopt, 3800 .sendmsg = inet6_sendmsg, 3801 .recvmsg = inet6_recvmsg, 3802 .mmap = sock_no_mmap, 3803 .sendpage = inet_sendpage, 3804 #ifdef CONFIG_COMPAT 3805 .compat_ioctl = inet6_compat_ioctl, 3806 #endif 3807 }; 3808 3809 static struct proto mptcp_v6_prot; 3810 3811 static void mptcp_v6_destroy(struct sock *sk) 3812 { 3813 mptcp_destroy(sk); 3814 inet6_destroy_sock(sk); 3815 } 3816 3817 static struct inet_protosw mptcp_v6_protosw = { 3818 .type = SOCK_STREAM, 3819 .protocol = IPPROTO_MPTCP, 3820 .prot = &mptcp_v6_prot, 3821 .ops = &mptcp_v6_stream_ops, 3822 .flags = INET_PROTOSW_ICSK, 3823 }; 3824 3825 int __init mptcp_proto_v6_init(void) 3826 { 3827 int err; 3828 3829 mptcp_v6_prot = mptcp_prot; 3830 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3831 mptcp_v6_prot.slab = NULL; 3832 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3833 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3834 3835 err = proto_register(&mptcp_v6_prot, 1); 3836 if (err) 3837 return err; 3838 3839 err = inet6_register_protosw(&mptcp_v6_protosw); 3840 if (err) 3841 proto_unregister(&mptcp_v6_prot); 3842 3843 return err; 3844 } 3845 #endif 3846