xref: /openbmc/linux/net/mptcp/protocol.c (revision dff03381)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 struct mptcp_skb_cb {
40 	u64 map_seq;
41 	u64 end_seq;
42 	u32 offset;
43 	u8  has_rxtstamp:1;
44 };
45 
46 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
47 
48 enum {
49 	MPTCP_CMSG_TS = BIT(0),
50 	MPTCP_CMSG_INQ = BIT(1),
51 };
52 
53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
54 
55 static void __mptcp_destroy_sock(struct sock *sk);
56 static void __mptcp_check_send_data_fin(struct sock *sk);
57 
58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
59 static struct net_device mptcp_napi_dev;
60 
61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
62  * completed yet or has failed, return the subflow socket.
63  * Otherwise return NULL.
64  */
65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
66 {
67 	if (!msk->subflow || READ_ONCE(msk->can_ack))
68 		return NULL;
69 
70 	return msk->subflow;
71 }
72 
73 /* Returns end sequence number of the receiver's advertised window */
74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
75 {
76 	return READ_ONCE(msk->wnd_end);
77 }
78 
79 static bool mptcp_is_tcpsk(struct sock *sk)
80 {
81 	struct socket *sock = sk->sk_socket;
82 
83 	if (unlikely(sk->sk_prot == &tcp_prot)) {
84 		/* we are being invoked after mptcp_accept() has
85 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
86 		 * not an mptcp one.
87 		 *
88 		 * Hand the socket over to tcp so all further socket ops
89 		 * bypass mptcp.
90 		 */
91 		sock->ops = &inet_stream_ops;
92 		return true;
93 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
94 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
95 		sock->ops = &inet6_stream_ops;
96 		return true;
97 #endif
98 	}
99 
100 	return false;
101 }
102 
103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, &ssock);
111 	if (err)
112 		return err;
113 
114 	msk->first = ssock->sk;
115 	msk->subflow = ssock;
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 
121 	/* This is the first subflow, always with id 0 */
122 	subflow->local_id_valid = 1;
123 	mptcp_sock_graft(msk->first, sk->sk_socket);
124 
125 	return 0;
126 }
127 
128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
129 {
130 	sk_drops_add(sk, skb);
131 	__kfree_skb(skb);
132 }
133 
134 static void mptcp_rmem_charge(struct sock *sk, int size)
135 {
136 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
137 }
138 
139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
140 			       struct sk_buff *from)
141 {
142 	bool fragstolen;
143 	int delta;
144 
145 	if (MPTCP_SKB_CB(from)->offset ||
146 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
147 		return false;
148 
149 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
150 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
151 		 to->len, MPTCP_SKB_CB(from)->end_seq);
152 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
153 	kfree_skb_partial(from, fragstolen);
154 	atomic_add(delta, &sk->sk_rmem_alloc);
155 	mptcp_rmem_charge(sk, delta);
156 	return true;
157 }
158 
159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
160 				   struct sk_buff *from)
161 {
162 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
163 		return false;
164 
165 	return mptcp_try_coalesce((struct sock *)msk, to, from);
166 }
167 
168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
169 {
170 	amount >>= PAGE_SHIFT;
171 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
172 	__sk_mem_reduce_allocated(sk, amount);
173 }
174 
175 static void mptcp_rmem_uncharge(struct sock *sk, int size)
176 {
177 	struct mptcp_sock *msk = mptcp_sk(sk);
178 	int reclaimable;
179 
180 	msk->rmem_fwd_alloc += size;
181 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
182 
183 	/* see sk_mem_uncharge() for the rationale behind the following schema */
184 	if (unlikely(reclaimable >= PAGE_SIZE))
185 		__mptcp_rmem_reclaim(sk, reclaimable);
186 }
187 
188 static void mptcp_rfree(struct sk_buff *skb)
189 {
190 	unsigned int len = skb->truesize;
191 	struct sock *sk = skb->sk;
192 
193 	atomic_sub(len, &sk->sk_rmem_alloc);
194 	mptcp_rmem_uncharge(sk, len);
195 }
196 
197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
198 {
199 	skb_orphan(skb);
200 	skb->sk = sk;
201 	skb->destructor = mptcp_rfree;
202 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
203 	mptcp_rmem_charge(sk, skb->truesize);
204 }
205 
206 /* "inspired" by tcp_data_queue_ofo(), main differences:
207  * - use mptcp seqs
208  * - don't cope with sacks
209  */
210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
211 {
212 	struct sock *sk = (struct sock *)msk;
213 	struct rb_node **p, *parent;
214 	u64 seq, end_seq, max_seq;
215 	struct sk_buff *skb1;
216 
217 	seq = MPTCP_SKB_CB(skb)->map_seq;
218 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
219 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
220 
221 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
222 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
223 	if (after64(end_seq, max_seq)) {
224 		/* out of window */
225 		mptcp_drop(sk, skb);
226 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
227 			 (unsigned long long)end_seq - (unsigned long)max_seq,
228 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
230 		return;
231 	}
232 
233 	p = &msk->out_of_order_queue.rb_node;
234 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
235 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
236 		rb_link_node(&skb->rbnode, NULL, p);
237 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
238 		msk->ooo_last_skb = skb;
239 		goto end;
240 	}
241 
242 	/* with 2 subflows, adding at end of ooo queue is quite likely
243 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
244 	 */
245 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
248 		return;
249 	}
250 
251 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
252 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
253 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 		parent = &msk->ooo_last_skb->rbnode;
255 		p = &parent->rb_right;
256 		goto insert;
257 	}
258 
259 	/* Find place to insert this segment. Handle overlaps on the way. */
260 	parent = NULL;
261 	while (*p) {
262 		parent = *p;
263 		skb1 = rb_to_skb(parent);
264 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
265 			p = &parent->rb_left;
266 			continue;
267 		}
268 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 				/* All the bits are present. Drop. */
271 				mptcp_drop(sk, skb);
272 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
273 				return;
274 			}
275 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
276 				/* partial overlap:
277 				 *     |     skb      |
278 				 *  |     skb1    |
279 				 * continue traversing
280 				 */
281 			} else {
282 				/* skb's seq == skb1's seq and skb covers skb1.
283 				 * Replace skb1 with skb.
284 				 */
285 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
286 						&msk->out_of_order_queue);
287 				mptcp_drop(sk, skb1);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				goto merge_right;
290 			}
291 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
292 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
293 			return;
294 		}
295 		p = &parent->rb_right;
296 	}
297 
298 insert:
299 	/* Insert segment into RB tree. */
300 	rb_link_node(&skb->rbnode, parent, p);
301 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
302 
303 merge_right:
304 	/* Remove other segments covered by skb. */
305 	while ((skb1 = skb_rb_next(skb)) != NULL) {
306 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
307 			break;
308 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
309 		mptcp_drop(sk, skb1);
310 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
311 	}
312 	/* If there is no skb after us, we are the last_skb ! */
313 	if (!skb1)
314 		msk->ooo_last_skb = skb;
315 
316 end:
317 	skb_condense(skb);
318 	mptcp_set_owner_r(skb, sk);
319 }
320 
321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
322 {
323 	struct mptcp_sock *msk = mptcp_sk(sk);
324 	int amt, amount;
325 
326 	if (size <= msk->rmem_fwd_alloc)
327 		return true;
328 
329 	size -= msk->rmem_fwd_alloc;
330 	amt = sk_mem_pages(size);
331 	amount = amt << PAGE_SHIFT;
332 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
333 		return false;
334 
335 	msk->rmem_fwd_alloc += amount;
336 	return true;
337 }
338 
339 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
340 			     struct sk_buff *skb, unsigned int offset,
341 			     size_t copy_len)
342 {
343 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344 	struct sock *sk = (struct sock *)msk;
345 	struct sk_buff *tail;
346 	bool has_rxtstamp;
347 
348 	__skb_unlink(skb, &ssk->sk_receive_queue);
349 
350 	skb_ext_reset(skb);
351 	skb_orphan(skb);
352 
353 	/* try to fetch required memory from subflow */
354 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
355 		goto drop;
356 
357 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
358 
359 	/* the skb map_seq accounts for the skb offset:
360 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
361 	 * value
362 	 */
363 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
364 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
365 	MPTCP_SKB_CB(skb)->offset = offset;
366 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
367 
368 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
369 		/* in sequence */
370 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
371 		tail = skb_peek_tail(&sk->sk_receive_queue);
372 		if (tail && mptcp_try_coalesce(sk, tail, skb))
373 			return true;
374 
375 		mptcp_set_owner_r(skb, sk);
376 		__skb_queue_tail(&sk->sk_receive_queue, skb);
377 		return true;
378 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
379 		mptcp_data_queue_ofo(msk, skb);
380 		return false;
381 	}
382 
383 	/* old data, keep it simple and drop the whole pkt, sender
384 	 * will retransmit as needed, if needed.
385 	 */
386 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
387 drop:
388 	mptcp_drop(sk, skb);
389 	return false;
390 }
391 
392 static void mptcp_stop_timer(struct sock *sk)
393 {
394 	struct inet_connection_sock *icsk = inet_csk(sk);
395 
396 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
397 	mptcp_sk(sk)->timer_ival = 0;
398 }
399 
400 static void mptcp_close_wake_up(struct sock *sk)
401 {
402 	if (sock_flag(sk, SOCK_DEAD))
403 		return;
404 
405 	sk->sk_state_change(sk);
406 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
407 	    sk->sk_state == TCP_CLOSE)
408 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
409 	else
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
411 }
412 
413 static bool mptcp_pending_data_fin_ack(struct sock *sk)
414 {
415 	struct mptcp_sock *msk = mptcp_sk(sk);
416 
417 	return !__mptcp_check_fallback(msk) &&
418 	       ((1 << sk->sk_state) &
419 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
420 	       msk->write_seq == READ_ONCE(msk->snd_una);
421 }
422 
423 static void mptcp_check_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	/* Look for an acknowledged DATA_FIN */
428 	if (mptcp_pending_data_fin_ack(sk)) {
429 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
430 
431 		switch (sk->sk_state) {
432 		case TCP_FIN_WAIT1:
433 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
434 			break;
435 		case TCP_CLOSING:
436 		case TCP_LAST_ACK:
437 			inet_sk_state_store(sk, TCP_CLOSE);
438 			break;
439 		}
440 
441 		mptcp_close_wake_up(sk);
442 	}
443 }
444 
445 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
446 {
447 	struct mptcp_sock *msk = mptcp_sk(sk);
448 
449 	if (READ_ONCE(msk->rcv_data_fin) &&
450 	    ((1 << sk->sk_state) &
451 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
452 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
453 
454 		if (msk->ack_seq == rcv_data_fin_seq) {
455 			if (seq)
456 				*seq = rcv_data_fin_seq;
457 
458 			return true;
459 		}
460 	}
461 
462 	return false;
463 }
464 
465 static void mptcp_set_datafin_timeout(const struct sock *sk)
466 {
467 	struct inet_connection_sock *icsk = inet_csk(sk);
468 	u32 retransmits;
469 
470 	retransmits = min_t(u32, icsk->icsk_retransmits,
471 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
472 
473 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
474 }
475 
476 static void __mptcp_set_timeout(struct sock *sk, long tout)
477 {
478 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
479 }
480 
481 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
482 {
483 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
484 
485 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
486 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
487 }
488 
489 static void mptcp_set_timeout(struct sock *sk)
490 {
491 	struct mptcp_subflow_context *subflow;
492 	long tout = 0;
493 
494 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
495 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
496 	__mptcp_set_timeout(sk, tout);
497 }
498 
499 static inline bool tcp_can_send_ack(const struct sock *ssk)
500 {
501 	return !((1 << inet_sk_state_load(ssk)) &
502 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
503 }
504 
505 void __mptcp_subflow_send_ack(struct sock *ssk)
506 {
507 	if (tcp_can_send_ack(ssk))
508 		tcp_send_ack(ssk);
509 }
510 
511 static void mptcp_subflow_send_ack(struct sock *ssk)
512 {
513 	bool slow;
514 
515 	slow = lock_sock_fast(ssk);
516 	__mptcp_subflow_send_ack(ssk);
517 	unlock_sock_fast(ssk, slow);
518 }
519 
520 static void mptcp_send_ack(struct mptcp_sock *msk)
521 {
522 	struct mptcp_subflow_context *subflow;
523 
524 	mptcp_for_each_subflow(msk, subflow)
525 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
526 }
527 
528 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
529 {
530 	bool slow;
531 
532 	slow = lock_sock_fast(ssk);
533 	if (tcp_can_send_ack(ssk))
534 		tcp_cleanup_rbuf(ssk, 1);
535 	unlock_sock_fast(ssk, slow);
536 }
537 
538 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
539 {
540 	const struct inet_connection_sock *icsk = inet_csk(ssk);
541 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
542 	const struct tcp_sock *tp = tcp_sk(ssk);
543 
544 	return (ack_pending & ICSK_ACK_SCHED) &&
545 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
546 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
547 		 (rx_empty && ack_pending &
548 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
549 }
550 
551 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
552 {
553 	int old_space = READ_ONCE(msk->old_wspace);
554 	struct mptcp_subflow_context *subflow;
555 	struct sock *sk = (struct sock *)msk;
556 	int space =  __mptcp_space(sk);
557 	bool cleanup, rx_empty;
558 
559 	cleanup = (space > 0) && (space >= (old_space << 1));
560 	rx_empty = !__mptcp_rmem(sk);
561 
562 	mptcp_for_each_subflow(msk, subflow) {
563 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
564 
565 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
566 			mptcp_subflow_cleanup_rbuf(ssk);
567 	}
568 }
569 
570 static bool mptcp_check_data_fin(struct sock *sk)
571 {
572 	struct mptcp_sock *msk = mptcp_sk(sk);
573 	u64 rcv_data_fin_seq;
574 	bool ret = false;
575 
576 	if (__mptcp_check_fallback(msk))
577 		return ret;
578 
579 	/* Need to ack a DATA_FIN received from a peer while this side
580 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
581 	 * msk->rcv_data_fin was set when parsing the incoming options
582 	 * at the subflow level and the msk lock was not held, so this
583 	 * is the first opportunity to act on the DATA_FIN and change
584 	 * the msk state.
585 	 *
586 	 * If we are caught up to the sequence number of the incoming
587 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
588 	 * not caught up, do nothing and let the recv code send DATA_ACK
589 	 * when catching up.
590 	 */
591 
592 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
593 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
594 		WRITE_ONCE(msk->rcv_data_fin, 0);
595 
596 		sk->sk_shutdown |= RCV_SHUTDOWN;
597 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
598 
599 		switch (sk->sk_state) {
600 		case TCP_ESTABLISHED:
601 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
602 			break;
603 		case TCP_FIN_WAIT1:
604 			inet_sk_state_store(sk, TCP_CLOSING);
605 			break;
606 		case TCP_FIN_WAIT2:
607 			inet_sk_state_store(sk, TCP_CLOSE);
608 			break;
609 		default:
610 			/* Other states not expected */
611 			WARN_ON_ONCE(1);
612 			break;
613 		}
614 
615 		ret = true;
616 		mptcp_send_ack(msk);
617 		mptcp_close_wake_up(sk);
618 	}
619 	return ret;
620 }
621 
622 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
623 					   struct sock *ssk,
624 					   unsigned int *bytes)
625 {
626 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
627 	struct sock *sk = (struct sock *)msk;
628 	unsigned int moved = 0;
629 	bool more_data_avail;
630 	struct tcp_sock *tp;
631 	bool done = false;
632 	int sk_rbuf;
633 
634 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
635 
636 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
637 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
638 
639 		if (unlikely(ssk_rbuf > sk_rbuf)) {
640 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
641 			sk_rbuf = ssk_rbuf;
642 		}
643 	}
644 
645 	pr_debug("msk=%p ssk=%p", msk, ssk);
646 	tp = tcp_sk(ssk);
647 	do {
648 		u32 map_remaining, offset;
649 		u32 seq = tp->copied_seq;
650 		struct sk_buff *skb;
651 		bool fin;
652 
653 		/* try to move as much data as available */
654 		map_remaining = subflow->map_data_len -
655 				mptcp_subflow_get_map_offset(subflow);
656 
657 		skb = skb_peek(&ssk->sk_receive_queue);
658 		if (!skb) {
659 			/* if no data is found, a racing workqueue/recvmsg
660 			 * already processed the new data, stop here or we
661 			 * can enter an infinite loop
662 			 */
663 			if (!moved)
664 				done = true;
665 			break;
666 		}
667 
668 		if (__mptcp_check_fallback(msk)) {
669 			/* if we are running under the workqueue, TCP could have
670 			 * collapsed skbs between dummy map creation and now
671 			 * be sure to adjust the size
672 			 */
673 			map_remaining = skb->len;
674 			subflow->map_data_len = skb->len;
675 		}
676 
677 		offset = seq - TCP_SKB_CB(skb)->seq;
678 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
679 		if (fin) {
680 			done = true;
681 			seq++;
682 		}
683 
684 		if (offset < skb->len) {
685 			size_t len = skb->len - offset;
686 
687 			if (tp->urg_data)
688 				done = true;
689 
690 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
691 				moved += len;
692 			seq += len;
693 
694 			if (WARN_ON_ONCE(map_remaining < len))
695 				break;
696 		} else {
697 			WARN_ON_ONCE(!fin);
698 			sk_eat_skb(ssk, skb);
699 			done = true;
700 		}
701 
702 		WRITE_ONCE(tp->copied_seq, seq);
703 		more_data_avail = mptcp_subflow_data_available(ssk);
704 
705 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
706 			done = true;
707 			break;
708 		}
709 	} while (more_data_avail);
710 
711 	*bytes += moved;
712 	return done;
713 }
714 
715 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
716 {
717 	struct sock *sk = (struct sock *)msk;
718 	struct sk_buff *skb, *tail;
719 	bool moved = false;
720 	struct rb_node *p;
721 	u64 end_seq;
722 
723 	p = rb_first(&msk->out_of_order_queue);
724 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
725 	while (p) {
726 		skb = rb_to_skb(p);
727 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
728 			break;
729 
730 		p = rb_next(p);
731 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
732 
733 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
734 				      msk->ack_seq))) {
735 			mptcp_drop(sk, skb);
736 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
737 			continue;
738 		}
739 
740 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
741 		tail = skb_peek_tail(&sk->sk_receive_queue);
742 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
743 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
744 
745 			/* skip overlapping data, if any */
746 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
747 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
748 				 delta);
749 			MPTCP_SKB_CB(skb)->offset += delta;
750 			MPTCP_SKB_CB(skb)->map_seq += delta;
751 			__skb_queue_tail(&sk->sk_receive_queue, skb);
752 		}
753 		msk->ack_seq = end_seq;
754 		moved = true;
755 	}
756 	return moved;
757 }
758 
759 /* In most cases we will be able to lock the mptcp socket.  If its already
760  * owned, we need to defer to the work queue to avoid ABBA deadlock.
761  */
762 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
763 {
764 	struct sock *sk = (struct sock *)msk;
765 	unsigned int moved = 0;
766 
767 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
768 	__mptcp_ofo_queue(msk);
769 	if (unlikely(ssk->sk_err)) {
770 		if (!sock_owned_by_user(sk))
771 			__mptcp_error_report(sk);
772 		else
773 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
774 	}
775 
776 	/* If the moves have caught up with the DATA_FIN sequence number
777 	 * it's time to ack the DATA_FIN and change socket state, but
778 	 * this is not a good place to change state. Let the workqueue
779 	 * do it.
780 	 */
781 	if (mptcp_pending_data_fin(sk, NULL))
782 		mptcp_schedule_work(sk);
783 	return moved > 0;
784 }
785 
786 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
787 {
788 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
789 	struct mptcp_sock *msk = mptcp_sk(sk);
790 	int sk_rbuf, ssk_rbuf;
791 
792 	/* The peer can send data while we are shutting down this
793 	 * subflow at msk destruction time, but we must avoid enqueuing
794 	 * more data to the msk receive queue
795 	 */
796 	if (unlikely(subflow->disposable))
797 		return;
798 
799 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
800 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
801 	if (unlikely(ssk_rbuf > sk_rbuf))
802 		sk_rbuf = ssk_rbuf;
803 
804 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
805 	if (__mptcp_rmem(sk) > sk_rbuf) {
806 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
807 		return;
808 	}
809 
810 	/* Wake-up the reader only for in-sequence data */
811 	mptcp_data_lock(sk);
812 	if (move_skbs_to_msk(msk, ssk))
813 		sk->sk_data_ready(sk);
814 
815 	mptcp_data_unlock(sk);
816 }
817 
818 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
819 {
820 	struct sock *sk = (struct sock *)msk;
821 
822 	if (sk->sk_state != TCP_ESTABLISHED)
823 		return false;
824 
825 	/* attach to msk socket only after we are sure we will deal with it
826 	 * at close time
827 	 */
828 	if (sk->sk_socket && !ssk->sk_socket)
829 		mptcp_sock_graft(ssk, sk->sk_socket);
830 
831 	mptcp_propagate_sndbuf((struct sock *)msk, ssk);
832 	mptcp_sockopt_sync_locked(msk, ssk);
833 	return true;
834 }
835 
836 static void __mptcp_flush_join_list(struct sock *sk)
837 {
838 	struct mptcp_subflow_context *tmp, *subflow;
839 	struct mptcp_sock *msk = mptcp_sk(sk);
840 
841 	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
842 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
843 		bool slow = lock_sock_fast(ssk);
844 
845 		list_move_tail(&subflow->node, &msk->conn_list);
846 		if (!__mptcp_finish_join(msk, ssk))
847 			mptcp_subflow_reset(ssk);
848 		unlock_sock_fast(ssk, slow);
849 	}
850 }
851 
852 static bool mptcp_timer_pending(struct sock *sk)
853 {
854 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
855 }
856 
857 static void mptcp_reset_timer(struct sock *sk)
858 {
859 	struct inet_connection_sock *icsk = inet_csk(sk);
860 	unsigned long tout;
861 
862 	/* prevent rescheduling on close */
863 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
864 		return;
865 
866 	tout = mptcp_sk(sk)->timer_ival;
867 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
868 }
869 
870 bool mptcp_schedule_work(struct sock *sk)
871 {
872 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
873 	    schedule_work(&mptcp_sk(sk)->work)) {
874 		/* each subflow already holds a reference to the sk, and the
875 		 * workqueue is invoked by a subflow, so sk can't go away here.
876 		 */
877 		sock_hold(sk);
878 		return true;
879 	}
880 	return false;
881 }
882 
883 void mptcp_subflow_eof(struct sock *sk)
884 {
885 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
886 		mptcp_schedule_work(sk);
887 }
888 
889 static void mptcp_check_for_eof(struct mptcp_sock *msk)
890 {
891 	struct mptcp_subflow_context *subflow;
892 	struct sock *sk = (struct sock *)msk;
893 	int receivers = 0;
894 
895 	mptcp_for_each_subflow(msk, subflow)
896 		receivers += !subflow->rx_eof;
897 	if (receivers)
898 		return;
899 
900 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
901 		/* hopefully temporary hack: propagate shutdown status
902 		 * to msk, when all subflows agree on it
903 		 */
904 		sk->sk_shutdown |= RCV_SHUTDOWN;
905 
906 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
907 		sk->sk_data_ready(sk);
908 	}
909 
910 	switch (sk->sk_state) {
911 	case TCP_ESTABLISHED:
912 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
913 		break;
914 	case TCP_FIN_WAIT1:
915 		inet_sk_state_store(sk, TCP_CLOSING);
916 		break;
917 	case TCP_FIN_WAIT2:
918 		inet_sk_state_store(sk, TCP_CLOSE);
919 		break;
920 	default:
921 		return;
922 	}
923 	mptcp_close_wake_up(sk);
924 }
925 
926 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
927 {
928 	struct mptcp_subflow_context *subflow;
929 	struct sock *sk = (struct sock *)msk;
930 
931 	sock_owned_by_me(sk);
932 
933 	mptcp_for_each_subflow(msk, subflow) {
934 		if (READ_ONCE(subflow->data_avail))
935 			return mptcp_subflow_tcp_sock(subflow);
936 	}
937 
938 	return NULL;
939 }
940 
941 static bool mptcp_skb_can_collapse_to(u64 write_seq,
942 				      const struct sk_buff *skb,
943 				      const struct mptcp_ext *mpext)
944 {
945 	if (!tcp_skb_can_collapse_to(skb))
946 		return false;
947 
948 	/* can collapse only if MPTCP level sequence is in order and this
949 	 * mapping has not been xmitted yet
950 	 */
951 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
952 	       !mpext->frozen;
953 }
954 
955 /* we can append data to the given data frag if:
956  * - there is space available in the backing page_frag
957  * - the data frag tail matches the current page_frag free offset
958  * - the data frag end sequence number matches the current write seq
959  */
960 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
961 				       const struct page_frag *pfrag,
962 				       const struct mptcp_data_frag *df)
963 {
964 	return df && pfrag->page == df->page &&
965 		pfrag->size - pfrag->offset > 0 &&
966 		pfrag->offset == (df->offset + df->data_len) &&
967 		df->data_seq + df->data_len == msk->write_seq;
968 }
969 
970 static void dfrag_uncharge(struct sock *sk, int len)
971 {
972 	sk_mem_uncharge(sk, len);
973 	sk_wmem_queued_add(sk, -len);
974 }
975 
976 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
977 {
978 	int len = dfrag->data_len + dfrag->overhead;
979 
980 	list_del(&dfrag->list);
981 	dfrag_uncharge(sk, len);
982 	put_page(dfrag->page);
983 }
984 
985 static void __mptcp_clean_una(struct sock *sk)
986 {
987 	struct mptcp_sock *msk = mptcp_sk(sk);
988 	struct mptcp_data_frag *dtmp, *dfrag;
989 	u64 snd_una;
990 
991 	/* on fallback we just need to ignore snd_una, as this is really
992 	 * plain TCP
993 	 */
994 	if (__mptcp_check_fallback(msk))
995 		msk->snd_una = READ_ONCE(msk->snd_nxt);
996 
997 	snd_una = msk->snd_una;
998 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
999 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1000 			break;
1001 
1002 		if (unlikely(dfrag == msk->first_pending)) {
1003 			/* in recovery mode can see ack after the current snd head */
1004 			if (WARN_ON_ONCE(!msk->recovery))
1005 				break;
1006 
1007 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1008 		}
1009 
1010 		dfrag_clear(sk, dfrag);
1011 	}
1012 
1013 	dfrag = mptcp_rtx_head(sk);
1014 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1015 		u64 delta = snd_una - dfrag->data_seq;
1016 
1017 		/* prevent wrap around in recovery mode */
1018 		if (unlikely(delta > dfrag->already_sent)) {
1019 			if (WARN_ON_ONCE(!msk->recovery))
1020 				goto out;
1021 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1022 				goto out;
1023 			dfrag->already_sent += delta - dfrag->already_sent;
1024 		}
1025 
1026 		dfrag->data_seq += delta;
1027 		dfrag->offset += delta;
1028 		dfrag->data_len -= delta;
1029 		dfrag->already_sent -= delta;
1030 
1031 		dfrag_uncharge(sk, delta);
1032 	}
1033 
1034 	/* all retransmitted data acked, recovery completed */
1035 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1036 		msk->recovery = false;
1037 
1038 out:
1039 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1040 	    snd_una == READ_ONCE(msk->write_seq)) {
1041 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1042 			mptcp_stop_timer(sk);
1043 	} else {
1044 		mptcp_reset_timer(sk);
1045 	}
1046 }
1047 
1048 static void __mptcp_clean_una_wakeup(struct sock *sk)
1049 {
1050 	lockdep_assert_held_once(&sk->sk_lock.slock);
1051 
1052 	__mptcp_clean_una(sk);
1053 	mptcp_write_space(sk);
1054 }
1055 
1056 static void mptcp_clean_una_wakeup(struct sock *sk)
1057 {
1058 	mptcp_data_lock(sk);
1059 	__mptcp_clean_una_wakeup(sk);
1060 	mptcp_data_unlock(sk);
1061 }
1062 
1063 static void mptcp_enter_memory_pressure(struct sock *sk)
1064 {
1065 	struct mptcp_subflow_context *subflow;
1066 	struct mptcp_sock *msk = mptcp_sk(sk);
1067 	bool first = true;
1068 
1069 	sk_stream_moderate_sndbuf(sk);
1070 	mptcp_for_each_subflow(msk, subflow) {
1071 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1072 
1073 		if (first)
1074 			tcp_enter_memory_pressure(ssk);
1075 		sk_stream_moderate_sndbuf(ssk);
1076 		first = false;
1077 	}
1078 }
1079 
1080 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1081  * data
1082  */
1083 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1084 {
1085 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1086 					pfrag, sk->sk_allocation)))
1087 		return true;
1088 
1089 	mptcp_enter_memory_pressure(sk);
1090 	return false;
1091 }
1092 
1093 static struct mptcp_data_frag *
1094 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1095 		      int orig_offset)
1096 {
1097 	int offset = ALIGN(orig_offset, sizeof(long));
1098 	struct mptcp_data_frag *dfrag;
1099 
1100 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1101 	dfrag->data_len = 0;
1102 	dfrag->data_seq = msk->write_seq;
1103 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1104 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1105 	dfrag->already_sent = 0;
1106 	dfrag->page = pfrag->page;
1107 
1108 	return dfrag;
1109 }
1110 
1111 struct mptcp_sendmsg_info {
1112 	int mss_now;
1113 	int size_goal;
1114 	u16 limit;
1115 	u16 sent;
1116 	unsigned int flags;
1117 	bool data_lock_held;
1118 };
1119 
1120 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1121 				    u64 data_seq, int avail_size)
1122 {
1123 	u64 window_end = mptcp_wnd_end(msk);
1124 	u64 mptcp_snd_wnd;
1125 
1126 	if (__mptcp_check_fallback(msk))
1127 		return avail_size;
1128 
1129 	mptcp_snd_wnd = window_end - data_seq;
1130 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1131 
1132 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1133 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1134 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1135 	}
1136 
1137 	return avail_size;
1138 }
1139 
1140 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1141 {
1142 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1143 
1144 	if (!mpext)
1145 		return false;
1146 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1147 	return true;
1148 }
1149 
1150 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1151 {
1152 	struct sk_buff *skb;
1153 
1154 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1155 	if (likely(skb)) {
1156 		if (likely(__mptcp_add_ext(skb, gfp))) {
1157 			skb_reserve(skb, MAX_TCP_HEADER);
1158 			skb->ip_summed = CHECKSUM_PARTIAL;
1159 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1160 			return skb;
1161 		}
1162 		__kfree_skb(skb);
1163 	} else {
1164 		mptcp_enter_memory_pressure(sk);
1165 	}
1166 	return NULL;
1167 }
1168 
1169 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1170 {
1171 	struct sk_buff *skb;
1172 
1173 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1174 	if (!skb)
1175 		return NULL;
1176 
1177 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1178 		tcp_skb_entail(ssk, skb);
1179 		return skb;
1180 	}
1181 	tcp_skb_tsorted_anchor_cleanup(skb);
1182 	kfree_skb(skb);
1183 	return NULL;
1184 }
1185 
1186 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1187 {
1188 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1189 
1190 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1191 }
1192 
1193 /* note: this always recompute the csum on the whole skb, even
1194  * if we just appended a single frag. More status info needed
1195  */
1196 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1197 {
1198 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1199 	__wsum csum = ~csum_unfold(mpext->csum);
1200 	int offset = skb->len - added;
1201 
1202 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1203 }
1204 
1205 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1206 				      struct sock *ssk,
1207 				      struct mptcp_ext *mpext)
1208 {
1209 	if (!mpext)
1210 		return;
1211 
1212 	mpext->infinite_map = 1;
1213 	mpext->data_len = 0;
1214 
1215 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1216 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1217 	pr_fallback(msk);
1218 	mptcp_do_fallback(ssk);
1219 }
1220 
1221 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1222 			      struct mptcp_data_frag *dfrag,
1223 			      struct mptcp_sendmsg_info *info)
1224 {
1225 	u64 data_seq = dfrag->data_seq + info->sent;
1226 	int offset = dfrag->offset + info->sent;
1227 	struct mptcp_sock *msk = mptcp_sk(sk);
1228 	bool zero_window_probe = false;
1229 	struct mptcp_ext *mpext = NULL;
1230 	bool can_coalesce = false;
1231 	bool reuse_skb = true;
1232 	struct sk_buff *skb;
1233 	size_t copy;
1234 	int i;
1235 
1236 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1237 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1238 
1239 	if (WARN_ON_ONCE(info->sent > info->limit ||
1240 			 info->limit > dfrag->data_len))
1241 		return 0;
1242 
1243 	/* compute send limit */
1244 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1245 	copy = info->size_goal;
1246 
1247 	skb = tcp_write_queue_tail(ssk);
1248 	if (skb && copy > skb->len) {
1249 		/* Limit the write to the size available in the
1250 		 * current skb, if any, so that we create at most a new skb.
1251 		 * Explicitly tells TCP internals to avoid collapsing on later
1252 		 * queue management operation, to avoid breaking the ext <->
1253 		 * SSN association set here
1254 		 */
1255 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1256 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1257 			TCP_SKB_CB(skb)->eor = 1;
1258 			goto alloc_skb;
1259 		}
1260 
1261 		i = skb_shinfo(skb)->nr_frags;
1262 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1263 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1264 			tcp_mark_push(tcp_sk(ssk), skb);
1265 			goto alloc_skb;
1266 		}
1267 
1268 		copy -= skb->len;
1269 	} else {
1270 alloc_skb:
1271 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1272 		if (!skb)
1273 			return -ENOMEM;
1274 
1275 		i = skb_shinfo(skb)->nr_frags;
1276 		reuse_skb = false;
1277 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1278 	}
1279 
1280 	/* Zero window and all data acked? Probe. */
1281 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1282 	if (copy == 0) {
1283 		u64 snd_una = READ_ONCE(msk->snd_una);
1284 
1285 		if (snd_una != msk->snd_nxt) {
1286 			tcp_remove_empty_skb(ssk);
1287 			return 0;
1288 		}
1289 
1290 		zero_window_probe = true;
1291 		data_seq = snd_una - 1;
1292 		copy = 1;
1293 
1294 		/* all mptcp-level data is acked, no skbs should be present into the
1295 		 * ssk write queue
1296 		 */
1297 		WARN_ON_ONCE(reuse_skb);
1298 	}
1299 
1300 	copy = min_t(size_t, copy, info->limit - info->sent);
1301 	if (!sk_wmem_schedule(ssk, copy)) {
1302 		tcp_remove_empty_skb(ssk);
1303 		return -ENOMEM;
1304 	}
1305 
1306 	if (can_coalesce) {
1307 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1308 	} else {
1309 		get_page(dfrag->page);
1310 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1311 	}
1312 
1313 	skb->len += copy;
1314 	skb->data_len += copy;
1315 	skb->truesize += copy;
1316 	sk_wmem_queued_add(ssk, copy);
1317 	sk_mem_charge(ssk, copy);
1318 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1319 	TCP_SKB_CB(skb)->end_seq += copy;
1320 	tcp_skb_pcount_set(skb, 0);
1321 
1322 	/* on skb reuse we just need to update the DSS len */
1323 	if (reuse_skb) {
1324 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1325 		mpext->data_len += copy;
1326 		WARN_ON_ONCE(zero_window_probe);
1327 		goto out;
1328 	}
1329 
1330 	memset(mpext, 0, sizeof(*mpext));
1331 	mpext->data_seq = data_seq;
1332 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1333 	mpext->data_len = copy;
1334 	mpext->use_map = 1;
1335 	mpext->dsn64 = 1;
1336 
1337 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1338 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1339 		 mpext->dsn64);
1340 
1341 	if (zero_window_probe) {
1342 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1343 		mpext->frozen = 1;
1344 		if (READ_ONCE(msk->csum_enabled))
1345 			mptcp_update_data_checksum(skb, copy);
1346 		tcp_push_pending_frames(ssk);
1347 		return 0;
1348 	}
1349 out:
1350 	if (READ_ONCE(msk->csum_enabled))
1351 		mptcp_update_data_checksum(skb, copy);
1352 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1353 		mptcp_update_infinite_map(msk, ssk, mpext);
1354 	trace_mptcp_sendmsg_frag(mpext);
1355 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1356 	return copy;
1357 }
1358 
1359 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1360 					 sizeof(struct tcphdr) - \
1361 					 MAX_TCP_OPTION_SPACE - \
1362 					 sizeof(struct ipv6hdr) - \
1363 					 sizeof(struct frag_hdr))
1364 
1365 struct subflow_send_info {
1366 	struct sock *ssk;
1367 	u64 linger_time;
1368 };
1369 
1370 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1371 {
1372 	if (!subflow->stale)
1373 		return;
1374 
1375 	subflow->stale = 0;
1376 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1377 }
1378 
1379 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1380 {
1381 	if (unlikely(subflow->stale)) {
1382 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1383 
1384 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1385 			return false;
1386 
1387 		mptcp_subflow_set_active(subflow);
1388 	}
1389 	return __mptcp_subflow_active(subflow);
1390 }
1391 
1392 #define SSK_MODE_ACTIVE	0
1393 #define SSK_MODE_BACKUP	1
1394 #define SSK_MODE_MAX	2
1395 
1396 /* implement the mptcp packet scheduler;
1397  * returns the subflow that will transmit the next DSS
1398  * additionally updates the rtx timeout
1399  */
1400 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1401 {
1402 	struct subflow_send_info send_info[SSK_MODE_MAX];
1403 	struct mptcp_subflow_context *subflow;
1404 	struct sock *sk = (struct sock *)msk;
1405 	u32 pace, burst, wmem;
1406 	int i, nr_active = 0;
1407 	struct sock *ssk;
1408 	u64 linger_time;
1409 	long tout = 0;
1410 
1411 	sock_owned_by_me(sk);
1412 
1413 	if (__mptcp_check_fallback(msk)) {
1414 		if (!msk->first)
1415 			return NULL;
1416 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1417 	}
1418 
1419 	/* re-use last subflow, if the burst allow that */
1420 	if (msk->last_snd && msk->snd_burst > 0 &&
1421 	    sk_stream_memory_free(msk->last_snd) &&
1422 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1423 		mptcp_set_timeout(sk);
1424 		return msk->last_snd;
1425 	}
1426 
1427 	/* pick the subflow with the lower wmem/wspace ratio */
1428 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1429 		send_info[i].ssk = NULL;
1430 		send_info[i].linger_time = -1;
1431 	}
1432 
1433 	mptcp_for_each_subflow(msk, subflow) {
1434 		trace_mptcp_subflow_get_send(subflow);
1435 		ssk =  mptcp_subflow_tcp_sock(subflow);
1436 		if (!mptcp_subflow_active(subflow))
1437 			continue;
1438 
1439 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1440 		nr_active += !subflow->backup;
1441 		pace = subflow->avg_pacing_rate;
1442 		if (unlikely(!pace)) {
1443 			/* init pacing rate from socket */
1444 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1445 			pace = subflow->avg_pacing_rate;
1446 			if (!pace)
1447 				continue;
1448 		}
1449 
1450 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1451 		if (linger_time < send_info[subflow->backup].linger_time) {
1452 			send_info[subflow->backup].ssk = ssk;
1453 			send_info[subflow->backup].linger_time = linger_time;
1454 		}
1455 	}
1456 	__mptcp_set_timeout(sk, tout);
1457 
1458 	/* pick the best backup if no other subflow is active */
1459 	if (!nr_active)
1460 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1461 
1462 	/* According to the blest algorithm, to avoid HoL blocking for the
1463 	 * faster flow, we need to:
1464 	 * - estimate the faster flow linger time
1465 	 * - use the above to estimate the amount of byte transferred
1466 	 *   by the faster flow
1467 	 * - check that the amount of queued data is greter than the above,
1468 	 *   otherwise do not use the picked, slower, subflow
1469 	 * We select the subflow with the shorter estimated time to flush
1470 	 * the queued mem, which basically ensure the above. We just need
1471 	 * to check that subflow has a non empty cwin.
1472 	 */
1473 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1474 	if (!ssk || !sk_stream_memory_free(ssk))
1475 		return NULL;
1476 
1477 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1478 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1479 	if (!burst) {
1480 		msk->last_snd = NULL;
1481 		return ssk;
1482 	}
1483 
1484 	subflow = mptcp_subflow_ctx(ssk);
1485 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1486 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1487 					   burst + wmem);
1488 	msk->last_snd = ssk;
1489 	msk->snd_burst = burst;
1490 	return ssk;
1491 }
1492 
1493 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1494 {
1495 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1496 	release_sock(ssk);
1497 }
1498 
1499 static void mptcp_update_post_push(struct mptcp_sock *msk,
1500 				   struct mptcp_data_frag *dfrag,
1501 				   u32 sent)
1502 {
1503 	u64 snd_nxt_new = dfrag->data_seq;
1504 
1505 	dfrag->already_sent += sent;
1506 
1507 	msk->snd_burst -= sent;
1508 
1509 	snd_nxt_new += dfrag->already_sent;
1510 
1511 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1512 	 * is recovering after a failover. In that event, this re-sends
1513 	 * old segments.
1514 	 *
1515 	 * Thus compute snd_nxt_new candidate based on
1516 	 * the dfrag->data_seq that was sent and the data
1517 	 * that has been handed to the subflow for transmission
1518 	 * and skip update in case it was old dfrag.
1519 	 */
1520 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1521 		msk->snd_nxt = snd_nxt_new;
1522 }
1523 
1524 void mptcp_check_and_set_pending(struct sock *sk)
1525 {
1526 	if (mptcp_send_head(sk))
1527 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1528 }
1529 
1530 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1531 {
1532 	struct sock *prev_ssk = NULL, *ssk = NULL;
1533 	struct mptcp_sock *msk = mptcp_sk(sk);
1534 	struct mptcp_sendmsg_info info = {
1535 				.flags = flags,
1536 	};
1537 	struct mptcp_data_frag *dfrag;
1538 	int len, copied = 0;
1539 
1540 	while ((dfrag = mptcp_send_head(sk))) {
1541 		info.sent = dfrag->already_sent;
1542 		info.limit = dfrag->data_len;
1543 		len = dfrag->data_len - dfrag->already_sent;
1544 		while (len > 0) {
1545 			int ret = 0;
1546 
1547 			prev_ssk = ssk;
1548 			ssk = mptcp_subflow_get_send(msk);
1549 
1550 			/* First check. If the ssk has changed since
1551 			 * the last round, release prev_ssk
1552 			 */
1553 			if (ssk != prev_ssk && prev_ssk)
1554 				mptcp_push_release(prev_ssk, &info);
1555 			if (!ssk)
1556 				goto out;
1557 
1558 			/* Need to lock the new subflow only if different
1559 			 * from the previous one, otherwise we are still
1560 			 * helding the relevant lock
1561 			 */
1562 			if (ssk != prev_ssk)
1563 				lock_sock(ssk);
1564 
1565 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1566 			if (ret <= 0) {
1567 				mptcp_push_release(ssk, &info);
1568 				goto out;
1569 			}
1570 
1571 			info.sent += ret;
1572 			copied += ret;
1573 			len -= ret;
1574 
1575 			mptcp_update_post_push(msk, dfrag, ret);
1576 		}
1577 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1578 	}
1579 
1580 	/* at this point we held the socket lock for the last subflow we used */
1581 	if (ssk)
1582 		mptcp_push_release(ssk, &info);
1583 
1584 out:
1585 	/* ensure the rtx timer is running */
1586 	if (!mptcp_timer_pending(sk))
1587 		mptcp_reset_timer(sk);
1588 	if (copied)
1589 		__mptcp_check_send_data_fin(sk);
1590 }
1591 
1592 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1593 {
1594 	struct mptcp_sock *msk = mptcp_sk(sk);
1595 	struct mptcp_sendmsg_info info = {
1596 		.data_lock_held = true,
1597 	};
1598 	struct mptcp_data_frag *dfrag;
1599 	struct sock *xmit_ssk;
1600 	int len, copied = 0;
1601 	bool first = true;
1602 
1603 	info.flags = 0;
1604 	while ((dfrag = mptcp_send_head(sk))) {
1605 		info.sent = dfrag->already_sent;
1606 		info.limit = dfrag->data_len;
1607 		len = dfrag->data_len - dfrag->already_sent;
1608 		while (len > 0) {
1609 			int ret = 0;
1610 
1611 			/* the caller already invoked the packet scheduler,
1612 			 * check for a different subflow usage only after
1613 			 * spooling the first chunk of data
1614 			 */
1615 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1616 			if (!xmit_ssk)
1617 				goto out;
1618 			if (xmit_ssk != ssk) {
1619 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1620 						       MPTCP_DELEGATE_SEND);
1621 				goto out;
1622 			}
1623 
1624 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1625 			if (ret <= 0)
1626 				goto out;
1627 
1628 			info.sent += ret;
1629 			copied += ret;
1630 			len -= ret;
1631 			first = false;
1632 
1633 			mptcp_update_post_push(msk, dfrag, ret);
1634 		}
1635 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1636 	}
1637 
1638 out:
1639 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1640 	 * not going to flush it via release_sock()
1641 	 */
1642 	if (copied) {
1643 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1644 			 info.size_goal);
1645 		if (!mptcp_timer_pending(sk))
1646 			mptcp_reset_timer(sk);
1647 
1648 		if (msk->snd_data_fin_enable &&
1649 		    msk->snd_nxt + 1 == msk->write_seq)
1650 			mptcp_schedule_work(sk);
1651 	}
1652 }
1653 
1654 static void mptcp_set_nospace(struct sock *sk)
1655 {
1656 	/* enable autotune */
1657 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1658 
1659 	/* will be cleared on avail space */
1660 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1661 }
1662 
1663 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1664 {
1665 	struct mptcp_sock *msk = mptcp_sk(sk);
1666 	struct page_frag *pfrag;
1667 	size_t copied = 0;
1668 	int ret = 0;
1669 	long timeo;
1670 
1671 	/* we don't support FASTOPEN yet */
1672 	if (msg->msg_flags & MSG_FASTOPEN)
1673 		return -EOPNOTSUPP;
1674 
1675 	/* silently ignore everything else */
1676 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1677 
1678 	lock_sock(sk);
1679 
1680 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1681 
1682 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1683 		ret = sk_stream_wait_connect(sk, &timeo);
1684 		if (ret)
1685 			goto out;
1686 	}
1687 
1688 	pfrag = sk_page_frag(sk);
1689 
1690 	while (msg_data_left(msg)) {
1691 		int total_ts, frag_truesize = 0;
1692 		struct mptcp_data_frag *dfrag;
1693 		bool dfrag_collapsed;
1694 		size_t psize, offset;
1695 
1696 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1697 			ret = -EPIPE;
1698 			goto out;
1699 		}
1700 
1701 		/* reuse tail pfrag, if possible, or carve a new one from the
1702 		 * page allocator
1703 		 */
1704 		dfrag = mptcp_pending_tail(sk);
1705 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1706 		if (!dfrag_collapsed) {
1707 			if (!sk_stream_memory_free(sk))
1708 				goto wait_for_memory;
1709 
1710 			if (!mptcp_page_frag_refill(sk, pfrag))
1711 				goto wait_for_memory;
1712 
1713 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1714 			frag_truesize = dfrag->overhead;
1715 		}
1716 
1717 		/* we do not bound vs wspace, to allow a single packet.
1718 		 * memory accounting will prevent execessive memory usage
1719 		 * anyway
1720 		 */
1721 		offset = dfrag->offset + dfrag->data_len;
1722 		psize = pfrag->size - offset;
1723 		psize = min_t(size_t, psize, msg_data_left(msg));
1724 		total_ts = psize + frag_truesize;
1725 
1726 		if (!sk_wmem_schedule(sk, total_ts))
1727 			goto wait_for_memory;
1728 
1729 		if (copy_page_from_iter(dfrag->page, offset, psize,
1730 					&msg->msg_iter) != psize) {
1731 			ret = -EFAULT;
1732 			goto out;
1733 		}
1734 
1735 		/* data successfully copied into the write queue */
1736 		sk->sk_forward_alloc -= total_ts;
1737 		copied += psize;
1738 		dfrag->data_len += psize;
1739 		frag_truesize += psize;
1740 		pfrag->offset += frag_truesize;
1741 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1742 
1743 		/* charge data on mptcp pending queue to the msk socket
1744 		 * Note: we charge such data both to sk and ssk
1745 		 */
1746 		sk_wmem_queued_add(sk, frag_truesize);
1747 		if (!dfrag_collapsed) {
1748 			get_page(dfrag->page);
1749 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1750 			if (!msk->first_pending)
1751 				WRITE_ONCE(msk->first_pending, dfrag);
1752 		}
1753 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1754 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1755 			 !dfrag_collapsed);
1756 
1757 		continue;
1758 
1759 wait_for_memory:
1760 		mptcp_set_nospace(sk);
1761 		__mptcp_push_pending(sk, msg->msg_flags);
1762 		ret = sk_stream_wait_memory(sk, &timeo);
1763 		if (ret)
1764 			goto out;
1765 	}
1766 
1767 	if (copied)
1768 		__mptcp_push_pending(sk, msg->msg_flags);
1769 
1770 out:
1771 	release_sock(sk);
1772 	return copied ? : ret;
1773 }
1774 
1775 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1776 				struct msghdr *msg,
1777 				size_t len, int flags,
1778 				struct scm_timestamping_internal *tss,
1779 				int *cmsg_flags)
1780 {
1781 	struct sk_buff *skb, *tmp;
1782 	int copied = 0;
1783 
1784 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1785 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1786 		u32 data_len = skb->len - offset;
1787 		u32 count = min_t(size_t, len - copied, data_len);
1788 		int err;
1789 
1790 		if (!(flags & MSG_TRUNC)) {
1791 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1792 			if (unlikely(err < 0)) {
1793 				if (!copied)
1794 					return err;
1795 				break;
1796 			}
1797 		}
1798 
1799 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1800 			tcp_update_recv_tstamps(skb, tss);
1801 			*cmsg_flags |= MPTCP_CMSG_TS;
1802 		}
1803 
1804 		copied += count;
1805 
1806 		if (count < data_len) {
1807 			if (!(flags & MSG_PEEK)) {
1808 				MPTCP_SKB_CB(skb)->offset += count;
1809 				MPTCP_SKB_CB(skb)->map_seq += count;
1810 			}
1811 			break;
1812 		}
1813 
1814 		if (!(flags & MSG_PEEK)) {
1815 			/* we will bulk release the skb memory later */
1816 			skb->destructor = NULL;
1817 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1818 			__skb_unlink(skb, &msk->receive_queue);
1819 			__kfree_skb(skb);
1820 		}
1821 
1822 		if (copied >= len)
1823 			break;
1824 	}
1825 
1826 	return copied;
1827 }
1828 
1829 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1830  *
1831  * Only difference: Use highest rtt estimate of the subflows in use.
1832  */
1833 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1834 {
1835 	struct mptcp_subflow_context *subflow;
1836 	struct sock *sk = (struct sock *)msk;
1837 	u32 time, advmss = 1;
1838 	u64 rtt_us, mstamp;
1839 
1840 	sock_owned_by_me(sk);
1841 
1842 	if (copied <= 0)
1843 		return;
1844 
1845 	msk->rcvq_space.copied += copied;
1846 
1847 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1848 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1849 
1850 	rtt_us = msk->rcvq_space.rtt_us;
1851 	if (rtt_us && time < (rtt_us >> 3))
1852 		return;
1853 
1854 	rtt_us = 0;
1855 	mptcp_for_each_subflow(msk, subflow) {
1856 		const struct tcp_sock *tp;
1857 		u64 sf_rtt_us;
1858 		u32 sf_advmss;
1859 
1860 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1861 
1862 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1863 		sf_advmss = READ_ONCE(tp->advmss);
1864 
1865 		rtt_us = max(sf_rtt_us, rtt_us);
1866 		advmss = max(sf_advmss, advmss);
1867 	}
1868 
1869 	msk->rcvq_space.rtt_us = rtt_us;
1870 	if (time < (rtt_us >> 3) || rtt_us == 0)
1871 		return;
1872 
1873 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1874 		goto new_measure;
1875 
1876 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1877 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1878 		int rcvmem, rcvbuf;
1879 		u64 rcvwin, grow;
1880 
1881 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1882 
1883 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1884 
1885 		do_div(grow, msk->rcvq_space.space);
1886 		rcvwin += (grow << 1);
1887 
1888 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1889 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1890 			rcvmem += 128;
1891 
1892 		do_div(rcvwin, advmss);
1893 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1894 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1895 
1896 		if (rcvbuf > sk->sk_rcvbuf) {
1897 			u32 window_clamp;
1898 
1899 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1900 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1901 
1902 			/* Make subflows follow along.  If we do not do this, we
1903 			 * get drops at subflow level if skbs can't be moved to
1904 			 * the mptcp rx queue fast enough (announced rcv_win can
1905 			 * exceed ssk->sk_rcvbuf).
1906 			 */
1907 			mptcp_for_each_subflow(msk, subflow) {
1908 				struct sock *ssk;
1909 				bool slow;
1910 
1911 				ssk = mptcp_subflow_tcp_sock(subflow);
1912 				slow = lock_sock_fast(ssk);
1913 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1914 				tcp_sk(ssk)->window_clamp = window_clamp;
1915 				tcp_cleanup_rbuf(ssk, 1);
1916 				unlock_sock_fast(ssk, slow);
1917 			}
1918 		}
1919 	}
1920 
1921 	msk->rcvq_space.space = msk->rcvq_space.copied;
1922 new_measure:
1923 	msk->rcvq_space.copied = 0;
1924 	msk->rcvq_space.time = mstamp;
1925 }
1926 
1927 static void __mptcp_update_rmem(struct sock *sk)
1928 {
1929 	struct mptcp_sock *msk = mptcp_sk(sk);
1930 
1931 	if (!msk->rmem_released)
1932 		return;
1933 
1934 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1935 	mptcp_rmem_uncharge(sk, msk->rmem_released);
1936 	WRITE_ONCE(msk->rmem_released, 0);
1937 }
1938 
1939 static void __mptcp_splice_receive_queue(struct sock *sk)
1940 {
1941 	struct mptcp_sock *msk = mptcp_sk(sk);
1942 
1943 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1944 }
1945 
1946 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1947 {
1948 	struct sock *sk = (struct sock *)msk;
1949 	unsigned int moved = 0;
1950 	bool ret, done;
1951 
1952 	do {
1953 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1954 		bool slowpath;
1955 
1956 		/* we can have data pending in the subflows only if the msk
1957 		 * receive buffer was full at subflow_data_ready() time,
1958 		 * that is an unlikely slow path.
1959 		 */
1960 		if (likely(!ssk))
1961 			break;
1962 
1963 		slowpath = lock_sock_fast(ssk);
1964 		mptcp_data_lock(sk);
1965 		__mptcp_update_rmem(sk);
1966 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1967 		mptcp_data_unlock(sk);
1968 
1969 		if (unlikely(ssk->sk_err))
1970 			__mptcp_error_report(sk);
1971 		unlock_sock_fast(ssk, slowpath);
1972 	} while (!done);
1973 
1974 	/* acquire the data lock only if some input data is pending */
1975 	ret = moved > 0;
1976 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1977 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1978 		mptcp_data_lock(sk);
1979 		__mptcp_update_rmem(sk);
1980 		ret |= __mptcp_ofo_queue(msk);
1981 		__mptcp_splice_receive_queue(sk);
1982 		mptcp_data_unlock(sk);
1983 	}
1984 	if (ret)
1985 		mptcp_check_data_fin((struct sock *)msk);
1986 	return !skb_queue_empty(&msk->receive_queue);
1987 }
1988 
1989 static unsigned int mptcp_inq_hint(const struct sock *sk)
1990 {
1991 	const struct mptcp_sock *msk = mptcp_sk(sk);
1992 	const struct sk_buff *skb;
1993 
1994 	skb = skb_peek(&msk->receive_queue);
1995 	if (skb) {
1996 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
1997 
1998 		if (hint_val >= INT_MAX)
1999 			return INT_MAX;
2000 
2001 		return (unsigned int)hint_val;
2002 	}
2003 
2004 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2005 		return 1;
2006 
2007 	return 0;
2008 }
2009 
2010 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2011 			 int flags, int *addr_len)
2012 {
2013 	struct mptcp_sock *msk = mptcp_sk(sk);
2014 	struct scm_timestamping_internal tss;
2015 	int copied = 0, cmsg_flags = 0;
2016 	int target;
2017 	long timeo;
2018 
2019 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2020 	if (unlikely(flags & MSG_ERRQUEUE))
2021 		return inet_recv_error(sk, msg, len, addr_len);
2022 
2023 	lock_sock(sk);
2024 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2025 		copied = -ENOTCONN;
2026 		goto out_err;
2027 	}
2028 
2029 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2030 
2031 	len = min_t(size_t, len, INT_MAX);
2032 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2033 
2034 	if (unlikely(msk->recvmsg_inq))
2035 		cmsg_flags = MPTCP_CMSG_INQ;
2036 
2037 	while (copied < len) {
2038 		int bytes_read;
2039 
2040 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2041 		if (unlikely(bytes_read < 0)) {
2042 			if (!copied)
2043 				copied = bytes_read;
2044 			goto out_err;
2045 		}
2046 
2047 		copied += bytes_read;
2048 
2049 		/* be sure to advertise window change */
2050 		mptcp_cleanup_rbuf(msk);
2051 
2052 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2053 			continue;
2054 
2055 		/* only the master socket status is relevant here. The exit
2056 		 * conditions mirror closely tcp_recvmsg()
2057 		 */
2058 		if (copied >= target)
2059 			break;
2060 
2061 		if (copied) {
2062 			if (sk->sk_err ||
2063 			    sk->sk_state == TCP_CLOSE ||
2064 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2065 			    !timeo ||
2066 			    signal_pending(current))
2067 				break;
2068 		} else {
2069 			if (sk->sk_err) {
2070 				copied = sock_error(sk);
2071 				break;
2072 			}
2073 
2074 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2075 				mptcp_check_for_eof(msk);
2076 
2077 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2078 				/* race breaker: the shutdown could be after the
2079 				 * previous receive queue check
2080 				 */
2081 				if (__mptcp_move_skbs(msk))
2082 					continue;
2083 				break;
2084 			}
2085 
2086 			if (sk->sk_state == TCP_CLOSE) {
2087 				copied = -ENOTCONN;
2088 				break;
2089 			}
2090 
2091 			if (!timeo) {
2092 				copied = -EAGAIN;
2093 				break;
2094 			}
2095 
2096 			if (signal_pending(current)) {
2097 				copied = sock_intr_errno(timeo);
2098 				break;
2099 			}
2100 		}
2101 
2102 		pr_debug("block timeout %ld", timeo);
2103 		sk_wait_data(sk, &timeo, NULL);
2104 	}
2105 
2106 out_err:
2107 	if (cmsg_flags && copied >= 0) {
2108 		if (cmsg_flags & MPTCP_CMSG_TS)
2109 			tcp_recv_timestamp(msg, sk, &tss);
2110 
2111 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2112 			unsigned int inq = mptcp_inq_hint(sk);
2113 
2114 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2115 		}
2116 	}
2117 
2118 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2119 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2120 		 skb_queue_empty(&msk->receive_queue), copied);
2121 	if (!(flags & MSG_PEEK))
2122 		mptcp_rcv_space_adjust(msk, copied);
2123 
2124 	release_sock(sk);
2125 	return copied;
2126 }
2127 
2128 static void mptcp_retransmit_timer(struct timer_list *t)
2129 {
2130 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2131 						       icsk_retransmit_timer);
2132 	struct sock *sk = &icsk->icsk_inet.sk;
2133 	struct mptcp_sock *msk = mptcp_sk(sk);
2134 
2135 	bh_lock_sock(sk);
2136 	if (!sock_owned_by_user(sk)) {
2137 		/* we need a process context to retransmit */
2138 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2139 			mptcp_schedule_work(sk);
2140 	} else {
2141 		/* delegate our work to tcp_release_cb() */
2142 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2143 	}
2144 	bh_unlock_sock(sk);
2145 	sock_put(sk);
2146 }
2147 
2148 static void mptcp_timeout_timer(struct timer_list *t)
2149 {
2150 	struct sock *sk = from_timer(sk, t, sk_timer);
2151 
2152 	mptcp_schedule_work(sk);
2153 	sock_put(sk);
2154 }
2155 
2156 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2157  * level.
2158  *
2159  * A backup subflow is returned only if that is the only kind available.
2160  */
2161 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2162 {
2163 	struct sock *backup = NULL, *pick = NULL;
2164 	struct mptcp_subflow_context *subflow;
2165 	int min_stale_count = INT_MAX;
2166 
2167 	sock_owned_by_me((const struct sock *)msk);
2168 
2169 	if (__mptcp_check_fallback(msk))
2170 		return NULL;
2171 
2172 	mptcp_for_each_subflow(msk, subflow) {
2173 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2174 
2175 		if (!__mptcp_subflow_active(subflow))
2176 			continue;
2177 
2178 		/* still data outstanding at TCP level? skip this */
2179 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2180 			mptcp_pm_subflow_chk_stale(msk, ssk);
2181 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2182 			continue;
2183 		}
2184 
2185 		if (subflow->backup) {
2186 			if (!backup)
2187 				backup = ssk;
2188 			continue;
2189 		}
2190 
2191 		if (!pick)
2192 			pick = ssk;
2193 	}
2194 
2195 	if (pick)
2196 		return pick;
2197 
2198 	/* use backup only if there are no progresses anywhere */
2199 	return min_stale_count > 1 ? backup : NULL;
2200 }
2201 
2202 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2203 {
2204 	if (msk->subflow) {
2205 		iput(SOCK_INODE(msk->subflow));
2206 		msk->subflow = NULL;
2207 	}
2208 }
2209 
2210 bool __mptcp_retransmit_pending_data(struct sock *sk)
2211 {
2212 	struct mptcp_data_frag *cur, *rtx_head;
2213 	struct mptcp_sock *msk = mptcp_sk(sk);
2214 
2215 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2216 		return false;
2217 
2218 	if (tcp_rtx_and_write_queues_empty(sk))
2219 		return false;
2220 
2221 	/* the closing socket has some data untransmitted and/or unacked:
2222 	 * some data in the mptcp rtx queue has not really xmitted yet.
2223 	 * keep it simple and re-inject the whole mptcp level rtx queue
2224 	 */
2225 	mptcp_data_lock(sk);
2226 	__mptcp_clean_una_wakeup(sk);
2227 	rtx_head = mptcp_rtx_head(sk);
2228 	if (!rtx_head) {
2229 		mptcp_data_unlock(sk);
2230 		return false;
2231 	}
2232 
2233 	msk->recovery_snd_nxt = msk->snd_nxt;
2234 	msk->recovery = true;
2235 	mptcp_data_unlock(sk);
2236 
2237 	msk->first_pending = rtx_head;
2238 	msk->snd_burst = 0;
2239 
2240 	/* be sure to clear the "sent status" on all re-injected fragments */
2241 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2242 		if (!cur->already_sent)
2243 			break;
2244 		cur->already_sent = 0;
2245 	}
2246 
2247 	return true;
2248 }
2249 
2250 /* flags for __mptcp_close_ssk() */
2251 #define MPTCP_CF_PUSH		BIT(1)
2252 #define MPTCP_CF_FASTCLOSE	BIT(2)
2253 
2254 /* subflow sockets can be either outgoing (connect) or incoming
2255  * (accept).
2256  *
2257  * Outgoing subflows use in-kernel sockets.
2258  * Incoming subflows do not have their own 'struct socket' allocated,
2259  * so we need to use tcp_close() after detaching them from the mptcp
2260  * parent socket.
2261  */
2262 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2263 			      struct mptcp_subflow_context *subflow,
2264 			      unsigned int flags)
2265 {
2266 	struct mptcp_sock *msk = mptcp_sk(sk);
2267 	bool need_push, dispose_it;
2268 
2269 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2270 	if (dispose_it)
2271 		list_del(&subflow->node);
2272 
2273 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2274 
2275 	if (flags & MPTCP_CF_FASTCLOSE)
2276 		subflow->send_fastclose = 1;
2277 
2278 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2279 	if (!dispose_it) {
2280 		tcp_disconnect(ssk, 0);
2281 		msk->subflow->state = SS_UNCONNECTED;
2282 		mptcp_subflow_ctx_reset(subflow);
2283 		release_sock(ssk);
2284 
2285 		goto out;
2286 	}
2287 
2288 	/* if we are invoked by the msk cleanup code, the subflow is
2289 	 * already orphaned
2290 	 */
2291 	if (ssk->sk_socket)
2292 		sock_orphan(ssk);
2293 
2294 	subflow->disposable = 1;
2295 
2296 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2297 	 * the ssk has been already destroyed, we just need to release the
2298 	 * reference owned by msk;
2299 	 */
2300 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2301 		kfree_rcu(subflow, rcu);
2302 	} else {
2303 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2304 		if (ssk->sk_state == TCP_LISTEN) {
2305 			tcp_set_state(ssk, TCP_CLOSE);
2306 			mptcp_subflow_queue_clean(ssk);
2307 			inet_csk_listen_stop(ssk);
2308 		}
2309 		__tcp_close(ssk, 0);
2310 
2311 		/* close acquired an extra ref */
2312 		__sock_put(ssk);
2313 	}
2314 	release_sock(ssk);
2315 
2316 	sock_put(ssk);
2317 
2318 	if (ssk == msk->first)
2319 		msk->first = NULL;
2320 
2321 out:
2322 	if (ssk == msk->last_snd)
2323 		msk->last_snd = NULL;
2324 
2325 	if (need_push)
2326 		__mptcp_push_pending(sk, 0);
2327 }
2328 
2329 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2330 		     struct mptcp_subflow_context *subflow)
2331 {
2332 	if (sk->sk_state == TCP_ESTABLISHED)
2333 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2334 
2335 	/* subflow aborted before reaching the fully_established status
2336 	 * attempt the creation of the next subflow
2337 	 */
2338 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2339 
2340 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2341 }
2342 
2343 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2344 {
2345 	return 0;
2346 }
2347 
2348 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2349 {
2350 	struct mptcp_subflow_context *subflow, *tmp;
2351 
2352 	might_sleep();
2353 
2354 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2355 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2356 
2357 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2358 			continue;
2359 
2360 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2361 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2362 			continue;
2363 
2364 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2365 	}
2366 }
2367 
2368 static bool mptcp_check_close_timeout(const struct sock *sk)
2369 {
2370 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2371 	struct mptcp_subflow_context *subflow;
2372 
2373 	if (delta >= TCP_TIMEWAIT_LEN)
2374 		return true;
2375 
2376 	/* if all subflows are in closed status don't bother with additional
2377 	 * timeout
2378 	 */
2379 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2380 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2381 		    TCP_CLOSE)
2382 			return false;
2383 	}
2384 	return true;
2385 }
2386 
2387 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2388 {
2389 	struct mptcp_subflow_context *subflow, *tmp;
2390 	struct sock *sk = &msk->sk.icsk_inet.sk;
2391 
2392 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2393 		return;
2394 
2395 	mptcp_token_destroy(msk);
2396 
2397 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2398 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2399 		bool slow;
2400 
2401 		slow = lock_sock_fast(tcp_sk);
2402 		if (tcp_sk->sk_state != TCP_CLOSE) {
2403 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2404 			tcp_set_state(tcp_sk, TCP_CLOSE);
2405 		}
2406 		unlock_sock_fast(tcp_sk, slow);
2407 	}
2408 
2409 	inet_sk_state_store(sk, TCP_CLOSE);
2410 	sk->sk_shutdown = SHUTDOWN_MASK;
2411 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2412 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2413 
2414 	mptcp_close_wake_up(sk);
2415 }
2416 
2417 static void __mptcp_retrans(struct sock *sk)
2418 {
2419 	struct mptcp_sock *msk = mptcp_sk(sk);
2420 	struct mptcp_sendmsg_info info = {};
2421 	struct mptcp_data_frag *dfrag;
2422 	size_t copied = 0;
2423 	struct sock *ssk;
2424 	int ret;
2425 
2426 	mptcp_clean_una_wakeup(sk);
2427 
2428 	/* first check ssk: need to kick "stale" logic */
2429 	ssk = mptcp_subflow_get_retrans(msk);
2430 	dfrag = mptcp_rtx_head(sk);
2431 	if (!dfrag) {
2432 		if (mptcp_data_fin_enabled(msk)) {
2433 			struct inet_connection_sock *icsk = inet_csk(sk);
2434 
2435 			icsk->icsk_retransmits++;
2436 			mptcp_set_datafin_timeout(sk);
2437 			mptcp_send_ack(msk);
2438 
2439 			goto reset_timer;
2440 		}
2441 
2442 		if (!mptcp_send_head(sk))
2443 			return;
2444 
2445 		goto reset_timer;
2446 	}
2447 
2448 	if (!ssk)
2449 		goto reset_timer;
2450 
2451 	lock_sock(ssk);
2452 
2453 	/* limit retransmission to the bytes already sent on some subflows */
2454 	info.sent = 0;
2455 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2456 	while (info.sent < info.limit) {
2457 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2458 		if (ret <= 0)
2459 			break;
2460 
2461 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2462 		copied += ret;
2463 		info.sent += ret;
2464 	}
2465 	if (copied) {
2466 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2467 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2468 			 info.size_goal);
2469 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2470 	}
2471 
2472 	release_sock(ssk);
2473 
2474 reset_timer:
2475 	mptcp_check_and_set_pending(sk);
2476 
2477 	if (!mptcp_timer_pending(sk))
2478 		mptcp_reset_timer(sk);
2479 }
2480 
2481 /* schedule the timeout timer for the relevant event: either close timeout
2482  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2483  */
2484 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2485 {
2486 	struct sock *sk = (struct sock *)msk;
2487 	unsigned long timeout, close_timeout;
2488 
2489 	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2490 		return;
2491 
2492 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2493 
2494 	/* the close timeout takes precedence on the fail one, and here at least one of
2495 	 * them is active
2496 	 */
2497 	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2498 
2499 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2500 }
2501 
2502 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2503 {
2504 	struct sock *ssk = msk->first;
2505 	bool slow;
2506 
2507 	if (!ssk)
2508 		return;
2509 
2510 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2511 
2512 	slow = lock_sock_fast(ssk);
2513 	mptcp_subflow_reset(ssk);
2514 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2515 	unlock_sock_fast(ssk, slow);
2516 
2517 	mptcp_reset_timeout(msk, 0);
2518 }
2519 
2520 static void mptcp_worker(struct work_struct *work)
2521 {
2522 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2523 	struct sock *sk = &msk->sk.icsk_inet.sk;
2524 	unsigned long fail_tout;
2525 	int state;
2526 
2527 	lock_sock(sk);
2528 	state = sk->sk_state;
2529 	if (unlikely(state == TCP_CLOSE))
2530 		goto unlock;
2531 
2532 	mptcp_check_data_fin_ack(sk);
2533 
2534 	mptcp_check_fastclose(msk);
2535 
2536 	mptcp_pm_nl_work(msk);
2537 
2538 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2539 		mptcp_check_for_eof(msk);
2540 
2541 	__mptcp_check_send_data_fin(sk);
2542 	mptcp_check_data_fin(sk);
2543 
2544 	/* There is no point in keeping around an orphaned sk timedout or
2545 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2546 	 * even if it is orphaned and in FIN_WAIT2 state
2547 	 */
2548 	if (sock_flag(sk, SOCK_DEAD) &&
2549 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2550 		inet_sk_state_store(sk, TCP_CLOSE);
2551 		__mptcp_destroy_sock(sk);
2552 		goto unlock;
2553 	}
2554 
2555 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2556 		__mptcp_close_subflow(msk);
2557 
2558 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2559 		__mptcp_retrans(sk);
2560 
2561 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2562 	if (fail_tout && time_after(jiffies, fail_tout))
2563 		mptcp_mp_fail_no_response(msk);
2564 
2565 unlock:
2566 	release_sock(sk);
2567 	sock_put(sk);
2568 }
2569 
2570 static int __mptcp_init_sock(struct sock *sk)
2571 {
2572 	struct mptcp_sock *msk = mptcp_sk(sk);
2573 
2574 	INIT_LIST_HEAD(&msk->conn_list);
2575 	INIT_LIST_HEAD(&msk->join_list);
2576 	INIT_LIST_HEAD(&msk->rtx_queue);
2577 	INIT_WORK(&msk->work, mptcp_worker);
2578 	__skb_queue_head_init(&msk->receive_queue);
2579 	msk->out_of_order_queue = RB_ROOT;
2580 	msk->first_pending = NULL;
2581 	msk->rmem_fwd_alloc = 0;
2582 	WRITE_ONCE(msk->rmem_released, 0);
2583 	msk->timer_ival = TCP_RTO_MIN;
2584 
2585 	msk->first = NULL;
2586 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2587 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2588 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2589 	msk->recovery = false;
2590 
2591 	mptcp_pm_data_init(msk);
2592 
2593 	/* re-use the csk retrans timer for MPTCP-level retrans */
2594 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2595 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2596 
2597 	return 0;
2598 }
2599 
2600 static void mptcp_ca_reset(struct sock *sk)
2601 {
2602 	struct inet_connection_sock *icsk = inet_csk(sk);
2603 
2604 	tcp_assign_congestion_control(sk);
2605 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2606 
2607 	/* no need to keep a reference to the ops, the name will suffice */
2608 	tcp_cleanup_congestion_control(sk);
2609 	icsk->icsk_ca_ops = NULL;
2610 }
2611 
2612 static int mptcp_init_sock(struct sock *sk)
2613 {
2614 	struct net *net = sock_net(sk);
2615 	int ret;
2616 
2617 	ret = __mptcp_init_sock(sk);
2618 	if (ret)
2619 		return ret;
2620 
2621 	if (!mptcp_is_enabled(net))
2622 		return -ENOPROTOOPT;
2623 
2624 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2625 		return -ENOMEM;
2626 
2627 	ret = __mptcp_socket_create(mptcp_sk(sk));
2628 	if (ret)
2629 		return ret;
2630 
2631 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2632 	 * propagate the correct value
2633 	 */
2634 	mptcp_ca_reset(sk);
2635 
2636 	sk_sockets_allocated_inc(sk);
2637 	sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
2638 	sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
2639 
2640 	return 0;
2641 }
2642 
2643 static void __mptcp_clear_xmit(struct sock *sk)
2644 {
2645 	struct mptcp_sock *msk = mptcp_sk(sk);
2646 	struct mptcp_data_frag *dtmp, *dfrag;
2647 
2648 	WRITE_ONCE(msk->first_pending, NULL);
2649 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2650 		dfrag_clear(sk, dfrag);
2651 }
2652 
2653 static void mptcp_cancel_work(struct sock *sk)
2654 {
2655 	struct mptcp_sock *msk = mptcp_sk(sk);
2656 
2657 	if (cancel_work_sync(&msk->work))
2658 		__sock_put(sk);
2659 }
2660 
2661 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2662 {
2663 	lock_sock(ssk);
2664 
2665 	switch (ssk->sk_state) {
2666 	case TCP_LISTEN:
2667 		if (!(how & RCV_SHUTDOWN))
2668 			break;
2669 		fallthrough;
2670 	case TCP_SYN_SENT:
2671 		tcp_disconnect(ssk, O_NONBLOCK);
2672 		break;
2673 	default:
2674 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2675 			pr_debug("Fallback");
2676 			ssk->sk_shutdown |= how;
2677 			tcp_shutdown(ssk, how);
2678 		} else {
2679 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2680 			tcp_send_ack(ssk);
2681 			if (!mptcp_timer_pending(sk))
2682 				mptcp_reset_timer(sk);
2683 		}
2684 		break;
2685 	}
2686 
2687 	release_sock(ssk);
2688 }
2689 
2690 static const unsigned char new_state[16] = {
2691 	/* current state:     new state:      action:	*/
2692 	[0 /* (Invalid) */] = TCP_CLOSE,
2693 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2694 	[TCP_SYN_SENT]      = TCP_CLOSE,
2695 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2696 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2697 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2698 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2699 	[TCP_CLOSE]         = TCP_CLOSE,
2700 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2701 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2702 	[TCP_LISTEN]        = TCP_CLOSE,
2703 	[TCP_CLOSING]       = TCP_CLOSING,
2704 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2705 };
2706 
2707 static int mptcp_close_state(struct sock *sk)
2708 {
2709 	int next = (int)new_state[sk->sk_state];
2710 	int ns = next & TCP_STATE_MASK;
2711 
2712 	inet_sk_state_store(sk, ns);
2713 
2714 	return next & TCP_ACTION_FIN;
2715 }
2716 
2717 static void __mptcp_check_send_data_fin(struct sock *sk)
2718 {
2719 	struct mptcp_subflow_context *subflow;
2720 	struct mptcp_sock *msk = mptcp_sk(sk);
2721 
2722 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2723 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2724 		 msk->snd_nxt, msk->write_seq);
2725 
2726 	/* we still need to enqueue subflows or not really shutting down,
2727 	 * skip this
2728 	 */
2729 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2730 	    mptcp_send_head(sk))
2731 		return;
2732 
2733 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2734 
2735 	/* fallback socket will not get data_fin/ack, can move to the next
2736 	 * state now
2737 	 */
2738 	if (__mptcp_check_fallback(msk)) {
2739 		WRITE_ONCE(msk->snd_una, msk->write_seq);
2740 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2741 			inet_sk_state_store(sk, TCP_CLOSE);
2742 			mptcp_close_wake_up(sk);
2743 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2744 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2745 		}
2746 	}
2747 
2748 	mptcp_for_each_subflow(msk, subflow) {
2749 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2750 
2751 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2752 	}
2753 }
2754 
2755 static void __mptcp_wr_shutdown(struct sock *sk)
2756 {
2757 	struct mptcp_sock *msk = mptcp_sk(sk);
2758 
2759 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2760 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2761 		 !!mptcp_send_head(sk));
2762 
2763 	/* will be ignored by fallback sockets */
2764 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2765 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2766 
2767 	__mptcp_check_send_data_fin(sk);
2768 }
2769 
2770 static void __mptcp_destroy_sock(struct sock *sk)
2771 {
2772 	struct mptcp_subflow_context *subflow, *tmp;
2773 	struct mptcp_sock *msk = mptcp_sk(sk);
2774 	LIST_HEAD(conn_list);
2775 
2776 	pr_debug("msk=%p", msk);
2777 
2778 	might_sleep();
2779 
2780 	/* join list will be eventually flushed (with rst) at sock lock release time*/
2781 	list_splice_init(&msk->conn_list, &conn_list);
2782 
2783 	mptcp_stop_timer(sk);
2784 	sk_stop_timer(sk, &sk->sk_timer);
2785 	msk->pm.status = 0;
2786 
2787 	/* clears msk->subflow, allowing the following loop to close
2788 	 * even the initial subflow
2789 	 */
2790 	mptcp_dispose_initial_subflow(msk);
2791 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2792 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2793 		__mptcp_close_ssk(sk, ssk, subflow, 0);
2794 	}
2795 
2796 	sk->sk_prot->destroy(sk);
2797 
2798 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2799 	WARN_ON_ONCE(msk->rmem_released);
2800 	sk_stream_kill_queues(sk);
2801 	xfrm_sk_free_policy(sk);
2802 
2803 	sk_refcnt_debug_release(sk);
2804 	sock_put(sk);
2805 }
2806 
2807 static void mptcp_close(struct sock *sk, long timeout)
2808 {
2809 	struct mptcp_subflow_context *subflow;
2810 	struct mptcp_sock *msk = mptcp_sk(sk);
2811 	bool do_cancel_work = false;
2812 
2813 	lock_sock(sk);
2814 	sk->sk_shutdown = SHUTDOWN_MASK;
2815 
2816 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2817 		inet_sk_state_store(sk, TCP_CLOSE);
2818 		goto cleanup;
2819 	}
2820 
2821 	if (mptcp_close_state(sk))
2822 		__mptcp_wr_shutdown(sk);
2823 
2824 	sk_stream_wait_close(sk, timeout);
2825 
2826 cleanup:
2827 	/* orphan all the subflows */
2828 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2829 	mptcp_for_each_subflow(msk, subflow) {
2830 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2831 		bool slow = lock_sock_fast_nested(ssk);
2832 
2833 		/* since the close timeout takes precedence on the fail one,
2834 		 * cancel the latter
2835 		 */
2836 		if (ssk == msk->first)
2837 			subflow->fail_tout = 0;
2838 
2839 		sock_orphan(ssk);
2840 		unlock_sock_fast(ssk, slow);
2841 	}
2842 	sock_orphan(sk);
2843 
2844 	sock_hold(sk);
2845 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2846 	if (mptcp_sk(sk)->token)
2847 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
2848 
2849 	if (sk->sk_state == TCP_CLOSE) {
2850 		__mptcp_destroy_sock(sk);
2851 		do_cancel_work = true;
2852 	} else {
2853 		mptcp_reset_timeout(msk, 0);
2854 	}
2855 	release_sock(sk);
2856 	if (do_cancel_work)
2857 		mptcp_cancel_work(sk);
2858 
2859 	sock_put(sk);
2860 }
2861 
2862 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2863 {
2864 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2865 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2866 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2867 
2868 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2869 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2870 
2871 	if (msk6 && ssk6) {
2872 		msk6->saddr = ssk6->saddr;
2873 		msk6->flow_label = ssk6->flow_label;
2874 	}
2875 #endif
2876 
2877 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2878 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2879 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2880 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2881 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2882 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2883 }
2884 
2885 static int mptcp_disconnect(struct sock *sk, int flags)
2886 {
2887 	struct mptcp_subflow_context *subflow, *tmp;
2888 	struct mptcp_sock *msk = mptcp_sk(sk);
2889 
2890 	inet_sk_state_store(sk, TCP_CLOSE);
2891 
2892 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2893 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2894 
2895 		__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE);
2896 	}
2897 
2898 	mptcp_stop_timer(sk);
2899 	sk_stop_timer(sk, &sk->sk_timer);
2900 
2901 	if (mptcp_sk(sk)->token)
2902 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2903 
2904 	mptcp_destroy_common(msk);
2905 	msk->last_snd = NULL;
2906 	WRITE_ONCE(msk->flags, 0);
2907 	msk->cb_flags = 0;
2908 	msk->push_pending = 0;
2909 	msk->recovery = false;
2910 	msk->can_ack = false;
2911 	msk->fully_established = false;
2912 	msk->rcv_data_fin = false;
2913 	msk->snd_data_fin_enable = false;
2914 	msk->rcv_fastclose = false;
2915 	msk->use_64bit_ack = false;
2916 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2917 	mptcp_pm_data_reset(msk);
2918 	mptcp_ca_reset(sk);
2919 
2920 	sk->sk_shutdown = 0;
2921 	sk_error_report(sk);
2922 	return 0;
2923 }
2924 
2925 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2926 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2927 {
2928 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2929 
2930 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2931 }
2932 #endif
2933 
2934 struct sock *mptcp_sk_clone(const struct sock *sk,
2935 			    const struct mptcp_options_received *mp_opt,
2936 			    struct request_sock *req)
2937 {
2938 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2939 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2940 	struct mptcp_sock *msk;
2941 	u64 ack_seq;
2942 
2943 	if (!nsk)
2944 		return NULL;
2945 
2946 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2947 	if (nsk->sk_family == AF_INET6)
2948 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2949 #endif
2950 
2951 	__mptcp_init_sock(nsk);
2952 
2953 	msk = mptcp_sk(nsk);
2954 	msk->local_key = subflow_req->local_key;
2955 	msk->token = subflow_req->token;
2956 	msk->subflow = NULL;
2957 	WRITE_ONCE(msk->fully_established, false);
2958 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2959 		WRITE_ONCE(msk->csum_enabled, true);
2960 
2961 	msk->write_seq = subflow_req->idsn + 1;
2962 	msk->snd_nxt = msk->write_seq;
2963 	msk->snd_una = msk->write_seq;
2964 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2965 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2966 
2967 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2968 		msk->can_ack = true;
2969 		msk->remote_key = mp_opt->sndr_key;
2970 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2971 		ack_seq++;
2972 		WRITE_ONCE(msk->ack_seq, ack_seq);
2973 		atomic64_set(&msk->rcv_wnd_sent, ack_seq);
2974 	}
2975 
2976 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2977 	/* will be fully established after successful MPC subflow creation */
2978 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2979 
2980 	security_inet_csk_clone(nsk, req);
2981 	bh_unlock_sock(nsk);
2982 
2983 	/* keep a single reference */
2984 	__sock_put(nsk);
2985 	return nsk;
2986 }
2987 
2988 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2989 {
2990 	const struct tcp_sock *tp = tcp_sk(ssk);
2991 
2992 	msk->rcvq_space.copied = 0;
2993 	msk->rcvq_space.rtt_us = 0;
2994 
2995 	msk->rcvq_space.time = tp->tcp_mstamp;
2996 
2997 	/* initial rcv_space offering made to peer */
2998 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2999 				      TCP_INIT_CWND * tp->advmss);
3000 	if (msk->rcvq_space.space == 0)
3001 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3002 
3003 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3004 }
3005 
3006 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3007 				 bool kern)
3008 {
3009 	struct mptcp_sock *msk = mptcp_sk(sk);
3010 	struct socket *listener;
3011 	struct sock *newsk;
3012 
3013 	listener = __mptcp_nmpc_socket(msk);
3014 	if (WARN_ON_ONCE(!listener)) {
3015 		*err = -EINVAL;
3016 		return NULL;
3017 	}
3018 
3019 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3020 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3021 	if (!newsk)
3022 		return NULL;
3023 
3024 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3025 	if (sk_is_mptcp(newsk)) {
3026 		struct mptcp_subflow_context *subflow;
3027 		struct sock *new_mptcp_sock;
3028 
3029 		subflow = mptcp_subflow_ctx(newsk);
3030 		new_mptcp_sock = subflow->conn;
3031 
3032 		/* is_mptcp should be false if subflow->conn is missing, see
3033 		 * subflow_syn_recv_sock()
3034 		 */
3035 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3036 			tcp_sk(newsk)->is_mptcp = 0;
3037 			goto out;
3038 		}
3039 
3040 		/* acquire the 2nd reference for the owning socket */
3041 		sock_hold(new_mptcp_sock);
3042 		newsk = new_mptcp_sock;
3043 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3044 	} else {
3045 		MPTCP_INC_STATS(sock_net(sk),
3046 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3047 	}
3048 
3049 out:
3050 	newsk->sk_kern_sock = kern;
3051 	return newsk;
3052 }
3053 
3054 void mptcp_destroy_common(struct mptcp_sock *msk)
3055 {
3056 	struct sock *sk = (struct sock *)msk;
3057 
3058 	__mptcp_clear_xmit(sk);
3059 
3060 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3061 	mptcp_data_lock(sk);
3062 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3063 	__skb_queue_purge(&sk->sk_receive_queue);
3064 	skb_rbtree_purge(&msk->out_of_order_queue);
3065 	mptcp_data_unlock(sk);
3066 
3067 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3068 	 * inet_sock_destruct() will dispose it
3069 	 */
3070 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3071 	msk->rmem_fwd_alloc = 0;
3072 	mptcp_token_destroy(msk);
3073 	mptcp_pm_free_anno_list(msk);
3074 	mptcp_free_local_addr_list(msk);
3075 }
3076 
3077 static void mptcp_destroy(struct sock *sk)
3078 {
3079 	struct mptcp_sock *msk = mptcp_sk(sk);
3080 
3081 	mptcp_destroy_common(msk);
3082 	sk_sockets_allocated_dec(sk);
3083 }
3084 
3085 void __mptcp_data_acked(struct sock *sk)
3086 {
3087 	if (!sock_owned_by_user(sk))
3088 		__mptcp_clean_una(sk);
3089 	else
3090 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3091 
3092 	if (mptcp_pending_data_fin_ack(sk))
3093 		mptcp_schedule_work(sk);
3094 }
3095 
3096 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3097 {
3098 	if (!mptcp_send_head(sk))
3099 		return;
3100 
3101 	if (!sock_owned_by_user(sk)) {
3102 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3103 
3104 		if (xmit_ssk == ssk)
3105 			__mptcp_subflow_push_pending(sk, ssk);
3106 		else if (xmit_ssk)
3107 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3108 	} else {
3109 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3110 	}
3111 }
3112 
3113 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3114 				      BIT(MPTCP_RETRANSMIT) | \
3115 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3116 
3117 /* processes deferred events and flush wmem */
3118 static void mptcp_release_cb(struct sock *sk)
3119 	__must_hold(&sk->sk_lock.slock)
3120 {
3121 	struct mptcp_sock *msk = mptcp_sk(sk);
3122 
3123 	for (;;) {
3124 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3125 				      msk->push_pending;
3126 		if (!flags)
3127 			break;
3128 
3129 		/* the following actions acquire the subflow socket lock
3130 		 *
3131 		 * 1) can't be invoked in atomic scope
3132 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3133 		 *    datapath acquires the msk socket spinlock while helding
3134 		 *    the subflow socket lock
3135 		 */
3136 		msk->push_pending = 0;
3137 		msk->cb_flags &= ~flags;
3138 		spin_unlock_bh(&sk->sk_lock.slock);
3139 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3140 			__mptcp_flush_join_list(sk);
3141 		if (flags & BIT(MPTCP_PUSH_PENDING))
3142 			__mptcp_push_pending(sk, 0);
3143 		if (flags & BIT(MPTCP_RETRANSMIT))
3144 			__mptcp_retrans(sk);
3145 
3146 		cond_resched();
3147 		spin_lock_bh(&sk->sk_lock.slock);
3148 	}
3149 
3150 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3151 		__mptcp_clean_una_wakeup(sk);
3152 	if (unlikely(&msk->cb_flags)) {
3153 		/* be sure to set the current sk state before tacking actions
3154 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3155 		 */
3156 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3157 			__mptcp_set_connected(sk);
3158 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3159 			__mptcp_error_report(sk);
3160 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3161 			msk->last_snd = NULL;
3162 	}
3163 
3164 	__mptcp_update_rmem(sk);
3165 }
3166 
3167 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3168  * TCP can't schedule delack timer before the subflow is fully established.
3169  * MPTCP uses the delack timer to do 3rd ack retransmissions
3170  */
3171 static void schedule_3rdack_retransmission(struct sock *ssk)
3172 {
3173 	struct inet_connection_sock *icsk = inet_csk(ssk);
3174 	struct tcp_sock *tp = tcp_sk(ssk);
3175 	unsigned long timeout;
3176 
3177 	if (mptcp_subflow_ctx(ssk)->fully_established)
3178 		return;
3179 
3180 	/* reschedule with a timeout above RTT, as we must look only for drop */
3181 	if (tp->srtt_us)
3182 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3183 	else
3184 		timeout = TCP_TIMEOUT_INIT;
3185 	timeout += jiffies;
3186 
3187 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3188 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3189 	icsk->icsk_ack.timeout = timeout;
3190 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3191 }
3192 
3193 void mptcp_subflow_process_delegated(struct sock *ssk)
3194 {
3195 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3196 	struct sock *sk = subflow->conn;
3197 
3198 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3199 		mptcp_data_lock(sk);
3200 		if (!sock_owned_by_user(sk))
3201 			__mptcp_subflow_push_pending(sk, ssk);
3202 		else
3203 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3204 		mptcp_data_unlock(sk);
3205 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3206 	}
3207 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3208 		schedule_3rdack_retransmission(ssk);
3209 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3210 	}
3211 }
3212 
3213 static int mptcp_hash(struct sock *sk)
3214 {
3215 	/* should never be called,
3216 	 * we hash the TCP subflows not the master socket
3217 	 */
3218 	WARN_ON_ONCE(1);
3219 	return 0;
3220 }
3221 
3222 static void mptcp_unhash(struct sock *sk)
3223 {
3224 	/* called from sk_common_release(), but nothing to do here */
3225 }
3226 
3227 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3228 {
3229 	struct mptcp_sock *msk = mptcp_sk(sk);
3230 	struct socket *ssock;
3231 
3232 	ssock = __mptcp_nmpc_socket(msk);
3233 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3234 	if (WARN_ON_ONCE(!ssock))
3235 		return -EINVAL;
3236 
3237 	return inet_csk_get_port(ssock->sk, snum);
3238 }
3239 
3240 void mptcp_finish_connect(struct sock *ssk)
3241 {
3242 	struct mptcp_subflow_context *subflow;
3243 	struct mptcp_sock *msk;
3244 	struct sock *sk;
3245 	u64 ack_seq;
3246 
3247 	subflow = mptcp_subflow_ctx(ssk);
3248 	sk = subflow->conn;
3249 	msk = mptcp_sk(sk);
3250 
3251 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3252 
3253 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3254 	ack_seq++;
3255 	subflow->map_seq = ack_seq;
3256 	subflow->map_subflow_seq = 1;
3257 
3258 	/* the socket is not connected yet, no msk/subflow ops can access/race
3259 	 * accessing the field below
3260 	 */
3261 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3262 	WRITE_ONCE(msk->local_key, subflow->local_key);
3263 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3264 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3265 	WRITE_ONCE(msk->ack_seq, ack_seq);
3266 	WRITE_ONCE(msk->can_ack, 1);
3267 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3268 	atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3269 
3270 	mptcp_pm_new_connection(msk, ssk, 0);
3271 
3272 	mptcp_rcv_space_init(msk, ssk);
3273 }
3274 
3275 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3276 {
3277 	write_lock_bh(&sk->sk_callback_lock);
3278 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3279 	sk_set_socket(sk, parent);
3280 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3281 	write_unlock_bh(&sk->sk_callback_lock);
3282 }
3283 
3284 bool mptcp_finish_join(struct sock *ssk)
3285 {
3286 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3287 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3288 	struct sock *parent = (void *)msk;
3289 	bool ret = true;
3290 
3291 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3292 
3293 	/* mptcp socket already closing? */
3294 	if (!mptcp_is_fully_established(parent)) {
3295 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3296 		return false;
3297 	}
3298 
3299 	if (!list_empty(&subflow->node))
3300 		goto out;
3301 
3302 	if (!mptcp_pm_allow_new_subflow(msk))
3303 		goto err_prohibited;
3304 
3305 	/* active connections are already on conn_list.
3306 	 * If we can't acquire msk socket lock here, let the release callback
3307 	 * handle it
3308 	 */
3309 	mptcp_data_lock(parent);
3310 	if (!sock_owned_by_user(parent)) {
3311 		ret = __mptcp_finish_join(msk, ssk);
3312 		if (ret) {
3313 			sock_hold(ssk);
3314 			list_add_tail(&subflow->node, &msk->conn_list);
3315 		}
3316 	} else {
3317 		sock_hold(ssk);
3318 		list_add_tail(&subflow->node, &msk->join_list);
3319 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3320 	}
3321 	mptcp_data_unlock(parent);
3322 
3323 	if (!ret) {
3324 err_prohibited:
3325 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3326 		return false;
3327 	}
3328 
3329 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3330 	WRITE_ONCE(msk->allow_infinite_fallback, false);
3331 
3332 out:
3333 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3334 	return true;
3335 }
3336 
3337 static void mptcp_shutdown(struct sock *sk, int how)
3338 {
3339 	pr_debug("sk=%p, how=%d", sk, how);
3340 
3341 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3342 		__mptcp_wr_shutdown(sk);
3343 }
3344 
3345 static int mptcp_forward_alloc_get(const struct sock *sk)
3346 {
3347 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3348 }
3349 
3350 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3351 {
3352 	const struct sock *sk = (void *)msk;
3353 	u64 delta;
3354 
3355 	if (sk->sk_state == TCP_LISTEN)
3356 		return -EINVAL;
3357 
3358 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3359 		return 0;
3360 
3361 	delta = msk->write_seq - v;
3362 	if (__mptcp_check_fallback(msk) && msk->first) {
3363 		struct tcp_sock *tp = tcp_sk(msk->first);
3364 
3365 		/* the first subflow is disconnected after close - see
3366 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3367 		 * so ignore that status, too.
3368 		 */
3369 		if (!((1 << msk->first->sk_state) &
3370 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3371 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3372 	}
3373 	if (delta > INT_MAX)
3374 		delta = INT_MAX;
3375 
3376 	return (int)delta;
3377 }
3378 
3379 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3380 {
3381 	struct mptcp_sock *msk = mptcp_sk(sk);
3382 	bool slow;
3383 	int answ;
3384 
3385 	switch (cmd) {
3386 	case SIOCINQ:
3387 		if (sk->sk_state == TCP_LISTEN)
3388 			return -EINVAL;
3389 
3390 		lock_sock(sk);
3391 		__mptcp_move_skbs(msk);
3392 		answ = mptcp_inq_hint(sk);
3393 		release_sock(sk);
3394 		break;
3395 	case SIOCOUTQ:
3396 		slow = lock_sock_fast(sk);
3397 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3398 		unlock_sock_fast(sk, slow);
3399 		break;
3400 	case SIOCOUTQNSD:
3401 		slow = lock_sock_fast(sk);
3402 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3403 		unlock_sock_fast(sk, slow);
3404 		break;
3405 	default:
3406 		return -ENOIOCTLCMD;
3407 	}
3408 
3409 	return put_user(answ, (int __user *)arg);
3410 }
3411 
3412 static struct proto mptcp_prot = {
3413 	.name		= "MPTCP",
3414 	.owner		= THIS_MODULE,
3415 	.init		= mptcp_init_sock,
3416 	.disconnect	= mptcp_disconnect,
3417 	.close		= mptcp_close,
3418 	.accept		= mptcp_accept,
3419 	.setsockopt	= mptcp_setsockopt,
3420 	.getsockopt	= mptcp_getsockopt,
3421 	.shutdown	= mptcp_shutdown,
3422 	.destroy	= mptcp_destroy,
3423 	.sendmsg	= mptcp_sendmsg,
3424 	.ioctl		= mptcp_ioctl,
3425 	.recvmsg	= mptcp_recvmsg,
3426 	.release_cb	= mptcp_release_cb,
3427 	.hash		= mptcp_hash,
3428 	.unhash		= mptcp_unhash,
3429 	.get_port	= mptcp_get_port,
3430 	.forward_alloc_get	= mptcp_forward_alloc_get,
3431 	.sockets_allocated	= &mptcp_sockets_allocated,
3432 
3433 	.memory_allocated	= &tcp_memory_allocated,
3434 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3435 
3436 	.memory_pressure	= &tcp_memory_pressure,
3437 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3438 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3439 	.sysctl_mem	= sysctl_tcp_mem,
3440 	.obj_size	= sizeof(struct mptcp_sock),
3441 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3442 	.no_autobind	= true,
3443 };
3444 
3445 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3446 {
3447 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3448 	struct socket *ssock;
3449 	int err;
3450 
3451 	lock_sock(sock->sk);
3452 	ssock = __mptcp_nmpc_socket(msk);
3453 	if (!ssock) {
3454 		err = -EINVAL;
3455 		goto unlock;
3456 	}
3457 
3458 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3459 	if (!err)
3460 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3461 
3462 unlock:
3463 	release_sock(sock->sk);
3464 	return err;
3465 }
3466 
3467 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3468 					 struct mptcp_subflow_context *subflow)
3469 {
3470 	subflow->request_mptcp = 0;
3471 	__mptcp_do_fallback(msk);
3472 }
3473 
3474 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3475 				int addr_len, int flags)
3476 {
3477 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3478 	struct mptcp_subflow_context *subflow;
3479 	struct socket *ssock;
3480 	int err = -EINVAL;
3481 
3482 	lock_sock(sock->sk);
3483 	if (uaddr) {
3484 		if (addr_len < sizeof(uaddr->sa_family))
3485 			goto unlock;
3486 
3487 		if (uaddr->sa_family == AF_UNSPEC) {
3488 			err = mptcp_disconnect(sock->sk, flags);
3489 			sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
3490 			goto unlock;
3491 		}
3492 	}
3493 
3494 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3495 		/* pending connection or invalid state, let existing subflow
3496 		 * cope with that
3497 		 */
3498 		ssock = msk->subflow;
3499 		goto do_connect;
3500 	}
3501 
3502 	ssock = __mptcp_nmpc_socket(msk);
3503 	if (!ssock)
3504 		goto unlock;
3505 
3506 	mptcp_token_destroy(msk);
3507 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3508 	subflow = mptcp_subflow_ctx(ssock->sk);
3509 #ifdef CONFIG_TCP_MD5SIG
3510 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3511 	 * TCP option space.
3512 	 */
3513 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3514 		mptcp_subflow_early_fallback(msk, subflow);
3515 #endif
3516 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3517 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3518 		mptcp_subflow_early_fallback(msk, subflow);
3519 	}
3520 	if (likely(!__mptcp_check_fallback(msk)))
3521 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3522 
3523 do_connect:
3524 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3525 	sock->state = ssock->state;
3526 
3527 	/* on successful connect, the msk state will be moved to established by
3528 	 * subflow_finish_connect()
3529 	 */
3530 	if (!err || err == -EINPROGRESS)
3531 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3532 	else
3533 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3534 
3535 unlock:
3536 	release_sock(sock->sk);
3537 	return err;
3538 }
3539 
3540 static int mptcp_listen(struct socket *sock, int backlog)
3541 {
3542 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3543 	struct socket *ssock;
3544 	int err;
3545 
3546 	pr_debug("msk=%p", msk);
3547 
3548 	lock_sock(sock->sk);
3549 	ssock = __mptcp_nmpc_socket(msk);
3550 	if (!ssock) {
3551 		err = -EINVAL;
3552 		goto unlock;
3553 	}
3554 
3555 	mptcp_token_destroy(msk);
3556 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3557 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3558 
3559 	err = ssock->ops->listen(ssock, backlog);
3560 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3561 	if (!err)
3562 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3563 
3564 unlock:
3565 	release_sock(sock->sk);
3566 	return err;
3567 }
3568 
3569 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3570 			       int flags, bool kern)
3571 {
3572 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3573 	struct socket *ssock;
3574 	int err;
3575 
3576 	pr_debug("msk=%p", msk);
3577 
3578 	ssock = __mptcp_nmpc_socket(msk);
3579 	if (!ssock)
3580 		return -EINVAL;
3581 
3582 	err = ssock->ops->accept(sock, newsock, flags, kern);
3583 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3584 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3585 		struct mptcp_subflow_context *subflow;
3586 		struct sock *newsk = newsock->sk;
3587 
3588 		lock_sock(newsk);
3589 
3590 		/* PM/worker can now acquire the first subflow socket
3591 		 * lock without racing with listener queue cleanup,
3592 		 * we can notify it, if needed.
3593 		 *
3594 		 * Even if remote has reset the initial subflow by now
3595 		 * the refcnt is still at least one.
3596 		 */
3597 		subflow = mptcp_subflow_ctx(msk->first);
3598 		list_add(&subflow->node, &msk->conn_list);
3599 		sock_hold(msk->first);
3600 		if (mptcp_is_fully_established(newsk))
3601 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3602 
3603 		mptcp_copy_inaddrs(newsk, msk->first);
3604 		mptcp_rcv_space_init(msk, msk->first);
3605 		mptcp_propagate_sndbuf(newsk, msk->first);
3606 
3607 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3608 		 * This is needed so NOSPACE flag can be set from tcp stack.
3609 		 */
3610 		mptcp_for_each_subflow(msk, subflow) {
3611 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3612 
3613 			if (!ssk->sk_socket)
3614 				mptcp_sock_graft(ssk, newsock);
3615 		}
3616 		release_sock(newsk);
3617 	}
3618 
3619 	return err;
3620 }
3621 
3622 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3623 {
3624 	/* Concurrent splices from sk_receive_queue into receive_queue will
3625 	 * always show at least one non-empty queue when checked in this order.
3626 	 */
3627 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3628 	    skb_queue_empty_lockless(&msk->receive_queue))
3629 		return 0;
3630 
3631 	return EPOLLIN | EPOLLRDNORM;
3632 }
3633 
3634 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3635 {
3636 	struct sock *sk = (struct sock *)msk;
3637 
3638 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3639 		return EPOLLOUT | EPOLLWRNORM;
3640 
3641 	if (sk_stream_is_writeable(sk))
3642 		return EPOLLOUT | EPOLLWRNORM;
3643 
3644 	mptcp_set_nospace(sk);
3645 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3646 	if (sk_stream_is_writeable(sk))
3647 		return EPOLLOUT | EPOLLWRNORM;
3648 
3649 	return 0;
3650 }
3651 
3652 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3653 			   struct poll_table_struct *wait)
3654 {
3655 	struct sock *sk = sock->sk;
3656 	struct mptcp_sock *msk;
3657 	__poll_t mask = 0;
3658 	int state;
3659 
3660 	msk = mptcp_sk(sk);
3661 	sock_poll_wait(file, sock, wait);
3662 
3663 	state = inet_sk_state_load(sk);
3664 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3665 	if (state == TCP_LISTEN) {
3666 		if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3667 			return 0;
3668 
3669 		return inet_csk_listen_poll(msk->subflow->sk);
3670 	}
3671 
3672 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3673 		mask |= mptcp_check_readable(msk);
3674 		mask |= mptcp_check_writeable(msk);
3675 	}
3676 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3677 		mask |= EPOLLHUP;
3678 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3679 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3680 
3681 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3682 	smp_rmb();
3683 	if (sk->sk_err)
3684 		mask |= EPOLLERR;
3685 
3686 	return mask;
3687 }
3688 
3689 static const struct proto_ops mptcp_stream_ops = {
3690 	.family		   = PF_INET,
3691 	.owner		   = THIS_MODULE,
3692 	.release	   = inet_release,
3693 	.bind		   = mptcp_bind,
3694 	.connect	   = mptcp_stream_connect,
3695 	.socketpair	   = sock_no_socketpair,
3696 	.accept		   = mptcp_stream_accept,
3697 	.getname	   = inet_getname,
3698 	.poll		   = mptcp_poll,
3699 	.ioctl		   = inet_ioctl,
3700 	.gettstamp	   = sock_gettstamp,
3701 	.listen		   = mptcp_listen,
3702 	.shutdown	   = inet_shutdown,
3703 	.setsockopt	   = sock_common_setsockopt,
3704 	.getsockopt	   = sock_common_getsockopt,
3705 	.sendmsg	   = inet_sendmsg,
3706 	.recvmsg	   = inet_recvmsg,
3707 	.mmap		   = sock_no_mmap,
3708 	.sendpage	   = inet_sendpage,
3709 };
3710 
3711 static struct inet_protosw mptcp_protosw = {
3712 	.type		= SOCK_STREAM,
3713 	.protocol	= IPPROTO_MPTCP,
3714 	.prot		= &mptcp_prot,
3715 	.ops		= &mptcp_stream_ops,
3716 	.flags		= INET_PROTOSW_ICSK,
3717 };
3718 
3719 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3720 {
3721 	struct mptcp_delegated_action *delegated;
3722 	struct mptcp_subflow_context *subflow;
3723 	int work_done = 0;
3724 
3725 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3726 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3727 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3728 
3729 		bh_lock_sock_nested(ssk);
3730 		if (!sock_owned_by_user(ssk) &&
3731 		    mptcp_subflow_has_delegated_action(subflow))
3732 			mptcp_subflow_process_delegated(ssk);
3733 		/* ... elsewhere tcp_release_cb_override already processed
3734 		 * the action or will do at next release_sock().
3735 		 * In both case must dequeue the subflow here - on the same
3736 		 * CPU that scheduled it.
3737 		 */
3738 		bh_unlock_sock(ssk);
3739 		sock_put(ssk);
3740 
3741 		if (++work_done == budget)
3742 			return budget;
3743 	}
3744 
3745 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3746 	 * will not try accessing the NULL napi->dev ptr
3747 	 */
3748 	napi_complete_done(napi, 0);
3749 	return work_done;
3750 }
3751 
3752 void __init mptcp_proto_init(void)
3753 {
3754 	struct mptcp_delegated_action *delegated;
3755 	int cpu;
3756 
3757 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3758 
3759 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3760 		panic("Failed to allocate MPTCP pcpu counter\n");
3761 
3762 	init_dummy_netdev(&mptcp_napi_dev);
3763 	for_each_possible_cpu(cpu) {
3764 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3765 		INIT_LIST_HEAD(&delegated->head);
3766 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3767 				  mptcp_napi_poll);
3768 		napi_enable(&delegated->napi);
3769 	}
3770 
3771 	mptcp_subflow_init();
3772 	mptcp_pm_init();
3773 	mptcp_token_init();
3774 
3775 	if (proto_register(&mptcp_prot, 1) != 0)
3776 		panic("Failed to register MPTCP proto.\n");
3777 
3778 	inet_register_protosw(&mptcp_protosw);
3779 
3780 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3781 }
3782 
3783 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3784 static const struct proto_ops mptcp_v6_stream_ops = {
3785 	.family		   = PF_INET6,
3786 	.owner		   = THIS_MODULE,
3787 	.release	   = inet6_release,
3788 	.bind		   = mptcp_bind,
3789 	.connect	   = mptcp_stream_connect,
3790 	.socketpair	   = sock_no_socketpair,
3791 	.accept		   = mptcp_stream_accept,
3792 	.getname	   = inet6_getname,
3793 	.poll		   = mptcp_poll,
3794 	.ioctl		   = inet6_ioctl,
3795 	.gettstamp	   = sock_gettstamp,
3796 	.listen		   = mptcp_listen,
3797 	.shutdown	   = inet_shutdown,
3798 	.setsockopt	   = sock_common_setsockopt,
3799 	.getsockopt	   = sock_common_getsockopt,
3800 	.sendmsg	   = inet6_sendmsg,
3801 	.recvmsg	   = inet6_recvmsg,
3802 	.mmap		   = sock_no_mmap,
3803 	.sendpage	   = inet_sendpage,
3804 #ifdef CONFIG_COMPAT
3805 	.compat_ioctl	   = inet6_compat_ioctl,
3806 #endif
3807 };
3808 
3809 static struct proto mptcp_v6_prot;
3810 
3811 static void mptcp_v6_destroy(struct sock *sk)
3812 {
3813 	mptcp_destroy(sk);
3814 	inet6_destroy_sock(sk);
3815 }
3816 
3817 static struct inet_protosw mptcp_v6_protosw = {
3818 	.type		= SOCK_STREAM,
3819 	.protocol	= IPPROTO_MPTCP,
3820 	.prot		= &mptcp_v6_prot,
3821 	.ops		= &mptcp_v6_stream_ops,
3822 	.flags		= INET_PROTOSW_ICSK,
3823 };
3824 
3825 int __init mptcp_proto_v6_init(void)
3826 {
3827 	int err;
3828 
3829 	mptcp_v6_prot = mptcp_prot;
3830 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3831 	mptcp_v6_prot.slab = NULL;
3832 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3833 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3834 
3835 	err = proto_register(&mptcp_v6_prot, 1);
3836 	if (err)
3837 		return err;
3838 
3839 	err = inet6_register_protosw(&mptcp_v6_protosw);
3840 	if (err)
3841 		proto_unregister(&mptcp_v6_prot);
3842 
3843 	return err;
3844 }
3845 #endif
3846