xref: /openbmc/linux/net/mptcp/protocol.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 };
43 
44 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
45 
46 static struct percpu_counter mptcp_sockets_allocated;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void __mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
52 static struct net_device mptcp_napi_dev;
53 
54 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
55  * completed yet or has failed, return the subflow socket.
56  * Otherwise return NULL.
57  */
58 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
59 {
60 	if (!msk->subflow || READ_ONCE(msk->can_ack))
61 		return NULL;
62 
63 	return msk->subflow;
64 }
65 
66 /* Returns end sequence number of the receiver's advertised window */
67 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
68 {
69 	return READ_ONCE(msk->wnd_end);
70 }
71 
72 static bool mptcp_is_tcpsk(struct sock *sk)
73 {
74 	struct socket *sock = sk->sk_socket;
75 
76 	if (unlikely(sk->sk_prot == &tcp_prot)) {
77 		/* we are being invoked after mptcp_accept() has
78 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
79 		 * not an mptcp one.
80 		 *
81 		 * Hand the socket over to tcp so all further socket ops
82 		 * bypass mptcp.
83 		 */
84 		sock->ops = &inet_stream_ops;
85 		return true;
86 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
87 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
88 		sock->ops = &inet6_stream_ops;
89 		return true;
90 #endif
91 	}
92 
93 	return false;
94 }
95 
96 static int __mptcp_socket_create(struct mptcp_sock *msk)
97 {
98 	struct mptcp_subflow_context *subflow;
99 	struct sock *sk = (struct sock *)msk;
100 	struct socket *ssock;
101 	int err;
102 
103 	err = mptcp_subflow_create_socket(sk, &ssock);
104 	if (err)
105 		return err;
106 
107 	msk->first = ssock->sk;
108 	msk->subflow = ssock;
109 	subflow = mptcp_subflow_ctx(ssock->sk);
110 	list_add(&subflow->node, &msk->conn_list);
111 	sock_hold(ssock->sk);
112 	subflow->request_mptcp = 1;
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 
115 	return 0;
116 }
117 
118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
119 {
120 	sk_drops_add(sk, skb);
121 	__kfree_skb(skb);
122 }
123 
124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
125 			       struct sk_buff *from)
126 {
127 	bool fragstolen;
128 	int delta;
129 
130 	if (MPTCP_SKB_CB(from)->offset ||
131 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
132 		return false;
133 
134 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
135 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
136 		 to->len, MPTCP_SKB_CB(from)->end_seq);
137 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
138 	kfree_skb_partial(from, fragstolen);
139 	atomic_add(delta, &sk->sk_rmem_alloc);
140 	sk_mem_charge(sk, delta);
141 	return true;
142 }
143 
144 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
145 				   struct sk_buff *from)
146 {
147 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
148 		return false;
149 
150 	return mptcp_try_coalesce((struct sock *)msk, to, from);
151 }
152 
153 /* "inspired" by tcp_data_queue_ofo(), main differences:
154  * - use mptcp seqs
155  * - don't cope with sacks
156  */
157 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
158 {
159 	struct sock *sk = (struct sock *)msk;
160 	struct rb_node **p, *parent;
161 	u64 seq, end_seq, max_seq;
162 	struct sk_buff *skb1;
163 
164 	seq = MPTCP_SKB_CB(skb)->map_seq;
165 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
166 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
167 
168 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
169 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
170 	if (after64(end_seq, max_seq)) {
171 		/* out of window */
172 		mptcp_drop(sk, skb);
173 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
174 			 (unsigned long long)end_seq - (unsigned long)max_seq,
175 			 (unsigned long long)msk->rcv_wnd_sent);
176 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
177 		return;
178 	}
179 
180 	p = &msk->out_of_order_queue.rb_node;
181 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
182 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
183 		rb_link_node(&skb->rbnode, NULL, p);
184 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
185 		msk->ooo_last_skb = skb;
186 		goto end;
187 	}
188 
189 	/* with 2 subflows, adding at end of ooo queue is quite likely
190 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
191 	 */
192 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
193 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
194 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
195 		return;
196 	}
197 
198 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
199 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
200 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
201 		parent = &msk->ooo_last_skb->rbnode;
202 		p = &parent->rb_right;
203 		goto insert;
204 	}
205 
206 	/* Find place to insert this segment. Handle overlaps on the way. */
207 	parent = NULL;
208 	while (*p) {
209 		parent = *p;
210 		skb1 = rb_to_skb(parent);
211 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
212 			p = &parent->rb_left;
213 			continue;
214 		}
215 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
216 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
217 				/* All the bits are present. Drop. */
218 				mptcp_drop(sk, skb);
219 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
220 				return;
221 			}
222 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
223 				/* partial overlap:
224 				 *     |     skb      |
225 				 *  |     skb1    |
226 				 * continue traversing
227 				 */
228 			} else {
229 				/* skb's seq == skb1's seq and skb covers skb1.
230 				 * Replace skb1 with skb.
231 				 */
232 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
233 						&msk->out_of_order_queue);
234 				mptcp_drop(sk, skb1);
235 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
236 				goto merge_right;
237 			}
238 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
239 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
240 			return;
241 		}
242 		p = &parent->rb_right;
243 	}
244 
245 insert:
246 	/* Insert segment into RB tree. */
247 	rb_link_node(&skb->rbnode, parent, p);
248 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
249 
250 merge_right:
251 	/* Remove other segments covered by skb. */
252 	while ((skb1 = skb_rb_next(skb)) != NULL) {
253 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
254 			break;
255 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
256 		mptcp_drop(sk, skb1);
257 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
258 	}
259 	/* If there is no skb after us, we are the last_skb ! */
260 	if (!skb1)
261 		msk->ooo_last_skb = skb;
262 
263 end:
264 	skb_condense(skb);
265 	skb_set_owner_r(skb, sk);
266 }
267 
268 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
269 			     struct sk_buff *skb, unsigned int offset,
270 			     size_t copy_len)
271 {
272 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
273 	struct sock *sk = (struct sock *)msk;
274 	struct sk_buff *tail;
275 
276 	__skb_unlink(skb, &ssk->sk_receive_queue);
277 
278 	skb_ext_reset(skb);
279 	skb_orphan(skb);
280 
281 	/* try to fetch required memory from subflow */
282 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
283 		if (ssk->sk_forward_alloc < skb->truesize)
284 			goto drop;
285 		__sk_mem_reclaim(ssk, skb->truesize);
286 		if (!sk_rmem_schedule(sk, skb, skb->truesize))
287 			goto drop;
288 	}
289 
290 	/* the skb map_seq accounts for the skb offset:
291 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
292 	 * value
293 	 */
294 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
295 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
296 	MPTCP_SKB_CB(skb)->offset = offset;
297 
298 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
299 		/* in sequence */
300 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
301 		tail = skb_peek_tail(&sk->sk_receive_queue);
302 		if (tail && mptcp_try_coalesce(sk, tail, skb))
303 			return true;
304 
305 		skb_set_owner_r(skb, sk);
306 		__skb_queue_tail(&sk->sk_receive_queue, skb);
307 		return true;
308 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
309 		mptcp_data_queue_ofo(msk, skb);
310 		return false;
311 	}
312 
313 	/* old data, keep it simple and drop the whole pkt, sender
314 	 * will retransmit as needed, if needed.
315 	 */
316 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
317 drop:
318 	mptcp_drop(sk, skb);
319 	return false;
320 }
321 
322 static void mptcp_stop_timer(struct sock *sk)
323 {
324 	struct inet_connection_sock *icsk = inet_csk(sk);
325 
326 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
327 	mptcp_sk(sk)->timer_ival = 0;
328 }
329 
330 static void mptcp_close_wake_up(struct sock *sk)
331 {
332 	if (sock_flag(sk, SOCK_DEAD))
333 		return;
334 
335 	sk->sk_state_change(sk);
336 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
337 	    sk->sk_state == TCP_CLOSE)
338 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
339 	else
340 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
341 }
342 
343 static bool mptcp_pending_data_fin_ack(struct sock *sk)
344 {
345 	struct mptcp_sock *msk = mptcp_sk(sk);
346 
347 	return !__mptcp_check_fallback(msk) &&
348 	       ((1 << sk->sk_state) &
349 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
350 	       msk->write_seq == READ_ONCE(msk->snd_una);
351 }
352 
353 static void mptcp_check_data_fin_ack(struct sock *sk)
354 {
355 	struct mptcp_sock *msk = mptcp_sk(sk);
356 
357 	/* Look for an acknowledged DATA_FIN */
358 	if (mptcp_pending_data_fin_ack(sk)) {
359 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
360 
361 		switch (sk->sk_state) {
362 		case TCP_FIN_WAIT1:
363 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
364 			break;
365 		case TCP_CLOSING:
366 		case TCP_LAST_ACK:
367 			inet_sk_state_store(sk, TCP_CLOSE);
368 			break;
369 		}
370 
371 		mptcp_close_wake_up(sk);
372 	}
373 }
374 
375 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
376 {
377 	struct mptcp_sock *msk = mptcp_sk(sk);
378 
379 	if (READ_ONCE(msk->rcv_data_fin) &&
380 	    ((1 << sk->sk_state) &
381 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
382 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
383 
384 		if (msk->ack_seq == rcv_data_fin_seq) {
385 			if (seq)
386 				*seq = rcv_data_fin_seq;
387 
388 			return true;
389 		}
390 	}
391 
392 	return false;
393 }
394 
395 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
396 {
397 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
398 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
399 
400 	if (tout <= 0)
401 		tout = mptcp_sk(sk)->timer_ival;
402 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
403 }
404 
405 static bool tcp_can_send_ack(const struct sock *ssk)
406 {
407 	return !((1 << inet_sk_state_load(ssk)) &
408 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
409 }
410 
411 static void mptcp_send_ack(struct mptcp_sock *msk)
412 {
413 	struct mptcp_subflow_context *subflow;
414 
415 	mptcp_for_each_subflow(msk, subflow) {
416 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
417 
418 		lock_sock(ssk);
419 		if (tcp_can_send_ack(ssk))
420 			tcp_send_ack(ssk);
421 		release_sock(ssk);
422 	}
423 }
424 
425 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk)
426 {
427 	int ret;
428 
429 	lock_sock(ssk);
430 	ret = tcp_can_send_ack(ssk);
431 	if (ret)
432 		tcp_cleanup_rbuf(ssk, 1);
433 	release_sock(ssk);
434 	return ret;
435 }
436 
437 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
438 {
439 	struct sock *ack_hint = READ_ONCE(msk->ack_hint);
440 	int old_space = READ_ONCE(msk->old_wspace);
441 	struct mptcp_subflow_context *subflow;
442 	struct sock *sk = (struct sock *)msk;
443 	bool cleanup;
444 
445 	/* this is a simple superset of what tcp_cleanup_rbuf() implements
446 	 * so that we don't have to acquire the ssk socket lock most of the time
447 	 * to do actually nothing
448 	 */
449 	cleanup = __mptcp_space(sk) - old_space >= max(0, old_space);
450 	if (!cleanup)
451 		return;
452 
453 	/* if the hinted ssk is still active, try to use it */
454 	if (likely(ack_hint)) {
455 		mptcp_for_each_subflow(msk, subflow) {
456 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
457 
458 			if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk))
459 				return;
460 		}
461 	}
462 
463 	/* otherwise pick the first active subflow */
464 	mptcp_for_each_subflow(msk, subflow)
465 		if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow)))
466 			return;
467 }
468 
469 static bool mptcp_check_data_fin(struct sock *sk)
470 {
471 	struct mptcp_sock *msk = mptcp_sk(sk);
472 	u64 rcv_data_fin_seq;
473 	bool ret = false;
474 
475 	if (__mptcp_check_fallback(msk))
476 		return ret;
477 
478 	/* Need to ack a DATA_FIN received from a peer while this side
479 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
480 	 * msk->rcv_data_fin was set when parsing the incoming options
481 	 * at the subflow level and the msk lock was not held, so this
482 	 * is the first opportunity to act on the DATA_FIN and change
483 	 * the msk state.
484 	 *
485 	 * If we are caught up to the sequence number of the incoming
486 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
487 	 * not caught up, do nothing and let the recv code send DATA_ACK
488 	 * when catching up.
489 	 */
490 
491 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
492 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
493 		WRITE_ONCE(msk->rcv_data_fin, 0);
494 
495 		sk->sk_shutdown |= RCV_SHUTDOWN;
496 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
497 		set_bit(MPTCP_DATA_READY, &msk->flags);
498 
499 		switch (sk->sk_state) {
500 		case TCP_ESTABLISHED:
501 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
502 			break;
503 		case TCP_FIN_WAIT1:
504 			inet_sk_state_store(sk, TCP_CLOSING);
505 			break;
506 		case TCP_FIN_WAIT2:
507 			inet_sk_state_store(sk, TCP_CLOSE);
508 			break;
509 		default:
510 			/* Other states not expected */
511 			WARN_ON_ONCE(1);
512 			break;
513 		}
514 
515 		ret = true;
516 		mptcp_set_timeout(sk, NULL);
517 		mptcp_send_ack(msk);
518 		mptcp_close_wake_up(sk);
519 	}
520 	return ret;
521 }
522 
523 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
524 					   struct sock *ssk,
525 					   unsigned int *bytes)
526 {
527 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
528 	struct sock *sk = (struct sock *)msk;
529 	unsigned int moved = 0;
530 	bool more_data_avail;
531 	struct tcp_sock *tp;
532 	bool done = false;
533 	int sk_rbuf;
534 
535 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
536 
537 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
538 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
539 
540 		if (unlikely(ssk_rbuf > sk_rbuf)) {
541 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
542 			sk_rbuf = ssk_rbuf;
543 		}
544 	}
545 
546 	pr_debug("msk=%p ssk=%p", msk, ssk);
547 	tp = tcp_sk(ssk);
548 	do {
549 		u32 map_remaining, offset;
550 		u32 seq = tp->copied_seq;
551 		struct sk_buff *skb;
552 		bool fin;
553 
554 		/* try to move as much data as available */
555 		map_remaining = subflow->map_data_len -
556 				mptcp_subflow_get_map_offset(subflow);
557 
558 		skb = skb_peek(&ssk->sk_receive_queue);
559 		if (!skb) {
560 			/* if no data is found, a racing workqueue/recvmsg
561 			 * already processed the new data, stop here or we
562 			 * can enter an infinite loop
563 			 */
564 			if (!moved)
565 				done = true;
566 			break;
567 		}
568 
569 		if (__mptcp_check_fallback(msk)) {
570 			/* if we are running under the workqueue, TCP could have
571 			 * collapsed skbs between dummy map creation and now
572 			 * be sure to adjust the size
573 			 */
574 			map_remaining = skb->len;
575 			subflow->map_data_len = skb->len;
576 		}
577 
578 		offset = seq - TCP_SKB_CB(skb)->seq;
579 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
580 		if (fin) {
581 			done = true;
582 			seq++;
583 		}
584 
585 		if (offset < skb->len) {
586 			size_t len = skb->len - offset;
587 
588 			if (tp->urg_data)
589 				done = true;
590 
591 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
592 				moved += len;
593 			seq += len;
594 
595 			if (WARN_ON_ONCE(map_remaining < len))
596 				break;
597 		} else {
598 			WARN_ON_ONCE(!fin);
599 			sk_eat_skb(ssk, skb);
600 			done = true;
601 		}
602 
603 		WRITE_ONCE(tp->copied_seq, seq);
604 		more_data_avail = mptcp_subflow_data_available(ssk);
605 
606 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
607 			done = true;
608 			break;
609 		}
610 	} while (more_data_avail);
611 	WRITE_ONCE(msk->ack_hint, ssk);
612 
613 	*bytes += moved;
614 	return done;
615 }
616 
617 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
618 {
619 	struct sock *sk = (struct sock *)msk;
620 	struct sk_buff *skb, *tail;
621 	bool moved = false;
622 	struct rb_node *p;
623 	u64 end_seq;
624 
625 	p = rb_first(&msk->out_of_order_queue);
626 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
627 	while (p) {
628 		skb = rb_to_skb(p);
629 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
630 			break;
631 
632 		p = rb_next(p);
633 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
634 
635 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
636 				      msk->ack_seq))) {
637 			mptcp_drop(sk, skb);
638 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
639 			continue;
640 		}
641 
642 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
643 		tail = skb_peek_tail(&sk->sk_receive_queue);
644 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
645 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
646 
647 			/* skip overlapping data, if any */
648 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
649 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
650 				 delta);
651 			MPTCP_SKB_CB(skb)->offset += delta;
652 			__skb_queue_tail(&sk->sk_receive_queue, skb);
653 		}
654 		msk->ack_seq = end_seq;
655 		moved = true;
656 	}
657 	return moved;
658 }
659 
660 /* In most cases we will be able to lock the mptcp socket.  If its already
661  * owned, we need to defer to the work queue to avoid ABBA deadlock.
662  */
663 static void move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
664 {
665 	struct sock *sk = (struct sock *)msk;
666 	unsigned int moved = 0;
667 
668 	if (inet_sk_state_load(sk) == TCP_CLOSE)
669 		return;
670 
671 	mptcp_data_lock(sk);
672 
673 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
674 	__mptcp_ofo_queue(msk);
675 
676 	/* If the moves have caught up with the DATA_FIN sequence number
677 	 * it's time to ack the DATA_FIN and change socket state, but
678 	 * this is not a good place to change state. Let the workqueue
679 	 * do it.
680 	 */
681 	if (mptcp_pending_data_fin(sk, NULL))
682 		mptcp_schedule_work(sk);
683 	mptcp_data_unlock(sk);
684 }
685 
686 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
687 {
688 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
689 	struct mptcp_sock *msk = mptcp_sk(sk);
690 	int sk_rbuf, ssk_rbuf;
691 	bool wake;
692 
693 	/* The peer can send data while we are shutting down this
694 	 * subflow at msk destruction time, but we must avoid enqueuing
695 	 * more data to the msk receive queue
696 	 */
697 	if (unlikely(subflow->disposable))
698 		return;
699 
700 	/* move_skbs_to_msk below can legitly clear the data_avail flag,
701 	 * but we will need later to properly woke the reader, cache its
702 	 * value
703 	 */
704 	wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL;
705 	if (wake)
706 		set_bit(MPTCP_DATA_READY, &msk->flags);
707 
708 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
709 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
710 	if (unlikely(ssk_rbuf > sk_rbuf))
711 		sk_rbuf = ssk_rbuf;
712 
713 	/* over limit? can't append more skbs to msk */
714 	if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
715 		goto wake;
716 
717 	move_skbs_to_msk(msk, ssk);
718 
719 wake:
720 	if (wake)
721 		sk->sk_data_ready(sk);
722 }
723 
724 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
725 {
726 	struct mptcp_subflow_context *subflow;
727 	bool ret = false;
728 
729 	if (likely(list_empty(&msk->join_list)))
730 		return false;
731 
732 	spin_lock_bh(&msk->join_list_lock);
733 	list_for_each_entry(subflow, &msk->join_list, node) {
734 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
735 
736 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
737 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
738 			ret = true;
739 	}
740 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
741 	spin_unlock_bh(&msk->join_list_lock);
742 
743 	return ret;
744 }
745 
746 void __mptcp_flush_join_list(struct mptcp_sock *msk)
747 {
748 	if (likely(!mptcp_do_flush_join_list(msk)))
749 		return;
750 
751 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
752 		mptcp_schedule_work((struct sock *)msk);
753 }
754 
755 static void mptcp_flush_join_list(struct mptcp_sock *msk)
756 {
757 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
758 
759 	might_sleep();
760 
761 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
762 		return;
763 
764 	mptcp_sockopt_sync_all(msk);
765 }
766 
767 static bool mptcp_timer_pending(struct sock *sk)
768 {
769 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
770 }
771 
772 static void mptcp_reset_timer(struct sock *sk)
773 {
774 	struct inet_connection_sock *icsk = inet_csk(sk);
775 	unsigned long tout;
776 
777 	/* prevent rescheduling on close */
778 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
779 		return;
780 
781 	/* should never be called with mptcp level timer cleared */
782 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
783 	if (WARN_ON_ONCE(!tout))
784 		tout = TCP_RTO_MIN;
785 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
786 }
787 
788 bool mptcp_schedule_work(struct sock *sk)
789 {
790 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
791 	    schedule_work(&mptcp_sk(sk)->work)) {
792 		/* each subflow already holds a reference to the sk, and the
793 		 * workqueue is invoked by a subflow, so sk can't go away here.
794 		 */
795 		sock_hold(sk);
796 		return true;
797 	}
798 	return false;
799 }
800 
801 void mptcp_subflow_eof(struct sock *sk)
802 {
803 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
804 		mptcp_schedule_work(sk);
805 }
806 
807 static void mptcp_check_for_eof(struct mptcp_sock *msk)
808 {
809 	struct mptcp_subflow_context *subflow;
810 	struct sock *sk = (struct sock *)msk;
811 	int receivers = 0;
812 
813 	mptcp_for_each_subflow(msk, subflow)
814 		receivers += !subflow->rx_eof;
815 	if (receivers)
816 		return;
817 
818 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
819 		/* hopefully temporary hack: propagate shutdown status
820 		 * to msk, when all subflows agree on it
821 		 */
822 		sk->sk_shutdown |= RCV_SHUTDOWN;
823 
824 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
825 		set_bit(MPTCP_DATA_READY, &msk->flags);
826 		sk->sk_data_ready(sk);
827 	}
828 
829 	switch (sk->sk_state) {
830 	case TCP_ESTABLISHED:
831 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
832 		break;
833 	case TCP_FIN_WAIT1:
834 		inet_sk_state_store(sk, TCP_CLOSING);
835 		break;
836 	case TCP_FIN_WAIT2:
837 		inet_sk_state_store(sk, TCP_CLOSE);
838 		break;
839 	default:
840 		return;
841 	}
842 	mptcp_close_wake_up(sk);
843 }
844 
845 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
846 {
847 	struct mptcp_subflow_context *subflow;
848 	struct sock *sk = (struct sock *)msk;
849 
850 	sock_owned_by_me(sk);
851 
852 	mptcp_for_each_subflow(msk, subflow) {
853 		if (subflow->data_avail)
854 			return mptcp_subflow_tcp_sock(subflow);
855 	}
856 
857 	return NULL;
858 }
859 
860 static bool mptcp_skb_can_collapse_to(u64 write_seq,
861 				      const struct sk_buff *skb,
862 				      const struct mptcp_ext *mpext)
863 {
864 	if (!tcp_skb_can_collapse_to(skb))
865 		return false;
866 
867 	/* can collapse only if MPTCP level sequence is in order and this
868 	 * mapping has not been xmitted yet
869 	 */
870 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
871 	       !mpext->frozen;
872 }
873 
874 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
875 				       const struct page_frag *pfrag,
876 				       const struct mptcp_data_frag *df)
877 {
878 	return df && pfrag->page == df->page &&
879 		pfrag->size - pfrag->offset > 0 &&
880 		df->data_seq + df->data_len == msk->write_seq;
881 }
882 
883 static int mptcp_wmem_with_overhead(struct sock *sk, int size)
884 {
885 	struct mptcp_sock *msk = mptcp_sk(sk);
886 	int ret, skbs;
887 
888 	ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
889 	skbs = (msk->tx_pending_data + size) / msk->size_goal_cache;
890 	if (skbs < msk->skb_tx_cache.qlen)
891 		return ret;
892 
893 	return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER);
894 }
895 
896 static void __mptcp_wmem_reserve(struct sock *sk, int size)
897 {
898 	int amount = mptcp_wmem_with_overhead(sk, size);
899 	struct mptcp_sock *msk = mptcp_sk(sk);
900 
901 	WARN_ON_ONCE(msk->wmem_reserved);
902 	if (WARN_ON_ONCE(amount < 0))
903 		amount = 0;
904 
905 	if (amount <= sk->sk_forward_alloc)
906 		goto reserve;
907 
908 	/* under memory pressure try to reserve at most a single page
909 	 * otherwise try to reserve the full estimate and fallback
910 	 * to a single page before entering the error path
911 	 */
912 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
913 	    !sk_wmem_schedule(sk, amount)) {
914 		if (amount <= PAGE_SIZE)
915 			goto nomem;
916 
917 		amount = PAGE_SIZE;
918 		if (!sk_wmem_schedule(sk, amount))
919 			goto nomem;
920 	}
921 
922 reserve:
923 	msk->wmem_reserved = amount;
924 	sk->sk_forward_alloc -= amount;
925 	return;
926 
927 nomem:
928 	/* we will wait for memory on next allocation */
929 	msk->wmem_reserved = -1;
930 }
931 
932 static void __mptcp_update_wmem(struct sock *sk)
933 {
934 	struct mptcp_sock *msk = mptcp_sk(sk);
935 
936 	if (!msk->wmem_reserved)
937 		return;
938 
939 	if (msk->wmem_reserved < 0)
940 		msk->wmem_reserved = 0;
941 	if (msk->wmem_reserved > 0) {
942 		sk->sk_forward_alloc += msk->wmem_reserved;
943 		msk->wmem_reserved = 0;
944 	}
945 }
946 
947 static bool mptcp_wmem_alloc(struct sock *sk, int size)
948 {
949 	struct mptcp_sock *msk = mptcp_sk(sk);
950 
951 	/* check for pre-existing error condition */
952 	if (msk->wmem_reserved < 0)
953 		return false;
954 
955 	if (msk->wmem_reserved >= size)
956 		goto account;
957 
958 	mptcp_data_lock(sk);
959 	if (!sk_wmem_schedule(sk, size)) {
960 		mptcp_data_unlock(sk);
961 		return false;
962 	}
963 
964 	sk->sk_forward_alloc -= size;
965 	msk->wmem_reserved += size;
966 	mptcp_data_unlock(sk);
967 
968 account:
969 	msk->wmem_reserved -= size;
970 	return true;
971 }
972 
973 static void mptcp_wmem_uncharge(struct sock *sk, int size)
974 {
975 	struct mptcp_sock *msk = mptcp_sk(sk);
976 
977 	if (msk->wmem_reserved < 0)
978 		msk->wmem_reserved = 0;
979 	msk->wmem_reserved += size;
980 }
981 
982 static void mptcp_mem_reclaim_partial(struct sock *sk)
983 {
984 	struct mptcp_sock *msk = mptcp_sk(sk);
985 
986 	/* if we are experiencing a transint allocation error,
987 	 * the forward allocation memory has been already
988 	 * released
989 	 */
990 	if (msk->wmem_reserved < 0)
991 		return;
992 
993 	mptcp_data_lock(sk);
994 	sk->sk_forward_alloc += msk->wmem_reserved;
995 	sk_mem_reclaim_partial(sk);
996 	msk->wmem_reserved = sk->sk_forward_alloc;
997 	sk->sk_forward_alloc = 0;
998 	mptcp_data_unlock(sk);
999 }
1000 
1001 static void dfrag_uncharge(struct sock *sk, int len)
1002 {
1003 	sk_mem_uncharge(sk, len);
1004 	sk_wmem_queued_add(sk, -len);
1005 }
1006 
1007 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1008 {
1009 	int len = dfrag->data_len + dfrag->overhead;
1010 
1011 	list_del(&dfrag->list);
1012 	dfrag_uncharge(sk, len);
1013 	put_page(dfrag->page);
1014 }
1015 
1016 static void __mptcp_clean_una(struct sock *sk)
1017 {
1018 	struct mptcp_sock *msk = mptcp_sk(sk);
1019 	struct mptcp_data_frag *dtmp, *dfrag;
1020 	bool cleaned = false;
1021 	u64 snd_una;
1022 
1023 	/* on fallback we just need to ignore snd_una, as this is really
1024 	 * plain TCP
1025 	 */
1026 	if (__mptcp_check_fallback(msk))
1027 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1028 
1029 	snd_una = msk->snd_una;
1030 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1031 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1032 			break;
1033 
1034 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1035 			break;
1036 		dfrag_clear(sk, dfrag);
1037 		cleaned = true;
1038 	}
1039 
1040 	dfrag = mptcp_rtx_head(sk);
1041 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1042 		u64 delta = snd_una - dfrag->data_seq;
1043 
1044 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1045 			goto out;
1046 
1047 		dfrag->data_seq += delta;
1048 		dfrag->offset += delta;
1049 		dfrag->data_len -= delta;
1050 		dfrag->already_sent -= delta;
1051 
1052 		dfrag_uncharge(sk, delta);
1053 		cleaned = true;
1054 	}
1055 
1056 out:
1057 	if (cleaned) {
1058 		if (tcp_under_memory_pressure(sk)) {
1059 			__mptcp_update_wmem(sk);
1060 			sk_mem_reclaim_partial(sk);
1061 		}
1062 	}
1063 
1064 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1065 		if (msk->timer_ival)
1066 			mptcp_stop_timer(sk);
1067 	} else {
1068 		mptcp_reset_timer(sk);
1069 	}
1070 }
1071 
1072 static void __mptcp_clean_una_wakeup(struct sock *sk)
1073 {
1074 	__mptcp_clean_una(sk);
1075 	mptcp_write_space(sk);
1076 }
1077 
1078 static void mptcp_enter_memory_pressure(struct sock *sk)
1079 {
1080 	struct mptcp_subflow_context *subflow;
1081 	struct mptcp_sock *msk = mptcp_sk(sk);
1082 	bool first = true;
1083 
1084 	sk_stream_moderate_sndbuf(sk);
1085 	mptcp_for_each_subflow(msk, subflow) {
1086 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1087 
1088 		if (first)
1089 			tcp_enter_memory_pressure(ssk);
1090 		sk_stream_moderate_sndbuf(ssk);
1091 		first = false;
1092 	}
1093 }
1094 
1095 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1096  * data
1097  */
1098 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1099 {
1100 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1101 					pfrag, sk->sk_allocation)))
1102 		return true;
1103 
1104 	mptcp_enter_memory_pressure(sk);
1105 	return false;
1106 }
1107 
1108 static struct mptcp_data_frag *
1109 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1110 		      int orig_offset)
1111 {
1112 	int offset = ALIGN(orig_offset, sizeof(long));
1113 	struct mptcp_data_frag *dfrag;
1114 
1115 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1116 	dfrag->data_len = 0;
1117 	dfrag->data_seq = msk->write_seq;
1118 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1119 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1120 	dfrag->already_sent = 0;
1121 	dfrag->page = pfrag->page;
1122 
1123 	return dfrag;
1124 }
1125 
1126 struct mptcp_sendmsg_info {
1127 	int mss_now;
1128 	int size_goal;
1129 	u16 limit;
1130 	u16 sent;
1131 	unsigned int flags;
1132 };
1133 
1134 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1135 				    int avail_size)
1136 {
1137 	u64 window_end = mptcp_wnd_end(msk);
1138 
1139 	if (__mptcp_check_fallback(msk))
1140 		return avail_size;
1141 
1142 	if (!before64(data_seq + avail_size, window_end)) {
1143 		u64 allowed_size = window_end - data_seq;
1144 
1145 		return min_t(unsigned int, allowed_size, avail_size);
1146 	}
1147 
1148 	return avail_size;
1149 }
1150 
1151 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1152 {
1153 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1154 
1155 	if (!mpext)
1156 		return false;
1157 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1158 	return true;
1159 }
1160 
1161 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1162 {
1163 	struct sk_buff *skb;
1164 
1165 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1166 	if (likely(skb)) {
1167 		if (likely(__mptcp_add_ext(skb, gfp))) {
1168 			skb_reserve(skb, MAX_TCP_HEADER);
1169 			skb->reserved_tailroom = skb->end - skb->tail;
1170 			return skb;
1171 		}
1172 		__kfree_skb(skb);
1173 	} else {
1174 		mptcp_enter_memory_pressure(sk);
1175 	}
1176 	return NULL;
1177 }
1178 
1179 static bool mptcp_tx_cache_refill(struct sock *sk, int size,
1180 				  struct sk_buff_head *skbs, int *total_ts)
1181 {
1182 	struct mptcp_sock *msk = mptcp_sk(sk);
1183 	struct sk_buff *skb;
1184 	int space_needed;
1185 
1186 	if (unlikely(tcp_under_memory_pressure(sk))) {
1187 		mptcp_mem_reclaim_partial(sk);
1188 
1189 		/* under pressure pre-allocate at most a single skb */
1190 		if (msk->skb_tx_cache.qlen)
1191 			return true;
1192 		space_needed = msk->size_goal_cache;
1193 	} else {
1194 		space_needed = msk->tx_pending_data + size -
1195 			       msk->skb_tx_cache.qlen * msk->size_goal_cache;
1196 	}
1197 
1198 	while (space_needed > 0) {
1199 		skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation);
1200 		if (unlikely(!skb)) {
1201 			/* under memory pressure, try to pass the caller a
1202 			 * single skb to allow forward progress
1203 			 */
1204 			while (skbs->qlen > 1) {
1205 				skb = __skb_dequeue_tail(skbs);
1206 				*total_ts -= skb->truesize;
1207 				__kfree_skb(skb);
1208 			}
1209 			return skbs->qlen > 0;
1210 		}
1211 
1212 		*total_ts += skb->truesize;
1213 		__skb_queue_tail(skbs, skb);
1214 		space_needed -= msk->size_goal_cache;
1215 	}
1216 	return true;
1217 }
1218 
1219 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1220 {
1221 	struct mptcp_sock *msk = mptcp_sk(sk);
1222 	struct sk_buff *skb;
1223 
1224 	if (ssk->sk_tx_skb_cache) {
1225 		skb = ssk->sk_tx_skb_cache;
1226 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1227 			     !__mptcp_add_ext(skb, gfp)))
1228 			return false;
1229 		return true;
1230 	}
1231 
1232 	skb = skb_peek(&msk->skb_tx_cache);
1233 	if (skb) {
1234 		if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1235 			skb = __skb_dequeue(&msk->skb_tx_cache);
1236 			if (WARN_ON_ONCE(!skb))
1237 				return false;
1238 
1239 			mptcp_wmem_uncharge(sk, skb->truesize);
1240 			ssk->sk_tx_skb_cache = skb;
1241 			return true;
1242 		}
1243 
1244 		/* over memory limit, no point to try to allocate a new skb */
1245 		return false;
1246 	}
1247 
1248 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1249 	if (!skb)
1250 		return false;
1251 
1252 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1253 		ssk->sk_tx_skb_cache = skb;
1254 		return true;
1255 	}
1256 	kfree_skb(skb);
1257 	return false;
1258 }
1259 
1260 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1261 {
1262 	return !ssk->sk_tx_skb_cache &&
1263 	       !skb_peek(&mptcp_sk(sk)->skb_tx_cache) &&
1264 	       tcp_under_memory_pressure(sk);
1265 }
1266 
1267 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1268 {
1269 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1270 		mptcp_mem_reclaim_partial(sk);
1271 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1272 }
1273 
1274 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1275 			      struct mptcp_data_frag *dfrag,
1276 			      struct mptcp_sendmsg_info *info)
1277 {
1278 	u64 data_seq = dfrag->data_seq + info->sent;
1279 	struct mptcp_sock *msk = mptcp_sk(sk);
1280 	bool zero_window_probe = false;
1281 	struct mptcp_ext *mpext = NULL;
1282 	struct sk_buff *skb, *tail;
1283 	bool can_collapse = false;
1284 	int size_bias = 0;
1285 	int avail_size;
1286 	size_t ret = 0;
1287 
1288 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1289 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1290 
1291 	/* compute send limit */
1292 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1293 	avail_size = info->size_goal;
1294 	msk->size_goal_cache = info->size_goal;
1295 	skb = tcp_write_queue_tail(ssk);
1296 	if (skb) {
1297 		/* Limit the write to the size available in the
1298 		 * current skb, if any, so that we create at most a new skb.
1299 		 * Explicitly tells TCP internals to avoid collapsing on later
1300 		 * queue management operation, to avoid breaking the ext <->
1301 		 * SSN association set here
1302 		 */
1303 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1304 		can_collapse = (info->size_goal - skb->len > 0) &&
1305 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1306 		if (!can_collapse) {
1307 			TCP_SKB_CB(skb)->eor = 1;
1308 		} else {
1309 			size_bias = skb->len;
1310 			avail_size = info->size_goal - skb->len;
1311 		}
1312 	}
1313 
1314 	/* Zero window and all data acked? Probe. */
1315 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1316 	if (avail_size == 0) {
1317 		u64 snd_una = READ_ONCE(msk->snd_una);
1318 
1319 		if (skb || snd_una != msk->snd_nxt)
1320 			return 0;
1321 		zero_window_probe = true;
1322 		data_seq = snd_una - 1;
1323 		avail_size = 1;
1324 	}
1325 
1326 	if (WARN_ON_ONCE(info->sent > info->limit ||
1327 			 info->limit > dfrag->data_len))
1328 		return 0;
1329 
1330 	ret = info->limit - info->sent;
1331 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1332 			      dfrag->page, dfrag->offset + info->sent, &ret);
1333 	if (!tail) {
1334 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1335 		return -ENOMEM;
1336 	}
1337 
1338 	/* if the tail skb is still the cached one, collapsing really happened.
1339 	 */
1340 	if (skb == tail) {
1341 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1342 		mpext->data_len += ret;
1343 		WARN_ON_ONCE(!can_collapse);
1344 		WARN_ON_ONCE(zero_window_probe);
1345 		goto out;
1346 	}
1347 
1348 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1349 	if (WARN_ON_ONCE(!mpext)) {
1350 		/* should never reach here, stream corrupted */
1351 		return -EINVAL;
1352 	}
1353 
1354 	memset(mpext, 0, sizeof(*mpext));
1355 	mpext->data_seq = data_seq;
1356 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1357 	mpext->data_len = ret;
1358 	mpext->use_map = 1;
1359 	mpext->dsn64 = 1;
1360 
1361 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1362 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1363 		 mpext->dsn64);
1364 
1365 	if (zero_window_probe) {
1366 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1367 		mpext->frozen = 1;
1368 		ret = 0;
1369 		tcp_push_pending_frames(ssk);
1370 	}
1371 out:
1372 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1373 	return ret;
1374 }
1375 
1376 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1377 					 sizeof(struct tcphdr) - \
1378 					 MAX_TCP_OPTION_SPACE - \
1379 					 sizeof(struct ipv6hdr) - \
1380 					 sizeof(struct frag_hdr))
1381 
1382 struct subflow_send_info {
1383 	struct sock *ssk;
1384 	u64 ratio;
1385 };
1386 
1387 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1388 {
1389 	struct subflow_send_info send_info[2];
1390 	struct mptcp_subflow_context *subflow;
1391 	int i, nr_active = 0;
1392 	struct sock *ssk;
1393 	u64 ratio;
1394 	u32 pace;
1395 
1396 	sock_owned_by_me((struct sock *)msk);
1397 
1398 	if (__mptcp_check_fallback(msk)) {
1399 		if (!msk->first)
1400 			return NULL;
1401 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1402 	}
1403 
1404 	/* re-use last subflow, if the burst allow that */
1405 	if (msk->last_snd && msk->snd_burst > 0 &&
1406 	    sk_stream_memory_free(msk->last_snd) &&
1407 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1408 		return msk->last_snd;
1409 
1410 	/* pick the subflow with the lower wmem/wspace ratio */
1411 	for (i = 0; i < 2; ++i) {
1412 		send_info[i].ssk = NULL;
1413 		send_info[i].ratio = -1;
1414 	}
1415 	mptcp_for_each_subflow(msk, subflow) {
1416 		trace_mptcp_subflow_get_send(subflow);
1417 		ssk =  mptcp_subflow_tcp_sock(subflow);
1418 		if (!mptcp_subflow_active(subflow))
1419 			continue;
1420 
1421 		nr_active += !subflow->backup;
1422 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1423 			continue;
1424 
1425 		pace = READ_ONCE(ssk->sk_pacing_rate);
1426 		if (!pace)
1427 			continue;
1428 
1429 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1430 				pace);
1431 		if (ratio < send_info[subflow->backup].ratio) {
1432 			send_info[subflow->backup].ssk = ssk;
1433 			send_info[subflow->backup].ratio = ratio;
1434 		}
1435 	}
1436 
1437 	/* pick the best backup if no other subflow is active */
1438 	if (!nr_active)
1439 		send_info[0].ssk = send_info[1].ssk;
1440 
1441 	if (send_info[0].ssk) {
1442 		msk->last_snd = send_info[0].ssk;
1443 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1444 				       tcp_sk(msk->last_snd)->snd_wnd);
1445 		return msk->last_snd;
1446 	}
1447 
1448 	return NULL;
1449 }
1450 
1451 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1452 			       struct mptcp_sendmsg_info *info)
1453 {
1454 	mptcp_set_timeout(sk, ssk);
1455 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1456 	release_sock(ssk);
1457 }
1458 
1459 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1460 {
1461 	struct sock *prev_ssk = NULL, *ssk = NULL;
1462 	struct mptcp_sock *msk = mptcp_sk(sk);
1463 	struct mptcp_sendmsg_info info = {
1464 				.flags = flags,
1465 	};
1466 	struct mptcp_data_frag *dfrag;
1467 	int len, copied = 0;
1468 
1469 	while ((dfrag = mptcp_send_head(sk))) {
1470 		info.sent = dfrag->already_sent;
1471 		info.limit = dfrag->data_len;
1472 		len = dfrag->data_len - dfrag->already_sent;
1473 		while (len > 0) {
1474 			int ret = 0;
1475 
1476 			prev_ssk = ssk;
1477 			mptcp_flush_join_list(msk);
1478 			ssk = mptcp_subflow_get_send(msk);
1479 
1480 			/* try to keep the subflow socket lock across
1481 			 * consecutive xmit on the same socket
1482 			 */
1483 			if (ssk != prev_ssk && prev_ssk)
1484 				mptcp_push_release(sk, prev_ssk, &info);
1485 			if (!ssk)
1486 				goto out;
1487 
1488 			if (ssk != prev_ssk || !prev_ssk)
1489 				lock_sock(ssk);
1490 
1491 			/* keep it simple and always provide a new skb for the
1492 			 * subflow, even if we will not use it when collapsing
1493 			 * on the pending one
1494 			 */
1495 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1496 				mptcp_push_release(sk, ssk, &info);
1497 				goto out;
1498 			}
1499 
1500 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1501 			if (ret <= 0) {
1502 				mptcp_push_release(sk, ssk, &info);
1503 				goto out;
1504 			}
1505 
1506 			info.sent += ret;
1507 			dfrag->already_sent += ret;
1508 			msk->snd_nxt += ret;
1509 			msk->snd_burst -= ret;
1510 			msk->tx_pending_data -= ret;
1511 			copied += ret;
1512 			len -= ret;
1513 		}
1514 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1515 	}
1516 
1517 	/* at this point we held the socket lock for the last subflow we used */
1518 	if (ssk)
1519 		mptcp_push_release(sk, ssk, &info);
1520 
1521 out:
1522 	if (copied) {
1523 		/* start the timer, if it's not pending */
1524 		if (!mptcp_timer_pending(sk))
1525 			mptcp_reset_timer(sk);
1526 		__mptcp_check_send_data_fin(sk);
1527 	}
1528 }
1529 
1530 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1531 {
1532 	struct mptcp_sock *msk = mptcp_sk(sk);
1533 	struct mptcp_sendmsg_info info;
1534 	struct mptcp_data_frag *dfrag;
1535 	struct sock *xmit_ssk;
1536 	int len, copied = 0;
1537 	bool first = true;
1538 
1539 	info.flags = 0;
1540 	while ((dfrag = mptcp_send_head(sk))) {
1541 		info.sent = dfrag->already_sent;
1542 		info.limit = dfrag->data_len;
1543 		len = dfrag->data_len - dfrag->already_sent;
1544 		while (len > 0) {
1545 			int ret = 0;
1546 
1547 			/* the caller already invoked the packet scheduler,
1548 			 * check for a different subflow usage only after
1549 			 * spooling the first chunk of data
1550 			 */
1551 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1552 			if (!xmit_ssk)
1553 				goto out;
1554 			if (xmit_ssk != ssk) {
1555 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1556 				goto out;
1557 			}
1558 
1559 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1560 				__mptcp_update_wmem(sk);
1561 				sk_mem_reclaim_partial(sk);
1562 			}
1563 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1564 				goto out;
1565 
1566 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1567 			if (ret <= 0)
1568 				goto out;
1569 
1570 			info.sent += ret;
1571 			dfrag->already_sent += ret;
1572 			msk->snd_nxt += ret;
1573 			msk->snd_burst -= ret;
1574 			msk->tx_pending_data -= ret;
1575 			copied += ret;
1576 			len -= ret;
1577 			first = false;
1578 		}
1579 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1580 	}
1581 
1582 out:
1583 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1584 	 * not going to flush it via release_sock()
1585 	 */
1586 	__mptcp_update_wmem(sk);
1587 	if (copied) {
1588 		mptcp_set_timeout(sk, ssk);
1589 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1590 			 info.size_goal);
1591 		if (!mptcp_timer_pending(sk))
1592 			mptcp_reset_timer(sk);
1593 
1594 		if (msk->snd_data_fin_enable &&
1595 		    msk->snd_nxt + 1 == msk->write_seq)
1596 			mptcp_schedule_work(sk);
1597 	}
1598 }
1599 
1600 static void mptcp_set_nospace(struct sock *sk)
1601 {
1602 	/* enable autotune */
1603 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1604 
1605 	/* will be cleared on avail space */
1606 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1607 }
1608 
1609 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1610 {
1611 	struct mptcp_sock *msk = mptcp_sk(sk);
1612 	struct page_frag *pfrag;
1613 	size_t copied = 0;
1614 	int ret = 0;
1615 	long timeo;
1616 
1617 	/* we don't support FASTOPEN yet */
1618 	if (msg->msg_flags & MSG_FASTOPEN)
1619 		return -EOPNOTSUPP;
1620 
1621 	/* silently ignore everything else */
1622 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1623 
1624 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1625 
1626 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1627 
1628 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1629 		ret = sk_stream_wait_connect(sk, &timeo);
1630 		if (ret)
1631 			goto out;
1632 	}
1633 
1634 	pfrag = sk_page_frag(sk);
1635 
1636 	while (msg_data_left(msg)) {
1637 		int total_ts, frag_truesize = 0;
1638 		struct mptcp_data_frag *dfrag;
1639 		struct sk_buff_head skbs;
1640 		bool dfrag_collapsed;
1641 		size_t psize, offset;
1642 
1643 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1644 			ret = -EPIPE;
1645 			goto out;
1646 		}
1647 
1648 		/* reuse tail pfrag, if possible, or carve a new one from the
1649 		 * page allocator
1650 		 */
1651 		dfrag = mptcp_pending_tail(sk);
1652 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1653 		if (!dfrag_collapsed) {
1654 			if (!sk_stream_memory_free(sk))
1655 				goto wait_for_memory;
1656 
1657 			if (!mptcp_page_frag_refill(sk, pfrag))
1658 				goto wait_for_memory;
1659 
1660 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1661 			frag_truesize = dfrag->overhead;
1662 		}
1663 
1664 		/* we do not bound vs wspace, to allow a single packet.
1665 		 * memory accounting will prevent execessive memory usage
1666 		 * anyway
1667 		 */
1668 		offset = dfrag->offset + dfrag->data_len;
1669 		psize = pfrag->size - offset;
1670 		psize = min_t(size_t, psize, msg_data_left(msg));
1671 		total_ts = psize + frag_truesize;
1672 		__skb_queue_head_init(&skbs);
1673 		if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts))
1674 			goto wait_for_memory;
1675 
1676 		if (!mptcp_wmem_alloc(sk, total_ts)) {
1677 			__skb_queue_purge(&skbs);
1678 			goto wait_for_memory;
1679 		}
1680 
1681 		skb_queue_splice_tail(&skbs, &msk->skb_tx_cache);
1682 		if (copy_page_from_iter(dfrag->page, offset, psize,
1683 					&msg->msg_iter) != psize) {
1684 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1685 			ret = -EFAULT;
1686 			goto out;
1687 		}
1688 
1689 		/* data successfully copied into the write queue */
1690 		copied += psize;
1691 		dfrag->data_len += psize;
1692 		frag_truesize += psize;
1693 		pfrag->offset += frag_truesize;
1694 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1695 		msk->tx_pending_data += psize;
1696 
1697 		/* charge data on mptcp pending queue to the msk socket
1698 		 * Note: we charge such data both to sk and ssk
1699 		 */
1700 		sk_wmem_queued_add(sk, frag_truesize);
1701 		if (!dfrag_collapsed) {
1702 			get_page(dfrag->page);
1703 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1704 			if (!msk->first_pending)
1705 				WRITE_ONCE(msk->first_pending, dfrag);
1706 		}
1707 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1708 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1709 			 !dfrag_collapsed);
1710 
1711 		continue;
1712 
1713 wait_for_memory:
1714 		mptcp_set_nospace(sk);
1715 		__mptcp_push_pending(sk, msg->msg_flags);
1716 		ret = sk_stream_wait_memory(sk, &timeo);
1717 		if (ret)
1718 			goto out;
1719 	}
1720 
1721 	if (copied)
1722 		__mptcp_push_pending(sk, msg->msg_flags);
1723 
1724 out:
1725 	release_sock(sk);
1726 	return copied ? : ret;
1727 }
1728 
1729 static void mptcp_wait_data(struct sock *sk, long *timeo)
1730 {
1731 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1732 	struct mptcp_sock *msk = mptcp_sk(sk);
1733 
1734 	add_wait_queue(sk_sleep(sk), &wait);
1735 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1736 
1737 	sk_wait_event(sk, timeo,
1738 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1739 
1740 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1741 	remove_wait_queue(sk_sleep(sk), &wait);
1742 }
1743 
1744 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1745 				struct msghdr *msg,
1746 				size_t len, int flags)
1747 {
1748 	struct sk_buff *skb, *tmp;
1749 	int copied = 0;
1750 
1751 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1752 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1753 		u32 data_len = skb->len - offset;
1754 		u32 count = min_t(size_t, len - copied, data_len);
1755 		int err;
1756 
1757 		if (!(flags & MSG_TRUNC)) {
1758 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1759 			if (unlikely(err < 0)) {
1760 				if (!copied)
1761 					return err;
1762 				break;
1763 			}
1764 		}
1765 
1766 		copied += count;
1767 
1768 		if (count < data_len) {
1769 			if (!(flags & MSG_PEEK))
1770 				MPTCP_SKB_CB(skb)->offset += count;
1771 			break;
1772 		}
1773 
1774 		if (!(flags & MSG_PEEK)) {
1775 			/* we will bulk release the skb memory later */
1776 			skb->destructor = NULL;
1777 			msk->rmem_released += skb->truesize;
1778 			__skb_unlink(skb, &msk->receive_queue);
1779 			__kfree_skb(skb);
1780 		}
1781 
1782 		if (copied >= len)
1783 			break;
1784 	}
1785 
1786 	return copied;
1787 }
1788 
1789 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1790  *
1791  * Only difference: Use highest rtt estimate of the subflows in use.
1792  */
1793 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1794 {
1795 	struct mptcp_subflow_context *subflow;
1796 	struct sock *sk = (struct sock *)msk;
1797 	u32 time, advmss = 1;
1798 	u64 rtt_us, mstamp;
1799 
1800 	sock_owned_by_me(sk);
1801 
1802 	if (copied <= 0)
1803 		return;
1804 
1805 	msk->rcvq_space.copied += copied;
1806 
1807 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1808 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1809 
1810 	rtt_us = msk->rcvq_space.rtt_us;
1811 	if (rtt_us && time < (rtt_us >> 3))
1812 		return;
1813 
1814 	rtt_us = 0;
1815 	mptcp_for_each_subflow(msk, subflow) {
1816 		const struct tcp_sock *tp;
1817 		u64 sf_rtt_us;
1818 		u32 sf_advmss;
1819 
1820 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1821 
1822 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1823 		sf_advmss = READ_ONCE(tp->advmss);
1824 
1825 		rtt_us = max(sf_rtt_us, rtt_us);
1826 		advmss = max(sf_advmss, advmss);
1827 	}
1828 
1829 	msk->rcvq_space.rtt_us = rtt_us;
1830 	if (time < (rtt_us >> 3) || rtt_us == 0)
1831 		return;
1832 
1833 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1834 		goto new_measure;
1835 
1836 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1837 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1838 		int rcvmem, rcvbuf;
1839 		u64 rcvwin, grow;
1840 
1841 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1842 
1843 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1844 
1845 		do_div(grow, msk->rcvq_space.space);
1846 		rcvwin += (grow << 1);
1847 
1848 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1849 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1850 			rcvmem += 128;
1851 
1852 		do_div(rcvwin, advmss);
1853 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1854 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1855 
1856 		if (rcvbuf > sk->sk_rcvbuf) {
1857 			u32 window_clamp;
1858 
1859 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1860 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1861 
1862 			/* Make subflows follow along.  If we do not do this, we
1863 			 * get drops at subflow level if skbs can't be moved to
1864 			 * the mptcp rx queue fast enough (announced rcv_win can
1865 			 * exceed ssk->sk_rcvbuf).
1866 			 */
1867 			mptcp_for_each_subflow(msk, subflow) {
1868 				struct sock *ssk;
1869 				bool slow;
1870 
1871 				ssk = mptcp_subflow_tcp_sock(subflow);
1872 				slow = lock_sock_fast(ssk);
1873 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1874 				tcp_sk(ssk)->window_clamp = window_clamp;
1875 				tcp_cleanup_rbuf(ssk, 1);
1876 				unlock_sock_fast(ssk, slow);
1877 			}
1878 		}
1879 	}
1880 
1881 	msk->rcvq_space.space = msk->rcvq_space.copied;
1882 new_measure:
1883 	msk->rcvq_space.copied = 0;
1884 	msk->rcvq_space.time = mstamp;
1885 }
1886 
1887 static void __mptcp_update_rmem(struct sock *sk)
1888 {
1889 	struct mptcp_sock *msk = mptcp_sk(sk);
1890 
1891 	if (!msk->rmem_released)
1892 		return;
1893 
1894 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1895 	sk_mem_uncharge(sk, msk->rmem_released);
1896 	msk->rmem_released = 0;
1897 }
1898 
1899 static void __mptcp_splice_receive_queue(struct sock *sk)
1900 {
1901 	struct mptcp_sock *msk = mptcp_sk(sk);
1902 
1903 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1904 }
1905 
1906 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1907 {
1908 	struct sock *sk = (struct sock *)msk;
1909 	unsigned int moved = 0;
1910 	bool ret, done;
1911 
1912 	mptcp_flush_join_list(msk);
1913 	do {
1914 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1915 		bool slowpath;
1916 
1917 		/* we can have data pending in the subflows only if the msk
1918 		 * receive buffer was full at subflow_data_ready() time,
1919 		 * that is an unlikely slow path.
1920 		 */
1921 		if (likely(!ssk))
1922 			break;
1923 
1924 		slowpath = lock_sock_fast(ssk);
1925 		mptcp_data_lock(sk);
1926 		__mptcp_update_rmem(sk);
1927 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1928 		mptcp_data_unlock(sk);
1929 		tcp_cleanup_rbuf(ssk, moved);
1930 		unlock_sock_fast(ssk, slowpath);
1931 	} while (!done);
1932 
1933 	/* acquire the data lock only if some input data is pending */
1934 	ret = moved > 0;
1935 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1936 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1937 		mptcp_data_lock(sk);
1938 		__mptcp_update_rmem(sk);
1939 		ret |= __mptcp_ofo_queue(msk);
1940 		__mptcp_splice_receive_queue(sk);
1941 		mptcp_data_unlock(sk);
1942 		mptcp_cleanup_rbuf(msk);
1943 	}
1944 	if (ret)
1945 		mptcp_check_data_fin((struct sock *)msk);
1946 	return !skb_queue_empty(&msk->receive_queue);
1947 }
1948 
1949 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1950 			 int nonblock, int flags, int *addr_len)
1951 {
1952 	struct mptcp_sock *msk = mptcp_sk(sk);
1953 	int copied = 0;
1954 	int target;
1955 	long timeo;
1956 
1957 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
1958 	if (unlikely(flags & MSG_ERRQUEUE))
1959 		return inet_recv_error(sk, msg, len, addr_len);
1960 
1961 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1962 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1963 		copied = -ENOTCONN;
1964 		goto out_err;
1965 	}
1966 
1967 	timeo = sock_rcvtimeo(sk, nonblock);
1968 
1969 	len = min_t(size_t, len, INT_MAX);
1970 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1971 
1972 	while (copied < len) {
1973 		int bytes_read;
1974 
1975 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags);
1976 		if (unlikely(bytes_read < 0)) {
1977 			if (!copied)
1978 				copied = bytes_read;
1979 			goto out_err;
1980 		}
1981 
1982 		copied += bytes_read;
1983 
1984 		/* be sure to advertise window change */
1985 		mptcp_cleanup_rbuf(msk);
1986 
1987 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
1988 			continue;
1989 
1990 		/* only the master socket status is relevant here. The exit
1991 		 * conditions mirror closely tcp_recvmsg()
1992 		 */
1993 		if (copied >= target)
1994 			break;
1995 
1996 		if (copied) {
1997 			if (sk->sk_err ||
1998 			    sk->sk_state == TCP_CLOSE ||
1999 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2000 			    !timeo ||
2001 			    signal_pending(current))
2002 				break;
2003 		} else {
2004 			if (sk->sk_err) {
2005 				copied = sock_error(sk);
2006 				break;
2007 			}
2008 
2009 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2010 				mptcp_check_for_eof(msk);
2011 
2012 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2013 				/* race breaker: the shutdown could be after the
2014 				 * previous receive queue check
2015 				 */
2016 				if (__mptcp_move_skbs(msk))
2017 					continue;
2018 				break;
2019 			}
2020 
2021 			if (sk->sk_state == TCP_CLOSE) {
2022 				copied = -ENOTCONN;
2023 				break;
2024 			}
2025 
2026 			if (!timeo) {
2027 				copied = -EAGAIN;
2028 				break;
2029 			}
2030 
2031 			if (signal_pending(current)) {
2032 				copied = sock_intr_errno(timeo);
2033 				break;
2034 			}
2035 		}
2036 
2037 		pr_debug("block timeout %ld", timeo);
2038 		mptcp_wait_data(sk, &timeo);
2039 	}
2040 
2041 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2042 	    skb_queue_empty(&msk->receive_queue)) {
2043 		/* entire backlog drained, clear DATA_READY. */
2044 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2045 
2046 		/* .. race-breaker: ssk might have gotten new data
2047 		 * after last __mptcp_move_skbs() returned false.
2048 		 */
2049 		if (unlikely(__mptcp_move_skbs(msk)))
2050 			set_bit(MPTCP_DATA_READY, &msk->flags);
2051 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
2052 		/* data to read but mptcp_wait_data() cleared DATA_READY */
2053 		set_bit(MPTCP_DATA_READY, &msk->flags);
2054 	}
2055 out_err:
2056 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2057 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2058 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2059 	if (!(flags & MSG_PEEK))
2060 		mptcp_rcv_space_adjust(msk, copied);
2061 
2062 	release_sock(sk);
2063 	return copied;
2064 }
2065 
2066 static void mptcp_retransmit_timer(struct timer_list *t)
2067 {
2068 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2069 						       icsk_retransmit_timer);
2070 	struct sock *sk = &icsk->icsk_inet.sk;
2071 	struct mptcp_sock *msk = mptcp_sk(sk);
2072 
2073 	bh_lock_sock(sk);
2074 	if (!sock_owned_by_user(sk)) {
2075 		/* we need a process context to retransmit */
2076 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2077 			mptcp_schedule_work(sk);
2078 	} else {
2079 		/* delegate our work to tcp_release_cb() */
2080 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2081 	}
2082 	bh_unlock_sock(sk);
2083 	sock_put(sk);
2084 }
2085 
2086 static void mptcp_timeout_timer(struct timer_list *t)
2087 {
2088 	struct sock *sk = from_timer(sk, t, sk_timer);
2089 
2090 	mptcp_schedule_work(sk);
2091 	sock_put(sk);
2092 }
2093 
2094 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2095  * level.
2096  *
2097  * A backup subflow is returned only if that is the only kind available.
2098  */
2099 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2100 {
2101 	struct mptcp_subflow_context *subflow;
2102 	struct sock *backup = NULL;
2103 
2104 	sock_owned_by_me((const struct sock *)msk);
2105 
2106 	if (__mptcp_check_fallback(msk))
2107 		return NULL;
2108 
2109 	mptcp_for_each_subflow(msk, subflow) {
2110 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2111 
2112 		if (!mptcp_subflow_active(subflow))
2113 			continue;
2114 
2115 		/* still data outstanding at TCP level?  Don't retransmit. */
2116 		if (!tcp_write_queue_empty(ssk)) {
2117 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2118 				continue;
2119 			return NULL;
2120 		}
2121 
2122 		if (subflow->backup) {
2123 			if (!backup)
2124 				backup = ssk;
2125 			continue;
2126 		}
2127 
2128 		return ssk;
2129 	}
2130 
2131 	return backup;
2132 }
2133 
2134 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2135 {
2136 	if (msk->subflow) {
2137 		iput(SOCK_INODE(msk->subflow));
2138 		msk->subflow = NULL;
2139 	}
2140 }
2141 
2142 /* subflow sockets can be either outgoing (connect) or incoming
2143  * (accept).
2144  *
2145  * Outgoing subflows use in-kernel sockets.
2146  * Incoming subflows do not have their own 'struct socket' allocated,
2147  * so we need to use tcp_close() after detaching them from the mptcp
2148  * parent socket.
2149  */
2150 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2151 			      struct mptcp_subflow_context *subflow)
2152 {
2153 	struct mptcp_sock *msk = mptcp_sk(sk);
2154 
2155 	list_del(&subflow->node);
2156 
2157 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2158 
2159 	/* if we are invoked by the msk cleanup code, the subflow is
2160 	 * already orphaned
2161 	 */
2162 	if (ssk->sk_socket)
2163 		sock_orphan(ssk);
2164 
2165 	subflow->disposable = 1;
2166 
2167 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2168 	 * the ssk has been already destroyed, we just need to release the
2169 	 * reference owned by msk;
2170 	 */
2171 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2172 		kfree_rcu(subflow, rcu);
2173 	} else {
2174 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2175 		__tcp_close(ssk, 0);
2176 
2177 		/* close acquired an extra ref */
2178 		__sock_put(ssk);
2179 	}
2180 	release_sock(ssk);
2181 
2182 	sock_put(ssk);
2183 
2184 	if (ssk == msk->last_snd)
2185 		msk->last_snd = NULL;
2186 
2187 	if (ssk == msk->ack_hint)
2188 		msk->ack_hint = NULL;
2189 
2190 	if (ssk == msk->first)
2191 		msk->first = NULL;
2192 
2193 	if (msk->subflow && ssk == msk->subflow->sk)
2194 		mptcp_dispose_initial_subflow(msk);
2195 }
2196 
2197 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2198 		     struct mptcp_subflow_context *subflow)
2199 {
2200 	if (sk->sk_state == TCP_ESTABLISHED)
2201 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2202 	__mptcp_close_ssk(sk, ssk, subflow);
2203 }
2204 
2205 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2206 {
2207 	return 0;
2208 }
2209 
2210 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2211 {
2212 	struct mptcp_subflow_context *subflow, *tmp;
2213 
2214 	might_sleep();
2215 
2216 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2217 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2218 
2219 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2220 			continue;
2221 
2222 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2223 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2224 			continue;
2225 
2226 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2227 	}
2228 }
2229 
2230 static bool mptcp_check_close_timeout(const struct sock *sk)
2231 {
2232 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2233 	struct mptcp_subflow_context *subflow;
2234 
2235 	if (delta >= TCP_TIMEWAIT_LEN)
2236 		return true;
2237 
2238 	/* if all subflows are in closed status don't bother with additional
2239 	 * timeout
2240 	 */
2241 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2242 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2243 		    TCP_CLOSE)
2244 			return false;
2245 	}
2246 	return true;
2247 }
2248 
2249 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2250 {
2251 	struct mptcp_subflow_context *subflow, *tmp;
2252 	struct sock *sk = &msk->sk.icsk_inet.sk;
2253 
2254 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2255 		return;
2256 
2257 	mptcp_token_destroy(msk);
2258 
2259 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2260 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2261 
2262 		lock_sock(tcp_sk);
2263 		if (tcp_sk->sk_state != TCP_CLOSE) {
2264 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2265 			tcp_set_state(tcp_sk, TCP_CLOSE);
2266 		}
2267 		release_sock(tcp_sk);
2268 	}
2269 
2270 	inet_sk_state_store(sk, TCP_CLOSE);
2271 	sk->sk_shutdown = SHUTDOWN_MASK;
2272 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2273 	set_bit(MPTCP_DATA_READY, &msk->flags);
2274 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2275 
2276 	mptcp_close_wake_up(sk);
2277 }
2278 
2279 static void __mptcp_retrans(struct sock *sk)
2280 {
2281 	struct mptcp_sock *msk = mptcp_sk(sk);
2282 	struct mptcp_sendmsg_info info = {};
2283 	struct mptcp_data_frag *dfrag;
2284 	size_t copied = 0;
2285 	struct sock *ssk;
2286 	int ret;
2287 
2288 	__mptcp_clean_una_wakeup(sk);
2289 	dfrag = mptcp_rtx_head(sk);
2290 	if (!dfrag)
2291 		return;
2292 
2293 	ssk = mptcp_subflow_get_retrans(msk);
2294 	if (!ssk)
2295 		goto reset_timer;
2296 
2297 	lock_sock(ssk);
2298 
2299 	/* limit retransmission to the bytes already sent on some subflows */
2300 	info.sent = 0;
2301 	info.limit = dfrag->already_sent;
2302 	while (info.sent < dfrag->already_sent) {
2303 		if (!mptcp_alloc_tx_skb(sk, ssk))
2304 			break;
2305 
2306 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2307 		if (ret <= 0)
2308 			break;
2309 
2310 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2311 		copied += ret;
2312 		info.sent += ret;
2313 	}
2314 	if (copied)
2315 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2316 			 info.size_goal);
2317 
2318 	mptcp_set_timeout(sk, ssk);
2319 	release_sock(ssk);
2320 
2321 reset_timer:
2322 	if (!mptcp_timer_pending(sk))
2323 		mptcp_reset_timer(sk);
2324 }
2325 
2326 static void mptcp_worker(struct work_struct *work)
2327 {
2328 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2329 	struct sock *sk = &msk->sk.icsk_inet.sk;
2330 	int state;
2331 
2332 	lock_sock(sk);
2333 	state = sk->sk_state;
2334 	if (unlikely(state == TCP_CLOSE))
2335 		goto unlock;
2336 
2337 	mptcp_check_data_fin_ack(sk);
2338 	mptcp_flush_join_list(msk);
2339 
2340 	mptcp_check_fastclose(msk);
2341 
2342 	if (msk->pm.status)
2343 		mptcp_pm_nl_work(msk);
2344 
2345 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2346 		mptcp_check_for_eof(msk);
2347 
2348 	__mptcp_check_send_data_fin(sk);
2349 	mptcp_check_data_fin(sk);
2350 
2351 	/* There is no point in keeping around an orphaned sk timedout or
2352 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2353 	 * even if it is orphaned and in FIN_WAIT2 state
2354 	 */
2355 	if (sock_flag(sk, SOCK_DEAD) &&
2356 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2357 		inet_sk_state_store(sk, TCP_CLOSE);
2358 		__mptcp_destroy_sock(sk);
2359 		goto unlock;
2360 	}
2361 
2362 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2363 		__mptcp_close_subflow(msk);
2364 
2365 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2366 		__mptcp_retrans(sk);
2367 
2368 unlock:
2369 	release_sock(sk);
2370 	sock_put(sk);
2371 }
2372 
2373 static int __mptcp_init_sock(struct sock *sk)
2374 {
2375 	struct mptcp_sock *msk = mptcp_sk(sk);
2376 
2377 	spin_lock_init(&msk->join_list_lock);
2378 
2379 	INIT_LIST_HEAD(&msk->conn_list);
2380 	INIT_LIST_HEAD(&msk->join_list);
2381 	INIT_LIST_HEAD(&msk->rtx_queue);
2382 	INIT_WORK(&msk->work, mptcp_worker);
2383 	__skb_queue_head_init(&msk->receive_queue);
2384 	__skb_queue_head_init(&msk->skb_tx_cache);
2385 	msk->out_of_order_queue = RB_ROOT;
2386 	msk->first_pending = NULL;
2387 	msk->wmem_reserved = 0;
2388 	msk->rmem_released = 0;
2389 	msk->tx_pending_data = 0;
2390 	msk->size_goal_cache = TCP_BASE_MSS;
2391 
2392 	msk->ack_hint = NULL;
2393 	msk->first = NULL;
2394 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2395 
2396 	mptcp_pm_data_init(msk);
2397 
2398 	/* re-use the csk retrans timer for MPTCP-level retrans */
2399 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2400 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2401 
2402 	tcp_assign_congestion_control(sk);
2403 
2404 	return 0;
2405 }
2406 
2407 static int mptcp_init_sock(struct sock *sk)
2408 {
2409 	struct net *net = sock_net(sk);
2410 	int ret;
2411 
2412 	ret = __mptcp_init_sock(sk);
2413 	if (ret)
2414 		return ret;
2415 
2416 	if (!mptcp_is_enabled(net))
2417 		return -ENOPROTOOPT;
2418 
2419 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2420 		return -ENOMEM;
2421 
2422 	ret = __mptcp_socket_create(mptcp_sk(sk));
2423 	if (ret)
2424 		return ret;
2425 
2426 	sk_sockets_allocated_inc(sk);
2427 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2428 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2429 
2430 	return 0;
2431 }
2432 
2433 static void __mptcp_clear_xmit(struct sock *sk)
2434 {
2435 	struct mptcp_sock *msk = mptcp_sk(sk);
2436 	struct mptcp_data_frag *dtmp, *dfrag;
2437 	struct sk_buff *skb;
2438 
2439 	WRITE_ONCE(msk->first_pending, NULL);
2440 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2441 		dfrag_clear(sk, dfrag);
2442 	while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) {
2443 		sk->sk_forward_alloc += skb->truesize;
2444 		kfree_skb(skb);
2445 	}
2446 }
2447 
2448 static void mptcp_cancel_work(struct sock *sk)
2449 {
2450 	struct mptcp_sock *msk = mptcp_sk(sk);
2451 
2452 	if (cancel_work_sync(&msk->work))
2453 		__sock_put(sk);
2454 }
2455 
2456 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2457 {
2458 	lock_sock(ssk);
2459 
2460 	switch (ssk->sk_state) {
2461 	case TCP_LISTEN:
2462 		if (!(how & RCV_SHUTDOWN))
2463 			break;
2464 		fallthrough;
2465 	case TCP_SYN_SENT:
2466 		tcp_disconnect(ssk, O_NONBLOCK);
2467 		break;
2468 	default:
2469 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2470 			pr_debug("Fallback");
2471 			ssk->sk_shutdown |= how;
2472 			tcp_shutdown(ssk, how);
2473 		} else {
2474 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2475 			mptcp_set_timeout(sk, ssk);
2476 			tcp_send_ack(ssk);
2477 		}
2478 		break;
2479 	}
2480 
2481 	release_sock(ssk);
2482 }
2483 
2484 static const unsigned char new_state[16] = {
2485 	/* current state:     new state:      action:	*/
2486 	[0 /* (Invalid) */] = TCP_CLOSE,
2487 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2488 	[TCP_SYN_SENT]      = TCP_CLOSE,
2489 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2490 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2491 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2492 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2493 	[TCP_CLOSE]         = TCP_CLOSE,
2494 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2495 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2496 	[TCP_LISTEN]        = TCP_CLOSE,
2497 	[TCP_CLOSING]       = TCP_CLOSING,
2498 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2499 };
2500 
2501 static int mptcp_close_state(struct sock *sk)
2502 {
2503 	int next = (int)new_state[sk->sk_state];
2504 	int ns = next & TCP_STATE_MASK;
2505 
2506 	inet_sk_state_store(sk, ns);
2507 
2508 	return next & TCP_ACTION_FIN;
2509 }
2510 
2511 static void __mptcp_check_send_data_fin(struct sock *sk)
2512 {
2513 	struct mptcp_subflow_context *subflow;
2514 	struct mptcp_sock *msk = mptcp_sk(sk);
2515 
2516 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2517 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2518 		 msk->snd_nxt, msk->write_seq);
2519 
2520 	/* we still need to enqueue subflows or not really shutting down,
2521 	 * skip this
2522 	 */
2523 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2524 	    mptcp_send_head(sk))
2525 		return;
2526 
2527 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2528 
2529 	/* fallback socket will not get data_fin/ack, can move to the next
2530 	 * state now
2531 	 */
2532 	if (__mptcp_check_fallback(msk)) {
2533 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2534 			inet_sk_state_store(sk, TCP_CLOSE);
2535 			mptcp_close_wake_up(sk);
2536 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2537 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2538 		}
2539 	}
2540 
2541 	mptcp_flush_join_list(msk);
2542 	mptcp_for_each_subflow(msk, subflow) {
2543 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2544 
2545 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2546 	}
2547 }
2548 
2549 static void __mptcp_wr_shutdown(struct sock *sk)
2550 {
2551 	struct mptcp_sock *msk = mptcp_sk(sk);
2552 
2553 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2554 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2555 		 !!mptcp_send_head(sk));
2556 
2557 	/* will be ignored by fallback sockets */
2558 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2559 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2560 
2561 	__mptcp_check_send_data_fin(sk);
2562 }
2563 
2564 static void __mptcp_destroy_sock(struct sock *sk)
2565 {
2566 	struct mptcp_subflow_context *subflow, *tmp;
2567 	struct mptcp_sock *msk = mptcp_sk(sk);
2568 	LIST_HEAD(conn_list);
2569 
2570 	pr_debug("msk=%p", msk);
2571 
2572 	might_sleep();
2573 
2574 	/* be sure to always acquire the join list lock, to sync vs
2575 	 * mptcp_finish_join().
2576 	 */
2577 	spin_lock_bh(&msk->join_list_lock);
2578 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2579 	spin_unlock_bh(&msk->join_list_lock);
2580 	list_splice_init(&msk->conn_list, &conn_list);
2581 
2582 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2583 	sk_stop_timer(sk, &sk->sk_timer);
2584 	msk->pm.status = 0;
2585 
2586 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2587 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2588 		__mptcp_close_ssk(sk, ssk, subflow);
2589 	}
2590 
2591 	sk->sk_prot->destroy(sk);
2592 
2593 	WARN_ON_ONCE(msk->wmem_reserved);
2594 	WARN_ON_ONCE(msk->rmem_released);
2595 	sk_stream_kill_queues(sk);
2596 	xfrm_sk_free_policy(sk);
2597 
2598 	tcp_cleanup_congestion_control(sk);
2599 	sk_refcnt_debug_release(sk);
2600 	mptcp_dispose_initial_subflow(msk);
2601 	sock_put(sk);
2602 }
2603 
2604 static void mptcp_close(struct sock *sk, long timeout)
2605 {
2606 	struct mptcp_subflow_context *subflow;
2607 	bool do_cancel_work = false;
2608 
2609 	lock_sock(sk);
2610 	sk->sk_shutdown = SHUTDOWN_MASK;
2611 
2612 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2613 		inet_sk_state_store(sk, TCP_CLOSE);
2614 		goto cleanup;
2615 	}
2616 
2617 	if (mptcp_close_state(sk))
2618 		__mptcp_wr_shutdown(sk);
2619 
2620 	sk_stream_wait_close(sk, timeout);
2621 
2622 cleanup:
2623 	/* orphan all the subflows */
2624 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2625 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2626 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2627 		bool slow = lock_sock_fast(ssk);
2628 
2629 		sock_orphan(ssk);
2630 		unlock_sock_fast(ssk, slow);
2631 	}
2632 	sock_orphan(sk);
2633 
2634 	sock_hold(sk);
2635 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2636 	if (sk->sk_state == TCP_CLOSE) {
2637 		__mptcp_destroy_sock(sk);
2638 		do_cancel_work = true;
2639 	} else {
2640 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2641 	}
2642 	release_sock(sk);
2643 	if (do_cancel_work)
2644 		mptcp_cancel_work(sk);
2645 
2646 	if (mptcp_sk(sk)->token)
2647 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2648 
2649 	sock_put(sk);
2650 }
2651 
2652 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2653 {
2654 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2655 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2656 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2657 
2658 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2659 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2660 
2661 	if (msk6 && ssk6) {
2662 		msk6->saddr = ssk6->saddr;
2663 		msk6->flow_label = ssk6->flow_label;
2664 	}
2665 #endif
2666 
2667 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2668 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2669 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2670 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2671 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2672 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2673 }
2674 
2675 static int mptcp_disconnect(struct sock *sk, int flags)
2676 {
2677 	struct mptcp_subflow_context *subflow;
2678 	struct mptcp_sock *msk = mptcp_sk(sk);
2679 
2680 	mptcp_do_flush_join_list(msk);
2681 
2682 	mptcp_for_each_subflow(msk, subflow) {
2683 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2684 
2685 		lock_sock(ssk);
2686 		tcp_disconnect(ssk, flags);
2687 		release_sock(ssk);
2688 	}
2689 	return 0;
2690 }
2691 
2692 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2693 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2694 {
2695 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2696 
2697 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2698 }
2699 #endif
2700 
2701 struct sock *mptcp_sk_clone(const struct sock *sk,
2702 			    const struct mptcp_options_received *mp_opt,
2703 			    struct request_sock *req)
2704 {
2705 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2706 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2707 	struct mptcp_sock *msk;
2708 	u64 ack_seq;
2709 
2710 	if (!nsk)
2711 		return NULL;
2712 
2713 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2714 	if (nsk->sk_family == AF_INET6)
2715 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2716 #endif
2717 
2718 	__mptcp_init_sock(nsk);
2719 
2720 	msk = mptcp_sk(nsk);
2721 	msk->local_key = subflow_req->local_key;
2722 	msk->token = subflow_req->token;
2723 	msk->subflow = NULL;
2724 	WRITE_ONCE(msk->fully_established, false);
2725 
2726 	msk->write_seq = subflow_req->idsn + 1;
2727 	msk->snd_nxt = msk->write_seq;
2728 	msk->snd_una = msk->write_seq;
2729 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2730 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2731 
2732 	if (mp_opt->mp_capable) {
2733 		msk->can_ack = true;
2734 		msk->remote_key = mp_opt->sndr_key;
2735 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2736 		ack_seq++;
2737 		WRITE_ONCE(msk->ack_seq, ack_seq);
2738 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2739 	}
2740 
2741 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2742 	/* will be fully established after successful MPC subflow creation */
2743 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2744 
2745 	security_inet_csk_clone(nsk, req);
2746 	bh_unlock_sock(nsk);
2747 
2748 	/* keep a single reference */
2749 	__sock_put(nsk);
2750 	return nsk;
2751 }
2752 
2753 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2754 {
2755 	const struct tcp_sock *tp = tcp_sk(ssk);
2756 
2757 	msk->rcvq_space.copied = 0;
2758 	msk->rcvq_space.rtt_us = 0;
2759 
2760 	msk->rcvq_space.time = tp->tcp_mstamp;
2761 
2762 	/* initial rcv_space offering made to peer */
2763 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2764 				      TCP_INIT_CWND * tp->advmss);
2765 	if (msk->rcvq_space.space == 0)
2766 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2767 
2768 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2769 }
2770 
2771 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2772 				 bool kern)
2773 {
2774 	struct mptcp_sock *msk = mptcp_sk(sk);
2775 	struct socket *listener;
2776 	struct sock *newsk;
2777 
2778 	listener = __mptcp_nmpc_socket(msk);
2779 	if (WARN_ON_ONCE(!listener)) {
2780 		*err = -EINVAL;
2781 		return NULL;
2782 	}
2783 
2784 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2785 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2786 	if (!newsk)
2787 		return NULL;
2788 
2789 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2790 	if (sk_is_mptcp(newsk)) {
2791 		struct mptcp_subflow_context *subflow;
2792 		struct sock *new_mptcp_sock;
2793 
2794 		subflow = mptcp_subflow_ctx(newsk);
2795 		new_mptcp_sock = subflow->conn;
2796 
2797 		/* is_mptcp should be false if subflow->conn is missing, see
2798 		 * subflow_syn_recv_sock()
2799 		 */
2800 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2801 			tcp_sk(newsk)->is_mptcp = 0;
2802 			return newsk;
2803 		}
2804 
2805 		/* acquire the 2nd reference for the owning socket */
2806 		sock_hold(new_mptcp_sock);
2807 		newsk = new_mptcp_sock;
2808 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2809 	} else {
2810 		MPTCP_INC_STATS(sock_net(sk),
2811 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2812 	}
2813 
2814 	return newsk;
2815 }
2816 
2817 void mptcp_destroy_common(struct mptcp_sock *msk)
2818 {
2819 	struct sock *sk = (struct sock *)msk;
2820 
2821 	__mptcp_clear_xmit(sk);
2822 
2823 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2824 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2825 
2826 	skb_rbtree_purge(&msk->out_of_order_queue);
2827 	mptcp_token_destroy(msk);
2828 	mptcp_pm_free_anno_list(msk);
2829 }
2830 
2831 static void mptcp_destroy(struct sock *sk)
2832 {
2833 	struct mptcp_sock *msk = mptcp_sk(sk);
2834 
2835 	mptcp_destroy_common(msk);
2836 	sk_sockets_allocated_dec(sk);
2837 }
2838 
2839 void __mptcp_data_acked(struct sock *sk)
2840 {
2841 	if (!sock_owned_by_user(sk))
2842 		__mptcp_clean_una(sk);
2843 	else
2844 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2845 
2846 	if (mptcp_pending_data_fin_ack(sk))
2847 		mptcp_schedule_work(sk);
2848 }
2849 
2850 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2851 {
2852 	if (!mptcp_send_head(sk))
2853 		return;
2854 
2855 	if (!sock_owned_by_user(sk)) {
2856 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2857 
2858 		if (xmit_ssk == ssk)
2859 			__mptcp_subflow_push_pending(sk, ssk);
2860 		else if (xmit_ssk)
2861 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2862 	} else {
2863 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2864 	}
2865 }
2866 
2867 /* processes deferred events and flush wmem */
2868 static void mptcp_release_cb(struct sock *sk)
2869 {
2870 	for (;;) {
2871 		unsigned long flags = 0;
2872 
2873 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2874 			flags |= BIT(MPTCP_PUSH_PENDING);
2875 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2876 			flags |= BIT(MPTCP_RETRANSMIT);
2877 		if (!flags)
2878 			break;
2879 
2880 		/* the following actions acquire the subflow socket lock
2881 		 *
2882 		 * 1) can't be invoked in atomic scope
2883 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2884 		 *    datapath acquires the msk socket spinlock while helding
2885 		 *    the subflow socket lock
2886 		 */
2887 
2888 		spin_unlock_bh(&sk->sk_lock.slock);
2889 		if (flags & BIT(MPTCP_PUSH_PENDING))
2890 			__mptcp_push_pending(sk, 0);
2891 		if (flags & BIT(MPTCP_RETRANSMIT))
2892 			__mptcp_retrans(sk);
2893 
2894 		cond_resched();
2895 		spin_lock_bh(&sk->sk_lock.slock);
2896 	}
2897 
2898 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2899 		__mptcp_clean_una_wakeup(sk);
2900 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2901 		__mptcp_error_report(sk);
2902 
2903 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2904 	 * later
2905 	 */
2906 	__mptcp_update_wmem(sk);
2907 	__mptcp_update_rmem(sk);
2908 }
2909 
2910 void mptcp_subflow_process_delegated(struct sock *ssk)
2911 {
2912 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
2913 	struct sock *sk = subflow->conn;
2914 
2915 	mptcp_data_lock(sk);
2916 	if (!sock_owned_by_user(sk))
2917 		__mptcp_subflow_push_pending(sk, ssk);
2918 	else
2919 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2920 	mptcp_data_unlock(sk);
2921 	mptcp_subflow_delegated_done(subflow);
2922 }
2923 
2924 static int mptcp_hash(struct sock *sk)
2925 {
2926 	/* should never be called,
2927 	 * we hash the TCP subflows not the master socket
2928 	 */
2929 	WARN_ON_ONCE(1);
2930 	return 0;
2931 }
2932 
2933 static void mptcp_unhash(struct sock *sk)
2934 {
2935 	/* called from sk_common_release(), but nothing to do here */
2936 }
2937 
2938 static int mptcp_get_port(struct sock *sk, unsigned short snum)
2939 {
2940 	struct mptcp_sock *msk = mptcp_sk(sk);
2941 	struct socket *ssock;
2942 
2943 	ssock = __mptcp_nmpc_socket(msk);
2944 	pr_debug("msk=%p, subflow=%p", msk, ssock);
2945 	if (WARN_ON_ONCE(!ssock))
2946 		return -EINVAL;
2947 
2948 	return inet_csk_get_port(ssock->sk, snum);
2949 }
2950 
2951 void mptcp_finish_connect(struct sock *ssk)
2952 {
2953 	struct mptcp_subflow_context *subflow;
2954 	struct mptcp_sock *msk;
2955 	struct sock *sk;
2956 	u64 ack_seq;
2957 
2958 	subflow = mptcp_subflow_ctx(ssk);
2959 	sk = subflow->conn;
2960 	msk = mptcp_sk(sk);
2961 
2962 	pr_debug("msk=%p, token=%u", sk, subflow->token);
2963 
2964 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2965 	ack_seq++;
2966 	subflow->map_seq = ack_seq;
2967 	subflow->map_subflow_seq = 1;
2968 
2969 	/* the socket is not connected yet, no msk/subflow ops can access/race
2970 	 * accessing the field below
2971 	 */
2972 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
2973 	WRITE_ONCE(msk->local_key, subflow->local_key);
2974 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
2975 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2976 	WRITE_ONCE(msk->ack_seq, ack_seq);
2977 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2978 	WRITE_ONCE(msk->can_ack, 1);
2979 	WRITE_ONCE(msk->snd_una, msk->write_seq);
2980 
2981 	mptcp_pm_new_connection(msk, ssk, 0);
2982 
2983 	mptcp_rcv_space_init(msk, ssk);
2984 }
2985 
2986 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
2987 {
2988 	write_lock_bh(&sk->sk_callback_lock);
2989 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2990 	sk_set_socket(sk, parent);
2991 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2992 	write_unlock_bh(&sk->sk_callback_lock);
2993 }
2994 
2995 bool mptcp_finish_join(struct sock *ssk)
2996 {
2997 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
2998 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
2999 	struct sock *parent = (void *)msk;
3000 	struct socket *parent_sock;
3001 	bool ret;
3002 
3003 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3004 
3005 	/* mptcp socket already closing? */
3006 	if (!mptcp_is_fully_established(parent)) {
3007 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3008 		return false;
3009 	}
3010 
3011 	if (!msk->pm.server_side)
3012 		goto out;
3013 
3014 	if (!mptcp_pm_allow_new_subflow(msk)) {
3015 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3016 		return false;
3017 	}
3018 
3019 	/* active connections are already on conn_list, and we can't acquire
3020 	 * msk lock here.
3021 	 * use the join list lock as synchronization point and double-check
3022 	 * msk status to avoid racing with __mptcp_destroy_sock()
3023 	 */
3024 	spin_lock_bh(&msk->join_list_lock);
3025 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3026 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3027 		list_add_tail(&subflow->node, &msk->join_list);
3028 		sock_hold(ssk);
3029 	}
3030 	spin_unlock_bh(&msk->join_list_lock);
3031 	if (!ret) {
3032 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3033 		return false;
3034 	}
3035 
3036 	/* attach to msk socket only after we are sure he will deal with us
3037 	 * at close time
3038 	 */
3039 	parent_sock = READ_ONCE(parent->sk_socket);
3040 	if (parent_sock && !ssk->sk_socket)
3041 		mptcp_sock_graft(ssk, parent_sock);
3042 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3043 out:
3044 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3045 	return true;
3046 }
3047 
3048 static void mptcp_shutdown(struct sock *sk, int how)
3049 {
3050 	pr_debug("sk=%p, how=%d", sk, how);
3051 
3052 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3053 		__mptcp_wr_shutdown(sk);
3054 }
3055 
3056 static struct proto mptcp_prot = {
3057 	.name		= "MPTCP",
3058 	.owner		= THIS_MODULE,
3059 	.init		= mptcp_init_sock,
3060 	.disconnect	= mptcp_disconnect,
3061 	.close		= mptcp_close,
3062 	.accept		= mptcp_accept,
3063 	.setsockopt	= mptcp_setsockopt,
3064 	.getsockopt	= mptcp_getsockopt,
3065 	.shutdown	= mptcp_shutdown,
3066 	.destroy	= mptcp_destroy,
3067 	.sendmsg	= mptcp_sendmsg,
3068 	.recvmsg	= mptcp_recvmsg,
3069 	.release_cb	= mptcp_release_cb,
3070 	.hash		= mptcp_hash,
3071 	.unhash		= mptcp_unhash,
3072 	.get_port	= mptcp_get_port,
3073 	.sockets_allocated	= &mptcp_sockets_allocated,
3074 	.memory_allocated	= &tcp_memory_allocated,
3075 	.memory_pressure	= &tcp_memory_pressure,
3076 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3077 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3078 	.sysctl_mem	= sysctl_tcp_mem,
3079 	.obj_size	= sizeof(struct mptcp_sock),
3080 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3081 	.no_autobind	= true,
3082 };
3083 
3084 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3085 {
3086 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3087 	struct socket *ssock;
3088 	int err;
3089 
3090 	lock_sock(sock->sk);
3091 	ssock = __mptcp_nmpc_socket(msk);
3092 	if (!ssock) {
3093 		err = -EINVAL;
3094 		goto unlock;
3095 	}
3096 
3097 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3098 	if (!err)
3099 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3100 
3101 unlock:
3102 	release_sock(sock->sk);
3103 	return err;
3104 }
3105 
3106 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3107 					 struct mptcp_subflow_context *subflow)
3108 {
3109 	subflow->request_mptcp = 0;
3110 	__mptcp_do_fallback(msk);
3111 }
3112 
3113 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3114 				int addr_len, int flags)
3115 {
3116 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3117 	struct mptcp_subflow_context *subflow;
3118 	struct socket *ssock;
3119 	int err;
3120 
3121 	lock_sock(sock->sk);
3122 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3123 		/* pending connection or invalid state, let existing subflow
3124 		 * cope with that
3125 		 */
3126 		ssock = msk->subflow;
3127 		goto do_connect;
3128 	}
3129 
3130 	ssock = __mptcp_nmpc_socket(msk);
3131 	if (!ssock) {
3132 		err = -EINVAL;
3133 		goto unlock;
3134 	}
3135 
3136 	mptcp_token_destroy(msk);
3137 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3138 	subflow = mptcp_subflow_ctx(ssock->sk);
3139 #ifdef CONFIG_TCP_MD5SIG
3140 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3141 	 * TCP option space.
3142 	 */
3143 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3144 		mptcp_subflow_early_fallback(msk, subflow);
3145 #endif
3146 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3147 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3148 		mptcp_subflow_early_fallback(msk, subflow);
3149 	}
3150 	if (likely(!__mptcp_check_fallback(msk)))
3151 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3152 
3153 do_connect:
3154 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3155 	sock->state = ssock->state;
3156 
3157 	/* on successful connect, the msk state will be moved to established by
3158 	 * subflow_finish_connect()
3159 	 */
3160 	if (!err || err == -EINPROGRESS)
3161 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3162 	else
3163 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3164 
3165 unlock:
3166 	release_sock(sock->sk);
3167 	return err;
3168 }
3169 
3170 static int mptcp_listen(struct socket *sock, int backlog)
3171 {
3172 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3173 	struct socket *ssock;
3174 	int err;
3175 
3176 	pr_debug("msk=%p", msk);
3177 
3178 	lock_sock(sock->sk);
3179 	ssock = __mptcp_nmpc_socket(msk);
3180 	if (!ssock) {
3181 		err = -EINVAL;
3182 		goto unlock;
3183 	}
3184 
3185 	mptcp_token_destroy(msk);
3186 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3187 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3188 
3189 	err = ssock->ops->listen(ssock, backlog);
3190 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3191 	if (!err)
3192 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3193 
3194 unlock:
3195 	release_sock(sock->sk);
3196 	return err;
3197 }
3198 
3199 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3200 			       int flags, bool kern)
3201 {
3202 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3203 	struct socket *ssock;
3204 	int err;
3205 
3206 	pr_debug("msk=%p", msk);
3207 
3208 	lock_sock(sock->sk);
3209 	if (sock->sk->sk_state != TCP_LISTEN)
3210 		goto unlock_fail;
3211 
3212 	ssock = __mptcp_nmpc_socket(msk);
3213 	if (!ssock)
3214 		goto unlock_fail;
3215 
3216 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3217 	sock_hold(ssock->sk);
3218 	release_sock(sock->sk);
3219 
3220 	err = ssock->ops->accept(sock, newsock, flags, kern);
3221 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3222 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3223 		struct mptcp_subflow_context *subflow;
3224 		struct sock *newsk = newsock->sk;
3225 
3226 		lock_sock(newsk);
3227 
3228 		/* PM/worker can now acquire the first subflow socket
3229 		 * lock without racing with listener queue cleanup,
3230 		 * we can notify it, if needed.
3231 		 *
3232 		 * Even if remote has reset the initial subflow by now
3233 		 * the refcnt is still at least one.
3234 		 */
3235 		subflow = mptcp_subflow_ctx(msk->first);
3236 		list_add(&subflow->node, &msk->conn_list);
3237 		sock_hold(msk->first);
3238 		if (mptcp_is_fully_established(newsk))
3239 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3240 
3241 		mptcp_copy_inaddrs(newsk, msk->first);
3242 		mptcp_rcv_space_init(msk, msk->first);
3243 		mptcp_propagate_sndbuf(newsk, msk->first);
3244 
3245 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3246 		 * This is needed so NOSPACE flag can be set from tcp stack.
3247 		 */
3248 		mptcp_flush_join_list(msk);
3249 		mptcp_for_each_subflow(msk, subflow) {
3250 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3251 
3252 			if (!ssk->sk_socket)
3253 				mptcp_sock_graft(ssk, newsock);
3254 		}
3255 		release_sock(newsk);
3256 	}
3257 
3258 	if (inet_csk_listen_poll(ssock->sk))
3259 		set_bit(MPTCP_DATA_READY, &msk->flags);
3260 	sock_put(ssock->sk);
3261 	return err;
3262 
3263 unlock_fail:
3264 	release_sock(sock->sk);
3265 	return -EINVAL;
3266 }
3267 
3268 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3269 {
3270 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3271 	       0;
3272 }
3273 
3274 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3275 {
3276 	struct sock *sk = (struct sock *)msk;
3277 
3278 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3279 		return EPOLLOUT | EPOLLWRNORM;
3280 
3281 	if (sk_stream_is_writeable(sk))
3282 		return EPOLLOUT | EPOLLWRNORM;
3283 
3284 	mptcp_set_nospace(sk);
3285 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3286 	if (sk_stream_is_writeable(sk))
3287 		return EPOLLOUT | EPOLLWRNORM;
3288 
3289 	return 0;
3290 }
3291 
3292 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3293 			   struct poll_table_struct *wait)
3294 {
3295 	struct sock *sk = sock->sk;
3296 	struct mptcp_sock *msk;
3297 	__poll_t mask = 0;
3298 	int state;
3299 
3300 	msk = mptcp_sk(sk);
3301 	sock_poll_wait(file, sock, wait);
3302 
3303 	state = inet_sk_state_load(sk);
3304 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3305 	if (state == TCP_LISTEN)
3306 		return mptcp_check_readable(msk);
3307 
3308 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3309 		mask |= mptcp_check_readable(msk);
3310 		mask |= mptcp_check_writeable(msk);
3311 	}
3312 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3313 		mask |= EPOLLHUP;
3314 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3315 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3316 
3317 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3318 	smp_rmb();
3319 	if (sk->sk_err)
3320 		mask |= EPOLLERR;
3321 
3322 	return mask;
3323 }
3324 
3325 static const struct proto_ops mptcp_stream_ops = {
3326 	.family		   = PF_INET,
3327 	.owner		   = THIS_MODULE,
3328 	.release	   = inet_release,
3329 	.bind		   = mptcp_bind,
3330 	.connect	   = mptcp_stream_connect,
3331 	.socketpair	   = sock_no_socketpair,
3332 	.accept		   = mptcp_stream_accept,
3333 	.getname	   = inet_getname,
3334 	.poll		   = mptcp_poll,
3335 	.ioctl		   = inet_ioctl,
3336 	.gettstamp	   = sock_gettstamp,
3337 	.listen		   = mptcp_listen,
3338 	.shutdown	   = inet_shutdown,
3339 	.setsockopt	   = sock_common_setsockopt,
3340 	.getsockopt	   = sock_common_getsockopt,
3341 	.sendmsg	   = inet_sendmsg,
3342 	.recvmsg	   = inet_recvmsg,
3343 	.mmap		   = sock_no_mmap,
3344 	.sendpage	   = inet_sendpage,
3345 };
3346 
3347 static struct inet_protosw mptcp_protosw = {
3348 	.type		= SOCK_STREAM,
3349 	.protocol	= IPPROTO_MPTCP,
3350 	.prot		= &mptcp_prot,
3351 	.ops		= &mptcp_stream_ops,
3352 	.flags		= INET_PROTOSW_ICSK,
3353 };
3354 
3355 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3356 {
3357 	struct mptcp_delegated_action *delegated;
3358 	struct mptcp_subflow_context *subflow;
3359 	int work_done = 0;
3360 
3361 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3362 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3363 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3364 
3365 		bh_lock_sock_nested(ssk);
3366 		if (!sock_owned_by_user(ssk) &&
3367 		    mptcp_subflow_has_delegated_action(subflow))
3368 			mptcp_subflow_process_delegated(ssk);
3369 		/* ... elsewhere tcp_release_cb_override already processed
3370 		 * the action or will do at next release_sock().
3371 		 * In both case must dequeue the subflow here - on the same
3372 		 * CPU that scheduled it.
3373 		 */
3374 		bh_unlock_sock(ssk);
3375 		sock_put(ssk);
3376 
3377 		if (++work_done == budget)
3378 			return budget;
3379 	}
3380 
3381 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3382 	 * will not try accessing the NULL napi->dev ptr
3383 	 */
3384 	napi_complete_done(napi, 0);
3385 	return work_done;
3386 }
3387 
3388 void __init mptcp_proto_init(void)
3389 {
3390 	struct mptcp_delegated_action *delegated;
3391 	int cpu;
3392 
3393 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3394 
3395 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3396 		panic("Failed to allocate MPTCP pcpu counter\n");
3397 
3398 	init_dummy_netdev(&mptcp_napi_dev);
3399 	for_each_possible_cpu(cpu) {
3400 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3401 		INIT_LIST_HEAD(&delegated->head);
3402 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3403 				  NAPI_POLL_WEIGHT);
3404 		napi_enable(&delegated->napi);
3405 	}
3406 
3407 	mptcp_subflow_init();
3408 	mptcp_pm_init();
3409 	mptcp_token_init();
3410 
3411 	if (proto_register(&mptcp_prot, 1) != 0)
3412 		panic("Failed to register MPTCP proto.\n");
3413 
3414 	inet_register_protosw(&mptcp_protosw);
3415 
3416 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3417 }
3418 
3419 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3420 static const struct proto_ops mptcp_v6_stream_ops = {
3421 	.family		   = PF_INET6,
3422 	.owner		   = THIS_MODULE,
3423 	.release	   = inet6_release,
3424 	.bind		   = mptcp_bind,
3425 	.connect	   = mptcp_stream_connect,
3426 	.socketpair	   = sock_no_socketpair,
3427 	.accept		   = mptcp_stream_accept,
3428 	.getname	   = inet6_getname,
3429 	.poll		   = mptcp_poll,
3430 	.ioctl		   = inet6_ioctl,
3431 	.gettstamp	   = sock_gettstamp,
3432 	.listen		   = mptcp_listen,
3433 	.shutdown	   = inet_shutdown,
3434 	.setsockopt	   = sock_common_setsockopt,
3435 	.getsockopt	   = sock_common_getsockopt,
3436 	.sendmsg	   = inet6_sendmsg,
3437 	.recvmsg	   = inet6_recvmsg,
3438 	.mmap		   = sock_no_mmap,
3439 	.sendpage	   = inet_sendpage,
3440 #ifdef CONFIG_COMPAT
3441 	.compat_ioctl	   = inet6_compat_ioctl,
3442 #endif
3443 };
3444 
3445 static struct proto mptcp_v6_prot;
3446 
3447 static void mptcp_v6_destroy(struct sock *sk)
3448 {
3449 	mptcp_destroy(sk);
3450 	inet6_destroy_sock(sk);
3451 }
3452 
3453 static struct inet_protosw mptcp_v6_protosw = {
3454 	.type		= SOCK_STREAM,
3455 	.protocol	= IPPROTO_MPTCP,
3456 	.prot		= &mptcp_v6_prot,
3457 	.ops		= &mptcp_v6_stream_ops,
3458 	.flags		= INET_PROTOSW_ICSK,
3459 };
3460 
3461 int __init mptcp_proto_v6_init(void)
3462 {
3463 	int err;
3464 
3465 	mptcp_v6_prot = mptcp_prot;
3466 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3467 	mptcp_v6_prot.slab = NULL;
3468 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3469 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3470 
3471 	err = proto_register(&mptcp_v6_prot, 1);
3472 	if (err)
3473 		return err;
3474 
3475 	err = inet6_register_protosw(&mptcp_v6_protosw);
3476 	if (err)
3477 		proto_unregister(&mptcp_v6_prot);
3478 
3479 	return err;
3480 }
3481 #endif
3482