1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 kfree_skb_partial(from, fragstolen); 154 atomic_add(delta, &sk->sk_rmem_alloc); 155 mptcp_rmem_charge(sk, delta); 156 return true; 157 } 158 159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 160 struct sk_buff *from) 161 { 162 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 163 return false; 164 165 return mptcp_try_coalesce((struct sock *)msk, to, from); 166 } 167 168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 169 { 170 amount >>= SK_MEM_QUANTUM_SHIFT; 171 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 172 __sk_mem_reduce_allocated(sk, amount); 173 } 174 175 static void mptcp_rmem_uncharge(struct sock *sk, int size) 176 { 177 struct mptcp_sock *msk = mptcp_sk(sk); 178 int reclaimable; 179 180 msk->rmem_fwd_alloc += size; 181 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 182 183 /* see sk_mem_uncharge() for the rationale behind the following schema */ 184 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 185 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 186 } 187 188 static void mptcp_rfree(struct sk_buff *skb) 189 { 190 unsigned int len = skb->truesize; 191 struct sock *sk = skb->sk; 192 193 atomic_sub(len, &sk->sk_rmem_alloc); 194 mptcp_rmem_uncharge(sk, len); 195 } 196 197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 198 { 199 skb_orphan(skb); 200 skb->sk = sk; 201 skb->destructor = mptcp_rfree; 202 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 203 mptcp_rmem_charge(sk, skb->truesize); 204 } 205 206 /* "inspired" by tcp_data_queue_ofo(), main differences: 207 * - use mptcp seqs 208 * - don't cope with sacks 209 */ 210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 211 { 212 struct sock *sk = (struct sock *)msk; 213 struct rb_node **p, *parent; 214 u64 seq, end_seq, max_seq; 215 struct sk_buff *skb1; 216 217 seq = MPTCP_SKB_CB(skb)->map_seq; 218 end_seq = MPTCP_SKB_CB(skb)->end_seq; 219 max_seq = READ_ONCE(msk->rcv_wnd_sent); 220 221 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 222 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 223 if (after64(end_seq, max_seq)) { 224 /* out of window */ 225 mptcp_drop(sk, skb); 226 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 227 (unsigned long long)end_seq - (unsigned long)max_seq, 228 (unsigned long long)msk->rcv_wnd_sent); 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 230 return; 231 } 232 233 p = &msk->out_of_order_queue.rb_node; 234 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 235 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 236 rb_link_node(&skb->rbnode, NULL, p); 237 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 238 msk->ooo_last_skb = skb; 239 goto end; 240 } 241 242 /* with 2 subflows, adding at end of ooo queue is quite likely 243 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 244 */ 245 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 248 return; 249 } 250 251 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 252 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 parent = &msk->ooo_last_skb->rbnode; 255 p = &parent->rb_right; 256 goto insert; 257 } 258 259 /* Find place to insert this segment. Handle overlaps on the way. */ 260 parent = NULL; 261 while (*p) { 262 parent = *p; 263 skb1 = rb_to_skb(parent); 264 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 265 p = &parent->rb_left; 266 continue; 267 } 268 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 /* All the bits are present. Drop. */ 271 mptcp_drop(sk, skb); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 273 return; 274 } 275 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 276 /* partial overlap: 277 * | skb | 278 * | skb1 | 279 * continue traversing 280 */ 281 } else { 282 /* skb's seq == skb1's seq and skb covers skb1. 283 * Replace skb1 with skb. 284 */ 285 rb_replace_node(&skb1->rbnode, &skb->rbnode, 286 &msk->out_of_order_queue); 287 mptcp_drop(sk, skb1); 288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 289 goto merge_right; 290 } 291 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 293 return; 294 } 295 p = &parent->rb_right; 296 } 297 298 insert: 299 /* Insert segment into RB tree. */ 300 rb_link_node(&skb->rbnode, parent, p); 301 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 302 303 merge_right: 304 /* Remove other segments covered by skb. */ 305 while ((skb1 = skb_rb_next(skb)) != NULL) { 306 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 307 break; 308 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 309 mptcp_drop(sk, skb1); 310 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 311 } 312 /* If there is no skb after us, we are the last_skb ! */ 313 if (!skb1) 314 msk->ooo_last_skb = skb; 315 316 end: 317 skb_condense(skb); 318 mptcp_set_owner_r(skb, sk); 319 } 320 321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 322 { 323 struct mptcp_sock *msk = mptcp_sk(sk); 324 int amt, amount; 325 326 if (size < msk->rmem_fwd_alloc) 327 return true; 328 329 amt = sk_mem_pages(size); 330 amount = amt << SK_MEM_QUANTUM_SHIFT; 331 msk->rmem_fwd_alloc += amount; 332 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 333 if (ssk->sk_forward_alloc < amount) { 334 msk->rmem_fwd_alloc -= amount; 335 return false; 336 } 337 338 ssk->sk_forward_alloc -= amount; 339 } 340 return true; 341 } 342 343 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 344 struct sk_buff *skb, unsigned int offset, 345 size_t copy_len) 346 { 347 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 348 struct sock *sk = (struct sock *)msk; 349 struct sk_buff *tail; 350 bool has_rxtstamp; 351 352 __skb_unlink(skb, &ssk->sk_receive_queue); 353 354 skb_ext_reset(skb); 355 skb_orphan(skb); 356 357 /* try to fetch required memory from subflow */ 358 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 359 goto drop; 360 361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 362 363 /* the skb map_seq accounts for the skb offset: 364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 365 * value 366 */ 367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 369 MPTCP_SKB_CB(skb)->offset = offset; 370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 371 372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 373 /* in sequence */ 374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 375 tail = skb_peek_tail(&sk->sk_receive_queue); 376 if (tail && mptcp_try_coalesce(sk, tail, skb)) 377 return true; 378 379 mptcp_set_owner_r(skb, sk); 380 __skb_queue_tail(&sk->sk_receive_queue, skb); 381 return true; 382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 383 mptcp_data_queue_ofo(msk, skb); 384 return false; 385 } 386 387 /* old data, keep it simple and drop the whole pkt, sender 388 * will retransmit as needed, if needed. 389 */ 390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 391 drop: 392 mptcp_drop(sk, skb); 393 return false; 394 } 395 396 static void mptcp_stop_timer(struct sock *sk) 397 { 398 struct inet_connection_sock *icsk = inet_csk(sk); 399 400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 401 mptcp_sk(sk)->timer_ival = 0; 402 } 403 404 static void mptcp_close_wake_up(struct sock *sk) 405 { 406 if (sock_flag(sk, SOCK_DEAD)) 407 return; 408 409 sk->sk_state_change(sk); 410 if (sk->sk_shutdown == SHUTDOWN_MASK || 411 sk->sk_state == TCP_CLOSE) 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 413 else 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 415 } 416 417 static bool mptcp_pending_data_fin_ack(struct sock *sk) 418 { 419 struct mptcp_sock *msk = mptcp_sk(sk); 420 421 return !__mptcp_check_fallback(msk) && 422 ((1 << sk->sk_state) & 423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 424 msk->write_seq == READ_ONCE(msk->snd_una); 425 } 426 427 static void mptcp_check_data_fin_ack(struct sock *sk) 428 { 429 struct mptcp_sock *msk = mptcp_sk(sk); 430 431 /* Look for an acknowledged DATA_FIN */ 432 if (mptcp_pending_data_fin_ack(sk)) { 433 WRITE_ONCE(msk->snd_data_fin_enable, 0); 434 435 switch (sk->sk_state) { 436 case TCP_FIN_WAIT1: 437 inet_sk_state_store(sk, TCP_FIN_WAIT2); 438 break; 439 case TCP_CLOSING: 440 case TCP_LAST_ACK: 441 inet_sk_state_store(sk, TCP_CLOSE); 442 break; 443 } 444 445 mptcp_close_wake_up(sk); 446 } 447 } 448 449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 450 { 451 struct mptcp_sock *msk = mptcp_sk(sk); 452 453 if (READ_ONCE(msk->rcv_data_fin) && 454 ((1 << sk->sk_state) & 455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 457 458 if (msk->ack_seq == rcv_data_fin_seq) { 459 if (seq) 460 *seq = rcv_data_fin_seq; 461 462 return true; 463 } 464 } 465 466 return false; 467 } 468 469 static void mptcp_set_datafin_timeout(const struct sock *sk) 470 { 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 u32 retransmits; 473 474 retransmits = min_t(u32, icsk->icsk_retransmits, 475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 476 477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 478 } 479 480 static void __mptcp_set_timeout(struct sock *sk, long tout) 481 { 482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 483 } 484 485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 486 { 487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 488 489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 490 inet_csk(ssk)->icsk_timeout - jiffies : 0; 491 } 492 493 static void mptcp_set_timeout(struct sock *sk) 494 { 495 struct mptcp_subflow_context *subflow; 496 long tout = 0; 497 498 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 499 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 500 __mptcp_set_timeout(sk, tout); 501 } 502 503 static bool tcp_can_send_ack(const struct sock *ssk) 504 { 505 return !((1 << inet_sk_state_load(ssk)) & 506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 507 } 508 509 void mptcp_subflow_send_ack(struct sock *ssk) 510 { 511 bool slow; 512 513 slow = lock_sock_fast(ssk); 514 if (tcp_can_send_ack(ssk)) 515 tcp_send_ack(ssk); 516 unlock_sock_fast(ssk, slow); 517 } 518 519 static void mptcp_send_ack(struct mptcp_sock *msk) 520 { 521 struct mptcp_subflow_context *subflow; 522 523 mptcp_for_each_subflow(msk, subflow) 524 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 525 } 526 527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 528 { 529 bool slow; 530 531 slow = lock_sock_fast(ssk); 532 if (tcp_can_send_ack(ssk)) 533 tcp_cleanup_rbuf(ssk, 1); 534 unlock_sock_fast(ssk, slow); 535 } 536 537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 538 { 539 const struct inet_connection_sock *icsk = inet_csk(ssk); 540 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 541 const struct tcp_sock *tp = tcp_sk(ssk); 542 543 return (ack_pending & ICSK_ACK_SCHED) && 544 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 545 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 546 (rx_empty && ack_pending & 547 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 548 } 549 550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 551 { 552 int old_space = READ_ONCE(msk->old_wspace); 553 struct mptcp_subflow_context *subflow; 554 struct sock *sk = (struct sock *)msk; 555 int space = __mptcp_space(sk); 556 bool cleanup, rx_empty; 557 558 cleanup = (space > 0) && (space >= (old_space << 1)); 559 rx_empty = !__mptcp_rmem(sk); 560 561 mptcp_for_each_subflow(msk, subflow) { 562 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 563 564 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 565 mptcp_subflow_cleanup_rbuf(ssk); 566 } 567 } 568 569 static bool mptcp_check_data_fin(struct sock *sk) 570 { 571 struct mptcp_sock *msk = mptcp_sk(sk); 572 u64 rcv_data_fin_seq; 573 bool ret = false; 574 575 if (__mptcp_check_fallback(msk)) 576 return ret; 577 578 /* Need to ack a DATA_FIN received from a peer while this side 579 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 580 * msk->rcv_data_fin was set when parsing the incoming options 581 * at the subflow level and the msk lock was not held, so this 582 * is the first opportunity to act on the DATA_FIN and change 583 * the msk state. 584 * 585 * If we are caught up to the sequence number of the incoming 586 * DATA_FIN, send the DATA_ACK now and do state transition. If 587 * not caught up, do nothing and let the recv code send DATA_ACK 588 * when catching up. 589 */ 590 591 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 592 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 593 WRITE_ONCE(msk->rcv_data_fin, 0); 594 595 sk->sk_shutdown |= RCV_SHUTDOWN; 596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 597 598 switch (sk->sk_state) { 599 case TCP_ESTABLISHED: 600 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 601 break; 602 case TCP_FIN_WAIT1: 603 inet_sk_state_store(sk, TCP_CLOSING); 604 break; 605 case TCP_FIN_WAIT2: 606 inet_sk_state_store(sk, TCP_CLOSE); 607 break; 608 default: 609 /* Other states not expected */ 610 WARN_ON_ONCE(1); 611 break; 612 } 613 614 ret = true; 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* if no data is found, a racing workqueue/recvmsg 659 * already processed the new data, stop here or we 660 * can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* if we are running under the workqueue, TCP could have 669 * collapsed skbs between dummy map creation and now 670 * be sure to adjust the size 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->ack_seq = end_seq; 753 moved = true; 754 } 755 return moved; 756 } 757 758 /* In most cases we will be able to lock the mptcp socket. If its already 759 * owned, we need to defer to the work queue to avoid ABBA deadlock. 760 */ 761 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 762 { 763 struct sock *sk = (struct sock *)msk; 764 unsigned int moved = 0; 765 766 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 767 __mptcp_ofo_queue(msk); 768 if (unlikely(ssk->sk_err)) { 769 if (!sock_owned_by_user(sk)) 770 __mptcp_error_report(sk); 771 else 772 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 773 } 774 775 /* If the moves have caught up with the DATA_FIN sequence number 776 * it's time to ack the DATA_FIN and change socket state, but 777 * this is not a good place to change state. Let the workqueue 778 * do it. 779 */ 780 if (mptcp_pending_data_fin(sk, NULL)) 781 mptcp_schedule_work(sk); 782 return moved > 0; 783 } 784 785 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 786 { 787 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 788 struct mptcp_sock *msk = mptcp_sk(sk); 789 int sk_rbuf, ssk_rbuf; 790 791 /* The peer can send data while we are shutting down this 792 * subflow at msk destruction time, but we must avoid enqueuing 793 * more data to the msk receive queue 794 */ 795 if (unlikely(subflow->disposable)) 796 return; 797 798 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 799 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 800 if (unlikely(ssk_rbuf > sk_rbuf)) 801 sk_rbuf = ssk_rbuf; 802 803 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 804 if (__mptcp_rmem(sk) > sk_rbuf) { 805 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 806 return; 807 } 808 809 /* Wake-up the reader only for in-sequence data */ 810 mptcp_data_lock(sk); 811 if (move_skbs_to_msk(msk, ssk)) 812 sk->sk_data_ready(sk); 813 814 mptcp_data_unlock(sk); 815 } 816 817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 818 { 819 struct sock *sk = (struct sock *)msk; 820 821 if (sk->sk_state != TCP_ESTABLISHED) 822 return false; 823 824 /* attach to msk socket only after we are sure we will deal with it 825 * at close time 826 */ 827 if (sk->sk_socket && !ssk->sk_socket) 828 mptcp_sock_graft(ssk, sk->sk_socket); 829 830 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 831 mptcp_sockopt_sync_locked(msk, ssk); 832 return true; 833 } 834 835 static void __mptcp_flush_join_list(struct sock *sk) 836 { 837 struct mptcp_subflow_context *tmp, *subflow; 838 struct mptcp_sock *msk = mptcp_sk(sk); 839 840 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 841 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 842 bool slow = lock_sock_fast(ssk); 843 844 list_move_tail(&subflow->node, &msk->conn_list); 845 if (!__mptcp_finish_join(msk, ssk)) 846 mptcp_subflow_reset(ssk); 847 unlock_sock_fast(ssk, slow); 848 } 849 } 850 851 static bool mptcp_timer_pending(struct sock *sk) 852 { 853 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 854 } 855 856 static void mptcp_reset_timer(struct sock *sk) 857 { 858 struct inet_connection_sock *icsk = inet_csk(sk); 859 unsigned long tout; 860 861 /* prevent rescheduling on close */ 862 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 863 return; 864 865 tout = mptcp_sk(sk)->timer_ival; 866 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 867 } 868 869 bool mptcp_schedule_work(struct sock *sk) 870 { 871 if (inet_sk_state_load(sk) != TCP_CLOSE && 872 schedule_work(&mptcp_sk(sk)->work)) { 873 /* each subflow already holds a reference to the sk, and the 874 * workqueue is invoked by a subflow, so sk can't go away here. 875 */ 876 sock_hold(sk); 877 return true; 878 } 879 return false; 880 } 881 882 void mptcp_subflow_eof(struct sock *sk) 883 { 884 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 885 mptcp_schedule_work(sk); 886 } 887 888 static void mptcp_check_for_eof(struct mptcp_sock *msk) 889 { 890 struct mptcp_subflow_context *subflow; 891 struct sock *sk = (struct sock *)msk; 892 int receivers = 0; 893 894 mptcp_for_each_subflow(msk, subflow) 895 receivers += !subflow->rx_eof; 896 if (receivers) 897 return; 898 899 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 900 /* hopefully temporary hack: propagate shutdown status 901 * to msk, when all subflows agree on it 902 */ 903 sk->sk_shutdown |= RCV_SHUTDOWN; 904 905 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 906 sk->sk_data_ready(sk); 907 } 908 909 switch (sk->sk_state) { 910 case TCP_ESTABLISHED: 911 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 912 break; 913 case TCP_FIN_WAIT1: 914 inet_sk_state_store(sk, TCP_CLOSING); 915 break; 916 case TCP_FIN_WAIT2: 917 inet_sk_state_store(sk, TCP_CLOSE); 918 break; 919 default: 920 return; 921 } 922 mptcp_close_wake_up(sk); 923 } 924 925 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 926 { 927 struct mptcp_subflow_context *subflow; 928 struct sock *sk = (struct sock *)msk; 929 930 sock_owned_by_me(sk); 931 932 mptcp_for_each_subflow(msk, subflow) { 933 if (READ_ONCE(subflow->data_avail)) 934 return mptcp_subflow_tcp_sock(subflow); 935 } 936 937 return NULL; 938 } 939 940 static bool mptcp_skb_can_collapse_to(u64 write_seq, 941 const struct sk_buff *skb, 942 const struct mptcp_ext *mpext) 943 { 944 if (!tcp_skb_can_collapse_to(skb)) 945 return false; 946 947 /* can collapse only if MPTCP level sequence is in order and this 948 * mapping has not been xmitted yet 949 */ 950 return mpext && mpext->data_seq + mpext->data_len == write_seq && 951 !mpext->frozen; 952 } 953 954 /* we can append data to the given data frag if: 955 * - there is space available in the backing page_frag 956 * - the data frag tail matches the current page_frag free offset 957 * - the data frag end sequence number matches the current write seq 958 */ 959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 960 const struct page_frag *pfrag, 961 const struct mptcp_data_frag *df) 962 { 963 return df && pfrag->page == df->page && 964 pfrag->size - pfrag->offset > 0 && 965 pfrag->offset == (df->offset + df->data_len) && 966 df->data_seq + df->data_len == msk->write_seq; 967 } 968 969 static void __mptcp_mem_reclaim_partial(struct sock *sk) 970 { 971 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 972 973 lockdep_assert_held_once(&sk->sk_lock.slock); 974 975 if (reclaimable > SK_MEM_QUANTUM) 976 __mptcp_rmem_reclaim(sk, reclaimable - 1); 977 978 sk_mem_reclaim_partial(sk); 979 } 980 981 static void mptcp_mem_reclaim_partial(struct sock *sk) 982 { 983 mptcp_data_lock(sk); 984 __mptcp_mem_reclaim_partial(sk); 985 mptcp_data_unlock(sk); 986 } 987 988 static void dfrag_uncharge(struct sock *sk, int len) 989 { 990 sk_mem_uncharge(sk, len); 991 sk_wmem_queued_add(sk, -len); 992 } 993 994 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 995 { 996 int len = dfrag->data_len + dfrag->overhead; 997 998 list_del(&dfrag->list); 999 dfrag_uncharge(sk, len); 1000 put_page(dfrag->page); 1001 } 1002 1003 static void __mptcp_clean_una(struct sock *sk) 1004 { 1005 struct mptcp_sock *msk = mptcp_sk(sk); 1006 struct mptcp_data_frag *dtmp, *dfrag; 1007 bool cleaned = false; 1008 u64 snd_una; 1009 1010 /* on fallback we just need to ignore snd_una, as this is really 1011 * plain TCP 1012 */ 1013 if (__mptcp_check_fallback(msk)) 1014 msk->snd_una = READ_ONCE(msk->snd_nxt); 1015 1016 snd_una = msk->snd_una; 1017 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1018 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1019 break; 1020 1021 if (unlikely(dfrag == msk->first_pending)) { 1022 /* in recovery mode can see ack after the current snd head */ 1023 if (WARN_ON_ONCE(!msk->recovery)) 1024 break; 1025 1026 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1027 } 1028 1029 dfrag_clear(sk, dfrag); 1030 cleaned = true; 1031 } 1032 1033 dfrag = mptcp_rtx_head(sk); 1034 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1035 u64 delta = snd_una - dfrag->data_seq; 1036 1037 /* prevent wrap around in recovery mode */ 1038 if (unlikely(delta > dfrag->already_sent)) { 1039 if (WARN_ON_ONCE(!msk->recovery)) 1040 goto out; 1041 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1042 goto out; 1043 dfrag->already_sent += delta - dfrag->already_sent; 1044 } 1045 1046 dfrag->data_seq += delta; 1047 dfrag->offset += delta; 1048 dfrag->data_len -= delta; 1049 dfrag->already_sent -= delta; 1050 1051 dfrag_uncharge(sk, delta); 1052 cleaned = true; 1053 } 1054 1055 /* all retransmitted data acked, recovery completed */ 1056 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1057 msk->recovery = false; 1058 1059 out: 1060 if (cleaned && tcp_under_memory_pressure(sk)) 1061 __mptcp_mem_reclaim_partial(sk); 1062 1063 if (snd_una == READ_ONCE(msk->snd_nxt) && 1064 snd_una == READ_ONCE(msk->write_seq)) { 1065 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1066 mptcp_stop_timer(sk); 1067 } else { 1068 mptcp_reset_timer(sk); 1069 } 1070 } 1071 1072 static void __mptcp_clean_una_wakeup(struct sock *sk) 1073 { 1074 lockdep_assert_held_once(&sk->sk_lock.slock); 1075 1076 __mptcp_clean_una(sk); 1077 mptcp_write_space(sk); 1078 } 1079 1080 static void mptcp_clean_una_wakeup(struct sock *sk) 1081 { 1082 mptcp_data_lock(sk); 1083 __mptcp_clean_una_wakeup(sk); 1084 mptcp_data_unlock(sk); 1085 } 1086 1087 static void mptcp_enter_memory_pressure(struct sock *sk) 1088 { 1089 struct mptcp_subflow_context *subflow; 1090 struct mptcp_sock *msk = mptcp_sk(sk); 1091 bool first = true; 1092 1093 sk_stream_moderate_sndbuf(sk); 1094 mptcp_for_each_subflow(msk, subflow) { 1095 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1096 1097 if (first) 1098 tcp_enter_memory_pressure(ssk); 1099 sk_stream_moderate_sndbuf(ssk); 1100 first = false; 1101 } 1102 } 1103 1104 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1105 * data 1106 */ 1107 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1108 { 1109 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1110 pfrag, sk->sk_allocation))) 1111 return true; 1112 1113 mptcp_enter_memory_pressure(sk); 1114 return false; 1115 } 1116 1117 static struct mptcp_data_frag * 1118 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1119 int orig_offset) 1120 { 1121 int offset = ALIGN(orig_offset, sizeof(long)); 1122 struct mptcp_data_frag *dfrag; 1123 1124 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1125 dfrag->data_len = 0; 1126 dfrag->data_seq = msk->write_seq; 1127 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1128 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1129 dfrag->already_sent = 0; 1130 dfrag->page = pfrag->page; 1131 1132 return dfrag; 1133 } 1134 1135 struct mptcp_sendmsg_info { 1136 int mss_now; 1137 int size_goal; 1138 u16 limit; 1139 u16 sent; 1140 unsigned int flags; 1141 bool data_lock_held; 1142 }; 1143 1144 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1145 int avail_size) 1146 { 1147 u64 window_end = mptcp_wnd_end(msk); 1148 1149 if (__mptcp_check_fallback(msk)) 1150 return avail_size; 1151 1152 if (!before64(data_seq + avail_size, window_end)) { 1153 u64 allowed_size = window_end - data_seq; 1154 1155 return min_t(unsigned int, allowed_size, avail_size); 1156 } 1157 1158 return avail_size; 1159 } 1160 1161 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1162 { 1163 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1164 1165 if (!mpext) 1166 return false; 1167 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1168 return true; 1169 } 1170 1171 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1172 { 1173 struct sk_buff *skb; 1174 1175 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1176 if (likely(skb)) { 1177 if (likely(__mptcp_add_ext(skb, gfp))) { 1178 skb_reserve(skb, MAX_TCP_HEADER); 1179 skb->ip_summed = CHECKSUM_PARTIAL; 1180 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1181 return skb; 1182 } 1183 __kfree_skb(skb); 1184 } else { 1185 mptcp_enter_memory_pressure(sk); 1186 } 1187 return NULL; 1188 } 1189 1190 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1191 { 1192 struct sk_buff *skb; 1193 1194 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1195 if (!skb) 1196 return NULL; 1197 1198 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1199 tcp_skb_entail(ssk, skb); 1200 return skb; 1201 } 1202 kfree_skb(skb); 1203 return NULL; 1204 } 1205 1206 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1207 { 1208 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1209 1210 if (unlikely(tcp_under_memory_pressure(sk))) { 1211 if (data_lock_held) 1212 __mptcp_mem_reclaim_partial(sk); 1213 else 1214 mptcp_mem_reclaim_partial(sk); 1215 } 1216 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1217 } 1218 1219 /* note: this always recompute the csum on the whole skb, even 1220 * if we just appended a single frag. More status info needed 1221 */ 1222 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1223 { 1224 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1225 __wsum csum = ~csum_unfold(mpext->csum); 1226 int offset = skb->len - added; 1227 1228 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1229 } 1230 1231 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1232 struct mptcp_data_frag *dfrag, 1233 struct mptcp_sendmsg_info *info) 1234 { 1235 u64 data_seq = dfrag->data_seq + info->sent; 1236 int offset = dfrag->offset + info->sent; 1237 struct mptcp_sock *msk = mptcp_sk(sk); 1238 bool zero_window_probe = false; 1239 struct mptcp_ext *mpext = NULL; 1240 bool can_coalesce = false; 1241 bool reuse_skb = true; 1242 struct sk_buff *skb; 1243 size_t copy; 1244 int i; 1245 1246 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1247 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1248 1249 if (WARN_ON_ONCE(info->sent > info->limit || 1250 info->limit > dfrag->data_len)) 1251 return 0; 1252 1253 /* compute send limit */ 1254 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1255 copy = info->size_goal; 1256 1257 skb = tcp_write_queue_tail(ssk); 1258 if (skb && copy > skb->len) { 1259 /* Limit the write to the size available in the 1260 * current skb, if any, so that we create at most a new skb. 1261 * Explicitly tells TCP internals to avoid collapsing on later 1262 * queue management operation, to avoid breaking the ext <-> 1263 * SSN association set here 1264 */ 1265 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1266 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1267 TCP_SKB_CB(skb)->eor = 1; 1268 goto alloc_skb; 1269 } 1270 1271 i = skb_shinfo(skb)->nr_frags; 1272 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1273 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1274 tcp_mark_push(tcp_sk(ssk), skb); 1275 goto alloc_skb; 1276 } 1277 1278 copy -= skb->len; 1279 } else { 1280 alloc_skb: 1281 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1282 if (!skb) 1283 return -ENOMEM; 1284 1285 i = skb_shinfo(skb)->nr_frags; 1286 reuse_skb = false; 1287 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1288 } 1289 1290 /* Zero window and all data acked? Probe. */ 1291 copy = mptcp_check_allowed_size(msk, data_seq, copy); 1292 if (copy == 0) { 1293 u64 snd_una = READ_ONCE(msk->snd_una); 1294 1295 if (snd_una != msk->snd_nxt) { 1296 tcp_remove_empty_skb(ssk); 1297 return 0; 1298 } 1299 1300 zero_window_probe = true; 1301 data_seq = snd_una - 1; 1302 copy = 1; 1303 1304 /* all mptcp-level data is acked, no skbs should be present into the 1305 * ssk write queue 1306 */ 1307 WARN_ON_ONCE(reuse_skb); 1308 } 1309 1310 copy = min_t(size_t, copy, info->limit - info->sent); 1311 if (!sk_wmem_schedule(ssk, copy)) { 1312 tcp_remove_empty_skb(ssk); 1313 return -ENOMEM; 1314 } 1315 1316 if (can_coalesce) { 1317 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1318 } else { 1319 get_page(dfrag->page); 1320 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1321 } 1322 1323 skb->len += copy; 1324 skb->data_len += copy; 1325 skb->truesize += copy; 1326 sk_wmem_queued_add(ssk, copy); 1327 sk_mem_charge(ssk, copy); 1328 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1329 TCP_SKB_CB(skb)->end_seq += copy; 1330 tcp_skb_pcount_set(skb, 0); 1331 1332 /* on skb reuse we just need to update the DSS len */ 1333 if (reuse_skb) { 1334 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1335 mpext->data_len += copy; 1336 WARN_ON_ONCE(zero_window_probe); 1337 goto out; 1338 } 1339 1340 memset(mpext, 0, sizeof(*mpext)); 1341 mpext->data_seq = data_seq; 1342 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1343 mpext->data_len = copy; 1344 mpext->use_map = 1; 1345 mpext->dsn64 = 1; 1346 1347 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1348 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1349 mpext->dsn64); 1350 1351 if (zero_window_probe) { 1352 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1353 mpext->frozen = 1; 1354 if (READ_ONCE(msk->csum_enabled)) 1355 mptcp_update_data_checksum(skb, copy); 1356 tcp_push_pending_frames(ssk); 1357 return 0; 1358 } 1359 out: 1360 if (READ_ONCE(msk->csum_enabled)) 1361 mptcp_update_data_checksum(skb, copy); 1362 trace_mptcp_sendmsg_frag(mpext); 1363 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1364 return copy; 1365 } 1366 1367 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1368 sizeof(struct tcphdr) - \ 1369 MAX_TCP_OPTION_SPACE - \ 1370 sizeof(struct ipv6hdr) - \ 1371 sizeof(struct frag_hdr)) 1372 1373 struct subflow_send_info { 1374 struct sock *ssk; 1375 u64 linger_time; 1376 }; 1377 1378 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1379 { 1380 if (!subflow->stale) 1381 return; 1382 1383 subflow->stale = 0; 1384 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1385 } 1386 1387 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1388 { 1389 if (unlikely(subflow->stale)) { 1390 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1391 1392 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1393 return false; 1394 1395 mptcp_subflow_set_active(subflow); 1396 } 1397 return __mptcp_subflow_active(subflow); 1398 } 1399 1400 #define SSK_MODE_ACTIVE 0 1401 #define SSK_MODE_BACKUP 1 1402 #define SSK_MODE_MAX 2 1403 1404 /* implement the mptcp packet scheduler; 1405 * returns the subflow that will transmit the next DSS 1406 * additionally updates the rtx timeout 1407 */ 1408 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1409 { 1410 struct subflow_send_info send_info[SSK_MODE_MAX]; 1411 struct mptcp_subflow_context *subflow; 1412 struct sock *sk = (struct sock *)msk; 1413 u32 pace, burst, wmem; 1414 int i, nr_active = 0; 1415 struct sock *ssk; 1416 u64 linger_time; 1417 long tout = 0; 1418 1419 sock_owned_by_me(sk); 1420 1421 if (__mptcp_check_fallback(msk)) { 1422 if (!msk->first) 1423 return NULL; 1424 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1425 } 1426 1427 /* re-use last subflow, if the burst allow that */ 1428 if (msk->last_snd && msk->snd_burst > 0 && 1429 sk_stream_memory_free(msk->last_snd) && 1430 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1431 mptcp_set_timeout(sk); 1432 return msk->last_snd; 1433 } 1434 1435 /* pick the subflow with the lower wmem/wspace ratio */ 1436 for (i = 0; i < SSK_MODE_MAX; ++i) { 1437 send_info[i].ssk = NULL; 1438 send_info[i].linger_time = -1; 1439 } 1440 1441 mptcp_for_each_subflow(msk, subflow) { 1442 trace_mptcp_subflow_get_send(subflow); 1443 ssk = mptcp_subflow_tcp_sock(subflow); 1444 if (!mptcp_subflow_active(subflow)) 1445 continue; 1446 1447 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1448 nr_active += !subflow->backup; 1449 pace = subflow->avg_pacing_rate; 1450 if (unlikely(!pace)) { 1451 /* init pacing rate from socket */ 1452 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1453 pace = subflow->avg_pacing_rate; 1454 if (!pace) 1455 continue; 1456 } 1457 1458 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1459 if (linger_time < send_info[subflow->backup].linger_time) { 1460 send_info[subflow->backup].ssk = ssk; 1461 send_info[subflow->backup].linger_time = linger_time; 1462 } 1463 } 1464 __mptcp_set_timeout(sk, tout); 1465 1466 /* pick the best backup if no other subflow is active */ 1467 if (!nr_active) 1468 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1469 1470 /* According to the blest algorithm, to avoid HoL blocking for the 1471 * faster flow, we need to: 1472 * - estimate the faster flow linger time 1473 * - use the above to estimate the amount of byte transferred 1474 * by the faster flow 1475 * - check that the amount of queued data is greter than the above, 1476 * otherwise do not use the picked, slower, subflow 1477 * We select the subflow with the shorter estimated time to flush 1478 * the queued mem, which basically ensure the above. We just need 1479 * to check that subflow has a non empty cwin. 1480 */ 1481 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1482 if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd) 1483 return NULL; 1484 1485 burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd); 1486 wmem = READ_ONCE(ssk->sk_wmem_queued); 1487 subflow = mptcp_subflow_ctx(ssk); 1488 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1489 READ_ONCE(ssk->sk_pacing_rate) * burst, 1490 burst + wmem); 1491 msk->last_snd = ssk; 1492 msk->snd_burst = burst; 1493 return ssk; 1494 } 1495 1496 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1497 { 1498 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1499 release_sock(ssk); 1500 } 1501 1502 static void mptcp_update_post_push(struct mptcp_sock *msk, 1503 struct mptcp_data_frag *dfrag, 1504 u32 sent) 1505 { 1506 u64 snd_nxt_new = dfrag->data_seq; 1507 1508 dfrag->already_sent += sent; 1509 1510 msk->snd_burst -= sent; 1511 1512 snd_nxt_new += dfrag->already_sent; 1513 1514 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1515 * is recovering after a failover. In that event, this re-sends 1516 * old segments. 1517 * 1518 * Thus compute snd_nxt_new candidate based on 1519 * the dfrag->data_seq that was sent and the data 1520 * that has been handed to the subflow for transmission 1521 * and skip update in case it was old dfrag. 1522 */ 1523 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1524 msk->snd_nxt = snd_nxt_new; 1525 } 1526 1527 void mptcp_check_and_set_pending(struct sock *sk) 1528 { 1529 if (mptcp_send_head(sk)) 1530 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1531 } 1532 1533 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1534 { 1535 struct sock *prev_ssk = NULL, *ssk = NULL; 1536 struct mptcp_sock *msk = mptcp_sk(sk); 1537 struct mptcp_sendmsg_info info = { 1538 .flags = flags, 1539 }; 1540 struct mptcp_data_frag *dfrag; 1541 int len, copied = 0; 1542 1543 while ((dfrag = mptcp_send_head(sk))) { 1544 info.sent = dfrag->already_sent; 1545 info.limit = dfrag->data_len; 1546 len = dfrag->data_len - dfrag->already_sent; 1547 while (len > 0) { 1548 int ret = 0; 1549 1550 prev_ssk = ssk; 1551 ssk = mptcp_subflow_get_send(msk); 1552 1553 /* First check. If the ssk has changed since 1554 * the last round, release prev_ssk 1555 */ 1556 if (ssk != prev_ssk && prev_ssk) 1557 mptcp_push_release(prev_ssk, &info); 1558 if (!ssk) 1559 goto out; 1560 1561 /* Need to lock the new subflow only if different 1562 * from the previous one, otherwise we are still 1563 * helding the relevant lock 1564 */ 1565 if (ssk != prev_ssk) 1566 lock_sock(ssk); 1567 1568 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1569 if (ret <= 0) { 1570 mptcp_push_release(ssk, &info); 1571 goto out; 1572 } 1573 1574 info.sent += ret; 1575 copied += ret; 1576 len -= ret; 1577 1578 mptcp_update_post_push(msk, dfrag, ret); 1579 } 1580 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1581 } 1582 1583 /* at this point we held the socket lock for the last subflow we used */ 1584 if (ssk) 1585 mptcp_push_release(ssk, &info); 1586 1587 out: 1588 /* ensure the rtx timer is running */ 1589 if (!mptcp_timer_pending(sk)) 1590 mptcp_reset_timer(sk); 1591 if (copied) 1592 __mptcp_check_send_data_fin(sk); 1593 } 1594 1595 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1596 { 1597 struct mptcp_sock *msk = mptcp_sk(sk); 1598 struct mptcp_sendmsg_info info = { 1599 .data_lock_held = true, 1600 }; 1601 struct mptcp_data_frag *dfrag; 1602 struct sock *xmit_ssk; 1603 int len, copied = 0; 1604 bool first = true; 1605 1606 info.flags = 0; 1607 while ((dfrag = mptcp_send_head(sk))) { 1608 info.sent = dfrag->already_sent; 1609 info.limit = dfrag->data_len; 1610 len = dfrag->data_len - dfrag->already_sent; 1611 while (len > 0) { 1612 int ret = 0; 1613 1614 /* the caller already invoked the packet scheduler, 1615 * check for a different subflow usage only after 1616 * spooling the first chunk of data 1617 */ 1618 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1619 if (!xmit_ssk) 1620 goto out; 1621 if (xmit_ssk != ssk) { 1622 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1623 MPTCP_DELEGATE_SEND); 1624 goto out; 1625 } 1626 1627 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1628 if (ret <= 0) 1629 goto out; 1630 1631 info.sent += ret; 1632 copied += ret; 1633 len -= ret; 1634 first = false; 1635 1636 mptcp_update_post_push(msk, dfrag, ret); 1637 } 1638 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1639 } 1640 1641 out: 1642 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1643 * not going to flush it via release_sock() 1644 */ 1645 if (copied) { 1646 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1647 info.size_goal); 1648 if (!mptcp_timer_pending(sk)) 1649 mptcp_reset_timer(sk); 1650 1651 if (msk->snd_data_fin_enable && 1652 msk->snd_nxt + 1 == msk->write_seq) 1653 mptcp_schedule_work(sk); 1654 } 1655 } 1656 1657 static void mptcp_set_nospace(struct sock *sk) 1658 { 1659 /* enable autotune */ 1660 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1661 1662 /* will be cleared on avail space */ 1663 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1664 } 1665 1666 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1667 { 1668 struct mptcp_sock *msk = mptcp_sk(sk); 1669 struct page_frag *pfrag; 1670 size_t copied = 0; 1671 int ret = 0; 1672 long timeo; 1673 1674 /* we don't support FASTOPEN yet */ 1675 if (msg->msg_flags & MSG_FASTOPEN) 1676 return -EOPNOTSUPP; 1677 1678 /* silently ignore everything else */ 1679 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1680 1681 lock_sock(sk); 1682 1683 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1684 1685 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1686 ret = sk_stream_wait_connect(sk, &timeo); 1687 if (ret) 1688 goto out; 1689 } 1690 1691 pfrag = sk_page_frag(sk); 1692 1693 while (msg_data_left(msg)) { 1694 int total_ts, frag_truesize = 0; 1695 struct mptcp_data_frag *dfrag; 1696 bool dfrag_collapsed; 1697 size_t psize, offset; 1698 1699 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1700 ret = -EPIPE; 1701 goto out; 1702 } 1703 1704 /* reuse tail pfrag, if possible, or carve a new one from the 1705 * page allocator 1706 */ 1707 dfrag = mptcp_pending_tail(sk); 1708 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1709 if (!dfrag_collapsed) { 1710 if (!sk_stream_memory_free(sk)) 1711 goto wait_for_memory; 1712 1713 if (!mptcp_page_frag_refill(sk, pfrag)) 1714 goto wait_for_memory; 1715 1716 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1717 frag_truesize = dfrag->overhead; 1718 } 1719 1720 /* we do not bound vs wspace, to allow a single packet. 1721 * memory accounting will prevent execessive memory usage 1722 * anyway 1723 */ 1724 offset = dfrag->offset + dfrag->data_len; 1725 psize = pfrag->size - offset; 1726 psize = min_t(size_t, psize, msg_data_left(msg)); 1727 total_ts = psize + frag_truesize; 1728 1729 if (!sk_wmem_schedule(sk, total_ts)) 1730 goto wait_for_memory; 1731 1732 if (copy_page_from_iter(dfrag->page, offset, psize, 1733 &msg->msg_iter) != psize) { 1734 ret = -EFAULT; 1735 goto out; 1736 } 1737 1738 /* data successfully copied into the write queue */ 1739 sk->sk_forward_alloc -= total_ts; 1740 copied += psize; 1741 dfrag->data_len += psize; 1742 frag_truesize += psize; 1743 pfrag->offset += frag_truesize; 1744 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1745 1746 /* charge data on mptcp pending queue to the msk socket 1747 * Note: we charge such data both to sk and ssk 1748 */ 1749 sk_wmem_queued_add(sk, frag_truesize); 1750 if (!dfrag_collapsed) { 1751 get_page(dfrag->page); 1752 list_add_tail(&dfrag->list, &msk->rtx_queue); 1753 if (!msk->first_pending) 1754 WRITE_ONCE(msk->first_pending, dfrag); 1755 } 1756 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1757 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1758 !dfrag_collapsed); 1759 1760 continue; 1761 1762 wait_for_memory: 1763 mptcp_set_nospace(sk); 1764 __mptcp_push_pending(sk, msg->msg_flags); 1765 ret = sk_stream_wait_memory(sk, &timeo); 1766 if (ret) 1767 goto out; 1768 } 1769 1770 if (copied) 1771 __mptcp_push_pending(sk, msg->msg_flags); 1772 1773 out: 1774 release_sock(sk); 1775 return copied ? : ret; 1776 } 1777 1778 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1779 struct msghdr *msg, 1780 size_t len, int flags, 1781 struct scm_timestamping_internal *tss, 1782 int *cmsg_flags) 1783 { 1784 struct sk_buff *skb, *tmp; 1785 int copied = 0; 1786 1787 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1788 u32 offset = MPTCP_SKB_CB(skb)->offset; 1789 u32 data_len = skb->len - offset; 1790 u32 count = min_t(size_t, len - copied, data_len); 1791 int err; 1792 1793 if (!(flags & MSG_TRUNC)) { 1794 err = skb_copy_datagram_msg(skb, offset, msg, count); 1795 if (unlikely(err < 0)) { 1796 if (!copied) 1797 return err; 1798 break; 1799 } 1800 } 1801 1802 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1803 tcp_update_recv_tstamps(skb, tss); 1804 *cmsg_flags |= MPTCP_CMSG_TS; 1805 } 1806 1807 copied += count; 1808 1809 if (count < data_len) { 1810 if (!(flags & MSG_PEEK)) { 1811 MPTCP_SKB_CB(skb)->offset += count; 1812 MPTCP_SKB_CB(skb)->map_seq += count; 1813 } 1814 break; 1815 } 1816 1817 if (!(flags & MSG_PEEK)) { 1818 /* we will bulk release the skb memory later */ 1819 skb->destructor = NULL; 1820 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1821 __skb_unlink(skb, &msk->receive_queue); 1822 __kfree_skb(skb); 1823 } 1824 1825 if (copied >= len) 1826 break; 1827 } 1828 1829 return copied; 1830 } 1831 1832 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1833 * 1834 * Only difference: Use highest rtt estimate of the subflows in use. 1835 */ 1836 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1837 { 1838 struct mptcp_subflow_context *subflow; 1839 struct sock *sk = (struct sock *)msk; 1840 u32 time, advmss = 1; 1841 u64 rtt_us, mstamp; 1842 1843 sock_owned_by_me(sk); 1844 1845 if (copied <= 0) 1846 return; 1847 1848 msk->rcvq_space.copied += copied; 1849 1850 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1851 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1852 1853 rtt_us = msk->rcvq_space.rtt_us; 1854 if (rtt_us && time < (rtt_us >> 3)) 1855 return; 1856 1857 rtt_us = 0; 1858 mptcp_for_each_subflow(msk, subflow) { 1859 const struct tcp_sock *tp; 1860 u64 sf_rtt_us; 1861 u32 sf_advmss; 1862 1863 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1864 1865 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1866 sf_advmss = READ_ONCE(tp->advmss); 1867 1868 rtt_us = max(sf_rtt_us, rtt_us); 1869 advmss = max(sf_advmss, advmss); 1870 } 1871 1872 msk->rcvq_space.rtt_us = rtt_us; 1873 if (time < (rtt_us >> 3) || rtt_us == 0) 1874 return; 1875 1876 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1877 goto new_measure; 1878 1879 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1880 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1881 int rcvmem, rcvbuf; 1882 u64 rcvwin, grow; 1883 1884 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1885 1886 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1887 1888 do_div(grow, msk->rcvq_space.space); 1889 rcvwin += (grow << 1); 1890 1891 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1892 while (tcp_win_from_space(sk, rcvmem) < advmss) 1893 rcvmem += 128; 1894 1895 do_div(rcvwin, advmss); 1896 rcvbuf = min_t(u64, rcvwin * rcvmem, 1897 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1898 1899 if (rcvbuf > sk->sk_rcvbuf) { 1900 u32 window_clamp; 1901 1902 window_clamp = tcp_win_from_space(sk, rcvbuf); 1903 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1904 1905 /* Make subflows follow along. If we do not do this, we 1906 * get drops at subflow level if skbs can't be moved to 1907 * the mptcp rx queue fast enough (announced rcv_win can 1908 * exceed ssk->sk_rcvbuf). 1909 */ 1910 mptcp_for_each_subflow(msk, subflow) { 1911 struct sock *ssk; 1912 bool slow; 1913 1914 ssk = mptcp_subflow_tcp_sock(subflow); 1915 slow = lock_sock_fast(ssk); 1916 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1917 tcp_sk(ssk)->window_clamp = window_clamp; 1918 tcp_cleanup_rbuf(ssk, 1); 1919 unlock_sock_fast(ssk, slow); 1920 } 1921 } 1922 } 1923 1924 msk->rcvq_space.space = msk->rcvq_space.copied; 1925 new_measure: 1926 msk->rcvq_space.copied = 0; 1927 msk->rcvq_space.time = mstamp; 1928 } 1929 1930 static void __mptcp_update_rmem(struct sock *sk) 1931 { 1932 struct mptcp_sock *msk = mptcp_sk(sk); 1933 1934 if (!msk->rmem_released) 1935 return; 1936 1937 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1938 mptcp_rmem_uncharge(sk, msk->rmem_released); 1939 WRITE_ONCE(msk->rmem_released, 0); 1940 } 1941 1942 static void __mptcp_splice_receive_queue(struct sock *sk) 1943 { 1944 struct mptcp_sock *msk = mptcp_sk(sk); 1945 1946 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1947 } 1948 1949 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1950 { 1951 struct sock *sk = (struct sock *)msk; 1952 unsigned int moved = 0; 1953 bool ret, done; 1954 1955 do { 1956 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1957 bool slowpath; 1958 1959 /* we can have data pending in the subflows only if the msk 1960 * receive buffer was full at subflow_data_ready() time, 1961 * that is an unlikely slow path. 1962 */ 1963 if (likely(!ssk)) 1964 break; 1965 1966 slowpath = lock_sock_fast(ssk); 1967 mptcp_data_lock(sk); 1968 __mptcp_update_rmem(sk); 1969 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1970 mptcp_data_unlock(sk); 1971 1972 if (unlikely(ssk->sk_err)) 1973 __mptcp_error_report(sk); 1974 unlock_sock_fast(ssk, slowpath); 1975 } while (!done); 1976 1977 /* acquire the data lock only if some input data is pending */ 1978 ret = moved > 0; 1979 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1980 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1981 mptcp_data_lock(sk); 1982 __mptcp_update_rmem(sk); 1983 ret |= __mptcp_ofo_queue(msk); 1984 __mptcp_splice_receive_queue(sk); 1985 mptcp_data_unlock(sk); 1986 } 1987 if (ret) 1988 mptcp_check_data_fin((struct sock *)msk); 1989 return !skb_queue_empty(&msk->receive_queue); 1990 } 1991 1992 static unsigned int mptcp_inq_hint(const struct sock *sk) 1993 { 1994 const struct mptcp_sock *msk = mptcp_sk(sk); 1995 const struct sk_buff *skb; 1996 1997 skb = skb_peek(&msk->receive_queue); 1998 if (skb) { 1999 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2000 2001 if (hint_val >= INT_MAX) 2002 return INT_MAX; 2003 2004 return (unsigned int)hint_val; 2005 } 2006 2007 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2008 return 1; 2009 2010 return 0; 2011 } 2012 2013 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2014 int nonblock, int flags, int *addr_len) 2015 { 2016 struct mptcp_sock *msk = mptcp_sk(sk); 2017 struct scm_timestamping_internal tss; 2018 int copied = 0, cmsg_flags = 0; 2019 int target; 2020 long timeo; 2021 2022 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2023 if (unlikely(flags & MSG_ERRQUEUE)) 2024 return inet_recv_error(sk, msg, len, addr_len); 2025 2026 lock_sock(sk); 2027 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2028 copied = -ENOTCONN; 2029 goto out_err; 2030 } 2031 2032 timeo = sock_rcvtimeo(sk, nonblock); 2033 2034 len = min_t(size_t, len, INT_MAX); 2035 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2036 2037 if (unlikely(msk->recvmsg_inq)) 2038 cmsg_flags = MPTCP_CMSG_INQ; 2039 2040 while (copied < len) { 2041 int bytes_read; 2042 2043 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2044 if (unlikely(bytes_read < 0)) { 2045 if (!copied) 2046 copied = bytes_read; 2047 goto out_err; 2048 } 2049 2050 copied += bytes_read; 2051 2052 /* be sure to advertise window change */ 2053 mptcp_cleanup_rbuf(msk); 2054 2055 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2056 continue; 2057 2058 /* only the master socket status is relevant here. The exit 2059 * conditions mirror closely tcp_recvmsg() 2060 */ 2061 if (copied >= target) 2062 break; 2063 2064 if (copied) { 2065 if (sk->sk_err || 2066 sk->sk_state == TCP_CLOSE || 2067 (sk->sk_shutdown & RCV_SHUTDOWN) || 2068 !timeo || 2069 signal_pending(current)) 2070 break; 2071 } else { 2072 if (sk->sk_err) { 2073 copied = sock_error(sk); 2074 break; 2075 } 2076 2077 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2078 mptcp_check_for_eof(msk); 2079 2080 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2081 /* race breaker: the shutdown could be after the 2082 * previous receive queue check 2083 */ 2084 if (__mptcp_move_skbs(msk)) 2085 continue; 2086 break; 2087 } 2088 2089 if (sk->sk_state == TCP_CLOSE) { 2090 copied = -ENOTCONN; 2091 break; 2092 } 2093 2094 if (!timeo) { 2095 copied = -EAGAIN; 2096 break; 2097 } 2098 2099 if (signal_pending(current)) { 2100 copied = sock_intr_errno(timeo); 2101 break; 2102 } 2103 } 2104 2105 pr_debug("block timeout %ld", timeo); 2106 sk_wait_data(sk, &timeo, NULL); 2107 } 2108 2109 out_err: 2110 if (cmsg_flags && copied >= 0) { 2111 if (cmsg_flags & MPTCP_CMSG_TS) 2112 tcp_recv_timestamp(msg, sk, &tss); 2113 2114 if (cmsg_flags & MPTCP_CMSG_INQ) { 2115 unsigned int inq = mptcp_inq_hint(sk); 2116 2117 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2118 } 2119 } 2120 2121 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2122 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2123 skb_queue_empty(&msk->receive_queue), copied); 2124 if (!(flags & MSG_PEEK)) 2125 mptcp_rcv_space_adjust(msk, copied); 2126 2127 release_sock(sk); 2128 return copied; 2129 } 2130 2131 static void mptcp_retransmit_timer(struct timer_list *t) 2132 { 2133 struct inet_connection_sock *icsk = from_timer(icsk, t, 2134 icsk_retransmit_timer); 2135 struct sock *sk = &icsk->icsk_inet.sk; 2136 struct mptcp_sock *msk = mptcp_sk(sk); 2137 2138 bh_lock_sock(sk); 2139 if (!sock_owned_by_user(sk)) { 2140 /* we need a process context to retransmit */ 2141 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2142 mptcp_schedule_work(sk); 2143 } else { 2144 /* delegate our work to tcp_release_cb() */ 2145 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2146 } 2147 bh_unlock_sock(sk); 2148 sock_put(sk); 2149 } 2150 2151 static void mptcp_timeout_timer(struct timer_list *t) 2152 { 2153 struct sock *sk = from_timer(sk, t, sk_timer); 2154 2155 mptcp_schedule_work(sk); 2156 sock_put(sk); 2157 } 2158 2159 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2160 * level. 2161 * 2162 * A backup subflow is returned only if that is the only kind available. 2163 */ 2164 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2165 { 2166 struct sock *backup = NULL, *pick = NULL; 2167 struct mptcp_subflow_context *subflow; 2168 int min_stale_count = INT_MAX; 2169 2170 sock_owned_by_me((const struct sock *)msk); 2171 2172 if (__mptcp_check_fallback(msk)) 2173 return NULL; 2174 2175 mptcp_for_each_subflow(msk, subflow) { 2176 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2177 2178 if (!__mptcp_subflow_active(subflow)) 2179 continue; 2180 2181 /* still data outstanding at TCP level? skip this */ 2182 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2183 mptcp_pm_subflow_chk_stale(msk, ssk); 2184 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2185 continue; 2186 } 2187 2188 if (subflow->backup) { 2189 if (!backup) 2190 backup = ssk; 2191 continue; 2192 } 2193 2194 if (!pick) 2195 pick = ssk; 2196 } 2197 2198 if (pick) 2199 return pick; 2200 2201 /* use backup only if there are no progresses anywhere */ 2202 return min_stale_count > 1 ? backup : NULL; 2203 } 2204 2205 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2206 { 2207 if (msk->subflow) { 2208 iput(SOCK_INODE(msk->subflow)); 2209 msk->subflow = NULL; 2210 } 2211 } 2212 2213 bool __mptcp_retransmit_pending_data(struct sock *sk) 2214 { 2215 struct mptcp_data_frag *cur, *rtx_head; 2216 struct mptcp_sock *msk = mptcp_sk(sk); 2217 2218 if (__mptcp_check_fallback(mptcp_sk(sk))) 2219 return false; 2220 2221 if (tcp_rtx_and_write_queues_empty(sk)) 2222 return false; 2223 2224 /* the closing socket has some data untransmitted and/or unacked: 2225 * some data in the mptcp rtx queue has not really xmitted yet. 2226 * keep it simple and re-inject the whole mptcp level rtx queue 2227 */ 2228 mptcp_data_lock(sk); 2229 __mptcp_clean_una_wakeup(sk); 2230 rtx_head = mptcp_rtx_head(sk); 2231 if (!rtx_head) { 2232 mptcp_data_unlock(sk); 2233 return false; 2234 } 2235 2236 msk->recovery_snd_nxt = msk->snd_nxt; 2237 msk->recovery = true; 2238 mptcp_data_unlock(sk); 2239 2240 msk->first_pending = rtx_head; 2241 msk->snd_burst = 0; 2242 2243 /* be sure to clear the "sent status" on all re-injected fragments */ 2244 list_for_each_entry(cur, &msk->rtx_queue, list) { 2245 if (!cur->already_sent) 2246 break; 2247 cur->already_sent = 0; 2248 } 2249 2250 return true; 2251 } 2252 2253 /* flags for __mptcp_close_ssk() */ 2254 #define MPTCP_CF_PUSH BIT(1) 2255 #define MPTCP_CF_FASTCLOSE BIT(2) 2256 2257 /* subflow sockets can be either outgoing (connect) or incoming 2258 * (accept). 2259 * 2260 * Outgoing subflows use in-kernel sockets. 2261 * Incoming subflows do not have their own 'struct socket' allocated, 2262 * so we need to use tcp_close() after detaching them from the mptcp 2263 * parent socket. 2264 */ 2265 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2266 struct mptcp_subflow_context *subflow, 2267 unsigned int flags) 2268 { 2269 struct mptcp_sock *msk = mptcp_sk(sk); 2270 bool need_push, dispose_it; 2271 2272 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2273 if (dispose_it) 2274 list_del(&subflow->node); 2275 2276 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2277 2278 if (flags & MPTCP_CF_FASTCLOSE) 2279 subflow->send_fastclose = 1; 2280 2281 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2282 if (!dispose_it) { 2283 tcp_disconnect(ssk, 0); 2284 msk->subflow->state = SS_UNCONNECTED; 2285 mptcp_subflow_ctx_reset(subflow); 2286 release_sock(ssk); 2287 2288 goto out; 2289 } 2290 2291 /* if we are invoked by the msk cleanup code, the subflow is 2292 * already orphaned 2293 */ 2294 if (ssk->sk_socket) 2295 sock_orphan(ssk); 2296 2297 subflow->disposable = 1; 2298 2299 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2300 * the ssk has been already destroyed, we just need to release the 2301 * reference owned by msk; 2302 */ 2303 if (!inet_csk(ssk)->icsk_ulp_ops) { 2304 kfree_rcu(subflow, rcu); 2305 } else { 2306 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2307 __tcp_close(ssk, 0); 2308 2309 /* close acquired an extra ref */ 2310 __sock_put(ssk); 2311 } 2312 release_sock(ssk); 2313 2314 sock_put(ssk); 2315 2316 if (ssk == msk->first) 2317 msk->first = NULL; 2318 2319 out: 2320 if (ssk == msk->last_snd) 2321 msk->last_snd = NULL; 2322 2323 if (need_push) 2324 __mptcp_push_pending(sk, 0); 2325 } 2326 2327 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2328 struct mptcp_subflow_context *subflow) 2329 { 2330 if (sk->sk_state == TCP_ESTABLISHED) 2331 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2332 2333 /* subflow aborted before reaching the fully_established status 2334 * attempt the creation of the next subflow 2335 */ 2336 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2337 2338 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2339 } 2340 2341 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2342 { 2343 return 0; 2344 } 2345 2346 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2347 { 2348 struct mptcp_subflow_context *subflow, *tmp; 2349 2350 might_sleep(); 2351 2352 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2353 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2354 2355 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2356 continue; 2357 2358 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2359 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2360 continue; 2361 2362 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2363 } 2364 } 2365 2366 static bool mptcp_check_close_timeout(const struct sock *sk) 2367 { 2368 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2369 struct mptcp_subflow_context *subflow; 2370 2371 if (delta >= TCP_TIMEWAIT_LEN) 2372 return true; 2373 2374 /* if all subflows are in closed status don't bother with additional 2375 * timeout 2376 */ 2377 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2378 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2379 TCP_CLOSE) 2380 return false; 2381 } 2382 return true; 2383 } 2384 2385 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2386 { 2387 struct mptcp_subflow_context *subflow, *tmp; 2388 struct sock *sk = &msk->sk.icsk_inet.sk; 2389 2390 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2391 return; 2392 2393 mptcp_token_destroy(msk); 2394 2395 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2396 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2397 bool slow; 2398 2399 slow = lock_sock_fast(tcp_sk); 2400 if (tcp_sk->sk_state != TCP_CLOSE) { 2401 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2402 tcp_set_state(tcp_sk, TCP_CLOSE); 2403 } 2404 unlock_sock_fast(tcp_sk, slow); 2405 } 2406 2407 inet_sk_state_store(sk, TCP_CLOSE); 2408 sk->sk_shutdown = SHUTDOWN_MASK; 2409 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2410 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2411 2412 mptcp_close_wake_up(sk); 2413 } 2414 2415 static void __mptcp_retrans(struct sock *sk) 2416 { 2417 struct mptcp_sock *msk = mptcp_sk(sk); 2418 struct mptcp_sendmsg_info info = {}; 2419 struct mptcp_data_frag *dfrag; 2420 size_t copied = 0; 2421 struct sock *ssk; 2422 int ret; 2423 2424 mptcp_clean_una_wakeup(sk); 2425 2426 /* first check ssk: need to kick "stale" logic */ 2427 ssk = mptcp_subflow_get_retrans(msk); 2428 dfrag = mptcp_rtx_head(sk); 2429 if (!dfrag) { 2430 if (mptcp_data_fin_enabled(msk)) { 2431 struct inet_connection_sock *icsk = inet_csk(sk); 2432 2433 icsk->icsk_retransmits++; 2434 mptcp_set_datafin_timeout(sk); 2435 mptcp_send_ack(msk); 2436 2437 goto reset_timer; 2438 } 2439 2440 if (!mptcp_send_head(sk)) 2441 return; 2442 2443 goto reset_timer; 2444 } 2445 2446 if (!ssk) 2447 goto reset_timer; 2448 2449 lock_sock(ssk); 2450 2451 /* limit retransmission to the bytes already sent on some subflows */ 2452 info.sent = 0; 2453 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2454 while (info.sent < info.limit) { 2455 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2456 if (ret <= 0) 2457 break; 2458 2459 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2460 copied += ret; 2461 info.sent += ret; 2462 } 2463 if (copied) { 2464 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2465 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2466 info.size_goal); 2467 } 2468 2469 release_sock(ssk); 2470 2471 reset_timer: 2472 mptcp_check_and_set_pending(sk); 2473 2474 if (!mptcp_timer_pending(sk)) 2475 mptcp_reset_timer(sk); 2476 } 2477 2478 static void mptcp_worker(struct work_struct *work) 2479 { 2480 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2481 struct sock *sk = &msk->sk.icsk_inet.sk; 2482 int state; 2483 2484 lock_sock(sk); 2485 state = sk->sk_state; 2486 if (unlikely(state == TCP_CLOSE)) 2487 goto unlock; 2488 2489 mptcp_check_data_fin_ack(sk); 2490 2491 mptcp_check_fastclose(msk); 2492 2493 mptcp_pm_nl_work(msk); 2494 2495 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2496 mptcp_check_for_eof(msk); 2497 2498 __mptcp_check_send_data_fin(sk); 2499 mptcp_check_data_fin(sk); 2500 2501 /* There is no point in keeping around an orphaned sk timedout or 2502 * closed, but we need the msk around to reply to incoming DATA_FIN, 2503 * even if it is orphaned and in FIN_WAIT2 state 2504 */ 2505 if (sock_flag(sk, SOCK_DEAD) && 2506 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2507 inet_sk_state_store(sk, TCP_CLOSE); 2508 __mptcp_destroy_sock(sk); 2509 goto unlock; 2510 } 2511 2512 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2513 __mptcp_close_subflow(msk); 2514 2515 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2516 __mptcp_retrans(sk); 2517 2518 unlock: 2519 release_sock(sk); 2520 sock_put(sk); 2521 } 2522 2523 static int __mptcp_init_sock(struct sock *sk) 2524 { 2525 struct mptcp_sock *msk = mptcp_sk(sk); 2526 2527 INIT_LIST_HEAD(&msk->conn_list); 2528 INIT_LIST_HEAD(&msk->join_list); 2529 INIT_LIST_HEAD(&msk->rtx_queue); 2530 INIT_WORK(&msk->work, mptcp_worker); 2531 __skb_queue_head_init(&msk->receive_queue); 2532 msk->out_of_order_queue = RB_ROOT; 2533 msk->first_pending = NULL; 2534 msk->rmem_fwd_alloc = 0; 2535 WRITE_ONCE(msk->rmem_released, 0); 2536 msk->timer_ival = TCP_RTO_MIN; 2537 2538 msk->first = NULL; 2539 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2540 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2541 msk->recovery = false; 2542 2543 mptcp_pm_data_init(msk); 2544 2545 /* re-use the csk retrans timer for MPTCP-level retrans */ 2546 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2547 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2548 2549 return 0; 2550 } 2551 2552 static void mptcp_ca_reset(struct sock *sk) 2553 { 2554 struct inet_connection_sock *icsk = inet_csk(sk); 2555 2556 tcp_assign_congestion_control(sk); 2557 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2558 2559 /* no need to keep a reference to the ops, the name will suffice */ 2560 tcp_cleanup_congestion_control(sk); 2561 icsk->icsk_ca_ops = NULL; 2562 } 2563 2564 static int mptcp_init_sock(struct sock *sk) 2565 { 2566 struct net *net = sock_net(sk); 2567 int ret; 2568 2569 ret = __mptcp_init_sock(sk); 2570 if (ret) 2571 return ret; 2572 2573 if (!mptcp_is_enabled(net)) 2574 return -ENOPROTOOPT; 2575 2576 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2577 return -ENOMEM; 2578 2579 ret = __mptcp_socket_create(mptcp_sk(sk)); 2580 if (ret) 2581 return ret; 2582 2583 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2584 * propagate the correct value 2585 */ 2586 mptcp_ca_reset(sk); 2587 2588 sk_sockets_allocated_inc(sk); 2589 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2590 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2591 2592 return 0; 2593 } 2594 2595 static void __mptcp_clear_xmit(struct sock *sk) 2596 { 2597 struct mptcp_sock *msk = mptcp_sk(sk); 2598 struct mptcp_data_frag *dtmp, *dfrag; 2599 2600 WRITE_ONCE(msk->first_pending, NULL); 2601 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2602 dfrag_clear(sk, dfrag); 2603 } 2604 2605 static void mptcp_cancel_work(struct sock *sk) 2606 { 2607 struct mptcp_sock *msk = mptcp_sk(sk); 2608 2609 if (cancel_work_sync(&msk->work)) 2610 __sock_put(sk); 2611 } 2612 2613 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2614 { 2615 lock_sock(ssk); 2616 2617 switch (ssk->sk_state) { 2618 case TCP_LISTEN: 2619 if (!(how & RCV_SHUTDOWN)) 2620 break; 2621 fallthrough; 2622 case TCP_SYN_SENT: 2623 tcp_disconnect(ssk, O_NONBLOCK); 2624 break; 2625 default: 2626 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2627 pr_debug("Fallback"); 2628 ssk->sk_shutdown |= how; 2629 tcp_shutdown(ssk, how); 2630 } else { 2631 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2632 tcp_send_ack(ssk); 2633 if (!mptcp_timer_pending(sk)) 2634 mptcp_reset_timer(sk); 2635 } 2636 break; 2637 } 2638 2639 release_sock(ssk); 2640 } 2641 2642 static const unsigned char new_state[16] = { 2643 /* current state: new state: action: */ 2644 [0 /* (Invalid) */] = TCP_CLOSE, 2645 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2646 [TCP_SYN_SENT] = TCP_CLOSE, 2647 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2648 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2649 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2650 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2651 [TCP_CLOSE] = TCP_CLOSE, 2652 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2653 [TCP_LAST_ACK] = TCP_LAST_ACK, 2654 [TCP_LISTEN] = TCP_CLOSE, 2655 [TCP_CLOSING] = TCP_CLOSING, 2656 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2657 }; 2658 2659 static int mptcp_close_state(struct sock *sk) 2660 { 2661 int next = (int)new_state[sk->sk_state]; 2662 int ns = next & TCP_STATE_MASK; 2663 2664 inet_sk_state_store(sk, ns); 2665 2666 return next & TCP_ACTION_FIN; 2667 } 2668 2669 static void __mptcp_check_send_data_fin(struct sock *sk) 2670 { 2671 struct mptcp_subflow_context *subflow; 2672 struct mptcp_sock *msk = mptcp_sk(sk); 2673 2674 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2675 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2676 msk->snd_nxt, msk->write_seq); 2677 2678 /* we still need to enqueue subflows or not really shutting down, 2679 * skip this 2680 */ 2681 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2682 mptcp_send_head(sk)) 2683 return; 2684 2685 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2686 2687 /* fallback socket will not get data_fin/ack, can move to the next 2688 * state now 2689 */ 2690 if (__mptcp_check_fallback(msk)) { 2691 WRITE_ONCE(msk->snd_una, msk->write_seq); 2692 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2693 inet_sk_state_store(sk, TCP_CLOSE); 2694 mptcp_close_wake_up(sk); 2695 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2696 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2697 } 2698 } 2699 2700 mptcp_for_each_subflow(msk, subflow) { 2701 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2702 2703 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2704 } 2705 } 2706 2707 static void __mptcp_wr_shutdown(struct sock *sk) 2708 { 2709 struct mptcp_sock *msk = mptcp_sk(sk); 2710 2711 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2712 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2713 !!mptcp_send_head(sk)); 2714 2715 /* will be ignored by fallback sockets */ 2716 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2717 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2718 2719 __mptcp_check_send_data_fin(sk); 2720 } 2721 2722 static void __mptcp_destroy_sock(struct sock *sk) 2723 { 2724 struct mptcp_subflow_context *subflow, *tmp; 2725 struct mptcp_sock *msk = mptcp_sk(sk); 2726 LIST_HEAD(conn_list); 2727 2728 pr_debug("msk=%p", msk); 2729 2730 might_sleep(); 2731 2732 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2733 list_splice_init(&msk->conn_list, &conn_list); 2734 2735 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2736 sk_stop_timer(sk, &sk->sk_timer); 2737 msk->pm.status = 0; 2738 2739 /* clears msk->subflow, allowing the following loop to close 2740 * even the initial subflow 2741 */ 2742 mptcp_dispose_initial_subflow(msk); 2743 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2744 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2745 __mptcp_close_ssk(sk, ssk, subflow, 0); 2746 } 2747 2748 sk->sk_prot->destroy(sk); 2749 2750 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2751 WARN_ON_ONCE(msk->rmem_released); 2752 sk_stream_kill_queues(sk); 2753 xfrm_sk_free_policy(sk); 2754 2755 sk_refcnt_debug_release(sk); 2756 sock_put(sk); 2757 } 2758 2759 static void mptcp_close(struct sock *sk, long timeout) 2760 { 2761 struct mptcp_subflow_context *subflow; 2762 bool do_cancel_work = false; 2763 2764 lock_sock(sk); 2765 sk->sk_shutdown = SHUTDOWN_MASK; 2766 2767 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2768 inet_sk_state_store(sk, TCP_CLOSE); 2769 goto cleanup; 2770 } 2771 2772 if (mptcp_close_state(sk)) 2773 __mptcp_wr_shutdown(sk); 2774 2775 sk_stream_wait_close(sk, timeout); 2776 2777 cleanup: 2778 /* orphan all the subflows */ 2779 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2780 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2781 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2782 bool slow = lock_sock_fast_nested(ssk); 2783 2784 sock_orphan(ssk); 2785 unlock_sock_fast(ssk, slow); 2786 } 2787 sock_orphan(sk); 2788 2789 sock_hold(sk); 2790 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2791 if (mptcp_sk(sk)->token) 2792 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2793 2794 if (sk->sk_state == TCP_CLOSE) { 2795 __mptcp_destroy_sock(sk); 2796 do_cancel_work = true; 2797 } else { 2798 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2799 } 2800 release_sock(sk); 2801 if (do_cancel_work) 2802 mptcp_cancel_work(sk); 2803 2804 sock_put(sk); 2805 } 2806 2807 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2808 { 2809 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2810 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2811 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2812 2813 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2814 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2815 2816 if (msk6 && ssk6) { 2817 msk6->saddr = ssk6->saddr; 2818 msk6->flow_label = ssk6->flow_label; 2819 } 2820 #endif 2821 2822 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2823 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2824 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2825 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2826 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2827 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2828 } 2829 2830 static int mptcp_disconnect(struct sock *sk, int flags) 2831 { 2832 struct mptcp_subflow_context *subflow; 2833 struct mptcp_sock *msk = mptcp_sk(sk); 2834 2835 inet_sk_state_store(sk, TCP_CLOSE); 2836 2837 mptcp_for_each_subflow(msk, subflow) { 2838 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2839 2840 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2841 } 2842 2843 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2844 sk_stop_timer(sk, &sk->sk_timer); 2845 2846 if (mptcp_sk(sk)->token) 2847 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2848 2849 mptcp_destroy_common(msk); 2850 msk->last_snd = NULL; 2851 WRITE_ONCE(msk->flags, 0); 2852 msk->cb_flags = 0; 2853 msk->push_pending = 0; 2854 msk->recovery = false; 2855 msk->can_ack = false; 2856 msk->fully_established = false; 2857 msk->rcv_data_fin = false; 2858 msk->snd_data_fin_enable = false; 2859 msk->rcv_fastclose = false; 2860 msk->use_64bit_ack = false; 2861 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2862 mptcp_pm_data_reset(msk); 2863 mptcp_ca_reset(sk); 2864 2865 sk->sk_shutdown = 0; 2866 sk_error_report(sk); 2867 return 0; 2868 } 2869 2870 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2871 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2872 { 2873 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2874 2875 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2876 } 2877 #endif 2878 2879 struct sock *mptcp_sk_clone(const struct sock *sk, 2880 const struct mptcp_options_received *mp_opt, 2881 struct request_sock *req) 2882 { 2883 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2884 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2885 struct mptcp_sock *msk; 2886 u64 ack_seq; 2887 2888 if (!nsk) 2889 return NULL; 2890 2891 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2892 if (nsk->sk_family == AF_INET6) 2893 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2894 #endif 2895 2896 __mptcp_init_sock(nsk); 2897 2898 msk = mptcp_sk(nsk); 2899 msk->local_key = subflow_req->local_key; 2900 msk->token = subflow_req->token; 2901 msk->subflow = NULL; 2902 WRITE_ONCE(msk->fully_established, false); 2903 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2904 WRITE_ONCE(msk->csum_enabled, true); 2905 2906 msk->write_seq = subflow_req->idsn + 1; 2907 msk->snd_nxt = msk->write_seq; 2908 msk->snd_una = msk->write_seq; 2909 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2910 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2911 2912 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2913 msk->can_ack = true; 2914 msk->remote_key = mp_opt->sndr_key; 2915 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2916 ack_seq++; 2917 WRITE_ONCE(msk->ack_seq, ack_seq); 2918 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2919 } 2920 2921 sock_reset_flag(nsk, SOCK_RCU_FREE); 2922 /* will be fully established after successful MPC subflow creation */ 2923 inet_sk_state_store(nsk, TCP_SYN_RECV); 2924 2925 security_inet_csk_clone(nsk, req); 2926 bh_unlock_sock(nsk); 2927 2928 /* keep a single reference */ 2929 __sock_put(nsk); 2930 return nsk; 2931 } 2932 2933 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2934 { 2935 const struct tcp_sock *tp = tcp_sk(ssk); 2936 2937 msk->rcvq_space.copied = 0; 2938 msk->rcvq_space.rtt_us = 0; 2939 2940 msk->rcvq_space.time = tp->tcp_mstamp; 2941 2942 /* initial rcv_space offering made to peer */ 2943 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2944 TCP_INIT_CWND * tp->advmss); 2945 if (msk->rcvq_space.space == 0) 2946 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2947 2948 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2949 } 2950 2951 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2952 bool kern) 2953 { 2954 struct mptcp_sock *msk = mptcp_sk(sk); 2955 struct socket *listener; 2956 struct sock *newsk; 2957 2958 listener = __mptcp_nmpc_socket(msk); 2959 if (WARN_ON_ONCE(!listener)) { 2960 *err = -EINVAL; 2961 return NULL; 2962 } 2963 2964 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2965 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2966 if (!newsk) 2967 return NULL; 2968 2969 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2970 if (sk_is_mptcp(newsk)) { 2971 struct mptcp_subflow_context *subflow; 2972 struct sock *new_mptcp_sock; 2973 2974 subflow = mptcp_subflow_ctx(newsk); 2975 new_mptcp_sock = subflow->conn; 2976 2977 /* is_mptcp should be false if subflow->conn is missing, see 2978 * subflow_syn_recv_sock() 2979 */ 2980 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2981 tcp_sk(newsk)->is_mptcp = 0; 2982 goto out; 2983 } 2984 2985 /* acquire the 2nd reference for the owning socket */ 2986 sock_hold(new_mptcp_sock); 2987 newsk = new_mptcp_sock; 2988 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2989 } else { 2990 MPTCP_INC_STATS(sock_net(sk), 2991 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2992 } 2993 2994 out: 2995 newsk->sk_kern_sock = kern; 2996 return newsk; 2997 } 2998 2999 void mptcp_destroy_common(struct mptcp_sock *msk) 3000 { 3001 struct sock *sk = (struct sock *)msk; 3002 3003 __mptcp_clear_xmit(sk); 3004 3005 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3006 mptcp_data_lock(sk); 3007 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3008 __skb_queue_purge(&sk->sk_receive_queue); 3009 skb_rbtree_purge(&msk->out_of_order_queue); 3010 mptcp_data_unlock(sk); 3011 3012 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3013 * inet_sock_destruct() will dispose it 3014 */ 3015 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3016 msk->rmem_fwd_alloc = 0; 3017 mptcp_token_destroy(msk); 3018 mptcp_pm_free_anno_list(msk); 3019 } 3020 3021 static void mptcp_destroy(struct sock *sk) 3022 { 3023 struct mptcp_sock *msk = mptcp_sk(sk); 3024 3025 mptcp_destroy_common(msk); 3026 sk_sockets_allocated_dec(sk); 3027 } 3028 3029 void __mptcp_data_acked(struct sock *sk) 3030 { 3031 if (!sock_owned_by_user(sk)) 3032 __mptcp_clean_una(sk); 3033 else 3034 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3035 3036 if (mptcp_pending_data_fin_ack(sk)) 3037 mptcp_schedule_work(sk); 3038 } 3039 3040 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3041 { 3042 if (!mptcp_send_head(sk)) 3043 return; 3044 3045 if (!sock_owned_by_user(sk)) { 3046 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3047 3048 if (xmit_ssk == ssk) 3049 __mptcp_subflow_push_pending(sk, ssk); 3050 else if (xmit_ssk) 3051 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3052 } else { 3053 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3054 } 3055 } 3056 3057 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3058 BIT(MPTCP_RETRANSMIT) | \ 3059 BIT(MPTCP_FLUSH_JOIN_LIST)) 3060 3061 /* processes deferred events and flush wmem */ 3062 static void mptcp_release_cb(struct sock *sk) 3063 __must_hold(&sk->sk_lock.slock) 3064 { 3065 struct mptcp_sock *msk = mptcp_sk(sk); 3066 3067 for (;;) { 3068 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3069 msk->push_pending; 3070 if (!flags) 3071 break; 3072 3073 /* the following actions acquire the subflow socket lock 3074 * 3075 * 1) can't be invoked in atomic scope 3076 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3077 * datapath acquires the msk socket spinlock while helding 3078 * the subflow socket lock 3079 */ 3080 msk->push_pending = 0; 3081 msk->cb_flags &= ~flags; 3082 spin_unlock_bh(&sk->sk_lock.slock); 3083 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3084 __mptcp_flush_join_list(sk); 3085 if (flags & BIT(MPTCP_PUSH_PENDING)) 3086 __mptcp_push_pending(sk, 0); 3087 if (flags & BIT(MPTCP_RETRANSMIT)) 3088 __mptcp_retrans(sk); 3089 3090 cond_resched(); 3091 spin_lock_bh(&sk->sk_lock.slock); 3092 } 3093 3094 /* be sure to set the current sk state before tacking actions 3095 * depending on sk_state 3096 */ 3097 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3098 __mptcp_set_connected(sk); 3099 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3100 __mptcp_clean_una_wakeup(sk); 3101 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3102 __mptcp_error_report(sk); 3103 3104 __mptcp_update_rmem(sk); 3105 } 3106 3107 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3108 * TCP can't schedule delack timer before the subflow is fully established. 3109 * MPTCP uses the delack timer to do 3rd ack retransmissions 3110 */ 3111 static void schedule_3rdack_retransmission(struct sock *ssk) 3112 { 3113 struct inet_connection_sock *icsk = inet_csk(ssk); 3114 struct tcp_sock *tp = tcp_sk(ssk); 3115 unsigned long timeout; 3116 3117 if (mptcp_subflow_ctx(ssk)->fully_established) 3118 return; 3119 3120 /* reschedule with a timeout above RTT, as we must look only for drop */ 3121 if (tp->srtt_us) 3122 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3123 else 3124 timeout = TCP_TIMEOUT_INIT; 3125 timeout += jiffies; 3126 3127 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3128 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3129 icsk->icsk_ack.timeout = timeout; 3130 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3131 } 3132 3133 void mptcp_subflow_process_delegated(struct sock *ssk) 3134 { 3135 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3136 struct sock *sk = subflow->conn; 3137 3138 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3139 mptcp_data_lock(sk); 3140 if (!sock_owned_by_user(sk)) 3141 __mptcp_subflow_push_pending(sk, ssk); 3142 else 3143 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3144 mptcp_data_unlock(sk); 3145 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3146 } 3147 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3148 schedule_3rdack_retransmission(ssk); 3149 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3150 } 3151 } 3152 3153 static int mptcp_hash(struct sock *sk) 3154 { 3155 /* should never be called, 3156 * we hash the TCP subflows not the master socket 3157 */ 3158 WARN_ON_ONCE(1); 3159 return 0; 3160 } 3161 3162 static void mptcp_unhash(struct sock *sk) 3163 { 3164 /* called from sk_common_release(), but nothing to do here */ 3165 } 3166 3167 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3168 { 3169 struct mptcp_sock *msk = mptcp_sk(sk); 3170 struct socket *ssock; 3171 3172 ssock = __mptcp_nmpc_socket(msk); 3173 pr_debug("msk=%p, subflow=%p", msk, ssock); 3174 if (WARN_ON_ONCE(!ssock)) 3175 return -EINVAL; 3176 3177 return inet_csk_get_port(ssock->sk, snum); 3178 } 3179 3180 void mptcp_finish_connect(struct sock *ssk) 3181 { 3182 struct mptcp_subflow_context *subflow; 3183 struct mptcp_sock *msk; 3184 struct sock *sk; 3185 u64 ack_seq; 3186 3187 subflow = mptcp_subflow_ctx(ssk); 3188 sk = subflow->conn; 3189 msk = mptcp_sk(sk); 3190 3191 pr_debug("msk=%p, token=%u", sk, subflow->token); 3192 3193 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3194 ack_seq++; 3195 subflow->map_seq = ack_seq; 3196 subflow->map_subflow_seq = 1; 3197 3198 /* the socket is not connected yet, no msk/subflow ops can access/race 3199 * accessing the field below 3200 */ 3201 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3202 WRITE_ONCE(msk->local_key, subflow->local_key); 3203 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3204 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3205 WRITE_ONCE(msk->ack_seq, ack_seq); 3206 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3207 WRITE_ONCE(msk->can_ack, 1); 3208 WRITE_ONCE(msk->snd_una, msk->write_seq); 3209 3210 mptcp_pm_new_connection(msk, ssk, 0); 3211 3212 mptcp_rcv_space_init(msk, ssk); 3213 } 3214 3215 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3216 { 3217 write_lock_bh(&sk->sk_callback_lock); 3218 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3219 sk_set_socket(sk, parent); 3220 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3221 write_unlock_bh(&sk->sk_callback_lock); 3222 } 3223 3224 bool mptcp_finish_join(struct sock *ssk) 3225 { 3226 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3227 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3228 struct sock *parent = (void *)msk; 3229 bool ret = true; 3230 3231 pr_debug("msk=%p, subflow=%p", msk, subflow); 3232 3233 /* mptcp socket already closing? */ 3234 if (!mptcp_is_fully_established(parent)) { 3235 subflow->reset_reason = MPTCP_RST_EMPTCP; 3236 return false; 3237 } 3238 3239 if (!msk->pm.server_side) 3240 goto out; 3241 3242 if (!mptcp_pm_allow_new_subflow(msk)) 3243 goto err_prohibited; 3244 3245 if (WARN_ON_ONCE(!list_empty(&subflow->node))) 3246 goto err_prohibited; 3247 3248 /* active connections are already on conn_list. 3249 * If we can't acquire msk socket lock here, let the release callback 3250 * handle it 3251 */ 3252 mptcp_data_lock(parent); 3253 if (!sock_owned_by_user(parent)) { 3254 ret = __mptcp_finish_join(msk, ssk); 3255 if (ret) { 3256 sock_hold(ssk); 3257 list_add_tail(&subflow->node, &msk->conn_list); 3258 } 3259 } else { 3260 sock_hold(ssk); 3261 list_add_tail(&subflow->node, &msk->join_list); 3262 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3263 } 3264 mptcp_data_unlock(parent); 3265 3266 if (!ret) { 3267 err_prohibited: 3268 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3269 return false; 3270 } 3271 3272 subflow->map_seq = READ_ONCE(msk->ack_seq); 3273 3274 out: 3275 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3276 return true; 3277 } 3278 3279 static void mptcp_shutdown(struct sock *sk, int how) 3280 { 3281 pr_debug("sk=%p, how=%d", sk, how); 3282 3283 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3284 __mptcp_wr_shutdown(sk); 3285 } 3286 3287 static int mptcp_forward_alloc_get(const struct sock *sk) 3288 { 3289 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3290 } 3291 3292 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3293 { 3294 const struct sock *sk = (void *)msk; 3295 u64 delta; 3296 3297 if (sk->sk_state == TCP_LISTEN) 3298 return -EINVAL; 3299 3300 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3301 return 0; 3302 3303 delta = msk->write_seq - v; 3304 if (__mptcp_check_fallback(msk) && msk->first) { 3305 struct tcp_sock *tp = tcp_sk(msk->first); 3306 3307 /* the first subflow is disconnected after close - see 3308 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3309 * so ignore that status, too. 3310 */ 3311 if (!((1 << msk->first->sk_state) & 3312 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3313 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3314 } 3315 if (delta > INT_MAX) 3316 delta = INT_MAX; 3317 3318 return (int)delta; 3319 } 3320 3321 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3322 { 3323 struct mptcp_sock *msk = mptcp_sk(sk); 3324 bool slow; 3325 int answ; 3326 3327 switch (cmd) { 3328 case SIOCINQ: 3329 if (sk->sk_state == TCP_LISTEN) 3330 return -EINVAL; 3331 3332 lock_sock(sk); 3333 __mptcp_move_skbs(msk); 3334 answ = mptcp_inq_hint(sk); 3335 release_sock(sk); 3336 break; 3337 case SIOCOUTQ: 3338 slow = lock_sock_fast(sk); 3339 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3340 unlock_sock_fast(sk, slow); 3341 break; 3342 case SIOCOUTQNSD: 3343 slow = lock_sock_fast(sk); 3344 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3345 unlock_sock_fast(sk, slow); 3346 break; 3347 default: 3348 return -ENOIOCTLCMD; 3349 } 3350 3351 return put_user(answ, (int __user *)arg); 3352 } 3353 3354 static struct proto mptcp_prot = { 3355 .name = "MPTCP", 3356 .owner = THIS_MODULE, 3357 .init = mptcp_init_sock, 3358 .disconnect = mptcp_disconnect, 3359 .close = mptcp_close, 3360 .accept = mptcp_accept, 3361 .setsockopt = mptcp_setsockopt, 3362 .getsockopt = mptcp_getsockopt, 3363 .shutdown = mptcp_shutdown, 3364 .destroy = mptcp_destroy, 3365 .sendmsg = mptcp_sendmsg, 3366 .ioctl = mptcp_ioctl, 3367 .recvmsg = mptcp_recvmsg, 3368 .release_cb = mptcp_release_cb, 3369 .hash = mptcp_hash, 3370 .unhash = mptcp_unhash, 3371 .get_port = mptcp_get_port, 3372 .forward_alloc_get = mptcp_forward_alloc_get, 3373 .sockets_allocated = &mptcp_sockets_allocated, 3374 .memory_allocated = &tcp_memory_allocated, 3375 .memory_pressure = &tcp_memory_pressure, 3376 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3377 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3378 .sysctl_mem = sysctl_tcp_mem, 3379 .obj_size = sizeof(struct mptcp_sock), 3380 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3381 .no_autobind = true, 3382 }; 3383 3384 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3385 { 3386 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3387 struct socket *ssock; 3388 int err; 3389 3390 lock_sock(sock->sk); 3391 ssock = __mptcp_nmpc_socket(msk); 3392 if (!ssock) { 3393 err = -EINVAL; 3394 goto unlock; 3395 } 3396 3397 err = ssock->ops->bind(ssock, uaddr, addr_len); 3398 if (!err) 3399 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3400 3401 unlock: 3402 release_sock(sock->sk); 3403 return err; 3404 } 3405 3406 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3407 struct mptcp_subflow_context *subflow) 3408 { 3409 subflow->request_mptcp = 0; 3410 __mptcp_do_fallback(msk); 3411 } 3412 3413 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3414 int addr_len, int flags) 3415 { 3416 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3417 struct mptcp_subflow_context *subflow; 3418 struct socket *ssock; 3419 int err = -EINVAL; 3420 3421 lock_sock(sock->sk); 3422 if (uaddr) { 3423 if (addr_len < sizeof(uaddr->sa_family)) 3424 goto unlock; 3425 3426 if (uaddr->sa_family == AF_UNSPEC) { 3427 err = mptcp_disconnect(sock->sk, flags); 3428 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3429 goto unlock; 3430 } 3431 } 3432 3433 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3434 /* pending connection or invalid state, let existing subflow 3435 * cope with that 3436 */ 3437 ssock = msk->subflow; 3438 goto do_connect; 3439 } 3440 3441 ssock = __mptcp_nmpc_socket(msk); 3442 if (!ssock) 3443 goto unlock; 3444 3445 mptcp_token_destroy(msk); 3446 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3447 subflow = mptcp_subflow_ctx(ssock->sk); 3448 #ifdef CONFIG_TCP_MD5SIG 3449 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3450 * TCP option space. 3451 */ 3452 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3453 mptcp_subflow_early_fallback(msk, subflow); 3454 #endif 3455 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3456 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3457 mptcp_subflow_early_fallback(msk, subflow); 3458 } 3459 if (likely(!__mptcp_check_fallback(msk))) 3460 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3461 3462 do_connect: 3463 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3464 sock->state = ssock->state; 3465 3466 /* on successful connect, the msk state will be moved to established by 3467 * subflow_finish_connect() 3468 */ 3469 if (!err || err == -EINPROGRESS) 3470 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3471 else 3472 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3473 3474 unlock: 3475 release_sock(sock->sk); 3476 return err; 3477 } 3478 3479 static int mptcp_listen(struct socket *sock, int backlog) 3480 { 3481 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3482 struct socket *ssock; 3483 int err; 3484 3485 pr_debug("msk=%p", msk); 3486 3487 lock_sock(sock->sk); 3488 ssock = __mptcp_nmpc_socket(msk); 3489 if (!ssock) { 3490 err = -EINVAL; 3491 goto unlock; 3492 } 3493 3494 mptcp_token_destroy(msk); 3495 inet_sk_state_store(sock->sk, TCP_LISTEN); 3496 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3497 3498 err = ssock->ops->listen(ssock, backlog); 3499 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3500 if (!err) 3501 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3502 3503 unlock: 3504 release_sock(sock->sk); 3505 return err; 3506 } 3507 3508 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3509 int flags, bool kern) 3510 { 3511 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3512 struct socket *ssock; 3513 int err; 3514 3515 pr_debug("msk=%p", msk); 3516 3517 ssock = __mptcp_nmpc_socket(msk); 3518 if (!ssock) 3519 return -EINVAL; 3520 3521 err = ssock->ops->accept(sock, newsock, flags, kern); 3522 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3523 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3524 struct mptcp_subflow_context *subflow; 3525 struct sock *newsk = newsock->sk; 3526 3527 lock_sock(newsk); 3528 3529 /* PM/worker can now acquire the first subflow socket 3530 * lock without racing with listener queue cleanup, 3531 * we can notify it, if needed. 3532 * 3533 * Even if remote has reset the initial subflow by now 3534 * the refcnt is still at least one. 3535 */ 3536 subflow = mptcp_subflow_ctx(msk->first); 3537 list_add(&subflow->node, &msk->conn_list); 3538 sock_hold(msk->first); 3539 if (mptcp_is_fully_established(newsk)) 3540 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3541 3542 mptcp_copy_inaddrs(newsk, msk->first); 3543 mptcp_rcv_space_init(msk, msk->first); 3544 mptcp_propagate_sndbuf(newsk, msk->first); 3545 3546 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3547 * This is needed so NOSPACE flag can be set from tcp stack. 3548 */ 3549 mptcp_for_each_subflow(msk, subflow) { 3550 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3551 3552 if (!ssk->sk_socket) 3553 mptcp_sock_graft(ssk, newsock); 3554 } 3555 release_sock(newsk); 3556 } 3557 3558 return err; 3559 } 3560 3561 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3562 { 3563 /* Concurrent splices from sk_receive_queue into receive_queue will 3564 * always show at least one non-empty queue when checked in this order. 3565 */ 3566 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3567 skb_queue_empty_lockless(&msk->receive_queue)) 3568 return 0; 3569 3570 return EPOLLIN | EPOLLRDNORM; 3571 } 3572 3573 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3574 { 3575 struct sock *sk = (struct sock *)msk; 3576 3577 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3578 return EPOLLOUT | EPOLLWRNORM; 3579 3580 if (sk_stream_is_writeable(sk)) 3581 return EPOLLOUT | EPOLLWRNORM; 3582 3583 mptcp_set_nospace(sk); 3584 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3585 if (sk_stream_is_writeable(sk)) 3586 return EPOLLOUT | EPOLLWRNORM; 3587 3588 return 0; 3589 } 3590 3591 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3592 struct poll_table_struct *wait) 3593 { 3594 struct sock *sk = sock->sk; 3595 struct mptcp_sock *msk; 3596 __poll_t mask = 0; 3597 int state; 3598 3599 msk = mptcp_sk(sk); 3600 sock_poll_wait(file, sock, wait); 3601 3602 state = inet_sk_state_load(sk); 3603 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3604 if (state == TCP_LISTEN) { 3605 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3606 return 0; 3607 3608 return inet_csk_listen_poll(msk->subflow->sk); 3609 } 3610 3611 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3612 mask |= mptcp_check_readable(msk); 3613 mask |= mptcp_check_writeable(msk); 3614 } 3615 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3616 mask |= EPOLLHUP; 3617 if (sk->sk_shutdown & RCV_SHUTDOWN) 3618 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3619 3620 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3621 smp_rmb(); 3622 if (sk->sk_err) 3623 mask |= EPOLLERR; 3624 3625 return mask; 3626 } 3627 3628 static const struct proto_ops mptcp_stream_ops = { 3629 .family = PF_INET, 3630 .owner = THIS_MODULE, 3631 .release = inet_release, 3632 .bind = mptcp_bind, 3633 .connect = mptcp_stream_connect, 3634 .socketpair = sock_no_socketpair, 3635 .accept = mptcp_stream_accept, 3636 .getname = inet_getname, 3637 .poll = mptcp_poll, 3638 .ioctl = inet_ioctl, 3639 .gettstamp = sock_gettstamp, 3640 .listen = mptcp_listen, 3641 .shutdown = inet_shutdown, 3642 .setsockopt = sock_common_setsockopt, 3643 .getsockopt = sock_common_getsockopt, 3644 .sendmsg = inet_sendmsg, 3645 .recvmsg = inet_recvmsg, 3646 .mmap = sock_no_mmap, 3647 .sendpage = inet_sendpage, 3648 }; 3649 3650 static struct inet_protosw mptcp_protosw = { 3651 .type = SOCK_STREAM, 3652 .protocol = IPPROTO_MPTCP, 3653 .prot = &mptcp_prot, 3654 .ops = &mptcp_stream_ops, 3655 .flags = INET_PROTOSW_ICSK, 3656 }; 3657 3658 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3659 { 3660 struct mptcp_delegated_action *delegated; 3661 struct mptcp_subflow_context *subflow; 3662 int work_done = 0; 3663 3664 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3665 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3666 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3667 3668 bh_lock_sock_nested(ssk); 3669 if (!sock_owned_by_user(ssk) && 3670 mptcp_subflow_has_delegated_action(subflow)) 3671 mptcp_subflow_process_delegated(ssk); 3672 /* ... elsewhere tcp_release_cb_override already processed 3673 * the action or will do at next release_sock(). 3674 * In both case must dequeue the subflow here - on the same 3675 * CPU that scheduled it. 3676 */ 3677 bh_unlock_sock(ssk); 3678 sock_put(ssk); 3679 3680 if (++work_done == budget) 3681 return budget; 3682 } 3683 3684 /* always provide a 0 'work_done' argument, so that napi_complete_done 3685 * will not try accessing the NULL napi->dev ptr 3686 */ 3687 napi_complete_done(napi, 0); 3688 return work_done; 3689 } 3690 3691 void __init mptcp_proto_init(void) 3692 { 3693 struct mptcp_delegated_action *delegated; 3694 int cpu; 3695 3696 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3697 3698 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3699 panic("Failed to allocate MPTCP pcpu counter\n"); 3700 3701 init_dummy_netdev(&mptcp_napi_dev); 3702 for_each_possible_cpu(cpu) { 3703 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3704 INIT_LIST_HEAD(&delegated->head); 3705 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3706 NAPI_POLL_WEIGHT); 3707 napi_enable(&delegated->napi); 3708 } 3709 3710 mptcp_subflow_init(); 3711 mptcp_pm_init(); 3712 mptcp_token_init(); 3713 3714 if (proto_register(&mptcp_prot, 1) != 0) 3715 panic("Failed to register MPTCP proto.\n"); 3716 3717 inet_register_protosw(&mptcp_protosw); 3718 3719 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3720 } 3721 3722 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3723 static const struct proto_ops mptcp_v6_stream_ops = { 3724 .family = PF_INET6, 3725 .owner = THIS_MODULE, 3726 .release = inet6_release, 3727 .bind = mptcp_bind, 3728 .connect = mptcp_stream_connect, 3729 .socketpair = sock_no_socketpair, 3730 .accept = mptcp_stream_accept, 3731 .getname = inet6_getname, 3732 .poll = mptcp_poll, 3733 .ioctl = inet6_ioctl, 3734 .gettstamp = sock_gettstamp, 3735 .listen = mptcp_listen, 3736 .shutdown = inet_shutdown, 3737 .setsockopt = sock_common_setsockopt, 3738 .getsockopt = sock_common_getsockopt, 3739 .sendmsg = inet6_sendmsg, 3740 .recvmsg = inet6_recvmsg, 3741 .mmap = sock_no_mmap, 3742 .sendpage = inet_sendpage, 3743 #ifdef CONFIG_COMPAT 3744 .compat_ioctl = inet6_compat_ioctl, 3745 #endif 3746 }; 3747 3748 static struct proto mptcp_v6_prot; 3749 3750 static void mptcp_v6_destroy(struct sock *sk) 3751 { 3752 mptcp_destroy(sk); 3753 inet6_destroy_sock(sk); 3754 } 3755 3756 static struct inet_protosw mptcp_v6_protosw = { 3757 .type = SOCK_STREAM, 3758 .protocol = IPPROTO_MPTCP, 3759 .prot = &mptcp_v6_prot, 3760 .ops = &mptcp_v6_stream_ops, 3761 .flags = INET_PROTOSW_ICSK, 3762 }; 3763 3764 int __init mptcp_proto_v6_init(void) 3765 { 3766 int err; 3767 3768 mptcp_v6_prot = mptcp_prot; 3769 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3770 mptcp_v6_prot.slab = NULL; 3771 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3772 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3773 3774 err = proto_register(&mptcp_v6_prot, 1); 3775 if (err) 3776 return err; 3777 3778 err = inet6_register_protosw(&mptcp_v6_protosw); 3779 if (err) 3780 proto_unregister(&mptcp_v6_prot); 3781 3782 return err; 3783 } 3784 #endif 3785