xref: /openbmc/linux/net/mptcp/protocol.c (revision d2a266fa)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 	u8  has_rxtstamp:1;
43 };
44 
45 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46 
47 enum {
48 	MPTCP_CMSG_TS = BIT(0),
49 };
50 
51 static struct percpu_counter mptcp_sockets_allocated;
52 
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void __mptcp_check_send_data_fin(struct sock *sk);
55 
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58 
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60  * completed yet or has failed, return the subflow socket.
61  * Otherwise return NULL.
62  */
63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 	if (!msk->subflow || READ_ONCE(msk->can_ack))
66 		return NULL;
67 
68 	return msk->subflow;
69 }
70 
71 /* Returns end sequence number of the receiver's advertised window */
72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 	return READ_ONCE(msk->wnd_end);
75 }
76 
77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 	struct socket *sock = sk->sk_socket;
80 
81 	if (unlikely(sk->sk_prot == &tcp_prot)) {
82 		/* we are being invoked after mptcp_accept() has
83 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 		 * not an mptcp one.
85 		 *
86 		 * Hand the socket over to tcp so all further socket ops
87 		 * bypass mptcp.
88 		 */
89 		sock->ops = &inet_stream_ops;
90 		return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 		sock->ops = &inet6_stream_ops;
94 		return true;
95 #endif
96 	}
97 
98 	return false;
99 }
100 
101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->first = ssock->sk;
113 	msk->subflow = ssock;
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	mptcp_sock_graft(msk->first, sk->sk_socket);
119 
120 	return 0;
121 }
122 
123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 	sk_drops_add(sk, skb);
126 	__kfree_skb(skb);
127 }
128 
129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 			       struct sk_buff *from)
131 {
132 	bool fragstolen;
133 	int delta;
134 
135 	if (MPTCP_SKB_CB(from)->offset ||
136 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
137 		return false;
138 
139 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 		 to->len, MPTCP_SKB_CB(from)->end_seq);
142 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 	kfree_skb_partial(from, fragstolen);
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	return true;
147 }
148 
149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)msk->rcv_wnd_sent);
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290 
291 		if (ssk->sk_forward_alloc < amount)
292 			goto drop;
293 
294 		ssk->sk_forward_alloc -= amount;
295 		sk->sk_forward_alloc += amount;
296 	}
297 
298 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299 
300 	/* the skb map_seq accounts for the skb offset:
301 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 	 * value
303 	 */
304 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 	MPTCP_SKB_CB(skb)->offset = offset;
307 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308 
309 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 		/* in sequence */
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
333 static void mptcp_stop_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return !__mptcp_check_fallback(msk) &&
359 	       ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			inet_sk_state_store(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << sk->sk_state) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (msk->ack_seq == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
406 static void mptcp_set_datafin_timeout(const struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 
410 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
411 				       TCP_RTO_MIN << icsk->icsk_retransmits);
412 }
413 
414 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
415 {
416 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
417 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
418 
419 	if (tout <= 0)
420 		tout = mptcp_sk(sk)->timer_ival;
421 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
422 }
423 
424 static bool tcp_can_send_ack(const struct sock *ssk)
425 {
426 	return !((1 << inet_sk_state_load(ssk)) &
427 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
428 }
429 
430 static void mptcp_send_ack(struct mptcp_sock *msk)
431 {
432 	struct mptcp_subflow_context *subflow;
433 
434 	mptcp_for_each_subflow(msk, subflow) {
435 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
436 		bool slow;
437 
438 		slow = lock_sock_fast(ssk);
439 		if (tcp_can_send_ack(ssk))
440 			tcp_send_ack(ssk);
441 		unlock_sock_fast(ssk, slow);
442 	}
443 }
444 
445 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
446 {
447 	bool slow;
448 
449 	slow = lock_sock_fast(ssk);
450 	if (tcp_can_send_ack(ssk))
451 		tcp_cleanup_rbuf(ssk, 1);
452 	unlock_sock_fast(ssk, slow);
453 }
454 
455 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
456 {
457 	const struct inet_connection_sock *icsk = inet_csk(ssk);
458 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
459 	const struct tcp_sock *tp = tcp_sk(ssk);
460 
461 	return (ack_pending & ICSK_ACK_SCHED) &&
462 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
463 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
464 		 (rx_empty && ack_pending &
465 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
466 }
467 
468 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
469 {
470 	int old_space = READ_ONCE(msk->old_wspace);
471 	struct mptcp_subflow_context *subflow;
472 	struct sock *sk = (struct sock *)msk;
473 	int space =  __mptcp_space(sk);
474 	bool cleanup, rx_empty;
475 
476 	cleanup = (space > 0) && (space >= (old_space << 1));
477 	rx_empty = !__mptcp_rmem(sk);
478 
479 	mptcp_for_each_subflow(msk, subflow) {
480 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
481 
482 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
483 			mptcp_subflow_cleanup_rbuf(ssk);
484 	}
485 }
486 
487 static bool mptcp_check_data_fin(struct sock *sk)
488 {
489 	struct mptcp_sock *msk = mptcp_sk(sk);
490 	u64 rcv_data_fin_seq;
491 	bool ret = false;
492 
493 	if (__mptcp_check_fallback(msk))
494 		return ret;
495 
496 	/* Need to ack a DATA_FIN received from a peer while this side
497 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
498 	 * msk->rcv_data_fin was set when parsing the incoming options
499 	 * at the subflow level and the msk lock was not held, so this
500 	 * is the first opportunity to act on the DATA_FIN and change
501 	 * the msk state.
502 	 *
503 	 * If we are caught up to the sequence number of the incoming
504 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
505 	 * not caught up, do nothing and let the recv code send DATA_ACK
506 	 * when catching up.
507 	 */
508 
509 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
510 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
511 		WRITE_ONCE(msk->rcv_data_fin, 0);
512 
513 		sk->sk_shutdown |= RCV_SHUTDOWN;
514 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
515 		set_bit(MPTCP_DATA_READY, &msk->flags);
516 
517 		switch (sk->sk_state) {
518 		case TCP_ESTABLISHED:
519 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
520 			break;
521 		case TCP_FIN_WAIT1:
522 			inet_sk_state_store(sk, TCP_CLOSING);
523 			break;
524 		case TCP_FIN_WAIT2:
525 			inet_sk_state_store(sk, TCP_CLOSE);
526 			break;
527 		default:
528 			/* Other states not expected */
529 			WARN_ON_ONCE(1);
530 			break;
531 		}
532 
533 		ret = true;
534 		mptcp_set_timeout(sk, NULL);
535 		mptcp_send_ack(msk);
536 		mptcp_close_wake_up(sk);
537 	}
538 	return ret;
539 }
540 
541 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
542 					   struct sock *ssk,
543 					   unsigned int *bytes)
544 {
545 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
546 	struct sock *sk = (struct sock *)msk;
547 	unsigned int moved = 0;
548 	bool more_data_avail;
549 	struct tcp_sock *tp;
550 	bool done = false;
551 	int sk_rbuf;
552 
553 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
554 
555 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
556 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
557 
558 		if (unlikely(ssk_rbuf > sk_rbuf)) {
559 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
560 			sk_rbuf = ssk_rbuf;
561 		}
562 	}
563 
564 	pr_debug("msk=%p ssk=%p", msk, ssk);
565 	tp = tcp_sk(ssk);
566 	do {
567 		u32 map_remaining, offset;
568 		u32 seq = tp->copied_seq;
569 		struct sk_buff *skb;
570 		bool fin;
571 
572 		/* try to move as much data as available */
573 		map_remaining = subflow->map_data_len -
574 				mptcp_subflow_get_map_offset(subflow);
575 
576 		skb = skb_peek(&ssk->sk_receive_queue);
577 		if (!skb) {
578 			/* if no data is found, a racing workqueue/recvmsg
579 			 * already processed the new data, stop here or we
580 			 * can enter an infinite loop
581 			 */
582 			if (!moved)
583 				done = true;
584 			break;
585 		}
586 
587 		if (__mptcp_check_fallback(msk)) {
588 			/* if we are running under the workqueue, TCP could have
589 			 * collapsed skbs between dummy map creation and now
590 			 * be sure to adjust the size
591 			 */
592 			map_remaining = skb->len;
593 			subflow->map_data_len = skb->len;
594 		}
595 
596 		offset = seq - TCP_SKB_CB(skb)->seq;
597 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
598 		if (fin) {
599 			done = true;
600 			seq++;
601 		}
602 
603 		if (offset < skb->len) {
604 			size_t len = skb->len - offset;
605 
606 			if (tp->urg_data)
607 				done = true;
608 
609 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
610 				moved += len;
611 			seq += len;
612 
613 			if (WARN_ON_ONCE(map_remaining < len))
614 				break;
615 		} else {
616 			WARN_ON_ONCE(!fin);
617 			sk_eat_skb(ssk, skb);
618 			done = true;
619 		}
620 
621 		WRITE_ONCE(tp->copied_seq, seq);
622 		more_data_avail = mptcp_subflow_data_available(ssk);
623 
624 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
625 			done = true;
626 			break;
627 		}
628 	} while (more_data_avail);
629 
630 	*bytes += moved;
631 	return done;
632 }
633 
634 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
635 {
636 	struct sock *sk = (struct sock *)msk;
637 	struct sk_buff *skb, *tail;
638 	bool moved = false;
639 	struct rb_node *p;
640 	u64 end_seq;
641 
642 	p = rb_first(&msk->out_of_order_queue);
643 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
644 	while (p) {
645 		skb = rb_to_skb(p);
646 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
647 			break;
648 
649 		p = rb_next(p);
650 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
651 
652 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
653 				      msk->ack_seq))) {
654 			mptcp_drop(sk, skb);
655 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
656 			continue;
657 		}
658 
659 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
660 		tail = skb_peek_tail(&sk->sk_receive_queue);
661 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
662 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
663 
664 			/* skip overlapping data, if any */
665 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
666 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
667 				 delta);
668 			MPTCP_SKB_CB(skb)->offset += delta;
669 			__skb_queue_tail(&sk->sk_receive_queue, skb);
670 		}
671 		msk->ack_seq = end_seq;
672 		moved = true;
673 	}
674 	return moved;
675 }
676 
677 /* In most cases we will be able to lock the mptcp socket.  If its already
678  * owned, we need to defer to the work queue to avoid ABBA deadlock.
679  */
680 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
681 {
682 	struct sock *sk = (struct sock *)msk;
683 	unsigned int moved = 0;
684 
685 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
686 	__mptcp_ofo_queue(msk);
687 	if (unlikely(ssk->sk_err)) {
688 		if (!sock_owned_by_user(sk))
689 			__mptcp_error_report(sk);
690 		else
691 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
692 	}
693 
694 	/* If the moves have caught up with the DATA_FIN sequence number
695 	 * it's time to ack the DATA_FIN and change socket state, but
696 	 * this is not a good place to change state. Let the workqueue
697 	 * do it.
698 	 */
699 	if (mptcp_pending_data_fin(sk, NULL))
700 		mptcp_schedule_work(sk);
701 	return moved > 0;
702 }
703 
704 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
705 {
706 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
707 	struct mptcp_sock *msk = mptcp_sk(sk);
708 	int sk_rbuf, ssk_rbuf;
709 
710 	/* The peer can send data while we are shutting down this
711 	 * subflow at msk destruction time, but we must avoid enqueuing
712 	 * more data to the msk receive queue
713 	 */
714 	if (unlikely(subflow->disposable))
715 		return;
716 
717 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
718 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
719 	if (unlikely(ssk_rbuf > sk_rbuf))
720 		sk_rbuf = ssk_rbuf;
721 
722 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
723 	if (__mptcp_rmem(sk) > sk_rbuf) {
724 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
725 		return;
726 	}
727 
728 	/* Wake-up the reader only for in-sequence data */
729 	mptcp_data_lock(sk);
730 	if (move_skbs_to_msk(msk, ssk)) {
731 		set_bit(MPTCP_DATA_READY, &msk->flags);
732 		sk->sk_data_ready(sk);
733 	}
734 	mptcp_data_unlock(sk);
735 }
736 
737 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
738 {
739 	struct mptcp_subflow_context *subflow;
740 	bool ret = false;
741 
742 	if (likely(list_empty(&msk->join_list)))
743 		return false;
744 
745 	spin_lock_bh(&msk->join_list_lock);
746 	list_for_each_entry(subflow, &msk->join_list, node) {
747 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
748 
749 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
750 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
751 			ret = true;
752 	}
753 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
754 	spin_unlock_bh(&msk->join_list_lock);
755 
756 	return ret;
757 }
758 
759 void __mptcp_flush_join_list(struct mptcp_sock *msk)
760 {
761 	if (likely(!mptcp_do_flush_join_list(msk)))
762 		return;
763 
764 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
765 		mptcp_schedule_work((struct sock *)msk);
766 }
767 
768 static void mptcp_flush_join_list(struct mptcp_sock *msk)
769 {
770 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
771 
772 	might_sleep();
773 
774 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
775 		return;
776 
777 	mptcp_sockopt_sync_all(msk);
778 }
779 
780 static bool mptcp_timer_pending(struct sock *sk)
781 {
782 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
783 }
784 
785 static void mptcp_reset_timer(struct sock *sk)
786 {
787 	struct inet_connection_sock *icsk = inet_csk(sk);
788 	unsigned long tout;
789 
790 	/* prevent rescheduling on close */
791 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
792 		return;
793 
794 	/* should never be called with mptcp level timer cleared */
795 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
796 	if (WARN_ON_ONCE(!tout))
797 		tout = TCP_RTO_MIN;
798 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
799 }
800 
801 bool mptcp_schedule_work(struct sock *sk)
802 {
803 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
804 	    schedule_work(&mptcp_sk(sk)->work)) {
805 		/* each subflow already holds a reference to the sk, and the
806 		 * workqueue is invoked by a subflow, so sk can't go away here.
807 		 */
808 		sock_hold(sk);
809 		return true;
810 	}
811 	return false;
812 }
813 
814 void mptcp_subflow_eof(struct sock *sk)
815 {
816 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
817 		mptcp_schedule_work(sk);
818 }
819 
820 static void mptcp_check_for_eof(struct mptcp_sock *msk)
821 {
822 	struct mptcp_subflow_context *subflow;
823 	struct sock *sk = (struct sock *)msk;
824 	int receivers = 0;
825 
826 	mptcp_for_each_subflow(msk, subflow)
827 		receivers += !subflow->rx_eof;
828 	if (receivers)
829 		return;
830 
831 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
832 		/* hopefully temporary hack: propagate shutdown status
833 		 * to msk, when all subflows agree on it
834 		 */
835 		sk->sk_shutdown |= RCV_SHUTDOWN;
836 
837 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
838 		set_bit(MPTCP_DATA_READY, &msk->flags);
839 		sk->sk_data_ready(sk);
840 	}
841 
842 	switch (sk->sk_state) {
843 	case TCP_ESTABLISHED:
844 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
845 		break;
846 	case TCP_FIN_WAIT1:
847 		inet_sk_state_store(sk, TCP_CLOSING);
848 		break;
849 	case TCP_FIN_WAIT2:
850 		inet_sk_state_store(sk, TCP_CLOSE);
851 		break;
852 	default:
853 		return;
854 	}
855 	mptcp_close_wake_up(sk);
856 }
857 
858 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
859 {
860 	struct mptcp_subflow_context *subflow;
861 	struct sock *sk = (struct sock *)msk;
862 
863 	sock_owned_by_me(sk);
864 
865 	mptcp_for_each_subflow(msk, subflow) {
866 		if (READ_ONCE(subflow->data_avail))
867 			return mptcp_subflow_tcp_sock(subflow);
868 	}
869 
870 	return NULL;
871 }
872 
873 static bool mptcp_skb_can_collapse_to(u64 write_seq,
874 				      const struct sk_buff *skb,
875 				      const struct mptcp_ext *mpext)
876 {
877 	if (!tcp_skb_can_collapse_to(skb))
878 		return false;
879 
880 	/* can collapse only if MPTCP level sequence is in order and this
881 	 * mapping has not been xmitted yet
882 	 */
883 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
884 	       !mpext->frozen;
885 }
886 
887 /* we can append data to the given data frag if:
888  * - there is space available in the backing page_frag
889  * - the data frag tail matches the current page_frag free offset
890  * - the data frag end sequence number matches the current write seq
891  */
892 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
893 				       const struct page_frag *pfrag,
894 				       const struct mptcp_data_frag *df)
895 {
896 	return df && pfrag->page == df->page &&
897 		pfrag->size - pfrag->offset > 0 &&
898 		pfrag->offset == (df->offset + df->data_len) &&
899 		df->data_seq + df->data_len == msk->write_seq;
900 }
901 
902 static int mptcp_wmem_with_overhead(int size)
903 {
904 	return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
905 }
906 
907 static void __mptcp_wmem_reserve(struct sock *sk, int size)
908 {
909 	int amount = mptcp_wmem_with_overhead(size);
910 	struct mptcp_sock *msk = mptcp_sk(sk);
911 
912 	WARN_ON_ONCE(msk->wmem_reserved);
913 	if (WARN_ON_ONCE(amount < 0))
914 		amount = 0;
915 
916 	if (amount <= sk->sk_forward_alloc)
917 		goto reserve;
918 
919 	/* under memory pressure try to reserve at most a single page
920 	 * otherwise try to reserve the full estimate and fallback
921 	 * to a single page before entering the error path
922 	 */
923 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
924 	    !sk_wmem_schedule(sk, amount)) {
925 		if (amount <= PAGE_SIZE)
926 			goto nomem;
927 
928 		amount = PAGE_SIZE;
929 		if (!sk_wmem_schedule(sk, amount))
930 			goto nomem;
931 	}
932 
933 reserve:
934 	msk->wmem_reserved = amount;
935 	sk->sk_forward_alloc -= amount;
936 	return;
937 
938 nomem:
939 	/* we will wait for memory on next allocation */
940 	msk->wmem_reserved = -1;
941 }
942 
943 static void __mptcp_update_wmem(struct sock *sk)
944 {
945 	struct mptcp_sock *msk = mptcp_sk(sk);
946 
947 #ifdef CONFIG_LOCKDEP
948 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
949 #endif
950 
951 	if (!msk->wmem_reserved)
952 		return;
953 
954 	if (msk->wmem_reserved < 0)
955 		msk->wmem_reserved = 0;
956 	if (msk->wmem_reserved > 0) {
957 		sk->sk_forward_alloc += msk->wmem_reserved;
958 		msk->wmem_reserved = 0;
959 	}
960 }
961 
962 static bool mptcp_wmem_alloc(struct sock *sk, int size)
963 {
964 	struct mptcp_sock *msk = mptcp_sk(sk);
965 
966 	/* check for pre-existing error condition */
967 	if (msk->wmem_reserved < 0)
968 		return false;
969 
970 	if (msk->wmem_reserved >= size)
971 		goto account;
972 
973 	mptcp_data_lock(sk);
974 	if (!sk_wmem_schedule(sk, size)) {
975 		mptcp_data_unlock(sk);
976 		return false;
977 	}
978 
979 	sk->sk_forward_alloc -= size;
980 	msk->wmem_reserved += size;
981 	mptcp_data_unlock(sk);
982 
983 account:
984 	msk->wmem_reserved -= size;
985 	return true;
986 }
987 
988 static void mptcp_wmem_uncharge(struct sock *sk, int size)
989 {
990 	struct mptcp_sock *msk = mptcp_sk(sk);
991 
992 	if (msk->wmem_reserved < 0)
993 		msk->wmem_reserved = 0;
994 	msk->wmem_reserved += size;
995 }
996 
997 static void mptcp_mem_reclaim_partial(struct sock *sk)
998 {
999 	struct mptcp_sock *msk = mptcp_sk(sk);
1000 
1001 	/* if we are experiencing a transint allocation error,
1002 	 * the forward allocation memory has been already
1003 	 * released
1004 	 */
1005 	if (msk->wmem_reserved < 0)
1006 		return;
1007 
1008 	mptcp_data_lock(sk);
1009 	sk->sk_forward_alloc += msk->wmem_reserved;
1010 	sk_mem_reclaim_partial(sk);
1011 	msk->wmem_reserved = sk->sk_forward_alloc;
1012 	sk->sk_forward_alloc = 0;
1013 	mptcp_data_unlock(sk);
1014 }
1015 
1016 static void dfrag_uncharge(struct sock *sk, int len)
1017 {
1018 	sk_mem_uncharge(sk, len);
1019 	sk_wmem_queued_add(sk, -len);
1020 }
1021 
1022 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1023 {
1024 	int len = dfrag->data_len + dfrag->overhead;
1025 
1026 	list_del(&dfrag->list);
1027 	dfrag_uncharge(sk, len);
1028 	put_page(dfrag->page);
1029 }
1030 
1031 static void __mptcp_clean_una(struct sock *sk)
1032 {
1033 	struct mptcp_sock *msk = mptcp_sk(sk);
1034 	struct mptcp_data_frag *dtmp, *dfrag;
1035 	bool cleaned = false;
1036 	u64 snd_una;
1037 
1038 	/* on fallback we just need to ignore snd_una, as this is really
1039 	 * plain TCP
1040 	 */
1041 	if (__mptcp_check_fallback(msk))
1042 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1043 
1044 	snd_una = msk->snd_una;
1045 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1046 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1047 			break;
1048 
1049 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1050 			break;
1051 		dfrag_clear(sk, dfrag);
1052 		cleaned = true;
1053 	}
1054 
1055 	dfrag = mptcp_rtx_head(sk);
1056 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1057 		u64 delta = snd_una - dfrag->data_seq;
1058 
1059 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1060 			goto out;
1061 
1062 		dfrag->data_seq += delta;
1063 		dfrag->offset += delta;
1064 		dfrag->data_len -= delta;
1065 		dfrag->already_sent -= delta;
1066 
1067 		dfrag_uncharge(sk, delta);
1068 		cleaned = true;
1069 	}
1070 
1071 out:
1072 	if (cleaned) {
1073 		if (tcp_under_memory_pressure(sk)) {
1074 			__mptcp_update_wmem(sk);
1075 			sk_mem_reclaim_partial(sk);
1076 		}
1077 	}
1078 
1079 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1080 		if (msk->timer_ival && !mptcp_data_fin_enabled(msk))
1081 			mptcp_stop_timer(sk);
1082 	} else {
1083 		mptcp_reset_timer(sk);
1084 	}
1085 }
1086 
1087 static void __mptcp_clean_una_wakeup(struct sock *sk)
1088 {
1089 #ifdef CONFIG_LOCKDEP
1090 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1091 #endif
1092 	__mptcp_clean_una(sk);
1093 	mptcp_write_space(sk);
1094 }
1095 
1096 static void mptcp_clean_una_wakeup(struct sock *sk)
1097 {
1098 	mptcp_data_lock(sk);
1099 	__mptcp_clean_una_wakeup(sk);
1100 	mptcp_data_unlock(sk);
1101 }
1102 
1103 static void mptcp_enter_memory_pressure(struct sock *sk)
1104 {
1105 	struct mptcp_subflow_context *subflow;
1106 	struct mptcp_sock *msk = mptcp_sk(sk);
1107 	bool first = true;
1108 
1109 	sk_stream_moderate_sndbuf(sk);
1110 	mptcp_for_each_subflow(msk, subflow) {
1111 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1112 
1113 		if (first)
1114 			tcp_enter_memory_pressure(ssk);
1115 		sk_stream_moderate_sndbuf(ssk);
1116 		first = false;
1117 	}
1118 }
1119 
1120 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1121  * data
1122  */
1123 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1124 {
1125 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1126 					pfrag, sk->sk_allocation)))
1127 		return true;
1128 
1129 	mptcp_enter_memory_pressure(sk);
1130 	return false;
1131 }
1132 
1133 static struct mptcp_data_frag *
1134 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1135 		      int orig_offset)
1136 {
1137 	int offset = ALIGN(orig_offset, sizeof(long));
1138 	struct mptcp_data_frag *dfrag;
1139 
1140 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1141 	dfrag->data_len = 0;
1142 	dfrag->data_seq = msk->write_seq;
1143 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1144 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1145 	dfrag->already_sent = 0;
1146 	dfrag->page = pfrag->page;
1147 
1148 	return dfrag;
1149 }
1150 
1151 struct mptcp_sendmsg_info {
1152 	int mss_now;
1153 	int size_goal;
1154 	u16 limit;
1155 	u16 sent;
1156 	unsigned int flags;
1157 };
1158 
1159 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1160 				    int avail_size)
1161 {
1162 	u64 window_end = mptcp_wnd_end(msk);
1163 
1164 	if (__mptcp_check_fallback(msk))
1165 		return avail_size;
1166 
1167 	if (!before64(data_seq + avail_size, window_end)) {
1168 		u64 allowed_size = window_end - data_seq;
1169 
1170 		return min_t(unsigned int, allowed_size, avail_size);
1171 	}
1172 
1173 	return avail_size;
1174 }
1175 
1176 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1177 {
1178 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1179 
1180 	if (!mpext)
1181 		return false;
1182 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1183 	return true;
1184 }
1185 
1186 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1187 {
1188 	struct sk_buff *skb;
1189 
1190 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1191 	if (likely(skb)) {
1192 		if (likely(__mptcp_add_ext(skb, gfp))) {
1193 			skb_reserve(skb, MAX_TCP_HEADER);
1194 			skb->reserved_tailroom = skb->end - skb->tail;
1195 			return skb;
1196 		}
1197 		__kfree_skb(skb);
1198 	} else {
1199 		mptcp_enter_memory_pressure(sk);
1200 	}
1201 	return NULL;
1202 }
1203 
1204 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1205 {
1206 	struct sk_buff *skb;
1207 
1208 	if (ssk->sk_tx_skb_cache) {
1209 		skb = ssk->sk_tx_skb_cache;
1210 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1211 			     !__mptcp_add_ext(skb, gfp)))
1212 			return false;
1213 		return true;
1214 	}
1215 
1216 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1217 	if (!skb)
1218 		return false;
1219 
1220 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1221 		ssk->sk_tx_skb_cache = skb;
1222 		return true;
1223 	}
1224 	kfree_skb(skb);
1225 	return false;
1226 }
1227 
1228 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1229 {
1230 	return !ssk->sk_tx_skb_cache &&
1231 	       tcp_under_memory_pressure(sk);
1232 }
1233 
1234 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1235 {
1236 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1237 		mptcp_mem_reclaim_partial(sk);
1238 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1239 }
1240 
1241 /* note: this always recompute the csum on the whole skb, even
1242  * if we just appended a single frag. More status info needed
1243  */
1244 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1245 {
1246 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1247 	__wsum csum = ~csum_unfold(mpext->csum);
1248 	int offset = skb->len - added;
1249 
1250 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1251 }
1252 
1253 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1254 			      struct mptcp_data_frag *dfrag,
1255 			      struct mptcp_sendmsg_info *info)
1256 {
1257 	u64 data_seq = dfrag->data_seq + info->sent;
1258 	struct mptcp_sock *msk = mptcp_sk(sk);
1259 	bool zero_window_probe = false;
1260 	struct mptcp_ext *mpext = NULL;
1261 	struct sk_buff *skb, *tail;
1262 	bool can_collapse = false;
1263 	int size_bias = 0;
1264 	int avail_size;
1265 	size_t ret = 0;
1266 
1267 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1268 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1269 
1270 	/* compute send limit */
1271 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1272 	avail_size = info->size_goal;
1273 	skb = tcp_write_queue_tail(ssk);
1274 	if (skb) {
1275 		/* Limit the write to the size available in the
1276 		 * current skb, if any, so that we create at most a new skb.
1277 		 * Explicitly tells TCP internals to avoid collapsing on later
1278 		 * queue management operation, to avoid breaking the ext <->
1279 		 * SSN association set here
1280 		 */
1281 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1282 		can_collapse = (info->size_goal - skb->len > 0) &&
1283 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1284 		if (!can_collapse) {
1285 			TCP_SKB_CB(skb)->eor = 1;
1286 		} else {
1287 			size_bias = skb->len;
1288 			avail_size = info->size_goal - skb->len;
1289 		}
1290 	}
1291 
1292 	/* Zero window and all data acked? Probe. */
1293 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1294 	if (avail_size == 0) {
1295 		u64 snd_una = READ_ONCE(msk->snd_una);
1296 
1297 		if (skb || snd_una != msk->snd_nxt)
1298 			return 0;
1299 		zero_window_probe = true;
1300 		data_seq = snd_una - 1;
1301 		avail_size = 1;
1302 	}
1303 
1304 	if (WARN_ON_ONCE(info->sent > info->limit ||
1305 			 info->limit > dfrag->data_len))
1306 		return 0;
1307 
1308 	ret = info->limit - info->sent;
1309 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1310 			      dfrag->page, dfrag->offset + info->sent, &ret);
1311 	if (!tail) {
1312 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1313 		return -ENOMEM;
1314 	}
1315 
1316 	/* if the tail skb is still the cached one, collapsing really happened.
1317 	 */
1318 	if (skb == tail) {
1319 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1320 		mpext->data_len += ret;
1321 		WARN_ON_ONCE(!can_collapse);
1322 		WARN_ON_ONCE(zero_window_probe);
1323 		goto out;
1324 	}
1325 
1326 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1327 	if (WARN_ON_ONCE(!mpext)) {
1328 		/* should never reach here, stream corrupted */
1329 		return -EINVAL;
1330 	}
1331 
1332 	memset(mpext, 0, sizeof(*mpext));
1333 	mpext->data_seq = data_seq;
1334 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1335 	mpext->data_len = ret;
1336 	mpext->use_map = 1;
1337 	mpext->dsn64 = 1;
1338 
1339 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1340 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1341 		 mpext->dsn64);
1342 
1343 	if (zero_window_probe) {
1344 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1345 		mpext->frozen = 1;
1346 		if (READ_ONCE(msk->csum_enabled))
1347 			mptcp_update_data_checksum(tail, ret);
1348 		tcp_push_pending_frames(ssk);
1349 		return 0;
1350 	}
1351 out:
1352 	if (READ_ONCE(msk->csum_enabled))
1353 		mptcp_update_data_checksum(tail, ret);
1354 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1355 	return ret;
1356 }
1357 
1358 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1359 					 sizeof(struct tcphdr) - \
1360 					 MAX_TCP_OPTION_SPACE - \
1361 					 sizeof(struct ipv6hdr) - \
1362 					 sizeof(struct frag_hdr))
1363 
1364 struct subflow_send_info {
1365 	struct sock *ssk;
1366 	u64 ratio;
1367 };
1368 
1369 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1370 {
1371 	struct subflow_send_info send_info[2];
1372 	struct mptcp_subflow_context *subflow;
1373 	int i, nr_active = 0;
1374 	struct sock *ssk;
1375 	u64 ratio;
1376 	u32 pace;
1377 
1378 	sock_owned_by_me((struct sock *)msk);
1379 
1380 	if (__mptcp_check_fallback(msk)) {
1381 		if (!msk->first)
1382 			return NULL;
1383 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1384 	}
1385 
1386 	/* re-use last subflow, if the burst allow that */
1387 	if (msk->last_snd && msk->snd_burst > 0 &&
1388 	    sk_stream_memory_free(msk->last_snd) &&
1389 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1390 		return msk->last_snd;
1391 
1392 	/* pick the subflow with the lower wmem/wspace ratio */
1393 	for (i = 0; i < 2; ++i) {
1394 		send_info[i].ssk = NULL;
1395 		send_info[i].ratio = -1;
1396 	}
1397 	mptcp_for_each_subflow(msk, subflow) {
1398 		trace_mptcp_subflow_get_send(subflow);
1399 		ssk =  mptcp_subflow_tcp_sock(subflow);
1400 		if (!mptcp_subflow_active(subflow))
1401 			continue;
1402 
1403 		nr_active += !subflow->backup;
1404 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1405 			continue;
1406 
1407 		pace = READ_ONCE(ssk->sk_pacing_rate);
1408 		if (!pace)
1409 			continue;
1410 
1411 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1412 				pace);
1413 		if (ratio < send_info[subflow->backup].ratio) {
1414 			send_info[subflow->backup].ssk = ssk;
1415 			send_info[subflow->backup].ratio = ratio;
1416 		}
1417 	}
1418 
1419 	/* pick the best backup if no other subflow is active */
1420 	if (!nr_active)
1421 		send_info[0].ssk = send_info[1].ssk;
1422 
1423 	if (send_info[0].ssk) {
1424 		msk->last_snd = send_info[0].ssk;
1425 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1426 				       tcp_sk(msk->last_snd)->snd_wnd);
1427 		return msk->last_snd;
1428 	}
1429 
1430 	return NULL;
1431 }
1432 
1433 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1434 			       struct mptcp_sendmsg_info *info)
1435 {
1436 	mptcp_set_timeout(sk, ssk);
1437 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1438 	release_sock(ssk);
1439 }
1440 
1441 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1442 {
1443 	struct sock *prev_ssk = NULL, *ssk = NULL;
1444 	struct mptcp_sock *msk = mptcp_sk(sk);
1445 	struct mptcp_sendmsg_info info = {
1446 				.flags = flags,
1447 	};
1448 	struct mptcp_data_frag *dfrag;
1449 	int len, copied = 0;
1450 
1451 	while ((dfrag = mptcp_send_head(sk))) {
1452 		info.sent = dfrag->already_sent;
1453 		info.limit = dfrag->data_len;
1454 		len = dfrag->data_len - dfrag->already_sent;
1455 		while (len > 0) {
1456 			int ret = 0;
1457 
1458 			prev_ssk = ssk;
1459 			mptcp_flush_join_list(msk);
1460 			ssk = mptcp_subflow_get_send(msk);
1461 
1462 			/* try to keep the subflow socket lock across
1463 			 * consecutive xmit on the same socket
1464 			 */
1465 			if (ssk != prev_ssk && prev_ssk)
1466 				mptcp_push_release(sk, prev_ssk, &info);
1467 			if (!ssk)
1468 				goto out;
1469 
1470 			if (ssk != prev_ssk || !prev_ssk)
1471 				lock_sock(ssk);
1472 
1473 			/* keep it simple and always provide a new skb for the
1474 			 * subflow, even if we will not use it when collapsing
1475 			 * on the pending one
1476 			 */
1477 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1478 				mptcp_push_release(sk, ssk, &info);
1479 				goto out;
1480 			}
1481 
1482 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1483 			if (ret <= 0) {
1484 				mptcp_push_release(sk, ssk, &info);
1485 				goto out;
1486 			}
1487 
1488 			info.sent += ret;
1489 			dfrag->already_sent += ret;
1490 			msk->snd_nxt += ret;
1491 			msk->snd_burst -= ret;
1492 			msk->tx_pending_data -= ret;
1493 			copied += ret;
1494 			len -= ret;
1495 		}
1496 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1497 	}
1498 
1499 	/* at this point we held the socket lock for the last subflow we used */
1500 	if (ssk)
1501 		mptcp_push_release(sk, ssk, &info);
1502 
1503 out:
1504 	if (copied) {
1505 		/* start the timer, if it's not pending */
1506 		if (!mptcp_timer_pending(sk))
1507 			mptcp_reset_timer(sk);
1508 		__mptcp_check_send_data_fin(sk);
1509 	}
1510 }
1511 
1512 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1513 {
1514 	struct mptcp_sock *msk = mptcp_sk(sk);
1515 	struct mptcp_sendmsg_info info;
1516 	struct mptcp_data_frag *dfrag;
1517 	struct sock *xmit_ssk;
1518 	int len, copied = 0;
1519 	bool first = true;
1520 
1521 	info.flags = 0;
1522 	while ((dfrag = mptcp_send_head(sk))) {
1523 		info.sent = dfrag->already_sent;
1524 		info.limit = dfrag->data_len;
1525 		len = dfrag->data_len - dfrag->already_sent;
1526 		while (len > 0) {
1527 			int ret = 0;
1528 
1529 			/* the caller already invoked the packet scheduler,
1530 			 * check for a different subflow usage only after
1531 			 * spooling the first chunk of data
1532 			 */
1533 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1534 			if (!xmit_ssk)
1535 				goto out;
1536 			if (xmit_ssk != ssk) {
1537 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1538 				goto out;
1539 			}
1540 
1541 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1542 				__mptcp_update_wmem(sk);
1543 				sk_mem_reclaim_partial(sk);
1544 			}
1545 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1546 				goto out;
1547 
1548 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1549 			if (ret <= 0)
1550 				goto out;
1551 
1552 			info.sent += ret;
1553 			dfrag->already_sent += ret;
1554 			msk->snd_nxt += ret;
1555 			msk->snd_burst -= ret;
1556 			msk->tx_pending_data -= ret;
1557 			copied += ret;
1558 			len -= ret;
1559 			first = false;
1560 		}
1561 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1562 	}
1563 
1564 out:
1565 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1566 	 * not going to flush it via release_sock()
1567 	 */
1568 	__mptcp_update_wmem(sk);
1569 	if (copied) {
1570 		mptcp_set_timeout(sk, ssk);
1571 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1572 			 info.size_goal);
1573 		if (!mptcp_timer_pending(sk))
1574 			mptcp_reset_timer(sk);
1575 
1576 		if (msk->snd_data_fin_enable &&
1577 		    msk->snd_nxt + 1 == msk->write_seq)
1578 			mptcp_schedule_work(sk);
1579 	}
1580 }
1581 
1582 static void mptcp_set_nospace(struct sock *sk)
1583 {
1584 	/* enable autotune */
1585 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1586 
1587 	/* will be cleared on avail space */
1588 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1589 }
1590 
1591 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1592 {
1593 	struct mptcp_sock *msk = mptcp_sk(sk);
1594 	struct page_frag *pfrag;
1595 	size_t copied = 0;
1596 	int ret = 0;
1597 	long timeo;
1598 
1599 	/* we don't support FASTOPEN yet */
1600 	if (msg->msg_flags & MSG_FASTOPEN)
1601 		return -EOPNOTSUPP;
1602 
1603 	/* silently ignore everything else */
1604 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1605 
1606 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1607 
1608 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1609 
1610 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1611 		ret = sk_stream_wait_connect(sk, &timeo);
1612 		if (ret)
1613 			goto out;
1614 	}
1615 
1616 	pfrag = sk_page_frag(sk);
1617 
1618 	while (msg_data_left(msg)) {
1619 		int total_ts, frag_truesize = 0;
1620 		struct mptcp_data_frag *dfrag;
1621 		bool dfrag_collapsed;
1622 		size_t psize, offset;
1623 
1624 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1625 			ret = -EPIPE;
1626 			goto out;
1627 		}
1628 
1629 		/* reuse tail pfrag, if possible, or carve a new one from the
1630 		 * page allocator
1631 		 */
1632 		dfrag = mptcp_pending_tail(sk);
1633 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1634 		if (!dfrag_collapsed) {
1635 			if (!sk_stream_memory_free(sk))
1636 				goto wait_for_memory;
1637 
1638 			if (!mptcp_page_frag_refill(sk, pfrag))
1639 				goto wait_for_memory;
1640 
1641 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1642 			frag_truesize = dfrag->overhead;
1643 		}
1644 
1645 		/* we do not bound vs wspace, to allow a single packet.
1646 		 * memory accounting will prevent execessive memory usage
1647 		 * anyway
1648 		 */
1649 		offset = dfrag->offset + dfrag->data_len;
1650 		psize = pfrag->size - offset;
1651 		psize = min_t(size_t, psize, msg_data_left(msg));
1652 		total_ts = psize + frag_truesize;
1653 
1654 		if (!mptcp_wmem_alloc(sk, total_ts))
1655 			goto wait_for_memory;
1656 
1657 		if (copy_page_from_iter(dfrag->page, offset, psize,
1658 					&msg->msg_iter) != psize) {
1659 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1660 			ret = -EFAULT;
1661 			goto out;
1662 		}
1663 
1664 		/* data successfully copied into the write queue */
1665 		copied += psize;
1666 		dfrag->data_len += psize;
1667 		frag_truesize += psize;
1668 		pfrag->offset += frag_truesize;
1669 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1670 		msk->tx_pending_data += psize;
1671 
1672 		/* charge data on mptcp pending queue to the msk socket
1673 		 * Note: we charge such data both to sk and ssk
1674 		 */
1675 		sk_wmem_queued_add(sk, frag_truesize);
1676 		if (!dfrag_collapsed) {
1677 			get_page(dfrag->page);
1678 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1679 			if (!msk->first_pending)
1680 				WRITE_ONCE(msk->first_pending, dfrag);
1681 		}
1682 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1683 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1684 			 !dfrag_collapsed);
1685 
1686 		continue;
1687 
1688 wait_for_memory:
1689 		mptcp_set_nospace(sk);
1690 		__mptcp_push_pending(sk, msg->msg_flags);
1691 		ret = sk_stream_wait_memory(sk, &timeo);
1692 		if (ret)
1693 			goto out;
1694 	}
1695 
1696 	if (copied)
1697 		__mptcp_push_pending(sk, msg->msg_flags);
1698 
1699 out:
1700 	release_sock(sk);
1701 	return copied ? : ret;
1702 }
1703 
1704 static void mptcp_wait_data(struct sock *sk, long *timeo)
1705 {
1706 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1707 	struct mptcp_sock *msk = mptcp_sk(sk);
1708 
1709 	add_wait_queue(sk_sleep(sk), &wait);
1710 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1711 
1712 	sk_wait_event(sk, timeo,
1713 		      test_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1714 
1715 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1716 	remove_wait_queue(sk_sleep(sk), &wait);
1717 }
1718 
1719 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1720 				struct msghdr *msg,
1721 				size_t len, int flags,
1722 				struct scm_timestamping_internal *tss,
1723 				int *cmsg_flags)
1724 {
1725 	struct sk_buff *skb, *tmp;
1726 	int copied = 0;
1727 
1728 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1729 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1730 		u32 data_len = skb->len - offset;
1731 		u32 count = min_t(size_t, len - copied, data_len);
1732 		int err;
1733 
1734 		if (!(flags & MSG_TRUNC)) {
1735 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1736 			if (unlikely(err < 0)) {
1737 				if (!copied)
1738 					return err;
1739 				break;
1740 			}
1741 		}
1742 
1743 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1744 			tcp_update_recv_tstamps(skb, tss);
1745 			*cmsg_flags |= MPTCP_CMSG_TS;
1746 		}
1747 
1748 		copied += count;
1749 
1750 		if (count < data_len) {
1751 			if (!(flags & MSG_PEEK))
1752 				MPTCP_SKB_CB(skb)->offset += count;
1753 			break;
1754 		}
1755 
1756 		if (!(flags & MSG_PEEK)) {
1757 			/* we will bulk release the skb memory later */
1758 			skb->destructor = NULL;
1759 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1760 			__skb_unlink(skb, &msk->receive_queue);
1761 			__kfree_skb(skb);
1762 		}
1763 
1764 		if (copied >= len)
1765 			break;
1766 	}
1767 
1768 	return copied;
1769 }
1770 
1771 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1772  *
1773  * Only difference: Use highest rtt estimate of the subflows in use.
1774  */
1775 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1776 {
1777 	struct mptcp_subflow_context *subflow;
1778 	struct sock *sk = (struct sock *)msk;
1779 	u32 time, advmss = 1;
1780 	u64 rtt_us, mstamp;
1781 
1782 	sock_owned_by_me(sk);
1783 
1784 	if (copied <= 0)
1785 		return;
1786 
1787 	msk->rcvq_space.copied += copied;
1788 
1789 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1790 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1791 
1792 	rtt_us = msk->rcvq_space.rtt_us;
1793 	if (rtt_us && time < (rtt_us >> 3))
1794 		return;
1795 
1796 	rtt_us = 0;
1797 	mptcp_for_each_subflow(msk, subflow) {
1798 		const struct tcp_sock *tp;
1799 		u64 sf_rtt_us;
1800 		u32 sf_advmss;
1801 
1802 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1803 
1804 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1805 		sf_advmss = READ_ONCE(tp->advmss);
1806 
1807 		rtt_us = max(sf_rtt_us, rtt_us);
1808 		advmss = max(sf_advmss, advmss);
1809 	}
1810 
1811 	msk->rcvq_space.rtt_us = rtt_us;
1812 	if (time < (rtt_us >> 3) || rtt_us == 0)
1813 		return;
1814 
1815 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1816 		goto new_measure;
1817 
1818 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1819 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1820 		int rcvmem, rcvbuf;
1821 		u64 rcvwin, grow;
1822 
1823 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1824 
1825 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1826 
1827 		do_div(grow, msk->rcvq_space.space);
1828 		rcvwin += (grow << 1);
1829 
1830 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1831 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1832 			rcvmem += 128;
1833 
1834 		do_div(rcvwin, advmss);
1835 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1836 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1837 
1838 		if (rcvbuf > sk->sk_rcvbuf) {
1839 			u32 window_clamp;
1840 
1841 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1842 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1843 
1844 			/* Make subflows follow along.  If we do not do this, we
1845 			 * get drops at subflow level if skbs can't be moved to
1846 			 * the mptcp rx queue fast enough (announced rcv_win can
1847 			 * exceed ssk->sk_rcvbuf).
1848 			 */
1849 			mptcp_for_each_subflow(msk, subflow) {
1850 				struct sock *ssk;
1851 				bool slow;
1852 
1853 				ssk = mptcp_subflow_tcp_sock(subflow);
1854 				slow = lock_sock_fast(ssk);
1855 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1856 				tcp_sk(ssk)->window_clamp = window_clamp;
1857 				tcp_cleanup_rbuf(ssk, 1);
1858 				unlock_sock_fast(ssk, slow);
1859 			}
1860 		}
1861 	}
1862 
1863 	msk->rcvq_space.space = msk->rcvq_space.copied;
1864 new_measure:
1865 	msk->rcvq_space.copied = 0;
1866 	msk->rcvq_space.time = mstamp;
1867 }
1868 
1869 static void __mptcp_update_rmem(struct sock *sk)
1870 {
1871 	struct mptcp_sock *msk = mptcp_sk(sk);
1872 
1873 	if (!msk->rmem_released)
1874 		return;
1875 
1876 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1877 	sk_mem_uncharge(sk, msk->rmem_released);
1878 	WRITE_ONCE(msk->rmem_released, 0);
1879 }
1880 
1881 static void __mptcp_splice_receive_queue(struct sock *sk)
1882 {
1883 	struct mptcp_sock *msk = mptcp_sk(sk);
1884 
1885 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1886 }
1887 
1888 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1889 {
1890 	struct sock *sk = (struct sock *)msk;
1891 	unsigned int moved = 0;
1892 	bool ret, done;
1893 
1894 	mptcp_flush_join_list(msk);
1895 	do {
1896 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1897 		bool slowpath;
1898 
1899 		/* we can have data pending in the subflows only if the msk
1900 		 * receive buffer was full at subflow_data_ready() time,
1901 		 * that is an unlikely slow path.
1902 		 */
1903 		if (likely(!ssk))
1904 			break;
1905 
1906 		slowpath = lock_sock_fast(ssk);
1907 		mptcp_data_lock(sk);
1908 		__mptcp_update_rmem(sk);
1909 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1910 		mptcp_data_unlock(sk);
1911 
1912 		if (unlikely(ssk->sk_err))
1913 			__mptcp_error_report(sk);
1914 		unlock_sock_fast(ssk, slowpath);
1915 	} while (!done);
1916 
1917 	/* acquire the data lock only if some input data is pending */
1918 	ret = moved > 0;
1919 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1920 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1921 		mptcp_data_lock(sk);
1922 		__mptcp_update_rmem(sk);
1923 		ret |= __mptcp_ofo_queue(msk);
1924 		__mptcp_splice_receive_queue(sk);
1925 		mptcp_data_unlock(sk);
1926 	}
1927 	if (ret)
1928 		mptcp_check_data_fin((struct sock *)msk);
1929 	return !skb_queue_empty(&msk->receive_queue);
1930 }
1931 
1932 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1933 			 int nonblock, int flags, int *addr_len)
1934 {
1935 	struct mptcp_sock *msk = mptcp_sk(sk);
1936 	struct scm_timestamping_internal tss;
1937 	int copied = 0, cmsg_flags = 0;
1938 	int target;
1939 	long timeo;
1940 
1941 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
1942 	if (unlikely(flags & MSG_ERRQUEUE))
1943 		return inet_recv_error(sk, msg, len, addr_len);
1944 
1945 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1946 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1947 		copied = -ENOTCONN;
1948 		goto out_err;
1949 	}
1950 
1951 	timeo = sock_rcvtimeo(sk, nonblock);
1952 
1953 	len = min_t(size_t, len, INT_MAX);
1954 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1955 
1956 	while (copied < len) {
1957 		int bytes_read;
1958 
1959 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
1960 		if (unlikely(bytes_read < 0)) {
1961 			if (!copied)
1962 				copied = bytes_read;
1963 			goto out_err;
1964 		}
1965 
1966 		copied += bytes_read;
1967 
1968 		/* be sure to advertise window change */
1969 		mptcp_cleanup_rbuf(msk);
1970 
1971 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
1972 			continue;
1973 
1974 		/* only the master socket status is relevant here. The exit
1975 		 * conditions mirror closely tcp_recvmsg()
1976 		 */
1977 		if (copied >= target)
1978 			break;
1979 
1980 		if (copied) {
1981 			if (sk->sk_err ||
1982 			    sk->sk_state == TCP_CLOSE ||
1983 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1984 			    !timeo ||
1985 			    signal_pending(current))
1986 				break;
1987 		} else {
1988 			if (sk->sk_err) {
1989 				copied = sock_error(sk);
1990 				break;
1991 			}
1992 
1993 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1994 				mptcp_check_for_eof(msk);
1995 
1996 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
1997 				/* race breaker: the shutdown could be after the
1998 				 * previous receive queue check
1999 				 */
2000 				if (__mptcp_move_skbs(msk))
2001 					continue;
2002 				break;
2003 			}
2004 
2005 			if (sk->sk_state == TCP_CLOSE) {
2006 				copied = -ENOTCONN;
2007 				break;
2008 			}
2009 
2010 			if (!timeo) {
2011 				copied = -EAGAIN;
2012 				break;
2013 			}
2014 
2015 			if (signal_pending(current)) {
2016 				copied = sock_intr_errno(timeo);
2017 				break;
2018 			}
2019 		}
2020 
2021 		pr_debug("block timeout %ld", timeo);
2022 		mptcp_wait_data(sk, &timeo);
2023 	}
2024 
2025 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2026 	    skb_queue_empty(&msk->receive_queue)) {
2027 		/* entire backlog drained, clear DATA_READY. */
2028 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2029 
2030 		/* .. race-breaker: ssk might have gotten new data
2031 		 * after last __mptcp_move_skbs() returned false.
2032 		 */
2033 		if (unlikely(__mptcp_move_skbs(msk)))
2034 			set_bit(MPTCP_DATA_READY, &msk->flags);
2035 	}
2036 
2037 out_err:
2038 	if (cmsg_flags && copied >= 0) {
2039 		if (cmsg_flags & MPTCP_CMSG_TS)
2040 			tcp_recv_timestamp(msg, sk, &tss);
2041 	}
2042 
2043 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2044 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2045 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2046 	if (!(flags & MSG_PEEK))
2047 		mptcp_rcv_space_adjust(msk, copied);
2048 
2049 	release_sock(sk);
2050 	return copied;
2051 }
2052 
2053 static void mptcp_retransmit_timer(struct timer_list *t)
2054 {
2055 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2056 						       icsk_retransmit_timer);
2057 	struct sock *sk = &icsk->icsk_inet.sk;
2058 	struct mptcp_sock *msk = mptcp_sk(sk);
2059 
2060 	bh_lock_sock(sk);
2061 	if (!sock_owned_by_user(sk)) {
2062 		/* we need a process context to retransmit */
2063 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2064 			mptcp_schedule_work(sk);
2065 	} else {
2066 		/* delegate our work to tcp_release_cb() */
2067 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2068 	}
2069 	bh_unlock_sock(sk);
2070 	sock_put(sk);
2071 }
2072 
2073 static void mptcp_timeout_timer(struct timer_list *t)
2074 {
2075 	struct sock *sk = from_timer(sk, t, sk_timer);
2076 
2077 	mptcp_schedule_work(sk);
2078 	sock_put(sk);
2079 }
2080 
2081 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2082  * level.
2083  *
2084  * A backup subflow is returned only if that is the only kind available.
2085  */
2086 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2087 {
2088 	struct mptcp_subflow_context *subflow;
2089 	struct sock *backup = NULL;
2090 
2091 	sock_owned_by_me((const struct sock *)msk);
2092 
2093 	if (__mptcp_check_fallback(msk))
2094 		return NULL;
2095 
2096 	mptcp_for_each_subflow(msk, subflow) {
2097 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2098 
2099 		if (!mptcp_subflow_active(subflow))
2100 			continue;
2101 
2102 		/* still data outstanding at TCP level?  Don't retransmit. */
2103 		if (!tcp_write_queue_empty(ssk)) {
2104 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2105 				continue;
2106 			return NULL;
2107 		}
2108 
2109 		if (subflow->backup) {
2110 			if (!backup)
2111 				backup = ssk;
2112 			continue;
2113 		}
2114 
2115 		return ssk;
2116 	}
2117 
2118 	return backup;
2119 }
2120 
2121 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2122 {
2123 	if (msk->subflow) {
2124 		iput(SOCK_INODE(msk->subflow));
2125 		msk->subflow = NULL;
2126 	}
2127 }
2128 
2129 /* subflow sockets can be either outgoing (connect) or incoming
2130  * (accept).
2131  *
2132  * Outgoing subflows use in-kernel sockets.
2133  * Incoming subflows do not have their own 'struct socket' allocated,
2134  * so we need to use tcp_close() after detaching them from the mptcp
2135  * parent socket.
2136  */
2137 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2138 			      struct mptcp_subflow_context *subflow)
2139 {
2140 	struct mptcp_sock *msk = mptcp_sk(sk);
2141 
2142 	list_del(&subflow->node);
2143 
2144 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2145 
2146 	/* if we are invoked by the msk cleanup code, the subflow is
2147 	 * already orphaned
2148 	 */
2149 	if (ssk->sk_socket)
2150 		sock_orphan(ssk);
2151 
2152 	subflow->disposable = 1;
2153 
2154 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2155 	 * the ssk has been already destroyed, we just need to release the
2156 	 * reference owned by msk;
2157 	 */
2158 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2159 		kfree_rcu(subflow, rcu);
2160 	} else {
2161 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2162 		__tcp_close(ssk, 0);
2163 
2164 		/* close acquired an extra ref */
2165 		__sock_put(ssk);
2166 	}
2167 	release_sock(ssk);
2168 
2169 	sock_put(ssk);
2170 
2171 	if (ssk == msk->last_snd)
2172 		msk->last_snd = NULL;
2173 
2174 	if (ssk == msk->first)
2175 		msk->first = NULL;
2176 
2177 	if (msk->subflow && ssk == msk->subflow->sk)
2178 		mptcp_dispose_initial_subflow(msk);
2179 }
2180 
2181 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2182 		     struct mptcp_subflow_context *subflow)
2183 {
2184 	if (sk->sk_state == TCP_ESTABLISHED)
2185 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2186 	__mptcp_close_ssk(sk, ssk, subflow);
2187 }
2188 
2189 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2190 {
2191 	return 0;
2192 }
2193 
2194 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2195 {
2196 	struct mptcp_subflow_context *subflow, *tmp;
2197 
2198 	might_sleep();
2199 
2200 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2201 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2202 
2203 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2204 			continue;
2205 
2206 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2207 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2208 			continue;
2209 
2210 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2211 	}
2212 }
2213 
2214 static bool mptcp_check_close_timeout(const struct sock *sk)
2215 {
2216 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2217 	struct mptcp_subflow_context *subflow;
2218 
2219 	if (delta >= TCP_TIMEWAIT_LEN)
2220 		return true;
2221 
2222 	/* if all subflows are in closed status don't bother with additional
2223 	 * timeout
2224 	 */
2225 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2226 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2227 		    TCP_CLOSE)
2228 			return false;
2229 	}
2230 	return true;
2231 }
2232 
2233 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2234 {
2235 	struct mptcp_subflow_context *subflow, *tmp;
2236 	struct sock *sk = &msk->sk.icsk_inet.sk;
2237 
2238 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2239 		return;
2240 
2241 	mptcp_token_destroy(msk);
2242 
2243 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2244 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2245 		bool slow;
2246 
2247 		slow = lock_sock_fast(tcp_sk);
2248 		if (tcp_sk->sk_state != TCP_CLOSE) {
2249 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2250 			tcp_set_state(tcp_sk, TCP_CLOSE);
2251 		}
2252 		unlock_sock_fast(tcp_sk, slow);
2253 	}
2254 
2255 	inet_sk_state_store(sk, TCP_CLOSE);
2256 	sk->sk_shutdown = SHUTDOWN_MASK;
2257 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2258 	set_bit(MPTCP_DATA_READY, &msk->flags);
2259 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2260 
2261 	mptcp_close_wake_up(sk);
2262 }
2263 
2264 static void __mptcp_retrans(struct sock *sk)
2265 {
2266 	struct mptcp_sock *msk = mptcp_sk(sk);
2267 	struct mptcp_sendmsg_info info = {};
2268 	struct mptcp_data_frag *dfrag;
2269 	size_t copied = 0;
2270 	struct sock *ssk;
2271 	int ret;
2272 
2273 	mptcp_clean_una_wakeup(sk);
2274 	dfrag = mptcp_rtx_head(sk);
2275 	if (!dfrag) {
2276 		if (mptcp_data_fin_enabled(msk)) {
2277 			struct inet_connection_sock *icsk = inet_csk(sk);
2278 
2279 			icsk->icsk_retransmits++;
2280 			mptcp_set_datafin_timeout(sk);
2281 			mptcp_send_ack(msk);
2282 
2283 			goto reset_timer;
2284 		}
2285 
2286 		return;
2287 	}
2288 
2289 	ssk = mptcp_subflow_get_retrans(msk);
2290 	if (!ssk)
2291 		goto reset_timer;
2292 
2293 	lock_sock(ssk);
2294 
2295 	/* limit retransmission to the bytes already sent on some subflows */
2296 	info.sent = 0;
2297 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2298 	while (info.sent < info.limit) {
2299 		if (!mptcp_alloc_tx_skb(sk, ssk))
2300 			break;
2301 
2302 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2303 		if (ret <= 0)
2304 			break;
2305 
2306 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2307 		copied += ret;
2308 		info.sent += ret;
2309 	}
2310 	if (copied) {
2311 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2312 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2313 			 info.size_goal);
2314 	}
2315 
2316 	mptcp_set_timeout(sk, ssk);
2317 	release_sock(ssk);
2318 
2319 reset_timer:
2320 	if (!mptcp_timer_pending(sk))
2321 		mptcp_reset_timer(sk);
2322 }
2323 
2324 static void mptcp_worker(struct work_struct *work)
2325 {
2326 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2327 	struct sock *sk = &msk->sk.icsk_inet.sk;
2328 	int state;
2329 
2330 	lock_sock(sk);
2331 	state = sk->sk_state;
2332 	if (unlikely(state == TCP_CLOSE))
2333 		goto unlock;
2334 
2335 	mptcp_check_data_fin_ack(sk);
2336 	mptcp_flush_join_list(msk);
2337 
2338 	mptcp_check_fastclose(msk);
2339 
2340 	if (msk->pm.status)
2341 		mptcp_pm_nl_work(msk);
2342 
2343 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2344 		mptcp_check_for_eof(msk);
2345 
2346 	__mptcp_check_send_data_fin(sk);
2347 	mptcp_check_data_fin(sk);
2348 
2349 	/* There is no point in keeping around an orphaned sk timedout or
2350 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2351 	 * even if it is orphaned and in FIN_WAIT2 state
2352 	 */
2353 	if (sock_flag(sk, SOCK_DEAD) &&
2354 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2355 		inet_sk_state_store(sk, TCP_CLOSE);
2356 		__mptcp_destroy_sock(sk);
2357 		goto unlock;
2358 	}
2359 
2360 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2361 		__mptcp_close_subflow(msk);
2362 
2363 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2364 		__mptcp_retrans(sk);
2365 
2366 unlock:
2367 	release_sock(sk);
2368 	sock_put(sk);
2369 }
2370 
2371 static int __mptcp_init_sock(struct sock *sk)
2372 {
2373 	struct mptcp_sock *msk = mptcp_sk(sk);
2374 
2375 	spin_lock_init(&msk->join_list_lock);
2376 
2377 	INIT_LIST_HEAD(&msk->conn_list);
2378 	INIT_LIST_HEAD(&msk->join_list);
2379 	INIT_LIST_HEAD(&msk->rtx_queue);
2380 	INIT_WORK(&msk->work, mptcp_worker);
2381 	__skb_queue_head_init(&msk->receive_queue);
2382 	msk->out_of_order_queue = RB_ROOT;
2383 	msk->first_pending = NULL;
2384 	msk->wmem_reserved = 0;
2385 	WRITE_ONCE(msk->rmem_released, 0);
2386 	msk->tx_pending_data = 0;
2387 
2388 	msk->first = NULL;
2389 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2390 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2391 
2392 	mptcp_pm_data_init(msk);
2393 
2394 	/* re-use the csk retrans timer for MPTCP-level retrans */
2395 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2396 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2397 
2398 	return 0;
2399 }
2400 
2401 static int mptcp_init_sock(struct sock *sk)
2402 {
2403 	struct inet_connection_sock *icsk = inet_csk(sk);
2404 	struct net *net = sock_net(sk);
2405 	int ret;
2406 
2407 	ret = __mptcp_init_sock(sk);
2408 	if (ret)
2409 		return ret;
2410 
2411 	if (!mptcp_is_enabled(net))
2412 		return -ENOPROTOOPT;
2413 
2414 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2415 		return -ENOMEM;
2416 
2417 	ret = __mptcp_socket_create(mptcp_sk(sk));
2418 	if (ret)
2419 		return ret;
2420 
2421 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2422 	 * propagate the correct value
2423 	 */
2424 	tcp_assign_congestion_control(sk);
2425 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2426 
2427 	/* no need to keep a reference to the ops, the name will suffice */
2428 	tcp_cleanup_congestion_control(sk);
2429 	icsk->icsk_ca_ops = NULL;
2430 
2431 	sk_sockets_allocated_inc(sk);
2432 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2433 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2434 
2435 	return 0;
2436 }
2437 
2438 static void __mptcp_clear_xmit(struct sock *sk)
2439 {
2440 	struct mptcp_sock *msk = mptcp_sk(sk);
2441 	struct mptcp_data_frag *dtmp, *dfrag;
2442 
2443 	WRITE_ONCE(msk->first_pending, NULL);
2444 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2445 		dfrag_clear(sk, dfrag);
2446 }
2447 
2448 static void mptcp_cancel_work(struct sock *sk)
2449 {
2450 	struct mptcp_sock *msk = mptcp_sk(sk);
2451 
2452 	if (cancel_work_sync(&msk->work))
2453 		__sock_put(sk);
2454 }
2455 
2456 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2457 {
2458 	lock_sock(ssk);
2459 
2460 	switch (ssk->sk_state) {
2461 	case TCP_LISTEN:
2462 		if (!(how & RCV_SHUTDOWN))
2463 			break;
2464 		fallthrough;
2465 	case TCP_SYN_SENT:
2466 		tcp_disconnect(ssk, O_NONBLOCK);
2467 		break;
2468 	default:
2469 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2470 			pr_debug("Fallback");
2471 			ssk->sk_shutdown |= how;
2472 			tcp_shutdown(ssk, how);
2473 		} else {
2474 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2475 			mptcp_set_timeout(sk, ssk);
2476 			tcp_send_ack(ssk);
2477 			if (!mptcp_timer_pending(sk))
2478 				mptcp_reset_timer(sk);
2479 		}
2480 		break;
2481 	}
2482 
2483 	release_sock(ssk);
2484 }
2485 
2486 static const unsigned char new_state[16] = {
2487 	/* current state:     new state:      action:	*/
2488 	[0 /* (Invalid) */] = TCP_CLOSE,
2489 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2490 	[TCP_SYN_SENT]      = TCP_CLOSE,
2491 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2492 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2493 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2494 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2495 	[TCP_CLOSE]         = TCP_CLOSE,
2496 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2497 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2498 	[TCP_LISTEN]        = TCP_CLOSE,
2499 	[TCP_CLOSING]       = TCP_CLOSING,
2500 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2501 };
2502 
2503 static int mptcp_close_state(struct sock *sk)
2504 {
2505 	int next = (int)new_state[sk->sk_state];
2506 	int ns = next & TCP_STATE_MASK;
2507 
2508 	inet_sk_state_store(sk, ns);
2509 
2510 	return next & TCP_ACTION_FIN;
2511 }
2512 
2513 static void __mptcp_check_send_data_fin(struct sock *sk)
2514 {
2515 	struct mptcp_subflow_context *subflow;
2516 	struct mptcp_sock *msk = mptcp_sk(sk);
2517 
2518 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2519 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2520 		 msk->snd_nxt, msk->write_seq);
2521 
2522 	/* we still need to enqueue subflows or not really shutting down,
2523 	 * skip this
2524 	 */
2525 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2526 	    mptcp_send_head(sk))
2527 		return;
2528 
2529 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2530 
2531 	/* fallback socket will not get data_fin/ack, can move to the next
2532 	 * state now
2533 	 */
2534 	if (__mptcp_check_fallback(msk)) {
2535 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2536 			inet_sk_state_store(sk, TCP_CLOSE);
2537 			mptcp_close_wake_up(sk);
2538 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2539 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2540 		}
2541 	}
2542 
2543 	mptcp_flush_join_list(msk);
2544 	mptcp_for_each_subflow(msk, subflow) {
2545 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2546 
2547 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2548 	}
2549 }
2550 
2551 static void __mptcp_wr_shutdown(struct sock *sk)
2552 {
2553 	struct mptcp_sock *msk = mptcp_sk(sk);
2554 
2555 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2556 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2557 		 !!mptcp_send_head(sk));
2558 
2559 	/* will be ignored by fallback sockets */
2560 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2561 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2562 
2563 	__mptcp_check_send_data_fin(sk);
2564 }
2565 
2566 static void __mptcp_destroy_sock(struct sock *sk)
2567 {
2568 	struct mptcp_subflow_context *subflow, *tmp;
2569 	struct mptcp_sock *msk = mptcp_sk(sk);
2570 	LIST_HEAD(conn_list);
2571 
2572 	pr_debug("msk=%p", msk);
2573 
2574 	might_sleep();
2575 
2576 	/* be sure to always acquire the join list lock, to sync vs
2577 	 * mptcp_finish_join().
2578 	 */
2579 	spin_lock_bh(&msk->join_list_lock);
2580 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2581 	spin_unlock_bh(&msk->join_list_lock);
2582 	list_splice_init(&msk->conn_list, &conn_list);
2583 
2584 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2585 	sk_stop_timer(sk, &sk->sk_timer);
2586 	msk->pm.status = 0;
2587 
2588 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2589 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2590 		__mptcp_close_ssk(sk, ssk, subflow);
2591 	}
2592 
2593 	sk->sk_prot->destroy(sk);
2594 
2595 	WARN_ON_ONCE(msk->wmem_reserved);
2596 	WARN_ON_ONCE(msk->rmem_released);
2597 	sk_stream_kill_queues(sk);
2598 	xfrm_sk_free_policy(sk);
2599 
2600 	sk_refcnt_debug_release(sk);
2601 	mptcp_dispose_initial_subflow(msk);
2602 	sock_put(sk);
2603 }
2604 
2605 static void mptcp_close(struct sock *sk, long timeout)
2606 {
2607 	struct mptcp_subflow_context *subflow;
2608 	bool do_cancel_work = false;
2609 
2610 	lock_sock(sk);
2611 	sk->sk_shutdown = SHUTDOWN_MASK;
2612 
2613 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2614 		inet_sk_state_store(sk, TCP_CLOSE);
2615 		goto cleanup;
2616 	}
2617 
2618 	if (mptcp_close_state(sk))
2619 		__mptcp_wr_shutdown(sk);
2620 
2621 	sk_stream_wait_close(sk, timeout);
2622 
2623 cleanup:
2624 	/* orphan all the subflows */
2625 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2626 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2627 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2628 		bool slow = lock_sock_fast(ssk);
2629 
2630 		sock_orphan(ssk);
2631 		unlock_sock_fast(ssk, slow);
2632 	}
2633 	sock_orphan(sk);
2634 
2635 	sock_hold(sk);
2636 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2637 	if (sk->sk_state == TCP_CLOSE) {
2638 		__mptcp_destroy_sock(sk);
2639 		do_cancel_work = true;
2640 	} else {
2641 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2642 	}
2643 	release_sock(sk);
2644 	if (do_cancel_work)
2645 		mptcp_cancel_work(sk);
2646 
2647 	if (mptcp_sk(sk)->token)
2648 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2649 
2650 	sock_put(sk);
2651 }
2652 
2653 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2654 {
2655 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2656 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2657 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2658 
2659 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2660 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2661 
2662 	if (msk6 && ssk6) {
2663 		msk6->saddr = ssk6->saddr;
2664 		msk6->flow_label = ssk6->flow_label;
2665 	}
2666 #endif
2667 
2668 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2669 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2670 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2671 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2672 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2673 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2674 }
2675 
2676 static int mptcp_disconnect(struct sock *sk, int flags)
2677 {
2678 	struct mptcp_subflow_context *subflow;
2679 	struct mptcp_sock *msk = mptcp_sk(sk);
2680 
2681 	mptcp_do_flush_join_list(msk);
2682 
2683 	mptcp_for_each_subflow(msk, subflow) {
2684 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2685 
2686 		lock_sock(ssk);
2687 		tcp_disconnect(ssk, flags);
2688 		release_sock(ssk);
2689 	}
2690 	return 0;
2691 }
2692 
2693 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2694 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2695 {
2696 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2697 
2698 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2699 }
2700 #endif
2701 
2702 struct sock *mptcp_sk_clone(const struct sock *sk,
2703 			    const struct mptcp_options_received *mp_opt,
2704 			    struct request_sock *req)
2705 {
2706 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2707 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2708 	struct mptcp_sock *msk;
2709 	u64 ack_seq;
2710 
2711 	if (!nsk)
2712 		return NULL;
2713 
2714 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2715 	if (nsk->sk_family == AF_INET6)
2716 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2717 #endif
2718 
2719 	__mptcp_init_sock(nsk);
2720 
2721 	msk = mptcp_sk(nsk);
2722 	msk->local_key = subflow_req->local_key;
2723 	msk->token = subflow_req->token;
2724 	msk->subflow = NULL;
2725 	WRITE_ONCE(msk->fully_established, false);
2726 	if (mp_opt->csum_reqd)
2727 		WRITE_ONCE(msk->csum_enabled, true);
2728 
2729 	msk->write_seq = subflow_req->idsn + 1;
2730 	msk->snd_nxt = msk->write_seq;
2731 	msk->snd_una = msk->write_seq;
2732 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2733 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2734 
2735 	if (mp_opt->mp_capable) {
2736 		msk->can_ack = true;
2737 		msk->remote_key = mp_opt->sndr_key;
2738 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2739 		ack_seq++;
2740 		WRITE_ONCE(msk->ack_seq, ack_seq);
2741 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2742 	}
2743 
2744 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2745 	/* will be fully established after successful MPC subflow creation */
2746 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2747 
2748 	security_inet_csk_clone(nsk, req);
2749 	bh_unlock_sock(nsk);
2750 
2751 	/* keep a single reference */
2752 	__sock_put(nsk);
2753 	return nsk;
2754 }
2755 
2756 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2757 {
2758 	const struct tcp_sock *tp = tcp_sk(ssk);
2759 
2760 	msk->rcvq_space.copied = 0;
2761 	msk->rcvq_space.rtt_us = 0;
2762 
2763 	msk->rcvq_space.time = tp->tcp_mstamp;
2764 
2765 	/* initial rcv_space offering made to peer */
2766 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2767 				      TCP_INIT_CWND * tp->advmss);
2768 	if (msk->rcvq_space.space == 0)
2769 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2770 
2771 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2772 }
2773 
2774 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2775 				 bool kern)
2776 {
2777 	struct mptcp_sock *msk = mptcp_sk(sk);
2778 	struct socket *listener;
2779 	struct sock *newsk;
2780 
2781 	listener = __mptcp_nmpc_socket(msk);
2782 	if (WARN_ON_ONCE(!listener)) {
2783 		*err = -EINVAL;
2784 		return NULL;
2785 	}
2786 
2787 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2788 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2789 	if (!newsk)
2790 		return NULL;
2791 
2792 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2793 	if (sk_is_mptcp(newsk)) {
2794 		struct mptcp_subflow_context *subflow;
2795 		struct sock *new_mptcp_sock;
2796 
2797 		subflow = mptcp_subflow_ctx(newsk);
2798 		new_mptcp_sock = subflow->conn;
2799 
2800 		/* is_mptcp should be false if subflow->conn is missing, see
2801 		 * subflow_syn_recv_sock()
2802 		 */
2803 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2804 			tcp_sk(newsk)->is_mptcp = 0;
2805 			return newsk;
2806 		}
2807 
2808 		/* acquire the 2nd reference for the owning socket */
2809 		sock_hold(new_mptcp_sock);
2810 		newsk = new_mptcp_sock;
2811 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2812 	} else {
2813 		MPTCP_INC_STATS(sock_net(sk),
2814 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2815 	}
2816 
2817 	return newsk;
2818 }
2819 
2820 void mptcp_destroy_common(struct mptcp_sock *msk)
2821 {
2822 	struct sock *sk = (struct sock *)msk;
2823 
2824 	__mptcp_clear_xmit(sk);
2825 
2826 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2827 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2828 
2829 	skb_rbtree_purge(&msk->out_of_order_queue);
2830 	mptcp_token_destroy(msk);
2831 	mptcp_pm_free_anno_list(msk);
2832 }
2833 
2834 static void mptcp_destroy(struct sock *sk)
2835 {
2836 	struct mptcp_sock *msk = mptcp_sk(sk);
2837 
2838 	mptcp_destroy_common(msk);
2839 	sk_sockets_allocated_dec(sk);
2840 }
2841 
2842 void __mptcp_data_acked(struct sock *sk)
2843 {
2844 	if (!sock_owned_by_user(sk))
2845 		__mptcp_clean_una(sk);
2846 	else
2847 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2848 
2849 	if (mptcp_pending_data_fin_ack(sk))
2850 		mptcp_schedule_work(sk);
2851 }
2852 
2853 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2854 {
2855 	if (!mptcp_send_head(sk))
2856 		return;
2857 
2858 	if (!sock_owned_by_user(sk)) {
2859 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2860 
2861 		if (xmit_ssk == ssk)
2862 			__mptcp_subflow_push_pending(sk, ssk);
2863 		else if (xmit_ssk)
2864 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2865 	} else {
2866 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2867 	}
2868 }
2869 
2870 /* processes deferred events and flush wmem */
2871 static void mptcp_release_cb(struct sock *sk)
2872 {
2873 	for (;;) {
2874 		unsigned long flags = 0;
2875 
2876 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2877 			flags |= BIT(MPTCP_PUSH_PENDING);
2878 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2879 			flags |= BIT(MPTCP_RETRANSMIT);
2880 		if (!flags)
2881 			break;
2882 
2883 		/* the following actions acquire the subflow socket lock
2884 		 *
2885 		 * 1) can't be invoked in atomic scope
2886 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2887 		 *    datapath acquires the msk socket spinlock while helding
2888 		 *    the subflow socket lock
2889 		 */
2890 
2891 		spin_unlock_bh(&sk->sk_lock.slock);
2892 		if (flags & BIT(MPTCP_PUSH_PENDING))
2893 			__mptcp_push_pending(sk, 0);
2894 		if (flags & BIT(MPTCP_RETRANSMIT))
2895 			__mptcp_retrans(sk);
2896 
2897 		cond_resched();
2898 		spin_lock_bh(&sk->sk_lock.slock);
2899 	}
2900 
2901 	/* be sure to set the current sk state before tacking actions
2902 	 * depending on sk_state
2903 	 */
2904 	if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
2905 		__mptcp_set_connected(sk);
2906 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2907 		__mptcp_clean_una_wakeup(sk);
2908 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2909 		__mptcp_error_report(sk);
2910 
2911 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2912 	 * later
2913 	 */
2914 	__mptcp_update_wmem(sk);
2915 	__mptcp_update_rmem(sk);
2916 }
2917 
2918 void mptcp_subflow_process_delegated(struct sock *ssk)
2919 {
2920 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
2921 	struct sock *sk = subflow->conn;
2922 
2923 	mptcp_data_lock(sk);
2924 	if (!sock_owned_by_user(sk))
2925 		__mptcp_subflow_push_pending(sk, ssk);
2926 	else
2927 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2928 	mptcp_data_unlock(sk);
2929 	mptcp_subflow_delegated_done(subflow);
2930 }
2931 
2932 static int mptcp_hash(struct sock *sk)
2933 {
2934 	/* should never be called,
2935 	 * we hash the TCP subflows not the master socket
2936 	 */
2937 	WARN_ON_ONCE(1);
2938 	return 0;
2939 }
2940 
2941 static void mptcp_unhash(struct sock *sk)
2942 {
2943 	/* called from sk_common_release(), but nothing to do here */
2944 }
2945 
2946 static int mptcp_get_port(struct sock *sk, unsigned short snum)
2947 {
2948 	struct mptcp_sock *msk = mptcp_sk(sk);
2949 	struct socket *ssock;
2950 
2951 	ssock = __mptcp_nmpc_socket(msk);
2952 	pr_debug("msk=%p, subflow=%p", msk, ssock);
2953 	if (WARN_ON_ONCE(!ssock))
2954 		return -EINVAL;
2955 
2956 	return inet_csk_get_port(ssock->sk, snum);
2957 }
2958 
2959 void mptcp_finish_connect(struct sock *ssk)
2960 {
2961 	struct mptcp_subflow_context *subflow;
2962 	struct mptcp_sock *msk;
2963 	struct sock *sk;
2964 	u64 ack_seq;
2965 
2966 	subflow = mptcp_subflow_ctx(ssk);
2967 	sk = subflow->conn;
2968 	msk = mptcp_sk(sk);
2969 
2970 	pr_debug("msk=%p, token=%u", sk, subflow->token);
2971 
2972 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2973 	ack_seq++;
2974 	subflow->map_seq = ack_seq;
2975 	subflow->map_subflow_seq = 1;
2976 
2977 	/* the socket is not connected yet, no msk/subflow ops can access/race
2978 	 * accessing the field below
2979 	 */
2980 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
2981 	WRITE_ONCE(msk->local_key, subflow->local_key);
2982 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
2983 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2984 	WRITE_ONCE(msk->ack_seq, ack_seq);
2985 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2986 	WRITE_ONCE(msk->can_ack, 1);
2987 	WRITE_ONCE(msk->snd_una, msk->write_seq);
2988 
2989 	mptcp_pm_new_connection(msk, ssk, 0);
2990 
2991 	mptcp_rcv_space_init(msk, ssk);
2992 }
2993 
2994 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
2995 {
2996 	write_lock_bh(&sk->sk_callback_lock);
2997 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2998 	sk_set_socket(sk, parent);
2999 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3000 	write_unlock_bh(&sk->sk_callback_lock);
3001 }
3002 
3003 bool mptcp_finish_join(struct sock *ssk)
3004 {
3005 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3006 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3007 	struct sock *parent = (void *)msk;
3008 	struct socket *parent_sock;
3009 	bool ret;
3010 
3011 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3012 
3013 	/* mptcp socket already closing? */
3014 	if (!mptcp_is_fully_established(parent)) {
3015 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3016 		return false;
3017 	}
3018 
3019 	if (!msk->pm.server_side)
3020 		goto out;
3021 
3022 	if (!mptcp_pm_allow_new_subflow(msk)) {
3023 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3024 		return false;
3025 	}
3026 
3027 	/* active connections are already on conn_list, and we can't acquire
3028 	 * msk lock here.
3029 	 * use the join list lock as synchronization point and double-check
3030 	 * msk status to avoid racing with __mptcp_destroy_sock()
3031 	 */
3032 	spin_lock_bh(&msk->join_list_lock);
3033 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3034 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3035 		list_add_tail(&subflow->node, &msk->join_list);
3036 		sock_hold(ssk);
3037 	}
3038 	spin_unlock_bh(&msk->join_list_lock);
3039 	if (!ret) {
3040 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3041 		return false;
3042 	}
3043 
3044 	/* attach to msk socket only after we are sure he will deal with us
3045 	 * at close time
3046 	 */
3047 	parent_sock = READ_ONCE(parent->sk_socket);
3048 	if (parent_sock && !ssk->sk_socket)
3049 		mptcp_sock_graft(ssk, parent_sock);
3050 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3051 out:
3052 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3053 	return true;
3054 }
3055 
3056 static void mptcp_shutdown(struct sock *sk, int how)
3057 {
3058 	pr_debug("sk=%p, how=%d", sk, how);
3059 
3060 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3061 		__mptcp_wr_shutdown(sk);
3062 }
3063 
3064 static struct proto mptcp_prot = {
3065 	.name		= "MPTCP",
3066 	.owner		= THIS_MODULE,
3067 	.init		= mptcp_init_sock,
3068 	.disconnect	= mptcp_disconnect,
3069 	.close		= mptcp_close,
3070 	.accept		= mptcp_accept,
3071 	.setsockopt	= mptcp_setsockopt,
3072 	.getsockopt	= mptcp_getsockopt,
3073 	.shutdown	= mptcp_shutdown,
3074 	.destroy	= mptcp_destroy,
3075 	.sendmsg	= mptcp_sendmsg,
3076 	.recvmsg	= mptcp_recvmsg,
3077 	.release_cb	= mptcp_release_cb,
3078 	.hash		= mptcp_hash,
3079 	.unhash		= mptcp_unhash,
3080 	.get_port	= mptcp_get_port,
3081 	.sockets_allocated	= &mptcp_sockets_allocated,
3082 	.memory_allocated	= &tcp_memory_allocated,
3083 	.memory_pressure	= &tcp_memory_pressure,
3084 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3085 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3086 	.sysctl_mem	= sysctl_tcp_mem,
3087 	.obj_size	= sizeof(struct mptcp_sock),
3088 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3089 	.no_autobind	= true,
3090 };
3091 
3092 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3093 {
3094 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3095 	struct socket *ssock;
3096 	int err;
3097 
3098 	lock_sock(sock->sk);
3099 	ssock = __mptcp_nmpc_socket(msk);
3100 	if (!ssock) {
3101 		err = -EINVAL;
3102 		goto unlock;
3103 	}
3104 
3105 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3106 	if (!err)
3107 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3108 
3109 unlock:
3110 	release_sock(sock->sk);
3111 	return err;
3112 }
3113 
3114 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3115 					 struct mptcp_subflow_context *subflow)
3116 {
3117 	subflow->request_mptcp = 0;
3118 	__mptcp_do_fallback(msk);
3119 }
3120 
3121 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3122 				int addr_len, int flags)
3123 {
3124 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3125 	struct mptcp_subflow_context *subflow;
3126 	struct socket *ssock;
3127 	int err;
3128 
3129 	lock_sock(sock->sk);
3130 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3131 		/* pending connection or invalid state, let existing subflow
3132 		 * cope with that
3133 		 */
3134 		ssock = msk->subflow;
3135 		goto do_connect;
3136 	}
3137 
3138 	ssock = __mptcp_nmpc_socket(msk);
3139 	if (!ssock) {
3140 		err = -EINVAL;
3141 		goto unlock;
3142 	}
3143 
3144 	mptcp_token_destroy(msk);
3145 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3146 	subflow = mptcp_subflow_ctx(ssock->sk);
3147 #ifdef CONFIG_TCP_MD5SIG
3148 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3149 	 * TCP option space.
3150 	 */
3151 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3152 		mptcp_subflow_early_fallback(msk, subflow);
3153 #endif
3154 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3155 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3156 		mptcp_subflow_early_fallback(msk, subflow);
3157 	}
3158 	if (likely(!__mptcp_check_fallback(msk)))
3159 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3160 
3161 do_connect:
3162 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3163 	sock->state = ssock->state;
3164 
3165 	/* on successful connect, the msk state will be moved to established by
3166 	 * subflow_finish_connect()
3167 	 */
3168 	if (!err || err == -EINPROGRESS)
3169 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3170 	else
3171 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3172 
3173 unlock:
3174 	release_sock(sock->sk);
3175 	return err;
3176 }
3177 
3178 static int mptcp_listen(struct socket *sock, int backlog)
3179 {
3180 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3181 	struct socket *ssock;
3182 	int err;
3183 
3184 	pr_debug("msk=%p", msk);
3185 
3186 	lock_sock(sock->sk);
3187 	ssock = __mptcp_nmpc_socket(msk);
3188 	if (!ssock) {
3189 		err = -EINVAL;
3190 		goto unlock;
3191 	}
3192 
3193 	mptcp_token_destroy(msk);
3194 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3195 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3196 
3197 	err = ssock->ops->listen(ssock, backlog);
3198 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3199 	if (!err)
3200 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3201 
3202 unlock:
3203 	release_sock(sock->sk);
3204 	return err;
3205 }
3206 
3207 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3208 			       int flags, bool kern)
3209 {
3210 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3211 	struct socket *ssock;
3212 	int err;
3213 
3214 	pr_debug("msk=%p", msk);
3215 
3216 	lock_sock(sock->sk);
3217 	if (sock->sk->sk_state != TCP_LISTEN)
3218 		goto unlock_fail;
3219 
3220 	ssock = __mptcp_nmpc_socket(msk);
3221 	if (!ssock)
3222 		goto unlock_fail;
3223 
3224 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3225 	sock_hold(ssock->sk);
3226 	release_sock(sock->sk);
3227 
3228 	err = ssock->ops->accept(sock, newsock, flags, kern);
3229 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3230 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3231 		struct mptcp_subflow_context *subflow;
3232 		struct sock *newsk = newsock->sk;
3233 
3234 		lock_sock(newsk);
3235 
3236 		/* PM/worker can now acquire the first subflow socket
3237 		 * lock without racing with listener queue cleanup,
3238 		 * we can notify it, if needed.
3239 		 *
3240 		 * Even if remote has reset the initial subflow by now
3241 		 * the refcnt is still at least one.
3242 		 */
3243 		subflow = mptcp_subflow_ctx(msk->first);
3244 		list_add(&subflow->node, &msk->conn_list);
3245 		sock_hold(msk->first);
3246 		if (mptcp_is_fully_established(newsk))
3247 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3248 
3249 		mptcp_copy_inaddrs(newsk, msk->first);
3250 		mptcp_rcv_space_init(msk, msk->first);
3251 		mptcp_propagate_sndbuf(newsk, msk->first);
3252 
3253 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3254 		 * This is needed so NOSPACE flag can be set from tcp stack.
3255 		 */
3256 		mptcp_flush_join_list(msk);
3257 		mptcp_for_each_subflow(msk, subflow) {
3258 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3259 
3260 			if (!ssk->sk_socket)
3261 				mptcp_sock_graft(ssk, newsock);
3262 		}
3263 		release_sock(newsk);
3264 	}
3265 
3266 	if (inet_csk_listen_poll(ssock->sk))
3267 		set_bit(MPTCP_DATA_READY, &msk->flags);
3268 	sock_put(ssock->sk);
3269 	return err;
3270 
3271 unlock_fail:
3272 	release_sock(sock->sk);
3273 	return -EINVAL;
3274 }
3275 
3276 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3277 {
3278 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3279 	       0;
3280 }
3281 
3282 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3283 {
3284 	struct sock *sk = (struct sock *)msk;
3285 
3286 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3287 		return EPOLLOUT | EPOLLWRNORM;
3288 
3289 	if (sk_stream_is_writeable(sk))
3290 		return EPOLLOUT | EPOLLWRNORM;
3291 
3292 	mptcp_set_nospace(sk);
3293 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3294 	if (sk_stream_is_writeable(sk))
3295 		return EPOLLOUT | EPOLLWRNORM;
3296 
3297 	return 0;
3298 }
3299 
3300 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3301 			   struct poll_table_struct *wait)
3302 {
3303 	struct sock *sk = sock->sk;
3304 	struct mptcp_sock *msk;
3305 	__poll_t mask = 0;
3306 	int state;
3307 
3308 	msk = mptcp_sk(sk);
3309 	sock_poll_wait(file, sock, wait);
3310 
3311 	state = inet_sk_state_load(sk);
3312 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3313 	if (state == TCP_LISTEN)
3314 		return mptcp_check_readable(msk);
3315 
3316 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3317 		mask |= mptcp_check_readable(msk);
3318 		mask |= mptcp_check_writeable(msk);
3319 	}
3320 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3321 		mask |= EPOLLHUP;
3322 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3323 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3324 
3325 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3326 	smp_rmb();
3327 	if (sk->sk_err)
3328 		mask |= EPOLLERR;
3329 
3330 	return mask;
3331 }
3332 
3333 static const struct proto_ops mptcp_stream_ops = {
3334 	.family		   = PF_INET,
3335 	.owner		   = THIS_MODULE,
3336 	.release	   = inet_release,
3337 	.bind		   = mptcp_bind,
3338 	.connect	   = mptcp_stream_connect,
3339 	.socketpair	   = sock_no_socketpair,
3340 	.accept		   = mptcp_stream_accept,
3341 	.getname	   = inet_getname,
3342 	.poll		   = mptcp_poll,
3343 	.ioctl		   = inet_ioctl,
3344 	.gettstamp	   = sock_gettstamp,
3345 	.listen		   = mptcp_listen,
3346 	.shutdown	   = inet_shutdown,
3347 	.setsockopt	   = sock_common_setsockopt,
3348 	.getsockopt	   = sock_common_getsockopt,
3349 	.sendmsg	   = inet_sendmsg,
3350 	.recvmsg	   = inet_recvmsg,
3351 	.mmap		   = sock_no_mmap,
3352 	.sendpage	   = inet_sendpage,
3353 };
3354 
3355 static struct inet_protosw mptcp_protosw = {
3356 	.type		= SOCK_STREAM,
3357 	.protocol	= IPPROTO_MPTCP,
3358 	.prot		= &mptcp_prot,
3359 	.ops		= &mptcp_stream_ops,
3360 	.flags		= INET_PROTOSW_ICSK,
3361 };
3362 
3363 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3364 {
3365 	struct mptcp_delegated_action *delegated;
3366 	struct mptcp_subflow_context *subflow;
3367 	int work_done = 0;
3368 
3369 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3370 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3371 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3372 
3373 		bh_lock_sock_nested(ssk);
3374 		if (!sock_owned_by_user(ssk) &&
3375 		    mptcp_subflow_has_delegated_action(subflow))
3376 			mptcp_subflow_process_delegated(ssk);
3377 		/* ... elsewhere tcp_release_cb_override already processed
3378 		 * the action or will do at next release_sock().
3379 		 * In both case must dequeue the subflow here - on the same
3380 		 * CPU that scheduled it.
3381 		 */
3382 		bh_unlock_sock(ssk);
3383 		sock_put(ssk);
3384 
3385 		if (++work_done == budget)
3386 			return budget;
3387 	}
3388 
3389 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3390 	 * will not try accessing the NULL napi->dev ptr
3391 	 */
3392 	napi_complete_done(napi, 0);
3393 	return work_done;
3394 }
3395 
3396 void __init mptcp_proto_init(void)
3397 {
3398 	struct mptcp_delegated_action *delegated;
3399 	int cpu;
3400 
3401 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3402 
3403 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3404 		panic("Failed to allocate MPTCP pcpu counter\n");
3405 
3406 	init_dummy_netdev(&mptcp_napi_dev);
3407 	for_each_possible_cpu(cpu) {
3408 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3409 		INIT_LIST_HEAD(&delegated->head);
3410 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3411 				  NAPI_POLL_WEIGHT);
3412 		napi_enable(&delegated->napi);
3413 	}
3414 
3415 	mptcp_subflow_init();
3416 	mptcp_pm_init();
3417 	mptcp_token_init();
3418 
3419 	if (proto_register(&mptcp_prot, 1) != 0)
3420 		panic("Failed to register MPTCP proto.\n");
3421 
3422 	inet_register_protosw(&mptcp_protosw);
3423 
3424 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3425 }
3426 
3427 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3428 static const struct proto_ops mptcp_v6_stream_ops = {
3429 	.family		   = PF_INET6,
3430 	.owner		   = THIS_MODULE,
3431 	.release	   = inet6_release,
3432 	.bind		   = mptcp_bind,
3433 	.connect	   = mptcp_stream_connect,
3434 	.socketpair	   = sock_no_socketpair,
3435 	.accept		   = mptcp_stream_accept,
3436 	.getname	   = inet6_getname,
3437 	.poll		   = mptcp_poll,
3438 	.ioctl		   = inet6_ioctl,
3439 	.gettstamp	   = sock_gettstamp,
3440 	.listen		   = mptcp_listen,
3441 	.shutdown	   = inet_shutdown,
3442 	.setsockopt	   = sock_common_setsockopt,
3443 	.getsockopt	   = sock_common_getsockopt,
3444 	.sendmsg	   = inet6_sendmsg,
3445 	.recvmsg	   = inet6_recvmsg,
3446 	.mmap		   = sock_no_mmap,
3447 	.sendpage	   = inet_sendpage,
3448 #ifdef CONFIG_COMPAT
3449 	.compat_ioctl	   = inet6_compat_ioctl,
3450 #endif
3451 };
3452 
3453 static struct proto mptcp_v6_prot;
3454 
3455 static void mptcp_v6_destroy(struct sock *sk)
3456 {
3457 	mptcp_destroy(sk);
3458 	inet6_destroy_sock(sk);
3459 }
3460 
3461 static struct inet_protosw mptcp_v6_protosw = {
3462 	.type		= SOCK_STREAM,
3463 	.protocol	= IPPROTO_MPTCP,
3464 	.prot		= &mptcp_v6_prot,
3465 	.ops		= &mptcp_v6_stream_ops,
3466 	.flags		= INET_PROTOSW_ICSK,
3467 };
3468 
3469 int __init mptcp_proto_v6_init(void)
3470 {
3471 	int err;
3472 
3473 	mptcp_v6_prot = mptcp_prot;
3474 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3475 	mptcp_v6_prot.slab = NULL;
3476 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3477 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3478 
3479 	err = proto_register(&mptcp_v6_prot, 1);
3480 	if (err)
3481 		return err;
3482 
3483 	err = inet6_register_protosw(&mptcp_v6_protosw);
3484 	if (err)
3485 		proto_unregister(&mptcp_v6_prot);
3486 
3487 	return err;
3488 }
3489 #endif
3490