1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 154 /* note the fwd memory can reach a negative value after accounting 155 * for the delta, but the later skb free will restore a non 156 * negative one 157 */ 158 atomic_add(delta, &sk->sk_rmem_alloc); 159 mptcp_rmem_charge(sk, delta); 160 kfree_skb_partial(from, fragstolen); 161 162 return true; 163 } 164 165 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 166 struct sk_buff *from) 167 { 168 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 169 return false; 170 171 return mptcp_try_coalesce((struct sock *)msk, to, from); 172 } 173 174 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 175 { 176 amount >>= PAGE_SHIFT; 177 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 178 __sk_mem_reduce_allocated(sk, amount); 179 } 180 181 static void mptcp_rmem_uncharge(struct sock *sk, int size) 182 { 183 struct mptcp_sock *msk = mptcp_sk(sk); 184 int reclaimable; 185 186 msk->rmem_fwd_alloc += size; 187 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 188 189 /* see sk_mem_uncharge() for the rationale behind the following schema */ 190 if (unlikely(reclaimable >= PAGE_SIZE)) 191 __mptcp_rmem_reclaim(sk, reclaimable); 192 } 193 194 static void mptcp_rfree(struct sk_buff *skb) 195 { 196 unsigned int len = skb->truesize; 197 struct sock *sk = skb->sk; 198 199 atomic_sub(len, &sk->sk_rmem_alloc); 200 mptcp_rmem_uncharge(sk, len); 201 } 202 203 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 204 { 205 skb_orphan(skb); 206 skb->sk = sk; 207 skb->destructor = mptcp_rfree; 208 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 209 mptcp_rmem_charge(sk, skb->truesize); 210 } 211 212 /* "inspired" by tcp_data_queue_ofo(), main differences: 213 * - use mptcp seqs 214 * - don't cope with sacks 215 */ 216 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 217 { 218 struct sock *sk = (struct sock *)msk; 219 struct rb_node **p, *parent; 220 u64 seq, end_seq, max_seq; 221 struct sk_buff *skb1; 222 223 seq = MPTCP_SKB_CB(skb)->map_seq; 224 end_seq = MPTCP_SKB_CB(skb)->end_seq; 225 max_seq = atomic64_read(&msk->rcv_wnd_sent); 226 227 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 228 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 229 if (after64(end_seq, max_seq)) { 230 /* out of window */ 231 mptcp_drop(sk, skb); 232 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 233 (unsigned long long)end_seq - (unsigned long)max_seq, 234 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 236 return; 237 } 238 239 p = &msk->out_of_order_queue.rb_node; 240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 241 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 242 rb_link_node(&skb->rbnode, NULL, p); 243 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 244 msk->ooo_last_skb = skb; 245 goto end; 246 } 247 248 /* with 2 subflows, adding at end of ooo queue is quite likely 249 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 250 */ 251 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 return; 255 } 256 257 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 258 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 260 parent = &msk->ooo_last_skb->rbnode; 261 p = &parent->rb_right; 262 goto insert; 263 } 264 265 /* Find place to insert this segment. Handle overlaps on the way. */ 266 parent = NULL; 267 while (*p) { 268 parent = *p; 269 skb1 = rb_to_skb(parent); 270 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 271 p = &parent->rb_left; 272 continue; 273 } 274 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 275 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 276 /* All the bits are present. Drop. */ 277 mptcp_drop(sk, skb); 278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 279 return; 280 } 281 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 282 /* partial overlap: 283 * | skb | 284 * | skb1 | 285 * continue traversing 286 */ 287 } else { 288 /* skb's seq == skb1's seq and skb covers skb1. 289 * Replace skb1 with skb. 290 */ 291 rb_replace_node(&skb1->rbnode, &skb->rbnode, 292 &msk->out_of_order_queue); 293 mptcp_drop(sk, skb1); 294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 295 goto merge_right; 296 } 297 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 298 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 299 return; 300 } 301 p = &parent->rb_right; 302 } 303 304 insert: 305 /* Insert segment into RB tree. */ 306 rb_link_node(&skb->rbnode, parent, p); 307 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 308 309 merge_right: 310 /* Remove other segments covered by skb. */ 311 while ((skb1 = skb_rb_next(skb)) != NULL) { 312 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 313 break; 314 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 315 mptcp_drop(sk, skb1); 316 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 317 } 318 /* If there is no skb after us, we are the last_skb ! */ 319 if (!skb1) 320 msk->ooo_last_skb = skb; 321 322 end: 323 skb_condense(skb); 324 mptcp_set_owner_r(skb, sk); 325 } 326 327 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 328 { 329 struct mptcp_sock *msk = mptcp_sk(sk); 330 int amt, amount; 331 332 if (size <= msk->rmem_fwd_alloc) 333 return true; 334 335 size -= msk->rmem_fwd_alloc; 336 amt = sk_mem_pages(size); 337 amount = amt << PAGE_SHIFT; 338 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 339 return false; 340 341 msk->rmem_fwd_alloc += amount; 342 return true; 343 } 344 345 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 346 struct sk_buff *skb, unsigned int offset, 347 size_t copy_len) 348 { 349 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 350 struct sock *sk = (struct sock *)msk; 351 struct sk_buff *tail; 352 bool has_rxtstamp; 353 354 __skb_unlink(skb, &ssk->sk_receive_queue); 355 356 skb_ext_reset(skb); 357 skb_orphan(skb); 358 359 /* try to fetch required memory from subflow */ 360 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 361 goto drop; 362 363 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 364 365 /* the skb map_seq accounts for the skb offset: 366 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 367 * value 368 */ 369 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 370 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 371 MPTCP_SKB_CB(skb)->offset = offset; 372 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 373 374 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 375 /* in sequence */ 376 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 377 tail = skb_peek_tail(&sk->sk_receive_queue); 378 if (tail && mptcp_try_coalesce(sk, tail, skb)) 379 return true; 380 381 mptcp_set_owner_r(skb, sk); 382 __skb_queue_tail(&sk->sk_receive_queue, skb); 383 return true; 384 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 385 mptcp_data_queue_ofo(msk, skb); 386 return false; 387 } 388 389 /* old data, keep it simple and drop the whole pkt, sender 390 * will retransmit as needed, if needed. 391 */ 392 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 393 drop: 394 mptcp_drop(sk, skb); 395 return false; 396 } 397 398 static void mptcp_stop_timer(struct sock *sk) 399 { 400 struct inet_connection_sock *icsk = inet_csk(sk); 401 402 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 403 mptcp_sk(sk)->timer_ival = 0; 404 } 405 406 static void mptcp_close_wake_up(struct sock *sk) 407 { 408 if (sock_flag(sk, SOCK_DEAD)) 409 return; 410 411 sk->sk_state_change(sk); 412 if (sk->sk_shutdown == SHUTDOWN_MASK || 413 sk->sk_state == TCP_CLOSE) 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 415 else 416 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 417 } 418 419 static bool mptcp_pending_data_fin_ack(struct sock *sk) 420 { 421 struct mptcp_sock *msk = mptcp_sk(sk); 422 423 return !__mptcp_check_fallback(msk) && 424 ((1 << sk->sk_state) & 425 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 426 msk->write_seq == READ_ONCE(msk->snd_una); 427 } 428 429 static void mptcp_check_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 /* Look for an acknowledged DATA_FIN */ 434 if (mptcp_pending_data_fin_ack(sk)) { 435 WRITE_ONCE(msk->snd_data_fin_enable, 0); 436 437 switch (sk->sk_state) { 438 case TCP_FIN_WAIT1: 439 inet_sk_state_store(sk, TCP_FIN_WAIT2); 440 break; 441 case TCP_CLOSING: 442 case TCP_LAST_ACK: 443 inet_sk_state_store(sk, TCP_CLOSE); 444 break; 445 } 446 447 mptcp_close_wake_up(sk); 448 } 449 } 450 451 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 452 { 453 struct mptcp_sock *msk = mptcp_sk(sk); 454 455 if (READ_ONCE(msk->rcv_data_fin) && 456 ((1 << sk->sk_state) & 457 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 458 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 459 460 if (msk->ack_seq == rcv_data_fin_seq) { 461 if (seq) 462 *seq = rcv_data_fin_seq; 463 464 return true; 465 } 466 } 467 468 return false; 469 } 470 471 static void mptcp_set_datafin_timeout(const struct sock *sk) 472 { 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 u32 retransmits; 475 476 retransmits = min_t(u32, icsk->icsk_retransmits, 477 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 478 479 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 480 } 481 482 static void __mptcp_set_timeout(struct sock *sk, long tout) 483 { 484 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 485 } 486 487 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 488 { 489 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 490 491 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 492 inet_csk(ssk)->icsk_timeout - jiffies : 0; 493 } 494 495 static void mptcp_set_timeout(struct sock *sk) 496 { 497 struct mptcp_subflow_context *subflow; 498 long tout = 0; 499 500 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 501 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 502 __mptcp_set_timeout(sk, tout); 503 } 504 505 static inline bool tcp_can_send_ack(const struct sock *ssk) 506 { 507 return !((1 << inet_sk_state_load(ssk)) & 508 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 509 } 510 511 void __mptcp_subflow_send_ack(struct sock *ssk) 512 { 513 if (tcp_can_send_ack(ssk)) 514 tcp_send_ack(ssk); 515 } 516 517 static void mptcp_subflow_send_ack(struct sock *ssk) 518 { 519 bool slow; 520 521 slow = lock_sock_fast(ssk); 522 __mptcp_subflow_send_ack(ssk); 523 unlock_sock_fast(ssk, slow); 524 } 525 526 static void mptcp_send_ack(struct mptcp_sock *msk) 527 { 528 struct mptcp_subflow_context *subflow; 529 530 mptcp_for_each_subflow(msk, subflow) 531 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 532 } 533 534 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 535 { 536 bool slow; 537 538 slow = lock_sock_fast(ssk); 539 if (tcp_can_send_ack(ssk)) 540 tcp_cleanup_rbuf(ssk, 1); 541 unlock_sock_fast(ssk, slow); 542 } 543 544 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 545 { 546 const struct inet_connection_sock *icsk = inet_csk(ssk); 547 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 548 const struct tcp_sock *tp = tcp_sk(ssk); 549 550 return (ack_pending & ICSK_ACK_SCHED) && 551 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 552 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 553 (rx_empty && ack_pending & 554 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 555 } 556 557 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 558 { 559 int old_space = READ_ONCE(msk->old_wspace); 560 struct mptcp_subflow_context *subflow; 561 struct sock *sk = (struct sock *)msk; 562 int space = __mptcp_space(sk); 563 bool cleanup, rx_empty; 564 565 cleanup = (space > 0) && (space >= (old_space << 1)); 566 rx_empty = !__mptcp_rmem(sk); 567 568 mptcp_for_each_subflow(msk, subflow) { 569 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 570 571 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 572 mptcp_subflow_cleanup_rbuf(ssk); 573 } 574 } 575 576 static bool mptcp_check_data_fin(struct sock *sk) 577 { 578 struct mptcp_sock *msk = mptcp_sk(sk); 579 u64 rcv_data_fin_seq; 580 bool ret = false; 581 582 if (__mptcp_check_fallback(msk)) 583 return ret; 584 585 /* Need to ack a DATA_FIN received from a peer while this side 586 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 587 * msk->rcv_data_fin was set when parsing the incoming options 588 * at the subflow level and the msk lock was not held, so this 589 * is the first opportunity to act on the DATA_FIN and change 590 * the msk state. 591 * 592 * If we are caught up to the sequence number of the incoming 593 * DATA_FIN, send the DATA_ACK now and do state transition. If 594 * not caught up, do nothing and let the recv code send DATA_ACK 595 * when catching up. 596 */ 597 598 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 599 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 600 WRITE_ONCE(msk->rcv_data_fin, 0); 601 602 sk->sk_shutdown |= RCV_SHUTDOWN; 603 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 604 605 switch (sk->sk_state) { 606 case TCP_ESTABLISHED: 607 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 608 break; 609 case TCP_FIN_WAIT1: 610 inet_sk_state_store(sk, TCP_CLOSING); 611 break; 612 case TCP_FIN_WAIT2: 613 inet_sk_state_store(sk, TCP_CLOSE); 614 break; 615 default: 616 /* Other states not expected */ 617 WARN_ON_ONCE(1); 618 break; 619 } 620 621 ret = true; 622 mptcp_send_ack(msk); 623 mptcp_close_wake_up(sk); 624 } 625 return ret; 626 } 627 628 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 629 struct sock *ssk, 630 unsigned int *bytes) 631 { 632 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 633 struct sock *sk = (struct sock *)msk; 634 unsigned int moved = 0; 635 bool more_data_avail; 636 struct tcp_sock *tp; 637 bool done = false; 638 int sk_rbuf; 639 640 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 641 642 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 643 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 644 645 if (unlikely(ssk_rbuf > sk_rbuf)) { 646 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 647 sk_rbuf = ssk_rbuf; 648 } 649 } 650 651 pr_debug("msk=%p ssk=%p", msk, ssk); 652 tp = tcp_sk(ssk); 653 do { 654 u32 map_remaining, offset; 655 u32 seq = tp->copied_seq; 656 struct sk_buff *skb; 657 bool fin; 658 659 /* try to move as much data as available */ 660 map_remaining = subflow->map_data_len - 661 mptcp_subflow_get_map_offset(subflow); 662 663 skb = skb_peek(&ssk->sk_receive_queue); 664 if (!skb) { 665 /* if no data is found, a racing workqueue/recvmsg 666 * already processed the new data, stop here or we 667 * can enter an infinite loop 668 */ 669 if (!moved) 670 done = true; 671 break; 672 } 673 674 if (__mptcp_check_fallback(msk)) { 675 /* if we are running under the workqueue, TCP could have 676 * collapsed skbs between dummy map creation and now 677 * be sure to adjust the size 678 */ 679 map_remaining = skb->len; 680 subflow->map_data_len = skb->len; 681 } 682 683 offset = seq - TCP_SKB_CB(skb)->seq; 684 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 685 if (fin) { 686 done = true; 687 seq++; 688 } 689 690 if (offset < skb->len) { 691 size_t len = skb->len - offset; 692 693 if (tp->urg_data) 694 done = true; 695 696 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 697 moved += len; 698 seq += len; 699 700 if (WARN_ON_ONCE(map_remaining < len)) 701 break; 702 } else { 703 WARN_ON_ONCE(!fin); 704 sk_eat_skb(ssk, skb); 705 done = true; 706 } 707 708 WRITE_ONCE(tp->copied_seq, seq); 709 more_data_avail = mptcp_subflow_data_available(ssk); 710 711 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 712 done = true; 713 break; 714 } 715 } while (more_data_avail); 716 717 *bytes += moved; 718 return done; 719 } 720 721 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 722 { 723 struct sock *sk = (struct sock *)msk; 724 struct sk_buff *skb, *tail; 725 bool moved = false; 726 struct rb_node *p; 727 u64 end_seq; 728 729 p = rb_first(&msk->out_of_order_queue); 730 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 731 while (p) { 732 skb = rb_to_skb(p); 733 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 734 break; 735 736 p = rb_next(p); 737 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 738 739 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 740 msk->ack_seq))) { 741 mptcp_drop(sk, skb); 742 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 743 continue; 744 } 745 746 end_seq = MPTCP_SKB_CB(skb)->end_seq; 747 tail = skb_peek_tail(&sk->sk_receive_queue); 748 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 749 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 750 751 /* skip overlapping data, if any */ 752 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 753 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 754 delta); 755 MPTCP_SKB_CB(skb)->offset += delta; 756 MPTCP_SKB_CB(skb)->map_seq += delta; 757 __skb_queue_tail(&sk->sk_receive_queue, skb); 758 } 759 msk->ack_seq = end_seq; 760 moved = true; 761 } 762 return moved; 763 } 764 765 /* In most cases we will be able to lock the mptcp socket. If its already 766 * owned, we need to defer to the work queue to avoid ABBA deadlock. 767 */ 768 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 769 { 770 struct sock *sk = (struct sock *)msk; 771 unsigned int moved = 0; 772 773 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 774 __mptcp_ofo_queue(msk); 775 if (unlikely(ssk->sk_err)) { 776 if (!sock_owned_by_user(sk)) 777 __mptcp_error_report(sk); 778 else 779 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 780 } 781 782 /* If the moves have caught up with the DATA_FIN sequence number 783 * it's time to ack the DATA_FIN and change socket state, but 784 * this is not a good place to change state. Let the workqueue 785 * do it. 786 */ 787 if (mptcp_pending_data_fin(sk, NULL)) 788 mptcp_schedule_work(sk); 789 return moved > 0; 790 } 791 792 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 793 { 794 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 795 struct mptcp_sock *msk = mptcp_sk(sk); 796 int sk_rbuf, ssk_rbuf; 797 798 /* The peer can send data while we are shutting down this 799 * subflow at msk destruction time, but we must avoid enqueuing 800 * more data to the msk receive queue 801 */ 802 if (unlikely(subflow->disposable)) 803 return; 804 805 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 806 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 807 if (unlikely(ssk_rbuf > sk_rbuf)) 808 sk_rbuf = ssk_rbuf; 809 810 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 811 if (__mptcp_rmem(sk) > sk_rbuf) { 812 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 813 return; 814 } 815 816 /* Wake-up the reader only for in-sequence data */ 817 mptcp_data_lock(sk); 818 if (move_skbs_to_msk(msk, ssk)) 819 sk->sk_data_ready(sk); 820 821 mptcp_data_unlock(sk); 822 } 823 824 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 825 { 826 struct sock *sk = (struct sock *)msk; 827 828 if (sk->sk_state != TCP_ESTABLISHED) 829 return false; 830 831 /* attach to msk socket only after we are sure we will deal with it 832 * at close time 833 */ 834 if (sk->sk_socket && !ssk->sk_socket) 835 mptcp_sock_graft(ssk, sk->sk_socket); 836 837 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 838 mptcp_sockopt_sync_locked(msk, ssk); 839 return true; 840 } 841 842 static void __mptcp_flush_join_list(struct sock *sk) 843 { 844 struct mptcp_subflow_context *tmp, *subflow; 845 struct mptcp_sock *msk = mptcp_sk(sk); 846 847 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 848 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 849 bool slow = lock_sock_fast(ssk); 850 851 list_move_tail(&subflow->node, &msk->conn_list); 852 if (!__mptcp_finish_join(msk, ssk)) 853 mptcp_subflow_reset(ssk); 854 unlock_sock_fast(ssk, slow); 855 } 856 } 857 858 static bool mptcp_timer_pending(struct sock *sk) 859 { 860 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 861 } 862 863 static void mptcp_reset_timer(struct sock *sk) 864 { 865 struct inet_connection_sock *icsk = inet_csk(sk); 866 unsigned long tout; 867 868 /* prevent rescheduling on close */ 869 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 870 return; 871 872 tout = mptcp_sk(sk)->timer_ival; 873 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 874 } 875 876 bool mptcp_schedule_work(struct sock *sk) 877 { 878 if (inet_sk_state_load(sk) != TCP_CLOSE && 879 schedule_work(&mptcp_sk(sk)->work)) { 880 /* each subflow already holds a reference to the sk, and the 881 * workqueue is invoked by a subflow, so sk can't go away here. 882 */ 883 sock_hold(sk); 884 return true; 885 } 886 return false; 887 } 888 889 void mptcp_subflow_eof(struct sock *sk) 890 { 891 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 892 mptcp_schedule_work(sk); 893 } 894 895 static void mptcp_check_for_eof(struct mptcp_sock *msk) 896 { 897 struct mptcp_subflow_context *subflow; 898 struct sock *sk = (struct sock *)msk; 899 int receivers = 0; 900 901 mptcp_for_each_subflow(msk, subflow) 902 receivers += !subflow->rx_eof; 903 if (receivers) 904 return; 905 906 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 907 /* hopefully temporary hack: propagate shutdown status 908 * to msk, when all subflows agree on it 909 */ 910 sk->sk_shutdown |= RCV_SHUTDOWN; 911 912 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 913 sk->sk_data_ready(sk); 914 } 915 916 switch (sk->sk_state) { 917 case TCP_ESTABLISHED: 918 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 919 break; 920 case TCP_FIN_WAIT1: 921 inet_sk_state_store(sk, TCP_CLOSING); 922 break; 923 case TCP_FIN_WAIT2: 924 inet_sk_state_store(sk, TCP_CLOSE); 925 break; 926 default: 927 return; 928 } 929 mptcp_close_wake_up(sk); 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 struct sock *sk = (struct sock *)msk; 936 937 sock_owned_by_me(sk); 938 939 mptcp_for_each_subflow(msk, subflow) { 940 if (READ_ONCE(subflow->data_avail)) 941 return mptcp_subflow_tcp_sock(subflow); 942 } 943 944 return NULL; 945 } 946 947 static bool mptcp_skb_can_collapse_to(u64 write_seq, 948 const struct sk_buff *skb, 949 const struct mptcp_ext *mpext) 950 { 951 if (!tcp_skb_can_collapse_to(skb)) 952 return false; 953 954 /* can collapse only if MPTCP level sequence is in order and this 955 * mapping has not been xmitted yet 956 */ 957 return mpext && mpext->data_seq + mpext->data_len == write_seq && 958 !mpext->frozen; 959 } 960 961 /* we can append data to the given data frag if: 962 * - there is space available in the backing page_frag 963 * - the data frag tail matches the current page_frag free offset 964 * - the data frag end sequence number matches the current write seq 965 */ 966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 967 const struct page_frag *pfrag, 968 const struct mptcp_data_frag *df) 969 { 970 return df && pfrag->page == df->page && 971 pfrag->size - pfrag->offset > 0 && 972 pfrag->offset == (df->offset + df->data_len) && 973 df->data_seq + df->data_len == msk->write_seq; 974 } 975 976 static void dfrag_uncharge(struct sock *sk, int len) 977 { 978 sk_mem_uncharge(sk, len); 979 sk_wmem_queued_add(sk, -len); 980 } 981 982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 983 { 984 int len = dfrag->data_len + dfrag->overhead; 985 986 list_del(&dfrag->list); 987 dfrag_uncharge(sk, len); 988 put_page(dfrag->page); 989 } 990 991 static void __mptcp_clean_una(struct sock *sk) 992 { 993 struct mptcp_sock *msk = mptcp_sk(sk); 994 struct mptcp_data_frag *dtmp, *dfrag; 995 u64 snd_una; 996 997 /* on fallback we just need to ignore snd_una, as this is really 998 * plain TCP 999 */ 1000 if (__mptcp_check_fallback(msk)) 1001 msk->snd_una = READ_ONCE(msk->snd_nxt); 1002 1003 snd_una = msk->snd_una; 1004 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1005 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1006 break; 1007 1008 if (unlikely(dfrag == msk->first_pending)) { 1009 /* in recovery mode can see ack after the current snd head */ 1010 if (WARN_ON_ONCE(!msk->recovery)) 1011 break; 1012 1013 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1014 } 1015 1016 dfrag_clear(sk, dfrag); 1017 } 1018 1019 dfrag = mptcp_rtx_head(sk); 1020 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1021 u64 delta = snd_una - dfrag->data_seq; 1022 1023 /* prevent wrap around in recovery mode */ 1024 if (unlikely(delta > dfrag->already_sent)) { 1025 if (WARN_ON_ONCE(!msk->recovery)) 1026 goto out; 1027 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1028 goto out; 1029 dfrag->already_sent += delta - dfrag->already_sent; 1030 } 1031 1032 dfrag->data_seq += delta; 1033 dfrag->offset += delta; 1034 dfrag->data_len -= delta; 1035 dfrag->already_sent -= delta; 1036 1037 dfrag_uncharge(sk, delta); 1038 } 1039 1040 /* all retransmitted data acked, recovery completed */ 1041 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1042 msk->recovery = false; 1043 1044 out: 1045 if (snd_una == READ_ONCE(msk->snd_nxt) && 1046 snd_una == READ_ONCE(msk->write_seq)) { 1047 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1048 mptcp_stop_timer(sk); 1049 } else { 1050 mptcp_reset_timer(sk); 1051 } 1052 } 1053 1054 static void __mptcp_clean_una_wakeup(struct sock *sk) 1055 { 1056 lockdep_assert_held_once(&sk->sk_lock.slock); 1057 1058 __mptcp_clean_una(sk); 1059 mptcp_write_space(sk); 1060 } 1061 1062 static void mptcp_clean_una_wakeup(struct sock *sk) 1063 { 1064 mptcp_data_lock(sk); 1065 __mptcp_clean_una_wakeup(sk); 1066 mptcp_data_unlock(sk); 1067 } 1068 1069 static void mptcp_enter_memory_pressure(struct sock *sk) 1070 { 1071 struct mptcp_subflow_context *subflow; 1072 struct mptcp_sock *msk = mptcp_sk(sk); 1073 bool first = true; 1074 1075 sk_stream_moderate_sndbuf(sk); 1076 mptcp_for_each_subflow(msk, subflow) { 1077 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1078 1079 if (first) 1080 tcp_enter_memory_pressure(ssk); 1081 sk_stream_moderate_sndbuf(ssk); 1082 first = false; 1083 } 1084 } 1085 1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1087 * data 1088 */ 1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1090 { 1091 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1092 pfrag, sk->sk_allocation))) 1093 return true; 1094 1095 mptcp_enter_memory_pressure(sk); 1096 return false; 1097 } 1098 1099 static struct mptcp_data_frag * 1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1101 int orig_offset) 1102 { 1103 int offset = ALIGN(orig_offset, sizeof(long)); 1104 struct mptcp_data_frag *dfrag; 1105 1106 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1107 dfrag->data_len = 0; 1108 dfrag->data_seq = msk->write_seq; 1109 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1110 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1111 dfrag->already_sent = 0; 1112 dfrag->page = pfrag->page; 1113 1114 return dfrag; 1115 } 1116 1117 struct mptcp_sendmsg_info { 1118 int mss_now; 1119 int size_goal; 1120 u16 limit; 1121 u16 sent; 1122 unsigned int flags; 1123 bool data_lock_held; 1124 }; 1125 1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1127 u64 data_seq, int avail_size) 1128 { 1129 u64 window_end = mptcp_wnd_end(msk); 1130 u64 mptcp_snd_wnd; 1131 1132 if (__mptcp_check_fallback(msk)) 1133 return avail_size; 1134 1135 mptcp_snd_wnd = window_end - data_seq; 1136 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1137 1138 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1139 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1140 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1141 } 1142 1143 return avail_size; 1144 } 1145 1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1147 { 1148 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1149 1150 if (!mpext) 1151 return false; 1152 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1153 return true; 1154 } 1155 1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1157 { 1158 struct sk_buff *skb; 1159 1160 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1161 if (likely(skb)) { 1162 if (likely(__mptcp_add_ext(skb, gfp))) { 1163 skb_reserve(skb, MAX_TCP_HEADER); 1164 skb->ip_summed = CHECKSUM_PARTIAL; 1165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1166 return skb; 1167 } 1168 __kfree_skb(skb); 1169 } else { 1170 mptcp_enter_memory_pressure(sk); 1171 } 1172 return NULL; 1173 } 1174 1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1176 { 1177 struct sk_buff *skb; 1178 1179 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1180 if (!skb) 1181 return NULL; 1182 1183 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1184 tcp_skb_entail(ssk, skb); 1185 return skb; 1186 } 1187 tcp_skb_tsorted_anchor_cleanup(skb); 1188 kfree_skb(skb); 1189 return NULL; 1190 } 1191 1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1193 { 1194 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1195 1196 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1197 } 1198 1199 /* note: this always recompute the csum on the whole skb, even 1200 * if we just appended a single frag. More status info needed 1201 */ 1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1203 { 1204 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1205 __wsum csum = ~csum_unfold(mpext->csum); 1206 int offset = skb->len - added; 1207 1208 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1209 } 1210 1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1212 struct sock *ssk, 1213 struct mptcp_ext *mpext) 1214 { 1215 if (!mpext) 1216 return; 1217 1218 mpext->infinite_map = 1; 1219 mpext->data_len = 0; 1220 1221 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1222 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1223 pr_fallback(msk); 1224 mptcp_do_fallback(ssk); 1225 } 1226 1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1228 struct mptcp_data_frag *dfrag, 1229 struct mptcp_sendmsg_info *info) 1230 { 1231 u64 data_seq = dfrag->data_seq + info->sent; 1232 int offset = dfrag->offset + info->sent; 1233 struct mptcp_sock *msk = mptcp_sk(sk); 1234 bool zero_window_probe = false; 1235 struct mptcp_ext *mpext = NULL; 1236 bool can_coalesce = false; 1237 bool reuse_skb = true; 1238 struct sk_buff *skb; 1239 size_t copy; 1240 int i; 1241 1242 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1243 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1244 1245 if (WARN_ON_ONCE(info->sent > info->limit || 1246 info->limit > dfrag->data_len)) 1247 return 0; 1248 1249 if (unlikely(!__tcp_can_send(ssk))) 1250 return -EAGAIN; 1251 1252 /* compute send limit */ 1253 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1254 copy = info->size_goal; 1255 1256 skb = tcp_write_queue_tail(ssk); 1257 if (skb && copy > skb->len) { 1258 /* Limit the write to the size available in the 1259 * current skb, if any, so that we create at most a new skb. 1260 * Explicitly tells TCP internals to avoid collapsing on later 1261 * queue management operation, to avoid breaking the ext <-> 1262 * SSN association set here 1263 */ 1264 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1265 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1266 TCP_SKB_CB(skb)->eor = 1; 1267 goto alloc_skb; 1268 } 1269 1270 i = skb_shinfo(skb)->nr_frags; 1271 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1272 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1273 tcp_mark_push(tcp_sk(ssk), skb); 1274 goto alloc_skb; 1275 } 1276 1277 copy -= skb->len; 1278 } else { 1279 alloc_skb: 1280 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1281 if (!skb) 1282 return -ENOMEM; 1283 1284 i = skb_shinfo(skb)->nr_frags; 1285 reuse_skb = false; 1286 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1287 } 1288 1289 /* Zero window and all data acked? Probe. */ 1290 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1291 if (copy == 0) { 1292 u64 snd_una = READ_ONCE(msk->snd_una); 1293 1294 if (snd_una != msk->snd_nxt) { 1295 tcp_remove_empty_skb(ssk); 1296 return 0; 1297 } 1298 1299 zero_window_probe = true; 1300 data_seq = snd_una - 1; 1301 copy = 1; 1302 1303 /* all mptcp-level data is acked, no skbs should be present into the 1304 * ssk write queue 1305 */ 1306 WARN_ON_ONCE(reuse_skb); 1307 } 1308 1309 copy = min_t(size_t, copy, info->limit - info->sent); 1310 if (!sk_wmem_schedule(ssk, copy)) { 1311 tcp_remove_empty_skb(ssk); 1312 return -ENOMEM; 1313 } 1314 1315 if (can_coalesce) { 1316 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1317 } else { 1318 get_page(dfrag->page); 1319 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1320 } 1321 1322 skb->len += copy; 1323 skb->data_len += copy; 1324 skb->truesize += copy; 1325 sk_wmem_queued_add(ssk, copy); 1326 sk_mem_charge(ssk, copy); 1327 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1328 TCP_SKB_CB(skb)->end_seq += copy; 1329 tcp_skb_pcount_set(skb, 0); 1330 1331 /* on skb reuse we just need to update the DSS len */ 1332 if (reuse_skb) { 1333 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1334 mpext->data_len += copy; 1335 WARN_ON_ONCE(zero_window_probe); 1336 goto out; 1337 } 1338 1339 memset(mpext, 0, sizeof(*mpext)); 1340 mpext->data_seq = data_seq; 1341 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1342 mpext->data_len = copy; 1343 mpext->use_map = 1; 1344 mpext->dsn64 = 1; 1345 1346 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1347 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1348 mpext->dsn64); 1349 1350 if (zero_window_probe) { 1351 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1352 mpext->frozen = 1; 1353 if (READ_ONCE(msk->csum_enabled)) 1354 mptcp_update_data_checksum(skb, copy); 1355 tcp_push_pending_frames(ssk); 1356 return 0; 1357 } 1358 out: 1359 if (READ_ONCE(msk->csum_enabled)) 1360 mptcp_update_data_checksum(skb, copy); 1361 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1362 mptcp_update_infinite_map(msk, ssk, mpext); 1363 trace_mptcp_sendmsg_frag(mpext); 1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1365 return copy; 1366 } 1367 1368 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1369 sizeof(struct tcphdr) - \ 1370 MAX_TCP_OPTION_SPACE - \ 1371 sizeof(struct ipv6hdr) - \ 1372 sizeof(struct frag_hdr)) 1373 1374 struct subflow_send_info { 1375 struct sock *ssk; 1376 u64 linger_time; 1377 }; 1378 1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (!subflow->stale) 1382 return; 1383 1384 subflow->stale = 0; 1385 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1386 } 1387 1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1389 { 1390 if (unlikely(subflow->stale)) { 1391 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1392 1393 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1394 return false; 1395 1396 mptcp_subflow_set_active(subflow); 1397 } 1398 return __mptcp_subflow_active(subflow); 1399 } 1400 1401 #define SSK_MODE_ACTIVE 0 1402 #define SSK_MODE_BACKUP 1 1403 #define SSK_MODE_MAX 2 1404 1405 /* implement the mptcp packet scheduler; 1406 * returns the subflow that will transmit the next DSS 1407 * additionally updates the rtx timeout 1408 */ 1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1410 { 1411 struct subflow_send_info send_info[SSK_MODE_MAX]; 1412 struct mptcp_subflow_context *subflow; 1413 struct sock *sk = (struct sock *)msk; 1414 u32 pace, burst, wmem; 1415 int i, nr_active = 0; 1416 struct sock *ssk; 1417 u64 linger_time; 1418 long tout = 0; 1419 1420 sock_owned_by_me(sk); 1421 1422 if (__mptcp_check_fallback(msk)) { 1423 if (!msk->first) 1424 return NULL; 1425 return __tcp_can_send(msk->first) && 1426 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1427 } 1428 1429 /* re-use last subflow, if the burst allow that */ 1430 if (msk->last_snd && msk->snd_burst > 0 && 1431 sk_stream_memory_free(msk->last_snd) && 1432 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1433 mptcp_set_timeout(sk); 1434 return msk->last_snd; 1435 } 1436 1437 /* pick the subflow with the lower wmem/wspace ratio */ 1438 for (i = 0; i < SSK_MODE_MAX; ++i) { 1439 send_info[i].ssk = NULL; 1440 send_info[i].linger_time = -1; 1441 } 1442 1443 mptcp_for_each_subflow(msk, subflow) { 1444 trace_mptcp_subflow_get_send(subflow); 1445 ssk = mptcp_subflow_tcp_sock(subflow); 1446 if (!mptcp_subflow_active(subflow)) 1447 continue; 1448 1449 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1450 nr_active += !subflow->backup; 1451 pace = subflow->avg_pacing_rate; 1452 if (unlikely(!pace)) { 1453 /* init pacing rate from socket */ 1454 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1455 pace = subflow->avg_pacing_rate; 1456 if (!pace) 1457 continue; 1458 } 1459 1460 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1461 if (linger_time < send_info[subflow->backup].linger_time) { 1462 send_info[subflow->backup].ssk = ssk; 1463 send_info[subflow->backup].linger_time = linger_time; 1464 } 1465 } 1466 __mptcp_set_timeout(sk, tout); 1467 1468 /* pick the best backup if no other subflow is active */ 1469 if (!nr_active) 1470 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1471 1472 /* According to the blest algorithm, to avoid HoL blocking for the 1473 * faster flow, we need to: 1474 * - estimate the faster flow linger time 1475 * - use the above to estimate the amount of byte transferred 1476 * by the faster flow 1477 * - check that the amount of queued data is greter than the above, 1478 * otherwise do not use the picked, slower, subflow 1479 * We select the subflow with the shorter estimated time to flush 1480 * the queued mem, which basically ensure the above. We just need 1481 * to check that subflow has a non empty cwin. 1482 */ 1483 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1484 if (!ssk || !sk_stream_memory_free(ssk)) 1485 return NULL; 1486 1487 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1488 wmem = READ_ONCE(ssk->sk_wmem_queued); 1489 if (!burst) { 1490 msk->last_snd = NULL; 1491 return ssk; 1492 } 1493 1494 subflow = mptcp_subflow_ctx(ssk); 1495 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1496 READ_ONCE(ssk->sk_pacing_rate) * burst, 1497 burst + wmem); 1498 msk->last_snd = ssk; 1499 msk->snd_burst = burst; 1500 return ssk; 1501 } 1502 1503 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1504 { 1505 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1506 release_sock(ssk); 1507 } 1508 1509 static void mptcp_update_post_push(struct mptcp_sock *msk, 1510 struct mptcp_data_frag *dfrag, 1511 u32 sent) 1512 { 1513 u64 snd_nxt_new = dfrag->data_seq; 1514 1515 dfrag->already_sent += sent; 1516 1517 msk->snd_burst -= sent; 1518 1519 snd_nxt_new += dfrag->already_sent; 1520 1521 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1522 * is recovering after a failover. In that event, this re-sends 1523 * old segments. 1524 * 1525 * Thus compute snd_nxt_new candidate based on 1526 * the dfrag->data_seq that was sent and the data 1527 * that has been handed to the subflow for transmission 1528 * and skip update in case it was old dfrag. 1529 */ 1530 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1531 msk->snd_nxt = snd_nxt_new; 1532 } 1533 1534 void mptcp_check_and_set_pending(struct sock *sk) 1535 { 1536 if (mptcp_send_head(sk)) 1537 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1538 } 1539 1540 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1541 { 1542 struct sock *prev_ssk = NULL, *ssk = NULL; 1543 struct mptcp_sock *msk = mptcp_sk(sk); 1544 struct mptcp_sendmsg_info info = { 1545 .flags = flags, 1546 }; 1547 struct mptcp_data_frag *dfrag; 1548 int len, copied = 0; 1549 1550 while ((dfrag = mptcp_send_head(sk))) { 1551 info.sent = dfrag->already_sent; 1552 info.limit = dfrag->data_len; 1553 len = dfrag->data_len - dfrag->already_sent; 1554 while (len > 0) { 1555 int ret = 0; 1556 1557 prev_ssk = ssk; 1558 ssk = mptcp_subflow_get_send(msk); 1559 1560 /* First check. If the ssk has changed since 1561 * the last round, release prev_ssk 1562 */ 1563 if (ssk != prev_ssk && prev_ssk) 1564 mptcp_push_release(prev_ssk, &info); 1565 if (!ssk) 1566 goto out; 1567 1568 /* Need to lock the new subflow only if different 1569 * from the previous one, otherwise we are still 1570 * helding the relevant lock 1571 */ 1572 if (ssk != prev_ssk) 1573 lock_sock(ssk); 1574 1575 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1576 if (ret <= 0) { 1577 if (ret == -EAGAIN) 1578 continue; 1579 mptcp_push_release(ssk, &info); 1580 goto out; 1581 } 1582 1583 info.sent += ret; 1584 copied += ret; 1585 len -= ret; 1586 1587 mptcp_update_post_push(msk, dfrag, ret); 1588 } 1589 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1590 } 1591 1592 /* at this point we held the socket lock for the last subflow we used */ 1593 if (ssk) 1594 mptcp_push_release(ssk, &info); 1595 1596 out: 1597 /* ensure the rtx timer is running */ 1598 if (!mptcp_timer_pending(sk)) 1599 mptcp_reset_timer(sk); 1600 if (copied) 1601 __mptcp_check_send_data_fin(sk); 1602 } 1603 1604 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1605 { 1606 struct mptcp_sock *msk = mptcp_sk(sk); 1607 struct mptcp_sendmsg_info info = { 1608 .data_lock_held = true, 1609 }; 1610 struct mptcp_data_frag *dfrag; 1611 struct sock *xmit_ssk; 1612 int len, copied = 0; 1613 bool first = true; 1614 1615 info.flags = 0; 1616 while ((dfrag = mptcp_send_head(sk))) { 1617 info.sent = dfrag->already_sent; 1618 info.limit = dfrag->data_len; 1619 len = dfrag->data_len - dfrag->already_sent; 1620 while (len > 0) { 1621 int ret = 0; 1622 1623 /* the caller already invoked the packet scheduler, 1624 * check for a different subflow usage only after 1625 * spooling the first chunk of data 1626 */ 1627 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1628 if (!xmit_ssk) 1629 goto out; 1630 if (xmit_ssk != ssk) { 1631 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1632 MPTCP_DELEGATE_SEND); 1633 goto out; 1634 } 1635 1636 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1637 if (ret <= 0) 1638 goto out; 1639 1640 info.sent += ret; 1641 copied += ret; 1642 len -= ret; 1643 first = false; 1644 1645 mptcp_update_post_push(msk, dfrag, ret); 1646 } 1647 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1648 } 1649 1650 out: 1651 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1652 * not going to flush it via release_sock() 1653 */ 1654 if (copied) { 1655 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1656 info.size_goal); 1657 if (!mptcp_timer_pending(sk)) 1658 mptcp_reset_timer(sk); 1659 1660 if (msk->snd_data_fin_enable && 1661 msk->snd_nxt + 1 == msk->write_seq) 1662 mptcp_schedule_work(sk); 1663 } 1664 } 1665 1666 static void mptcp_set_nospace(struct sock *sk) 1667 { 1668 /* enable autotune */ 1669 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1670 1671 /* will be cleared on avail space */ 1672 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1673 } 1674 1675 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1676 { 1677 struct mptcp_sock *msk = mptcp_sk(sk); 1678 struct page_frag *pfrag; 1679 size_t copied = 0; 1680 int ret = 0; 1681 long timeo; 1682 1683 /* we don't support FASTOPEN yet */ 1684 if (msg->msg_flags & MSG_FASTOPEN) 1685 return -EOPNOTSUPP; 1686 1687 /* silently ignore everything else */ 1688 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1689 1690 lock_sock(sk); 1691 1692 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1693 1694 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1695 ret = sk_stream_wait_connect(sk, &timeo); 1696 if (ret) 1697 goto out; 1698 } 1699 1700 pfrag = sk_page_frag(sk); 1701 1702 while (msg_data_left(msg)) { 1703 int total_ts, frag_truesize = 0; 1704 struct mptcp_data_frag *dfrag; 1705 bool dfrag_collapsed; 1706 size_t psize, offset; 1707 1708 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1709 ret = -EPIPE; 1710 goto out; 1711 } 1712 1713 /* reuse tail pfrag, if possible, or carve a new one from the 1714 * page allocator 1715 */ 1716 dfrag = mptcp_pending_tail(sk); 1717 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1718 if (!dfrag_collapsed) { 1719 if (!sk_stream_memory_free(sk)) 1720 goto wait_for_memory; 1721 1722 if (!mptcp_page_frag_refill(sk, pfrag)) 1723 goto wait_for_memory; 1724 1725 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1726 frag_truesize = dfrag->overhead; 1727 } 1728 1729 /* we do not bound vs wspace, to allow a single packet. 1730 * memory accounting will prevent execessive memory usage 1731 * anyway 1732 */ 1733 offset = dfrag->offset + dfrag->data_len; 1734 psize = pfrag->size - offset; 1735 psize = min_t(size_t, psize, msg_data_left(msg)); 1736 total_ts = psize + frag_truesize; 1737 1738 if (!sk_wmem_schedule(sk, total_ts)) 1739 goto wait_for_memory; 1740 1741 if (copy_page_from_iter(dfrag->page, offset, psize, 1742 &msg->msg_iter) != psize) { 1743 ret = -EFAULT; 1744 goto out; 1745 } 1746 1747 /* data successfully copied into the write queue */ 1748 sk->sk_forward_alloc -= total_ts; 1749 copied += psize; 1750 dfrag->data_len += psize; 1751 frag_truesize += psize; 1752 pfrag->offset += frag_truesize; 1753 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1754 1755 /* charge data on mptcp pending queue to the msk socket 1756 * Note: we charge such data both to sk and ssk 1757 */ 1758 sk_wmem_queued_add(sk, frag_truesize); 1759 if (!dfrag_collapsed) { 1760 get_page(dfrag->page); 1761 list_add_tail(&dfrag->list, &msk->rtx_queue); 1762 if (!msk->first_pending) 1763 WRITE_ONCE(msk->first_pending, dfrag); 1764 } 1765 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1766 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1767 !dfrag_collapsed); 1768 1769 continue; 1770 1771 wait_for_memory: 1772 mptcp_set_nospace(sk); 1773 __mptcp_push_pending(sk, msg->msg_flags); 1774 ret = sk_stream_wait_memory(sk, &timeo); 1775 if (ret) 1776 goto out; 1777 } 1778 1779 if (copied) 1780 __mptcp_push_pending(sk, msg->msg_flags); 1781 1782 out: 1783 release_sock(sk); 1784 return copied ? : ret; 1785 } 1786 1787 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1788 struct msghdr *msg, 1789 size_t len, int flags, 1790 struct scm_timestamping_internal *tss, 1791 int *cmsg_flags) 1792 { 1793 struct sk_buff *skb, *tmp; 1794 int copied = 0; 1795 1796 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1797 u32 offset = MPTCP_SKB_CB(skb)->offset; 1798 u32 data_len = skb->len - offset; 1799 u32 count = min_t(size_t, len - copied, data_len); 1800 int err; 1801 1802 if (!(flags & MSG_TRUNC)) { 1803 err = skb_copy_datagram_msg(skb, offset, msg, count); 1804 if (unlikely(err < 0)) { 1805 if (!copied) 1806 return err; 1807 break; 1808 } 1809 } 1810 1811 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1812 tcp_update_recv_tstamps(skb, tss); 1813 *cmsg_flags |= MPTCP_CMSG_TS; 1814 } 1815 1816 copied += count; 1817 1818 if (count < data_len) { 1819 if (!(flags & MSG_PEEK)) { 1820 MPTCP_SKB_CB(skb)->offset += count; 1821 MPTCP_SKB_CB(skb)->map_seq += count; 1822 } 1823 break; 1824 } 1825 1826 if (!(flags & MSG_PEEK)) { 1827 /* we will bulk release the skb memory later */ 1828 skb->destructor = NULL; 1829 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1830 __skb_unlink(skb, &msk->receive_queue); 1831 __kfree_skb(skb); 1832 } 1833 1834 if (copied >= len) 1835 break; 1836 } 1837 1838 return copied; 1839 } 1840 1841 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1842 * 1843 * Only difference: Use highest rtt estimate of the subflows in use. 1844 */ 1845 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1846 { 1847 struct mptcp_subflow_context *subflow; 1848 struct sock *sk = (struct sock *)msk; 1849 u32 time, advmss = 1; 1850 u64 rtt_us, mstamp; 1851 1852 sock_owned_by_me(sk); 1853 1854 if (copied <= 0) 1855 return; 1856 1857 msk->rcvq_space.copied += copied; 1858 1859 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1860 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1861 1862 rtt_us = msk->rcvq_space.rtt_us; 1863 if (rtt_us && time < (rtt_us >> 3)) 1864 return; 1865 1866 rtt_us = 0; 1867 mptcp_for_each_subflow(msk, subflow) { 1868 const struct tcp_sock *tp; 1869 u64 sf_rtt_us; 1870 u32 sf_advmss; 1871 1872 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1873 1874 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1875 sf_advmss = READ_ONCE(tp->advmss); 1876 1877 rtt_us = max(sf_rtt_us, rtt_us); 1878 advmss = max(sf_advmss, advmss); 1879 } 1880 1881 msk->rcvq_space.rtt_us = rtt_us; 1882 if (time < (rtt_us >> 3) || rtt_us == 0) 1883 return; 1884 1885 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1886 goto new_measure; 1887 1888 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1889 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1890 int rcvmem, rcvbuf; 1891 u64 rcvwin, grow; 1892 1893 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1894 1895 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1896 1897 do_div(grow, msk->rcvq_space.space); 1898 rcvwin += (grow << 1); 1899 1900 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1901 while (tcp_win_from_space(sk, rcvmem) < advmss) 1902 rcvmem += 128; 1903 1904 do_div(rcvwin, advmss); 1905 rcvbuf = min_t(u64, rcvwin * rcvmem, 1906 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1907 1908 if (rcvbuf > sk->sk_rcvbuf) { 1909 u32 window_clamp; 1910 1911 window_clamp = tcp_win_from_space(sk, rcvbuf); 1912 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1913 1914 /* Make subflows follow along. If we do not do this, we 1915 * get drops at subflow level if skbs can't be moved to 1916 * the mptcp rx queue fast enough (announced rcv_win can 1917 * exceed ssk->sk_rcvbuf). 1918 */ 1919 mptcp_for_each_subflow(msk, subflow) { 1920 struct sock *ssk; 1921 bool slow; 1922 1923 ssk = mptcp_subflow_tcp_sock(subflow); 1924 slow = lock_sock_fast(ssk); 1925 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1926 tcp_sk(ssk)->window_clamp = window_clamp; 1927 tcp_cleanup_rbuf(ssk, 1); 1928 unlock_sock_fast(ssk, slow); 1929 } 1930 } 1931 } 1932 1933 msk->rcvq_space.space = msk->rcvq_space.copied; 1934 new_measure: 1935 msk->rcvq_space.copied = 0; 1936 msk->rcvq_space.time = mstamp; 1937 } 1938 1939 static void __mptcp_update_rmem(struct sock *sk) 1940 { 1941 struct mptcp_sock *msk = mptcp_sk(sk); 1942 1943 if (!msk->rmem_released) 1944 return; 1945 1946 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1947 mptcp_rmem_uncharge(sk, msk->rmem_released); 1948 WRITE_ONCE(msk->rmem_released, 0); 1949 } 1950 1951 static void __mptcp_splice_receive_queue(struct sock *sk) 1952 { 1953 struct mptcp_sock *msk = mptcp_sk(sk); 1954 1955 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1956 } 1957 1958 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1959 { 1960 struct sock *sk = (struct sock *)msk; 1961 unsigned int moved = 0; 1962 bool ret, done; 1963 1964 do { 1965 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1966 bool slowpath; 1967 1968 /* we can have data pending in the subflows only if the msk 1969 * receive buffer was full at subflow_data_ready() time, 1970 * that is an unlikely slow path. 1971 */ 1972 if (likely(!ssk)) 1973 break; 1974 1975 slowpath = lock_sock_fast(ssk); 1976 mptcp_data_lock(sk); 1977 __mptcp_update_rmem(sk); 1978 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1979 mptcp_data_unlock(sk); 1980 1981 if (unlikely(ssk->sk_err)) 1982 __mptcp_error_report(sk); 1983 unlock_sock_fast(ssk, slowpath); 1984 } while (!done); 1985 1986 /* acquire the data lock only if some input data is pending */ 1987 ret = moved > 0; 1988 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1989 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1990 mptcp_data_lock(sk); 1991 __mptcp_update_rmem(sk); 1992 ret |= __mptcp_ofo_queue(msk); 1993 __mptcp_splice_receive_queue(sk); 1994 mptcp_data_unlock(sk); 1995 } 1996 if (ret) 1997 mptcp_check_data_fin((struct sock *)msk); 1998 return !skb_queue_empty(&msk->receive_queue); 1999 } 2000 2001 static unsigned int mptcp_inq_hint(const struct sock *sk) 2002 { 2003 const struct mptcp_sock *msk = mptcp_sk(sk); 2004 const struct sk_buff *skb; 2005 2006 skb = skb_peek(&msk->receive_queue); 2007 if (skb) { 2008 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2009 2010 if (hint_val >= INT_MAX) 2011 return INT_MAX; 2012 2013 return (unsigned int)hint_val; 2014 } 2015 2016 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2017 return 1; 2018 2019 return 0; 2020 } 2021 2022 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2023 int flags, int *addr_len) 2024 { 2025 struct mptcp_sock *msk = mptcp_sk(sk); 2026 struct scm_timestamping_internal tss; 2027 int copied = 0, cmsg_flags = 0; 2028 int target; 2029 long timeo; 2030 2031 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2032 if (unlikely(flags & MSG_ERRQUEUE)) 2033 return inet_recv_error(sk, msg, len, addr_len); 2034 2035 lock_sock(sk); 2036 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2037 copied = -ENOTCONN; 2038 goto out_err; 2039 } 2040 2041 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2042 2043 len = min_t(size_t, len, INT_MAX); 2044 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2045 2046 if (unlikely(msk->recvmsg_inq)) 2047 cmsg_flags = MPTCP_CMSG_INQ; 2048 2049 while (copied < len) { 2050 int bytes_read; 2051 2052 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2053 if (unlikely(bytes_read < 0)) { 2054 if (!copied) 2055 copied = bytes_read; 2056 goto out_err; 2057 } 2058 2059 copied += bytes_read; 2060 2061 /* be sure to advertise window change */ 2062 mptcp_cleanup_rbuf(msk); 2063 2064 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2065 continue; 2066 2067 /* only the master socket status is relevant here. The exit 2068 * conditions mirror closely tcp_recvmsg() 2069 */ 2070 if (copied >= target) 2071 break; 2072 2073 if (copied) { 2074 if (sk->sk_err || 2075 sk->sk_state == TCP_CLOSE || 2076 (sk->sk_shutdown & RCV_SHUTDOWN) || 2077 !timeo || 2078 signal_pending(current)) 2079 break; 2080 } else { 2081 if (sk->sk_err) { 2082 copied = sock_error(sk); 2083 break; 2084 } 2085 2086 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2087 mptcp_check_for_eof(msk); 2088 2089 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2090 /* race breaker: the shutdown could be after the 2091 * previous receive queue check 2092 */ 2093 if (__mptcp_move_skbs(msk)) 2094 continue; 2095 break; 2096 } 2097 2098 if (sk->sk_state == TCP_CLOSE) { 2099 copied = -ENOTCONN; 2100 break; 2101 } 2102 2103 if (!timeo) { 2104 copied = -EAGAIN; 2105 break; 2106 } 2107 2108 if (signal_pending(current)) { 2109 copied = sock_intr_errno(timeo); 2110 break; 2111 } 2112 } 2113 2114 pr_debug("block timeout %ld", timeo); 2115 sk_wait_data(sk, &timeo, NULL); 2116 } 2117 2118 out_err: 2119 if (cmsg_flags && copied >= 0) { 2120 if (cmsg_flags & MPTCP_CMSG_TS) 2121 tcp_recv_timestamp(msg, sk, &tss); 2122 2123 if (cmsg_flags & MPTCP_CMSG_INQ) { 2124 unsigned int inq = mptcp_inq_hint(sk); 2125 2126 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2127 } 2128 } 2129 2130 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2131 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2132 skb_queue_empty(&msk->receive_queue), copied); 2133 if (!(flags & MSG_PEEK)) 2134 mptcp_rcv_space_adjust(msk, copied); 2135 2136 release_sock(sk); 2137 return copied; 2138 } 2139 2140 static void mptcp_retransmit_timer(struct timer_list *t) 2141 { 2142 struct inet_connection_sock *icsk = from_timer(icsk, t, 2143 icsk_retransmit_timer); 2144 struct sock *sk = &icsk->icsk_inet.sk; 2145 struct mptcp_sock *msk = mptcp_sk(sk); 2146 2147 bh_lock_sock(sk); 2148 if (!sock_owned_by_user(sk)) { 2149 /* we need a process context to retransmit */ 2150 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2151 mptcp_schedule_work(sk); 2152 } else { 2153 /* delegate our work to tcp_release_cb() */ 2154 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2155 } 2156 bh_unlock_sock(sk); 2157 sock_put(sk); 2158 } 2159 2160 static void mptcp_timeout_timer(struct timer_list *t) 2161 { 2162 struct sock *sk = from_timer(sk, t, sk_timer); 2163 2164 mptcp_schedule_work(sk); 2165 sock_put(sk); 2166 } 2167 2168 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2169 * level. 2170 * 2171 * A backup subflow is returned only if that is the only kind available. 2172 */ 2173 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2174 { 2175 struct sock *backup = NULL, *pick = NULL; 2176 struct mptcp_subflow_context *subflow; 2177 int min_stale_count = INT_MAX; 2178 2179 sock_owned_by_me((const struct sock *)msk); 2180 2181 if (__mptcp_check_fallback(msk)) 2182 return NULL; 2183 2184 mptcp_for_each_subflow(msk, subflow) { 2185 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2186 2187 if (!__mptcp_subflow_active(subflow)) 2188 continue; 2189 2190 /* still data outstanding at TCP level? skip this */ 2191 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2192 mptcp_pm_subflow_chk_stale(msk, ssk); 2193 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2194 continue; 2195 } 2196 2197 if (subflow->backup) { 2198 if (!backup) 2199 backup = ssk; 2200 continue; 2201 } 2202 2203 if (!pick) 2204 pick = ssk; 2205 } 2206 2207 if (pick) 2208 return pick; 2209 2210 /* use backup only if there are no progresses anywhere */ 2211 return min_stale_count > 1 ? backup : NULL; 2212 } 2213 2214 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2215 { 2216 if (msk->subflow) { 2217 iput(SOCK_INODE(msk->subflow)); 2218 msk->subflow = NULL; 2219 } 2220 } 2221 2222 bool __mptcp_retransmit_pending_data(struct sock *sk) 2223 { 2224 struct mptcp_data_frag *cur, *rtx_head; 2225 struct mptcp_sock *msk = mptcp_sk(sk); 2226 2227 if (__mptcp_check_fallback(mptcp_sk(sk))) 2228 return false; 2229 2230 if (tcp_rtx_and_write_queues_empty(sk)) 2231 return false; 2232 2233 /* the closing socket has some data untransmitted and/or unacked: 2234 * some data in the mptcp rtx queue has not really xmitted yet. 2235 * keep it simple and re-inject the whole mptcp level rtx queue 2236 */ 2237 mptcp_data_lock(sk); 2238 __mptcp_clean_una_wakeup(sk); 2239 rtx_head = mptcp_rtx_head(sk); 2240 if (!rtx_head) { 2241 mptcp_data_unlock(sk); 2242 return false; 2243 } 2244 2245 msk->recovery_snd_nxt = msk->snd_nxt; 2246 msk->recovery = true; 2247 mptcp_data_unlock(sk); 2248 2249 msk->first_pending = rtx_head; 2250 msk->snd_burst = 0; 2251 2252 /* be sure to clear the "sent status" on all re-injected fragments */ 2253 list_for_each_entry(cur, &msk->rtx_queue, list) { 2254 if (!cur->already_sent) 2255 break; 2256 cur->already_sent = 0; 2257 } 2258 2259 return true; 2260 } 2261 2262 /* flags for __mptcp_close_ssk() */ 2263 #define MPTCP_CF_PUSH BIT(1) 2264 #define MPTCP_CF_FASTCLOSE BIT(2) 2265 2266 /* subflow sockets can be either outgoing (connect) or incoming 2267 * (accept). 2268 * 2269 * Outgoing subflows use in-kernel sockets. 2270 * Incoming subflows do not have their own 'struct socket' allocated, 2271 * so we need to use tcp_close() after detaching them from the mptcp 2272 * parent socket. 2273 */ 2274 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2275 struct mptcp_subflow_context *subflow, 2276 unsigned int flags) 2277 { 2278 struct mptcp_sock *msk = mptcp_sk(sk); 2279 bool need_push, dispose_it; 2280 2281 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2282 if (dispose_it) 2283 list_del(&subflow->node); 2284 2285 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2286 2287 if (flags & MPTCP_CF_FASTCLOSE) 2288 subflow->send_fastclose = 1; 2289 2290 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2291 if (!dispose_it) { 2292 tcp_disconnect(ssk, 0); 2293 msk->subflow->state = SS_UNCONNECTED; 2294 mptcp_subflow_ctx_reset(subflow); 2295 release_sock(ssk); 2296 2297 goto out; 2298 } 2299 2300 /* if we are invoked by the msk cleanup code, the subflow is 2301 * already orphaned 2302 */ 2303 if (ssk->sk_socket) 2304 sock_orphan(ssk); 2305 2306 subflow->disposable = 1; 2307 2308 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2309 * the ssk has been already destroyed, we just need to release the 2310 * reference owned by msk; 2311 */ 2312 if (!inet_csk(ssk)->icsk_ulp_ops) { 2313 kfree_rcu(subflow, rcu); 2314 } else { 2315 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2316 if (ssk->sk_state == TCP_LISTEN) { 2317 tcp_set_state(ssk, TCP_CLOSE); 2318 mptcp_subflow_queue_clean(ssk); 2319 inet_csk_listen_stop(ssk); 2320 } 2321 __tcp_close(ssk, 0); 2322 2323 /* close acquired an extra ref */ 2324 __sock_put(ssk); 2325 } 2326 release_sock(ssk); 2327 2328 sock_put(ssk); 2329 2330 if (ssk == msk->first) 2331 msk->first = NULL; 2332 2333 out: 2334 if (ssk == msk->last_snd) 2335 msk->last_snd = NULL; 2336 2337 if (need_push) 2338 __mptcp_push_pending(sk, 0); 2339 } 2340 2341 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2342 struct mptcp_subflow_context *subflow) 2343 { 2344 if (sk->sk_state == TCP_ESTABLISHED) 2345 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2346 2347 /* subflow aborted before reaching the fully_established status 2348 * attempt the creation of the next subflow 2349 */ 2350 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2351 2352 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2353 } 2354 2355 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2356 { 2357 return 0; 2358 } 2359 2360 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2361 { 2362 struct mptcp_subflow_context *subflow, *tmp; 2363 2364 might_sleep(); 2365 2366 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2367 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2368 2369 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2370 continue; 2371 2372 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2373 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2374 continue; 2375 2376 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2377 } 2378 } 2379 2380 static bool mptcp_check_close_timeout(const struct sock *sk) 2381 { 2382 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2383 struct mptcp_subflow_context *subflow; 2384 2385 if (delta >= TCP_TIMEWAIT_LEN) 2386 return true; 2387 2388 /* if all subflows are in closed status don't bother with additional 2389 * timeout 2390 */ 2391 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2392 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2393 TCP_CLOSE) 2394 return false; 2395 } 2396 return true; 2397 } 2398 2399 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2400 { 2401 struct mptcp_subflow_context *subflow, *tmp; 2402 struct sock *sk = &msk->sk.icsk_inet.sk; 2403 2404 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2405 return; 2406 2407 mptcp_token_destroy(msk); 2408 2409 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2410 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2411 bool slow; 2412 2413 slow = lock_sock_fast(tcp_sk); 2414 if (tcp_sk->sk_state != TCP_CLOSE) { 2415 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2416 tcp_set_state(tcp_sk, TCP_CLOSE); 2417 } 2418 unlock_sock_fast(tcp_sk, slow); 2419 } 2420 2421 inet_sk_state_store(sk, TCP_CLOSE); 2422 sk->sk_shutdown = SHUTDOWN_MASK; 2423 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2424 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2425 2426 mptcp_close_wake_up(sk); 2427 } 2428 2429 static void __mptcp_retrans(struct sock *sk) 2430 { 2431 struct mptcp_sock *msk = mptcp_sk(sk); 2432 struct mptcp_sendmsg_info info = {}; 2433 struct mptcp_data_frag *dfrag; 2434 size_t copied = 0; 2435 struct sock *ssk; 2436 int ret; 2437 2438 mptcp_clean_una_wakeup(sk); 2439 2440 /* first check ssk: need to kick "stale" logic */ 2441 ssk = mptcp_subflow_get_retrans(msk); 2442 dfrag = mptcp_rtx_head(sk); 2443 if (!dfrag) { 2444 if (mptcp_data_fin_enabled(msk)) { 2445 struct inet_connection_sock *icsk = inet_csk(sk); 2446 2447 icsk->icsk_retransmits++; 2448 mptcp_set_datafin_timeout(sk); 2449 mptcp_send_ack(msk); 2450 2451 goto reset_timer; 2452 } 2453 2454 if (!mptcp_send_head(sk)) 2455 return; 2456 2457 goto reset_timer; 2458 } 2459 2460 if (!ssk) 2461 goto reset_timer; 2462 2463 lock_sock(ssk); 2464 2465 /* limit retransmission to the bytes already sent on some subflows */ 2466 info.sent = 0; 2467 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2468 while (info.sent < info.limit) { 2469 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2470 if (ret <= 0) 2471 break; 2472 2473 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2474 copied += ret; 2475 info.sent += ret; 2476 } 2477 if (copied) { 2478 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2479 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2480 info.size_goal); 2481 WRITE_ONCE(msk->allow_infinite_fallback, false); 2482 } 2483 2484 release_sock(ssk); 2485 2486 reset_timer: 2487 mptcp_check_and_set_pending(sk); 2488 2489 if (!mptcp_timer_pending(sk)) 2490 mptcp_reset_timer(sk); 2491 } 2492 2493 /* schedule the timeout timer for the relevant event: either close timeout 2494 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2495 */ 2496 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2497 { 2498 struct sock *sk = (struct sock *)msk; 2499 unsigned long timeout, close_timeout; 2500 2501 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2502 return; 2503 2504 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2505 2506 /* the close timeout takes precedence on the fail one, and here at least one of 2507 * them is active 2508 */ 2509 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2510 2511 sk_reset_timer(sk, &sk->sk_timer, timeout); 2512 } 2513 2514 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2515 { 2516 struct sock *ssk = msk->first; 2517 bool slow; 2518 2519 if (!ssk) 2520 return; 2521 2522 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2523 2524 slow = lock_sock_fast(ssk); 2525 mptcp_subflow_reset(ssk); 2526 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2527 unlock_sock_fast(ssk, slow); 2528 2529 mptcp_reset_timeout(msk, 0); 2530 } 2531 2532 static void mptcp_worker(struct work_struct *work) 2533 { 2534 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2535 struct sock *sk = &msk->sk.icsk_inet.sk; 2536 unsigned long fail_tout; 2537 int state; 2538 2539 lock_sock(sk); 2540 state = sk->sk_state; 2541 if (unlikely(state == TCP_CLOSE)) 2542 goto unlock; 2543 2544 mptcp_check_data_fin_ack(sk); 2545 2546 mptcp_check_fastclose(msk); 2547 2548 mptcp_pm_nl_work(msk); 2549 2550 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2551 mptcp_check_for_eof(msk); 2552 2553 __mptcp_check_send_data_fin(sk); 2554 mptcp_check_data_fin(sk); 2555 2556 /* There is no point in keeping around an orphaned sk timedout or 2557 * closed, but we need the msk around to reply to incoming DATA_FIN, 2558 * even if it is orphaned and in FIN_WAIT2 state 2559 */ 2560 if (sock_flag(sk, SOCK_DEAD) && 2561 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2562 inet_sk_state_store(sk, TCP_CLOSE); 2563 __mptcp_destroy_sock(sk); 2564 goto unlock; 2565 } 2566 2567 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2568 __mptcp_close_subflow(msk); 2569 2570 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2571 __mptcp_retrans(sk); 2572 2573 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2574 if (fail_tout && time_after(jiffies, fail_tout)) 2575 mptcp_mp_fail_no_response(msk); 2576 2577 unlock: 2578 release_sock(sk); 2579 sock_put(sk); 2580 } 2581 2582 static int __mptcp_init_sock(struct sock *sk) 2583 { 2584 struct mptcp_sock *msk = mptcp_sk(sk); 2585 2586 INIT_LIST_HEAD(&msk->conn_list); 2587 INIT_LIST_HEAD(&msk->join_list); 2588 INIT_LIST_HEAD(&msk->rtx_queue); 2589 INIT_WORK(&msk->work, mptcp_worker); 2590 __skb_queue_head_init(&msk->receive_queue); 2591 msk->out_of_order_queue = RB_ROOT; 2592 msk->first_pending = NULL; 2593 msk->rmem_fwd_alloc = 0; 2594 WRITE_ONCE(msk->rmem_released, 0); 2595 msk->timer_ival = TCP_RTO_MIN; 2596 2597 msk->first = NULL; 2598 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2599 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2600 WRITE_ONCE(msk->allow_infinite_fallback, true); 2601 msk->recovery = false; 2602 2603 mptcp_pm_data_init(msk); 2604 2605 /* re-use the csk retrans timer for MPTCP-level retrans */ 2606 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2607 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2608 2609 return 0; 2610 } 2611 2612 static void mptcp_ca_reset(struct sock *sk) 2613 { 2614 struct inet_connection_sock *icsk = inet_csk(sk); 2615 2616 tcp_assign_congestion_control(sk); 2617 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2618 2619 /* no need to keep a reference to the ops, the name will suffice */ 2620 tcp_cleanup_congestion_control(sk); 2621 icsk->icsk_ca_ops = NULL; 2622 } 2623 2624 static int mptcp_init_sock(struct sock *sk) 2625 { 2626 struct net *net = sock_net(sk); 2627 int ret; 2628 2629 ret = __mptcp_init_sock(sk); 2630 if (ret) 2631 return ret; 2632 2633 if (!mptcp_is_enabled(net)) 2634 return -ENOPROTOOPT; 2635 2636 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2637 return -ENOMEM; 2638 2639 ret = __mptcp_socket_create(mptcp_sk(sk)); 2640 if (ret) 2641 return ret; 2642 2643 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2644 * propagate the correct value 2645 */ 2646 mptcp_ca_reset(sk); 2647 2648 sk_sockets_allocated_inc(sk); 2649 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 2650 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 2651 2652 return 0; 2653 } 2654 2655 static void __mptcp_clear_xmit(struct sock *sk) 2656 { 2657 struct mptcp_sock *msk = mptcp_sk(sk); 2658 struct mptcp_data_frag *dtmp, *dfrag; 2659 2660 WRITE_ONCE(msk->first_pending, NULL); 2661 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2662 dfrag_clear(sk, dfrag); 2663 } 2664 2665 static void mptcp_cancel_work(struct sock *sk) 2666 { 2667 struct mptcp_sock *msk = mptcp_sk(sk); 2668 2669 if (cancel_work_sync(&msk->work)) 2670 __sock_put(sk); 2671 } 2672 2673 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2674 { 2675 lock_sock(ssk); 2676 2677 switch (ssk->sk_state) { 2678 case TCP_LISTEN: 2679 if (!(how & RCV_SHUTDOWN)) 2680 break; 2681 fallthrough; 2682 case TCP_SYN_SENT: 2683 tcp_disconnect(ssk, O_NONBLOCK); 2684 break; 2685 default: 2686 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2687 pr_debug("Fallback"); 2688 ssk->sk_shutdown |= how; 2689 tcp_shutdown(ssk, how); 2690 } else { 2691 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2692 tcp_send_ack(ssk); 2693 if (!mptcp_timer_pending(sk)) 2694 mptcp_reset_timer(sk); 2695 } 2696 break; 2697 } 2698 2699 release_sock(ssk); 2700 } 2701 2702 static const unsigned char new_state[16] = { 2703 /* current state: new state: action: */ 2704 [0 /* (Invalid) */] = TCP_CLOSE, 2705 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2706 [TCP_SYN_SENT] = TCP_CLOSE, 2707 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2708 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2709 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2710 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2711 [TCP_CLOSE] = TCP_CLOSE, 2712 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2713 [TCP_LAST_ACK] = TCP_LAST_ACK, 2714 [TCP_LISTEN] = TCP_CLOSE, 2715 [TCP_CLOSING] = TCP_CLOSING, 2716 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2717 }; 2718 2719 static int mptcp_close_state(struct sock *sk) 2720 { 2721 int next = (int)new_state[sk->sk_state]; 2722 int ns = next & TCP_STATE_MASK; 2723 2724 inet_sk_state_store(sk, ns); 2725 2726 return next & TCP_ACTION_FIN; 2727 } 2728 2729 static void __mptcp_check_send_data_fin(struct sock *sk) 2730 { 2731 struct mptcp_subflow_context *subflow; 2732 struct mptcp_sock *msk = mptcp_sk(sk); 2733 2734 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2735 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2736 msk->snd_nxt, msk->write_seq); 2737 2738 /* we still need to enqueue subflows or not really shutting down, 2739 * skip this 2740 */ 2741 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2742 mptcp_send_head(sk)) 2743 return; 2744 2745 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2746 2747 /* fallback socket will not get data_fin/ack, can move to the next 2748 * state now 2749 */ 2750 if (__mptcp_check_fallback(msk)) { 2751 WRITE_ONCE(msk->snd_una, msk->write_seq); 2752 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2753 inet_sk_state_store(sk, TCP_CLOSE); 2754 mptcp_close_wake_up(sk); 2755 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2756 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2757 } 2758 } 2759 2760 mptcp_for_each_subflow(msk, subflow) { 2761 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2762 2763 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2764 } 2765 } 2766 2767 static void __mptcp_wr_shutdown(struct sock *sk) 2768 { 2769 struct mptcp_sock *msk = mptcp_sk(sk); 2770 2771 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2772 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2773 !!mptcp_send_head(sk)); 2774 2775 /* will be ignored by fallback sockets */ 2776 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2777 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2778 2779 __mptcp_check_send_data_fin(sk); 2780 } 2781 2782 static void __mptcp_destroy_sock(struct sock *sk) 2783 { 2784 struct mptcp_sock *msk = mptcp_sk(sk); 2785 2786 pr_debug("msk=%p", msk); 2787 2788 might_sleep(); 2789 2790 mptcp_stop_timer(sk); 2791 sk_stop_timer(sk, &sk->sk_timer); 2792 msk->pm.status = 0; 2793 2794 sk->sk_prot->destroy(sk); 2795 2796 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2797 WARN_ON_ONCE(msk->rmem_released); 2798 sk_stream_kill_queues(sk); 2799 xfrm_sk_free_policy(sk); 2800 2801 sk_refcnt_debug_release(sk); 2802 sock_put(sk); 2803 } 2804 2805 static void mptcp_close(struct sock *sk, long timeout) 2806 { 2807 struct mptcp_subflow_context *subflow; 2808 struct mptcp_sock *msk = mptcp_sk(sk); 2809 bool do_cancel_work = false; 2810 2811 lock_sock(sk); 2812 sk->sk_shutdown = SHUTDOWN_MASK; 2813 2814 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2815 inet_sk_state_store(sk, TCP_CLOSE); 2816 goto cleanup; 2817 } 2818 2819 if (mptcp_close_state(sk)) 2820 __mptcp_wr_shutdown(sk); 2821 2822 sk_stream_wait_close(sk, timeout); 2823 2824 cleanup: 2825 /* orphan all the subflows */ 2826 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2827 mptcp_for_each_subflow(msk, subflow) { 2828 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2829 bool slow = lock_sock_fast_nested(ssk); 2830 2831 /* since the close timeout takes precedence on the fail one, 2832 * cancel the latter 2833 */ 2834 if (ssk == msk->first) 2835 subflow->fail_tout = 0; 2836 2837 sock_orphan(ssk); 2838 unlock_sock_fast(ssk, slow); 2839 } 2840 sock_orphan(sk); 2841 2842 sock_hold(sk); 2843 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2844 if (mptcp_sk(sk)->token) 2845 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2846 2847 if (sk->sk_state == TCP_CLOSE) { 2848 __mptcp_destroy_sock(sk); 2849 do_cancel_work = true; 2850 } else { 2851 mptcp_reset_timeout(msk, 0); 2852 } 2853 release_sock(sk); 2854 if (do_cancel_work) 2855 mptcp_cancel_work(sk); 2856 2857 sock_put(sk); 2858 } 2859 2860 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2861 { 2862 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2863 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2864 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2865 2866 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2867 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2868 2869 if (msk6 && ssk6) { 2870 msk6->saddr = ssk6->saddr; 2871 msk6->flow_label = ssk6->flow_label; 2872 } 2873 #endif 2874 2875 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2876 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2877 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2878 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2879 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2880 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2881 } 2882 2883 static int mptcp_disconnect(struct sock *sk, int flags) 2884 { 2885 struct mptcp_sock *msk = mptcp_sk(sk); 2886 2887 inet_sk_state_store(sk, TCP_CLOSE); 2888 2889 mptcp_stop_timer(sk); 2890 sk_stop_timer(sk, &sk->sk_timer); 2891 2892 if (mptcp_sk(sk)->token) 2893 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2894 2895 /* msk->subflow is still intact, the following will not free the first 2896 * subflow 2897 */ 2898 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 2899 msk->last_snd = NULL; 2900 WRITE_ONCE(msk->flags, 0); 2901 msk->cb_flags = 0; 2902 msk->push_pending = 0; 2903 msk->recovery = false; 2904 msk->can_ack = false; 2905 msk->fully_established = false; 2906 msk->rcv_data_fin = false; 2907 msk->snd_data_fin_enable = false; 2908 msk->rcv_fastclose = false; 2909 msk->use_64bit_ack = false; 2910 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2911 mptcp_pm_data_reset(msk); 2912 mptcp_ca_reset(sk); 2913 2914 sk->sk_shutdown = 0; 2915 sk_error_report(sk); 2916 return 0; 2917 } 2918 2919 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2920 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2921 { 2922 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2923 2924 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2925 } 2926 #endif 2927 2928 struct sock *mptcp_sk_clone(const struct sock *sk, 2929 const struct mptcp_options_received *mp_opt, 2930 struct request_sock *req) 2931 { 2932 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2933 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2934 struct mptcp_sock *msk; 2935 u64 ack_seq; 2936 2937 if (!nsk) 2938 return NULL; 2939 2940 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2941 if (nsk->sk_family == AF_INET6) 2942 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2943 #endif 2944 2945 __mptcp_init_sock(nsk); 2946 2947 msk = mptcp_sk(nsk); 2948 msk->local_key = subflow_req->local_key; 2949 msk->token = subflow_req->token; 2950 msk->subflow = NULL; 2951 WRITE_ONCE(msk->fully_established, false); 2952 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2953 WRITE_ONCE(msk->csum_enabled, true); 2954 2955 msk->write_seq = subflow_req->idsn + 1; 2956 msk->snd_nxt = msk->write_seq; 2957 msk->snd_una = msk->write_seq; 2958 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2959 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2960 2961 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2962 msk->can_ack = true; 2963 msk->remote_key = mp_opt->sndr_key; 2964 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2965 ack_seq++; 2966 WRITE_ONCE(msk->ack_seq, ack_seq); 2967 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 2968 } 2969 2970 sock_reset_flag(nsk, SOCK_RCU_FREE); 2971 /* will be fully established after successful MPC subflow creation */ 2972 inet_sk_state_store(nsk, TCP_SYN_RECV); 2973 2974 security_inet_csk_clone(nsk, req); 2975 bh_unlock_sock(nsk); 2976 2977 /* keep a single reference */ 2978 __sock_put(nsk); 2979 return nsk; 2980 } 2981 2982 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2983 { 2984 const struct tcp_sock *tp = tcp_sk(ssk); 2985 2986 msk->rcvq_space.copied = 0; 2987 msk->rcvq_space.rtt_us = 0; 2988 2989 msk->rcvq_space.time = tp->tcp_mstamp; 2990 2991 /* initial rcv_space offering made to peer */ 2992 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2993 TCP_INIT_CWND * tp->advmss); 2994 if (msk->rcvq_space.space == 0) 2995 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2996 2997 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2998 } 2999 3000 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3001 bool kern) 3002 { 3003 struct mptcp_sock *msk = mptcp_sk(sk); 3004 struct socket *listener; 3005 struct sock *newsk; 3006 3007 listener = __mptcp_nmpc_socket(msk); 3008 if (WARN_ON_ONCE(!listener)) { 3009 *err = -EINVAL; 3010 return NULL; 3011 } 3012 3013 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3014 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3015 if (!newsk) 3016 return NULL; 3017 3018 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3019 if (sk_is_mptcp(newsk)) { 3020 struct mptcp_subflow_context *subflow; 3021 struct sock *new_mptcp_sock; 3022 3023 subflow = mptcp_subflow_ctx(newsk); 3024 new_mptcp_sock = subflow->conn; 3025 3026 /* is_mptcp should be false if subflow->conn is missing, see 3027 * subflow_syn_recv_sock() 3028 */ 3029 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3030 tcp_sk(newsk)->is_mptcp = 0; 3031 goto out; 3032 } 3033 3034 /* acquire the 2nd reference for the owning socket */ 3035 sock_hold(new_mptcp_sock); 3036 newsk = new_mptcp_sock; 3037 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3038 } else { 3039 MPTCP_INC_STATS(sock_net(sk), 3040 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3041 } 3042 3043 out: 3044 newsk->sk_kern_sock = kern; 3045 return newsk; 3046 } 3047 3048 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3049 { 3050 struct mptcp_subflow_context *subflow, *tmp; 3051 struct sock *sk = (struct sock *)msk; 3052 3053 __mptcp_clear_xmit(sk); 3054 3055 /* join list will be eventually flushed (with rst) at sock lock release time */ 3056 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) 3057 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3058 3059 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3060 mptcp_data_lock(sk); 3061 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3062 __skb_queue_purge(&sk->sk_receive_queue); 3063 skb_rbtree_purge(&msk->out_of_order_queue); 3064 mptcp_data_unlock(sk); 3065 3066 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3067 * inet_sock_destruct() will dispose it 3068 */ 3069 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3070 msk->rmem_fwd_alloc = 0; 3071 mptcp_token_destroy(msk); 3072 mptcp_pm_free_anno_list(msk); 3073 mptcp_free_local_addr_list(msk); 3074 } 3075 3076 static void mptcp_destroy(struct sock *sk) 3077 { 3078 struct mptcp_sock *msk = mptcp_sk(sk); 3079 3080 /* clears msk->subflow, allowing the following to close 3081 * even the initial subflow 3082 */ 3083 mptcp_dispose_initial_subflow(msk); 3084 mptcp_destroy_common(msk, 0); 3085 sk_sockets_allocated_dec(sk); 3086 } 3087 3088 void __mptcp_data_acked(struct sock *sk) 3089 { 3090 if (!sock_owned_by_user(sk)) 3091 __mptcp_clean_una(sk); 3092 else 3093 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3094 3095 if (mptcp_pending_data_fin_ack(sk)) 3096 mptcp_schedule_work(sk); 3097 } 3098 3099 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3100 { 3101 if (!mptcp_send_head(sk)) 3102 return; 3103 3104 if (!sock_owned_by_user(sk)) { 3105 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3106 3107 if (xmit_ssk == ssk) 3108 __mptcp_subflow_push_pending(sk, ssk); 3109 else if (xmit_ssk) 3110 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3111 } else { 3112 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3113 } 3114 } 3115 3116 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3117 BIT(MPTCP_RETRANSMIT) | \ 3118 BIT(MPTCP_FLUSH_JOIN_LIST)) 3119 3120 /* processes deferred events and flush wmem */ 3121 static void mptcp_release_cb(struct sock *sk) 3122 __must_hold(&sk->sk_lock.slock) 3123 { 3124 struct mptcp_sock *msk = mptcp_sk(sk); 3125 3126 for (;;) { 3127 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3128 msk->push_pending; 3129 if (!flags) 3130 break; 3131 3132 /* the following actions acquire the subflow socket lock 3133 * 3134 * 1) can't be invoked in atomic scope 3135 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3136 * datapath acquires the msk socket spinlock while helding 3137 * the subflow socket lock 3138 */ 3139 msk->push_pending = 0; 3140 msk->cb_flags &= ~flags; 3141 spin_unlock_bh(&sk->sk_lock.slock); 3142 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3143 __mptcp_flush_join_list(sk); 3144 if (flags & BIT(MPTCP_PUSH_PENDING)) 3145 __mptcp_push_pending(sk, 0); 3146 if (flags & BIT(MPTCP_RETRANSMIT)) 3147 __mptcp_retrans(sk); 3148 3149 cond_resched(); 3150 spin_lock_bh(&sk->sk_lock.slock); 3151 } 3152 3153 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3154 __mptcp_clean_una_wakeup(sk); 3155 if (unlikely(&msk->cb_flags)) { 3156 /* be sure to set the current sk state before tacking actions 3157 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3158 */ 3159 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3160 __mptcp_set_connected(sk); 3161 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3162 __mptcp_error_report(sk); 3163 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3164 msk->last_snd = NULL; 3165 } 3166 3167 __mptcp_update_rmem(sk); 3168 } 3169 3170 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3171 * TCP can't schedule delack timer before the subflow is fully established. 3172 * MPTCP uses the delack timer to do 3rd ack retransmissions 3173 */ 3174 static void schedule_3rdack_retransmission(struct sock *ssk) 3175 { 3176 struct inet_connection_sock *icsk = inet_csk(ssk); 3177 struct tcp_sock *tp = tcp_sk(ssk); 3178 unsigned long timeout; 3179 3180 if (mptcp_subflow_ctx(ssk)->fully_established) 3181 return; 3182 3183 /* reschedule with a timeout above RTT, as we must look only for drop */ 3184 if (tp->srtt_us) 3185 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3186 else 3187 timeout = TCP_TIMEOUT_INIT; 3188 timeout += jiffies; 3189 3190 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3191 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3192 icsk->icsk_ack.timeout = timeout; 3193 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3194 } 3195 3196 void mptcp_subflow_process_delegated(struct sock *ssk) 3197 { 3198 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3199 struct sock *sk = subflow->conn; 3200 3201 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3202 mptcp_data_lock(sk); 3203 if (!sock_owned_by_user(sk)) 3204 __mptcp_subflow_push_pending(sk, ssk); 3205 else 3206 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3207 mptcp_data_unlock(sk); 3208 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3209 } 3210 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3211 schedule_3rdack_retransmission(ssk); 3212 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3213 } 3214 } 3215 3216 static int mptcp_hash(struct sock *sk) 3217 { 3218 /* should never be called, 3219 * we hash the TCP subflows not the master socket 3220 */ 3221 WARN_ON_ONCE(1); 3222 return 0; 3223 } 3224 3225 static void mptcp_unhash(struct sock *sk) 3226 { 3227 /* called from sk_common_release(), but nothing to do here */ 3228 } 3229 3230 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3231 { 3232 struct mptcp_sock *msk = mptcp_sk(sk); 3233 struct socket *ssock; 3234 3235 ssock = __mptcp_nmpc_socket(msk); 3236 pr_debug("msk=%p, subflow=%p", msk, ssock); 3237 if (WARN_ON_ONCE(!ssock)) 3238 return -EINVAL; 3239 3240 return inet_csk_get_port(ssock->sk, snum); 3241 } 3242 3243 void mptcp_finish_connect(struct sock *ssk) 3244 { 3245 struct mptcp_subflow_context *subflow; 3246 struct mptcp_sock *msk; 3247 struct sock *sk; 3248 u64 ack_seq; 3249 3250 subflow = mptcp_subflow_ctx(ssk); 3251 sk = subflow->conn; 3252 msk = mptcp_sk(sk); 3253 3254 pr_debug("msk=%p, token=%u", sk, subflow->token); 3255 3256 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3257 ack_seq++; 3258 subflow->map_seq = ack_seq; 3259 subflow->map_subflow_seq = 1; 3260 3261 /* the socket is not connected yet, no msk/subflow ops can access/race 3262 * accessing the field below 3263 */ 3264 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3265 WRITE_ONCE(msk->local_key, subflow->local_key); 3266 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3267 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3268 WRITE_ONCE(msk->ack_seq, ack_seq); 3269 WRITE_ONCE(msk->can_ack, 1); 3270 WRITE_ONCE(msk->snd_una, msk->write_seq); 3271 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3272 3273 mptcp_pm_new_connection(msk, ssk, 0); 3274 3275 mptcp_rcv_space_init(msk, ssk); 3276 } 3277 3278 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3279 { 3280 write_lock_bh(&sk->sk_callback_lock); 3281 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3282 sk_set_socket(sk, parent); 3283 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3284 write_unlock_bh(&sk->sk_callback_lock); 3285 } 3286 3287 bool mptcp_finish_join(struct sock *ssk) 3288 { 3289 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3290 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3291 struct sock *parent = (void *)msk; 3292 bool ret = true; 3293 3294 pr_debug("msk=%p, subflow=%p", msk, subflow); 3295 3296 /* mptcp socket already closing? */ 3297 if (!mptcp_is_fully_established(parent)) { 3298 subflow->reset_reason = MPTCP_RST_EMPTCP; 3299 return false; 3300 } 3301 3302 if (!list_empty(&subflow->node)) 3303 goto out; 3304 3305 if (!mptcp_pm_allow_new_subflow(msk)) 3306 goto err_prohibited; 3307 3308 /* active connections are already on conn_list. 3309 * If we can't acquire msk socket lock here, let the release callback 3310 * handle it 3311 */ 3312 mptcp_data_lock(parent); 3313 if (!sock_owned_by_user(parent)) { 3314 ret = __mptcp_finish_join(msk, ssk); 3315 if (ret) { 3316 sock_hold(ssk); 3317 list_add_tail(&subflow->node, &msk->conn_list); 3318 } 3319 } else { 3320 sock_hold(ssk); 3321 list_add_tail(&subflow->node, &msk->join_list); 3322 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3323 } 3324 mptcp_data_unlock(parent); 3325 3326 if (!ret) { 3327 err_prohibited: 3328 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3329 return false; 3330 } 3331 3332 subflow->map_seq = READ_ONCE(msk->ack_seq); 3333 WRITE_ONCE(msk->allow_infinite_fallback, false); 3334 3335 out: 3336 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3337 return true; 3338 } 3339 3340 static void mptcp_shutdown(struct sock *sk, int how) 3341 { 3342 pr_debug("sk=%p, how=%d", sk, how); 3343 3344 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3345 __mptcp_wr_shutdown(sk); 3346 } 3347 3348 static int mptcp_forward_alloc_get(const struct sock *sk) 3349 { 3350 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3351 } 3352 3353 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3354 { 3355 const struct sock *sk = (void *)msk; 3356 u64 delta; 3357 3358 if (sk->sk_state == TCP_LISTEN) 3359 return -EINVAL; 3360 3361 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3362 return 0; 3363 3364 delta = msk->write_seq - v; 3365 if (__mptcp_check_fallback(msk) && msk->first) { 3366 struct tcp_sock *tp = tcp_sk(msk->first); 3367 3368 /* the first subflow is disconnected after close - see 3369 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3370 * so ignore that status, too. 3371 */ 3372 if (!((1 << msk->first->sk_state) & 3373 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3374 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3375 } 3376 if (delta > INT_MAX) 3377 delta = INT_MAX; 3378 3379 return (int)delta; 3380 } 3381 3382 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3383 { 3384 struct mptcp_sock *msk = mptcp_sk(sk); 3385 bool slow; 3386 int answ; 3387 3388 switch (cmd) { 3389 case SIOCINQ: 3390 if (sk->sk_state == TCP_LISTEN) 3391 return -EINVAL; 3392 3393 lock_sock(sk); 3394 __mptcp_move_skbs(msk); 3395 answ = mptcp_inq_hint(sk); 3396 release_sock(sk); 3397 break; 3398 case SIOCOUTQ: 3399 slow = lock_sock_fast(sk); 3400 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3401 unlock_sock_fast(sk, slow); 3402 break; 3403 case SIOCOUTQNSD: 3404 slow = lock_sock_fast(sk); 3405 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3406 unlock_sock_fast(sk, slow); 3407 break; 3408 default: 3409 return -ENOIOCTLCMD; 3410 } 3411 3412 return put_user(answ, (int __user *)arg); 3413 } 3414 3415 static struct proto mptcp_prot = { 3416 .name = "MPTCP", 3417 .owner = THIS_MODULE, 3418 .init = mptcp_init_sock, 3419 .disconnect = mptcp_disconnect, 3420 .close = mptcp_close, 3421 .accept = mptcp_accept, 3422 .setsockopt = mptcp_setsockopt, 3423 .getsockopt = mptcp_getsockopt, 3424 .shutdown = mptcp_shutdown, 3425 .destroy = mptcp_destroy, 3426 .sendmsg = mptcp_sendmsg, 3427 .ioctl = mptcp_ioctl, 3428 .recvmsg = mptcp_recvmsg, 3429 .release_cb = mptcp_release_cb, 3430 .hash = mptcp_hash, 3431 .unhash = mptcp_unhash, 3432 .get_port = mptcp_get_port, 3433 .forward_alloc_get = mptcp_forward_alloc_get, 3434 .sockets_allocated = &mptcp_sockets_allocated, 3435 3436 .memory_allocated = &tcp_memory_allocated, 3437 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3438 3439 .memory_pressure = &tcp_memory_pressure, 3440 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3441 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3442 .sysctl_mem = sysctl_tcp_mem, 3443 .obj_size = sizeof(struct mptcp_sock), 3444 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3445 .no_autobind = true, 3446 }; 3447 3448 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3449 { 3450 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3451 struct socket *ssock; 3452 int err; 3453 3454 lock_sock(sock->sk); 3455 ssock = __mptcp_nmpc_socket(msk); 3456 if (!ssock) { 3457 err = -EINVAL; 3458 goto unlock; 3459 } 3460 3461 err = ssock->ops->bind(ssock, uaddr, addr_len); 3462 if (!err) 3463 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3464 3465 unlock: 3466 release_sock(sock->sk); 3467 return err; 3468 } 3469 3470 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3471 struct mptcp_subflow_context *subflow) 3472 { 3473 subflow->request_mptcp = 0; 3474 __mptcp_do_fallback(msk); 3475 } 3476 3477 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3478 int addr_len, int flags) 3479 { 3480 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3481 struct mptcp_subflow_context *subflow; 3482 struct socket *ssock; 3483 int err = -EINVAL; 3484 3485 lock_sock(sock->sk); 3486 if (uaddr) { 3487 if (addr_len < sizeof(uaddr->sa_family)) 3488 goto unlock; 3489 3490 if (uaddr->sa_family == AF_UNSPEC) { 3491 err = mptcp_disconnect(sock->sk, flags); 3492 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3493 goto unlock; 3494 } 3495 } 3496 3497 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3498 /* pending connection or invalid state, let existing subflow 3499 * cope with that 3500 */ 3501 ssock = msk->subflow; 3502 goto do_connect; 3503 } 3504 3505 ssock = __mptcp_nmpc_socket(msk); 3506 if (!ssock) 3507 goto unlock; 3508 3509 mptcp_token_destroy(msk); 3510 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3511 subflow = mptcp_subflow_ctx(ssock->sk); 3512 #ifdef CONFIG_TCP_MD5SIG 3513 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3514 * TCP option space. 3515 */ 3516 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3517 mptcp_subflow_early_fallback(msk, subflow); 3518 #endif 3519 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3520 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3521 mptcp_subflow_early_fallback(msk, subflow); 3522 } 3523 if (likely(!__mptcp_check_fallback(msk))) 3524 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3525 3526 do_connect: 3527 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3528 sock->state = ssock->state; 3529 3530 /* on successful connect, the msk state will be moved to established by 3531 * subflow_finish_connect() 3532 */ 3533 if (!err || err == -EINPROGRESS) 3534 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3535 else 3536 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3537 3538 unlock: 3539 release_sock(sock->sk); 3540 return err; 3541 } 3542 3543 static int mptcp_listen(struct socket *sock, int backlog) 3544 { 3545 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3546 struct socket *ssock; 3547 int err; 3548 3549 pr_debug("msk=%p", msk); 3550 3551 lock_sock(sock->sk); 3552 ssock = __mptcp_nmpc_socket(msk); 3553 if (!ssock) { 3554 err = -EINVAL; 3555 goto unlock; 3556 } 3557 3558 mptcp_token_destroy(msk); 3559 inet_sk_state_store(sock->sk, TCP_LISTEN); 3560 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3561 3562 err = ssock->ops->listen(ssock, backlog); 3563 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3564 if (!err) 3565 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3566 3567 unlock: 3568 release_sock(sock->sk); 3569 return err; 3570 } 3571 3572 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3573 int flags, bool kern) 3574 { 3575 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3576 struct socket *ssock; 3577 int err; 3578 3579 pr_debug("msk=%p", msk); 3580 3581 ssock = __mptcp_nmpc_socket(msk); 3582 if (!ssock) 3583 return -EINVAL; 3584 3585 err = ssock->ops->accept(sock, newsock, flags, kern); 3586 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3587 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3588 struct mptcp_subflow_context *subflow; 3589 struct sock *newsk = newsock->sk; 3590 3591 lock_sock(newsk); 3592 3593 /* PM/worker can now acquire the first subflow socket 3594 * lock without racing with listener queue cleanup, 3595 * we can notify it, if needed. 3596 * 3597 * Even if remote has reset the initial subflow by now 3598 * the refcnt is still at least one. 3599 */ 3600 subflow = mptcp_subflow_ctx(msk->first); 3601 list_add(&subflow->node, &msk->conn_list); 3602 sock_hold(msk->first); 3603 if (mptcp_is_fully_established(newsk)) 3604 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3605 3606 mptcp_copy_inaddrs(newsk, msk->first); 3607 mptcp_rcv_space_init(msk, msk->first); 3608 mptcp_propagate_sndbuf(newsk, msk->first); 3609 3610 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3611 * This is needed so NOSPACE flag can be set from tcp stack. 3612 */ 3613 mptcp_for_each_subflow(msk, subflow) { 3614 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3615 3616 if (!ssk->sk_socket) 3617 mptcp_sock_graft(ssk, newsock); 3618 } 3619 release_sock(newsk); 3620 } 3621 3622 return err; 3623 } 3624 3625 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3626 { 3627 /* Concurrent splices from sk_receive_queue into receive_queue will 3628 * always show at least one non-empty queue when checked in this order. 3629 */ 3630 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3631 skb_queue_empty_lockless(&msk->receive_queue)) 3632 return 0; 3633 3634 return EPOLLIN | EPOLLRDNORM; 3635 } 3636 3637 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3638 { 3639 struct sock *sk = (struct sock *)msk; 3640 3641 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3642 return EPOLLOUT | EPOLLWRNORM; 3643 3644 if (sk_stream_is_writeable(sk)) 3645 return EPOLLOUT | EPOLLWRNORM; 3646 3647 mptcp_set_nospace(sk); 3648 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3649 if (sk_stream_is_writeable(sk)) 3650 return EPOLLOUT | EPOLLWRNORM; 3651 3652 return 0; 3653 } 3654 3655 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3656 struct poll_table_struct *wait) 3657 { 3658 struct sock *sk = sock->sk; 3659 struct mptcp_sock *msk; 3660 __poll_t mask = 0; 3661 int state; 3662 3663 msk = mptcp_sk(sk); 3664 sock_poll_wait(file, sock, wait); 3665 3666 state = inet_sk_state_load(sk); 3667 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3668 if (state == TCP_LISTEN) { 3669 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3670 return 0; 3671 3672 return inet_csk_listen_poll(msk->subflow->sk); 3673 } 3674 3675 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3676 mask |= mptcp_check_readable(msk); 3677 mask |= mptcp_check_writeable(msk); 3678 } 3679 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3680 mask |= EPOLLHUP; 3681 if (sk->sk_shutdown & RCV_SHUTDOWN) 3682 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3683 3684 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3685 smp_rmb(); 3686 if (sk->sk_err) 3687 mask |= EPOLLERR; 3688 3689 return mask; 3690 } 3691 3692 static const struct proto_ops mptcp_stream_ops = { 3693 .family = PF_INET, 3694 .owner = THIS_MODULE, 3695 .release = inet_release, 3696 .bind = mptcp_bind, 3697 .connect = mptcp_stream_connect, 3698 .socketpair = sock_no_socketpair, 3699 .accept = mptcp_stream_accept, 3700 .getname = inet_getname, 3701 .poll = mptcp_poll, 3702 .ioctl = inet_ioctl, 3703 .gettstamp = sock_gettstamp, 3704 .listen = mptcp_listen, 3705 .shutdown = inet_shutdown, 3706 .setsockopt = sock_common_setsockopt, 3707 .getsockopt = sock_common_getsockopt, 3708 .sendmsg = inet_sendmsg, 3709 .recvmsg = inet_recvmsg, 3710 .mmap = sock_no_mmap, 3711 .sendpage = inet_sendpage, 3712 }; 3713 3714 static struct inet_protosw mptcp_protosw = { 3715 .type = SOCK_STREAM, 3716 .protocol = IPPROTO_MPTCP, 3717 .prot = &mptcp_prot, 3718 .ops = &mptcp_stream_ops, 3719 .flags = INET_PROTOSW_ICSK, 3720 }; 3721 3722 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3723 { 3724 struct mptcp_delegated_action *delegated; 3725 struct mptcp_subflow_context *subflow; 3726 int work_done = 0; 3727 3728 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3729 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3730 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3731 3732 bh_lock_sock_nested(ssk); 3733 if (!sock_owned_by_user(ssk) && 3734 mptcp_subflow_has_delegated_action(subflow)) 3735 mptcp_subflow_process_delegated(ssk); 3736 /* ... elsewhere tcp_release_cb_override already processed 3737 * the action or will do at next release_sock(). 3738 * In both case must dequeue the subflow here - on the same 3739 * CPU that scheduled it. 3740 */ 3741 bh_unlock_sock(ssk); 3742 sock_put(ssk); 3743 3744 if (++work_done == budget) 3745 return budget; 3746 } 3747 3748 /* always provide a 0 'work_done' argument, so that napi_complete_done 3749 * will not try accessing the NULL napi->dev ptr 3750 */ 3751 napi_complete_done(napi, 0); 3752 return work_done; 3753 } 3754 3755 void __init mptcp_proto_init(void) 3756 { 3757 struct mptcp_delegated_action *delegated; 3758 int cpu; 3759 3760 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3761 3762 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3763 panic("Failed to allocate MPTCP pcpu counter\n"); 3764 3765 init_dummy_netdev(&mptcp_napi_dev); 3766 for_each_possible_cpu(cpu) { 3767 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3768 INIT_LIST_HEAD(&delegated->head); 3769 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3770 mptcp_napi_poll); 3771 napi_enable(&delegated->napi); 3772 } 3773 3774 mptcp_subflow_init(); 3775 mptcp_pm_init(); 3776 mptcp_token_init(); 3777 3778 if (proto_register(&mptcp_prot, 1) != 0) 3779 panic("Failed to register MPTCP proto.\n"); 3780 3781 inet_register_protosw(&mptcp_protosw); 3782 3783 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3784 } 3785 3786 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3787 static const struct proto_ops mptcp_v6_stream_ops = { 3788 .family = PF_INET6, 3789 .owner = THIS_MODULE, 3790 .release = inet6_release, 3791 .bind = mptcp_bind, 3792 .connect = mptcp_stream_connect, 3793 .socketpair = sock_no_socketpair, 3794 .accept = mptcp_stream_accept, 3795 .getname = inet6_getname, 3796 .poll = mptcp_poll, 3797 .ioctl = inet6_ioctl, 3798 .gettstamp = sock_gettstamp, 3799 .listen = mptcp_listen, 3800 .shutdown = inet_shutdown, 3801 .setsockopt = sock_common_setsockopt, 3802 .getsockopt = sock_common_getsockopt, 3803 .sendmsg = inet6_sendmsg, 3804 .recvmsg = inet6_recvmsg, 3805 .mmap = sock_no_mmap, 3806 .sendpage = inet_sendpage, 3807 #ifdef CONFIG_COMPAT 3808 .compat_ioctl = inet6_compat_ioctl, 3809 #endif 3810 }; 3811 3812 static struct proto mptcp_v6_prot; 3813 3814 static void mptcp_v6_destroy(struct sock *sk) 3815 { 3816 mptcp_destroy(sk); 3817 inet6_destroy_sock(sk); 3818 } 3819 3820 static struct inet_protosw mptcp_v6_protosw = { 3821 .type = SOCK_STREAM, 3822 .protocol = IPPROTO_MPTCP, 3823 .prot = &mptcp_v6_prot, 3824 .ops = &mptcp_v6_stream_ops, 3825 .flags = INET_PROTOSW_ICSK, 3826 }; 3827 3828 int __init mptcp_proto_v6_init(void) 3829 { 3830 int err; 3831 3832 mptcp_v6_prot = mptcp_prot; 3833 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3834 mptcp_v6_prot.slab = NULL; 3835 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3836 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3837 3838 err = proto_register(&mptcp_v6_prot, 1); 3839 if (err) 3840 return err; 3841 3842 err = inet6_register_protosw(&mptcp_v6_protosw); 3843 if (err) 3844 proto_unregister(&mptcp_v6_prot); 3845 3846 return err; 3847 } 3848 #endif 3849